blob: ddb0ec43ae1336b6b17187ab7793031a5ba7ef11 [file] [log] [blame] [edit]
//===-- Background.cpp - Build an index in a background thread ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "index/Background.h"
#include "ClangdUnit.h"
#include "Compiler.h"
#include "Logger.h"
#include "SourceCode.h"
#include "Threading.h"
#include "Trace.h"
#include "URI.h"
#include "index/IndexAction.h"
#include "index/MemIndex.h"
#include "index/Serialization.h"
#include "index/SymbolCollector.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/SHA1.h"
#include <chrono>
#include <memory>
#include <numeric>
#include <queue>
#include <random>
#include <string>
#include <thread>
namespace clang {
namespace clangd {
namespace {
// Resolves URI to file paths with cache.
class URIToFileCache {
public:
URIToFileCache(llvm::StringRef HintPath) : HintPath(HintPath) {}
llvm::StringRef resolve(llvm::StringRef FileURI) {
auto I = URIToPathCache.try_emplace(FileURI);
if (I.second) {
auto U = URI::parse(FileURI);
if (!U) {
elog("Failed to parse URI {0}: {1}", FileURI, U.takeError());
assert(false && "Failed to parse URI");
return "";
}
auto Path = URI::resolve(*U, HintPath);
if (!Path) {
elog("Failed to resolve URI {0}: {1}", FileURI, Path.takeError());
assert(false && "Failed to resolve URI");
return "";
}
I.first->second = *Path;
}
return I.first->second;
}
private:
std::string HintPath;
llvm::StringMap<std::string> URIToPathCache;
};
// We keep only the node "U" and its edges. Any node other than "U" will be
// empty in the resultant graph.
IncludeGraph getSubGraph(const URI &U, const IncludeGraph &FullGraph) {
IncludeGraph IG;
std::string FileURI = U.toString();
auto Entry = IG.try_emplace(FileURI).first;
auto &Node = Entry->getValue();
Node = FullGraph.lookup(Entry->getKey());
Node.URI = Entry->getKey();
// URIs inside nodes must point into the keys of the same IncludeGraph.
for (auto &Include : Node.DirectIncludes) {
auto I = IG.try_emplace(Include).first;
I->getValue().URI = I->getKey();
Include = I->getKey();
}
return IG;
}
// Creates a filter to not collect index results from files with unchanged
// digests.
// \p FileDigests contains file digests for the current indexed files.
decltype(SymbolCollector::Options::FileFilter)
createFileFilter(const llvm::StringMap<FileDigest> &FileDigests) {
return [&FileDigests](const SourceManager &SM, FileID FID) {
const auto *F = SM.getFileEntryForID(FID);
if (!F)
return false; // Skip invalid files.
auto AbsPath = getCanonicalPath(F, SM);
if (!AbsPath)
return false; // Skip files without absolute path.
auto Digest = digestFile(SM, FID);
if (!Digest)
return false;
auto D = FileDigests.find(*AbsPath);
if (D != FileDigests.end() && D->second == Digest)
return false; // Skip files that haven't changed.
return true;
};
}
// We cannot use vfs->makeAbsolute because Cmd.FileName is either absolute or
// relative to Cmd.Directory, which might not be the same as current working
// directory.
llvm::SmallString<128> getAbsolutePath(const tooling::CompileCommand &Cmd) {
llvm::SmallString<128> AbsolutePath;
if (llvm::sys::path::is_absolute(Cmd.Filename)) {
AbsolutePath = Cmd.Filename;
} else {
AbsolutePath = Cmd.Directory;
llvm::sys::path::append(AbsolutePath, Cmd.Filename);
}
return AbsolutePath;
}
} // namespace
BackgroundIndex::BackgroundIndex(
Context BackgroundContext, const FileSystemProvider &FSProvider,
const GlobalCompilationDatabase &CDB,
BackgroundIndexStorage::Factory IndexStorageFactory,
size_t BuildIndexPeriodMs, size_t ThreadPoolSize)
: SwapIndex(llvm::make_unique<MemIndex>()), FSProvider(FSProvider),
CDB(CDB), BackgroundContext(std::move(BackgroundContext)),
BuildIndexPeriodMs(BuildIndexPeriodMs),
SymbolsUpdatedSinceLastIndex(false),
IndexStorageFactory(std::move(IndexStorageFactory)),
CommandsChanged(
CDB.watch([&](const std::vector<std::string> &ChangedFiles) {
enqueue(ChangedFiles);
})) {
assert(ThreadPoolSize > 0 && "Thread pool size can't be zero.");
assert(this->IndexStorageFactory && "Storage factory can not be null!");
while (ThreadPoolSize--)
ThreadPool.emplace_back([this] { run(); });
if (BuildIndexPeriodMs > 0) {
log("BackgroundIndex: build symbol index periodically every {0} ms.",
BuildIndexPeriodMs);
ThreadPool.emplace_back([this] { buildIndex(); });
}
}
BackgroundIndex::~BackgroundIndex() {
stop();
for (auto &Thread : ThreadPool)
Thread.join();
}
void BackgroundIndex::stop() {
{
std::lock_guard<std::mutex> QueueLock(QueueMu);
std::lock_guard<std::mutex> IndexLock(IndexMu);
ShouldStop = true;
}
QueueCV.notify_all();
IndexCV.notify_all();
}
void BackgroundIndex::run() {
WithContext Background(BackgroundContext.clone());
while (true) {
llvm::Optional<Task> Task;
ThreadPriority Priority;
{
std::unique_lock<std::mutex> Lock(QueueMu);
QueueCV.wait(Lock, [&] { return ShouldStop || !Queue.empty(); });
if (ShouldStop) {
Queue.clear();
QueueCV.notify_all();
return;
}
++NumActiveTasks;
std::tie(Task, Priority) = std::move(Queue.front());
Queue.pop_front();
}
if (Priority != ThreadPriority::Normal)
setCurrentThreadPriority(Priority);
(*Task)();
if (Priority != ThreadPriority::Normal)
setCurrentThreadPriority(ThreadPriority::Normal);
{
std::unique_lock<std::mutex> Lock(QueueMu);
assert(NumActiveTasks > 0 && "before decrementing");
--NumActiveTasks;
}
QueueCV.notify_all();
}
}
bool BackgroundIndex::blockUntilIdleForTest(
llvm::Optional<double> TimeoutSeconds) {
std::unique_lock<std::mutex> Lock(QueueMu);
return wait(Lock, QueueCV, timeoutSeconds(TimeoutSeconds),
[&] { return Queue.empty() && NumActiveTasks == 0; });
}
void BackgroundIndex::enqueue(const std::vector<std::string> &ChangedFiles) {
enqueueTask(
[this, ChangedFiles] {
trace::Span Tracer("BackgroundIndexEnqueue");
// We're doing this asynchronously, because we'll read shards here too.
log("Enqueueing {0} commands for indexing", ChangedFiles.size());
SPAN_ATTACH(Tracer, "files", int64_t(ChangedFiles.size()));
auto NeedsReIndexing = loadShards(std::move(ChangedFiles));
// Run indexing for files that need to be updated.
std::shuffle(NeedsReIndexing.begin(), NeedsReIndexing.end(),
std::mt19937(std::random_device{}()));
for (auto &Elem : NeedsReIndexing)
enqueue(std::move(Elem.first), Elem.second);
},
ThreadPriority::Normal);
}
void BackgroundIndex::enqueue(tooling::CompileCommand Cmd,
BackgroundIndexStorage *Storage) {
enqueueTask(Bind(
[this, Storage](tooling::CompileCommand Cmd) {
// We can't use llvm::StringRef here since we are going to
// move from Cmd during the call below.
const std::string FileName = Cmd.Filename;
if (auto Error = index(std::move(Cmd), Storage))
elog("Indexing {0} failed: {1}", FileName,
std::move(Error));
},
std::move(Cmd)),
ThreadPriority::Low);
}
void BackgroundIndex::enqueueTask(Task T, ThreadPriority Priority) {
{
std::lock_guard<std::mutex> Lock(QueueMu);
auto I = Queue.end();
// We first store the tasks with Normal priority in the front of the queue.
// Then we store low priority tasks. Normal priority tasks are pretty rare,
// they should not grow beyond single-digit numbers, so it is OK to do
// linear search and insert after that.
if (Priority == ThreadPriority::Normal) {
I = llvm::find_if(Queue, [](const std::pair<Task, ThreadPriority> &Elem) {
return Elem.second == ThreadPriority::Low;
});
}
Queue.insert(I, {std::move(T), Priority});
}
QueueCV.notify_all();
}
/// Given index results from a TU, only update symbols coming from files that
/// are different or missing from than \p DigestsSnapshot. Also stores new index
/// information on IndexStorage.
void BackgroundIndex::update(llvm::StringRef MainFile, IndexFileIn Index,
const llvm::StringMap<FileDigest> &DigestsSnapshot,
BackgroundIndexStorage *IndexStorage) {
// Partition symbols/references into files.
struct File {
llvm::DenseSet<const Symbol *> Symbols;
llvm::DenseSet<const Ref *> Refs;
FileDigest Digest;
};
llvm::StringMap<File> Files;
URIToFileCache URICache(MainFile);
for (const auto &IndexIt : *Index.Sources) {
const auto &IGN = IndexIt.getValue();
const auto AbsPath = URICache.resolve(IGN.URI);
const auto DigestIt = DigestsSnapshot.find(AbsPath);
// File has different contents.
if (DigestIt == DigestsSnapshot.end() || DigestIt->getValue() != IGN.Digest)
Files.try_emplace(AbsPath).first->getValue().Digest = IGN.Digest;
}
for (const auto &Sym : *Index.Symbols) {
if (Sym.CanonicalDeclaration) {
auto DeclPath = URICache.resolve(Sym.CanonicalDeclaration.FileURI);
const auto FileIt = Files.find(DeclPath);
if (FileIt != Files.end())
FileIt->second.Symbols.insert(&Sym);
}
// For symbols with different declaration and definition locations, we store
// the full symbol in both the header file and the implementation file, so
// that merging can tell the preferred symbols (from canonical headers) from
// other symbols (e.g. forward declarations).
if (Sym.Definition &&
Sym.Definition.FileURI != Sym.CanonicalDeclaration.FileURI) {
auto DefPath = URICache.resolve(Sym.Definition.FileURI);
const auto FileIt = Files.find(DefPath);
if (FileIt != Files.end())
FileIt->second.Symbols.insert(&Sym);
}
}
llvm::DenseMap<const Ref *, SymbolID> RefToIDs;
for (const auto &SymRefs : *Index.Refs) {
for (const auto &R : SymRefs.second) {
auto Path = URICache.resolve(R.Location.FileURI);
const auto FileIt = Files.find(Path);
if (FileIt != Files.end()) {
auto &F = FileIt->getValue();
RefToIDs[&R] = SymRefs.first;
F.Refs.insert(&R);
}
}
}
// Build and store new slabs for each updated file.
for (const auto &FileIt : Files) {
llvm::StringRef Path = FileIt.getKey();
SymbolSlab::Builder Syms;
RefSlab::Builder Refs;
for (const auto *S : FileIt.second.Symbols)
Syms.insert(*S);
for (const auto *R : FileIt.second.Refs)
Refs.insert(RefToIDs[R], *R);
auto SS = llvm::make_unique<SymbolSlab>(std::move(Syms).build());
auto RS = llvm::make_unique<RefSlab>(std::move(Refs).build());
auto IG = llvm::make_unique<IncludeGraph>(
getSubGraph(URI::create(Path), Index.Sources.getValue()));
// We need to store shards before updating the index, since the latter
// consumes slabs.
if (IndexStorage) {
IndexFileOut Shard;
Shard.Symbols = SS.get();
Shard.Refs = RS.get();
Shard.Sources = IG.get();
if (auto Error = IndexStorage->storeShard(Path, Shard))
elog("Failed to write background-index shard for file {0}: {1}", Path,
std::move(Error));
}
{
std::lock_guard<std::mutex> Lock(DigestsMu);
auto Hash = FileIt.second.Digest;
// Skip if file is already up to date.
auto DigestIt = IndexedFileDigests.try_emplace(Path);
if (!DigestIt.second && DigestIt.first->second == Hash)
continue;
DigestIt.first->second = Hash;
// This can override a newer version that is added in another thread, if
// this thread sees the older version but finishes later. This should be
// rare in practice.
IndexedSymbols.update(Path, std::move(SS), std::move(RS));
}
}
}
void BackgroundIndex::buildIndex() {
assert(BuildIndexPeriodMs > 0);
while (true) {
{
std::unique_lock<std::mutex> Lock(IndexMu);
if (ShouldStop) // Avoid waiting if stopped.
break;
// Wait until this is notified to stop or `BuildIndexPeriodMs` has past.
IndexCV.wait_for(Lock, std::chrono::milliseconds(BuildIndexPeriodMs));
if (ShouldStop) // Avoid rebuilding index if stopped.
break;
}
if (!SymbolsUpdatedSinceLastIndex.exchange(false))
continue;
// There can be symbol update right after the flag is reset above and before
// index is rebuilt below. The new index would contain the updated symbols
// but the flag would still be true. This is fine as we would simply run an
// extra index build.
reset(
IndexedSymbols.buildIndex(IndexType::Heavy, DuplicateHandling::Merge));
log("BackgroundIndex: rebuilt symbol index.");
}
}
llvm::Error BackgroundIndex::index(tooling::CompileCommand Cmd,
BackgroundIndexStorage *IndexStorage) {
trace::Span Tracer("BackgroundIndex");
SPAN_ATTACH(Tracer, "file", Cmd.Filename);
auto AbsolutePath = getAbsolutePath(Cmd);
auto FS = FSProvider.getFileSystem();
auto Buf = FS->getBufferForFile(AbsolutePath);
if (!Buf)
return llvm::errorCodeToError(Buf.getError());
auto Hash = digest(Buf->get()->getBuffer());
// Take a snapshot of the digests to avoid locking for each file in the TU.
llvm::StringMap<FileDigest> DigestsSnapshot;
{
std::lock_guard<std::mutex> Lock(DigestsMu);
DigestsSnapshot = IndexedFileDigests;
}
vlog("Indexing {0} (digest:={1})", Cmd.Filename, llvm::toHex(Hash));
ParseInputs Inputs;
Inputs.FS = std::move(FS);
Inputs.FS->setCurrentWorkingDirectory(Cmd.Directory);
Inputs.CompileCommand = std::move(Cmd);
auto CI = buildCompilerInvocation(Inputs);
if (!CI)
return llvm::createStringError(llvm::inconvertibleErrorCode(),
"Couldn't build compiler invocation");
IgnoreDiagnostics IgnoreDiags;
auto Clang = prepareCompilerInstance(
std::move(CI), /*Preamble=*/nullptr, std::move(*Buf),
std::make_shared<PCHContainerOperations>(), Inputs.FS, IgnoreDiags);
if (!Clang)
return llvm::createStringError(llvm::inconvertibleErrorCode(),
"Couldn't build compiler instance");
SymbolCollector::Options IndexOpts;
IndexOpts.FileFilter = createFileFilter(DigestsSnapshot);
IndexFileIn Index;
auto Action = createStaticIndexingAction(
IndexOpts, [&](SymbolSlab S) { Index.Symbols = std::move(S); },
[&](RefSlab R) { Index.Refs = std::move(R); },
[&](IncludeGraph IG) { Index.Sources = std::move(IG); });
// We're going to run clang here, and it could potentially crash.
// We could use CrashRecoveryContext to try to make indexing crashes nonfatal,
// but the leaky "recovery" is pretty scary too in a long-running process.
// If crashes are a real problem, maybe we should fork a child process.
const FrontendInputFile &Input = Clang->getFrontendOpts().Inputs.front();
if (!Action->BeginSourceFile(*Clang, Input))
return llvm::createStringError(llvm::inconvertibleErrorCode(),
"BeginSourceFile() failed");
if (!Action->Execute())
return llvm::createStringError(llvm::inconvertibleErrorCode(),
"Execute() failed");
Action->EndSourceFile();
if (Clang->hasDiagnostics() &&
Clang->getDiagnostics().hasUncompilableErrorOccurred()) {
return llvm::createStringError(
llvm::inconvertibleErrorCode(),
"IndexingAction failed: has uncompilable errors");
}
assert(Index.Symbols && Index.Refs && Index.Sources &&
"Symbols, Refs and Sources must be set.");
log("Indexed {0} ({1} symbols, {2} refs, {3} files)",
Inputs.CompileCommand.Filename, Index.Symbols->size(),
Index.Refs->numRefs(), Index.Sources->size());
SPAN_ATTACH(Tracer, "symbols", int(Index.Symbols->size()));
SPAN_ATTACH(Tracer, "refs", int(Index.Refs->numRefs()));
SPAN_ATTACH(Tracer, "sources", int(Index.Sources->size()));
update(AbsolutePath, std::move(Index), DigestsSnapshot, IndexStorage);
if (BuildIndexPeriodMs > 0)
SymbolsUpdatedSinceLastIndex = true;
else
reset(
IndexedSymbols.buildIndex(IndexType::Light, DuplicateHandling::Merge));
return llvm::Error::success();
}
std::vector<BackgroundIndex::Source>
BackgroundIndex::loadShard(const tooling::CompileCommand &Cmd,
BackgroundIndexStorage *IndexStorage,
llvm::StringSet<> &LoadedShards) {
struct ShardInfo {
std::string AbsolutePath;
std::unique_ptr<IndexFileIn> Shard;
FileDigest Digest;
};
std::vector<ShardInfo> IntermediateSymbols;
// Make sure we don't have duplicate elements in the queue. Keys are absolute
// paths.
llvm::StringSet<> InQueue;
auto FS = FSProvider.getFileSystem();
// Dependencies of this TU, paired with the information about whether they
// need to be re-indexed or not.
std::vector<Source> Dependencies;
std::queue<Source> ToVisit;
std::string AbsolutePath = getAbsolutePath(Cmd).str();
// Up until we load the shard related to a dependency it needs to be
// re-indexed.
ToVisit.emplace(AbsolutePath, true);
InQueue.insert(AbsolutePath);
// Goes over each dependency.
while (!ToVisit.empty()) {
Dependencies.push_back(std::move(ToVisit.front()));
// Dependencies is not modified during the rest of the loop, so it is safe
// to keep the reference.
auto &CurDependency = Dependencies.back();
ToVisit.pop();
// If we have already seen this shard before(either loaded or failed) don't
// re-try again. Since the information in the shard won't change from one TU
// to another.
if (!LoadedShards.try_emplace(CurDependency.Path).second) {
// If the dependency needs to be re-indexed, first occurence would already
// have detected that, so we don't need to issue it again.
CurDependency.NeedsReIndexing = false;
continue;
}
auto Shard = IndexStorage->loadShard(CurDependency.Path);
if (!Shard || !Shard->Sources) {
// File will be returned as requiring re-indexing to caller.
vlog("Failed to load shard: {0}", CurDependency.Path);
continue;
}
// These are the edges in the include graph for current dependency.
for (const auto &I : *Shard->Sources) {
auto U = URI::parse(I.getKey());
if (!U)
continue;
auto AbsolutePath = URI::resolve(*U, CurDependency.Path);
if (!AbsolutePath)
continue;
// Add file as dependency if haven't seen before.
if (InQueue.try_emplace(*AbsolutePath).second)
ToVisit.emplace(*AbsolutePath, true);
// The node contains symbol information only for current file, the rest is
// just edges.
if (*AbsolutePath != CurDependency.Path)
continue;
// We found source file info for current dependency.
assert(I.getValue().Digest != FileDigest{{0}} && "Digest is empty?");
ShardInfo SI;
SI.AbsolutePath = CurDependency.Path;
SI.Shard = std::move(Shard);
SI.Digest = I.getValue().Digest;
IntermediateSymbols.push_back(std::move(SI));
// Check if the source needs re-indexing.
// Get the digest, skip it if file doesn't exist.
auto Buf = FS->getBufferForFile(CurDependency.Path);
if (!Buf) {
elog("Couldn't get buffer for file: {0}: {1}", CurDependency.Path,
Buf.getError().message());
continue;
}
// If digests match then dependency doesn't need re-indexing.
CurDependency.NeedsReIndexing =
digest(Buf->get()->getBuffer()) != I.getValue().Digest;
}
}
// Load shard information into background-index.
{
std::lock_guard<std::mutex> Lock(DigestsMu);
// This can override a newer version that is added in another thread,
// if this thread sees the older version but finishes later. This
// should be rare in practice.
for (const ShardInfo &SI : IntermediateSymbols) {
auto SS =
SI.Shard->Symbols
? llvm::make_unique<SymbolSlab>(std::move(*SI.Shard->Symbols))
: nullptr;
auto RS = SI.Shard->Refs
? llvm::make_unique<RefSlab>(std::move(*SI.Shard->Refs))
: nullptr;
IndexedFileDigests[SI.AbsolutePath] = SI.Digest;
IndexedSymbols.update(SI.AbsolutePath, std::move(SS), std::move(RS));
}
}
return Dependencies;
}
// Goes over each changed file and loads them from index. Returns the list of
// TUs that had out-of-date/no shards.
std::vector<std::pair<tooling::CompileCommand, BackgroundIndexStorage *>>
BackgroundIndex::loadShards(std::vector<std::string> ChangedFiles) {
std::vector<std::pair<tooling::CompileCommand, BackgroundIndexStorage *>>
NeedsReIndexing;
// Keeps track of the files that will be reindexed, to make sure we won't
// re-index same dependencies more than once. Keys are AbsolutePaths.
llvm::StringSet<> FilesToIndex;
// Keeps track of the loaded shards to make sure we don't perform redundant
// disk IO. Keys are absolute paths.
llvm::StringSet<> LoadedShards;
for (const auto &File : ChangedFiles) {
ProjectInfo PI;
auto Cmd = CDB.getCompileCommand(File, &PI);
if (!Cmd)
continue;
BackgroundIndexStorage *IndexStorage = IndexStorageFactory(PI.SourceRoot);
auto Dependencies = loadShard(*Cmd, IndexStorage, LoadedShards);
for (const auto &Dependency : Dependencies) {
if (!Dependency.NeedsReIndexing || FilesToIndex.count(Dependency.Path))
continue;
// FIXME: Currently, we simply schedule indexing on a TU whenever any of
// its dependencies needs re-indexing. We might do it smarter by figuring
// out a minimal set of TUs that will cover all the stale dependencies.
vlog("Enqueueing TU {0} because its dependency {1} needs re-indexing.",
Cmd->Filename, Dependency.Path);
NeedsReIndexing.push_back({std::move(*Cmd), IndexStorage});
// Mark all of this TU's dependencies as to-be-indexed so that we won't
// try to re-index those.
for (const auto &Dependency : Dependencies)
FilesToIndex.insert(Dependency.Path);
break;
}
}
vlog("Loaded all shards");
reset(IndexedSymbols.buildIndex(IndexType::Light, DuplicateHandling::Merge));
return NeedsReIndexing;
}
} // namespace clangd
} // namespace clang