blob: dd143ac004ab996be557f7ec1261807c716b130a [file] [log] [blame]
/*
* Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2014, 2021, Red Hat Inc. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef CPU_AARCH64_ASSEMBLER_AARCH64_HPP
#define CPU_AARCH64_ASSEMBLER_AARCH64_HPP
#include "asm/register.hpp"
#include "metaprogramming/enableIf.hpp"
#include "utilities/debug.hpp"
#include "utilities/globalDefinitions.hpp"
#include "utilities/macros.hpp"
#include <type_traits>
#ifdef __GNUC__
// __nop needs volatile so that compiler doesn't optimize it away
#define NOP() asm volatile ("nop");
#elif defined(_MSC_VER)
// Use MSVC intrinsic: https://docs.microsoft.com/en-us/cpp/intrinsics/arm64-intrinsics?view=vs-2019#I
#define NOP() __nop();
#endif
// definitions of various symbolic names for machine registers
// First intercalls between C and Java which use 8 general registers
// and 8 floating registers
// we also have to copy between x86 and ARM registers but that's a
// secondary complication -- not all code employing C call convention
// executes as x86 code though -- we generate some of it
class Argument {
public:
enum {
n_int_register_parameters_c = 8, // r0, r1, ... r7 (c_rarg0, c_rarg1, ...)
n_float_register_parameters_c = 8, // v0, v1, ... v7 (c_farg0, c_farg1, ... )
n_int_register_parameters_j = 8, // r1, ... r7, r0 (rj_rarg0, j_rarg1, ...
n_float_register_parameters_j = 8 // v0, v1, ... v7 (j_farg0, j_farg1, ...
};
};
constexpr Register c_rarg0 = r0;
constexpr Register c_rarg1 = r1;
constexpr Register c_rarg2 = r2;
constexpr Register c_rarg3 = r3;
constexpr Register c_rarg4 = r4;
constexpr Register c_rarg5 = r5;
constexpr Register c_rarg6 = r6;
constexpr Register c_rarg7 = r7;
constexpr FloatRegister c_farg0 = v0;
constexpr FloatRegister c_farg1 = v1;
constexpr FloatRegister c_farg2 = v2;
constexpr FloatRegister c_farg3 = v3;
constexpr FloatRegister c_farg4 = v4;
constexpr FloatRegister c_farg5 = v5;
constexpr FloatRegister c_farg6 = v6;
constexpr FloatRegister c_farg7 = v7;
// Symbolically name the register arguments used by the Java calling convention.
// We have control over the convention for java so we can do what we please.
// What pleases us is to offset the java calling convention so that when
// we call a suitable jni method the arguments are lined up and we don't
// have to do much shuffling. A suitable jni method is non-static and a
// small number of arguments
//
// |--------------------------------------------------------------------|
// | c_rarg0 c_rarg1 c_rarg2 c_rarg3 c_rarg4 c_rarg5 c_rarg6 c_rarg7 |
// |--------------------------------------------------------------------|
// | r0 r1 r2 r3 r4 r5 r6 r7 |
// |--------------------------------------------------------------------|
// | j_rarg7 j_rarg0 j_rarg1 j_rarg2 j_rarg3 j_rarg4 j_rarg5 j_rarg6 |
// |--------------------------------------------------------------------|
constexpr Register j_rarg0 = c_rarg1;
constexpr Register j_rarg1 = c_rarg2;
constexpr Register j_rarg2 = c_rarg3;
constexpr Register j_rarg3 = c_rarg4;
constexpr Register j_rarg4 = c_rarg5;
constexpr Register j_rarg5 = c_rarg6;
constexpr Register j_rarg6 = c_rarg7;
constexpr Register j_rarg7 = c_rarg0;
// Java floating args are passed as per C
constexpr FloatRegister j_farg0 = v0;
constexpr FloatRegister j_farg1 = v1;
constexpr FloatRegister j_farg2 = v2;
constexpr FloatRegister j_farg3 = v3;
constexpr FloatRegister j_farg4 = v4;
constexpr FloatRegister j_farg5 = v5;
constexpr FloatRegister j_farg6 = v6;
constexpr FloatRegister j_farg7 = v7;
// registers used to hold VM data either temporarily within a method
// or across method calls
// volatile (caller-save) registers
// r8 is used for indirect result location return
// we use it and r9 as scratch registers
constexpr Register rscratch1 = r8;
constexpr Register rscratch2 = r9;
// current method -- must be in a call-clobbered register
constexpr Register rmethod = r12;
// non-volatile (callee-save) registers are r16-29
// of which the following are dedicated global state
constexpr Register lr = r30; // link register
constexpr Register rfp = r29; // frame pointer
constexpr Register rthread = r28; // current thread
constexpr Register rheapbase = r27; // base of heap
constexpr Register rcpool = r26; // constant pool cache
constexpr Register rlocals = r24; // locals on stack
constexpr Register rbcp = r22; // bytecode pointer
constexpr Register rdispatch = r21; // dispatch table base
constexpr Register esp = r20; // Java expression stack pointer
constexpr Register r19_sender_sp = r19; // sender's SP while in interpreter
// Preserved predicate register with all elements set TRUE.
constexpr PRegister ptrue = p7;
#define assert_cond(ARG1) assert(ARG1, #ARG1)
namespace asm_util {
uint32_t encode_logical_immediate(bool is32, uint64_t imm);
uint32_t encode_sve_logical_immediate(unsigned elembits, uint64_t imm);
bool operand_valid_for_immediate_bits(int64_t imm, unsigned nbits);
};
using namespace asm_util;
class Assembler;
class Instruction_aarch64 {
unsigned insn;
#ifdef ASSERT
unsigned bits;
#endif
Assembler *assem;
public:
Instruction_aarch64(class Assembler *as) {
#ifdef ASSERT
bits = 0;
#endif
insn = 0;
assem = as;
}
inline ~Instruction_aarch64();
unsigned &get_insn() { return insn; }
#ifdef ASSERT
unsigned &get_bits() { return bits; }
#endif
static inline int32_t extend(unsigned val, int hi = 31, int lo = 0) {
union {
unsigned u;
int n;
};
u = val << (31 - hi);
n = n >> (31 - hi + lo);
return n;
}
static inline uint32_t extract(uint32_t val, int msb, int lsb) {
int nbits = msb - lsb + 1;
assert_cond(msb >= lsb);
uint32_t mask = checked_cast<uint32_t>(right_n_bits(nbits));
uint32_t result = val >> lsb;
result &= mask;
return result;
}
static inline int32_t sextract(uint32_t val, int msb, int lsb) {
uint32_t uval = extract(val, msb, lsb);
return extend(uval, msb - lsb);
}
static ALWAYSINLINE void patch(address a, int msb, int lsb, uint64_t val) {
int nbits = msb - lsb + 1;
guarantee(val < (1ULL << nbits), "Field too big for insn");
assert_cond(msb >= lsb);
unsigned mask = checked_cast<unsigned>(right_n_bits(nbits));
val <<= lsb;
mask <<= lsb;
unsigned target = *(unsigned *)a;
target &= ~mask;
target |= val;
*(unsigned *)a = target;
}
static void spatch(address a, int msb, int lsb, int64_t val) {
int nbits = msb - lsb + 1;
int64_t chk = val >> (nbits - 1);
guarantee (chk == -1 || chk == 0, "Field too big for insn at " INTPTR_FORMAT, p2i(a));
unsigned uval = val;
unsigned mask = checked_cast<unsigned>(right_n_bits(nbits));
uval &= mask;
uval <<= lsb;
mask <<= lsb;
unsigned target = *(unsigned *)a;
target &= ~mask;
target |= uval;
*(unsigned *)a = target;
}
void f(unsigned val, int msb, int lsb) {
int nbits = msb - lsb + 1;
guarantee(val < (1ULL << nbits), "Field too big for insn");
assert_cond(msb >= lsb);
val <<= lsb;
insn |= val;
#ifdef ASSERT
unsigned mask = checked_cast<unsigned>(right_n_bits(nbits));
mask <<= lsb;
assert_cond((bits & mask) == 0);
bits |= mask;
#endif
}
void f(unsigned val, int bit) {
f(val, bit, bit);
}
void sf(int64_t val, int msb, int lsb) {
int nbits = msb - lsb + 1;
int64_t chk = val >> (nbits - 1);
guarantee (chk == -1 || chk == 0, "Field too big for insn");
unsigned uval = val;
unsigned mask = checked_cast<unsigned>(right_n_bits(nbits));
uval &= mask;
f(uval, lsb + nbits - 1, lsb);
}
void rf(Register r, int lsb) {
f(r->raw_encoding(), lsb + 4, lsb);
}
// reg|ZR
void zrf(Register r, int lsb) {
f(r->raw_encoding() - (r == zr), lsb + 4, lsb);
}
// reg|SP
void srf(Register r, int lsb) {
f(r == sp ? 31 : r->raw_encoding(), lsb + 4, lsb);
}
void rf(FloatRegister r, int lsb) {
f(r->raw_encoding(), lsb + 4, lsb);
}
void prf(PRegister r, int lsb) {
f(r->raw_encoding(), lsb + 3, lsb);
}
void pgrf(PRegister r, int lsb) {
f(r->raw_encoding(), lsb + 2, lsb);
}
unsigned get(int msb = 31, int lsb = 0) {
int nbits = msb - lsb + 1;
unsigned mask = checked_cast<unsigned>(right_n_bits(nbits)) << lsb;
assert_cond((bits & mask) == mask);
return (insn & mask) >> lsb;
}
};
#define starti Instruction_aarch64 current_insn(this);
class PrePost {
int _offset;
Register _r;
protected:
PrePost(Register reg, int o) : _offset(o), _r(reg) { }
~PrePost() = default;
PrePost(const PrePost&) = default;
PrePost& operator=(const PrePost&) = default;
public:
int offset() const { return _offset; }
Register reg() const { return _r; }
};
class Pre : public PrePost {
public:
Pre(Register reg, int o) : PrePost(reg, o) { }
};
class Post : public PrePost {
Register _idx;
bool _is_postreg;
public:
Post(Register reg, int o) : PrePost(reg, o), _idx(noreg), _is_postreg(false) {}
Post(Register reg, Register idx) : PrePost(reg, 0), _idx(idx), _is_postreg(true) {}
Register idx_reg() const { return _idx; }
bool is_postreg() const { return _is_postreg; }
};
namespace ext
{
enum operation { uxtb, uxth, uxtw, uxtx, sxtb, sxth, sxtw, sxtx };
};
// Addressing modes
class Address {
public:
enum mode { no_mode, base_plus_offset, pre, post, post_reg,
base_plus_offset_reg, literal };
// Shift and extend for base reg + reg offset addressing
class extend {
int _option, _shift;
ext::operation _op;
public:
extend() { }
extend(int s, int o, ext::operation op) : _option(o), _shift(s), _op(op) { }
int option() const{ return _option; }
int shift() const { return _shift; }
ext::operation op() const { return _op; }
};
static extend uxtw(int shift = -1) { return extend(shift, 0b010, ext::uxtw); }
static extend lsl(int shift = -1) { return extend(shift, 0b011, ext::uxtx); }
static extend sxtw(int shift = -1) { return extend(shift, 0b110, ext::sxtw); }
static extend sxtx(int shift = -1) { return extend(shift, 0b111, ext::sxtx); }
private:
struct Nonliteral {
Nonliteral(Register base, Register index, int64_t offset, extend ext = extend())
: _base(base), _index(index), _offset(offset), _ext(ext) {}
Register _base;
Register _index;
int64_t _offset;
extend _ext;
};
struct Literal {
Literal(address target, const RelocationHolder& rspec)
: _target(target), _rspec(rspec) {}
// If the target is far we'll need to load the ea of this to a
// register to reach it. Otherwise if near we can do PC-relative
// addressing.
address _target;
RelocationHolder _rspec;
};
void assert_is_nonliteral() const NOT_DEBUG_RETURN;
void assert_is_literal() const NOT_DEBUG_RETURN;
// Discriminated union, based on _mode.
// - no_mode: uses dummy _nonliteral, for ease of copying.
// - literal: only _literal is used.
// - others: only _nonliteral is used.
enum mode _mode;
union {
Nonliteral _nonliteral;
Literal _literal;
};
// Helper for copy constructor and assignment operator.
// Copy mode-relevant part of a into this.
void copy_data(const Address& a) {
assert(_mode == a._mode, "precondition");
if (_mode == literal) {
new (&_literal) Literal(a._literal);
} else {
// non-literal mode or no_mode.
new (&_nonliteral) Nonliteral(a._nonliteral);
}
}
public:
// no_mode initializes _nonliteral for ease of copying.
Address() :
_mode(no_mode),
_nonliteral(noreg, noreg, 0)
{}
Address(Register r) :
_mode(base_plus_offset),
_nonliteral(r, noreg, 0)
{}
template<typename T, ENABLE_IF(std::is_integral<T>::value)>
Address(Register r, T o) :
_mode(base_plus_offset),
_nonliteral(r, noreg, o)
{}
Address(Register r, ByteSize disp) : Address(r, in_bytes(disp)) {}
Address(Register r, Register r1, extend ext = lsl()) :
_mode(base_plus_offset_reg),
_nonliteral(r, r1, 0, ext)
{}
Address(Pre p) :
_mode(pre),
_nonliteral(p.reg(), noreg, p.offset())
{}
Address(Post p) :
_mode(p.is_postreg() ? post_reg : post),
_nonliteral(p.reg(), p.idx_reg(), p.offset())
{}
Address(address target, const RelocationHolder& rspec) :
_mode(literal),
_literal(target, rspec)
{}
Address(address target, relocInfo::relocType rtype = relocInfo::external_word_type);
Address(Register base, RegisterOrConstant index, extend ext = lsl()) {
if (index.is_register()) {
_mode = base_plus_offset_reg;
new (&_nonliteral) Nonliteral(base, index.as_register(), 0, ext);
} else {
guarantee(ext.option() == ext::uxtx, "should be");
assert(index.is_constant(), "should be");
_mode = base_plus_offset;
new (&_nonliteral) Nonliteral(base,
noreg,
index.as_constant() << ext.shift());
}
}
Address(const Address& a) : _mode(a._mode) { copy_data(a); }
// Verify the value is trivially destructible regardless of mode, so our
// destructor can also be trivial, and so our assignment operator doesn't
// need to destruct the old value before copying over it.
static_assert(std::is_trivially_destructible<Literal>::value, "must be");
static_assert(std::is_trivially_destructible<Nonliteral>::value, "must be");
Address& operator=(const Address& a) {
_mode = a._mode;
copy_data(a);
return *this;
}
~Address() = default;
Register base() const {
assert_is_nonliteral();
return _nonliteral._base;
}
int64_t offset() const {
assert_is_nonliteral();
return _nonliteral._offset;
}
Register index() const {
assert_is_nonliteral();
return _nonliteral._index;
}
extend ext() const {
assert_is_nonliteral();
return _nonliteral._ext;
}
mode getMode() const {
return _mode;
}
bool uses(Register reg) const {
switch (_mode) {
case literal:
case no_mode:
return false;
case base_plus_offset:
case base_plus_offset_reg:
case pre:
case post:
case post_reg:
return base() == reg || index() == reg;
default:
ShouldNotReachHere();
return false;
}
}
address target() const {
assert_is_literal();
return _literal._target;
}
const RelocationHolder& rspec() const {
assert_is_literal();
return _literal._rspec;
}
void encode(Instruction_aarch64 *i) const {
i->f(0b111, 29, 27);
i->srf(base(), 5);
switch(_mode) {
case base_plus_offset:
{
unsigned size = i->get(31, 30);
if (i->get(26, 26) && i->get(23, 23)) {
// SIMD Q Type - Size = 128 bits
assert(size == 0, "bad size");
size = 0b100;
}
assert(offset_ok_for_immed(offset(), size),
"must be, was: " INT64_FORMAT ", %d", offset(), size);
unsigned mask = (1 << size) - 1;
if (offset() < 0 || offset() & mask) {
i->f(0b00, 25, 24);
i->f(0, 21), i->f(0b00, 11, 10);
i->sf(offset(), 20, 12);
} else {
i->f(0b01, 25, 24);
i->f(offset() >> size, 21, 10);
}
}
break;
case base_plus_offset_reg:
{
i->f(0b00, 25, 24);
i->f(1, 21);
i->rf(index(), 16);
i->f(ext().option(), 15, 13);
unsigned size = i->get(31, 30);
if (i->get(26, 26) && i->get(23, 23)) {
// SIMD Q Type - Size = 128 bits
assert(size == 0, "bad size");
size = 0b100;
}
if (size == 0) // It's a byte
i->f(ext().shift() >= 0, 12);
else {
assert(ext().shift() <= 0 || ext().shift() == (int)size, "bad shift");
i->f(ext().shift() > 0, 12);
}
i->f(0b10, 11, 10);
}
break;
case pre:
i->f(0b00, 25, 24);
i->f(0, 21), i->f(0b11, 11, 10);
i->sf(offset(), 20, 12);
break;
case post:
i->f(0b00, 25, 24);
i->f(0, 21), i->f(0b01, 11, 10);
i->sf(offset(), 20, 12);
break;
default:
ShouldNotReachHere();
}
}
void encode_pair(Instruction_aarch64 *i) const {
switch(_mode) {
case base_plus_offset:
i->f(0b010, 25, 23);
break;
case pre:
i->f(0b011, 25, 23);
break;
case post:
i->f(0b001, 25, 23);
break;
default:
ShouldNotReachHere();
}
unsigned size; // Operand shift in 32-bit words
if (i->get(26, 26)) { // float
switch(i->get(31, 30)) {
case 0b10:
size = 2; break;
case 0b01:
size = 1; break;
case 0b00:
size = 0; break;
default:
ShouldNotReachHere();
size = 0; // unreachable
}
} else {
size = i->get(31, 31);
}
size = 4 << size;
guarantee(offset() % size == 0, "bad offset");
i->sf(offset() / size, 21, 15);
i->srf(base(), 5);
}
void encode_nontemporal_pair(Instruction_aarch64 *i) const {
guarantee(_mode == base_plus_offset, "Bad addressing mode for nontemporal op");
i->f(0b000, 25, 23);
unsigned size = i->get(31, 31);
size = 4 << size;
guarantee(offset() % size == 0, "bad offset");
i->sf(offset() / size, 21, 15);
i->srf(base(), 5);
}
void lea(MacroAssembler *, Register) const;
static bool offset_ok_for_immed(int64_t offset, uint shift);
static bool offset_ok_for_sve_immed(int64_t offset, int shift, int vl /* sve vector length */) {
if (offset % vl == 0) {
// Convert address offset into sve imm offset (MUL VL).
int sve_offset = offset / vl;
if (((-(1 << (shift - 1))) <= sve_offset) && (sve_offset < (1 << (shift - 1)))) {
// sve_offset can be encoded
return true;
}
}
return false;
}
};
// Convenience classes
class RuntimeAddress: public Address {
public:
RuntimeAddress(address target) : Address(target, relocInfo::runtime_call_type) {}
};
class OopAddress: public Address {
public:
OopAddress(address target) : Address(target, relocInfo::oop_type){}
};
class ExternalAddress: public Address {
private:
static relocInfo::relocType reloc_for_target(address target) {
// Sometimes ExternalAddress is used for values which aren't
// exactly addresses, like the card table base.
// external_word_type can't be used for values in the first page
// so just skip the reloc in that case.
return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
}
public:
ExternalAddress(address target) : Address(target, reloc_for_target(target)) {}
};
class InternalAddress: public Address {
public:
InternalAddress(address target) : Address(target, relocInfo::internal_word_type) {}
};
const int FPUStateSizeInWords = FloatRegister::number_of_registers * FloatRegister::save_slots_per_register;
typedef enum {
PLDL1KEEP = 0b00000, PLDL1STRM, PLDL2KEEP, PLDL2STRM, PLDL3KEEP, PLDL3STRM,
PSTL1KEEP = 0b10000, PSTL1STRM, PSTL2KEEP, PSTL2STRM, PSTL3KEEP, PSTL3STRM,
PLIL1KEEP = 0b01000, PLIL1STRM, PLIL2KEEP, PLIL2STRM, PLIL3KEEP, PLIL3STRM
} prfop;
class Assembler : public AbstractAssembler {
public:
#ifndef PRODUCT
static const uintptr_t asm_bp;
void emit_int32(jint x) {
if ((uintptr_t)pc() == asm_bp)
NOP();
AbstractAssembler::emit_int32(x);
}
#else
void emit_int32(jint x) {
AbstractAssembler::emit_int32(x);
}
#endif
enum { instruction_size = 4 };
//---< calculate length of instruction >---
// We just use the values set above.
// instruction must start at passed address
static unsigned int instr_len(unsigned char *instr) { return instruction_size; }
//---< longest instructions >---
static unsigned int instr_maxlen() { return instruction_size; }
Address adjust(Register base, int offset, bool preIncrement) {
if (preIncrement)
return Address(Pre(base, offset));
else
return Address(Post(base, offset));
}
Address pre(Register base, int offset) {
return adjust(base, offset, true);
}
Address post(Register base, int offset) {
return adjust(base, offset, false);
}
Address post(Register base, Register idx) {
return Address(Post(base, idx));
}
static address locate_next_instruction(address inst);
#define f current_insn.f
#define sf current_insn.sf
#define rf current_insn.rf
#define srf current_insn.srf
#define zrf current_insn.zrf
#define prf current_insn.prf
#define pgrf current_insn.pgrf
typedef void (Assembler::* uncond_branch_insn)(address dest);
typedef void (Assembler::* compare_and_branch_insn)(Register Rt, address dest);
typedef void (Assembler::* test_and_branch_insn)(Register Rt, int bitpos, address dest);
typedef void (Assembler::* prefetch_insn)(address target, prfop);
void wrap_label(Label &L, uncond_branch_insn insn);
void wrap_label(Register r, Label &L, compare_and_branch_insn insn);
void wrap_label(Register r, int bitpos, Label &L, test_and_branch_insn insn);
void wrap_label(Label &L, prfop, prefetch_insn insn);
// PC-rel. addressing
void adr(Register Rd, address dest);
void _adrp(Register Rd, address dest);
void adr(Register Rd, const Address &dest);
void _adrp(Register Rd, const Address &dest);
void adr(Register Rd, Label &L) {
wrap_label(Rd, L, &Assembler::Assembler::adr);
}
void _adrp(Register Rd, Label &L) {
wrap_label(Rd, L, &Assembler::_adrp);
}
void adrp(Register Rd, const Address &dest, uint64_t &offset) = delete;
void prfm(const Address &adr, prfop pfop = PLDL1KEEP);
#undef INSN
void add_sub_immediate(Instruction_aarch64 &current_insn, Register Rd, Register Rn,
unsigned uimm, int op, int negated_op);
// Add/subtract (immediate)
#define INSN(NAME, decode, negated) \
void NAME(Register Rd, Register Rn, unsigned imm, unsigned shift) { \
starti; \
f(decode, 31, 29), f(0b10001, 28, 24), f(shift, 23, 22), f(imm, 21, 10); \
zrf(Rd, 0), srf(Rn, 5); \
} \
\
void NAME(Register Rd, Register Rn, unsigned imm) { \
starti; \
add_sub_immediate(current_insn, Rd, Rn, imm, decode, negated); \
}
INSN(addsw, 0b001, 0b011);
INSN(subsw, 0b011, 0b001);
INSN(adds, 0b101, 0b111);
INSN(subs, 0b111, 0b101);
#undef INSN
#define INSN(NAME, decode, negated) \
void NAME(Register Rd, Register Rn, unsigned imm) { \
starti; \
add_sub_immediate(current_insn, Rd, Rn, imm, decode, negated); \
}
INSN(addw, 0b000, 0b010);
INSN(subw, 0b010, 0b000);
INSN(add, 0b100, 0b110);
INSN(sub, 0b110, 0b100);
#undef INSN
// Logical (immediate)
#define INSN(NAME, decode, is32) \
void NAME(Register Rd, Register Rn, uint64_t imm) { \
starti; \
uint32_t val = encode_logical_immediate(is32, imm); \
f(decode, 31, 29), f(0b100100, 28, 23), f(val, 22, 10); \
srf(Rd, 0), zrf(Rn, 5); \
}
INSN(andw, 0b000, true);
INSN(orrw, 0b001, true);
INSN(eorw, 0b010, true);
INSN(andr, 0b100, false);
INSN(orr, 0b101, false);
INSN(eor, 0b110, false);
#undef INSN
#define INSN(NAME, decode, is32) \
void NAME(Register Rd, Register Rn, uint64_t imm) { \
starti; \
uint32_t val = encode_logical_immediate(is32, imm); \
f(decode, 31, 29), f(0b100100, 28, 23), f(val, 22, 10); \
zrf(Rd, 0), zrf(Rn, 5); \
}
INSN(ands, 0b111, false);
INSN(andsw, 0b011, true);
#undef INSN
// Move wide (immediate)
#define INSN(NAME, opcode) \
void NAME(Register Rd, unsigned imm, unsigned shift = 0) { \
assert_cond((shift/16)*16 == shift); \
starti; \
f(opcode, 31, 29), f(0b100101, 28, 23), f(shift/16, 22, 21), \
f(imm, 20, 5); \
zrf(Rd, 0); \
}
INSN(movnw, 0b000);
INSN(movzw, 0b010);
INSN(movkw, 0b011);
INSN(movn, 0b100);
INSN(movz, 0b110);
INSN(movk, 0b111);
#undef INSN
// Bitfield
#define INSN(NAME, opcode, size) \
void NAME(Register Rd, Register Rn, unsigned immr, unsigned imms) { \
starti; \
guarantee(size == 1 || (immr < 32 && imms < 32), "incorrect immr/imms");\
f(opcode, 31, 22), f(immr, 21, 16), f(imms, 15, 10); \
zrf(Rn, 5), rf(Rd, 0); \
}
INSN(sbfmw, 0b0001001100, 0);
INSN(bfmw, 0b0011001100, 0);
INSN(ubfmw, 0b0101001100, 0);
INSN(sbfm, 0b1001001101, 1);
INSN(bfm, 0b1011001101, 1);
INSN(ubfm, 0b1101001101, 1);
#undef INSN
// Extract
#define INSN(NAME, opcode, size) \
void NAME(Register Rd, Register Rn, Register Rm, unsigned imms) { \
starti; \
guarantee(size == 1 || imms < 32, "incorrect imms"); \
f(opcode, 31, 21), f(imms, 15, 10); \
zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0); \
}
INSN(extrw, 0b00010011100, 0);
INSN(extr, 0b10010011110, 1);
#undef INSN
// The maximum range of a branch is fixed for the AArch64
// architecture. In debug mode we shrink it in order to test
// trampolines, but not so small that branches in the interpreter
// are out of range.
static const uint64_t branch_range = NOT_DEBUG(128 * M) DEBUG_ONLY(2 * M);
static bool reachable_from_branch_at(address branch, address target) {
return uabs(target - branch) < branch_range;
}
// Unconditional branch (immediate)
#define INSN(NAME, opcode) \
void NAME(address dest) { \
starti; \
int64_t offset = (dest - pc()) >> 2; \
DEBUG_ONLY(assert(reachable_from_branch_at(pc(), dest), "debug only")); \
f(opcode, 31), f(0b00101, 30, 26), sf(offset, 25, 0); \
} \
void NAME(Label &L) { \
wrap_label(L, &Assembler::NAME); \
} \
void NAME(const Address &dest);
INSN(b, 0);
INSN(bl, 1);
#undef INSN
// Compare & branch (immediate)
#define INSN(NAME, opcode) \
void NAME(Register Rt, address dest) { \
int64_t offset = (dest - pc()) >> 2; \
starti; \
f(opcode, 31, 24), sf(offset, 23, 5), rf(Rt, 0); \
} \
void NAME(Register Rt, Label &L) { \
wrap_label(Rt, L, &Assembler::NAME); \
}
INSN(cbzw, 0b00110100);
INSN(cbnzw, 0b00110101);
INSN(cbz, 0b10110100);
INSN(cbnz, 0b10110101);
#undef INSN
// Test & branch (immediate)
#define INSN(NAME, opcode) \
void NAME(Register Rt, int bitpos, address dest) { \
int64_t offset = (dest - pc()) >> 2; \
int b5 = bitpos >> 5; \
bitpos &= 0x1f; \
starti; \
f(b5, 31), f(opcode, 30, 24), f(bitpos, 23, 19), sf(offset, 18, 5); \
rf(Rt, 0); \
} \
void NAME(Register Rt, int bitpos, Label &L) { \
wrap_label(Rt, bitpos, L, &Assembler::NAME); \
}
INSN(tbz, 0b0110110);
INSN(tbnz, 0b0110111);
#undef INSN
// Conditional branch (immediate)
enum Condition
{EQ, NE, HS, CS=HS, LO, CC=LO, MI, PL, VS, VC, HI, LS, GE, LT, GT, LE, AL, NV};
void br(Condition cond, address dest) {
int64_t offset = (dest - pc()) >> 2;
starti;
f(0b0101010, 31, 25), f(0, 24), sf(offset, 23, 5), f(0, 4), f(cond, 3, 0);
}
#define INSN(NAME, cond) \
void NAME(address dest) { \
br(cond, dest); \
}
INSN(beq, EQ);
INSN(bne, NE);
INSN(bhs, HS);
INSN(bcs, CS);
INSN(blo, LO);
INSN(bcc, CC);
INSN(bmi, MI);
INSN(bpl, PL);
INSN(bvs, VS);
INSN(bvc, VC);
INSN(bhi, HI);
INSN(bls, LS);
INSN(bge, GE);
INSN(blt, LT);
INSN(bgt, GT);
INSN(ble, LE);
INSN(bal, AL);
INSN(bnv, NV);
void br(Condition cc, Label &L);
#undef INSN
// Exception generation
void generate_exception(int opc, int op2, int LL, unsigned imm) {
starti;
f(0b11010100, 31, 24);
f(opc, 23, 21), f(imm, 20, 5), f(op2, 4, 2), f(LL, 1, 0);
}
#define INSN(NAME, opc, op2, LL) \
void NAME(unsigned imm) { \
generate_exception(opc, op2, LL, imm); \
}
INSN(svc, 0b000, 0, 0b01);
INSN(hvc, 0b000, 0, 0b10);
INSN(smc, 0b000, 0, 0b11);
INSN(brk, 0b001, 0, 0b00);
INSN(hlt, 0b010, 0, 0b00);
INSN(dcps1, 0b101, 0, 0b01);
INSN(dcps2, 0b101, 0, 0b10);
INSN(dcps3, 0b101, 0, 0b11);
#undef INSN
// System
void system(int op0, int op1, int CRn, int CRm, int op2,
Register rt = dummy_reg)
{
starti;
f(0b11010101000, 31, 21);
f(op0, 20, 19);
f(op1, 18, 16);
f(CRn, 15, 12);
f(CRm, 11, 8);
f(op2, 7, 5);
rf(rt, 0);
}
// Hint instructions
#define INSN(NAME, crm, op2) \
void NAME() { \
system(0b00, 0b011, 0b0010, crm, op2); \
}
INSN(nop, 0b000, 0b0000);
INSN(yield, 0b000, 0b0001);
INSN(wfe, 0b000, 0b0010);
INSN(wfi, 0b000, 0b0011);
INSN(sev, 0b000, 0b0100);
INSN(sevl, 0b000, 0b0101);
INSN(autia1716, 0b0001, 0b100);
INSN(autiasp, 0b0011, 0b101);
INSN(autiaz, 0b0011, 0b100);
INSN(autib1716, 0b0001, 0b110);
INSN(autibsp, 0b0011, 0b111);
INSN(autibz, 0b0011, 0b110);
INSN(pacia1716, 0b0001, 0b000);
INSN(paciasp, 0b0011, 0b001);
INSN(paciaz, 0b0011, 0b000);
INSN(pacib1716, 0b0001, 0b010);
INSN(pacibsp, 0b0011, 0b011);
INSN(pacibz, 0b0011, 0b010);
INSN(xpaclri, 0b0000, 0b111);
#undef INSN
// we only provide mrs and msr for the special purpose system
// registers where op1 (instr[20:19]) == 11 and, (currently) only
// use it for FPSR n.b msr has L (instr[21]) == 0 mrs has L == 1
void msr(int op1, int CRn, int CRm, int op2, Register rt) {
starti;
f(0b1101010100011, 31, 19);
f(op1, 18, 16);
f(CRn, 15, 12);
f(CRm, 11, 8);
f(op2, 7, 5);
// writing zr is ok
zrf(rt, 0);
}
void mrs(int op1, int CRn, int CRm, int op2, Register rt) {
starti;
f(0b1101010100111, 31, 19);
f(op1, 18, 16);
f(CRn, 15, 12);
f(CRm, 11, 8);
f(op2, 7, 5);
// reading to zr is a mistake
rf(rt, 0);
}
enum barrier {OSHLD = 0b0001, OSHST, OSH, NSHLD=0b0101, NSHST, NSH,
ISHLD = 0b1001, ISHST, ISH, LD=0b1101, ST, SY};
void dsb(barrier imm) {
system(0b00, 0b011, 0b00011, imm, 0b100);
}
void dmb(barrier imm) {
system(0b00, 0b011, 0b00011, imm, 0b101);
}
void isb() {
system(0b00, 0b011, 0b00011, SY, 0b110);
}
void sys(int op1, int CRn, int CRm, int op2,
Register rt = as_Register(0b11111)) {
system(0b01, op1, CRn, CRm, op2, rt);
}
// Only implement operations accessible from EL0 or higher, i.e.,
// op1 CRn CRm op2
// IC IVAU 3 7 5 1
// DC CVAC 3 7 10 1
// DC CVAP 3 7 12 1
// DC CVAU 3 7 11 1
// DC CIVAC 3 7 14 1
// DC ZVA 3 7 4 1
// So only deal with the CRm field.
enum icache_maintenance {IVAU = 0b0101};
enum dcache_maintenance {CVAC = 0b1010, CVAP = 0b1100, CVAU = 0b1011, CIVAC = 0b1110, ZVA = 0b100};
void dc(dcache_maintenance cm, Register Rt) {
sys(0b011, 0b0111, cm, 0b001, Rt);
}
void ic(icache_maintenance cm, Register Rt) {
sys(0b011, 0b0111, cm, 0b001, Rt);
}
// A more convenient access to dmb for our purposes
enum Membar_mask_bits {
// We can use ISH for a barrier because the Arm ARM says "This
// architecture assumes that all Processing Elements that use the
// same operating system or hypervisor are in the same Inner
// Shareable shareability domain."
StoreStore = ISHST,
LoadStore = ISHLD,
LoadLoad = ISHLD,
StoreLoad = ISH,
AnyAny = ISH
};
void membar(Membar_mask_bits order_constraint) {
dmb(Assembler::barrier(order_constraint));
}
// Unconditional branch (register)
void branch_reg(int OP, int A, int M, Register RN, Register RM) {
starti;
f(0b1101011, 31, 25);
f(OP, 24, 21);
f(0b111110000, 20, 12);
f(A, 11, 11);
f(M, 10, 10);
rf(RN, 5);
rf(RM, 0);
}
#define INSN(NAME, opc) \
void NAME(Register RN) { \
branch_reg(opc, 0, 0, RN, r0); \
}
INSN(br, 0b0000);
INSN(blr, 0b0001);
INSN(ret, 0b0010);
void ret(void *p); // This forces a compile-time error for ret(0)
#undef INSN
#define INSN(NAME, opc) \
void NAME() { \
branch_reg(opc, 0, 0, dummy_reg, r0); \
}
INSN(eret, 0b0100);
INSN(drps, 0b0101);
#undef INSN
#define INSN(NAME, M) \
void NAME() { \
branch_reg(0b0010, 1, M, dummy_reg, dummy_reg); \
}
INSN(retaa, 0);
INSN(retab, 1);
#undef INSN
#define INSN(NAME, OP, M) \
void NAME(Register rn) { \
branch_reg(OP, 1, M, rn, dummy_reg); \
}
INSN(braaz, 0b0000, 0);
INSN(brabz, 0b0000, 1);
INSN(blraaz, 0b0001, 0);
INSN(blrabz, 0b0001, 1);
#undef INSN
#define INSN(NAME, OP, M) \
void NAME(Register rn, Register rm) { \
branch_reg(OP, 1, M, rn, rm); \
}
INSN(braa, 0b1000, 0);
INSN(brab, 0b1000, 1);
INSN(blraa, 0b1001, 0);
INSN(blrab, 0b1001, 1);
#undef INSN
// Load/store exclusive
enum operand_size { byte, halfword, word, xword };
void load_store_exclusive(Register Rs, Register Rt1, Register Rt2,
Register Rn, enum operand_size sz, int op, bool ordered) {
starti;
f(sz, 31, 30), f(0b001000, 29, 24), f(op, 23, 21);
rf(Rs, 16), f(ordered, 15), zrf(Rt2, 10), srf(Rn, 5), zrf(Rt1, 0);
}
void load_exclusive(Register dst, Register addr,
enum operand_size sz, bool ordered) {
load_store_exclusive(dummy_reg, dst, dummy_reg, addr,
sz, 0b010, ordered);
}
void store_exclusive(Register status, Register new_val, Register addr,
enum operand_size sz, bool ordered) {
load_store_exclusive(status, new_val, dummy_reg, addr,
sz, 0b000, ordered);
}
#define INSN4(NAME, sz, op, o0) /* Four registers */ \
void NAME(Register Rs, Register Rt1, Register Rt2, Register Rn) { \
guarantee(Rs != Rn && Rs != Rt1 && Rs != Rt2, "unpredictable instruction"); \
load_store_exclusive(Rs, Rt1, Rt2, Rn, sz, op, o0); \
}
#define INSN3(NAME, sz, op, o0) /* Three registers */ \
void NAME(Register Rs, Register Rt, Register Rn) { \
guarantee(Rs != Rn && Rs != Rt, "unpredictable instruction"); \
load_store_exclusive(Rs, Rt, dummy_reg, Rn, sz, op, o0); \
}
#define INSN2(NAME, sz, op, o0) /* Two registers */ \
void NAME(Register Rt, Register Rn) { \
load_store_exclusive(dummy_reg, Rt, dummy_reg, \
Rn, sz, op, o0); \
}
#define INSN_FOO(NAME, sz, op, o0) /* Three registers, encoded differently */ \
void NAME(Register Rt1, Register Rt2, Register Rn) { \
guarantee(Rt1 != Rt2, "unpredictable instruction"); \
load_store_exclusive(dummy_reg, Rt1, Rt2, Rn, sz, op, o0); \
}
// bytes
INSN3(stxrb, byte, 0b000, 0);
INSN3(stlxrb, byte, 0b000, 1);
INSN2(ldxrb, byte, 0b010, 0);
INSN2(ldaxrb, byte, 0b010, 1);
INSN2(stlrb, byte, 0b100, 1);
INSN2(ldarb, byte, 0b110, 1);
// halfwords
INSN3(stxrh, halfword, 0b000, 0);
INSN3(stlxrh, halfword, 0b000, 1);
INSN2(ldxrh, halfword, 0b010, 0);
INSN2(ldaxrh, halfword, 0b010, 1);
INSN2(stlrh, halfword, 0b100, 1);
INSN2(ldarh, halfword, 0b110, 1);
// words
INSN3(stxrw, word, 0b000, 0);
INSN3(stlxrw, word, 0b000, 1);
INSN4(stxpw, word, 0b001, 0);
INSN4(stlxpw, word, 0b001, 1);
INSN2(ldxrw, word, 0b010, 0);
INSN2(ldaxrw, word, 0b010, 1);
INSN2(stlrw, word, 0b100, 1);
INSN2(ldarw, word, 0b110, 1);
// pairs of words
INSN_FOO(ldxpw, word, 0b011, 0);
INSN_FOO(ldaxpw, word, 0b011, 1);
// xwords
INSN3(stxr, xword, 0b000, 0);
INSN3(stlxr, xword, 0b000, 1);
INSN4(stxp, xword, 0b001, 0);
INSN4(stlxp, xword, 0b001, 1);
INSN2(ldxr, xword, 0b010, 0);
INSN2(ldaxr, xword, 0b010, 1);
INSN2(stlr, xword, 0b100, 1);
INSN2(ldar, xword, 0b110, 1);
// pairs of xwords
INSN_FOO(ldxp, xword, 0b011, 0);
INSN_FOO(ldaxp, xword, 0b011, 1);
#undef INSN2
#undef INSN3
#undef INSN4
#undef INSN_FOO
// 8.1 Compare and swap extensions
void lse_cas(Register Rs, Register Rt, Register Rn,
enum operand_size sz, bool a, bool r, bool not_pair) {
starti;
if (! not_pair) { // Pair
assert(sz == word || sz == xword, "invalid size");
/* The size bit is in bit 30, not 31 */
sz = (operand_size)(sz == word ? 0b00:0b01);
}
f(sz, 31, 30), f(0b001000, 29, 24), f(not_pair ? 1 : 0, 23), f(a, 22), f(1, 21);
zrf(Rs, 16), f(r, 15), f(0b11111, 14, 10), srf(Rn, 5), zrf(Rt, 0);
}
// CAS
#define INSN(NAME, a, r) \
void NAME(operand_size sz, Register Rs, Register Rt, Register Rn) { \
assert(Rs != Rn && Rs != Rt, "unpredictable instruction"); \
lse_cas(Rs, Rt, Rn, sz, a, r, true); \
}
INSN(cas, false, false)
INSN(casa, true, false)
INSN(casl, false, true)
INSN(casal, true, true)
#undef INSN
// CASP
#define INSN(NAME, a, r) \
void NAME(operand_size sz, Register Rs, Register Rs1, \
Register Rt, Register Rt1, Register Rn) { \
assert((Rs->encoding() & 1) == 0 && (Rt->encoding() & 1) == 0 && \
Rs->successor() == Rs1 && Rt->successor() == Rt1 && \
Rs != Rn && Rs1 != Rn && Rs != Rt, "invalid registers"); \
lse_cas(Rs, Rt, Rn, sz, a, r, false); \
}
INSN(casp, false, false)
INSN(caspa, true, false)
INSN(caspl, false, true)
INSN(caspal, true, true)
#undef INSN
// 8.1 Atomic operations
void lse_atomic(Register Rs, Register Rt, Register Rn,
enum operand_size sz, int op1, int op2, bool a, bool r) {
starti;
f(sz, 31, 30), f(0b111000, 29, 24), f(a, 23), f(r, 22), f(1, 21);
zrf(Rs, 16), f(op1, 15), f(op2, 14, 12), f(0, 11, 10), srf(Rn, 5), zrf(Rt, 0);
}
#define INSN(NAME, NAME_A, NAME_L, NAME_AL, op1, op2) \
void NAME(operand_size sz, Register Rs, Register Rt, Register Rn) { \
lse_atomic(Rs, Rt, Rn, sz, op1, op2, false, false); \
} \
void NAME_A(operand_size sz, Register Rs, Register Rt, Register Rn) { \
lse_atomic(Rs, Rt, Rn, sz, op1, op2, true, false); \
} \
void NAME_L(operand_size sz, Register Rs, Register Rt, Register Rn) { \
lse_atomic(Rs, Rt, Rn, sz, op1, op2, false, true); \
} \
void NAME_AL(operand_size sz, Register Rs, Register Rt, Register Rn) {\
lse_atomic(Rs, Rt, Rn, sz, op1, op2, true, true); \
}
INSN(ldadd, ldadda, ldaddl, ldaddal, 0, 0b000);
INSN(ldbic, ldbica, ldbicl, ldbical, 0, 0b001);
INSN(ldeor, ldeora, ldeorl, ldeoral, 0, 0b010);
INSN(ldorr, ldorra, ldorrl, ldorral, 0, 0b011);
INSN(ldsmax, ldsmaxa, ldsmaxl, ldsmaxal, 0, 0b100);
INSN(ldsmin, ldsmina, ldsminl, ldsminal, 0, 0b101);
INSN(ldumax, ldumaxa, ldumaxl, ldumaxal, 0, 0b110);
INSN(ldumin, ldumina, lduminl, lduminal, 0, 0b111);
INSN(swp, swpa, swpl, swpal, 1, 0b000);
#undef INSN
// Load register (literal)
#define INSN(NAME, opc, V) \
void NAME(Register Rt, address dest) { \
int64_t offset = (dest - pc()) >> 2; \
starti; \
f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24), \
sf(offset, 23, 5); \
rf(Rt, 0); \
} \
void NAME(Register Rt, address dest, relocInfo::relocType rtype) { \
InstructionMark im(this); \
guarantee(rtype == relocInfo::internal_word_type, \
"only internal_word_type relocs make sense here"); \
code_section()->relocate(inst_mark(), InternalAddress(dest).rspec()); \
NAME(Rt, dest); \
} \
void NAME(Register Rt, Label &L) { \
wrap_label(Rt, L, &Assembler::NAME); \
}
INSN(ldrw, 0b00, 0);
INSN(ldr, 0b01, 0);
INSN(ldrsw, 0b10, 0);
#undef INSN
#define INSN(NAME, opc, V) \
void NAME(FloatRegister Rt, address dest) { \
int64_t offset = (dest - pc()) >> 2; \
starti; \
f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24), \
sf(offset, 23, 5); \
rf(as_Register(Rt), 0); \
}
INSN(ldrs, 0b00, 1);
INSN(ldrd, 0b01, 1);
INSN(ldrq, 0b10, 1);
#undef INSN
#define INSN(NAME, size, opc) \
void NAME(FloatRegister Rt, Register Rn) { \
starti; \
f(size, 31, 30), f(0b111100, 29, 24), f(opc, 23, 22), f(0, 21); \
f(0, 20, 12), f(0b01, 11, 10); \
rf(Rn, 5), rf(as_Register(Rt), 0); \
}
INSN(ldrs, 0b10, 0b01);
INSN(ldrd, 0b11, 0b01);
INSN(ldrq, 0b00, 0b11);
#undef INSN
#define INSN(NAME, opc, V) \
void NAME(address dest, prfop op = PLDL1KEEP) { \
int64_t offset = (dest - pc()) >> 2; \
starti; \
f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24), \
sf(offset, 23, 5); \
f(op, 4, 0); \
} \
void NAME(Label &L, prfop op = PLDL1KEEP) { \
wrap_label(L, op, &Assembler::NAME); \
}
INSN(prfm, 0b11, 0);
#undef INSN
// Load/store
void ld_st1(int opc, int p1, int V, int L,
Register Rt1, Register Rt2, Address adr, bool no_allocate) {
starti;
f(opc, 31, 30), f(p1, 29, 27), f(V, 26), f(L, 22);
zrf(Rt2, 10), zrf(Rt1, 0);
if (no_allocate) {
adr.encode_nontemporal_pair(&current_insn);
} else {
adr.encode_pair(&current_insn);
}
}
// Load/store register pair (offset)
#define INSN(NAME, size, p1, V, L, no_allocate) \
void NAME(Register Rt1, Register Rt2, Address adr) { \
ld_st1(size, p1, V, L, Rt1, Rt2, adr, no_allocate); \
}
INSN(stpw, 0b00, 0b101, 0, 0, false);
INSN(ldpw, 0b00, 0b101, 0, 1, false);
INSN(ldpsw, 0b01, 0b101, 0, 1, false);
INSN(stp, 0b10, 0b101, 0, 0, false);
INSN(ldp, 0b10, 0b101, 0, 1, false);
// Load/store no-allocate pair (offset)
INSN(stnpw, 0b00, 0b101, 0, 0, true);
INSN(ldnpw, 0b00, 0b101, 0, 1, true);
INSN(stnp, 0b10, 0b101, 0, 0, true);
INSN(ldnp, 0b10, 0b101, 0, 1, true);
#undef INSN
#define INSN(NAME, size, p1, V, L, no_allocate) \
void NAME(FloatRegister Rt1, FloatRegister Rt2, Address adr) { \
ld_st1(size, p1, V, L, \
as_Register(Rt1), as_Register(Rt2), adr, no_allocate); \
}
INSN(stps, 0b00, 0b101, 1, 0, false);
INSN(ldps, 0b00, 0b101, 1, 1, false);
INSN(stpd, 0b01, 0b101, 1, 0, false);
INSN(ldpd, 0b01, 0b101, 1, 1, false);
INSN(stpq, 0b10, 0b101, 1, 0, false);
INSN(ldpq, 0b10, 0b101, 1, 1, false);
#undef INSN
// Load/store register (all modes)
void ld_st2(Register Rt, const Address &adr, int size, int op, int V = 0) {
starti;
f(V, 26); // general reg?
zrf(Rt, 0);
// Encoding for literal loads is done here (rather than pushed
// down into Address::encode) because the encoding of this
// instruction is too different from all of the other forms to
// make it worth sharing.
if (adr.getMode() == Address::literal) {
assert(size == 0b10 || size == 0b11, "bad operand size in ldr");
assert(op == 0b01, "literal form can only be used with loads");
f(size & 0b01, 31, 30), f(0b011, 29, 27), f(0b00, 25, 24);
int64_t offset = (adr.target() - pc()) >> 2;
sf(offset, 23, 5);
code_section()->relocate(pc(), adr.rspec());
return;
}
f(size, 31, 30);
f(op, 23, 22); // str
adr.encode(&current_insn);
}
#define INSN(NAME, size, op) \
void NAME(Register Rt, const Address &adr) { \
ld_st2(Rt, adr, size, op); \
} \
INSN(str, 0b11, 0b00);
INSN(strw, 0b10, 0b00);
INSN(strb, 0b00, 0b00);
INSN(strh, 0b01, 0b00);
INSN(ldr, 0b11, 0b01);
INSN(ldrw, 0b10, 0b01);
INSN(ldrb, 0b00, 0b01);
INSN(ldrh, 0b01, 0b01);
INSN(ldrsb, 0b00, 0b10);
INSN(ldrsbw, 0b00, 0b11);
INSN(ldrsh, 0b01, 0b10);
INSN(ldrshw, 0b01, 0b11);
INSN(ldrsw, 0b10, 0b10);
#undef INSN
#define INSN(NAME, size, op) \
void NAME(FloatRegister Rt, const Address &adr) { \
ld_st2(as_Register(Rt), adr, size, op, 1); \
}
INSN(strd, 0b11, 0b00);
INSN(strs, 0b10, 0b00);
INSN(ldrd, 0b11, 0b01);
INSN(ldrs, 0b10, 0b01);
INSN(strq, 0b00, 0b10);
INSN(ldrq, 0x00, 0b11);
#undef INSN
/* SIMD extensions
*
* We just use FloatRegister in the following. They are exactly the same
* as SIMD registers.
*/
public:
enum SIMD_Arrangement {
T8B, T16B, T4H, T8H, T2S, T4S, T1D, T2D, T1Q, INVALID_ARRANGEMENT
};
enum SIMD_RegVariant {
B, H, S, D, Q, INVALID
};
private:
static SIMD_Arrangement _esize2arrangement_table[9][2];
static SIMD_RegVariant _esize2regvariant[9];
public:
static SIMD_Arrangement esize2arrangement(unsigned esize, bool isQ);
static SIMD_RegVariant elemType_to_regVariant(BasicType bt);
static SIMD_RegVariant elemBytes_to_regVariant(unsigned esize);
// Return the corresponding bits for different SIMD_RegVariant value.
static unsigned regVariant_to_elemBits(SIMD_RegVariant T);
enum shift_kind { LSL, LSR, ASR, ROR };
void op_shifted_reg(Instruction_aarch64 &current_insn, unsigned decode,
enum shift_kind kind, unsigned shift,
unsigned size, unsigned op) {
f(size, 31);
f(op, 30, 29);
f(decode, 28, 24);
f(shift, 15, 10);
f(kind, 23, 22);
}
// Logical (shifted register)
#define INSN(NAME, size, op, N) \
void NAME(Register Rd, Register Rn, Register Rm, \
enum shift_kind kind = LSL, unsigned shift = 0) { \
starti; \
guarantee(size == 1 || shift < 32, "incorrect shift"); \
f(N, 21); \
zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0); \
op_shifted_reg(current_insn, 0b01010, kind, shift, size, op); \
}
INSN(andr, 1, 0b00, 0);
INSN(orr, 1, 0b01, 0);
INSN(eor, 1, 0b10, 0);
INSN(ands, 1, 0b11, 0);
INSN(andw, 0, 0b00, 0);
INSN(orrw, 0, 0b01, 0);
INSN(eorw, 0, 0b10, 0);
INSN(andsw, 0, 0b11, 0);
#undef INSN
#define INSN(NAME, size, op, N) \
void NAME(Register Rd, Register Rn, Register Rm, \
enum shift_kind kind = LSL, unsigned shift = 0) { \
starti; \
f(N, 21); \
zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0); \
op_shifted_reg(current_insn, 0b01010, kind, shift, size, op); \
} \
\
/* These instructions have no immediate form. Provide an overload so \
that if anyone does try to use an immediate operand -- this has \
happened! -- we'll get a compile-time error. */ \
void NAME(Register Rd, Register Rn, unsigned imm, \
enum shift_kind kind = LSL, unsigned shift = 0) { \
assert(false, " can't be used with immediate operand"); \
}
INSN(bic, 1, 0b00, 1);
INSN(orn, 1, 0b01, 1);
INSN(eon, 1, 0b10, 1);
INSN(bics, 1, 0b11, 1);
INSN(bicw, 0, 0b00, 1);
INSN(ornw, 0, 0b01, 1);
INSN(eonw, 0, 0b10, 1);
INSN(bicsw, 0, 0b11, 1);
#undef INSN
#ifdef _WIN64
// In MSVC, `mvn` is defined as a macro and it affects compilation
#undef mvn
#endif
// Aliases for short forms of orn
void mvn(Register Rd, Register Rm,
enum shift_kind kind = LSL, unsigned shift = 0) {
orn(Rd, zr, Rm, kind, shift);
}
void mvnw(Register Rd, Register Rm,
enum shift_kind kind = LSL, unsigned shift = 0) {
ornw(Rd, zr, Rm, kind, shift);
}
// Add/subtract (shifted register)
#define INSN(NAME, size, op) \
void NAME(Register Rd, Register Rn, Register Rm, \
enum shift_kind kind, unsigned shift = 0) { \
starti; \
f(0, 21); \
assert_cond(kind != ROR); \
guarantee(size == 1 || shift < 32, "incorrect shift");\
zrf(Rd, 0), zrf(Rn, 5), zrf(Rm, 16); \
op_shifted_reg(current_insn, 0b01011, kind, shift, size, op); \
}
INSN(add, 1, 0b000);
INSN(sub, 1, 0b10);
INSN(addw, 0, 0b000);
INSN(subw, 0, 0b10);
INSN(adds, 1, 0b001);
INSN(subs, 1, 0b11);
INSN(addsw, 0, 0b001);
INSN(subsw, 0, 0b11);
#undef INSN
// Add/subtract (extended register)
#define INSN(NAME, op) \
void NAME(Register Rd, Register Rn, Register Rm, \
ext::operation option, int amount = 0) { \
starti; \
zrf(Rm, 16), srf(Rn, 5), srf(Rd, 0); \
add_sub_extended_reg(current_insn, op, 0b01011, Rd, Rn, Rm, 0b00, option, amount); \
}
void add_sub_extended_reg(Instruction_aarch64 &current_insn, unsigned op, unsigned decode,
Register Rd, Register Rn, Register Rm,
unsigned opt, ext::operation option, unsigned imm) {
guarantee(imm <= 4, "shift amount must be <= 4");
f(op, 31, 29), f(decode, 28, 24), f(opt, 23, 22), f(1, 21);
f(option, 15, 13), f(imm, 12, 10);
}
INSN(addw, 0b000);
INSN(subw, 0b010);
INSN(add, 0b100);
INSN(sub, 0b110);
#undef INSN
#define INSN(NAME, op) \
void NAME(Register Rd, Register Rn, Register Rm, \
ext::operation option, int amount = 0) { \
starti; \
zrf(Rm, 16), srf(Rn, 5), zrf(Rd, 0); \
add_sub_extended_reg(current_insn, op, 0b01011, Rd, Rn, Rm, 0b00, option, amount); \
}
INSN(addsw, 0b001);
INSN(subsw, 0b011);
INSN(adds, 0b101);
INSN(subs, 0b111);
#undef INSN
// Aliases for short forms of add and sub
#define INSN(NAME) \
void NAME(Register Rd, Register Rn, Register Rm) { \
if (Rd == sp || Rn == sp) \
NAME(Rd, Rn, Rm, ext::uxtx); \
else \
NAME(Rd, Rn, Rm, LSL); \
}
INSN(addw);
INSN(subw);
INSN(add);
INSN(sub);
INSN(addsw);
INSN(subsw);
INSN(adds);
INSN(subs);
#undef INSN
// Add/subtract (with carry)
void add_sub_carry(unsigned op, Register Rd, Register Rn, Register Rm) {
starti;
f(op, 31, 29);
f(0b11010000, 28, 21);
f(0b000000, 15, 10);
zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);
}
#define INSN(NAME, op) \
void NAME(Register Rd, Register Rn, Register Rm) { \
add_sub_carry(op, Rd, Rn, Rm); \
}
INSN(adcw, 0b000);
INSN(adcsw, 0b001);
INSN(sbcw, 0b010);
INSN(sbcsw, 0b011);
INSN(adc, 0b100);
INSN(adcs, 0b101);
INSN(sbc, 0b110);
INSN(sbcs, 0b111);
#undef INSN
// Conditional compare (both kinds)
void conditional_compare(unsigned op, int o1, int o2, int o3,
Register Rn, unsigned imm5, unsigned nzcv,
unsigned cond) {
starti;
f(op, 31, 29);
f(0b11010010, 28, 21);
f(cond, 15, 12);
f(o1, 11);
f(o2, 10);
f(o3, 4);
f(nzcv, 3, 0);
f(imm5, 20, 16), zrf(Rn, 5);
}
#define INSN(NAME, op) \
void NAME(Register Rn, Register Rm, int imm, Condition cond) { \
int regNumber = (Rm == zr ? 31 : Rm->encoding()); \
conditional_compare(op, 0, 0, 0, Rn, regNumber, imm, cond); \
} \
\
void NAME(Register Rn, int imm5, int imm, Condition cond) { \
conditional_compare(op, 1, 0, 0, Rn, imm5, imm, cond); \
}
INSN(ccmnw, 0b001);
INSN(ccmpw, 0b011);
INSN(ccmn, 0b101);
INSN(ccmp, 0b111);
#undef INSN
// Conditional select
void conditional_select(unsigned op, unsigned op2,
Register Rd, Register Rn, Register Rm,
unsigned cond) {
starti;
f(op, 31, 29);
f(0b11010100, 28, 21);
f(cond, 15, 12);
f(op2, 11, 10);
zrf(Rm, 16), zrf(Rn, 5), rf(Rd, 0);
}
#define INSN(NAME, op, op2) \
void NAME(Register Rd, Register Rn, Register Rm, Condition cond) { \
conditional_select(op, op2, Rd, Rn, Rm, cond); \
}
INSN(cselw, 0b000, 0b00);
INSN(csincw, 0b000, 0b01);
INSN(csinvw, 0b010, 0b00);
INSN(csnegw, 0b010, 0b01);
INSN(csel, 0b100, 0b00);
INSN(csinc, 0b100, 0b01);
INSN(csinv, 0b110, 0b00);
INSN(csneg, 0b110, 0b01);
#undef INSN
// Data processing
void data_processing(Instruction_aarch64 &current_insn, unsigned op29, unsigned opcode,
Register Rd, Register Rn) {
f(op29, 31, 29), f(0b11010110, 28, 21);
f(opcode, 15, 10);
rf(Rn, 5), rf(Rd, 0);
}
// (1 source)
#define INSN(NAME, op29, opcode2, opcode) \
void NAME(Register Rd, Register Rn) { \
starti; \
f(opcode2, 20, 16); \
data_processing(current_insn, op29, opcode, Rd, Rn); \
}
INSN(rbitw, 0b010, 0b00000, 0b00000);
INSN(rev16w, 0b010, 0b00000, 0b00001);
INSN(revw, 0b010, 0b00000, 0b00010);
INSN(clzw, 0b010, 0b00000, 0b00100);
INSN(clsw, 0b010, 0b00000, 0b00101);
INSN(rbit, 0b110, 0b00000, 0b00000);
INSN(rev16, 0b110, 0b00000, 0b00001);
INSN(rev32, 0b110, 0b00000, 0b00010);
INSN(rev, 0b110, 0b00000, 0b00011);
INSN(clz, 0b110, 0b00000, 0b00100);
INSN(cls, 0b110, 0b00000, 0b00101);
// PAC instructions
INSN(pacia, 0b110, 0b00001, 0b00000);
INSN(pacib, 0b110, 0b00001, 0b00001);
INSN(pacda, 0b110, 0b00001, 0b00010);
INSN(pacdb, 0b110, 0b00001, 0b00011);
INSN(autia, 0b110, 0b00001, 0b00100);
INSN(autib, 0b110, 0b00001, 0b00101);
INSN(autda, 0b110, 0b00001, 0b00110);
INSN(autdb, 0b110, 0b00001, 0b00111);
#undef INSN
#define INSN(NAME, op29, opcode2, opcode) \
void NAME(Register Rd) { \
starti; \
f(opcode2, 20, 16); \
data_processing(current_insn, op29, opcode, Rd, dummy_reg); \
}
// PAC instructions (with zero modifier)
INSN(paciza, 0b110, 0b00001, 0b01000);
INSN(pacizb, 0b110, 0b00001, 0b01001);
INSN(pacdza, 0b110, 0b00001, 0b01010);
INSN(pacdzb, 0b110, 0b00001, 0b01011);
INSN(autiza, 0b110, 0b00001, 0b01100);
INSN(autizb, 0b110, 0b00001, 0b01101);
INSN(autdza, 0b110, 0b00001, 0b01110);
INSN(autdzb, 0b110, 0b00001, 0b01111);
INSN(xpaci, 0b110, 0b00001, 0b10000);
INSN(xpacd, 0b110, 0b00001, 0b10001);
#undef INSN
// Data-processing (2 source)
#define INSN(NAME, op29, opcode) \
void NAME(Register Rd, Register Rn, Register Rm) { \
starti; \
rf(Rm, 16); \
data_processing(current_insn, op29, opcode, Rd, Rn); \
}
INSN(udivw, 0b000, 0b000010);
INSN(sdivw, 0b000, 0b000011);
INSN(lslvw, 0b000, 0b001000);
INSN(lsrvw, 0b000, 0b001001);
INSN(asrvw, 0b000, 0b001010);
INSN(rorvw, 0b000, 0b001011);
INSN(udiv, 0b100, 0b000010);
INSN(sdiv, 0b100, 0b000011);
INSN(lslv, 0b100, 0b001000);
INSN(lsrv, 0b100, 0b001001);
INSN(asrv, 0b100, 0b001010);
INSN(rorv, 0b100, 0b001011);
#undef INSN
// Data-processing (3 source)
void data_processing(unsigned op54, unsigned op31, unsigned o0,
Register Rd, Register Rn, Register Rm,
Register Ra) {
starti;
f(op54, 31, 29), f(0b11011, 28, 24);
f(op31, 23, 21), f(o0, 15);
zrf(Rm, 16), zrf(Ra, 10), zrf(Rn, 5), zrf(Rd, 0);
}
#define INSN(NAME, op54, op31, o0) \
void NAME(Register Rd, Register Rn, Register Rm, Register Ra) { \
data_processing(op54, op31, o0, Rd, Rn, Rm, Ra); \
}
INSN(maddw, 0b000, 0b000, 0);
INSN(msubw, 0b000, 0b000, 1);
INSN(madd, 0b100, 0b000, 0);
INSN(msub, 0b100, 0b000, 1);
INSN(smaddl, 0b100, 0b001, 0);
INSN(smsubl, 0b100, 0b001, 1);
INSN(umaddl, 0b100, 0b101, 0);
INSN(umsubl, 0b100, 0b101, 1);
#undef INSN
#define INSN(NAME, op54, op31, o0) \
void NAME(Register Rd, Register Rn, Register Rm) { \
data_processing(op54, op31, o0, Rd, Rn, Rm, as_Register(31)); \
}
INSN(smulh, 0b100, 0b010, 0);
INSN(umulh, 0b100, 0b110, 0);
#undef INSN
// Floating-point data-processing (1 source)
void data_processing(unsigned type, unsigned opcode,
FloatRegister Vd, FloatRegister Vn) {
starti;
f(0b000, 31, 29);
f(0b11110, 28, 24);
f(type, 23, 22), f(1, 21), f(opcode, 20, 15), f(0b10000, 14, 10);
rf(Vn, 5), rf(Vd, 0);
}
#define INSN(NAME, type, opcode) \
void NAME(FloatRegister Vd, FloatRegister Vn) { \
data_processing(type, opcode, Vd, Vn); \
}
INSN(fmovs, 0b00, 0b000000);
INSN(fabss, 0b00, 0b000001);
INSN(fnegs, 0b00, 0b000010);
INSN(fsqrts, 0b00, 0b000011);
INSN(fcvts, 0b00, 0b000101); // Single-precision to double-precision
INSN(fcvths, 0b11, 0b000100); // Half-precision to single-precision
INSN(fcvtsh, 0b00, 0b000111); // Single-precision to half-precision
INSN(fmovd, 0b01, 0b000000);
INSN(fabsd, 0b01, 0b000001);
INSN(fnegd, 0b01, 0b000010);
INSN(fsqrtd, 0b01, 0b000011);
INSN(fcvtd, 0b01, 0b000100); // Double-precision to single-precision
private:
void _fcvt_narrow_extend(FloatRegister Vd, SIMD_Arrangement Ta,
FloatRegister Vn, SIMD_Arrangement Tb, bool do_extend) {
assert((do_extend && (Tb >> 1) + 1 == (Ta >> 1))
|| (!do_extend && (Ta >> 1) + 1 == (Tb >> 1)), "Incompatible arrangement");
starti;
int op30 = (do_extend ? Tb : Ta) & 1;
int op22 = ((do_extend ? Ta : Tb) >> 1) & 1;
f(0, 31), f(op30, 30), f(0b0011100, 29, 23), f(op22, 22);
f(0b100001011, 21, 13), f(do_extend ? 1 : 0, 12), f(0b10, 11, 10);
rf(Vn, 5), rf(Vd, 0);
}
public:
void fcvtl(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb) {
assert(Tb == T4H || Tb == T8H|| Tb == T2S || Tb == T4S, "invalid arrangement");
_fcvt_narrow_extend(Vd, Ta, Vn, Tb, true);
}
void fcvtn(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb) {
assert(Ta == T4H || Ta == T8H|| Ta == T2S || Ta == T4S, "invalid arrangement");
_fcvt_narrow_extend(Vd, Ta, Vn, Tb, false);
}
#undef INSN
// Floating-point data-processing (2 source)
void data_processing(unsigned op31, unsigned type, unsigned opcode,
FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) {
starti;
f(op31, 31, 29);
f(0b11110, 28, 24);
f(type, 23, 22), f(1, 21), f(opcode, 15, 10);
rf(Vm, 16), rf(Vn, 5), rf(Vd, 0);
}
#define INSN(NAME, op31, type, opcode) \
void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) { \
data_processing(op31, type, opcode, Vd, Vn, Vm); \
}
INSN(fabds, 0b011, 0b10, 0b110101);
INSN(fmuls, 0b000, 0b00, 0b000010);
INSN(fdivs, 0b000, 0b00, 0b000110);
INSN(fadds, 0b000, 0b00, 0b001010);
INSN(fsubs, 0b000, 0b00, 0b001110);
INSN(fmaxs, 0b000, 0b00, 0b010010);
INSN(fmins, 0b000, 0b00, 0b010110);
INSN(fnmuls, 0b000, 0b00, 0b100010);
INSN(fabdd, 0b011, 0b11, 0b110101);
INSN(fmuld, 0b000, 0b01, 0b000010);
INSN(fdivd, 0b000, 0b01, 0b000110);
INSN(faddd, 0b000, 0b01, 0b001010);
INSN(fsubd, 0b000, 0b01, 0b001110);
INSN(fmaxd, 0b000, 0b01, 0b010010);
INSN(fmind, 0b000, 0b01, 0b010110);
INSN(fnmuld, 0b000, 0b01, 0b100010);
#undef INSN
// Floating-point data-processing (3 source)
void data_processing(unsigned op31, unsigned type, unsigned o1, unsigned o0,
FloatRegister Vd, FloatRegister Vn, FloatRegister Vm,
FloatRegister Va) {
starti;
f(op31, 31, 29);
f(0b11111, 28, 24);
f(type, 23, 22), f(o1, 21), f(o0, 15);
rf(Vm, 16), rf(Va, 10), rf(Vn, 5), rf(Vd, 0);
}
#define INSN(NAME, op31, type, o1, o0) \
void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm, \
FloatRegister Va) { \
data_processing(op31, type, o1, o0, Vd, Vn, Vm, Va); \
}
INSN(fmadds, 0b000, 0b00, 0, 0);
INSN(fmsubs, 0b000, 0b00, 0, 1);
INSN(fnmadds, 0b000, 0b00, 1, 0);
INSN(fnmsubs, 0b000, 0b00, 1, 1);
INSN(fmaddd, 0b000, 0b01, 0, 0);
INSN(fmsubd, 0b000, 0b01, 0, 1);
INSN(fnmaddd, 0b000, 0b01, 1, 0);
INSN(fnmsub, 0b000, 0b01, 1, 1);
#undef INSN
// Floating-point conditional select
void fp_conditional_select(unsigned op31, unsigned type,
unsigned op1, unsigned op2,
Condition cond, FloatRegister Vd,
FloatRegister Vn, FloatRegister Vm) {
starti;
f(op31, 31, 29);
f(0b11110, 28, 24);
f(type, 23, 22);
f(op1, 21, 21);
f(op2, 11, 10);
f(cond, 15, 12);
rf(Vm, 16), rf(Vn, 5), rf(Vd, 0);
}
#define INSN(NAME, op31, type, op1, op2) \
void NAME(FloatRegister Vd, FloatRegister Vn, \
FloatRegister Vm, Condition cond) { \
fp_conditional_select(op31, type, op1, op2, cond, Vd, Vn, Vm); \
}
INSN(fcsels, 0b000, 0b00, 0b1, 0b11);
INSN(fcseld, 0b000, 0b01, 0b1, 0b11);
#undef INSN
// Conversion between floating-point and integer
void float_int_convert(unsigned sflag, unsigned ftype,
unsigned rmode, unsigned opcode,
Register Rd, Register Rn) {
starti;
f(sflag, 31);
f(0b00, 30, 29);
f(0b11110, 28, 24);
f(ftype, 23, 22), f(1, 21), f(rmode, 20, 19);
f(opcode, 18, 16), f(0b000000, 15, 10);
zrf(Rn, 5), zrf(Rd, 0);
}
#define INSN(NAME, sflag, ftype, rmode, opcode) \
void NAME(Register Rd, FloatRegister Vn) { \
float_int_convert(sflag, ftype, rmode, opcode, Rd, as_Register(Vn)); \
}
INSN(fcvtzsw, 0b0, 0b00, 0b11, 0b000);
INSN(fcvtzs, 0b1, 0b00, 0b11, 0b000);
INSN(fcvtzdw, 0b0, 0b01, 0b11, 0b000);
INSN(fcvtzd, 0b1, 0b01, 0b11, 0b000);
// RoundToNearestTiesAway
INSN(fcvtassw, 0b0, 0b00, 0b00, 0b100); // float -> signed word
INSN(fcvtasd, 0b1, 0b01, 0b00, 0b100); // double -> signed xword
// RoundTowardsNegative
INSN(fcvtmssw, 0b0, 0b00, 0b10, 0b000); // float -> signed word
INSN(fcvtmsd, 0b1, 0b01, 0b10, 0b000); // double -> signed xword
INSN(fmovs, 0b0, 0b00, 0b00, 0b110);
INSN(fmovd, 0b1, 0b01, 0b00, 0b110);
INSN(fmovhid, 0b1, 0b10, 0b01, 0b110);
#undef INSN
#define INSN(NAME, sflag, type, rmode, opcode) \
void NAME(FloatRegister Vd, Register Rn) { \
float_int_convert(sflag, type, rmode, opcode, as_Register(Vd), Rn); \
}
INSN(fmovs, 0b0, 0b00, 0b00, 0b111);
INSN(fmovd, 0b1, 0b01, 0b00, 0b111);
INSN(scvtfws, 0b0, 0b00, 0b00, 0b010);
INSN(scvtfs, 0b1, 0b00, 0b00, 0b010);
INSN(scvtfwd, 0b0, 0b01, 0b00, 0b010);
INSN(scvtfd, 0b1, 0b01, 0b00, 0b010);
// INSN(fmovhid, 0b100, 0b10, 0b01, 0b111);
#undef INSN
enum sign_kind { SIGNED, UNSIGNED };
private:
void _xcvtf_scalar_integer(sign_kind sign, unsigned sz,
FloatRegister Rd, FloatRegister Rn) {
starti;
f(0b01, 31, 30), f(sign == SIGNED ? 0 : 1, 29);
f(0b111100, 27, 23), f((sz >> 1) & 1, 22), f(0b100001110110, 21, 10);
rf(Rn, 5), rf(Rd, 0);
}
public:
#define INSN(NAME, sign, sz) \
void NAME(FloatRegister Rd, FloatRegister Rn) { \
_xcvtf_scalar_integer(sign, sz, Rd, Rn); \
}
INSN(scvtfs, SIGNED, 0);
INSN(scvtfd, SIGNED, 1);
#undef INSN
private:
void _xcvtf_vector_integer(sign_kind sign, SIMD_Arrangement T,
FloatRegister Rd, FloatRegister Rn) {
assert(T == T2S || T == T4S || T == T2D, "invalid arrangement");
starti;
f(0, 31), f(T & 1, 30), f(sign == SIGNED ? 0 : 1, 29);
f(0b011100, 28, 23), f((T >> 1) & 1, 22), f(0b100001110110, 21, 10);
rf(Rn, 5), rf(Rd, 0);
}
public:
void scvtfv(SIMD_Arrangement T, FloatRegister Rd, FloatRegister Rn) {
_xcvtf_vector_integer(SIGNED, T, Rd, Rn);
}
// Floating-point compare
void float_compare(unsigned op31, unsigned type,
unsigned op, unsigned op2,
FloatRegister Vn, FloatRegister Vm = as_FloatRegister(0)) {
starti;
f(op31, 31, 29);
f(0b11110, 28, 24);
f(type, 23, 22), f(1, 21);
f(op, 15, 14), f(0b1000, 13, 10), f(op2, 4, 0);
rf(Vn, 5), rf(Vm, 16);
}
#define INSN(NAME, op31, type, op, op2) \
void NAME(FloatRegister Vn, FloatRegister Vm) { \
float_compare(op31, type, op, op2, Vn, Vm); \
}
#define INSN1(NAME, op31, type, op, op2) \
void NAME(FloatRegister Vn, double d) { \
assert_cond(d == 0.0); \
float_compare(op31, type, op, op2, Vn); \
}
INSN(fcmps, 0b000, 0b00, 0b00, 0b00000);
INSN1(fcmps, 0b000, 0b00, 0b00, 0b01000);
// INSN(fcmpes, 0b000, 0b00, 0b00, 0b10000);
// INSN1(fcmpes, 0b000, 0b00, 0b00, 0b11000);
INSN(fcmpd, 0b000, 0b01, 0b00, 0b00000);
INSN1(fcmpd, 0b000, 0b01, 0b00, 0b01000);
// INSN(fcmped, 0b000, 0b01, 0b00, 0b10000);
// INSN1(fcmped, 0b000, 0b01, 0b00, 0b11000);
#undef INSN
#undef INSN1
// Floating-point compare. 3-registers versions (scalar).
#define INSN(NAME, sz, e) \
void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) { \
starti; \
f(0b01111110, 31, 24), f(e, 23), f(sz, 22), f(1, 21), rf(Vm, 16); \
f(0b111011, 15, 10), rf(Vn, 5), rf(Vd, 0); \
} \
INSN(facged, 1, 0); // facge-double
INSN(facges, 0, 0); // facge-single
INSN(facgtd, 1, 1); // facgt-double
INSN(facgts, 0, 1); // facgt-single
#undef INSN
// Floating-point Move (immediate)
private:
unsigned pack(double value);
void fmov_imm(FloatRegister Vn, double value, unsigned size) {
starti;
f(0b00011110, 31, 24), f(size, 23, 22), f(1, 21);
f(pack(value), 20, 13), f(0b10000000, 12, 5);
rf(Vn, 0);
}
public:
void fmovs(FloatRegister Vn, double value) {
if (value)
fmov_imm(Vn, value, 0b00);
else
movi(Vn, T2S, 0);
}
void fmovd(FloatRegister Vn, double value) {
if (value)
fmov_imm(Vn, value, 0b01);
else
movi(Vn, T1D, 0);
}
// Floating-point data-processing (1 source)
// Floating-point rounding
// type: half-precision = 11
// single = 00
// double = 01
// rmode: A = Away = 100
// I = current = 111
// M = MinusInf = 010
// N = eveN = 000
// P = PlusInf = 001
// X = eXact = 110
// Z = Zero = 011
void float_round(unsigned type, unsigned rmode, FloatRegister Rd, FloatRegister Rn) {
starti;
f(0b00011110, 31, 24);
f(type, 23, 22);
f(0b1001, 21, 18);
f(rmode, 17, 15);
f(0b10000, 14, 10);
rf(Rn, 5), rf(Rd, 0);
}
#define INSN(NAME, type, rmode) \
void NAME(FloatRegister Vd, FloatRegister Vn) { \
float_round(type, rmode, Vd, Vn); \
}
public:
INSN(frintah, 0b11, 0b100);
INSN(frintih, 0b11, 0b111);
INSN(frintmh, 0b11, 0b010);
INSN(frintnh, 0b11, 0b000);
INSN(frintph, 0b11, 0b001);
INSN(frintxh, 0b11, 0b110);
INSN(frintzh, 0b11, 0b011);
INSN(frintas, 0b00, 0b100);
INSN(frintis, 0b00, 0b111);
INSN(frintms, 0b00, 0b010);
INSN(frintns, 0b00, 0b000);
INSN(frintps, 0b00, 0b001);
INSN(frintxs, 0b00, 0b110);
INSN(frintzs, 0b00, 0b011);
INSN(frintad, 0b01, 0b100);
INSN(frintid, 0b01, 0b111);
INSN(frintmd, 0b01, 0b010);
INSN(frintnd, 0b01, 0b000);
INSN(frintpd, 0b01, 0b001);
INSN(frintxd, 0b01, 0b110);
INSN(frintzd, 0b01, 0b011);
#undef INSN
private:
static short SIMD_Size_in_bytes[];
public:
#define INSN(NAME, op) \
void NAME(FloatRegister Rt, SIMD_RegVariant T, const Address &adr) { \
ld_st2(as_Register(Rt), adr, (int)T & 3, op + ((T==Q) ? 0b10:0b00), 1); \
}
INSN(ldr, 1);
INSN(str, 0);
#undef INSN
private:
void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn, int op1, int op2) {
starti;
f(0,31), f((int)T & 1, 30);
f(op1, 29, 21), f(0, 20, 16), f(op2, 15, 12);
f((int)T >> 1, 11, 10), srf(Xn, 5), rf(Vt, 0);
}
void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn,
int imm, int op1, int op2, int regs) {
bool replicate = op2 >> 2 == 3;
// post-index value (imm) is formed differently for replicate/non-replicate ld* instructions
int expectedImmediate = replicate ? regs * (1 << (T >> 1)) : SIMD_Size_in_bytes[T] * regs;
guarantee(T < T1Q , "incorrect arrangement");
guarantee(imm == expectedImmediate, "bad offset");
starti;
f(0,31), f((int)T & 1, 30);
f(op1 | 0b100, 29, 21), f(0b11111, 20, 16), f(op2, 15, 12);
f((int)T >> 1, 11, 10), srf(Xn, 5), rf(Vt, 0);
}
void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn,
Register Xm, int op1, int op2) {
starti;
f(0,31), f((int)T & 1, 30);
f(op1 | 0b100, 29, 21), rf(Xm, 16), f(op2, 15, 12);
f((int)T >> 1, 11, 10), srf(Xn, 5), rf(Vt, 0);
}
void ld_st(FloatRegister Vt, SIMD_Arrangement T, Address a, int op1, int op2, int regs) {
switch (a.getMode()) {
case Address::base_plus_offset:
guarantee(a.offset() == 0, "no offset allowed here");
ld_st(Vt, T, a.base(), op1, op2);
break;
case Address::post:
ld_st(Vt, T, a.base(), a.offset(), op1, op2, regs);
break;
case Address::post_reg:
ld_st(Vt, T, a.base(), a.index(), op1, op2);
break;
default:
ShouldNotReachHere();
}
}
// Single-structure load/store method (all addressing variants)
void ld_st(FloatRegister Vt, SIMD_RegVariant T, int index, Address a,
int op1, int op2, int regs) {
int expectedImmediate = (regVariant_to_elemBits(T) >> 3) * regs;
int sVal = (T < D) ? (index >> (2 - T)) & 0x01 : 0;
int opcode = (T < D) ? (T << 2) : ((T & 0x02) << 2);
int size = (T < D) ? (index & (0x3 << T)) : 1; // only care about low 2b
Register Xn = a.base();
int Rm;
switch (a.getMode()) {
case Address::base_plus_offset:
guarantee(a.offset() == 0, "no offset allowed here");
Rm = 0;
break;
case Address::post:
guarantee(a.offset() == expectedImmediate, "bad offset");
op1 |= 0b100;
Rm = 0b11111;
break;
case Address::post_reg:
op1 |= 0b100;
Rm = a.index()->encoding();
break;
default:
ShouldNotReachHere();
Rm = 0; // unreachable
}
starti;
f(0,31), f((index >> (3 - T)), 30);
f(op1, 29, 21), f(Rm, 20, 16), f(op2 | opcode | sVal, 15, 12);
f(size, 11, 10), srf(Xn, 5), rf(Vt, 0);
}
public:
#define INSN1(NAME, op1, op2) \
void NAME(FloatRegister Vt, SIMD_Arrangement T, const Address &a) { \
ld_st(Vt, T, a, op1, op2, 1); \
}
#define INSN2(NAME, op1, op2) \
void NAME(FloatRegister Vt, FloatRegister Vt2, SIMD_Arrangement T, const Address &a) { \
assert(Vt->successor() == Vt2, "Registers must be ordered"); \
ld_st(Vt, T, a, op1, op2, 2); \
}
#define INSN3(NAME, op1, op2) \
void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3, \
SIMD_Arrangement T, const Address &a) { \
assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3, \
"Registers must be ordered"); \
ld_st(Vt, T, a, op1, op2, 3); \
}
#define INSN4(NAME, op1, op2) \
void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3, \
FloatRegister Vt4, SIMD_Arrangement T, const Address &a) { \
assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3 && \
Vt3->successor() == Vt4, "Registers must be ordered"); \
ld_st(Vt, T, a, op1, op2, 4); \
}
INSN1(ld1, 0b001100010, 0b0111);
INSN2(ld1, 0b001100010, 0b1010);
INSN3(ld1, 0b001100010, 0b0110);
INSN4(ld1, 0b001100010, 0b0010);
INSN2(ld2, 0b001100010, 0b1000);
INSN3(ld3, 0b001100010, 0b0100);
INSN4(ld4, 0b001100010, 0b0000);
INSN1(st1, 0b001100000, 0b0111);
INSN2(st1, 0b001100000, 0b1010);
INSN3(st1, 0b001100000, 0b0110);
INSN4(st1, 0b001100000, 0b0010);
INSN2(st2, 0b001100000, 0b1000);
INSN3(st3, 0b001100000, 0b0100);
INSN4(st4, 0b001100000, 0b0000);
INSN1(ld1r, 0b001101010, 0b1100);
INSN2(ld2r, 0b001101011, 0b1100);
INSN3(ld3r, 0b001101010, 0b1110);
INSN4(ld4r, 0b001101011, 0b1110);
#undef INSN1
#undef INSN2
#undef INSN3
#undef INSN4
// Handle common single-structure ld/st parameter sanity checks
// for all variations (1 to 4) of SIMD reigster inputs. This
// method will call the routine that generates the opcode.
template<typename R, typename... Rx>
void ldst_sstr(SIMD_RegVariant T, int index, const Address &a,
int op1, int op2, R firstReg, Rx... otherRegs) {
const FloatRegister vtSet[] = { firstReg, otherRegs... };
const int regCount = sizeof...(otherRegs) + 1;
assert(index >= 0 && (T <= D) && ((T == B && index <= 15) ||
(T == H && index <= 7) || (T == S && index <= 3) ||
(T == D && index <= 1)), "invalid index");
assert(regCount >= 1 && regCount <= 4, "illegal register count");
// Check to make sure when multiple SIMD registers are used
// that they are in successive order.
for (int i = 0; i < regCount - 1; i++) {
assert(vtSet[i]->successor() == vtSet[i + 1],
"Registers must be ordered");
}
ld_st(firstReg, T, index, a, op1, op2, regCount);
}
// Define a set of INSN1/2/3/4 macros to handle single-structure
// load/store instructions.
#define INSN1(NAME, op1, op2) \
void NAME(FloatRegister Vt, SIMD_RegVariant T, int index, \
const Address &a) { \
ldst_sstr(T, index, a, op1, op2, Vt); \
}
#define INSN2(NAME, op1, op2) \
void NAME(FloatRegister Vt, FloatRegister Vt2, SIMD_RegVariant T, \
int index, const Address &a) { \
ldst_sstr(T, index, a, op1, op2, Vt, Vt2); \
}
#define INSN3(NAME, op1, op2) \
void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3, \
SIMD_RegVariant T, int index, const Address &a) { \
ldst_sstr(T, index, a, op1, op2, Vt, Vt2, Vt3); \
}
#define INSN4(NAME, op1, op2) \
void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3, \
FloatRegister Vt4, SIMD_RegVariant T, int index, \
const Address &a) { \
ldst_sstr(T, index, a, op1, op2, Vt, Vt2, Vt3, Vt4); \
}
INSN1(st1, 0b001101000, 0b0000);
INSN2(st2, 0b001101001, 0b0000);
INSN3(st3, 0b001101000, 0b0010);
INSN4(st4, 0b001101001, 0b0010);
#undef INSN1
#undef INSN2
#undef INSN3
#undef INSN4
#define INSN(NAME, opc) \
void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
starti; \
assert(T == T8B || T == T16B, "must be T8B or T16B"); \
f(0, 31), f((int)T & 1, 30), f(opc, 29, 21); \
rf(Vm, 16), f(0b000111, 15, 10), rf(Vn, 5), rf(Vd, 0); \
}
INSN(eor, 0b101110001);
INSN(orr, 0b001110101);
INSN(andr, 0b001110001);
INSN(bic, 0b001110011);
INSN(bif, 0b101110111);
INSN(bit, 0b101110101);
INSN(bsl, 0b101110011);
INSN(orn, 0b001110111);
#undef INSN
// Advanced SIMD three different
#define INSN(NAME, opc, opc2, acceptT2D) \
void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
guarantee(T != T1Q && T != T1D, "incorrect arrangement"); \
if (!acceptT2D) guarantee(T != T2D, "incorrect arrangement"); \
starti; \
f(0, 31), f((int)T & 1, 30), f(opc, 29), f(0b01110, 28, 24); \
f((int)T >> 1, 23, 22), f(1, 21), rf(Vm, 16), f(opc2, 15, 10); \
rf(Vn, 5), rf(Vd, 0); \
}
INSN(addv, 0, 0b100001, true); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
INSN(subv, 1, 0b100001, true); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
INSN(uqsubv, 1, 0b001011, true); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
INSN(mulv, 0, 0b100111, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
INSN(mlav, 0, 0b100101, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
INSN(mlsv, 1, 0b100101, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
INSN(sshl, 0, 0b010001, true); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
INSN(ushl, 1, 0b010001, true); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
INSN(addpv, 0, 0b101111, true); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
INSN(smullv, 0, 0b110000, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
INSN(umullv, 1, 0b110000, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
INSN(umlalv, 1, 0b100000, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
INSN(maxv, 0, 0b011001, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
INSN(minv, 0, 0b011011, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
INSN(smaxp, 0, 0b101001, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
INSN(sminp, 0, 0b101011, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
#undef INSN
#define INSN(NAME, opc, opc2, accepted) \
void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) { \
guarantee(T != T1Q && T != T1D, "incorrect arrangement"); \
if (accepted < 3) guarantee(T != T2D, "incorrect arrangement"); \
if (accepted < 2) guarantee(T != T2S, "incorrect arrangement"); \
if (accepted < 1) guarantee(T == T8B || T == T16B, "incorrect arrangement"); \
starti; \
f(0, 31), f((int)T & 1, 30), f(opc, 29), f(0b01110, 28, 24); \
f((int)T >> 1, 23, 22), f(opc2, 21, 10); \
rf(Vn, 5), rf(Vd, 0); \
}
INSN(absr, 0, 0b100000101110, 3); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
INSN(negr, 1, 0b100000101110, 3); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
INSN(notr, 1, 0b100000010110, 0); // accepted arrangements: T8B, T16B
INSN(addv, 0, 0b110001101110, 1); // accepted arrangements: T8B, T16B, T4H, T8H, T4S
INSN(smaxv, 0, 0b110000101010, 1); // accepted arrangements: T8B, T16B, T4H, T8H, T4S
INSN(umaxv, 1, 0b110000101010, 1); // accepted arrangements: T8B, T16B, T4H, T8H, T4S
INSN(sminv, 0, 0b110001101010, 1); // accepted arrangements: T8B, T16B, T4H, T8H, T4S
INSN(uminv, 1, 0b110001101010, 1); // accepted arrangements: T8B, T16B, T4H, T8H, T4S
INSN(cls, 0, 0b100000010010, 2); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
INSN(clz, 1, 0b100000010010, 2); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
INSN(cnt, 0, 0b100000010110, 0); // accepted arrangements: T8B, T16B
INSN(uaddlp, 1, 0b100000001010, 2); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
INSN(uaddlv, 1, 0b110000001110, 1); // accepted arrangements: T8B, T16B, T4H, T8H, T4S
#undef INSN
#define INSN(NAME, opc) \
void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) { \
starti; \
assert(T == T4S, "arrangement must be T4S"); \
f(0, 31), f((int)T & 1, 30), f(0b101110, 29, 24), f(opc, 23), \
f(T == T4S ? 0 : 1, 22), f(0b110000111110, 21, 10); rf(Vn, 5), rf(Vd, 0); \
}
INSN(fmaxv, 0);
INSN(fminv, 1);
#undef INSN
// Advanced SIMD modified immediate
#define INSN(NAME, op0, cmode0) \
void NAME(FloatRegister Vd, SIMD_Arrangement T, unsigned imm8, unsigned lsl = 0) { \
unsigned cmode = cmode0; \
unsigned op = op0; \
starti; \
assert(lsl == 0 || \
((T == T4H || T == T8H) && lsl == 8) || \
((T == T2S || T == T4S) && ((lsl >> 3) < 4) && ((lsl & 7) == 0)), "invalid shift");\
cmode |= lsl >> 2; \
if (T == T4H || T == T8H) cmode |= 0b1000; \
if (!(T == T4H || T == T8H || T == T2S || T == T4S)) { \
assert(op == 0 && cmode0 == 0, "must be MOVI"); \
cmode = 0b1110; \
if (T == T1D || T == T2D) op = 1; \
} \
f(0, 31), f((int)T & 1, 30), f(op, 29), f(0b0111100000, 28, 19); \
f(imm8 >> 5, 18, 16), f(cmode, 15, 12), f(0x01, 11, 10), f(imm8 & 0b11111, 9, 5); \
rf(Vd, 0); \
}
INSN(movi, 0, 0);
INSN(orri, 0, 1);
INSN(mvni, 1, 0);
INSN(bici, 1, 1);
#undef INSN
#define INSN(NAME, op, cmode) \
void NAME(FloatRegister Vd, SIMD_Arrangement T, double imm) { \
unsigned imm8 = pack(imm); \
starti; \
f(0, 31), f((int)T & 1, 30), f(op, 29), f(0b0111100000, 28, 19); \
f(imm8 >> 5, 18, 16), f(cmode, 15, 12), f(0x01, 11, 10), f(imm8 & 0b11111, 9, 5); \
rf(Vd, 0); \
}
INSN(fmovs, 0, 0b1111);
INSN(fmovd, 1, 0b1111);
#undef INSN
// Advanced SIMD three same
#define INSN(NAME, op1, op2, op3) \
void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
starti; \
assert(T == T2S || T == T4S || T == T2D, "invalid arrangement"); \
f(0, 31), f((int)T & 1, 30), f(op1, 29), f(0b01110, 28, 24), f(op2, 23); \
f(T==T2D ? 1:0, 22); f(1, 21), rf(Vm, 16), f(op3, 15, 10), rf(Vn, 5), rf(Vd, 0); \
}
INSN(fabd, 1, 1, 0b110101);
INSN(fadd, 0, 0, 0b110101);
INSN(fdiv, 1, 0, 0b111111);
INSN(faddp, 1, 0, 0b110101);
INSN(fmul, 1, 0, 0b110111);
INSN(fsub, 0, 1, 0b110101);
INSN(fmla, 0, 0, 0b110011);
INSN(fmls, 0, 1, 0b110011);
INSN(fmax, 0, 0, 0b111101);
INSN(fmin, 0, 1, 0b111101);
INSN(facgt, 1, 1, 0b111011);
#undef INSN
// AdvSIMD vector compare
void cm(Condition cond, FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) {
starti;
assert(T != T1Q && T != T1D, "incorrect arrangement");
int cond_op;
switch (cond) {
case EQ: cond_op = 0b110001; break;
case GT: cond_op = 0b000110; break;
case GE: cond_op = 0b000111; break;
case HI: cond_op = 0b100110; break;
case HS: cond_op = 0b100111; break;
default:
ShouldNotReachHere();
break;
}
f(0, 31), f((int)T & 1, 30), f((cond_op >> 5) & 1, 29);
f(0b01110, 28, 24), f((int)T >> 1, 23, 22), f(1, 21), rf(Vm, 16);
f(cond_op & 0b11111, 15, 11), f(1, 10), rf(Vn, 5), rf(Vd, 0);
}
// AdvSIMD Floating-point vector compare
void fcm(Condition cond, FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) {
starti;
assert(T == T2S || T == T4S || T == T2D, "invalid arrangement");
int cond_op;
switch (cond) {
case EQ: cond_op = 0b00; break;
case GT: cond_op = 0b11; break;
case GE: cond_op = 0b10; break;
default:
ShouldNotReachHere();
break;
}
f(0, 31), f((int)T & 1, 30), f((cond_op >> 1) & 1, 29);
f(0b01110, 28, 24), f(cond_op & 1, 23), f(T == T2D ? 1 : 0, 22);
f(1, 21), rf(Vm, 16), f(0b111001, 15, 10), rf(Vn, 5), rf(Vd, 0);
}
#define INSN(NAME, opc) \
void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
starti; \
assert(T == T4S, "arrangement must be T4S"); \
f(0b01011110000, 31, 21), rf(Vm, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0); \
}
INSN(sha1c, 0b000000);
INSN(sha1m, 0b001000);
INSN(sha1p, 0b000100);
INSN(sha1su0, 0b001100);
INSN(sha256h2, 0b010100);
INSN(sha256h, 0b010000);
INSN(sha256su1, 0b011000);
#undef INSN
#define INSN(NAME, opc) \
void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) { \
starti; \
assert(T == T4S, "arrangement must be T4S"); \
f(0b0101111000101000, 31, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0); \
}
INSN(sha1h, 0b000010);
INSN(sha1su1, 0b000110);
INSN(sha256su0, 0b001010);
#undef INSN
#define INSN(NAME, opc) \
void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
starti; \
assert(T == T2D, "arrangement must be T2D"); \
f(0b11001110011, 31, 21), rf(Vm, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0); \
}
INSN(sha512h, 0b100000);
INSN(sha512h2, 0b100001);
INSN(sha512su1, 0b100010);
#undef INSN
#define INSN(NAME, opc) \
void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) { \
starti; \
assert(T == T2D, "arrangement must be T2D"); \
f(opc, 31, 10), rf(Vn, 5), rf(Vd, 0); \
}
INSN(sha512su0, 0b1100111011000000100000);
#undef INSN
#define INSN(NAME, opc) \
void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, FloatRegister Va) { \
starti; \
assert(T == T16B, "arrangement must be T16B"); \
f(0b11001110, 31, 24), f(opc, 23, 21), rf(Vm, 16), f(0b0, 15, 15), rf(Va, 10), rf(Vn, 5), rf(Vd, 0); \
}
INSN(eor3, 0b000);
INSN(bcax, 0b001);
#undef INSN
#define INSN(NAME, opc) \
void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, unsigned imm) { \
starti; \
assert(T == T2D, "arrangement must be T2D"); \
f(0b11001110, 31, 24), f(opc, 23, 21), rf(Vm, 16), f(imm, 15, 10), rf(Vn, 5), rf(Vd, 0); \
}
INSN(xar, 0b100);
#undef INSN
#define INSN(NAME, opc) \
void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
starti; \
assert(T == T2D, "arrangement must be T2D"); \
f(0b11001110, 31, 24), f(opc, 23, 21), rf(Vm, 16), f(0b100011, 15, 10), rf(Vn, 5), rf(Vd, 0); \
}
INSN(rax1, 0b011);
#undef INSN
#define INSN(NAME, opc) \
void NAME(FloatRegister Vd, FloatRegister Vn) { \
starti; \
f(opc, 31, 10), rf(Vn, 5), rf(Vd, 0); \
}
INSN(aese, 0b0100111000101000010010);
INSN(aesd, 0b0100111000101000010110);
INSN(aesmc, 0b0100111000101000011010);
INSN(aesimc, 0b0100111000101000011110);
#undef INSN
#define INSN(NAME, op1, op2) \
void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, int index = 0) { \
starti; \
assert(T == T2S || T == T4S || T == T2D, "invalid arrangement"); \
assert(index >= 0 && ((T == T2D && index <= 1) || (T != T2D && index <= 3)), "invalid index"); \
f(0, 31), f((int)T & 1, 30), f(op1, 29); f(0b011111, 28, 23); \
f(T == T2D ? 1 : 0, 22), f(T == T2D ? 0 : index & 1, 21), rf(Vm, 16); \
f(op2, 15, 12), f(T == T2D ? index : (index >> 1), 11), f(0, 10); \
rf(Vn, 5), rf(Vd, 0); \
}
// FMLA/FMLS - Vector - Scalar
INSN(fmlavs, 0, 0b0001);
INSN(fmlsvs, 0, 0b0101);
// FMULX - Vector - Scalar
INSN(fmulxvs, 1, 0b1001);
#undef INSN
// Floating-point Reciprocal Estimate
void frecpe(FloatRegister Vd, FloatRegister Vn, SIMD_RegVariant type) {
assert(type == D || type == S, "Wrong type for frecpe");
starti;
f(0b010111101, 31, 23);
f(type == D ? 1 : 0, 22);
f(0b100001110110, 21, 10);
rf(Vn, 5), rf(Vd, 0);
}
// (long) {a, b} -> (a + b)
void addpd(FloatRegister Vd, FloatRegister Vn) {
starti;
f(0b0101111011110001101110, 31, 10);
rf(Vn, 5), rf(Vd, 0);
}
// Floating-point AdvSIMD scalar pairwise
#define INSN(NAME, op1, op2) \
void NAME(FloatRegister Vd, FloatRegister Vn, SIMD_RegVariant type) { \
starti; \
assert(type == D || type == S, "Wrong type for faddp/fmaxp/fminp"); \
f(0b0111111, 31, 25), f(op1, 24, 23), \
f(type == S ? 0 : 1, 22), f(0b11000, 21, 17), f(op2, 16, 10), rf(Vn, 5), rf(Vd, 0); \
}
INSN(faddp, 0b00, 0b0110110);
INSN(fmaxp, 0b00, 0b0111110);
INSN(fminp, 0b01, 0b0111110);
#undef INSN
void ins(FloatRegister Vd, SIMD_RegVariant T, FloatRegister Vn, int didx, int sidx) {
starti;
assert(T != Q, "invalid register variant");
f(0b01101110000, 31, 21), f(((didx<<1)|1)<<(int)T, 20, 16), f(0, 15);
f(sidx<<(int)T, 14, 11), f(1, 10), rf(Vn, 5), rf(Vd, 0);
}
#define INSN(NAME, cond, op1, op2) \
void NAME(Register Rd, FloatRegister Vn, SIMD_RegVariant T, int idx) { \
starti; \
assert(cond, "invalid register variant"); \
f(0, 31), f(op1, 30), f(0b001110000, 29, 21); \
f(((idx << 1) | 1) << (int)T, 20, 16), f(op2, 15, 10); \
rf(Vn, 5), rf(Rd, 0); \
}
INSN(umov, (T != Q), (T == D ? 1 : 0), 0b001111);
INSN(smov, (T < D), 1, 0b001011);
#undef INSN
#define INSN(NAME, opc, opc2, isSHR) \
void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, int shift){ \
starti; \
/* The encodings for the immh:immb fields (bits 22:16) in *SHR are \
* 0001 xxx 8B/16B, shift = 16 - UInt(immh:immb) \
* 001x xxx 4H/8H, shift = 32 - UInt(immh:immb) \
* 01xx xxx 2S/4S, shift = 64 - UInt(immh:immb) \
* 1xxx xxx 1D/2D, shift = 128 - UInt(immh:immb) \
* (1D is RESERVED) \
* for SHL shift is calculated as: \
* 0001 xxx 8B/16B, shift = UInt(immh:immb) - 8 \
* 001x xxx 4H/8H, shift = UInt(immh:immb) - 16 \
* 01xx xxx 2S/4S, shift = UInt(immh:immb) - 32 \
* 1xxx xxx 1D/2D, shift = UInt(immh:immb) - 64 \
* (1D is RESERVED) \
*/ \
guarantee(!isSHR || (isSHR && (shift != 0)), "impossible encoding");\
assert((1 << ((T>>1)+3)) > shift, "Invalid Shift value"); \
int cVal = (1 << (((T >> 1) + 3) + (isSHR ? 1 : 0))); \
int encodedShift = isSHR ? cVal - shift : cVal + shift; \
f(0, 31), f(T & 1, 30), f(opc, 29), f(0b011110, 28, 23), \
f(encodedShift, 22, 16); f(opc2, 15, 10), rf(Vn, 5), rf(Vd, 0); \
}
INSN(shl, 0, 0b010101, /* isSHR = */ false);
INSN(sshr, 0, 0b000001, /* isSHR = */ true);
INSN(ushr, 1, 0b000001, /* isSHR = */ true);
INSN(usra, 1, 0b000101, /* isSHR = */ true);
INSN(ssra, 0, 0b000101, /* isSHR = */ true);
INSN(sli, 1, 0b010101, /* isSHR = */ false);
#undef INSN
#define INSN(NAME, opc, opc2, isSHR) \
void NAME(FloatRegister Vd, FloatRegister Vn, int shift){ \
starti; \
int encodedShift = isSHR ? 128 - shift : 64 + shift; \
f(0b01, 31, 30), f(opc, 29), f(0b111110, 28, 23), \
f(encodedShift, 22, 16); f(opc2, 15, 10), rf(Vn, 5), rf(Vd, 0); \
}
INSN(shld, 0, 0b010101, /* isSHR = */ false);
INSN(sshrd, 0, 0b000001, /* isSHR = */ true);
INSN(ushrd, 1, 0b000001, /* isSHR = */ true);
#undef INSN
private:
void _xshll(sign_kind sign, FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb, int shift) {
starti;
/* The encodings for the immh:immb fields (bits 22:16) are
* 0001 xxx 8H, 8B/16B shift = xxx
* 001x xxx 4S, 4H/8H shift = xxxx
* 01xx xxx 2D, 2S/4S shift = xxxxx
* 1xxx xxx RESERVED
*/
assert((Tb >> 1) + 1 == (Ta >> 1), "Incompatible arrangement");
assert((1 << ((Tb>>1)+3)) > shift, "Invalid shift value");
f(0, 31), f(Tb & 1, 30), f(sign == SIGNED ? 0 : 1, 29), f(0b011110, 28, 23);
f((1 << ((Tb>>1)+3))|shift, 22, 16);
f(0b101001, 15, 10), rf(Vn, 5), rf(Vd, 0);
}
public:
void ushll(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb, int shift) {
assert(Tb == T8B || Tb == T4H || Tb == T2S, "invalid arrangement");
_xshll(UNSIGNED, Vd, Ta, Vn, Tb, shift);
}
void ushll2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb, int shift) {
assert(Tb == T16B || Tb == T8H || Tb == T4S, "invalid arrangement");
_xshll(UNSIGNED, Vd, Ta, Vn, Tb, shift);
}
void uxtl(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb) {
ushll(Vd, Ta, Vn, Tb, 0);
}
void sshll(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb, int shift) {
assert(Tb == T8B || Tb == T4H || Tb == T2S, "invalid arrangement");
_xshll(SIGNED, Vd, Ta, Vn, Tb, shift);
}
void sshll2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb, int shift) {
assert(Tb == T16B || Tb == T8H || Tb == T4S, "invalid arrangement");
_xshll(SIGNED, Vd, Ta, Vn, Tb, shift);
}
void sxtl(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb) {
sshll(Vd, Ta, Vn, Tb, 0);
}
// Move from general purpose register
// mov Vd.T[index], Rn
void mov(FloatRegister Vd, SIMD_RegVariant T, int index, Register Xn) {
guarantee(T != Q, "invalid register variant");
starti;
f(0b01001110000, 31, 21), f(((1 << T) | (index << (T + 1))), 20, 16);
f(0b000111, 15, 10), zrf(Xn, 5), rf(Vd, 0);
}
// Move to general purpose register
// mov Rd, Vn.T[index]
void mov(Register Xd, FloatRegister Vn, SIMD_RegVariant T, int index) {
guarantee(T == S || T == D, "invalid register variant");
umov(Xd, Vn, T, index);
}
private:
void _pmull(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
starti;
assert((Ta == T1Q && (Tb == T1D || Tb == T2D)) ||
(Ta == T8H && (Tb == T8B || Tb == T16B)), "Invalid Size specifier");
int size = (Ta == T1Q) ? 0b11 : 0b00;
f(0, 31), f(Tb & 1, 30), f(0b001110, 29, 24), f(size, 23, 22);
f(1, 21), rf(Vm, 16), f(0b111000, 15, 10), rf(Vn, 5), rf(Vd, 0);
}
public:
void pmull(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
assert(Tb == T1D || Tb == T8B, "pmull assumes T1D or T8B as the second size specifier");
_pmull(Vd, Ta, Vn, Vm, Tb);
}
void pmull2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
assert(Tb == T2D || Tb == T16B, "pmull2 assumes T2D or T16B as the second size specifier");
_pmull(Vd, Ta, Vn, Vm, Tb);
}
void uqxtn(FloatRegister Vd, SIMD_Arrangement Tb, FloatRegister Vn, SIMD_Arrangement Ta) {
starti;
int size_b = (int)Tb >> 1;
int size_a = (int)Ta >> 1;
assert(size_b < 3 && size_b == size_a - 1, "Invalid size specifier");
f(0, 31), f(Tb & 1, 30), f(0b101110, 29, 24), f(size_b, 23, 22);
f(0b100001010010, 21, 10), rf(Vn, 5), rf(Vd, 0);
}
void xtn(FloatRegister Vd, SIMD_Arrangement Tb, FloatRegister Vn, SIMD_Arrangement Ta) {
starti;
int size_b = (int)Tb >> 1;
int size_a = (int)Ta >> 1;
assert(size_b < 3 && size_b == size_a - 1, "Invalid size specifier");
f(0, 31), f(Tb & 1, 30), f(0b001110, 29, 24), f(size_b, 23, 22);
f(0b100001001010, 21, 10), rf(Vn, 5), rf(Vd, 0);
}
void dup(FloatRegister Vd, SIMD_Arrangement T, Register Xs)
{
starti;
assert(T != T1D, "reserved encoding");
f(0,31), f((int)T & 1, 30), f(0b001110000, 29, 21);
f((1 << (T >> 1)), 20, 16), f(0b000011, 15, 10), zrf(Xs, 5), rf(Vd, 0);
}
void dup(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, int index = 0)
{
starti;
assert(T != T1D, "reserved encoding");
f(0, 31), f((int)T & 1, 30), f(0b001110000, 29, 21);
f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16);
f(0b000001, 15, 10), rf(Vn, 5), rf(Vd, 0);
}
// Advanced SIMD scalar copy
void dup(FloatRegister Vd, SIMD_RegVariant T, FloatRegister Vn, int index = 0)
{
starti;
assert(T != Q, "invalid size");
f(0b01011110000, 31, 21);
f((1 << T) | (index << (T + 1)), 20, 16);
f(0b000001, 15, 10), rf(Vn, 5), rf(Vd, 0);
}
// AdvSIMD ZIP/UZP/TRN
#define INSN(NAME, opcode) \
void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
guarantee(T != T1D && T != T1Q, "invalid arrangement"); \
starti; \
f(0, 31), f(0b001110, 29, 24), f(0, 21), f(0, 15); \
f(opcode, 14, 12), f(0b10, 11, 10); \
rf(Vm, 16), rf(Vn, 5), rf(Vd, 0); \
f(T & 1, 30), f(T >> 1, 23, 22); \
}
INSN(uzp1, 0b001);
INSN(trn1, 0b010);
INSN(zip1, 0b011);
INSN(uzp2, 0b101);
INSN(trn2, 0b110);
INSN(zip2, 0b111);
#undef INSN
// CRC32 instructions
#define INSN(NAME, c, sf, sz) \
void NAME(Register Rd, Register Rn, Register Rm) { \
starti; \
f(sf, 31), f(0b0011010110, 30, 21), f(0b010, 15, 13), f(c, 12); \
f(sz, 11, 10), rf(Rm, 16), rf(Rn, 5), rf(Rd, 0); \
}
INSN(crc32b, 0, 0, 0b00);
INSN(crc32h, 0, 0, 0b01);
INSN(crc32w, 0, 0, 0b10);
INSN(crc32x, 0, 1, 0b11);
INSN(crc32cb, 1, 0, 0b00);
INSN(crc32ch, 1, 0, 0b01);
INSN(crc32cw, 1, 0, 0b10);
INSN(crc32cx, 1, 1, 0b11);
#undef INSN
// Table vector lookup
#define INSN(NAME, op) \
void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, unsigned registers, FloatRegister Vm) { \
starti; \
assert(T == T8B || T == T16B, "invalid arrangement"); \
assert(0 < registers && registers <= 4, "invalid number of registers"); \
f(0, 31), f((int)T & 1, 30), f(0b001110000, 29, 21), rf(Vm, 16), f(0, 15); \
f(registers - 1, 14, 13), f(op, 12),f(0b00, 11, 10), rf(Vn, 5), rf(Vd, 0); \
}
INSN(tbl, 0);
INSN(tbx, 1);
#undef INSN
// AdvSIMD two-reg misc
// In this instruction group, the 2 bits in the size field ([23:22]) may be
// fixed or determined by the "SIMD_Arrangement T", or both. The additional
// parameter "tmask" is a 2-bit mask used to indicate which bits in the size
// field are determined by the SIMD_Arrangement. The bit of "tmask" should be
// set to 1 if corresponding bit marked as "x" in the ArmARM.
#define INSN(NAME, U, size, tmask, opcode) \
void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) { \
starti; \
assert((ASSERTION), MSG); \
f(0, 31), f((int)T & 1, 30), f(U, 29), f(0b01110, 28, 24); \
f(size | ((int)(T >> 1) & tmask), 23, 22), f(0b10000, 21, 17); \
f(opcode, 16, 12), f(0b10, 11, 10), rf(Vn, 5), rf(Vd, 0); \
}
#define MSG "invalid arrangement"
#define ASSERTION (T == T2S || T == T4S || T == T2D)
INSN(fsqrt, 1, 0b10, 0b01, 0b11111);
INSN(fabs, 0, 0b10, 0b01, 0b01111);
INSN(fneg, 1, 0b10, 0b01, 0b01111);
INSN(frintn, 0, 0b00, 0b01, 0b11000);
INSN(frintm, 0, 0b00, 0b01, 0b11001);
INSN(frintp, 0, 0b10, 0b01, 0b11000);
INSN(fcvtas, 0, 0b00, 0b01, 0b11100);
INSN(fcvtzs, 0, 0b10, 0b01, 0b11011);
INSN(fcvtms, 0, 0b00, 0b01, 0b11011);
#undef ASSERTION
#define ASSERTION (T == T8B || T == T16B || T == T4H || T == T8H || T == T2S || T == T4S)
INSN(rev64, 0, 0b00, 0b11, 0b00000);
#undef ASSERTION
#define ASSERTION (T == T8B || T == T16B || T == T4H || T == T8H)
INSN(rev32, 1, 0b00, 0b11, 0b00000);
#undef ASSERTION
#define ASSERTION (T == T8B || T == T16B)
INSN(rev16, 0, 0b00, 0b11, 0b00001);
INSN(rbit, 1, 0b01, 0b00, 0b00101);
#undef ASSERTION
#undef MSG
#undef INSN
// AdvSIMD compare with zero (vector)
void cm(Condition cond, FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {
starti;
assert(T != T1Q && T != T1D, "invalid arrangement");
int cond_op;
switch (cond) {
case EQ: cond_op = 0b001; break;
case GE: cond_op = 0b100; break;
case GT: cond_op = 0b000; break;
case LE: cond_op = 0b101; break;
case LT: cond_op = 0b010; break;
default:
ShouldNotReachHere();
break;
}
f(0, 31), f((int)T & 1, 30), f((cond_op >> 2) & 1, 29);
f(0b01110, 28, 24), f((int)T >> 1, 23, 22), f(0b10000010, 21, 14);
f(cond_op & 0b11, 13, 12), f(0b10, 11, 10), rf(Vn, 5), rf(Vd, 0);
}
// AdvSIMD Floating-point compare with zero (vector)
void fcm(Condition cond, FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {
starti;
assert(T == T2S || T == T4S || T == T2D, "invalid arrangement");
int cond_op;
switch (cond) {
case EQ: cond_op = 0b010; break;
case GT: cond_op = 0b000; break;
case GE: cond_op = 0b001; break;
case LE: cond_op = 0b011; break;
case LT: cond_op = 0b100; break;
default:
ShouldNotReachHere();
break;
}
f(0, 31), f((int)T & 1, 30), f(cond_op & 1, 29), f(0b011101, 28, 23);
f(((int)(T >> 1) & 1), 22), f(0b10000011, 21, 14);
f((cond_op >> 1) & 0b11, 13, 12), f(0b10, 11, 10), rf(Vn, 5), rf(Vd, 0);
}
void ext(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, int index)
{
starti;
assert(T == T8B || T == T16B, "invalid arrangement");
assert((T == T8B && index <= 0b0111) || (T == T16B && index <= 0b1111), "Invalid index value");
f(0, 31), f((int)T & 1, 30), f(0b101110000, 29, 21);
rf(Vm, 16), f(0, 15), f(index, 14, 11);
f(0, 10), rf(Vn, 5), rf(Vd, 0);
}
// SVE arithmetic - unpredicated
#define INSN(NAME, opcode) \
void NAME(FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn, FloatRegister Zm) { \
starti; \
assert(T != Q, "invalid register variant"); \
f(0b00000100, 31, 24), f(T, 23, 22), f(1, 21), \
rf(Zm, 16), f(0, 15, 13), f(opcode, 12, 10), rf(Zn, 5), rf(Zd, 0); \
}
INSN(sve_add, 0b000);
INSN(sve_sub, 0b001);
#undef INSN
// SVE integer add/subtract immediate (unpredicated)
#define INSN(NAME, op) \
void NAME(FloatRegister Zd, SIMD_RegVariant T, unsigned imm8) { \
starti; \
/* The immediate is an unsigned value in the range 0 to 255, and \
* for element width of 16 bits or higher it may also be a \
* positive multiple of 256 in the range 256 to 65280. \
*/ \
assert(T != Q, "invalid size"); \
int sh = 0; \
if (imm8 <= 0xff) { \
sh = 0; \
} else if (T != B && imm8 <= 0xff00 && (imm8 & 0xff) == 0) { \
sh = 1; \
imm8 = (imm8 >> 8); \
} else { \
guarantee(false, "invalid immediate"); \
} \
f(0b00100101, 31, 24), f(T, 23, 22), f(0b10000, 21, 17); \
f(op, 16, 14), f(sh, 13), f(imm8, 12, 5), rf(Zd, 0); \
}
INSN(sve_add, 0b011);
INSN(sve_sub, 0b111);
#undef INSN
// SVE floating-point arithmetic - unpredicated
#define INSN(NAME, opcode) \
void NAME(FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn, FloatRegister Zm) { \
starti; \
assert(T == S || T == D, "invalid register variant"); \
f(0b01100101, 31, 24), f(T, 23, 22), f(0, 21), \
rf(Zm, 16), f(0, 15, 13), f(opcode, 12, 10), rf(Zn, 5), rf(Zd, 0); \
}
INSN(sve_fadd, 0b000);
INSN(sve_fmul, 0b010);
INSN(sve_fsub, 0b001);
#undef INSN
private:
void sve_predicate_reg_insn(unsigned op24, unsigned op13,
FloatRegister Zd_or_Vd, SIMD_RegVariant T,
PRegister Pg, FloatRegister Zn_or_Vn) {
starti;
f(op24, 31, 24), f(T, 23, 22), f(op13, 21, 13);
pgrf(Pg, 10), rf(Zn_or_Vn, 5), rf(Zd_or_Vd, 0);
}
void sve_shift_imm_encoding(SIMD_RegVariant T, int shift, bool isSHR,
int& tszh, int& tszl_imm) {
/* The encodings for the tszh:tszl:imm3 fields
* for shift right is calculated as:
* 0001 xxx B, shift = 16 - UInt(tszh:tszl:imm3)
* 001x xxx H, shift = 32 - UInt(tszh:tszl:imm3)
* 01xx xxx S, shift = 64 - UInt(tszh:tszl:imm3)
* 1xxx xxx D, shift = 128 - UInt(tszh:tszl:imm3)
* for shift left is calculated as:
* 0001 xxx B, shift = UInt(tszh:tszl:imm3) - 8
* 001x xxx H, shift = UInt(tszh:tszl:imm3) - 16
* 01xx xxx S, shift = UInt(tszh:tszl:imm3) - 32
* 1xxx xxx D, shift = UInt(tszh:tszl:imm3) - 64
*/
assert(T != Q, "Invalid register variant");
if (isSHR) {
assert(((1 << (T + 3)) >= shift) && (shift > 0) , "Invalid shift value");
} else {
assert(((1 << (T + 3)) > shift) && (shift >= 0) , "Invalid shift value");
}
int cVal = (1 << ((T + 3) + (isSHR ? 1 : 0)));
int encodedShift = isSHR ? cVal - shift : cVal + shift;
tszh = encodedShift >> 5;
tszl_imm = encodedShift & 0x1f;
}
public:
// SVE integer arithmetic - predicate
#define INSN(NAME, op1, op2) \
void NAME(FloatRegister Zdn_or_Zd_or_Vd, SIMD_RegVariant T, PRegister Pg, FloatRegister Znm_or_Vn) { \
assert(T != Q, "invalid register variant"); \
sve_predicate_reg_insn(op1, op2, Zdn_or_Zd_or_Vd, T, Pg, Znm_or_Vn); \
}
INSN(sve_abs, 0b00000100, 0b010110101); // vector abs, unary
INSN(sve_add, 0b00000100, 0b000000000); // vector add
INSN(sve_and, 0b00000100, 0b011010000); // vector and
INSN(sve_andv, 0b00000100, 0b011010001); // bitwise and reduction to scalar
INSN(sve_asr, 0b00000100, 0b010000100); // vector arithmetic shift right
INSN(sve_bic, 0b00000100, 0b011011000); // vector bitwise clear
INSN(sve_clz, 0b00000100, 0b011001101); // vector count leading zero bits
INSN(sve_cnt, 0b00000100, 0b011010101); // count non-zero bits
INSN(sve_cpy, 0b00000101, 0b100000100); // copy scalar to each active vector element
INSN(sve_eor, 0b00000100, 0b011001000); // vector eor
INSN(sve_eorv, 0b00000100, 0b011001001); // bitwise xor reduction to scalar
INSN(sve_lsl, 0b00000100, 0b010011100); // vector logical shift left
INSN(sve_lsr, 0b00000100, 0b010001100); // vector logical shift right
INSN(sve_mul, 0b00000100, 0b010000000); // vector mul
INSN(sve_neg, 0b00000100, 0b010111101); // vector neg, unary
INSN(sve_not, 0b00000100, 0b011110101); // bitwise invert vector, unary
INSN(sve_orr, 0b00000100, 0b011000000); // vector or
INSN(sve_orv, 0b00000100, 0b011000001); // bitwise or reduction to scalar
INSN(sve_smax, 0b00000100, 0b001000000); // signed maximum vectors
INSN(sve_smaxv, 0b00000100, 0b001000001); // signed maximum reduction to scalar
INSN(sve_smin, 0b00000100, 0b001010000); // signed minimum vectors
INSN(sve_sminv, 0b00000100, 0b001010001); // signed minimum reduction to scalar
INSN(sve_sub, 0b00000100, 0b000001000); // vector sub
INSN(sve_uaddv, 0b00000100, 0b000001001); // unsigned add reduction to scalar
#undef INSN
// SVE floating-point arithmetic - predicate
#define INSN(NAME, op1, op2) \
void NAME(FloatRegister Zd_or_Zdn_or_Vd, SIMD_RegVariant T, PRegister Pg, FloatRegister Zn_or_Zm) { \
assert(T == S || T == D, "invalid register variant"); \
sve_predicate_reg_insn(op1, op2, Zd_or_Zdn_or_Vd, T, Pg, Zn_or_Zm); \
}
INSN(sve_fabd, 0b01100101, 0b001000100); // floating-point absolute difference
INSN(sve_fabs, 0b00000100, 0b011100101);
INSN(sve_fadd, 0b01100101, 0b000000100);
INSN(sve_fadda, 0b01100101, 0b011000001); // add strictly-ordered reduction to scalar Vd
INSN(sve_fdiv, 0b01100101, 0b001101100);
INSN(sve_fmax, 0b01100101, 0b000110100); // floating-point maximum
INSN(sve_fmaxv, 0b01100101, 0b000110001); // floating-point maximum recursive reduction to scalar
INSN(sve_fmin, 0b01100101, 0b000111100); // floating-point minimum
INSN(sve_fminv, 0b01100101, 0b000111001); // floating-point minimum recursive reduction to scalar
INSN(sve_fmul, 0b01100101, 0b000010100);
INSN(sve_fneg, 0b00000100, 0b011101101);
INSN(sve_frintm, 0b01100101, 0b000010101); // floating-point round to integral value, toward minus infinity
INSN(sve_frintn, 0b01100101, 0b000000101); // floating-point round to integral value, nearest with ties to even
INSN(sve_frinta, 0b01100101, 0b000100101); // floating-point round to integral value, nearest with ties to away
INSN(sve_frintp, 0b01100101, 0b000001101); // floating-point round to integral value, toward plus infinity
INSN(sve_fsqrt, 0b01100101, 0b001101101);
INSN(sve_fsub, 0b01100101, 0b000001100);
#undef INSN
// SVE multiple-add/sub - predicated
#define INSN(NAME, op0, op1, op2) \
void NAME(FloatRegister Zda, SIMD_RegVariant T, PRegister Pg, FloatRegister Zn, FloatRegister Zm) { \
starti; \
assert(T != Q, "invalid size"); \
f(op0, 31, 24), f(T, 23, 22), f(op1, 21), rf(Zm, 16); \
f(op2, 15, 13), pgrf(Pg, 10), rf(Zn, 5), rf(Zda, 0); \
}
INSN(sve_fmla, 0b01100101, 1, 0b000); // floating-point fused multiply-add, writing addend: Zda = Zda + Zn * Zm
INSN(sve_fmls, 0b01100101, 1, 0b001); // floating-point fused multiply-subtract: Zda = Zda + -Zn * Zm
INSN(sve_fnmla, 0b01100101, 1, 0b010); // floating-point negated fused multiply-add: Zda = -Zda + -Zn * Zm
INSN(sve_fnmls, 0b01100101, 1, 0b011); // floating-point negated fused multiply-subtract: Zda = -Zda + Zn * Zm
INSN(sve_fmad, 0b01100101, 1, 0b100); // floating-point fused multiply-add, writing multiplicand: Zda = Zm + Zda * Zn
INSN(sve_fmsb, 0b01100101, 1, 0b101); // floating-point fused multiply-subtract, writing multiplicand: Zda = Zm + -Zda * Zn
INSN(sve_fnmad, 0b01100101, 1, 0b110); // floating-point negated fused multiply-add, writing multiplicand: Zda = -Zm + -Zda * Zn
INSN(sve_fnmsb, 0b01100101, 1, 0b111); // floating-point negated fused multiply-subtract, writing multiplicand: Zda = -Zm + Zda * Zn
INSN(sve_mla, 0b00000100, 0, 0b010); // multiply-add, writing addend: Zda = Zda + Zn*Zm
INSN(sve_mls, 0b00000100, 0, 0b011); // multiply-subtract, writing addend: Zda = Zda + -Zn*Zm
#undef INSN
// SVE bitwise logical - unpredicated
#define INSN(NAME, opc) \
void NAME(FloatRegister Zd, FloatRegister Zn, FloatRegister Zm) { \
starti; \
f(0b00000100, 31, 24), f(opc, 23, 22), f(1, 21), \
rf(Zm, 16), f(0b001100, 15, 10), rf(Zn, 5), rf(Zd, 0); \
}
INSN(sve_and, 0b00);
INSN(sve_eor, 0b10);
INSN(sve_orr, 0b01);
INSN(sve_bic, 0b11);
#undef INSN
// SVE bitwise logical with immediate (unpredicated)
#define INSN(NAME, opc) \
void NAME(FloatRegister Zd, SIMD_RegVariant T, uint64_t imm) { \
starti; \
unsigned elembits = regVariant_to_elemBits(T); \
uint32_t val = encode_sve_logical_immediate(elembits, imm); \
f(0b00000101, 31, 24), f(opc, 23, 22), f(0b0000, 21, 18); \
f(val, 17, 5), rf(Zd, 0); \
}
INSN(sve_and, 0b10);
INSN(sve_eor, 0b01);
INSN(sve_orr, 0b00);
#undef INSN
// SVE shift immediate - unpredicated
#define INSN(NAME, opc, isSHR) \
void NAME(FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn, int shift) { \
starti; \
int tszh, tszl_imm; \
sve_shift_imm_encoding(T, shift, isSHR, tszh, tszl_imm); \
f(0b00000100, 31, 24); \
f(tszh, 23, 22), f(1,21), f(tszl_imm, 20, 16); \
f(0b100, 15, 13), f(opc, 12, 10), rf(Zn, 5), rf(Zd, 0); \
}
INSN(sve_asr, 0b100, /* isSHR = */ true);
INSN(sve_lsl, 0b111, /* isSHR = */ false);
INSN(sve_lsr, 0b101, /* isSHR = */ true);
#undef INSN
// SVE bitwise shift by immediate (predicated)
#define INSN(NAME, opc, isSHR) \
void NAME(FloatRegister Zdn, SIMD_RegVariant T, PRegister Pg, int shift) { \
starti; \
int tszh, tszl_imm; \
sve_shift_imm_encoding(T, shift, isSHR, tszh, tszl_imm); \
f(0b00000100, 31, 24), f(tszh, 23, 22), f(0b00, 21, 20), f(opc, 19, 16); \
f(0b100, 15, 13), pgrf(Pg, 10), f(tszl_imm, 9, 5), rf(Zdn, 0); \
}
INSN(sve_asr, 0b0000, /* isSHR = */ true);
INSN(sve_lsl, 0b0011, /* isSHR = */ false);
INSN(sve_lsr, 0b0001, /* isSHR = */ true);
#undef INSN
private:
// Scalar base + immediate index
void sve_ld_st1(FloatRegister Zt, Register Xn, int imm, PRegister Pg,
SIMD_RegVariant T, int op1, int type, int op2) {
starti;
assert_cond(T >= type);
f(op1, 31, 25), f(type, 24, 23), f(T, 22, 21);
f(0, 20), sf(imm, 19, 16), f(op2, 15, 13);
pgrf(Pg, 10), srf(Xn, 5), rf(Zt, 0);
}
// Scalar base + scalar index
void sve_ld_st1(FloatRegister Zt, Register Xn, Register Xm, PRegister Pg,
SIMD_RegVariant T, int op1, int type, int op2) {
starti;
assert_cond(T >= type);
f(op1, 31, 25), f(type, 24, 23), f(T, 22, 21);
rf(Xm, 16), f(op2, 15, 13);
pgrf(Pg, 10), srf(Xn, 5), rf(Zt, 0);
}
void sve_ld_st1(FloatRegister Zt, PRegister Pg,
SIMD_RegVariant T, const Address &a,
int op1, int type, int imm_op2, int scalar_op2) {
switch (a.getMode()) {
case Address::base_plus_offset:
sve_ld_st1(Zt, a.base(), a.offset(), Pg, T, op1, type, imm_op2);
break;
case Address::base_plus_offset_reg:
sve_ld_st1(Zt, a.base(), a.index(), Pg, T, op1, type, scalar_op2);
break;
default:
ShouldNotReachHere();
}
}
public:
// SVE contiguous load/store
#define INSN(NAME, op1, type, imm_op2, scalar_op2) \
void NAME(FloatRegister Zt, SIMD_RegVariant T, PRegister Pg, const Address &a) { \
assert(T != Q, "invalid register variant"); \
sve_ld_st1(Zt, Pg, T, a, op1, type, imm_op2, scalar_op2); \
}
INSN(sve_ld1b, 0b1010010, 0b00, 0b101, 0b010);
INSN(sve_st1b, 0b1110010, 0b00, 0b111, 0b010);
INSN(sve_ld1h, 0b1010010, 0b01, 0b101, 0b010);
INSN(sve_st1h, 0b1110010, 0b01, 0b111, 0b010);
INSN(sve_ld1w, 0b1010010, 0b10, 0b101, 0b010);
INSN(sve_st1w, 0b1110010, 0b10, 0b111, 0b010);
INSN(sve_ld1d, 0b1010010, 0b11, 0b101, 0b010);
INSN(sve_st1d, 0b1110010, 0b11, 0b111, 0b010);
#undef INSN
// Gather/scatter load/store (SVE) - scalar plus vector
#define INSN(NAME, op1, type, op2, op3) \
void NAME(FloatRegister Zt, PRegister Pg, Register Xn, FloatRegister Zm) { \
starti; \
f(op1, 31, 25), f(type, 24, 23), f(op2, 22, 21), rf(Zm, 16); \
f(op3, 15, 13), pgrf(Pg, 10), srf(Xn, 5), rf(Zt, 0); \
}
// SVE 32-bit gather load words (scalar plus 32-bit scaled offsets)
INSN(sve_ld1w_gather, 0b1000010, 0b10, 0b01, 0b010);
// SVE 64-bit gather load (scalar plus 32-bit unpacked scaled offsets)
INSN(sve_ld1d_gather, 0b1100010, 0b11, 0b01, 0b010);
// SVE 32-bit scatter store (scalar plus 32-bit scaled offsets)
INSN(sve_st1w_scatter, 0b1110010, 0b10, 0b11, 0b100);
// SVE 64-bit scatter store (scalar plus unpacked 32-bit scaled offsets)
INSN(sve_st1d_scatter, 0b1110010, 0b11, 0b01, 0b100);
#undef INSN
// SVE load/store - unpredicated
#define INSN(NAME, op1) \
void NAME(FloatRegister Zt, const Address &a) { \
starti; \
assert(a.index() == noreg, "invalid address variant"); \
f(op1, 31, 29), f(0b0010110, 28, 22), sf(a.offset() >> 3, 21, 16), \
f(0b010, 15, 13), f(a.offset() & 0x7, 12, 10), srf(a.base(), 5), rf(Zt, 0); \
}
INSN(sve_ldr, 0b100); // LDR (vector)
INSN(sve_str, 0b111); // STR (vector)
#undef INSN
// SVE stack frame adjustment
#define INSN(NAME, op) \
void NAME(Register Xd, Register Xn, int imm6) { \
starti; \
f(0b000001000, 31, 23), f(op, 22, 21); \
srf(Xn, 16), f(0b01010, 15, 11), sf(imm6, 10, 5), srf(Xd, 0); \
}
INSN(sve_addvl, 0b01); // Add multiple of vector register size to scalar register
INSN(sve_addpl, 0b11); // Add multiple of predicate register size to scalar register
#undef INSN
// SVE inc/dec register by element count
#define INSN(NAME, op) \
void NAME(Register Xdn, SIMD_RegVariant T, unsigned imm4 = 1, int pattern = 0b11111) { \
starti; \
assert(T != Q, "invalid size"); \
f(0b00000100,31, 24), f(T, 23, 22), f(0b11, 21, 20); \
f(imm4 - 1, 19, 16), f(0b11100, 15, 11), f(op, 10), f(pattern, 9, 5), rf(Xdn, 0); \
}
INSN(sve_inc, 0);
INSN(sve_dec, 1);
#undef INSN
// SVE predicate logical operations
#define INSN(NAME, op1, op2, op3) \
void NAME(PRegister Pd, PRegister Pg, PRegister Pn, PRegister Pm) { \
starti; \
f(0b00100101, 31, 24), f(op1, 23, 22), f(0b00, 21, 20); \
prf(Pm, 16), f(0b01, 15, 14), prf(Pg, 10), f(op2, 9); \
prf(Pn, 5), f(op3, 4), prf(Pd, 0); \
}
INSN(sve_and, 0b00, 0b0, 0b0);
INSN(sve_ands, 0b01, 0b0, 0b0);
INSN(sve_eor, 0b00, 0b1, 0b0);
INSN(sve_eors, 0b01, 0b1, 0b0);
INSN(sve_orr, 0b10, 0b0, 0b0);
INSN(sve_orrs, 0b11, 0b0, 0b0);
INSN(sve_bic, 0b00, 0b0, 0b1);
#undef INSN
// SVE increment register by predicate count
void sve_incp(const Register rd, SIMD_RegVariant T, PRegister pg) {
starti;
assert(T != Q, "invalid size");
f(0b00100101, 31, 24), f(T, 23, 22), f(0b1011001000100, 21, 9),
prf(pg, 5), rf(rd, 0);
}
// SVE broadcast general-purpose register to vector elements (unpredicated)
void sve_dup(FloatRegister Zd, SIMD_RegVariant T, Register Rn) {
starti;
assert(T != Q, "invalid size");
f(0b00000101, 31, 24), f(T, 23, 22), f(0b100000001110, 21, 10);
srf(Rn, 5), rf(Zd, 0);
}
// SVE broadcast signed immediate to vector elements (unpredicated)
void sve_dup(FloatRegister Zd, SIMD_RegVariant T, int imm8) {
starti;
assert(T != Q, "invalid size");
int sh = 0;
if (imm8 <= 127 && imm8 >= -128) {
sh = 0;
} else if (T != B && imm8 <= 32512 && imm8 >= -32768 && (imm8 & 0xff) == 0) {
sh = 1;
imm8 = (imm8 >> 8);
} else {
guarantee(false, "invalid immediate");
}
f(0b00100101, 31, 24), f(T, 23, 22), f(0b11100011, 21, 14);
f(sh, 13), sf(imm8, 12, 5), rf(Zd, 0);
}
// SVE predicate test
void sve_ptest(PRegister Pg, PRegister Pn) {
starti;
f(0b001001010101000011, 31, 14), prf(Pg, 10), f(0, 9), prf(Pn, 5), f(0, 4, 0);
}
// SVE predicate initialize
void sve_ptrue(PRegister pd, SIMD_RegVariant esize, int pattern = 0b11111) {
starti;
f(0b00100101, 31, 24), f(esize, 23, 22), f(0b011000111000, 21, 10);
f(pattern, 9, 5), f(0b0, 4), prf(pd, 0);
}
// SVE predicate zero
void sve_pfalse(PRegister pd) {
starti;
f(0b00100101, 31, 24), f(0b00, 23, 22), f(0b011000111001, 21, 10);
f(0b000000, 9, 4), prf(pd, 0);
}
// SVE load/store predicate register
#define INSN(NAME, op1) \
void NAME(PRegister Pt, const Address &a) { \
starti; \
assert(a.index() == noreg, "invalid address variant"); \
f(op1, 31, 29), f(0b0010110, 28, 22), sf(a.offset() >> 3, 21, 16), \
f(0b000, 15, 13), f(a.offset() & 0x7, 12, 10), srf(a.base(), 5), \
f(0, 4), prf(Pt, 0); \
}
INSN(sve_ldr, 0b100); // LDR (predicate)
INSN(sve_str, 0b111); // STR (predicate)
#undef INSN
// SVE move predicate register
void sve_mov(PRegister Pd, PRegister Pn) {
starti;
f(0b001001011000, 31, 20), prf(Pn, 16), f(0b01, 15, 14), prf(Pn, 10);
f(0, 9), prf(Pn, 5), f(0, 4), prf(Pd, 0);
}
// SVE copy general-purpose register to vector elements (predicated)
void sve_cpy(FloatRegister Zd, SIMD_RegVariant T, PRegister Pg, Register Rn) {
starti;
assert(T != Q, "invalid size");
f(0b00000101, 31, 24), f(T, 23, 22), f(0b101000101, 21, 13);
pgrf(Pg, 10), srf(Rn, 5), rf(Zd, 0);
}
private:
void sve_cpy(FloatRegister Zd, SIMD_RegVariant T, PRegister Pg, int imm8,
bool isMerge, bool isFloat) {
starti;
assert(T != Q, "invalid size");
int sh = 0;
if (imm8 <= 127 && imm8 >= -128) {
sh = 0;
} else if (T != B && imm8 <= 32512 && imm8 >= -32768 && (imm8 & 0xff) == 0) {
sh = 1;
imm8 = (imm8 >> 8);
} else {
guarantee(false, "invalid immediate");
}
int m = isMerge ? 1 : 0;
f(0b00000101, 31, 24), f(T, 23, 22), f(0b01, 21, 20);
prf(Pg, 16), f(isFloat ? 1 : 0, 15), f(m, 14), f(sh, 13), sf(imm8, 12, 5), rf(Zd, 0);
}
public:
// SVE copy signed integer immediate to vector elements (predicated)
void sve_cpy(FloatRegister Zd, SIMD_RegVariant T, PRegister Pg, int imm8, bool isMerge) {
sve_cpy(Zd, T, Pg, imm8, isMerge, /*isFloat*/false);
}
// SVE copy floating-point immediate to vector elements (predicated)
void sve_cpy(FloatRegister Zd, SIMD_RegVariant T, PRegister Pg, double d) {
sve_cpy(Zd, T, Pg, checked_cast<int8_t>(pack(d)), /*isMerge*/true, /*isFloat*/true);
}
// SVE conditionally select elements from two vectors
void sve_sel(FloatRegister Zd, SIMD_RegVariant T, PRegister Pg,
FloatRegister Zn, FloatRegister Zm) {
starti;
assert(T != Q, "invalid size");
f(0b00000101, 31, 24), f(T, 23, 22), f(0b1, 21), rf(Zm, 16);
f(0b11, 15, 14), prf(Pg, 10), rf(Zn, 5), rf(Zd, 0);
}
// SVE Permute Vector - Extract
void sve_ext(FloatRegister Zdn, FloatRegister Zm, int imm8) {
starti;
f(0b00000101001, 31, 21), f(imm8 >> 3, 20, 16), f(0b000, 15, 13);
f(imm8 & 0b111, 12, 10), rf(Zm, 5), rf(Zdn, 0);
}
// SVE Integer/Floating-Point Compare - Vectors
#define INSN(NAME, op1, op2, fp) \
void NAME(Condition cond, PRegister Pd, SIMD_RegVariant T, PRegister Pg, \
FloatRegister Zn, FloatRegister Zm) { \
starti; \
assert(T != Q, "invalid size"); \
bool is_absolute = op2 == 0b11; \
if (fp == 1) { \
assert(T != B, "invalid size"); \
if (is_absolute) { \
assert(cond == GT || cond == GE, "invalid condition for fac"); \
} else { \
assert(cond != HI && cond != HS, "invalid condition for fcm"); \
} \
} \
int cond_op; \
switch(cond) { \
case EQ: cond_op = (op2 << 2) | 0b10; break; \
case NE: cond_op = (op2 << 2) | 0b11; break; \
case GE: cond_op = (op2 << 2) | (is_absolute ? 0b01 : 0b00); break; \
case GT: cond_op = (op2 << 2) | (is_absolute ? 0b11 : 0b01); break; \
case HI: cond_op = 0b0001; break; \
case HS: cond_op = 0b0000; break; \
default: \
ShouldNotReachHere(); \
} \
f(op1, 31, 24), f(T, 23, 22), f(0, 21), rf(Zm, 16), f((cond_op >> 1) & 7, 15, 13); \
pgrf(Pg, 10), rf(Zn, 5), f(cond_op & 1, 4), prf(Pd, 0); \
}
INSN(sve_cmp, 0b00100100, 0b10, 0); // Integer compare vectors
INSN(sve_fcm, 0b01100101, 0b01, 1); // Floating-point compare vectors
INSN(sve_fac, 0b01100101, 0b11, 1); // Floating-point absolute compare vectors
#undef INSN
private:
// Convert Assembler::Condition to op encoding - used by sve integer compare encoding
static int assembler_cond_to_sve_op(Condition cond, bool &is_unsigned) {
if (cond == HI || cond == HS || cond == LO || cond == LS) {
is_unsigned = true;
} else {
is_unsigned = false;
}
switch (cond) {
case HI:
case GT:
return 0b0001;
case HS:
case GE:
return 0b0000;
case LO:
case LT:
return 0b0010;
case LS:
case LE:
return 0b0011;
case EQ:
return 0b1000;
case NE:
return 0b1001;
default:
ShouldNotReachHere();
return -1;
}
}
public:
// SVE Integer Compare - 5 bits signed imm and 7 bits unsigned imm
void sve_cmp(Condition cond, PRegister Pd, SIMD_RegVariant T,
PRegister Pg, FloatRegister Zn, int imm) {
starti;
assert(T != Q, "invalid size");
bool is_unsigned = false;
int cond_op = assembler_cond_to_sve_op(cond, is_unsigned);
f(is_unsigned ? 0b00100100 : 0b00100101, 31, 24), f(T, 23, 22);
f(is_unsigned ? 0b1 : 0b0, 21);
if (is_unsigned) {
f(imm, 20, 14), f((cond_op >> 1) & 0x1, 13);
} else {
sf(imm, 20, 16), f((cond_op >> 1) & 0x7, 15, 13);
}
pgrf(Pg, 10), rf(Zn, 5), f(cond_op & 0x1, 4), prf(Pd, 0);
}
// SVE Floating-point compare vector with zero
void sve_fcm(Condition cond, PRegister Pd, SIMD_RegVariant T,
PRegister Pg, FloatRegister Zn, double d) {
starti;
assert(T != Q, "invalid size");
guarantee(d == 0.0, "invalid immediate");
int cond_op;
switch(cond) {
case EQ: cond_op = 0b100; break;
case GT: cond_op = 0b001; break;
case GE: cond_op = 0b000; break;
case LT: cond_op = 0b010; break;
case LE: cond_op = 0b011; break;
case NE: cond_op = 0b110; break;
default:
ShouldNotReachHere();
}
f(0b01100101, 31, 24), f(T, 23, 22), f(0b0100, 21, 18),
f((cond_op >> 1) & 0x3, 17, 16), f(0b001, 15, 13),
pgrf(Pg, 10), rf(Zn, 5);
f(cond_op & 0x1, 4), prf(Pd, 0);
}
// SVE unpack vector elements
#define INSN(NAME, op) \
void NAME(FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn) { \
starti; \
assert(T != B && T != Q, "invalid size"); \
f(0b00000101, 31, 24), f(T, 23, 22), f(0b1100, 21, 18); \
f(op, 17, 16), f(0b001110, 15, 10), rf(Zn, 5), rf(Zd, 0); \
}
INSN(sve_uunpkhi, 0b11); // Signed unpack and extend half of vector - high half
INSN(sve_uunpklo, 0b10); // Signed unpack and extend half of vector - low half
INSN(sve_sunpkhi, 0b01); // Unsigned unpack and extend half of vector - high half
INSN(sve_sunpklo, 0b00); // Unsigned unpack and extend half of vector - low half
#undef INSN
// SVE unpack predicate elements
#define INSN(NAME, op) \
void NAME(PRegister Pd, PRegister Pn) { \
starti; \
f(0b000001010011000, 31, 17), f(op, 16), f(0b0100000, 15, 9); \
prf(Pn, 5), f(0b0, 4), prf(Pd, 0); \
}
INSN(sve_punpkhi, 0b1); // Unpack and widen high half of predicate
INSN(sve_punpklo, 0b0); // Unpack and widen low half of predicate
#undef INSN
// SVE permute vector elements
#define INSN(NAME, op) \
void NAME(FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn, FloatRegister Zm) { \
starti; \
assert(T != Q, "invalid size"); \
f(0b00000101, 31, 24), f(T, 23, 22), f(0b1, 21), rf(Zm, 16); \
f(0b01101, 15, 11), f(op, 10), rf(Zn, 5), rf(Zd, 0); \
}
INSN(sve_uzp1, 0b0); // Concatenate even elements from two vectors
INSN(sve_uzp2, 0b1); // Concatenate odd elements from two vectors
#undef INSN
// SVE permute predicate elements
#define INSN(NAME, op) \
void NAME(PRegister Pd, SIMD_RegVariant T, PRegister Pn, PRegister Pm) { \
starti; \
assert(T != Q, "invalid size"); \
f(0b00000101, 31, 24), f(T, 23, 22), f(0b10, 21, 20), prf(Pm, 16); \
f(0b01001, 15, 11), f(op, 10), f(0b0, 9), prf(Pn, 5), f(0b0, 4), prf(Pd, 0); \
}
INSN(sve_uzp1, 0b0); // Concatenate even elements from two predicates
INSN(sve_uzp2, 0b1); // Concatenate odd elements from two predicates
#undef INSN
// SVE integer compare scalar count and limit
#define INSN(NAME, sf, op) \
void NAME(PRegister Pd, SIMD_RegVariant T, Register Rn, Register Rm) { \
starti; \
assert(T != Q, "invalid register variant"); \
f(0b00100101, 31, 24), f(T, 23, 22), f(1, 21), \
zrf(Rm, 16), f(0, 15, 13), f(sf, 12), f(op >> 1, 11, 10), \
zrf(Rn, 5), f(op & 1, 4), prf(Pd, 0); \
}
// While incrementing signed scalar less than scalar
INSN(sve_whileltw, 0b0, 0b010);
INSN(sve_whilelt, 0b1, 0b010);
// While incrementing signed scalar less than or equal to scalar
INSN(sve_whilelew, 0b0, 0b011);
INSN(sve_whilele, 0b1, 0b011);
// While incrementing unsigned scalar lower than scalar
INSN(sve_whilelow, 0b0, 0b110);
INSN(sve_whilelo, 0b1, 0b110);
// While incrementing unsigned scalar lower than or the same as scalar
INSN(sve_whilelsw, 0b0, 0b111);
INSN(sve_whilels, 0b1, 0b111);
#undef INSN
// SVE predicate reverse
void sve_rev(PRegister Pd, SIMD_RegVariant T, PRegister Pn) {
starti;
assert(T != Q, "invalid size");
f(0b00000101, 31, 24), f(T, 23, 22), f(0b1101000100000, 21, 9);
prf(Pn, 5), f(0, 4), prf(Pd, 0);
}
// SVE partition break condition
#define INSN(NAME, op) \
void NAME(PRegister Pd, PRegister Pg, PRegister Pn, bool isMerge) { \
starti; \
f(0b00100101, 31, 24), f(op, 23, 22), f(0b01000001, 21, 14); \
prf(Pg, 10), f(0b0, 9), prf(Pn, 5), f(isMerge ? 1 : 0, 4), prf(Pd, 0); \
}
INSN(sve_brka, 0b00); // Break after first true condition
INSN(sve_brkb, 0b10); // Break before first true condition
#undef INSN
// Element count and increment scalar (SVE)
#define INSN(NAME, TYPE) \
void NAME(Register Xdn, unsigned imm4 = 1, int pattern = 0b11111) { \
starti; \
f(0b00000100, 31, 24), f(TYPE, 23, 22), f(0b10, 21, 20); \
f(imm4 - 1, 19, 16), f(0b11100, 15, 11), f(0, 10), f(pattern, 9, 5), rf(Xdn, 0); \
}
INSN(sve_cntb, B); // Set scalar to multiple of 8-bit predicate constraint element count
INSN(sve_cnth, H); // Set scalar to multiple of 16-bit predicate constraint element count
INSN(sve_cntw, S); // Set scalar to multiple of 32-bit predicate constraint element count
INSN(sve_cntd, D); // Set scalar to multiple of 64-bit predicate constraint element count
#undef INSN
// Set scalar to active predicate element count
void sve_cntp(Register Xd, SIMD_RegVariant T, PRegister Pg, PRegister Pn) {
starti;
assert(T != Q, "invalid size");
f(0b00100101, 31, 24), f(T, 23, 22), f(0b10000010, 21, 14);
prf(Pg, 10), f(0, 9), prf(Pn, 5), rf(Xd, 0);
}
// SVE convert signed integer to floating-point (predicated)
void sve_scvtf(FloatRegister Zd, SIMD_RegVariant T_dst, PRegister Pg,
FloatRegister Zn, SIMD_RegVariant T_src) {
starti;
assert(T_src != B && T_dst != B && T_src != Q && T_dst != Q &&
(T_src != H || T_dst == T_src), "invalid register variant");
int opc = T_dst;
int opc2 = T_src;
// In most cases we can treat T_dst, T_src as opc, opc2,
// except for the following two combinations.
// +-----+------+---+------------------------------------+
// | opc | opc2 | U | Instruction Details |
// +-----+------+---+------------------------------------+
// | 11 | 00 | 0 | SCVTF - 32-bit to double-precision |
// | 11 | 10 | 0 | SCVTF - 64-bit to single-precision |
// +-----+------+---+------------------------------------+
if (T_src == S && T_dst == D) {
opc = 0b11;
opc2 = 0b00;
} else if (T_src == D && T_dst == S) {
opc = 0b11;
opc2 = 0b10;
}
f(0b01100101, 31, 24), f(opc, 23, 22), f(0b010, 21, 19);
f(opc2, 18, 17), f(0b0101, 16, 13);
pgrf(Pg, 10), rf(Zn, 5), rf(Zd, 0);
}
// SVE floating-point convert to signed integer, rounding toward zero (predicated)
void sve_fcvtzs(FloatRegister Zd, SIMD_RegVariant T_dst, PRegister Pg,
FloatRegister Zn, SIMD_RegVariant T_src) {
starti;
assert(T_src != B && T_dst != B && T_src != Q && T_dst != Q &&
(T_dst != H || T_src == H), "invalid register variant");
int opc = T_src;
int opc2 = T_dst;
// In most cases we can treat T_src, T_dst as opc, opc2,
// except for the following two combinations.
// +-----+------+---+-------------------------------------+
// | opc | opc2 | U | Instruction Details |
// +-----+------+---+-------------------------------------+
// | 11 | 10 | 0 | FCVTZS - single-precision to 64-bit |
// | 11 | 00 | 0 | FCVTZS - double-precision to 32-bit |
// +-----+------+---+-------------------------------------+
if (T_src == S && T_dst == D) {
opc = 0b11;
opc2 = 0b10;
} else if (T_src == D && T_dst == S) {
opc = 0b11;
opc2 = 0b00;
}
f(0b01100101, 31, 24), f(opc, 23, 22), f(0b011, 21, 19);
f(opc2, 18, 17), f(0b0101, 16, 13);
pgrf(Pg, 10), rf(Zn, 5), rf(Zd, 0);
}
// SVE floating-point convert precision (predicated)
void sve_fcvt(FloatRegister Zd, SIMD_RegVariant T_dst, PRegister Pg,
FloatRegister Zn, SIMD_RegVariant T_src) {
starti;
assert(T_src != B && T_dst != B && T_src != Q && T_dst != Q &&
T_src != T_dst, "invalid register variant");
// The encodings of fields op1 (bits 17-16) and op2 (bits 23-22)
// depend on T_src and T_dst as given below -
// +-----+------+---------------------------------------------+
// | op2 | op1 | Instruction Details |
// +-----+------+---------------------------------------------+
// | 10 | 01 | FCVT - half-precision to single-precision |
// | 11 | 01 | FCVT - half-precision to double-precision |
// | 10 | 00 | FCVT - single-precision to half-precision |
// | 11 | 11 | FCVT - single-precision to double-precision |
// | 11 | 00 | FCVT - double-preciison to half-precision |
// | 11 | 10 | FCVT - double-precision to single-precision |
// +-----+------+---+-----------------------------------------+
int op1 = 0b00;
int op2 = (T_src == D || T_dst == D) ? 0b11 : 0b10;
if (T_src == H) {
op1 = 0b01;
} else if (T_dst == S) {
op1 = 0b10;
} else if (T_dst == D) {
op1 = 0b11;
}
f(0b01100101, 31, 24), f(op2, 23, 22), f(0b0010, 21, 18);
f(op1, 17, 16), f(0b101, 15, 13);
pgrf(Pg, 10), rf(Zn, 5), rf(Zd, 0);
}
// SVE extract element to general-purpose register
#define INSN(NAME, before) \
void NAME(Register Rd, SIMD_RegVariant T, PRegister Pg, FloatRegister Zn) { \
starti; \
f(0b00000101, 31, 24), f(T, 23, 22), f(0b10000, 21, 17); \
f(before, 16), f(0b101, 15, 13); \
pgrf(Pg, 10), rf(Zn, 5), rf(Rd, 0); \
}
INSN(sve_lasta, 0b0);
INSN(sve_lastb, 0b1);
#undef INSN
// SVE extract element to SIMD&FP scalar register
#define INSN(NAME, before) \
void NAME(FloatRegister Vd, SIMD_RegVariant T, PRegister Pg, FloatRegister Zn) { \
starti; \
f(0b00000101, 31, 24), f(T, 23, 22), f(0b10001, 21, 17); \
f(before, 16), f(0b100, 15, 13); \
pgrf(Pg, 10), rf(Zn, 5), rf(Vd, 0); \
}
INSN(sve_lasta, 0b0);
INSN(sve_lastb, 0b1);
#undef INSN
// SVE reverse within elements
#define INSN(NAME, opc, cond) \
void NAME(FloatRegister Zd, SIMD_RegVariant T, PRegister Pg, FloatRegister Zn) { \
starti; \
assert(cond, "invalid size"); \
f(0b00000101, 31, 24), f(T, 23, 22), f(0b1001, 21, 18), f(opc, 17, 16); \
f(0b100, 15, 13), pgrf(Pg, 10), rf(Zn, 5), rf(Zd, 0); \
}
INSN(sve_revb, 0b00, T == H || T == S || T == D);
INSN(sve_rbit, 0b11, T != Q);
#undef INSN
// SVE Create index starting from general-purpose register and incremented by immediate
void sve_index(FloatRegister Zd, SIMD_RegVariant T, Register Rn, int imm) {
starti;
assert(T != Q, "invalid size");
f(0b00000100, 31, 24), f(T, 23, 22), f(0b1, 21);
sf(imm, 20, 16), f(0b010001, 15, 10);
rf(Rn, 5), rf(Zd, 0);
}
// SVE create index starting from and incremented by immediate
void sve_index(FloatRegister Zd, SIMD_RegVariant T, int imm1, int imm2) {
starti;
assert(T != Q, "invalid size");
f(0b00000100, 31, 24), f(T, 23, 22), f(0b1, 21);
sf(imm2, 20, 16), f(0b010000, 15, 10);
sf(imm1, 9, 5), rf(Zd, 0);
}
// SVE programmable table lookup/permute using vector of element indices
void sve_tbl(FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn, FloatRegister Zm) {
starti;
assert(T != Q, "invalid size");
f(0b00000101, 31, 24), f(T, 23, 22), f(0b1, 21), rf(Zm, 16);
f(0b001100, 15, 10), rf(Zn, 5), rf(Zd, 0);
}
// Shuffle active elements of vector to the right and fill with zero
void sve_compact(FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn, PRegister Pg) {
starti;
assert(T == S || T == D, "invalid size");
f(0b00000101, 31, 24), f(T, 23, 22), f(0b100001100, 21, 13);
pgrf(Pg, 10), rf(Zn, 5), rf(Zd, 0);
}
// SVE2 Count matching elements in vector
void sve_histcnt(FloatRegister Zd, SIMD_RegVariant T, PRegister Pg,
FloatRegister Zn, FloatRegister Zm) {
starti;
assert(T == S || T == D, "invalid size");
f(0b01000101, 31, 24), f(T, 23, 22), f(0b1, 21), rf(Zm, 16);
f(0b110, 15, 13), pgrf(Pg, 10), rf(Zn, 5), rf(Zd, 0);
}
// SVE2 bitwise permute
#define INSN(NAME, opc) \
void NAME(FloatRegister Zd, SIMD_RegVariant T, FloatRegister Zn, FloatRegister Zm) { \
starti; \
assert(T != Q, "invalid size"); \
f(0b01000101, 31, 24), f(T, 23, 22), f(0b0, 21); \
rf(Zm, 16), f(0b1011, 15, 12), f(opc, 11, 10); \
rf(Zn, 5), rf(Zd, 0); \
}
INSN(sve_bext, 0b00);
INSN(sve_bdep, 0b01);
#undef INSN
// SVE2 bitwise ternary operations
#define INSN(NAME, opc) \
void NAME(FloatRegister Zdn, FloatRegister Zm, FloatRegister Zk) { \
starti; \
f(0b00000100, 31, 24), f(opc, 23, 21), rf(Zm, 16); \
f(0b001110, 15, 10), rf(Zk, 5), rf(Zdn, 0); \
}
INSN(sve_eor3, 0b001); // Bitwise exclusive OR of three vectors
#undef INSN
Assembler(CodeBuffer* code) : AbstractAssembler(code) {
}
// Stack overflow checking
virtual void bang_stack_with_offset(int offset);
static bool operand_valid_for_logical_immediate(bool is32, uint64_t imm);
static bool operand_valid_for_sve_logical_immediate(unsigned elembits, uint64_t imm);
static bool operand_valid_for_add_sub_immediate(int64_t imm);
static bool operand_valid_for_sve_add_sub_immediate(int64_t imm);
static bool operand_valid_for_float_immediate(double imm);
static int operand_valid_for_movi_immediate(uint64_t imm64, SIMD_Arrangement T);
void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
};
inline Assembler::Membar_mask_bits operator|(Assembler::Membar_mask_bits a,
Assembler::Membar_mask_bits b) {
return Assembler::Membar_mask_bits(unsigned(a)|unsigned(b));
}
Instruction_aarch64::~Instruction_aarch64() {
assem->emit_int32(insn);
assert_cond(get_bits() == 0xffffffff);
}
#undef f
#undef sf
#undef rf
#undef srf
#undef zrf
#undef prf
#undef pgrf
#undef fixed
#undef starti
// Invert a condition
inline const Assembler::Condition operator~(const Assembler::Condition cond) {
return Assembler::Condition(int(cond) ^ 1);
}
extern "C" void das(uint64_t start, int len);
#endif // CPU_AARCH64_ASSEMBLER_AARCH64_HPP