blob: 22e2531a83ad070cd1901082216eed427244206c [file] [log] [blame]
/*
* Copyright (c) 2003, 2023, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2014, Red Hat Inc. All rights reserved.
* Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "gc/shared/barrierSetAssembler.hpp"
#include "gc/shared/collectedHeap.hpp"
#include "gc/shared/tlab_globals.hpp"
#include "interpreter/interp_masm.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/interpreterRuntime.hpp"
#include "interpreter/templateTable.hpp"
#include "memory/universe.hpp"
#include "oops/method.hpp"
#include "oops/methodData.hpp"
#include "oops/objArrayKlass.hpp"
#include "oops/oop.inline.hpp"
#include "prims/jvmtiExport.hpp"
#include "prims/methodHandles.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/synchronizer.hpp"
#include "utilities/powerOfTwo.hpp"
#define __ _masm->
// Address computation: local variables
static inline Address iaddress(int n) {
return Address(xlocals, Interpreter::local_offset_in_bytes(n));
}
static inline Address laddress(int n) {
return iaddress(n + 1);
}
static inline Address faddress(int n) {
return iaddress(n);
}
static inline Address daddress(int n) {
return laddress(n);
}
static inline Address aaddress(int n) {
return iaddress(n);
}
static inline Address iaddress(Register r, Register temp, InterpreterMacroAssembler* _masm) {
_masm->shadd(temp, r, xlocals, temp, 3);
return Address(temp, 0);
}
static inline Address laddress(Register r, Register temp, InterpreterMacroAssembler* _masm) {
_masm->shadd(temp, r, xlocals, temp, 3);
return Address(temp, Interpreter::local_offset_in_bytes(1));;
}
static inline Address faddress(Register r, Register temp, InterpreterMacroAssembler* _masm) {
return iaddress(r, temp, _masm);
}
static inline Address daddress(Register r, Register temp, InterpreterMacroAssembler* _masm) {
return laddress(r, temp, _masm);
}
static inline Address aaddress(Register r, Register temp, InterpreterMacroAssembler* _masm) {
return iaddress(r, temp, _masm);
}
static inline Address at_rsp() {
return Address(esp, 0);
}
// At top of Java expression stack which may be different than esp(). It
// isn't for category 1 objects.
static inline Address at_tos () {
return Address(esp, Interpreter::expr_offset_in_bytes(0));
}
static inline Address at_tos_p1() {
return Address(esp, Interpreter::expr_offset_in_bytes(1));
}
static inline Address at_tos_p2() {
return Address(esp, Interpreter::expr_offset_in_bytes(2));
}
static inline Address at_tos_p3() {
return Address(esp, Interpreter::expr_offset_in_bytes(3));
}
static inline Address at_tos_p4() {
return Address(esp, Interpreter::expr_offset_in_bytes(4));
}
static inline Address at_tos_p5() {
return Address(esp, Interpreter::expr_offset_in_bytes(5));
}
// Miscellaneous helper routines
// Store an oop (or null) at the Address described by obj.
// If val == noreg this means store a null
static void do_oop_store(InterpreterMacroAssembler* _masm,
Address dst,
Register val,
DecoratorSet decorators) {
assert(val == noreg || val == x10, "parameter is just for looks");
__ store_heap_oop(dst, val, x28, x29, x13, decorators);
}
static void do_oop_load(InterpreterMacroAssembler* _masm,
Address src,
Register dst,
DecoratorSet decorators) {
__ load_heap_oop(dst, src, x28, x29, decorators);
}
Address TemplateTable::at_bcp(int offset) {
assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
return Address(xbcp, offset);
}
void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
Register temp_reg, bool load_bc_into_bc_reg /*=true*/,
int byte_no) {
if (!RewriteBytecodes) { return; }
Label L_patch_done;
switch (bc) {
case Bytecodes::_fast_aputfield: // fall through
case Bytecodes::_fast_bputfield: // fall through
case Bytecodes::_fast_zputfield: // fall through
case Bytecodes::_fast_cputfield: // fall through
case Bytecodes::_fast_dputfield: // fall through
case Bytecodes::_fast_fputfield: // fall through
case Bytecodes::_fast_iputfield: // fall through
case Bytecodes::_fast_lputfield: // fall through
case Bytecodes::_fast_sputfield: {
// We skip bytecode quickening for putfield instructions when
// the put_code written to the constant pool cache is zero.
// This is required so that every execution of this instruction
// calls out to InterpreterRuntime::resolve_get_put to do
// additional, required work.
assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
assert(load_bc_into_bc_reg, "we use bc_reg as temp");
__ get_cache_and_index_and_bytecode_at_bcp(temp_reg, bc_reg, temp_reg, byte_no, 1);
__ mv(bc_reg, bc);
__ beqz(temp_reg, L_patch_done);
break;
}
default:
assert(byte_no == -1, "sanity");
// the pair bytecodes have already done the load.
if (load_bc_into_bc_reg) {
__ mv(bc_reg, bc);
}
}
if (JvmtiExport::can_post_breakpoint()) {
Label L_fast_patch;
// if a breakpoint is present we can't rewrite the stream directly
__ load_unsigned_byte(temp_reg, at_bcp(0));
__ addi(temp_reg, temp_reg, -Bytecodes::_breakpoint); // temp_reg is temporary register.
__ bnez(temp_reg, L_fast_patch);
// Let breakpoint table handling rewrite to quicker bytecode
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), xmethod, xbcp, bc_reg);
__ j(L_patch_done);
__ bind(L_fast_patch);
}
#ifdef ASSERT
Label L_okay;
__ load_unsigned_byte(temp_reg, at_bcp(0));
__ beq(temp_reg, bc_reg, L_okay);
__ addi(temp_reg, temp_reg, -(int) Bytecodes::java_code(bc));
__ beqz(temp_reg, L_okay);
__ stop("patching the wrong bytecode");
__ bind(L_okay);
#endif
// patch bytecode
__ sb(bc_reg, at_bcp(0));
__ bind(L_patch_done);
}
// Individual instructions
void TemplateTable::nop() {
transition(vtos, vtos);
// nothing to do
}
void TemplateTable::shouldnotreachhere() {
transition(vtos, vtos);
__ stop("should not reach here bytecode");
}
void TemplateTable::aconst_null() {
transition(vtos, atos);
__ mv(x10, zr);
}
void TemplateTable::iconst(int value) {
transition(vtos, itos);
__ mv(x10, value);
}
void TemplateTable::lconst(int value) {
transition(vtos, ltos);
__ mv(x10, value);
}
void TemplateTable::fconst(int value) {
transition(vtos, ftos);
static float fBuf[2] = {1.0, 2.0};
__ mv(t0, (intptr_t)fBuf);
switch (value) {
case 0:
__ fmv_w_x(f10, zr);
break;
case 1:
__ flw(f10, Address(t0, 0));
break;
case 2:
__ flw(f10, Address(t0, sizeof(float)));
break;
default:
ShouldNotReachHere();
}
}
void TemplateTable::dconst(int value) {
transition(vtos, dtos);
static double dBuf[2] = {1.0, 2.0};
__ mv(t0, (intptr_t)dBuf);
switch (value) {
case 0:
__ fmv_d_x(f10, zr);
break;
case 1:
__ fld(f10, Address(t0, 0));
break;
case 2:
__ fld(f10, Address(t0, sizeof(double)));
break;
default:
ShouldNotReachHere();
}
}
void TemplateTable::bipush() {
transition(vtos, itos);
__ load_signed_byte(x10, at_bcp(1));
}
void TemplateTable::sipush() {
transition(vtos, itos);
if (AvoidUnalignedAccesses) {
__ load_signed_byte(x10, at_bcp(1));
__ load_unsigned_byte(t1, at_bcp(2));
__ slli(x10, x10, 8);
__ add(x10, x10, t1);
} else {
__ load_unsigned_short(x10, at_bcp(1));
__ revb_h_h(x10, x10); // reverse bytes in half-word and sign-extend
}
}
void TemplateTable::ldc(LdcType type) {
transition(vtos, vtos);
Label call_ldc, notFloat, notClass, notInt, Done;
if (is_ldc_wide(type)) {
__ get_unsigned_2_byte_index_at_bcp(x11, 1);
} else {
__ load_unsigned_byte(x11, at_bcp(1));
}
__ get_cpool_and_tags(x12, x10);
const int base_offset = ConstantPool::header_size() * wordSize;
const int tags_offset = Array<u1>::base_offset_in_bytes();
// get type
__ addi(x13, x11, tags_offset);
__ add(x13, x10, x13);
__ membar(MacroAssembler::AnyAny);
__ lbu(x13, Address(x13, 0));
__ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
// unresolved class - get the resolved class
__ mv(t1, (u1)JVM_CONSTANT_UnresolvedClass);
__ beq(x13, t1, call_ldc);
// unresolved class in error state - call into runtime to throw the error
// from the first resolution attempt
__ mv(t1, (u1)JVM_CONSTANT_UnresolvedClassInError);
__ beq(x13, t1, call_ldc);
// resolved class - need to call vm to get java mirror of the class
__ mv(t1, (u1)JVM_CONSTANT_Class);
__ bne(x13, t1, notClass);
__ bind(call_ldc);
__ mv(c_rarg1, is_ldc_wide(type) ? 1 : 0);
call_VM(x10, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1);
__ push_ptr(x10);
__ verify_oop(x10);
__ j(Done);
__ bind(notClass);
__ mv(t1, (u1)JVM_CONSTANT_Float);
__ bne(x13, t1, notFloat);
// ftos
__ shadd(x11, x11, x12, x11, 3);
__ flw(f10, Address(x11, base_offset));
__ push_f(f10);
__ j(Done);
__ bind(notFloat);
__ mv(t1, (u1)JVM_CONSTANT_Integer);
__ bne(x13, t1, notInt);
// itos
__ shadd(x11, x11, x12, x11, 3);
__ lw(x10, Address(x11, base_offset));
__ push_i(x10);
__ j(Done);
__ bind(notInt);
condy_helper(Done);
__ bind(Done);
}
// Fast path for caching oop constants.
void TemplateTable::fast_aldc(LdcType type) {
transition(vtos, atos);
const Register result = x10;
const Register tmp = x11;
const Register rarg = x12;
const int index_size = is_ldc_wide(type) ? sizeof(u2) : sizeof(u1);
Label resolved;
// We are resolved if the resolved reference cache entry contains a
// non-null object (String, MethodType, etc.)
assert_different_registers(result, tmp);
// register result is trashed by next load, let's use it as temporary register
__ get_cache_index_at_bcp(tmp, result, 1, index_size);
__ load_resolved_reference_at_index(result, tmp);
__ bnez(result, resolved);
const address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
// first time invocation - must resolve first
__ mv(rarg, (int)bytecode());
__ call_VM(result, entry, rarg);
__ bind(resolved);
{ // Check for the null sentinel.
// If we just called the VM, it already did the mapping for us,
// but it's harmless to retry.
Label notNull;
// Stash null_sentinel address to get its value later
int32_t offset = 0;
__ mv(rarg, Universe::the_null_sentinel_addr(), offset);
__ ld(tmp, Address(rarg, offset));
__ resolve_oop_handle(tmp, x15, t1);
__ bne(result, tmp, notNull);
__ mv(result, zr); // null object reference
__ bind(notNull);
}
if (VerifyOops) {
// Safe to call with 0 result
__ verify_oop(result);
}
}
void TemplateTable::ldc2_w() {
transition(vtos, vtos);
Label notDouble, notLong, Done;
__ get_unsigned_2_byte_index_at_bcp(x10, 1);
__ get_cpool_and_tags(x11, x12);
const int base_offset = ConstantPool::header_size() * wordSize;
const int tags_offset = Array<u1>::base_offset_in_bytes();
// get type
__ add(x12, x12, x10);
__ load_unsigned_byte(x12, Address(x12, tags_offset));
__ mv(t1, JVM_CONSTANT_Double);
__ bne(x12, t1, notDouble);
// dtos
__ shadd(x12, x10, x11, x12, 3);
__ fld(f10, Address(x12, base_offset));
__ push_d(f10);
__ j(Done);
__ bind(notDouble);
__ mv(t1, (int)JVM_CONSTANT_Long);
__ bne(x12, t1, notLong);
// ltos
__ shadd(x10, x10, x11, x10, 3);
__ ld(x10, Address(x10, base_offset));
__ push_l(x10);
__ j(Done);
__ bind(notLong);
condy_helper(Done);
__ bind(Done);
}
void TemplateTable::condy_helper(Label& Done) {
const Register obj = x10;
const Register rarg = x11;
const Register flags = x12;
const Register off = x13;
const address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
__ mv(rarg, (int) bytecode());
__ call_VM(obj, entry, rarg);
__ get_vm_result_2(flags, xthread);
// VMr = obj = base address to find primitive value to push
// VMr2 = flags = (tos, off) using format of CPCE::_flags
__ mv(off, flags);
__ mv(t0, ConstantPoolCacheEntry::field_index_mask);
__ andrw(off, off, t0);
__ add(off, obj, off);
const Address field(off, 0); // base + R---->base + offset
__ slli(flags, flags, XLEN - (ConstantPoolCacheEntry::tos_state_shift + ConstantPoolCacheEntry::tos_state_bits));
__ srli(flags, flags, XLEN - ConstantPoolCacheEntry::tos_state_bits); // (1 << 5) - 4 --> 28~31==> flags:0~3
switch (bytecode()) {
case Bytecodes::_ldc: // fall through
case Bytecodes::_ldc_w: {
// tos in (itos, ftos, stos, btos, ctos, ztos)
Label notInt, notFloat, notShort, notByte, notChar, notBool;
__ mv(t1, itos);
__ bne(flags, t1, notInt);
// itos
__ lw(x10, field);
__ push(itos);
__ j(Done);
__ bind(notInt);
__ mv(t1, ftos);
__ bne(flags, t1, notFloat);
// ftos
__ load_float(field);
__ push(ftos);
__ j(Done);
__ bind(notFloat);
__ mv(t1, stos);
__ bne(flags, t1, notShort);
// stos
__ load_signed_short(x10, field);
__ push(stos);
__ j(Done);
__ bind(notShort);
__ mv(t1, btos);
__ bne(flags, t1, notByte);
// btos
__ load_signed_byte(x10, field);
__ push(btos);
__ j(Done);
__ bind(notByte);
__ mv(t1, ctos);
__ bne(flags, t1, notChar);
// ctos
__ load_unsigned_short(x10, field);
__ push(ctos);
__ j(Done);
__ bind(notChar);
__ mv(t1, ztos);
__ bne(flags, t1, notBool);
// ztos
__ load_signed_byte(x10, field);
__ push(ztos);
__ j(Done);
__ bind(notBool);
break;
}
case Bytecodes::_ldc2_w: {
Label notLong, notDouble;
__ mv(t1, ltos);
__ bne(flags, t1, notLong);
// ltos
__ ld(x10, field);
__ push(ltos);
__ j(Done);
__ bind(notLong);
__ mv(t1, dtos);
__ bne(flags, t1, notDouble);
// dtos
__ load_double(field);
__ push(dtos);
__ j(Done);
__ bind(notDouble);
break;
}
default:
ShouldNotReachHere();
}
__ stop("bad ldc/condy");
}
void TemplateTable::locals_index(Register reg, int offset) {
__ lbu(reg, at_bcp(offset));
__ neg(reg, reg);
}
void TemplateTable::iload() {
iload_internal();
}
void TemplateTable::nofast_iload() {
iload_internal(may_not_rewrite);
}
void TemplateTable::iload_internal(RewriteControl rc) {
transition(vtos, itos);
if (RewriteFrequentPairs && rc == may_rewrite) {
Label rewrite, done;
const Register bc = x14;
// get next bytecode
__ load_unsigned_byte(x11, at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
// if _iload, wait to rewrite to iload2. We only want to rewrite the
// last two iloads in a pair. Comparing against fast_iload means that
// the next bytecode is neither an iload or a caload, and therefore
// an iload pair.
__ mv(t1, Bytecodes::_iload);
__ beq(x11, t1, done);
// if _fast_iload rewrite to _fast_iload2
__ mv(t1, Bytecodes::_fast_iload);
__ mv(bc, Bytecodes::_fast_iload2);
__ beq(x11, t1, rewrite);
// if _caload rewrite to _fast_icaload
__ mv(t1, Bytecodes::_caload);
__ mv(bc, Bytecodes::_fast_icaload);
__ beq(x11, t1, rewrite);
// else rewrite to _fast_iload
__ mv(bc, Bytecodes::_fast_iload);
// rewrite
// bc: new bytecode
__ bind(rewrite);
patch_bytecode(Bytecodes::_iload, bc, x11, false);
__ bind(done);
}
// do iload, get the local value into tos
locals_index(x11);
__ lw(x10, iaddress(x11, x10, _masm));
}
void TemplateTable::fast_iload2() {
transition(vtos, itos);
locals_index(x11);
__ lw(x10, iaddress(x11, x10, _masm));
__ push(itos);
locals_index(x11, 3);
__ lw(x10, iaddress(x11, x10, _masm));
}
void TemplateTable::fast_iload() {
transition(vtos, itos);
locals_index(x11);
__ lw(x10, iaddress(x11, x10, _masm));
}
void TemplateTable::lload() {
transition(vtos, ltos);
__ lbu(x11, at_bcp(1));
__ slli(x11, x11, LogBytesPerWord);
__ sub(x11, xlocals, x11);
__ ld(x10, Address(x11, Interpreter::local_offset_in_bytes(1)));
}
void TemplateTable::fload() {
transition(vtos, ftos);
locals_index(x11);
__ flw(f10, faddress(x11, t0, _masm));
}
void TemplateTable::dload() {
transition(vtos, dtos);
__ lbu(x11, at_bcp(1));
__ slli(x11, x11, LogBytesPerWord);
__ sub(x11, xlocals, x11);
__ fld(f10, Address(x11, Interpreter::local_offset_in_bytes(1)));
}
void TemplateTable::aload() {
transition(vtos, atos);
locals_index(x11);
__ ld(x10, iaddress(x11, x10, _masm));
}
void TemplateTable::locals_index_wide(Register reg) {
__ lhu(reg, at_bcp(2));
__ revb_h_h_u(reg, reg); // reverse bytes in half-word and zero-extend
__ neg(reg, reg);
}
void TemplateTable::wide_iload() {
transition(vtos, itos);
locals_index_wide(x11);
__ lw(x10, iaddress(x11, t0, _masm));
}
void TemplateTable::wide_lload() {
transition(vtos, ltos);
__ lhu(x11, at_bcp(2));
__ revb_h_h_u(x11, x11); // reverse bytes in half-word and zero-extend
__ slli(x11, x11, LogBytesPerWord);
__ sub(x11, xlocals, x11);
__ ld(x10, Address(x11, Interpreter::local_offset_in_bytes(1)));
}
void TemplateTable::wide_fload() {
transition(vtos, ftos);
locals_index_wide(x11);
__ flw(f10, faddress(x11, t0, _masm));
}
void TemplateTable::wide_dload() {
transition(vtos, dtos);
__ lhu(x11, at_bcp(2));
__ revb_h_h_u(x11, x11); // reverse bytes in half-word and zero-extend
__ slli(x11, x11, LogBytesPerWord);
__ sub(x11, xlocals, x11);
__ fld(f10, Address(x11, Interpreter::local_offset_in_bytes(1)));
}
void TemplateTable::wide_aload() {
transition(vtos, atos);
locals_index_wide(x11);
__ ld(x10, aaddress(x11, t0, _masm));
}
void TemplateTable::index_check(Register array, Register index) {
// destroys x11, t0
// sign extend index for use by indexed load
// check index
const Register length = t0;
__ lwu(length, Address(array, arrayOopDesc::length_offset_in_bytes()));
if (index != x11) {
assert(x11 != array, "different registers");
__ mv(x11, index);
}
Label ok;
__ sign_extend(index, index, 32);
__ bltu(index, length, ok);
__ mv(x13, array);
__ mv(t0, Interpreter::_throw_ArrayIndexOutOfBoundsException_entry);
__ jr(t0);
__ bind(ok);
}
void TemplateTable::iaload() {
transition(itos, itos);
__ mv(x11, x10);
__ pop_ptr(x10);
// x10: array
// x11: index
index_check(x10, x11); // leaves index in x11
__ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_INT) >> 2);
__ shadd(x10, x11, x10, t0, 2);
__ access_load_at(T_INT, IN_HEAP | IS_ARRAY, x10, Address(x10), noreg, noreg);
__ sign_extend(x10, x10, 32);
}
void TemplateTable::laload() {
transition(itos, ltos);
__ mv(x11, x10);
__ pop_ptr(x10);
// x10: array
// x11: index
index_check(x10, x11); // leaves index in x11
__ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_LONG) >> 3);
__ shadd(x10, x11, x10, t0, 3);
__ access_load_at(T_LONG, IN_HEAP | IS_ARRAY, x10, Address(x10), noreg, noreg);
}
void TemplateTable::faload() {
transition(itos, ftos);
__ mv(x11, x10);
__ pop_ptr(x10);
// x10: array
// x11: index
index_check(x10, x11); // leaves index in x11
__ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_FLOAT) >> 2);
__ shadd(x10, x11, x10, t0, 2);
__ access_load_at(T_FLOAT, IN_HEAP | IS_ARRAY, x10, Address(x10), noreg, noreg);
}
void TemplateTable::daload() {
transition(itos, dtos);
__ mv(x11, x10);
__ pop_ptr(x10);
// x10: array
// x11: index
index_check(x10, x11); // leaves index in x11
__ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3);
__ shadd(x10, x11, x10, t0, 3);
__ access_load_at(T_DOUBLE, IN_HEAP | IS_ARRAY, x10, Address(x10), noreg, noreg);
}
void TemplateTable::aaload() {
transition(itos, atos);
__ mv(x11, x10);
__ pop_ptr(x10);
// x10: array
// x11: index
index_check(x10, x11); // leaves index in x11
__ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
__ shadd(x10, x11, x10, t0, LogBytesPerHeapOop);
do_oop_load(_masm, Address(x10), x10, IS_ARRAY);
}
void TemplateTable::baload() {
transition(itos, itos);
__ mv(x11, x10);
__ pop_ptr(x10);
// x10: array
// x11: index
index_check(x10, x11); // leaves index in x11
__ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_BYTE) >> 0);
__ shadd(x10, x11, x10, t0, 0);
__ access_load_at(T_BYTE, IN_HEAP | IS_ARRAY, x10, Address(x10), noreg, noreg);
}
void TemplateTable::caload() {
transition(itos, itos);
__ mv(x11, x10);
__ pop_ptr(x10);
// x10: array
// x11: index
index_check(x10, x11); // leaves index in x11
__ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1);
__ shadd(x10, x11, x10, t0, 1);
__ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, x10, Address(x10), noreg, noreg);
}
// iload followed by caload frequent pair
void TemplateTable::fast_icaload() {
transition(vtos, itos);
// load index out of locals
locals_index(x12);
__ lw(x11, iaddress(x12, x11, _masm));
__ pop_ptr(x10);
// x10: array
// x11: index
index_check(x10, x11); // leaves index in x11, kills t0
__ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1); // addi, max imm is 2^11
__ shadd(x10, x11, x10, t0, 1);
__ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, x10, Address(x10), noreg, noreg);
}
void TemplateTable::saload() {
transition(itos, itos);
__ mv(x11, x10);
__ pop_ptr(x10);
// x10: array
// x11: index
index_check(x10, x11); // leaves index in x11, kills t0
__ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_SHORT) >> 1);
__ shadd(x10, x11, x10, t0, 1);
__ access_load_at(T_SHORT, IN_HEAP | IS_ARRAY, x10, Address(x10), noreg, noreg);
}
void TemplateTable::iload(int n) {
transition(vtos, itos);
__ lw(x10, iaddress(n));
}
void TemplateTable::lload(int n) {
transition(vtos, ltos);
__ ld(x10, laddress(n));
}
void TemplateTable::fload(int n) {
transition(vtos, ftos);
__ flw(f10, faddress(n));
}
void TemplateTable::dload(int n) {
transition(vtos, dtos);
__ fld(f10, daddress(n));
}
void TemplateTable::aload(int n) {
transition(vtos, atos);
__ ld(x10, iaddress(n));
}
void TemplateTable::aload_0() {
aload_0_internal();
}
void TemplateTable::nofast_aload_0() {
aload_0_internal(may_not_rewrite);
}
void TemplateTable::aload_0_internal(RewriteControl rc) {
// According to bytecode histograms, the pairs:
//
// _aload_0, _fast_igetfield
// _aload_0, _fast_agetfield
// _aload_0, _fast_fgetfield
//
// occur frequently. If RewriteFrequentPairs is set, the (slow)
// _aload_0 bytecode checks if the next bytecode is either
// _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
// rewrites the current bytecode into a pair bytecode; otherwise it
// rewrites the current bytecode into _fast_aload_0 that doesn't do
// the pair check anymore.
//
// Note: If the next bytecode is _getfield, the rewrite must be
// delayed, otherwise we may miss an opportunity for a pair.
//
// Also rewrite frequent pairs
// aload_0, aload_1
// aload_0, iload_1
// These bytecodes with a small amount of code are most profitable
// to rewrite
if (RewriteFrequentPairs && rc == may_rewrite) {
Label rewrite, done;
const Register bc = x14;
// get next bytecode
__ load_unsigned_byte(x11, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
// if _getfield then wait with rewrite
__ mv(t1, Bytecodes::Bytecodes::_getfield);
__ beq(x11, t1, done);
// if _igetfield then rewrite to _fast_iaccess_0
assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
__ mv(t1, Bytecodes::_fast_igetfield);
__ mv(bc, Bytecodes::_fast_iaccess_0);
__ beq(x11, t1, rewrite);
// if _agetfield then rewrite to _fast_aaccess_0
assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
__ mv(t1, Bytecodes::_fast_agetfield);
__ mv(bc, Bytecodes::_fast_aaccess_0);
__ beq(x11, t1, rewrite);
// if _fgetfield then rewrite to _fast_faccess_0
assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
__ mv(t1, Bytecodes::_fast_fgetfield);
__ mv(bc, Bytecodes::_fast_faccess_0);
__ beq(x11, t1, rewrite);
// else rewrite to _fast_aload0
assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition");
__ mv(bc, Bytecodes::Bytecodes::_fast_aload_0);
// rewrite
// bc: new bytecode
__ bind(rewrite);
patch_bytecode(Bytecodes::_aload_0, bc, x11, false);
__ bind(done);
}
// Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop).
aload(0);
}
void TemplateTable::istore() {
transition(itos, vtos);
locals_index(x11);
__ sw(x10, iaddress(x11, t0, _masm));
}
void TemplateTable::lstore() {
transition(ltos, vtos);
locals_index(x11);
__ sd(x10, laddress(x11, t0, _masm));
}
void TemplateTable::fstore() {
transition(ftos, vtos);
locals_index(x11);
__ fsw(f10, iaddress(x11, t0, _masm));
}
void TemplateTable::dstore() {
transition(dtos, vtos);
locals_index(x11);
__ fsd(f10, daddress(x11, t0, _masm));
}
void TemplateTable::astore() {
transition(vtos, vtos);
__ pop_ptr(x10);
locals_index(x11);
__ sd(x10, aaddress(x11, t0, _masm));
}
void TemplateTable::wide_istore() {
transition(vtos, vtos);
__ pop_i();
locals_index_wide(x11);
__ sw(x10, iaddress(x11, t0, _masm));
}
void TemplateTable::wide_lstore() {
transition(vtos, vtos);
__ pop_l();
locals_index_wide(x11);
__ sd(x10, laddress(x11, t0, _masm));
}
void TemplateTable::wide_fstore() {
transition(vtos, vtos);
__ pop_f();
locals_index_wide(x11);
__ fsw(f10, faddress(x11, t0, _masm));
}
void TemplateTable::wide_dstore() {
transition(vtos, vtos);
__ pop_d();
locals_index_wide(x11);
__ fsd(f10, daddress(x11, t0, _masm));
}
void TemplateTable::wide_astore() {
transition(vtos, vtos);
__ pop_ptr(x10);
locals_index_wide(x11);
__ sd(x10, aaddress(x11, t0, _masm));
}
void TemplateTable::iastore() {
transition(itos, vtos);
__ pop_i(x11);
__ pop_ptr(x13);
// x10: value
// x11: index
// x13: array
index_check(x13, x11); // prefer index in x11
__ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_INT) >> 2);
__ shadd(t0, x11, x13, t0, 2);
__ access_store_at(T_INT, IN_HEAP | IS_ARRAY, Address(t0, 0), x10, noreg, noreg, noreg);
}
void TemplateTable::lastore() {
transition(ltos, vtos);
__ pop_i(x11);
__ pop_ptr(x13);
// x10: value
// x11: index
// x13: array
index_check(x13, x11); // prefer index in x11
__ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_LONG) >> 3);
__ shadd(t0, x11, x13, t0, 3);
__ access_store_at(T_LONG, IN_HEAP | IS_ARRAY, Address(t0, 0), x10, noreg, noreg, noreg);
}
void TemplateTable::fastore() {
transition(ftos, vtos);
__ pop_i(x11);
__ pop_ptr(x13);
// f10: value
// x11: index
// x13: array
index_check(x13, x11); // prefer index in x11
__ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_FLOAT) >> 2);
__ shadd(t0, x11, x13, t0, 2);
__ access_store_at(T_FLOAT, IN_HEAP | IS_ARRAY, Address(t0, 0), noreg /* ftos */, noreg, noreg, noreg);
}
void TemplateTable::dastore() {
transition(dtos, vtos);
__ pop_i(x11);
__ pop_ptr(x13);
// f10: value
// x11: index
// x13: array
index_check(x13, x11); // prefer index in x11
__ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3);
__ shadd(t0, x11, x13, t0, 3);
__ access_store_at(T_DOUBLE, IN_HEAP | IS_ARRAY, Address(t0, 0), noreg /* dtos */, noreg, noreg, noreg);
}
void TemplateTable::aastore() {
Label is_null, ok_is_subtype, done;
transition(vtos, vtos);
// stack: ..., array, index, value
__ ld(x10, at_tos()); // value
__ ld(x12, at_tos_p1()); // index
__ ld(x13, at_tos_p2()); // array
index_check(x13, x12); // kills x11
__ add(x14, x12, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
__ shadd(x14, x14, x13, x14, LogBytesPerHeapOop);
Address element_address(x14, 0);
// do array store check - check for null value first
__ beqz(x10, is_null);
// Move subklass into x11
__ load_klass(x11, x10);
// Move superklass into x10
__ load_klass(x10, x13);
__ ld(x10, Address(x10,
ObjArrayKlass::element_klass_offset()));
// Compress array + index * oopSize + 12 into a single register. Frees x12.
// Generate subtype check. Blows x12, x15
// Superklass in x10. Subklass in x11.
__ gen_subtype_check(x11, ok_is_subtype);
// Come here on failure
// object is at TOS
__ j(Interpreter::_throw_ArrayStoreException_entry);
// Come here on success
__ bind(ok_is_subtype);
// Get the value we will store
__ ld(x10, at_tos());
// Now store using the appropriate barrier
do_oop_store(_masm, element_address, x10, IS_ARRAY);
__ j(done);
// Have a null in x10, x13=array, x12=index. Store null at ary[idx]
__ bind(is_null);
__ profile_null_seen(x12);
// Store a null
do_oop_store(_masm, element_address, noreg, IS_ARRAY);
// Pop stack arguments
__ bind(done);
__ add(esp, esp, 3 * Interpreter::stackElementSize);
}
void TemplateTable::bastore() {
transition(itos, vtos);
__ pop_i(x11);
__ pop_ptr(x13);
// x10: value
// x11: index
// x13: array
index_check(x13, x11); // prefer index in x11
// Need to check whether array is boolean or byte
// since both types share the bastore bytecode.
__ load_klass(x12, x13);
__ lwu(x12, Address(x12, Klass::layout_helper_offset()));
Label L_skip;
__ test_bit(t0, x12, exact_log2(Klass::layout_helper_boolean_diffbit()));
__ beqz(t0, L_skip);
__ andi(x10, x10, 1); // if it is a T_BOOLEAN array, mask the stored value to 0/1
__ bind(L_skip);
__ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_BYTE) >> 0);
__ add(x11, x13, x11);
__ access_store_at(T_BYTE, IN_HEAP | IS_ARRAY, Address(x11, 0), x10, noreg, noreg, noreg);
}
void TemplateTable::castore() {
transition(itos, vtos);
__ pop_i(x11);
__ pop_ptr(x13);
// x10: value
// x11: index
// x13: array
index_check(x13, x11); // prefer index in x11
__ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1);
__ shadd(t0, x11, x13, t0, 1);
__ access_store_at(T_CHAR, IN_HEAP | IS_ARRAY, Address(t0, 0), x10, noreg, noreg, noreg);
}
void TemplateTable::sastore() {
castore();
}
void TemplateTable::istore(int n) {
transition(itos, vtos);
__ sd(x10, iaddress(n));
}
void TemplateTable::lstore(int n) {
transition(ltos, vtos);
__ sd(x10, laddress(n));
}
void TemplateTable::fstore(int n) {
transition(ftos, vtos);
__ fsw(f10, faddress(n));
}
void TemplateTable::dstore(int n) {
transition(dtos, vtos);
__ fsd(f10, daddress(n));
}
void TemplateTable::astore(int n) {
transition(vtos, vtos);
__ pop_ptr(x10);
__ sd(x10, iaddress(n));
}
void TemplateTable::pop() {
transition(vtos, vtos);
__ addi(esp, esp, Interpreter::stackElementSize);
}
void TemplateTable::pop2() {
transition(vtos, vtos);
__ addi(esp, esp, 2 * Interpreter::stackElementSize);
}
void TemplateTable::dup() {
transition(vtos, vtos);
__ ld(x10, Address(esp, 0));
__ push_reg(x10);
// stack: ..., a, a
}
void TemplateTable::dup_x1() {
transition(vtos, vtos);
// stack: ..., a, b
__ ld(x10, at_tos()); // load b
__ ld(x12, at_tos_p1()); // load a
__ sd(x10, at_tos_p1()); // store b
__ sd(x12, at_tos()); // store a
__ push_reg(x10); // push b
// stack: ..., b, a, b
}
void TemplateTable::dup_x2() {
transition(vtos, vtos);
// stack: ..., a, b, c
__ ld(x10, at_tos()); // load c
__ ld(x12, at_tos_p2()); // load a
__ sd(x10, at_tos_p2()); // store c in a
__ push_reg(x10); // push c
// stack: ..., c, b, c, c
__ ld(x10, at_tos_p2()); // load b
__ sd(x12, at_tos_p2()); // store a in b
// stack: ..., c, a, c, c
__ sd(x10, at_tos_p1()); // store b in c
// stack: ..., c, a, b, c
}
void TemplateTable::dup2() {
transition(vtos, vtos);
// stack: ..., a, b
__ ld(x10, at_tos_p1()); // load a
__ push_reg(x10); // push a
__ ld(x10, at_tos_p1()); // load b
__ push_reg(x10); // push b
// stack: ..., a, b, a, b
}
void TemplateTable::dup2_x1() {
transition(vtos, vtos);
// stack: ..., a, b, c
__ ld(x12, at_tos()); // load c
__ ld(x10, at_tos_p1()); // load b
__ push_reg(x10); // push b
__ push_reg(x12); // push c
// stack: ..., a, b, c, b, c
__ sd(x12, at_tos_p3()); // store c in b
// stack: ..., a, c, c, b, c
__ ld(x12, at_tos_p4()); // load a
__ sd(x12, at_tos_p2()); // store a in 2nd c
// stack: ..., a, c, a, b, c
__ sd(x10, at_tos_p4()); // store b in a
// stack: ..., b, c, a, b, c
}
void TemplateTable::dup2_x2() {
transition(vtos, vtos);
// stack: ..., a, b, c, d
__ ld(x12, at_tos()); // load d
__ ld(x10, at_tos_p1()); // load c
__ push_reg(x10); // push c
__ push_reg(x12); // push d
// stack: ..., a, b, c, d, c, d
__ ld(x10, at_tos_p4()); // load b
__ sd(x10, at_tos_p2()); // store b in d
__ sd(x12, at_tos_p4()); // store d in b
// stack: ..., a, d, c, b, c, d
__ ld(x12, at_tos_p5()); // load a
__ ld(x10, at_tos_p3()); // load c
__ sd(x12, at_tos_p3()); // store a in c
__ sd(x10, at_tos_p5()); // store c in a
// stack: ..., c, d, a, b, c, d
}
void TemplateTable::swap() {
transition(vtos, vtos);
// stack: ..., a, b
__ ld(x12, at_tos_p1()); // load a
__ ld(x10, at_tos()); // load b
__ sd(x12, at_tos()); // store a in b
__ sd(x10, at_tos_p1()); // store b in a
// stack: ..., b, a
}
void TemplateTable::iop2(Operation op) {
transition(itos, itos);
// x10 <== x11 op x10
__ pop_i(x11);
switch (op) {
case add : __ addw(x10, x11, x10); break;
case sub : __ subw(x10, x11, x10); break;
case mul : __ mulw(x10, x11, x10); break;
case _and : __ andrw(x10, x11, x10); break;
case _or : __ orrw(x10, x11, x10); break;
case _xor : __ xorrw(x10, x11, x10); break;
case shl : __ sllw(x10, x11, x10); break;
case shr : __ sraw(x10, x11, x10); break;
case ushr : __ srlw(x10, x11, x10); break;
default : ShouldNotReachHere();
}
}
void TemplateTable::lop2(Operation op) {
transition(ltos, ltos);
// x10 <== x11 op x10
__ pop_l(x11);
switch (op) {
case add : __ add(x10, x11, x10); break;
case sub : __ sub(x10, x11, x10); break;
case mul : __ mul(x10, x11, x10); break;
case _and : __ andr(x10, x11, x10); break;
case _or : __ orr(x10, x11, x10); break;
case _xor : __ xorr(x10, x11, x10); break;
default : ShouldNotReachHere();
}
}
void TemplateTable::idiv() {
transition(itos, itos);
// explicitly check for div0
Label no_div0;
__ bnez(x10, no_div0);
__ mv(t0, Interpreter::_throw_ArithmeticException_entry);
__ jr(t0);
__ bind(no_div0);
__ pop_i(x11);
// x10 <== x11 idiv x10
__ corrected_idivl(x10, x11, x10, /* want_remainder */ false);
}
void TemplateTable::irem() {
transition(itos, itos);
// explicitly check for div0
Label no_div0;
__ bnez(x10, no_div0);
__ mv(t0, Interpreter::_throw_ArithmeticException_entry);
__ jr(t0);
__ bind(no_div0);
__ pop_i(x11);
// x10 <== x11 irem x10
__ corrected_idivl(x10, x11, x10, /* want_remainder */ true);
}
void TemplateTable::lmul() {
transition(ltos, ltos);
__ pop_l(x11);
__ mul(x10, x10, x11);
}
void TemplateTable::ldiv() {
transition(ltos, ltos);
// explicitly check for div0
Label no_div0;
__ bnez(x10, no_div0);
__ mv(t0, Interpreter::_throw_ArithmeticException_entry);
__ jr(t0);
__ bind(no_div0);
__ pop_l(x11);
// x10 <== x11 ldiv x10
__ corrected_idivq(x10, x11, x10, /* want_remainder */ false);
}
void TemplateTable::lrem() {
transition(ltos, ltos);
// explicitly check for div0
Label no_div0;
__ bnez(x10, no_div0);
__ mv(t0, Interpreter::_throw_ArithmeticException_entry);
__ jr(t0);
__ bind(no_div0);
__ pop_l(x11);
// x10 <== x11 lrem x10
__ corrected_idivq(x10, x11, x10, /* want_remainder */ true);
}
void TemplateTable::lshl() {
transition(itos, ltos);
// shift count is in x10
__ pop_l(x11);
__ sll(x10, x11, x10);
}
void TemplateTable::lshr() {
transition(itos, ltos);
// shift count is in x10
__ pop_l(x11);
__ sra(x10, x11, x10);
}
void TemplateTable::lushr() {
transition(itos, ltos);
// shift count is in x10
__ pop_l(x11);
__ srl(x10, x11, x10);
}
void TemplateTable::fop2(Operation op) {
transition(ftos, ftos);
switch (op) {
case add:
__ pop_f(f11);
__ fadd_s(f10, f11, f10);
break;
case sub:
__ pop_f(f11);
__ fsub_s(f10, f11, f10);
break;
case mul:
__ pop_f(f11);
__ fmul_s(f10, f11, f10);
break;
case div:
__ pop_f(f11);
__ fdiv_s(f10, f11, f10);
break;
case rem:
__ fmv_s(f11, f10);
__ pop_f(f10);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem));
break;
default:
ShouldNotReachHere();
}
}
void TemplateTable::dop2(Operation op) {
transition(dtos, dtos);
switch (op) {
case add:
__ pop_d(f11);
__ fadd_d(f10, f11, f10);
break;
case sub:
__ pop_d(f11);
__ fsub_d(f10, f11, f10);
break;
case mul:
__ pop_d(f11);
__ fmul_d(f10, f11, f10);
break;
case div:
__ pop_d(f11);
__ fdiv_d(f10, f11, f10);
break;
case rem:
__ fmv_d(f11, f10);
__ pop_d(f10);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem));
break;
default:
ShouldNotReachHere();
}
}
void TemplateTable::ineg() {
transition(itos, itos);
__ negw(x10, x10);
}
void TemplateTable::lneg() {
transition(ltos, ltos);
__ neg(x10, x10);
}
void TemplateTable::fneg() {
transition(ftos, ftos);
__ fneg_s(f10, f10);
}
void TemplateTable::dneg() {
transition(dtos, dtos);
__ fneg_d(f10, f10);
}
void TemplateTable::iinc() {
transition(vtos, vtos);
__ load_signed_byte(x11, at_bcp(2)); // get constant
locals_index(x12);
__ ld(x10, iaddress(x12, x10, _masm));
__ addw(x10, x10, x11);
__ sd(x10, iaddress(x12, t0, _masm));
}
void TemplateTable::wide_iinc() {
transition(vtos, vtos);
__ lwu(x11, at_bcp(2)); // get constant and index
__ revb_h_w_u(x11, x11); // reverse bytes in half-word (32bit) and zero-extend
__ zero_extend(x12, x11, 16);
__ neg(x12, x12);
__ slli(x11, x11, 32);
__ srai(x11, x11, 48);
__ ld(x10, iaddress(x12, t0, _masm));
__ addw(x10, x10, x11);
__ sd(x10, iaddress(x12, t0, _masm));
}
void TemplateTable::convert() {
// Checking
#ifdef ASSERT
{
TosState tos_in = ilgl;
TosState tos_out = ilgl;
switch (bytecode()) {
case Bytecodes::_i2l: // fall through
case Bytecodes::_i2f: // fall through
case Bytecodes::_i2d: // fall through
case Bytecodes::_i2b: // fall through
case Bytecodes::_i2c: // fall through
case Bytecodes::_i2s: tos_in = itos; break;
case Bytecodes::_l2i: // fall through
case Bytecodes::_l2f: // fall through
case Bytecodes::_l2d: tos_in = ltos; break;
case Bytecodes::_f2i: // fall through
case Bytecodes::_f2l: // fall through
case Bytecodes::_f2d: tos_in = ftos; break;
case Bytecodes::_d2i: // fall through
case Bytecodes::_d2l: // fall through
case Bytecodes::_d2f: tos_in = dtos; break;
default : ShouldNotReachHere();
}
switch (bytecode()) {
case Bytecodes::_l2i: // fall through
case Bytecodes::_f2i: // fall through
case Bytecodes::_d2i: // fall through
case Bytecodes::_i2b: // fall through
case Bytecodes::_i2c: // fall through
case Bytecodes::_i2s: tos_out = itos; break;
case Bytecodes::_i2l: // fall through
case Bytecodes::_f2l: // fall through
case Bytecodes::_d2l: tos_out = ltos; break;
case Bytecodes::_i2f: // fall through
case Bytecodes::_l2f: // fall through
case Bytecodes::_d2f: tos_out = ftos; break;
case Bytecodes::_i2d: // fall through
case Bytecodes::_l2d: // fall through
case Bytecodes::_f2d: tos_out = dtos; break;
default : ShouldNotReachHere();
}
transition(tos_in, tos_out);
}
#endif // ASSERT
// Conversion
switch (bytecode()) {
case Bytecodes::_i2l:
__ sign_extend(x10, x10, 32);
break;
case Bytecodes::_i2f:
__ fcvt_s_w(f10, x10);
break;
case Bytecodes::_i2d:
__ fcvt_d_w(f10, x10);
break;
case Bytecodes::_i2b:
__ sign_extend(x10, x10, 8);
break;
case Bytecodes::_i2c:
__ zero_extend(x10, x10, 16);
break;
case Bytecodes::_i2s:
__ sign_extend(x10, x10, 16);
break;
case Bytecodes::_l2i:
__ sign_extend(x10, x10, 32);
break;
case Bytecodes::_l2f:
__ fcvt_s_l(f10, x10);
break;
case Bytecodes::_l2d:
__ fcvt_d_l(f10, x10);
break;
case Bytecodes::_f2i:
__ fcvt_w_s_safe(x10, f10);
break;
case Bytecodes::_f2l:
__ fcvt_l_s_safe(x10, f10);
break;
case Bytecodes::_f2d:
__ fcvt_d_s(f10, f10);
break;
case Bytecodes::_d2i:
__ fcvt_w_d_safe(x10, f10);
break;
case Bytecodes::_d2l:
__ fcvt_l_d_safe(x10, f10);
break;
case Bytecodes::_d2f:
__ fcvt_s_d(f10, f10);
break;
default:
ShouldNotReachHere();
}
}
void TemplateTable::lcmp() {
transition(ltos, itos);
__ pop_l(x11);
__ cmp_l2i(t0, x11, x10);
__ mv(x10, t0);
}
void TemplateTable::float_cmp(bool is_float, int unordered_result) {
// For instruction feq, flt and fle, the result is 0 if either operand is NaN
if (is_float) {
__ pop_f(f11);
// if unordered_result < 0:
// we want -1 for unordered or less than, 0 for equal and 1 for
// greater than.
// else:
// we want -1 for less than, 0 for equal and 1 for unordered or
// greater than.
// f11 primary, f10 secondary
__ float_compare(x10, f11, f10, unordered_result);
} else {
__ pop_d(f11);
// if unordered_result < 0:
// we want -1 for unordered or less than, 0 for equal and 1 for
// greater than.
// else:
// we want -1 for less than, 0 for equal and 1 for unordered or
// greater than.
// f11 primary, f10 secondary
__ double_compare(x10, f11, f10, unordered_result);
}
}
void TemplateTable::branch(bool is_jsr, bool is_wide) {
__ profile_taken_branch(x10, x11);
const ByteSize be_offset = MethodCounters::backedge_counter_offset() +
InvocationCounter::counter_offset();
const ByteSize inv_offset = MethodCounters::invocation_counter_offset() +
InvocationCounter::counter_offset();
// load branch displacement
if (!is_wide) {
if (AvoidUnalignedAccesses) {
__ lb(x12, at_bcp(1));
__ lbu(t1, at_bcp(2));
__ slli(x12, x12, 8);
__ add(x12, x12, t1);
} else {
__ lhu(x12, at_bcp(1));
__ revb_h_h(x12, x12); // reverse bytes in half-word and sign-extend
}
} else {
__ lwu(x12, at_bcp(1));
__ revb_w_w(x12, x12); // reverse bytes in word and sign-extend
}
// Handle all the JSR stuff here, then exit.
// It's much shorter and cleaner than intermingling with the non-JSR
// normal-branch stuff occurring below.
if (is_jsr) {
// compute return address as bci
__ ld(t1, Address(xmethod, Method::const_offset()));
__ add(t1, t1,
in_bytes(ConstMethod::codes_offset()) - (is_wide ? 5 : 3));
__ sub(x11, xbcp, t1);
__ push_i(x11);
// Adjust the bcp by the 16-bit displacement in x12
__ add(xbcp, xbcp, x12);
__ load_unsigned_byte(t0, Address(xbcp, 0));
// load the next target bytecode into t0, it is the argument of dispatch_only
__ dispatch_only(vtos, /*generate_poll*/true);
return;
}
// Normal (non-jsr) branch handling
// Adjust the bcp by the displacement in x12
__ add(xbcp, xbcp, x12);
assert(UseLoopCounter || !UseOnStackReplacement,
"on-stack-replacement requires loop counters");
Label backedge_counter_overflow;
Label dispatch;
if (UseLoopCounter) {
// increment backedge counter for backward branches
// x10: MDO
// x11: MDO bumped taken-count
// x12: target offset
__ bgtz(x12, dispatch); // count only if backward branch
// check if MethodCounters exists
Label has_counters;
__ ld(t0, Address(xmethod, Method::method_counters_offset()));
__ bnez(t0, has_counters);
__ push_reg(x10);
__ push_reg(x11);
__ push_reg(x12);
__ call_VM(noreg, CAST_FROM_FN_PTR(address,
InterpreterRuntime::build_method_counters), xmethod);
__ pop_reg(x12);
__ pop_reg(x11);
__ pop_reg(x10);
__ ld(t0, Address(xmethod, Method::method_counters_offset()));
__ beqz(t0, dispatch); // No MethodCounters allocated, OutOfMemory
__ bind(has_counters);
Label no_mdo;
int increment = InvocationCounter::count_increment;
if (ProfileInterpreter) {
// Are we profiling?
__ ld(x11, Address(xmethod, in_bytes(Method::method_data_offset())));
__ beqz(x11, no_mdo);
// Increment the MDO backedge counter
const Address mdo_backedge_counter(x11, in_bytes(MethodData::backedge_counter_offset()) +
in_bytes(InvocationCounter::counter_offset()));
const Address mask(x11, in_bytes(MethodData::backedge_mask_offset()));
__ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
x10, t0, false,
UseOnStackReplacement ? &backedge_counter_overflow : &dispatch);
__ j(dispatch);
}
__ bind(no_mdo);
// Increment backedge counter in MethodCounters*
__ ld(t0, Address(xmethod, Method::method_counters_offset()));
const Address mask(t0, in_bytes(MethodCounters::backedge_mask_offset()));
__ increment_mask_and_jump(Address(t0, be_offset), increment, mask,
x10, t1, false,
UseOnStackReplacement ? &backedge_counter_overflow : &dispatch);
__ bind(dispatch);
}
// Pre-load the next target bytecode into t0
__ load_unsigned_byte(t0, Address(xbcp, 0));
// continue with the bytecode @ target
// t0: target bytecode
// xbcp: target bcp
__ dispatch_only(vtos, /*generate_poll*/true);
if (UseLoopCounter && UseOnStackReplacement) {
// invocation counter overflow
__ bind(backedge_counter_overflow);
__ neg(x12, x12);
__ add(x12, x12, xbcp); // branch xbcp
// IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp)
__ call_VM(noreg,
CAST_FROM_FN_PTR(address,
InterpreterRuntime::frequency_counter_overflow),
x12);
__ load_unsigned_byte(x11, Address(xbcp, 0)); // restore target bytecode
// x10: osr nmethod (osr ok) or null (osr not possible)
// w11: target bytecode
// x12: temporary
__ beqz(x10, dispatch); // test result -- no osr if null
// nmethod may have been invalidated (VM may block upon call_VM return)
__ lbu(x12, Address(x10, nmethod::state_offset()));
if (nmethod::in_use != 0) {
__ sub(x12, x12, nmethod::in_use);
}
__ bnez(x12, dispatch);
// We have the address of an on stack replacement routine in x10
// We need to prepare to execute the OSR method. First we must
// migrate the locals and monitors off of the stack.
__ mv(x9, x10); // save the nmethod
call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
// x10 is OSR buffer, move it to expected parameter location
__ mv(j_rarg0, x10);
// remove activation
// get sender esp
__ ld(esp,
Address(fp, frame::interpreter_frame_sender_sp_offset * wordSize));
// remove frame anchor
__ leave();
// Ensure compiled code always sees stack at proper alignment
__ andi(sp, esp, -16);
// and begin the OSR nmethod
__ ld(t0, Address(x9, nmethod::osr_entry_point_offset()));
__ jr(t0);
}
}
void TemplateTable::if_0cmp(Condition cc) {
transition(itos, vtos);
// assume branch is more often taken than not (loops use backward branches)
Label not_taken;
__ sign_extend(x10, x10, 32);
switch (cc) {
case equal:
__ bnez(x10, not_taken);
break;
case not_equal:
__ beqz(x10, not_taken);
break;
case less:
__ bgez(x10, not_taken);
break;
case less_equal:
__ bgtz(x10, not_taken);
break;
case greater:
__ blez(x10, not_taken);
break;
case greater_equal:
__ bltz(x10, not_taken);
break;
default:
break;
}
branch(false, false);
__ bind(not_taken);
__ profile_not_taken_branch(x10);
}
void TemplateTable::if_icmp(Condition cc) {
transition(itos, vtos);
// assume branch is more often taken than not (loops use backward branches)
Label not_taken;
__ pop_i(x11);
__ sign_extend(x10, x10, 32);
switch (cc) {
case equal:
__ bne(x11, x10, not_taken);
break;
case not_equal:
__ beq(x11, x10, not_taken);
break;
case less:
__ bge(x11, x10, not_taken);
break;
case less_equal:
__ bgt(x11, x10, not_taken);
break;
case greater:
__ ble(x11, x10, not_taken);
break;
case greater_equal:
__ blt(x11, x10, not_taken);
break;
default:
break;
}
branch(false, false);
__ bind(not_taken);
__ profile_not_taken_branch(x10);
}
void TemplateTable::if_nullcmp(Condition cc) {
transition(atos, vtos);
// assume branch is more often taken than not (loops use backward branches)
Label not_taken;
if (cc == equal) {
__ bnez(x10, not_taken);
} else {
__ beqz(x10, not_taken);
}
branch(false, false);
__ bind(not_taken);
__ profile_not_taken_branch(x10);
}
void TemplateTable::if_acmp(Condition cc) {
transition(atos, vtos);
// assume branch is more often taken than not (loops use backward branches)
Label not_taken;
__ pop_ptr(x11);
if (cc == equal) {
__ bne(x11, x10, not_taken);
} else if (cc == not_equal) {
__ beq(x11, x10, not_taken);
}
branch(false, false);
__ bind(not_taken);
__ profile_not_taken_branch(x10);
}
void TemplateTable::ret() {
transition(vtos, vtos);
locals_index(x11);
__ ld(x11, aaddress(x11, t1, _masm)); // get return bci, compute return bcp
__ profile_ret(x11, x12);
__ ld(xbcp, Address(xmethod, Method::const_offset()));
__ add(xbcp, xbcp, x11);
__ addi(xbcp, xbcp, in_bytes(ConstMethod::codes_offset()));
__ dispatch_next(vtos, 0, /*generate_poll*/true);
}
void TemplateTable::wide_ret() {
transition(vtos, vtos);
locals_index_wide(x11);
__ ld(x11, aaddress(x11, t0, _masm)); // get return bci, compute return bcp
__ profile_ret(x11, x12);
__ ld(xbcp, Address(xmethod, Method::const_offset()));
__ add(xbcp, xbcp, x11);
__ add(xbcp, xbcp, in_bytes(ConstMethod::codes_offset()));
__ dispatch_next(vtos, 0, /*generate_poll*/true);
}
void TemplateTable::tableswitch() {
Label default_case, continue_execution;
transition(itos, vtos);
// align xbcp
__ la(x11, at_bcp(BytesPerInt));
__ andi(x11, x11, -BytesPerInt);
// load lo & hi
__ lwu(x12, Address(x11, BytesPerInt));
__ lwu(x13, Address(x11, 2 * BytesPerInt));
__ revb_w_w(x12, x12); // reverse bytes in word (32bit) and sign-extend
__ revb_w_w(x13, x13); // reverse bytes in word (32bit) and sign-extend
// check against lo & hi
__ blt(x10, x12, default_case);
__ bgt(x10, x13, default_case);
// lookup dispatch offset
__ subw(x10, x10, x12);
__ shadd(x13, x10, x11, t0, 2);
__ lwu(x13, Address(x13, 3 * BytesPerInt));
__ profile_switch_case(x10, x11, x12);
// continue execution
__ bind(continue_execution);
__ revb_w_w(x13, x13); // reverse bytes in word (32bit) and sign-extend
__ add(xbcp, xbcp, x13);
__ load_unsigned_byte(t0, Address(xbcp));
__ dispatch_only(vtos, /*generate_poll*/true);
// handle default
__ bind(default_case);
__ profile_switch_default(x10);
__ lwu(x13, Address(x11, 0));
__ j(continue_execution);
}
void TemplateTable::lookupswitch() {
transition(itos, itos);
__ stop("lookupswitch bytecode should have been rewritten");
}
void TemplateTable::fast_linearswitch() {
transition(itos, vtos);
Label loop_entry, loop, found, continue_execution;
// bswap x10 so we can avoid bswapping the table entries
__ revb_w_w(x10, x10); // reverse bytes in word (32bit) and sign-extend
// align xbcp
__ la(x9, at_bcp(BytesPerInt)); // btw: should be able to get rid of
// this instruction (change offsets
// below)
__ andi(x9, x9, -BytesPerInt);
// set counter
__ lwu(x11, Address(x9, BytesPerInt));
__ revb_w(x11, x11);
__ j(loop_entry);
// table search
__ bind(loop);
__ shadd(t0, x11, x9, t0, 3);
__ lw(t0, Address(t0, 2 * BytesPerInt));
__ beq(x10, t0, found);
__ bind(loop_entry);
__ addi(x11, x11, -1);
__ bgez(x11, loop);
// default case
__ profile_switch_default(x10);
__ lwu(x13, Address(x9, 0));
__ j(continue_execution);
// entry found -> get offset
__ bind(found);
__ shadd(t0, x11, x9, t0, 3);
__ lwu(x13, Address(t0, 3 * BytesPerInt));
__ profile_switch_case(x11, x10, x9);
// continue execution
__ bind(continue_execution);
__ revb_w_w(x13, x13); // reverse bytes in word (32bit) and sign-extend
__ add(xbcp, xbcp, x13);
__ lbu(t0, Address(xbcp, 0));
__ dispatch_only(vtos, /*generate_poll*/true);
}
void TemplateTable::fast_binaryswitch() {
transition(itos, vtos);
// Implementation using the following core algorithm:
//
// int binary_search(int key, LookupswitchPair* array, int n)
// binary_search start:
// #Binary search according to "Methodik des Programmierens" by
// # Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
// int i = 0;
// int j = n;
// while (i + 1 < j) do
// # invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
// # with Q: for all i: 0 <= i < n: key < a[i]
// # where a stands for the array and assuming that the (inexisting)
// # element a[n] is infinitely big.
// int h = (i + j) >> 1
// # i < h < j
// if (key < array[h].fast_match())
// then [j = h]
// else [i = h]
// end
// # R: a[i] <= key < a[i+1] or Q
// # (i.e., if key is within array, i is the correct index)
// return i
// binary_search end
// Register allocation
const Register key = x10; // already set (tosca)
const Register array = x11;
const Register i = x12;
const Register j = x13;
const Register h = x14;
const Register temp = x15;
// Find array start
__ la(array, at_bcp(3 * BytesPerInt)); // btw: should be able to
// get rid of this
// instruction (change
// offsets below)
__ andi(array, array, -BytesPerInt);
// Initialize i & j
__ mv(i, zr); // i = 0
__ lwu(j, Address(array, -BytesPerInt)); // j = length(array)
// Convert j into native byteordering
__ revb_w(j, j);
// And start
Label entry;
__ j(entry);
// binary search loop
{
Label loop;
__ bind(loop);
__ addw(h, i, j); // h = i + j
__ srliw(h, h, 1); // h = (i + j) >> 1
// if [key < array[h].fast_match()]
// then [j = h]
// else [i = h]
// Convert array[h].match to native byte-ordering before compare
__ shadd(temp, h, array, temp, 3);
__ lwu(temp, Address(temp, 0));
__ revb_w_w(temp, temp); // reverse bytes in word (32bit) and sign-extend
Label L_done, L_greater;
__ bge(key, temp, L_greater);
// if [key < array[h].fast_match()] then j = h
__ mv(j, h);
__ j(L_done);
__ bind(L_greater);
// if [key >= array[h].fast_match()] then i = h
__ mv(i, h);
__ bind(L_done);
// while [i + 1 < j]
__ bind(entry);
__ addiw(h, i, 1); // i + 1
__ blt(h, j, loop); // i + 1 < j
}
// end of binary search, result index is i (must check again!)
Label default_case;
// Convert array[i].match to native byte-ordering before compare
__ shadd(temp, i, array, temp, 3);
__ lwu(temp, Address(temp, 0));
__ revb_w_w(temp, temp); // reverse bytes in word (32bit) and sign-extend
__ bne(key, temp, default_case);
// entry found -> j = offset
__ shadd(temp, i, array, temp, 3);
__ lwu(j, Address(temp, BytesPerInt));
__ profile_switch_case(i, key, array);
__ revb_w_w(j, j); // reverse bytes in word (32bit) and sign-extend
__ add(temp, xbcp, j);
__ load_unsigned_byte(t0, Address(temp, 0));
__ add(xbcp, xbcp, j);
__ la(xbcp, Address(xbcp, 0));
__ dispatch_only(vtos, /*generate_poll*/true);
// default case -> j = default offset
__ bind(default_case);
__ profile_switch_default(i);
__ lwu(j, Address(array, -2 * BytesPerInt));
__ revb_w_w(j, j); // reverse bytes in word (32bit) and sign-extend
__ add(temp, xbcp, j);
__ load_unsigned_byte(t0, Address(temp, 0));
__ add(xbcp, xbcp, j);
__ la(xbcp, Address(xbcp, 0));
__ dispatch_only(vtos, /*generate_poll*/true);
}
void TemplateTable::_return(TosState state) {
transition(state, state);
assert(_desc->calls_vm(),
"inconsistent calls_vm information"); // call in remove_activation
if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
assert(state == vtos, "only valid state");
__ ld(c_rarg1, aaddress(0));
__ load_klass(x13, c_rarg1);
__ lwu(x13, Address(x13, Klass::access_flags_offset()));
Label skip_register_finalizer;
__ test_bit(t0, x13, exact_log2(JVM_ACC_HAS_FINALIZER));
__ beqz(t0, skip_register_finalizer);
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1);
__ bind(skip_register_finalizer);
}
// Issue a StoreStore barrier after all stores but before return
// from any constructor for any class with a final field. We don't
// know if this is a finalizer, so we always do so.
if (_desc->bytecode() == Bytecodes::_return) {
__ membar(MacroAssembler::StoreStore);
}
// Narrow result if state is itos but result type is smaller.
// Need to narrow in the return bytecode rather than in generate_return_entry
// since compiled code callers expect the result to already be narrowed.
if (state == itos) {
__ narrow(x10);
}
__ remove_activation(state);
__ ret();
}
// ----------------------------------------------------------------------------
// Volatile variables demand their effects be made known to all CPU's
// in order. Store buffers on most chips allow reads & writes to
// reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
// without some kind of memory barrier (i.e., it's not sufficient that
// the interpreter does not reorder volatile references, the hardware
// also must not reorder them).
//
// According to the new Java Memory Model (JMM):
// (1) All volatiles are serialized wrt to each other. ALSO reads &
// writes act as acquire & release, so:
// (2) A read cannot let unrelated NON-volatile memory refs that
// happen after the read float up to before the read. It's OK for
// non-volatile memory refs that happen before the volatile read to
// float down below it.
// (3) Similar a volatile write cannot let unrelated NON-volatile
// memory refs that happen BEFORE the write float down to after the
// write. It's OK for non-volatile memory refs that happen after the
// volatile write to float up before it.
//
// We only put in barriers around volatile refs (they are expensive),
// not _between_ memory refs (that would require us to track the
// flavor of the previous memory refs). Requirements (2) and (3)
// require some barriers before volatile stores and after volatile
// loads. These nearly cover requirement (1) but miss the
// volatile-store-volatile-load case. This final case is placed after
// volatile-stores although it could just as well go before
// volatile-loads.
void TemplateTable::resolve_cache_and_index(int byte_no,
Register Rcache,
Register index,
size_t index_size) {
const Register temp = x9;
assert_different_registers(Rcache, index, temp);
Label resolved, clinit_barrier_slow;
Bytecodes::Code code = bytecode();
switch (code) {
case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break;
case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break;
default: break;
}
assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
__ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, temp, byte_no, 1, index_size);
__ mv(t0, (int) code);
__ beq(temp, t0, resolved);
// resolve first time through
// Class initialization barrier slow path lands here as well.
__ bind(clinit_barrier_slow);
address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
__ mv(temp, (int) code);
__ call_VM(noreg, entry, temp);
// Update registers with resolved info
__ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
// n.b. unlike x86 Rcache is now rcpool plus the indexed offset
// so all clients ofthis method must be modified accordingly
__ bind(resolved);
// Class initialization barrier for static methods
if (VM_Version::supports_fast_class_init_checks() && bytecode() == Bytecodes::_invokestatic) {
__ load_resolved_method_at_index(byte_no, temp, Rcache);
__ load_method_holder(temp, temp);
__ clinit_barrier(temp, t0, nullptr, &clinit_barrier_slow);
}
}
// The Rcache and index registers must be set before call
// n.b unlike x86 cache already includes the index offset
void TemplateTable::load_field_cp_cache_entry(Register obj,
Register cache,
Register index,
Register off,
Register flags,
bool is_static = false) {
assert_different_registers(cache, index, flags, off);
ByteSize cp_base_offset = ConstantPoolCache::base_offset();
// Field offset
__ ld(off, Address(cache, in_bytes(cp_base_offset +
ConstantPoolCacheEntry::f2_offset())));
// Flags
__ lwu(flags, Address(cache, in_bytes(cp_base_offset +
ConstantPoolCacheEntry::flags_offset())));
// klass overwrite register
if (is_static) {
__ ld(obj, Address(cache, in_bytes(cp_base_offset +
ConstantPoolCacheEntry::f1_offset())));
const int mirror_offset = in_bytes(Klass::java_mirror_offset());
__ ld(obj, Address(obj, mirror_offset));
__ resolve_oop_handle(obj, x15, t1);
}
}
// The xmethod register is input and overwritten to be the adapter method for the
// indy call. Return address (ra) is set to the return address for the adapter and
// an appendix may be pushed to the stack. Registers x10-x13 are clobbered.
void TemplateTable::load_invokedynamic_entry(Register method) {
// setup registers
const Register appendix = x10;
const Register cache = x12;
const Register index = x13;
assert_different_registers(method, appendix, cache, index, xcpool);
__ save_bcp();
Label resolved;
__ load_resolved_indy_entry(cache, index);
__ membar(MacroAssembler::AnyAny);
__ ld(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset())));
__ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
// Compare the method to zero
__ bnez(method, resolved);
Bytecodes::Code code = bytecode();
// Call to the interpreter runtime to resolve invokedynamic
address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
__ mv(method, code); // this is essentially Bytecodes::_invokedynamic
__ call_VM(noreg, entry, method);
// Update registers with resolved info
__ load_resolved_indy_entry(cache, index);
__ membar(MacroAssembler::AnyAny);
__ ld(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset())));
__ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
#ifdef ASSERT
__ bnez(method, resolved);
__ stop("Should be resolved by now");
#endif // ASSERT
__ bind(resolved);
Label L_no_push;
// Check if there is an appendix
__ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::flags_offset())));
__ test_bit(t0, index, ResolvedIndyEntry::has_appendix_shift);
__ beqz(t0, L_no_push);
// Get appendix
__ load_unsigned_short(index, Address(cache, in_bytes(ResolvedIndyEntry::resolved_references_index_offset())));
// Push the appendix as a trailing parameter
// since the parameter_size includes it.
__ push_reg(method);
__ mv(method, index);
__ load_resolved_reference_at_index(appendix, method);
__ verify_oop(appendix);
__ pop_reg(method);
__ push_reg(appendix); // push appendix (MethodType, CallSite, etc.)
__ bind(L_no_push);
// compute return type
__ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::result_type_offset())));
// load return address
// Return address is loaded into ra and not pushed to the stack like x86
{
const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
__ mv(t0, table_addr);
__ shadd(t0, index, t0, index, 3);
__ ld(ra, Address(t0, 0));
}
}
void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
Register method,
Register itable_index,
Register flags,
bool is_invokevirtual,
bool is_invokevfinal, /*unused*/
bool is_invokedynamic /*unused*/) {
// setup registers
const Register cache = t1;
const Register index = x14;
assert_different_registers(method, flags);
assert_different_registers(method, cache, index);
assert_different_registers(itable_index, flags);
assert_different_registers(itable_index, cache, index);
// determine constant pool cache field offsets
assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
const int method_offset = in_bytes(ConstantPoolCache::base_offset() +
(is_invokevirtual ?
ConstantPoolCacheEntry::f2_offset() :
ConstantPoolCacheEntry::f1_offset()));
const int flags_offset = in_bytes(ConstantPoolCache::base_offset() +
ConstantPoolCacheEntry::flags_offset());
// access constant pool cache fields
const int index_offset = in_bytes(ConstantPoolCache::base_offset() +
ConstantPoolCacheEntry::f2_offset());
size_t index_size = sizeof(u2);
resolve_cache_and_index(byte_no, cache, index, index_size);
__ ld(method, Address(cache, method_offset));
if (itable_index != noreg) {
__ ld(itable_index, Address(cache, index_offset));
}
__ lwu(flags, Address(cache, flags_offset));
}
// The registers cache and index expected to be set before call.
// Correct values of the cache and index registers are preserved.
void TemplateTable::jvmti_post_field_access(Register cache, Register index,
bool is_static, bool has_tos) {
// do the JVMTI work here to avoid disturbing the register state below
// We use c_rarg registers here because we want to use the register used in
// the call to the VM
if (JvmtiExport::can_post_field_access()) {
// Check to see if a field access watch has been set before we
// take the time to call into the VM.
Label L1;
assert_different_registers(cache, index, x10);
ExternalAddress target((address) JvmtiExport::get_field_access_count_addr());
__ relocate(target.rspec(), [&] {
int32_t offset;
__ la_patchable(t0, target, offset);
__ lwu(x10, Address(t0, offset));
});
__ beqz(x10, L1);
__ get_cache_and_index_at_bcp(c_rarg2, c_rarg3, 1);
__ la(c_rarg2, Address(c_rarg2, in_bytes(ConstantPoolCache::base_offset())));
if (is_static) {
__ mv(c_rarg1, zr); // null object reference
} else {
__ ld(c_rarg1, at_tos()); // get object pointer without popping it
__ verify_oop(c_rarg1);
}
// c_rarg1: object pointer or null
// c_rarg2: cache entry pointer
// c_rarg3: jvalue object on the stack
__ call_VM(noreg, CAST_FROM_FN_PTR(address,
InterpreterRuntime::post_field_access),
c_rarg1, c_rarg2, c_rarg3);
__ get_cache_and_index_at_bcp(cache, index, 1);
__ bind(L1);
}
}
void TemplateTable::pop_and_check_object(Register r) {
__ pop_ptr(r);
__ null_check(r); // for field access must check obj.
__ verify_oop(r);
}
void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
const Register cache = x12;
const Register index = x13;
const Register obj = x14;
const Register off = x9;
const Register flags = x10;
const Register raw_flags = x16;
const Register bc = x14; // uses same reg as obj, so don't mix them
resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
jvmti_post_field_access(cache, index, is_static, false);
load_field_cp_cache_entry(obj, cache, index, off, raw_flags, is_static);
if (!is_static) {
// obj is on the stack
pop_and_check_object(obj);
}
__ add(off, obj, off);
const Address field(off);
Label Done, notByte, notBool, notInt, notShort, notChar,
notLong, notFloat, notObj, notDouble;
__ slli(flags, raw_flags, XLEN - (ConstantPoolCacheEntry::tos_state_shift +
ConstantPoolCacheEntry::tos_state_bits));
__ srli(flags, flags, XLEN - ConstantPoolCacheEntry::tos_state_bits);
assert(btos == 0, "change code, btos != 0");
__ bnez(flags, notByte);
// Don't rewrite getstatic, only getfield
if (is_static) {
rc = may_not_rewrite;
}
// btos
__ access_load_at(T_BYTE, IN_HEAP, x10, field, noreg, noreg);
__ push(btos);
// Rewrite bytecode to be faster
if (rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_bgetfield, bc, x11);
}
__ j(Done);
__ bind(notByte);
__ sub(t0, flags, (u1)ztos);
__ bnez(t0, notBool);
// ztos (same code as btos)
__ access_load_at(T_BOOLEAN, IN_HEAP, x10, field, noreg, noreg);
__ push(ztos);
// Rewrite bytecode to be faster
if (rc == may_rewrite) {
// uses btos rewriting, no truncating to t/f bit is needed for getfield
patch_bytecode(Bytecodes::_fast_bgetfield, bc, x11);
}
__ j(Done);
__ bind(notBool);
__ sub(t0, flags, (u1)atos);
__ bnez(t0, notObj);
// atos
do_oop_load(_masm, field, x10, IN_HEAP);
__ push(atos);
if (rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_agetfield, bc, x11);
}
__ j(Done);
__ bind(notObj);
__ sub(t0, flags, (u1)itos);
__ bnez(t0, notInt);
// itos
__ access_load_at(T_INT, IN_HEAP, x10, field, noreg, noreg);
__ sign_extend(x10, x10, 32);
__ push(itos);
// Rewrite bytecode to be faster
if (rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_igetfield, bc, x11);
}
__ j(Done);
__ bind(notInt);
__ sub(t0, flags, (u1)ctos);
__ bnez(t0, notChar);
// ctos
__ access_load_at(T_CHAR, IN_HEAP, x10, field, noreg, noreg);
__ push(ctos);
// Rewrite bytecode to be faster
if (rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_cgetfield, bc, x11);
}
__ j(Done);
__ bind(notChar);
__ sub(t0, flags, (u1)stos);
__ bnez(t0, notShort);
// stos
__ access_load_at(T_SHORT, IN_HEAP, x10, field, noreg, noreg);
__ push(stos);
// Rewrite bytecode to be faster
if (rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_sgetfield, bc, x11);
}
__ j(Done);
__ bind(notShort);
__ sub(t0, flags, (u1)ltos);
__ bnez(t0, notLong);
// ltos
__ access_load_at(T_LONG, IN_HEAP, x10, field, noreg, noreg);
__ push(ltos);
// Rewrite bytecode to be faster
if (rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_lgetfield, bc, x11);
}
__ j(Done);
__ bind(notLong);
__ sub(t0, flags, (u1)ftos);
__ bnez(t0, notFloat);
// ftos
__ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg);
__ push(ftos);
// Rewrite bytecode to be faster
if (rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_fgetfield, bc, x11);
}
__ j(Done);
__ bind(notFloat);
#ifdef ASSERT
__ sub(t0, flags, (u1)dtos);
__ bnez(t0, notDouble);
#endif
// dtos
__ access_load_at(T_DOUBLE, IN_HEAP, noreg /* ftos */, field, noreg, noreg);
__ push(dtos);
// Rewrite bytecode to be faster
if (rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_dgetfield, bc, x11);
}
#ifdef ASSERT
__ j(Done);
__ bind(notDouble);
__ stop("Bad state");
#endif
__ bind(Done);
Label notVolatile;
__ test_bit(t0, raw_flags, ConstantPoolCacheEntry::is_volatile_shift);
__ beqz(t0, notVolatile);
__ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
__ bind(notVolatile);
}
void TemplateTable::getfield(int byte_no) {
getfield_or_static(byte_no, false);
}
void TemplateTable::nofast_getfield(int byte_no) {
getfield_or_static(byte_no, false, may_not_rewrite);
}
void TemplateTable::getstatic(int byte_no)
{
getfield_or_static(byte_no, true);
}
// The registers cache and index expected to be set before call.
// The function may destroy various registers, just not the cache and index registers.
void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
transition(vtos, vtos);
ByteSize cp_base_offset = ConstantPoolCache::base_offset();
if (JvmtiExport::can_post_field_modification()) {
// Check to see if a field modification watch has been set before
// we take the time to call into the VM.
Label L1;
assert_different_registers(cache, index, x10);
ExternalAddress target((address)JvmtiExport::get_field_modification_count_addr());
__ relocate(target.rspec(), [&] {
int32_t offset;
__ la_patchable(t0, target, offset);
__ lwu(x10, Address(t0, offset));
});
__ beqz(x10, L1);
__ get_cache_and_index_at_bcp(c_rarg2, t0, 1);
if (is_static) {
// Life is simple. Null out the object pointer.
__ mv(c_rarg1, zr);
} else {
// Life is harder. The stack holds the value on top, followed by
// the object. We don't know the size of the value, though; it
// could be one or two words depending on its type. As a result,
// we must find the type to determine where the object is.
__ lwu(c_rarg3, Address(c_rarg2,
in_bytes(cp_base_offset +
ConstantPoolCacheEntry::flags_offset())));
__ srli(c_rarg3, c_rarg3, ConstantPoolCacheEntry::tos_state_shift);
ConstantPoolCacheEntry::verify_tos_state_shift();
Label nope2, done, ok;
__ ld(c_rarg1, at_tos_p1()); // initially assume a one word jvalue
__ sub(t0, c_rarg3, ltos);
__ beqz(t0, ok);
__ sub(t0, c_rarg3, dtos);
__ bnez(t0, nope2);
__ bind(ok);
__ ld(c_rarg1, at_tos_p2()); // ltos (two word jvalue);
__ bind(nope2);
}
// cache entry pointer
__ add(c_rarg2, c_rarg2, in_bytes(cp_base_offset));
// object (tos)
__ mv(c_rarg3, esp);
// c_rarg1: object pointer set up above (null if static)
// c_rarg2: cache entry pointer
// c_rarg3: jvalue object on the stack
__ call_VM(noreg,
CAST_FROM_FN_PTR(address,
InterpreterRuntime::post_field_modification),
c_rarg1, c_rarg2, c_rarg3);
__ get_cache_and_index_at_bcp(cache, index, 1);
__ bind(L1);
}
}
void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
transition(vtos, vtos);
const Register cache = x12;
const Register index = x13;
const Register obj = x12;
const Register off = x9;
const Register flags = x10;
const Register bc = x14;
resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
jvmti_post_field_mod(cache, index, is_static);
load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
Label Done;
__ mv(x15, flags);
{
Label notVolatile;
__ test_bit(t0, x15, ConstantPoolCacheEntry::is_volatile_shift);
__ beqz(t0, notVolatile);
__ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore);
__ bind(notVolatile);
}
Label notByte, notBool, notInt, notShort, notChar,
notLong, notFloat, notObj, notDouble;
__ slli(flags, flags, XLEN - (ConstantPoolCacheEntry::tos_state_shift +
ConstantPoolCacheEntry::tos_state_bits));
__ srli(flags, flags, XLEN - ConstantPoolCacheEntry::tos_state_bits);
assert(btos == 0, "change code, btos != 0");
__ bnez(flags, notByte);
// Don't rewrite putstatic, only putfield
if (is_static) {
rc = may_not_rewrite;
}
// btos
{
__ pop(btos);
// field address
if (!is_static) {
pop_and_check_object(obj);
}
__ add(off, obj, off); // if static, obj from cache, else obj from stack.
const Address field(off, 0); // off register as temparator register.
__ access_store_at(T_BYTE, IN_HEAP, field, x10, noreg, noreg, noreg);
if (rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_bputfield, bc, x11, true, byte_no);
}
__ j(Done);
}
__ bind(notByte);
__ sub(t0, flags, (u1)ztos);
__ bnez(t0, notBool);
// ztos
{
__ pop(ztos);
// field address
if (!is_static) {
pop_and_check_object(obj);
}
__ add(off, obj, off); // if static, obj from cache, else obj from stack.
const Address field(off, 0);
__ access_store_at(T_BOOLEAN, IN_HEAP, field, x10, noreg, noreg, noreg);
if (rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_zputfield, bc, x11, true, byte_no);
}
__ j(Done);
}
__ bind(notBool);
__ sub(t0, flags, (u1)atos);
__ bnez(t0, notObj);
// atos
{
__ pop(atos);
// field address
if (!is_static) {
pop_and_check_object(obj);
}
__ add(off, obj, off); // if static, obj from cache, else obj from stack.
const Address field(off, 0);
// Store into the field
do_oop_store(_masm, field, x10, IN_HEAP);
if (rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_aputfield, bc, x11, true, byte_no);
}
__ j(Done);
}
__ bind(notObj);
__ sub(t0, flags, (u1)itos);
__ bnez(t0, notInt);
// itos
{
__ pop(itos);
// field address
if (!is_static) {
pop_and_check_object(obj);
}
__ add(off, obj, off); // if static, obj from cache, else obj from stack.
const Address field(off, 0);
__ access_store_at(T_INT, IN_HEAP, field, x10, noreg, noreg, noreg);
if (rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_iputfield, bc, x11, true, byte_no);
}
__ j(Done);
}
__ bind(notInt);
__ sub(t0, flags, (u1)ctos);
__ bnez(t0, notChar);
// ctos
{
__ pop(ctos);
// field address
if (!is_static) {
pop_and_check_object(obj);
}
__ add(off, obj, off); // if static, obj from cache, else obj from stack.
const Address field(off, 0);
__ access_store_at(T_CHAR, IN_HEAP, field, x10, noreg, noreg, noreg);
if (rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_cputfield, bc, x11, true, byte_no);
}
__ j(Done);
}
__ bind(notChar);
__ sub(t0, flags, (u1)stos);
__ bnez(t0, notShort);
// stos
{
__ pop(stos);
// field address
if (!is_static) {
pop_and_check_object(obj);
}
__ add(off, obj, off); // if static, obj from cache, else obj from stack.
const Address field(off, 0);
__ access_store_at(T_SHORT, IN_HEAP, field, x10, noreg, noreg, noreg);
if (rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_sputfield, bc, x11, true, byte_no);
}
__ j(Done);
}
__ bind(notShort);
__ sub(t0, flags, (u1)ltos);
__ bnez(t0, notLong);
// ltos
{
__ pop(ltos);
// field address
if (!is_static) {
pop_and_check_object(obj);
}
__ add(off, obj, off); // if static, obj from cache, else obj from stack.
const Address field(off, 0);
__ access_store_at(T_LONG, IN_HEAP, field, x10, noreg, noreg, noreg);
if (rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_lputfield, bc, x11, true, byte_no);
}
__ j(Done);
}
__ bind(notLong);
__ sub(t0, flags, (u1)ftos);
__ bnez(t0, notFloat);
// ftos
{
__ pop(ftos);
// field address
if (!is_static) {
pop_and_check_object(obj);
}
__ add(off, obj, off); // if static, obj from cache, else obj from stack.
const Address field(off, 0);
__ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg, noreg);
if (rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_fputfield, bc, x11, true, byte_no);
}
__ j(Done);
}
__ bind(notFloat);
#ifdef ASSERT
__ sub(t0, flags, (u1)dtos);
__ bnez(t0, notDouble);
#endif
// dtos
{
__ pop(dtos);
// field address
if (!is_static) {
pop_and_check_object(obj);
}
__ add(off, obj, off); // if static, obj from cache, else obj from stack.
const Address field(off, 0);
__ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos */, noreg, noreg, noreg);
if (rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_dputfield, bc, x11, true, byte_no);
}
}
#ifdef ASSERT
__ j(Done);
__ bind(notDouble);
__ stop("Bad state");
#endif
__ bind(Done);
{
Label notVolatile;
__ test_bit(t0, x15, ConstantPoolCacheEntry::is_volatile_shift);
__ beqz(t0, notVolatile);
__ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore);
__ bind(notVolatile);
}
}
void TemplateTable::putfield(int byte_no) {
putfield_or_static(byte_no, false);
}
void TemplateTable::nofast_putfield(int byte_no) {
putfield_or_static(byte_no, false, may_not_rewrite);
}
void TemplateTable::putstatic(int byte_no) {
putfield_or_static(byte_no, true);
}
void TemplateTable::jvmti_post_fast_field_mod() {
if (JvmtiExport::can_post_field_modification()) {
// Check to see if a field modification watch has been set before
// we take the time to call into the VM.
Label L2;
ExternalAddress target((address)JvmtiExport::get_field_modification_count_addr());
__ relocate(target.rspec(), [&] {
int32_t offset;
__ la_patchable(t0, target, offset);
__ lwu(c_rarg3, Address(t0, offset));
});
__ beqz(c_rarg3, L2);
__ pop_ptr(x9); // copy the object pointer from tos
__ verify_oop(x9);
__ push_ptr(x9); // put the object pointer back on tos
// Save tos values before call_VM() clobbers them. Since we have
// to do it for every data type, we use the saved values as the
// jvalue object.
switch (bytecode()) { // load values into the jvalue object
case Bytecodes::_fast_aputfield: __ push_ptr(x10); break;
case Bytecodes::_fast_bputfield: // fall through
case Bytecodes::_fast_zputfield: // fall through
case Bytecodes::_fast_sputfield: // fall through
case Bytecodes::_fast_cputfield: // fall through
case Bytecodes::_fast_iputfield: __ push_i(x10); break;
case Bytecodes::_fast_dputfield: __ push_d(); break;
case Bytecodes::_fast_fputfield: __ push_f(); break;
case Bytecodes::_fast_lputfield: __ push_l(x10); break;
default:
ShouldNotReachHere();
}
__ mv(c_rarg3, esp); // points to jvalue on the stack
// access constant pool cache entry
__ get_cache_entry_pointer_at_bcp(c_rarg2, x10, 1);
__ verify_oop(x9);
// x9: object pointer copied above
// c_rarg2: cache entry pointer
// c_rarg3: jvalue object on the stack
__ call_VM(noreg,
CAST_FROM_FN_PTR(address,
InterpreterRuntime::post_field_modification),
x9, c_rarg2, c_rarg3);
switch (bytecode()) { // restore tos values
case Bytecodes::_fast_aputfield: __ pop_ptr(x10); break;
case Bytecodes::_fast_bputfield: // fall through
case Bytecodes::_fast_zputfield: // fall through
case Bytecodes::_fast_sputfield: // fall through
case Bytecodes::_fast_cputfield: // fall through
case Bytecodes::_fast_iputfield: __ pop_i(x10); break;
case Bytecodes::_fast_dputfield: __ pop_d(); break;
case Bytecodes::_fast_fputfield: __ pop_f(); break;
case Bytecodes::_fast_lputfield: __ pop_l(x10); break;
default: break;
}
__ bind(L2);
}
}
void TemplateTable::fast_storefield(TosState state) {
transition(state, vtos);
ByteSize base = ConstantPoolCache::base_offset();
jvmti_post_fast_field_mod();
// access constant pool cache
__ get_cache_and_index_at_bcp(x12, x11, 1);
// Must prevent reordering of the following cp cache loads with bytecode load
__ membar(MacroAssembler::LoadLoad);
// test for volatile with x13
__ lwu(x13, Address(x12, in_bytes(base +
ConstantPoolCacheEntry::flags_offset())));
// replace index with field offset from cache entry
__ ld(x11, Address(x12, in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
{
Label notVolatile;
__ test_bit(t0, x13, ConstantPoolCacheEntry::is_volatile_shift);
__ beqz(t0, notVolatile);
__ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore);
__ bind(notVolatile);
}
// Get object from stack
pop_and_check_object(x12);
// field address
__ add(x11, x12, x11);
const Address field(x11, 0);
// access field
switch (bytecode()) {
case Bytecodes::_fast_aputfield:
do_oop_store(_masm, field, x10, IN_HEAP);
break;
case Bytecodes::_fast_lputfield:
__ access_store_at(T_LONG, IN_HEAP, field, x10, noreg, noreg, noreg);
break;
case Bytecodes::_fast_iputfield:
__ access_store_at(T_INT, IN_HEAP, field, x10, noreg, noreg, noreg);
break;
case Bytecodes::_fast_zputfield:
__ access_store_at(T_BOOLEAN, IN_HEAP, field, x10, noreg, noreg, noreg);
break;
case Bytecodes::_fast_bputfield:
__ access_store_at(T_BYTE, IN_HEAP, field, x10, noreg, noreg, noreg);
break;
case Bytecodes::_fast_sputfield:
__ access_store_at(T_SHORT, IN_HEAP, field, x10, noreg, noreg, noreg);
break;
case Bytecodes::_fast_cputfield:
__ access_store_at(T_CHAR, IN_HEAP, field, x10, noreg, noreg, noreg);
break;
case Bytecodes::_fast_fputfield:
__ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg, noreg);
break;
case Bytecodes::_fast_dputfield:
__ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos */, noreg, noreg, noreg);
break;
default:
ShouldNotReachHere();
}
{
Label notVolatile;
__ test_bit(t0, x13, ConstantPoolCacheEntry::is_volatile_shift);
__ beqz(t0, notVolatile);
__ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore);
__ bind(notVolatile);
}
}
void TemplateTable::fast_accessfield(TosState state) {
transition(atos, state);
// Do the JVMTI work here to avoid disturbing the register state below
if (JvmtiExport::can_post_field_access()) {
// Check to see if a field access watch has been set before we
// take the time to call into the VM.
Label L1;
ExternalAddress target((address)JvmtiExport::get_field_access_count_addr());
__ relocate(target.rspec(), [&] {
int32_t offset;
__ la_patchable(t0, target, offset);
__ lwu(x12, Address(t0, offset));
});
__ beqz(x12, L1);
// access constant pool cache entry
__ get_cache_entry_pointer_at_bcp(c_rarg2, t1, 1);
__ verify_oop(x10);
__ push_ptr(x10); // save object pointer before call_VM() clobbers it
__ mv(c_rarg1, x10);
// c_rarg1: object pointer copied above
// c_rarg2: cache entry pointer
__ call_VM(noreg,
CAST_FROM_FN_PTR(address,
InterpreterRuntime::post_field_access),
c_rarg1, c_rarg2);
__ pop_ptr(x10); // restore object pointer
__ bind(L1);
}
// access constant pool cache
__ get_cache_and_index_at_bcp(x12, x11, 1);
// Must prevent reordering of the following cp cache loads with bytecode load
__ membar(MacroAssembler::LoadLoad);
__ ld(x11, Address(x12, in_bytes(ConstantPoolCache::base_offset() +
ConstantPoolCacheEntry::f2_offset())));
__ lwu(x13, Address(x12, in_bytes(ConstantPoolCache::base_offset() +
ConstantPoolCacheEntry::flags_offset())));
// x10: object
__ verify_oop(x10);
__ null_check(x10);
__ add(x11, x10, x11);
const Address field(x11, 0);
// access field
switch (bytecode()) {
case Bytecodes::_fast_agetfield:
do_oop_load(_masm, field, x10, IN_HEAP);
__ verify_oop(x10);
break;
case Bytecodes::_fast_lgetfield:
__ access_load_at(T_LONG, IN_HEAP, x10, field, noreg, noreg);
break;
case Bytecodes::_fast_igetfield:
__ access_load_at(T_INT, IN_HEAP, x10, field, noreg, noreg);
__ sign_extend(x10, x10, 32);
break;
case Bytecodes::_fast_bgetfield:
__ access_load_at(T_BYTE, IN_HEAP, x10, field, noreg, noreg);
break;
case Bytecodes::_fast_sgetfield:
__ access_load_at(T_SHORT, IN_HEAP, x10, field, noreg, noreg);
break;
case Bytecodes::_fast_cgetfield:
__ access_load_at(T_CHAR, IN_HEAP, x10, field, noreg, noreg);
break;
case Bytecodes::_fast_fgetfield:
__ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg);
break;
case Bytecodes::_fast_dgetfield:
__ access_load_at(T_DOUBLE, IN_HEAP, noreg /* dtos */, field, noreg, noreg);
break;
default:
ShouldNotReachHere();
}
{
Label notVolatile;
__ test_bit(t0, x13, ConstantPoolCacheEntry::is_volatile_shift);
__ beqz(t0, notVolatile);
__ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
__ bind(notVolatile);
}
}
void TemplateTable::fast_xaccess(TosState state) {
transition(vtos, state);
// get receiver
__ ld(x10, aaddress(0));
// access constant pool cache
__ get_cache_and_index_at_bcp(x12, x13, 2);
__ ld(x11, Address(x12, in_bytes(ConstantPoolCache::base_offset() +
ConstantPoolCacheEntry::f2_offset())));
// make sure exception is reported in correct bcp range (getfield is
// next instruction)
__ addi(xbcp, xbcp, 1);
__ null_check(x10);
switch (state) {
case itos:
__ add(x10, x10, x11);
__ access_load_at(T_INT, IN_HEAP, x10, Address(x10, 0), noreg, noreg);
__ sign_extend(x10, x10, 32);
break;
case atos:
__ add(x10, x10, x11);
do_oop_load(_masm, Address(x10, 0), x10, IN_HEAP);
__ verify_oop(x10);
break;
case ftos:
__ add(x10, x10, x11);
__ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, Address(x10), noreg, noreg);
break;
default:
ShouldNotReachHere();
}
{
Label notVolatile;
__ lwu(x13, Address(x12, in_bytes(ConstantPoolCache::base_offset() +
ConstantPoolCacheEntry::flags_offset())));
__ test_bit(t0, x13, ConstantPoolCacheEntry::is_volatile_shift);
__ beqz(t0, notVolatile);
__ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
__ bind(notVolatile);
}
__ sub(xbcp, xbcp, 1);
}
//-----------------------------------------------------------------------------
// Calls
void TemplateTable::prepare_invoke(int byte_no,
Register method, // linked method (or i-klass)
Register index, // itable index, MethodType, etc.
Register recv, // if caller wants to see it
Register flags // if caller wants to test it
) {
// determine flags
const Bytecodes::Code code = bytecode();
const bool is_invokeinterface = code == Bytecodes::_invokeinterface;
const bool is_invokedynamic = code == Bytecodes::_invokedynamic;
const bool is_invokehandle = code == Bytecodes::_invokehandle;
const bool is_invokevirtual = code == Bytecodes::_invokevirtual;
const bool is_invokespecial = code == Bytecodes::_invokespecial;
const bool load_receiver = (recv != noreg);
const bool save_flags = (flags != noreg);
assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
assert(save_flags == (is_invokeinterface || is_invokevirtual), "need flags for vfinal");
assert(flags == noreg || flags == x13, "");
assert(recv == noreg || recv == x12, "");
// setup registers & access constant pool cache
if (recv == noreg) {
recv = x12;
}
if (flags == noreg) {
flags = x13;
}
assert_different_registers(method, index, recv, flags);
// save 'interpreter return address'
__ save_bcp();
load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
// maybe push appendix to arguments (just before return address)
if (is_invokehandle) {
Label L_no_push;
__ test_bit(t0, flags, ConstantPoolCacheEntry::has_appendix_shift);
__ beqz(t0, L_no_push);
// Push the appendix as a trailing parameter.
// This must be done before we get the receiver,
// since the parameter_size includes it.
__ push_reg(x9);
__ mv(x9, index);
__ load_resolved_reference_at_index(index, x9);
__ pop_reg(x9);
__ push_reg(index); // push appendix (MethodType, CallSite, etc.)
__ bind(L_no_push);
}
// load receiver if needed (note: no return address pushed yet)
if (load_receiver) {
__ andi(recv, flags, ConstantPoolCacheEntry::parameter_size_mask); // parameter_size_mask = 1 << 8
__ shadd(t0, recv, esp, t0, 3);
__ ld(recv, Address(t0, -Interpreter::expr_offset_in_bytes(1)));
__ verify_oop(recv);
}
// compute return type
__ slli(t1, flags, XLEN - (ConstantPoolCacheEntry::tos_state_shift + ConstantPoolCacheEntry::tos_state_bits));
__ srli(t1, t1, XLEN - ConstantPoolCacheEntry::tos_state_bits); // (1 << 5) - 4 --> 28~31==> t1:0~3
// load return address
{
const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
__ mv(t0, table_addr);
__ shadd(t0, t1, t0, t1, 3);
__ ld(ra, Address(t0, 0));
}
}
void TemplateTable::invokevirtual_helper(Register index,
Register recv,
Register flags) {
// Uses temporary registers x10, x13
assert_different_registers(index, recv, x10, x13);
// Test for an invoke of a final method
Label notFinal;
__ test_bit(t0, flags, ConstantPoolCacheEntry::is_vfinal_shift);
__ beqz(t0, notFinal);
const Register method = index; // method must be xmethod
assert(method == xmethod, "Method must be xmethod for interpreter calling convention");
// do the call - the index is actually the method to call
// that is, f2 is a vtable index if !is_vfinal, else f2 is a Method*
// It's final, need a null check here!
__ null_check(recv);
// profile this call
__ profile_final_call(x10);
__ profile_arguments_type(x10, method, x14, true);
__ jump_from_interpreted(method);
__ bind(notFinal);
// get receiver klass
__ load_klass(x10, recv);
// profile this call
__ profile_virtual_call(x10, xlocals, x13);
// get target Method & entry point
__ lookup_virtual_method(x10, index, method);
__ profile_arguments_type(x13, method, x14, true);
__ jump_from_interpreted(method);
}
void TemplateTable::invokevirtual(int byte_no) {
transition(vtos, vtos);
assert(byte_no == f2_byte, "use this argument");
prepare_invoke(byte_no, xmethod, noreg, x12, x13);
// xmethod: index (actually a Method*)
// x12: receiver
// x13: flags
invokevirtual_helper(xmethod, x12, x13);
}
void TemplateTable::invokespecial(int byte_no) {
transition(vtos, vtos);
assert(byte_no == f1_byte, "use this argument");
prepare_invoke(byte_no, xmethod, noreg, // get f1 Method*
x12); // get receiver also for null check
__ verify_oop(x12);
__ null_check(x12);
// do the call
__ profile_call(x10);
__ profile_arguments_type(x10, xmethod, xbcp, false);
__ jump_from_interpreted(xmethod);
}
void TemplateTable::invokestatic(int byte_no) {
transition(vtos, vtos);
assert(byte_no == f1_byte, "use this argument");
prepare_invoke(byte_no, xmethod); // get f1 Method*
// do the call
__ profile_call(x10);
__ profile_arguments_type(x10, xmethod, x14, false);
__ jump_from_interpreted(xmethod);
}
void TemplateTable::fast_invokevfinal(int byte_no) {
__ call_Unimplemented();
}
void TemplateTable::invokeinterface(int byte_no) {
transition(vtos, vtos);
assert(byte_no == f1_byte, "use this argument");
prepare_invoke(byte_no, x10, xmethod, // get f1 Klass*, f2 Method*
x12, x13); // recv, flags
// x10: interface klass (from f1)
// xmethod: method (from f2)
// x12: receiver
// x13: flags
// First check for Object case, then private interface method,
// then regular interface method.
// Special case of invokeinterface called for virtual method of
// java.lang.Object. See cpCache.cpp for details
Label notObjectMethod;
__ test_bit(t0, x13, ConstantPoolCacheEntry::is_forced_virtual_shift);
__ beqz(t0, notObjectMethod);
invokevirtual_helper(xmethod, x12, x13);
__ bind(notObjectMethod);
Label no_such_interface;
// Check for private method invocation - indicated by vfinal
Label notVFinal;
__ test_bit(t0, x13, ConstantPoolCacheEntry::is_vfinal_shift);
__ beqz(t0, notVFinal);
// Check receiver klass into x13
__ load_klass(x13, x12);
Label subtype;
__ check_klass_subtype(x13, x10, x14, subtype);
// If we get here the typecheck failed
__ j(no_such_interface);
__ bind(subtype);
__ profile_final_call(x10);
__ profile_arguments_type(x10, xmethod, x14, true);
__ jump_from_interpreted(xmethod);
__ bind(notVFinal);
// Get receiver klass into x13
__ restore_locals();
__ load_klass(x13, x12);
Label no_such_method;
// Preserve method for the throw_AbstractMethodErrorVerbose.
__ mv(x28, xmethod);
// Receiver subtype check against REFC.
// Superklass in x10. Subklass in x13. Blows t1, x30
__ lookup_interface_method(// inputs: rec. class, interface, itable index
x13, x10, noreg,
// outputs: scan temp. reg, scan temp. reg
t1, x30,
no_such_interface,
/*return_method=*/false);
// profile this call
__ profile_virtual_call(x13, x30, x9);
// Get declaring interface class from method, and itable index
__ load_method_holder(x10, xmethod);
__ lwu(xmethod, Address(xmethod, Method::itable_index_offset()));
__ subw(xmethod, xmethod, Method::itable_index_max);
__ negw(xmethod, xmethod);
// Preserve recvKlass for throw_AbstractMethodErrorVerbose
__ mv(xlocals, x13);
__ lookup_interface_method(// inputs: rec. class, interface, itable index
xlocals, x10, xmethod,
// outputs: method, scan temp. reg
xmethod, x30,
no_such_interface);
// xmethod: Method to call
// x12: receiver
// Check for abstract method error
// Note: This should be done more efficiently via a throw_abstract_method_error
// interpreter entry point and a conditional jump to it in case of a null
// method.
__ beqz(xmethod, no_such_method);
__ profile_arguments_type(x13, xmethod, x30, true);
// do the call
// x12: receiver
// xmethod: Method
__ jump_from_interpreted(xmethod);
__ should_not_reach_here();
// exception handling code follows ...
// note: must restore interpreter registers to canonical
// state for exception handling to work correctly!
__ bind(no_such_method);
// throw exception
__ restore_bcp(); // bcp must be correct for exception handler (was destroyed)
__ restore_locals(); // make sure locals pointer is correct as well (was destroyed)
// Pass arguments for generating a verbose error message.
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorVerbose), x13, x28);
// the call_VM checks for exception, so we should never return here.
__ should_not_reach_here();
__ bind(no_such_interface);
// throw exceptiong
__ restore_bcp(); // bcp must be correct for exception handler (was destroyed)
__ restore_locals(); // make sure locals pointer is correct as well (was destroyed)
// Pass arguments for generating a verbose error message.
__ call_VM(noreg, CAST_FROM_FN_PTR(address,
InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose), x13, x10);
// the call_VM checks for exception, so we should never return here.
__ should_not_reach_here();
return;
}
void TemplateTable::invokehandle(int byte_no) {
transition(vtos, vtos);
assert(byte_no == f1_byte, "use this argument");
prepare_invoke(byte_no, xmethod, x10, x12);
__ verify_method_ptr(x12);
__ verify_oop(x12);
__ null_check(x12);
// FIXME: profile the LambdaForm also
// x30 is safe to use here as a temp reg because it is about to
// be clobbered by jump_from_interpreted().
__ profile_final_call(x30);
__ profile_arguments_type(x30, xmethod, x14, true);
__ jump_from_interpreted(xmethod);
}
void TemplateTable::invokedynamic(int byte_no) {
transition(vtos, vtos);
assert(byte_no == f1_byte, "use this argument");
load_invokedynamic_entry(xmethod);
// x10: CallSite object (from cpool->resolved_references[])
// xmethod: MH.linkToCallSite method (from f2)
// Note: x10_callsite is already pushed by prepare_invoke
// %%% should make a type profile for any invokedynamic that takes a ref argument
// profile this call
__ profile_call(xbcp);
__ profile_arguments_type(x13, xmethod, x30, false);
__ verify_oop(x10);
__ jump_from_interpreted(xmethod);
}
//-----------------------------------------------------------------------------
// Allocation
void TemplateTable::_new() {
transition(vtos, atos);
__ get_unsigned_2_byte_index_at_bcp(x13, 1);
Label slow_case;
Label done;
Label initialize_header;
__ get_cpool_and_tags(x14, x10);
// Make sure the class we're about to instantiate has been resolved.
// This is done before loading InstanceKlass to be consistent with the order
// how Constant Pool is update (see ConstantPool::klass_at_put)
const int tags_offset = Array<u1>::base_offset_in_bytes();
__ add(t0, x10, x13);
__ la(t0, Address(t0, tags_offset));
__ membar(MacroAssembler::AnyAny);
__ lbu(t0, t0);
__ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
__ sub(t1, t0, (u1)JVM_CONSTANT_Class);
__ bnez(t1, slow_case);
// get InstanceKlass
__ load_resolved_klass_at_offset(x14, x13, x14, t0);
// make sure klass is initialized & doesn't have finalizer
// make sure klass is fully initialized
__ lbu(t0, Address(x14, InstanceKlass::init_state_offset()));
__ sub(t1, t0, (u1)InstanceKlass::fully_initialized);
__ bnez(t1, slow_case);
// get instance_size in InstanceKlass (scaled to a count of bytes)
__ lwu(x13, Address(x14, Klass::layout_helper_offset()));
// test to see if it has a finalizer or is malformed in some way
__ test_bit(t0, x13, exact_log2(Klass::_lh_instance_slow_path_bit));
__ bnez(t0, slow_case);
// Allocate the instance:
// If TLAB is enabled:
// Try to allocate in the TLAB.
// If fails, go to the slow path.
// Initialize the allocation.
// Exit.
// Go to slow path.
if (UseTLAB) {
__ tlab_allocate(x10, x13, 0, noreg, x11, slow_case);
if (ZeroTLAB) {
// the fields have been already cleared
__ j(initialize_header);
}
// The object is initialized before the header. If the object size is
// zero, go directly to the header initialization.
__ sub(x13, x13, sizeof(oopDesc));
__ beqz(x13, initialize_header);
// Initialize object fields
{
__ add(x12, x10, sizeof(oopDesc));
Label loop;
__ bind(loop);
__ sd(zr, Address(x12));
__ add(x12, x12, BytesPerLong);
__ sub(x13, x13, BytesPerLong);
__ bnez(x13, loop);
}
// initialize object hader only.
__ bind(initialize_header);
__ mv(t0, (intptr_t)markWord::prototype().value());
__ sd(t0, Address(x10, oopDesc::mark_offset_in_bytes()));
__ store_klass_gap(x10, zr); // zero klass gap for compressed oops
__ store_klass(x10, x14); // store klass last
{
SkipIfEqual skip(_masm, &DTraceAllocProbes, false);
// Trigger dtrace event for fastpath
__ push(atos); // save the return value
__ call_VM_leaf(CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)), x10);
__ pop(atos); // restore the return value
}
__ j(done);
}
// slow case
__ bind(slow_case);
__ get_constant_pool(c_rarg1);
__ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
call_VM(x10, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
__ verify_oop(x10);
// continue
__ bind(done);
// Must prevent reordering of stores for object initialization with stores that publish the new object.
__ membar(MacroAssembler::StoreStore);
}
void TemplateTable::newarray() {
transition(itos, atos);
__ load_unsigned_byte(c_rarg1, at_bcp(1));
__ mv(c_rarg2, x10);
call_VM(x10, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
c_rarg1, c_rarg2);
// Must prevent reordering of stores for object initialization with stores that publish the new object.
__ membar(MacroAssembler::StoreStore);
}
void TemplateTable::anewarray() {
transition(itos, atos);
__ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
__ get_constant_pool(c_rarg1);
__ mv(c_rarg3, x10);
call_VM(x10, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
c_rarg1, c_rarg2, c_rarg3);
// Must prevent reordering of stores for object initialization with stores that publish the new object.
__ membar(MacroAssembler::StoreStore);
}
void TemplateTable::arraylength() {
transition(atos, itos);
__ lwu(x10, Address(x10, arrayOopDesc::length_offset_in_bytes()));
}
void TemplateTable::checkcast() {
transition(atos, atos);
Label done, is_null, ok_is_subtype, quicked, resolved;
__ beqz(x10, is_null);
// Get cpool & tags index
__ get_cpool_and_tags(x12, x13); // x12=cpool, x13=tags array
__ get_unsigned_2_byte_index_at_bcp(x9, 1); // x9=index
// See if bytecode has already been quicked
__ add(t0, x13, Array<u1>::base_offset_in_bytes());
__ add(x11, t0, x9);
__ membar(MacroAssembler::AnyAny);
__ lbu(x11, x11);
__ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
__ sub(t0, x11, (u1)JVM_CONSTANT_Class);
__ beqz(t0, quicked);
__ push(atos); // save receiver for result, and for GC
call_VM(x10, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
// vm_result_2 has metadata result
__ get_vm_result_2(x10, xthread);
__ pop_reg(x13); // restore receiver
__ j(resolved);
// Get superklass in x10 and subklass in x13
__ bind(quicked);
__ mv(x13, x10); // Save object in x13; x10 needed for subtype check
__ load_resolved_klass_at_offset(x12, x9, x10, t0); // x10 = klass
__ bind(resolved);
__ load_klass(x9, x13);
// Generate subtype check. Blows x12, x15. Object in x13.
// Superklass in x10. Subklass in x9.
__ gen_subtype_check(x9, ok_is_subtype);
// Come here on failure
__ push_reg(x13);
// object is at TOS
__ j(Interpreter::_throw_ClassCastException_entry);
// Come here on success
__ bind(ok_is_subtype);
__ mv(x10, x13); // Restore object in x13
// Collect counts on whether this test sees nulls a lot or not.
if (ProfileInterpreter) {
__ j(done);
__ bind(is_null);
__ profile_null_seen(x12);
} else {
__ bind(is_null); // same as 'done'
}
__ bind(done);
}
void TemplateTable::instanceof() {
transition(atos, itos);
Label done, is_null, ok_is_subtype, quicked, resolved;
__ beqz(x10, is_null);
// Get cpool & tags index
__ get_cpool_and_tags(x12, x13); // x12=cpool, x13=tags array
__ get_unsigned_2_byte_index_at_bcp(x9, 1); // x9=index
// See if bytecode has already been quicked
__ add(t0, x13, Array<u1>::base_offset_in_bytes());
__ add(x11, t0, x9);
__ membar(MacroAssembler::AnyAny);
__ lbu(x11, x11);
__ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
__ sub(t0, x11, (u1)JVM_CONSTANT_Class);
__ beqz(t0, quicked);
__ push(atos); // save receiver for result, and for GC
call_VM(x10, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
// vm_result_2 has metadata result
__ get_vm_result_2(x10, xthread);
__ pop_reg(x13); // restore receiver
__ verify_oop(x13);
__ load_klass(x13, x13);
__ j(resolved);
// Get superklass in x10 and subklass in x13
__ bind(quicked);
__ load_klass(x13, x10);
__ load_resolved_klass_at_offset(x12, x9, x10, t0);
__ bind(resolved);
// Generate subtype check. Blows x12, x15
// Superklass in x10. Subklass in x13.
__ gen_subtype_check(x13, ok_is_subtype);
// Come here on failure
__ mv(x10, zr);
__ j(done);
// Come here on success
__ bind(ok_is_subtype);
__ mv(x10, 1);
// Collect counts on whether this test sees nulls a lot or not.
if (ProfileInterpreter) {
__ j(done);
__ bind(is_null);
__ profile_null_seen(x12);
} else {
__ bind(is_null); // same as 'done'
}
__ bind(done);
// x10 = 0: obj is null or obj is not an instanceof the specified klass
// x10 = 1: obj isn't null and obj is an instanceof the specified klass
}
//-----------------------------------------------------------------------------
// Breakpoints
void TemplateTable::_breakpoint() {
// Note: We get here even if we are single stepping..
// jbug inists on setting breakpoints at every bytecode
// even if we are in single step mode.
transition(vtos, vtos);
// get the unpatched byte code
__ get_method(c_rarg1);
__ call_VM(noreg,
CAST_FROM_FN_PTR(address,
InterpreterRuntime::get_original_bytecode_at),
c_rarg1, xbcp);
__ mv(x9, x10);
// post the breakpoint event
__ call_VM(noreg,
CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
xmethod, xbcp);
// complete the execution of original bytecode
__ mv(t0, x9);
__ dispatch_only_normal(vtos);
}
//-----------------------------------------------------------------------------
// Exceptions
void TemplateTable::athrow() {
transition(atos, vtos);
__ null_check(x10);
__ j(Interpreter::throw_exception_entry());
}
//-----------------------------------------------------------------------------
// Synchronization
//
// Note: monitorenter & exit are symmetric routines; which is reflected
// in the assembly code structure as well
//
// Stack layout:
//
// [expressions ] <--- esp = expression stack top
// ..
// [expressions ]
// [monitor entry] <--- monitor block top = expression stack bot
// ..
// [monitor entry]
// [frame data ] <--- monitor block bot
// ...
// [saved fp ] <--- fp
void TemplateTable::monitorenter() {
transition(atos, vtos);
// check for null object
__ null_check(x10);
const Address monitor_block_top(
fp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
const Address monitor_block_bot(
fp, frame::interpreter_frame_initial_sp_offset * wordSize);
const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
Label allocated;
// initialize entry pointer
__ mv(c_rarg1, zr); // points to free slot or null
// find a free slot in the monitor block (result in c_rarg1)
{
Label entry, loop, exit, notUsed;
__ ld(c_rarg3, monitor_block_top); // points to current entry,
// starting with top-most entry
__ la(c_rarg2, monitor_block_bot); // points to word before bottom
__ j(entry);
__ bind(loop);
// check if current entry is used
// if not used then remember entry in c_rarg1
__ ld(t0, Address(c_rarg3, BasicObjectLock::obj_offset()));
__ bnez(t0, notUsed);
__ mv(c_rarg1, c_rarg3);
__ bind(notUsed);
// check if current entry is for same object
// if same object then stop searching
__ beq(x10, t0, exit);
// otherwise advance to next entry
__ add(c_rarg3, c_rarg3, entry_size);
__ bind(entry);
// check if bottom reached
// if not at bottom then check this entry
__ bne(c_rarg3, c_rarg2, loop);
__ bind(exit);
}
__ bnez(c_rarg1, allocated); // check if a slot has been found and
// if found, continue with that on
// allocate one if there's no free slot
{
Label entry, loop;
// 1. compute new pointers // esp: old expression stack top
__ check_extended_sp();
__ sub(sp, sp, entry_size); // make room for the monitor
__ sd(sp, Address(fp, frame::interpreter_frame_extended_sp_offset * wordSize));
__ ld(c_rarg1, monitor_block_bot); // c_rarg1: old expression stack bottom
__ sub(esp, esp, entry_size); // move expression stack top
__ sub(c_rarg1, c_rarg1, entry_size); // move expression stack bottom
__ mv(c_rarg3, esp); // set start value for copy loop
__ sd(c_rarg1, monitor_block_bot); // set new monitor block bottom
__ j(entry);
// 2. move expression stack contents
__ bind(loop);
__ ld(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack
// word from old location
__ sd(c_rarg2, Address(c_rarg3, 0)); // and store it at new location
__ add(c_rarg3, c_rarg3, wordSize); // advance to next word
__ bind(entry);
__ bne(c_rarg3, c_rarg1, loop); // check if bottom reached.if not at bottom
// then copy next word
}
// call run-time routine
// c_rarg1: points to monitor entry
__ bind(allocated);
// Increment bcp to point to the next bytecode, so exception
// handling for async. exceptions work correctly.
// The object has already been popped from the stack, so the
// expression stack looks correct.
__ addi(xbcp, xbcp, 1);
// store object
__ sd(x10, Address(c_rarg1, BasicObjectLock::obj_offset()));
__ lock_object(c_rarg1);
// check to make sure this monitor doesn't cause stack overflow after locking
__ save_bcp(); // in case of exception
__ generate_stack_overflow_check(0);
// The bcp has already been incremented. Just need to dispatch to
// next instruction.
__ dispatch_next(vtos);
}
void TemplateTable::monitorexit() {
transition(atos, vtos);
// check for null object
__ null_check(x10);
const Address monitor_block_top(
fp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
const Address monitor_block_bot(
fp, frame::interpreter_frame_initial_sp_offset * wordSize);
const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
Label found;
// find matching slot
{
Label entry, loop;
__ ld(c_rarg1, monitor_block_top); // points to current entry,
// starting with top-most entry
__ la(c_rarg2, monitor_block_bot); // points to word before bottom
// of monitor block
__ j(entry);
__ bind(loop);
// check if current entry is for same object
__ ld(t0, Address(c_rarg1, BasicObjectLock::obj_offset()));
// if same object then stop searching
__ beq(x10, t0, found);
// otherwise advance to next entry
__ add(c_rarg1, c_rarg1, entry_size);
__ bind(entry);
// check if bottom reached
// if not at bottom then check this entry
__ bne(c_rarg1, c_rarg2, loop);
}
// error handling. Unlocking was not block-structured
__ call_VM(noreg, CAST_FROM_FN_PTR(address,
InterpreterRuntime::throw_illegal_monitor_state_exception));
__ should_not_reach_here();
// call run-time routine
__ bind(found);
__ push_ptr(x10); // make sure object is on stack (contract with oopMaps)
__ unlock_object(c_rarg1);
__ pop_ptr(x10); // discard object
}
// Wide instructions
void TemplateTable::wide() {
__ load_unsigned_byte(x9, at_bcp(1));
__ mv(t0, (address)Interpreter::_wentry_point);
__ shadd(t0, x9, t0, t1, 3);
__ ld(t0, Address(t0));
__ jr(t0);
}
// Multi arrays
void TemplateTable::multianewarray() {
transition(vtos, atos);
__ load_unsigned_byte(x10, at_bcp(3)); // get number of dimensions
// last dim is on top of stack; we want address of first one:
// first_addr = last_addr + (ndims - 1) * wordSize
__ shadd(c_rarg1, x10, esp, c_rarg1, 3);
__ sub(c_rarg1, c_rarg1, wordSize);
call_VM(x10,
CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray),
c_rarg1);
__ load_unsigned_byte(x11, at_bcp(3));
__ shadd(esp, x11, esp, t0, 3);
}