blob: 7eb037e6fe26ec621d1529bbbba55170b0341772 [file] [log] [blame]
/*
* Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef CPU_X86_MACROASSEMBLER_X86_HPP
#define CPU_X86_MACROASSEMBLER_X86_HPP
#include "asm/assembler.hpp"
#include "asm/register.hpp"
#include "code/vmreg.inline.hpp"
#include "compiler/oopMap.hpp"
#include "utilities/macros.hpp"
#include "runtime/rtmLocking.hpp"
#include "runtime/vm_version.hpp"
// MacroAssembler extends Assembler by frequently used macros.
//
// Instructions for which a 'better' code sequence exists depending
// on arguments should also go in here.
class MacroAssembler: public Assembler {
friend class LIR_Assembler;
friend class Runtime1; // as_Address()
public:
// Support for VM calls
//
// This is the base routine called by the different versions of call_VM_leaf. The interpreter
// may customize this version by overriding it for its purposes (e.g., to save/restore
// additional registers when doing a VM call).
virtual void call_VM_leaf_base(
address entry_point, // the entry point
int number_of_arguments // the number of arguments to pop after the call
);
protected:
// This is the base routine called by the different versions of call_VM. The interpreter
// may customize this version by overriding it for its purposes (e.g., to save/restore
// additional registers when doing a VM call).
//
// If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
// returns the register which contains the thread upon return. If a thread register has been
// specified, the return value will correspond to that register. If no last_java_sp is specified
// (noreg) than rsp will be used instead.
virtual void call_VM_base( // returns the register containing the thread upon return
Register oop_result, // where an oop-result ends up if any; use noreg otherwise
Register java_thread, // the thread if computed before ; use noreg otherwise
Register last_java_sp, // to set up last_Java_frame in stubs; use noreg otherwise
address entry_point, // the entry point
int number_of_arguments, // the number of arguments (w/o thread) to pop after the call
bool check_exceptions // whether to check for pending exceptions after return
);
void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
// helpers for FPU flag access
// tmp is a temporary register, if none is available use noreg
void save_rax (Register tmp);
void restore_rax(Register tmp);
public:
MacroAssembler(CodeBuffer* code) : Assembler(code) {}
// These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
// The implementation is only non-empty for the InterpreterMacroAssembler,
// as only the interpreter handles PopFrame and ForceEarlyReturn requests.
virtual void check_and_handle_popframe(Register java_thread);
virtual void check_and_handle_earlyret(Register java_thread);
Address as_Address(AddressLiteral adr);
Address as_Address(ArrayAddress adr, Register rscratch);
// Support for null-checks
//
// Generates code that causes a null OS exception if the content of reg is null.
// If the accessed location is M[reg + offset] and the offset is known, provide the
// offset. No explicit code generation is needed if the offset is within a certain
// range (0 <= offset <= page_size).
void null_check(Register reg, int offset = -1);
static bool needs_explicit_null_check(intptr_t offset);
static bool uses_implicit_null_check(void* address);
// Required platform-specific helpers for Label::patch_instructions.
// They _shadow_ the declarations in AbstractAssembler, which are undefined.
void pd_patch_instruction(address branch, address target, const char* file, int line) {
unsigned char op = branch[0];
assert(op == 0xE8 /* call */ ||
op == 0xE9 /* jmp */ ||
op == 0xEB /* short jmp */ ||
(op & 0xF0) == 0x70 /* short jcc */ ||
op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */ ||
op == 0xC7 && branch[1] == 0xF8 /* xbegin */,
"Invalid opcode at patch point");
if (op == 0xEB || (op & 0xF0) == 0x70) {
// short offset operators (jmp and jcc)
char* disp = (char*) &branch[1];
int imm8 = target - (address) &disp[1];
guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset at %s:%d",
file == nullptr ? "<null>" : file, line);
*disp = imm8;
} else {
int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1];
int imm32 = target - (address) &disp[1];
*disp = imm32;
}
}
// The following 4 methods return the offset of the appropriate move instruction
// Support for fast byte/short loading with zero extension (depending on particular CPU)
int load_unsigned_byte(Register dst, Address src);
int load_unsigned_short(Register dst, Address src);
// Support for fast byte/short loading with sign extension (depending on particular CPU)
int load_signed_byte(Register dst, Address src);
int load_signed_short(Register dst, Address src);
// Support for sign-extension (hi:lo = extend_sign(lo))
void extend_sign(Register hi, Register lo);
// Load and store values by size and signed-ness
void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
// Support for inc/dec with optimal instruction selection depending on value
void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
void increment(Address dst, int value = 1) { LP64_ONLY(incrementq(dst, value)) NOT_LP64(incrementl(dst, value)) ; }
void decrement(Address dst, int value = 1) { LP64_ONLY(decrementq(dst, value)) NOT_LP64(decrementl(dst, value)) ; }
void decrementl(Address dst, int value = 1);
void decrementl(Register reg, int value = 1);
void decrementq(Register reg, int value = 1);
void decrementq(Address dst, int value = 1);
void incrementl(Address dst, int value = 1);
void incrementl(Register reg, int value = 1);
void incrementq(Register reg, int value = 1);
void incrementq(Address dst, int value = 1);
void incrementl(AddressLiteral dst, Register rscratch = noreg);
void incrementl(ArrayAddress dst, Register rscratch);
void incrementq(AddressLiteral dst, Register rscratch = noreg);
// Support optimal SSE move instructions.
void movflt(XMMRegister dst, XMMRegister src) {
if (dst-> encoding() == src->encoding()) return;
if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
else { movss (dst, src); return; }
}
void movflt(XMMRegister dst, Address src) { movss(dst, src); }
void movflt(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
void movflt(Address dst, XMMRegister src) { movss(dst, src); }
// Move with zero extension
void movfltz(XMMRegister dst, XMMRegister src) { movss(dst, src); }
void movdbl(XMMRegister dst, XMMRegister src) {
if (dst-> encoding() == src->encoding()) return;
if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
else { movsd (dst, src); return; }
}
void movdbl(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
void movdbl(XMMRegister dst, Address src) {
if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
else { movlpd(dst, src); return; }
}
void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
void flt_to_flt16(Register dst, XMMRegister src, XMMRegister tmp) {
// Use separate tmp XMM register because caller may
// requires src XMM register to be unchanged (as in x86.ad).
vcvtps2ph(tmp, src, 0x04, Assembler::AVX_128bit);
movdl(dst, tmp);
movswl(dst, dst);
}
void flt16_to_flt(XMMRegister dst, Register src) {
movdl(dst, src);
vcvtph2ps(dst, dst, Assembler::AVX_128bit);
}
// Alignment
void align32();
void align64();
void align(int modulus);
void align(int modulus, int target);
void post_call_nop();
// A 5 byte nop that is safe for patching (see patch_verified_entry)
void fat_nop();
// Stack frame creation/removal
void enter();
void leave();
// Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
// The pointer will be loaded into the thread register.
void get_thread(Register thread);
#ifdef _LP64
// Support for argument shuffling
// bias in bytes
void move32_64(VMRegPair src, VMRegPair dst, Register tmp = rax, int in_stk_bias = 0, int out_stk_bias = 0);
void long_move(VMRegPair src, VMRegPair dst, Register tmp = rax, int in_stk_bias = 0, int out_stk_bias = 0);
void float_move(VMRegPair src, VMRegPair dst, Register tmp = rax, int in_stk_bias = 0, int out_stk_bias = 0);
void double_move(VMRegPair src, VMRegPair dst, Register tmp = rax, int in_stk_bias = 0, int out_stk_bias = 0);
void move_ptr(VMRegPair src, VMRegPair dst);
void object_move(OopMap* map,
int oop_handle_offset,
int framesize_in_slots,
VMRegPair src,
VMRegPair dst,
bool is_receiver,
int* receiver_offset);
#endif // _LP64
// Support for VM calls
//
// It is imperative that all calls into the VM are handled via the call_VM macros.
// They make sure that the stack linkage is setup correctly. call_VM's correspond
// to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
void call_VM(Register oop_result,
address entry_point,
bool check_exceptions = true);
void call_VM(Register oop_result,
address entry_point,
Register arg_1,
bool check_exceptions = true);
void call_VM(Register oop_result,
address entry_point,
Register arg_1, Register arg_2,
bool check_exceptions = true);
void call_VM(Register oop_result,
address entry_point,
Register arg_1, Register arg_2, Register arg_3,
bool check_exceptions = true);
// Overloadings with last_Java_sp
void call_VM(Register oop_result,
Register last_java_sp,
address entry_point,
int number_of_arguments = 0,
bool check_exceptions = true);
void call_VM(Register oop_result,
Register last_java_sp,
address entry_point,
Register arg_1, bool
check_exceptions = true);
void call_VM(Register oop_result,
Register last_java_sp,
address entry_point,
Register arg_1, Register arg_2,
bool check_exceptions = true);
void call_VM(Register oop_result,
Register last_java_sp,
address entry_point,
Register arg_1, Register arg_2, Register arg_3,
bool check_exceptions = true);
void get_vm_result (Register oop_result, Register thread);
void get_vm_result_2(Register metadata_result, Register thread);
// These always tightly bind to MacroAssembler::call_VM_base
// bypassing the virtual implementation
void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
void call_VM_leaf0(address entry_point);
void call_VM_leaf(address entry_point,
int number_of_arguments = 0);
void call_VM_leaf(address entry_point,
Register arg_1);
void call_VM_leaf(address entry_point,
Register arg_1, Register arg_2);
void call_VM_leaf(address entry_point,
Register arg_1, Register arg_2, Register arg_3);
void call_VM_leaf(address entry_point,
Register arg_1, Register arg_2, Register arg_3, Register arg_4);
// These always tightly bind to MacroAssembler::call_VM_leaf_base
// bypassing the virtual implementation
void super_call_VM_leaf(address entry_point);
void super_call_VM_leaf(address entry_point, Register arg_1);
void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
// last Java Frame (fills frame anchor)
void set_last_Java_frame(Register thread,
Register last_java_sp,
Register last_java_fp,
address last_java_pc,
Register rscratch);
// thread in the default location (r15_thread on 64bit)
void set_last_Java_frame(Register last_java_sp,
Register last_java_fp,
address last_java_pc,
Register rscratch);
void reset_last_Java_frame(Register thread, bool clear_fp);
// thread in the default location (r15_thread on 64bit)
void reset_last_Java_frame(bool clear_fp);
// jobjects
void clear_jobject_tag(Register possibly_non_local);
void resolve_jobject(Register value, Register thread, Register tmp);
void resolve_global_jobject(Register value, Register thread, Register tmp);
// C 'boolean' to Java boolean: x == 0 ? 0 : 1
void c2bool(Register x);
// C++ bool manipulation
void movbool(Register dst, Address src);
void movbool(Address dst, bool boolconst);
void movbool(Address dst, Register src);
void testbool(Register dst);
void resolve_oop_handle(Register result, Register tmp);
void resolve_weak_handle(Register result, Register tmp);
void load_mirror(Register mirror, Register method, Register tmp);
void load_method_holder_cld(Register rresult, Register rmethod);
void load_method_holder(Register holder, Register method);
// oop manipulations
void load_klass(Register dst, Register src, Register tmp);
void store_klass(Register dst, Register src, Register tmp);
void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
Register tmp1, Register thread_tmp);
void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val,
Register tmp1, Register tmp2, Register tmp3);
void load_heap_oop(Register dst, Address src, Register tmp1 = noreg,
Register thread_tmp = noreg, DecoratorSet decorators = 0);
void load_heap_oop_not_null(Register dst, Address src, Register tmp1 = noreg,
Register thread_tmp = noreg, DecoratorSet decorators = 0);
void store_heap_oop(Address dst, Register val, Register tmp1 = noreg,
Register tmp2 = noreg, Register tmp3 = noreg, DecoratorSet decorators = 0);
// Used for storing null. All other oop constants should be
// stored using routines that take a jobject.
void store_heap_oop_null(Address dst);
#ifdef _LP64
void store_klass_gap(Register dst, Register src);
// This dummy is to prevent a call to store_heap_oop from
// converting a zero (like null) into a Register by giving
// the compiler two choices it can't resolve
void store_heap_oop(Address dst, void* dummy);
void encode_heap_oop(Register r);
void decode_heap_oop(Register r);
void encode_heap_oop_not_null(Register r);
void decode_heap_oop_not_null(Register r);
void encode_heap_oop_not_null(Register dst, Register src);
void decode_heap_oop_not_null(Register dst, Register src);
void set_narrow_oop(Register dst, jobject obj);
void set_narrow_oop(Address dst, jobject obj);
void cmp_narrow_oop(Register dst, jobject obj);
void cmp_narrow_oop(Address dst, jobject obj);
void encode_klass_not_null(Register r, Register tmp);
void decode_klass_not_null(Register r, Register tmp);
void encode_and_move_klass_not_null(Register dst, Register src);
void decode_and_move_klass_not_null(Register dst, Register src);
void set_narrow_klass(Register dst, Klass* k);
void set_narrow_klass(Address dst, Klass* k);
void cmp_narrow_klass(Register dst, Klass* k);
void cmp_narrow_klass(Address dst, Klass* k);
// if heap base register is used - reinit it with the correct value
void reinit_heapbase();
DEBUG_ONLY(void verify_heapbase(const char* msg);)
#endif // _LP64
// Int division/remainder for Java
// (as idivl, but checks for special case as described in JVM spec.)
// returns idivl instruction offset for implicit exception handling
int corrected_idivl(Register reg);
// Long division/remainder for Java
// (as idivq, but checks for special case as described in JVM spec.)
// returns idivq instruction offset for implicit exception handling
int corrected_idivq(Register reg);
void int3();
// Long operation macros for a 32bit cpu
// Long negation for Java
void lneg(Register hi, Register lo);
// Long multiplication for Java
// (destroys contents of eax, ebx, ecx and edx)
void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
// Long shifts for Java
// (semantics as described in JVM spec.)
void lshl(Register hi, Register lo); // hi:lo << (rcx & 0x3f)
void lshr(Register hi, Register lo, bool sign_extension = false); // hi:lo >> (rcx & 0x3f)
// Long compare for Java
// (semantics as described in JVM spec.)
void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
// misc
// Sign extension
void sign_extend_short(Register reg);
void sign_extend_byte(Register reg);
// Division by power of 2, rounding towards 0
void division_with_shift(Register reg, int shift_value);
#ifndef _LP64
// Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
//
// CF (corresponds to C0) if x < y
// PF (corresponds to C2) if unordered
// ZF (corresponds to C3) if x = y
//
// The arguments are in reversed order on the stack (i.e., top of stack is first argument).
// tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
void fcmp(Register tmp);
// Variant of the above which allows y to be further down the stack
// and which only pops x and y if specified. If pop_right is
// specified then pop_left must also be specified.
void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
// Floating-point comparison for Java
// Compares the top-most stack entries on the FPU stack and stores the result in dst.
// The arguments are in reversed order on the stack (i.e., top of stack is first argument).
// (semantics as described in JVM spec.)
void fcmp2int(Register dst, bool unordered_is_less);
// Variant of the above which allows y to be further down the stack
// and which only pops x and y if specified. If pop_right is
// specified then pop_left must also be specified.
void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
// Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
// tmp is a temporary register, if none is available use noreg
void fremr(Register tmp);
// only if +VerifyFPU
void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
#endif // !LP64
// dst = c = a * b + c
void fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
void fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
void vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
void vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
void vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
void vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
// same as fcmp2int, but using SSE2
void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
// branch to L if FPU flag C2 is set/not set
// tmp is a temporary register, if none is available use noreg
void jC2 (Register tmp, Label& L);
void jnC2(Register tmp, Label& L);
// Load float value from 'address'. If UseSSE >= 1, the value is loaded into
// register xmm0. Otherwise, the value is loaded onto the FPU stack.
void load_float(Address src);
// Store float value to 'address'. If UseSSE >= 1, the value is stored
// from register xmm0. Otherwise, the value is stored from the FPU stack.
void store_float(Address dst);
// Load double value from 'address'. If UseSSE >= 2, the value is loaded into
// register xmm0. Otherwise, the value is loaded onto the FPU stack.
void load_double(Address src);
// Store double value to 'address'. If UseSSE >= 2, the value is stored
// from register xmm0. Otherwise, the value is stored from the FPU stack.
void store_double(Address dst);
#ifndef _LP64
// Pop ST (ffree & fincstp combined)
void fpop();
void empty_FPU_stack();
#endif // !_LP64
void push_IU_state();
void pop_IU_state();
void push_FPU_state();
void pop_FPU_state();
void push_CPU_state();
void pop_CPU_state();
void push_cont_fastpath();
void pop_cont_fastpath();
void inc_held_monitor_count();
void dec_held_monitor_count();
DEBUG_ONLY(void stop_if_in_cont(Register cont_reg, const char* name);)
// Round up to a power of two
void round_to(Register reg, int modulus);
private:
// General purpose and XMM registers potentially clobbered by native code; there
// is no need for FPU or AVX opmask related methods because C1/interpreter
// - we save/restore FPU state as a whole always
// - do not care about AVX-512 opmask
static RegSet call_clobbered_gp_registers();
static XMMRegSet call_clobbered_xmm_registers();
void push_set(XMMRegSet set, int offset);
void pop_set(XMMRegSet set, int offset);
public:
void push_set(RegSet set, int offset = -1);
void pop_set(RegSet set, int offset = -1);
// Push and pop everything that might be clobbered by a native
// runtime call.
// Only save the lower 64 bits of each vector register.
// Additional registers can be excluded in a passed RegSet.
void push_call_clobbered_registers_except(RegSet exclude, bool save_fpu = true);
void pop_call_clobbered_registers_except(RegSet exclude, bool restore_fpu = true);
void push_call_clobbered_registers(bool save_fpu = true) {
push_call_clobbered_registers_except(RegSet(), save_fpu);
}
void pop_call_clobbered_registers(bool restore_fpu = true) {
pop_call_clobbered_registers_except(RegSet(), restore_fpu);
}
// allocation
void tlab_allocate(
Register thread, // Current thread
Register obj, // result: pointer to object after successful allocation
Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
int con_size_in_bytes, // object size in bytes if known at compile time
Register t1, // temp register
Register t2, // temp register
Label& slow_case // continuation point if fast allocation fails
);
void zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp);
// interface method calling
void lookup_interface_method(Register recv_klass,
Register intf_klass,
RegisterOrConstant itable_index,
Register method_result,
Register scan_temp,
Label& no_such_interface,
bool return_method = true);
void lookup_interface_method_stub(Register recv_klass,
Register holder_klass,
Register resolved_klass,
Register method_result,
Register scan_temp,
Register temp_reg2,
Register receiver,
int itable_index,
Label& L_no_such_interface);
// virtual method calling
void lookup_virtual_method(Register recv_klass,
RegisterOrConstant vtable_index,
Register method_result);
// Test sub_klass against super_klass, with fast and slow paths.
// The fast path produces a tri-state answer: yes / no / maybe-slow.
// One of the three labels can be null, meaning take the fall-through.
// If super_check_offset is -1, the value is loaded up from super_klass.
// No registers are killed, except temp_reg.
void check_klass_subtype_fast_path(Register sub_klass,
Register super_klass,
Register temp_reg,
Label* L_success,
Label* L_failure,
Label* L_slow_path,
RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
// The rest of the type check; must be wired to a corresponding fast path.
// It does not repeat the fast path logic, so don't use it standalone.
// The temp_reg and temp2_reg can be noreg, if no temps are available.
// Updates the sub's secondary super cache as necessary.
// If set_cond_codes, condition codes will be Z on success, NZ on failure.
void check_klass_subtype_slow_path(Register sub_klass,
Register super_klass,
Register temp_reg,
Register temp2_reg,
Label* L_success,
Label* L_failure,
bool set_cond_codes = false);
// Simplified, combined version, good for typical uses.
// Falls through on failure.
void check_klass_subtype(Register sub_klass,
Register super_klass,
Register temp_reg,
Label& L_success);
void clinit_barrier(Register klass,
Register thread,
Label* L_fast_path = nullptr,
Label* L_slow_path = nullptr);
// method handles (JSR 292)
Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
// Debugging
// only if +VerifyOops
void _verify_oop(Register reg, const char* s, const char* file, int line);
void _verify_oop_addr(Address addr, const char* s, const char* file, int line);
void _verify_oop_checked(Register reg, const char* s, const char* file, int line) {
if (VerifyOops) {
_verify_oop(reg, s, file, line);
}
}
void _verify_oop_addr_checked(Address reg, const char* s, const char* file, int line) {
if (VerifyOops) {
_verify_oop_addr(reg, s, file, line);
}
}
// TODO: verify method and klass metadata (compare against vptr?)
void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
#define verify_oop(reg) _verify_oop_checked(reg, "broken oop " #reg, __FILE__, __LINE__)
#define verify_oop_msg(reg, msg) _verify_oop_checked(reg, "broken oop " #reg ", " #msg, __FILE__, __LINE__)
#define verify_oop_addr(addr) _verify_oop_addr_checked(addr, "broken oop addr " #addr, __FILE__, __LINE__)
#define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
#define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
// Verify or restore cpu control state after JNI call
void restore_cpu_control_state_after_jni(Register rscratch);
// prints msg, dumps registers and stops execution
void stop(const char* msg);
// prints msg and continues
void warn(const char* msg);
// dumps registers and other state
void print_state();
static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
static void debug64(char* msg, int64_t pc, int64_t regs[]);
static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
static void print_state64(int64_t pc, int64_t regs[]);
void os_breakpoint();
void untested() { stop("untested"); }
void unimplemented(const char* what = "");
void should_not_reach_here() { stop("should not reach here"); }
void print_CPU_state();
// Stack overflow checking
void bang_stack_with_offset(int offset) {
// stack grows down, caller passes positive offset
assert(offset > 0, "must bang with negative offset");
movl(Address(rsp, (-offset)), rax);
}
// Writes to stack successive pages until offset reached to check for
// stack overflow + shadow pages. Also, clobbers tmp
void bang_stack_size(Register size, Register tmp);
// Check for reserved stack access in method being exited (for JIT)
void reserved_stack_check();
void safepoint_poll(Label& slow_path, Register thread_reg, bool at_return, bool in_nmethod);
void verify_tlab();
static Condition negate_condition(Condition cond);
// Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
// operands. In general the names are modified to avoid hiding the instruction in Assembler
// so that we don't need to implement all the varieties in the Assembler with trivial wrappers
// here in MacroAssembler. The major exception to this rule is call
// Arithmetics
void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
void addptr(Address dst, Register src);
void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
void addptr(Register dst, int32_t src);
void addptr(Register dst, Register src);
void addptr(Register dst, RegisterOrConstant src) {
if (src.is_constant()) addptr(dst, src.as_constant());
else addptr(dst, src.as_register());
}
void andptr(Register dst, int32_t src);
void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
#ifdef _LP64
using Assembler::andq;
void andq(Register dst, AddressLiteral src, Register rscratch = noreg);
#endif
void cmp8(AddressLiteral src1, int imm, Register rscratch = noreg);
// renamed to drag out the casting of address to int32_t/intptr_t
void cmp32(Register src1, int32_t imm);
void cmp32(AddressLiteral src1, int32_t imm, Register rscratch = noreg);
// compare reg - mem, or reg - &mem
void cmp32(Register src1, AddressLiteral src2, Register rscratch = noreg);
void cmp32(Register src1, Address src2);
#ifndef _LP64
void cmpklass(Address dst, Metadata* obj);
void cmpklass(Register dst, Metadata* obj);
void cmpoop(Address dst, jobject obj);
#endif // _LP64
void cmpoop(Register src1, Register src2);
void cmpoop(Register src1, Address src2);
void cmpoop(Register dst, jobject obj, Register rscratch);
// NOTE src2 must be the lval. This is NOT an mem-mem compare
void cmpptr(Address src1, AddressLiteral src2, Register rscratch);
void cmpptr(Register src1, AddressLiteral src2, Register rscratch = noreg);
void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
// void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
// cmp64 to avoild hiding cmpq
void cmp64(Register src1, AddressLiteral src, Register rscratch = noreg);
void cmpxchgptr(Register reg, Address adr);
void locked_cmpxchgptr(Register reg, AddressLiteral adr, Register rscratch = noreg);
void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }
void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
void shlptr(Register dst, int32_t shift);
void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
void shrptr(Register dst, int32_t shift);
void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
void subptr(Register dst, int32_t src);
// Force generation of a 4 byte immediate value even if it fits into 8bit
void subptr_imm32(Register dst, int32_t src);
void subptr(Register dst, Register src);
void subptr(Register dst, RegisterOrConstant src) {
if (src.is_constant()) subptr(dst, (int) src.as_constant());
else subptr(dst, src.as_register());
}
void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
// Helper functions for statistics gathering.
// Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
void cond_inc32(Condition cond, AddressLiteral counter_addr, Register rscratch = noreg);
// Unconditional atomic increment.
void atomic_incl(Address counter_addr);
void atomic_incl(AddressLiteral counter_addr, Register rscratch = noreg);
#ifdef _LP64
void atomic_incq(Address counter_addr);
void atomic_incq(AddressLiteral counter_addr, Register rscratch = noreg);
#endif
void atomic_incptr(AddressLiteral counter_addr, Register rscratch = noreg) { LP64_ONLY(atomic_incq(counter_addr, rscratch)) NOT_LP64(atomic_incl(counter_addr, rscratch)) ; }
void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }
void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
void lea(Register dst, AddressLiteral adr);
void lea(Address dst, AddressLiteral adr, Register rscratch);
void leal32(Register dst, Address src) { leal(dst, src); }
// Import other testl() methods from the parent class or else
// they will be hidden by the following overriding declaration.
using Assembler::testl;
void testl(Address dst, int32_t imm32);
void testl(Register dst, int32_t imm32);
void testl(Register dst, AddressLiteral src); // requires reachable address
using Assembler::testq;
void testq(Address dst, int32_t imm32);
void testq(Register dst, int32_t imm32);
void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
void testptr(Register src, int32_t imm32) { LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
void testptr(Register src1, Address src2) { LP64_ONLY(testq(src1, src2)) NOT_LP64(testl(src1, src2)); }
void testptr(Address src, int32_t imm32) { LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
void testptr(Register src1, Register src2);
void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
// Calls
void call(Label& L, relocInfo::relocType rtype);
void call(Register entry);
void call(Address addr) { Assembler::call(addr); }
// NOTE: this call transfers to the effective address of entry NOT
// the address contained by entry. This is because this is more natural
// for jumps/calls.
void call(AddressLiteral entry, Register rscratch = rax);
// Emit the CompiledIC call idiom
void ic_call(address entry, jint method_index = 0);
void emit_static_call_stub();
// Jumps
// NOTE: these jumps transfer to the effective address of dst NOT
// the address contained by dst. This is because this is more natural
// for jumps/calls.
void jump(AddressLiteral dst, Register rscratch = noreg);
void jump_cc(Condition cc, AddressLiteral dst, Register rscratch = noreg);
// 32bit can do a case table jump in one instruction but we no longer allow the base
// to be installed in the Address class. This jump will transfer to the address
// contained in the location described by entry (not the address of entry)
void jump(ArrayAddress entry, Register rscratch);
// Floating
void push_f(XMMRegister r);
void pop_f(XMMRegister r);
void push_d(XMMRegister r);
void pop_d(XMMRegister r);
void andpd(XMMRegister dst, XMMRegister src) { Assembler::andpd(dst, src); }
void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
void andpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
void andps(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
void comiss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
void comisd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
#ifndef _LP64
void fadd_s(Address src) { Assembler::fadd_s(src); }
void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
void fldcw(Address src) { Assembler::fldcw(src); }
void fldcw(AddressLiteral src);
void fld_s(int index) { Assembler::fld_s(index); }
void fld_s(Address src) { Assembler::fld_s(src); }
void fld_s(AddressLiteral src);
void fld_d(Address src) { Assembler::fld_d(src); }
void fld_d(AddressLiteral src);
void fld_x(Address src) { Assembler::fld_x(src); }
void fld_x(AddressLiteral src) { Assembler::fld_x(as_Address(src)); }
void fmul_s(Address src) { Assembler::fmul_s(src); }
void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
#endif // !_LP64
void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
void ldmxcsr(AddressLiteral src, Register rscratch = noreg);
#ifdef _LP64
private:
void sha256_AVX2_one_round_compute(
Register reg_old_h,
Register reg_a,
Register reg_b,
Register reg_c,
Register reg_d,
Register reg_e,
Register reg_f,
Register reg_g,
Register reg_h,
int iter);
void sha256_AVX2_four_rounds_compute_first(int start);
void sha256_AVX2_four_rounds_compute_last(int start);
void sha256_AVX2_one_round_and_sched(
XMMRegister xmm_0, /* == ymm4 on 0, 1, 2, 3 iterations, then rotate 4 registers left on 4, 8, 12 iterations */
XMMRegister xmm_1, /* ymm5 */ /* full cycle is 16 iterations */
XMMRegister xmm_2, /* ymm6 */
XMMRegister xmm_3, /* ymm7 */
Register reg_a, /* == eax on 0 iteration, then rotate 8 register right on each next iteration */
Register reg_b, /* ebx */ /* full cycle is 8 iterations */
Register reg_c, /* edi */
Register reg_d, /* esi */
Register reg_e, /* r8d */
Register reg_f, /* r9d */
Register reg_g, /* r10d */
Register reg_h, /* r11d */
int iter);
void addm(int disp, Register r1, Register r2);
void sha512_AVX2_one_round_compute(Register old_h, Register a, Register b, Register c, Register d,
Register e, Register f, Register g, Register h, int iteration);
void sha512_AVX2_one_round_and_schedule(XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
Register a, Register b, Register c, Register d, Register e, Register f,
Register g, Register h, int iteration);
void addmq(int disp, Register r1, Register r2);
public:
void sha256_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
Register buf, Register state, Register ofs, Register limit, Register rsp,
bool multi_block, XMMRegister shuf_mask);
void sha512_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
Register buf, Register state, Register ofs, Register limit, Register rsp, bool multi_block,
XMMRegister shuf_mask);
#endif // _LP64
void fast_md5(Register buf, Address state, Address ofs, Address limit,
bool multi_block);
void fast_sha1(XMMRegister abcd, XMMRegister e0, XMMRegister e1, XMMRegister msg0,
XMMRegister msg1, XMMRegister msg2, XMMRegister msg3, XMMRegister shuf_mask,
Register buf, Register state, Register ofs, Register limit, Register rsp,
bool multi_block);
#ifdef _LP64
void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
Register buf, Register state, Register ofs, Register limit, Register rsp,
bool multi_block, XMMRegister shuf_mask);
#else
void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
Register buf, Register state, Register ofs, Register limit, Register rsp,
bool multi_block);
#endif
void fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
Register rax, Register rcx, Register rdx, Register tmp);
#ifndef _LP64
private:
// Initialized in macroAssembler_x86_constants.cpp
static address ONES;
static address L_2IL0FLOATPACKET_0;
static address PI4_INV;
static address PI4X3;
static address PI4X4;
public:
void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
Register rax, Register rcx, Register rdx, Register tmp1);
void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
Register rax, Register rcx, Register rdx, Register tmp);
void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
Register rdx, Register tmp);
void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
Register rax, Register rbx, Register rdx);
void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
Register rax, Register rcx, Register rdx, Register tmp);
void libm_sincos_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
Register edx, Register ebx, Register esi, Register edi,
Register ebp, Register esp);
void libm_reduce_pi04l(Register eax, Register ecx, Register edx, Register ebx,
Register esi, Register edi, Register ebp, Register esp);
void libm_tancot_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
Register edx, Register ebx, Register esi, Register edi,
Register ebp, Register esp);
void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
Register rax, Register rcx, Register rdx, Register tmp);
#endif // !_LP64
private:
// these are private because users should be doing movflt/movdbl
void movss(Address dst, XMMRegister src) { Assembler::movss(dst, src); }
void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
void movss(XMMRegister dst, Address src) { Assembler::movss(dst, src); }
void movss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
void movlpd(XMMRegister dst, Address src) {Assembler::movlpd(dst, src); }
void movlpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
public:
void addsd(XMMRegister dst, XMMRegister src) { Assembler::addsd(dst, src); }
void addsd(XMMRegister dst, Address src) { Assembler::addsd(dst, src); }
void addsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
void addss(XMMRegister dst, XMMRegister src) { Assembler::addss(dst, src); }
void addss(XMMRegister dst, Address src) { Assembler::addss(dst, src); }
void addss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
void addpd(XMMRegister dst, XMMRegister src) { Assembler::addpd(dst, src); }
void addpd(XMMRegister dst, Address src) { Assembler::addpd(dst, src); }
void addpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
using Assembler::vbroadcastsd;
void vbroadcastsd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
using Assembler::vbroadcastss;
void vbroadcastss(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
void divsd(XMMRegister dst, XMMRegister src) { Assembler::divsd(dst, src); }
void divsd(XMMRegister dst, Address src) { Assembler::divsd(dst, src); }
void divsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
void divss(XMMRegister dst, XMMRegister src) { Assembler::divss(dst, src); }
void divss(XMMRegister dst, Address src) { Assembler::divss(dst, src); }
void divss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
// Move Unaligned Double Quadword
void movdqu(Address dst, XMMRegister src);
void movdqu(XMMRegister dst, XMMRegister src);
void movdqu(XMMRegister dst, Address src);
void movdqu(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
void kmovwl(Register dst, KRegister src) { Assembler::kmovwl(dst, src); }
void kmovwl(Address dst, KRegister src) { Assembler::kmovwl(dst, src); }
void kmovwl(KRegister dst, KRegister src) { Assembler::kmovwl(dst, src); }
void kmovwl(KRegister dst, Register src) { Assembler::kmovwl(dst, src); }
void kmovwl(KRegister dst, Address src) { Assembler::kmovwl(dst, src); }
void kmovwl(KRegister dst, AddressLiteral src, Register rscratch = noreg);
void kmovql(KRegister dst, KRegister src) { Assembler::kmovql(dst, src); }
void kmovql(KRegister dst, Register src) { Assembler::kmovql(dst, src); }
void kmovql(Register dst, KRegister src) { Assembler::kmovql(dst, src); }
void kmovql(KRegister dst, Address src) { Assembler::kmovql(dst, src); }
void kmovql(Address dst, KRegister src) { Assembler::kmovql(dst, src); }
void kmovql(KRegister dst, AddressLiteral src, Register rscratch = noreg);
// Safe move operation, lowers down to 16bit moves for targets supporting
// AVX512F feature and 64bit moves for targets supporting AVX512BW feature.
void kmov(Address dst, KRegister src);
void kmov(KRegister dst, Address src);
void kmov(KRegister dst, KRegister src);
void kmov(Register dst, KRegister src);
void kmov(KRegister dst, Register src);
using Assembler::movddup;
void movddup(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
using Assembler::vmovddup;
void vmovddup(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
// AVX Unaligned forms
void vmovdqu(Address dst, XMMRegister src);
void vmovdqu(XMMRegister dst, Address src);
void vmovdqu(XMMRegister dst, XMMRegister src);
void vmovdqu(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
void vmovdqu(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
// AVX512 Unaligned
void evmovdqu(BasicType type, KRegister kmask, Address dst, XMMRegister src, bool merge, int vector_len);
void evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, Address src, bool merge, int vector_len);
void evmovdqub(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::evmovdqub(dst, src, vector_len); }
void evmovdqub(XMMRegister dst, Address src, int vector_len) { Assembler::evmovdqub(dst, src, vector_len); }
void evmovdqub(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) {
if (dst->encoding() != src->encoding() || mask != k0) {
Assembler::evmovdqub(dst, mask, src, merge, vector_len);
}
}
void evmovdqub(Address dst, KRegister mask, XMMRegister src, bool merge, int vector_len) { Assembler::evmovdqub(dst, mask, src, merge, vector_len); }
void evmovdqub(XMMRegister dst, KRegister mask, Address src, bool merge, int vector_len) { Assembler::evmovdqub(dst, mask, src, merge, vector_len); }
void evmovdqub(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
void evmovdquw(Address dst, XMMRegister src, int vector_len) { Assembler::evmovdquw(dst, src, vector_len); }
void evmovdquw(XMMRegister dst, Address src, int vector_len) { Assembler::evmovdquw(dst, src, vector_len); }
void evmovdquw(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) {
if (dst->encoding() != src->encoding() || mask != k0) {
Assembler::evmovdquw(dst, mask, src, merge, vector_len);
}
}
void evmovdquw(XMMRegister dst, KRegister mask, Address src, bool merge, int vector_len) { Assembler::evmovdquw(dst, mask, src, merge, vector_len); }
void evmovdquw(Address dst, KRegister mask, XMMRegister src, bool merge, int vector_len) { Assembler::evmovdquw(dst, mask, src, merge, vector_len); }
void evmovdquw(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
void evmovdqul(XMMRegister dst, XMMRegister src, int vector_len) {
if (dst->encoding() != src->encoding()) {
Assembler::evmovdqul(dst, src, vector_len);
}
}
void evmovdqul(Address dst, XMMRegister src, int vector_len) { Assembler::evmovdqul(dst, src, vector_len); }
void evmovdqul(XMMRegister dst, Address src, int vector_len) { Assembler::evmovdqul(dst, src, vector_len); }
void evmovdqul(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) {
if (dst->encoding() != src->encoding() || mask != k0) {
Assembler::evmovdqul(dst, mask, src, merge, vector_len);
}
}
void evmovdqul(Address dst, KRegister mask, XMMRegister src, bool merge, int vector_len) { Assembler::evmovdqul(dst, mask, src, merge, vector_len); }
void evmovdqul(XMMRegister dst, KRegister mask, Address src, bool merge, int vector_len) { Assembler::evmovdqul(dst, mask, src, merge, vector_len); }
void evmovdqul(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
void evmovdquq(XMMRegister dst, XMMRegister src, int vector_len) {
if (dst->encoding() != src->encoding()) {
Assembler::evmovdquq(dst, src, vector_len);
}
}
void evmovdquq(XMMRegister dst, Address src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
void evmovdquq(Address dst, XMMRegister src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
void evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
void evmovdquq(XMMRegister dst, KRegister mask, XMMRegister src, bool merge, int vector_len) {
if (dst->encoding() != src->encoding() || mask != k0) {
Assembler::evmovdquq(dst, mask, src, merge, vector_len);
}
}
void evmovdquq(Address dst, KRegister mask, XMMRegister src, bool merge, int vector_len) { Assembler::evmovdquq(dst, mask, src, merge, vector_len); }
void evmovdquq(XMMRegister dst, KRegister mask, Address src, bool merge, int vector_len) { Assembler::evmovdquq(dst, mask, src, merge, vector_len); }
void evmovdquq(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
// Move Aligned Double Quadword
void movdqa(XMMRegister dst, XMMRegister src) { Assembler::movdqa(dst, src); }
void movdqa(XMMRegister dst, Address src) { Assembler::movdqa(dst, src); }
void movdqa(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
void movsd(Address dst, XMMRegister src) { Assembler::movsd(dst, src); }
void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
void movsd(XMMRegister dst, Address src) { Assembler::movsd(dst, src); }
void movsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
void mulpd(XMMRegister dst, XMMRegister src) { Assembler::mulpd(dst, src); }
void mulpd(XMMRegister dst, Address src) { Assembler::mulpd(dst, src); }
void mulpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
void mulsd(XMMRegister dst, XMMRegister src) { Assembler::mulsd(dst, src); }
void mulsd(XMMRegister dst, Address src) { Assembler::mulsd(dst, src); }
void mulsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
void mulss(XMMRegister dst, XMMRegister src) { Assembler::mulss(dst, src); }
void mulss(XMMRegister dst, Address src) { Assembler::mulss(dst, src); }
void mulss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
// Carry-Less Multiplication Quadword
void pclmulldq(XMMRegister dst, XMMRegister src) {
// 0x00 - multiply lower 64 bits [0:63]
Assembler::pclmulqdq(dst, src, 0x00);
}
void pclmulhdq(XMMRegister dst, XMMRegister src) {
// 0x11 - multiply upper 64 bits [64:127]
Assembler::pclmulqdq(dst, src, 0x11);
}
void pcmpeqb(XMMRegister dst, XMMRegister src);
void pcmpeqw(XMMRegister dst, XMMRegister src);
void pcmpestri(XMMRegister dst, Address src, int imm8);
void pcmpestri(XMMRegister dst, XMMRegister src, int imm8);
void pmovzxbw(XMMRegister dst, XMMRegister src);
void pmovzxbw(XMMRegister dst, Address src);
void pmovmskb(Register dst, XMMRegister src);
void ptest(XMMRegister dst, XMMRegister src);
void roundsd(XMMRegister dst, XMMRegister src, int32_t rmode) { Assembler::roundsd(dst, src, rmode); }
void roundsd(XMMRegister dst, Address src, int32_t rmode) { Assembler::roundsd(dst, src, rmode); }
void roundsd(XMMRegister dst, AddressLiteral src, int32_t rmode, Register rscratch = noreg);
void sqrtss(XMMRegister dst, XMMRegister src) { Assembler::sqrtss(dst, src); }
void sqrtss(XMMRegister dst, Address src) { Assembler::sqrtss(dst, src); }
void sqrtss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
void subsd(XMMRegister dst, XMMRegister src) { Assembler::subsd(dst, src); }
void subsd(XMMRegister dst, Address src) { Assembler::subsd(dst, src); }
void subsd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
void subss(XMMRegister dst, XMMRegister src) { Assembler::subss(dst, src); }
void subss(XMMRegister dst, Address src) { Assembler::subss(dst, src); }
void subss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
void ucomiss(XMMRegister dst, Address src) { Assembler::ucomiss(dst, src); }
void ucomiss(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
void ucomisd(XMMRegister dst, Address src) { Assembler::ucomisd(dst, src); }
void ucomisd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
// Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
void xorpd(XMMRegister dst, XMMRegister src);
void xorpd(XMMRegister dst, Address src) { Assembler::xorpd(dst, src); }
void xorpd(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
// Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
void xorps(XMMRegister dst, XMMRegister src);
void xorps(XMMRegister dst, Address src) { Assembler::xorps(dst, src); }
void xorps(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
// Shuffle Bytes
void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
void pshufb(XMMRegister dst, Address src) { Assembler::pshufb(dst, src); }
void pshufb(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
// AVX 3-operands instructions
void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
void vaddsd(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vaddsd(dst, nds, src); }
void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
void vaddss(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vaddss(dst, nds, src); }
void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
void vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch = noreg);
void vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch = noreg);
void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
void vpaddb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
void vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpaddd(dst, nds, src, vector_len); }
void vpaddd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vpaddd(dst, nds, src, vector_len); }
void vpaddd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
void vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
void vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
using Assembler::vpbroadcastd;
void vpbroadcastd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
using Assembler::vpbroadcastq;
void vpbroadcastq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch = noreg);
void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
void evpcmpeqd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
// Vector compares
void evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src, int comparison, bool is_signed, int vector_len) {
Assembler::evpcmpd(kdst, mask, nds, src, comparison, is_signed, vector_len);
}
void evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int comparison, bool is_signed, int vector_len, Register rscratch = noreg);
void evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src, int comparison, bool is_signed, int vector_len) {
Assembler::evpcmpq(kdst, mask, nds, src, comparison, is_signed, vector_len);
}
void evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int comparison, bool is_signed, int vector_len, Register rscratch = noreg);
void evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src, int comparison, bool is_signed, int vector_len) {
Assembler::evpcmpb(kdst, mask, nds, src, comparison, is_signed, vector_len);
}
void evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int comparison, bool is_signed, int vector_len, Register rscratch = noreg);
void evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src, int comparison, bool is_signed, int vector_len) {
Assembler::evpcmpw(kdst, mask, nds, src, comparison, is_signed, vector_len);
}
void evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int comparison, bool is_signed, int vector_len, Register rscratch = noreg);
void evpbroadcast(BasicType type, XMMRegister dst, Register src, int vector_len);
// Emit comparison instruction for the specified comparison predicate.
void vpcmpCCW(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister xtmp, ComparisonPredicate cond, Width width, int vector_len);
void vpcmpCC(XMMRegister dst, XMMRegister nds, XMMRegister src, int cond_encoding, Width width, int vector_len);
void vpmovzxbw(XMMRegister dst, Address src, int vector_len);
void vpmovzxbw(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::vpmovzxbw(dst, src, vector_len); }
void vpmovmskb(Register dst, XMMRegister src, int vector_len = Assembler::AVX_256bit);
void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
void vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpmulld(dst, nds, src, vector_len); }
void vpmulld(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vpmulld(dst, nds, src, vector_len); }
void vpmulld(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
void vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
void vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
void evpsraq(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
void evpsraq(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
void evpsllw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
if (!is_varshift) {
Assembler::evpsllw(dst, mask, nds, src, merge, vector_len);
} else {
Assembler::evpsllvw(dst, mask, nds, src, merge, vector_len);
}
}
void evpslld(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
if (!is_varshift) {
Assembler::evpslld(dst, mask, nds, src, merge, vector_len);
} else {
Assembler::evpsllvd(dst, mask, nds, src, merge, vector_len);
}
}
void evpsllq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
if (!is_varshift) {
Assembler::evpsllq(dst, mask, nds, src, merge, vector_len);
} else {
Assembler::evpsllvq(dst, mask, nds, src, merge, vector_len);
}
}
void evpsrlw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
if (!is_varshift) {
Assembler::evpsrlw(dst, mask, nds, src, merge, vector_len);
} else {
Assembler::evpsrlvw(dst, mask, nds, src, merge, vector_len);
}
}
void evpsrld(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
if (!is_varshift) {
Assembler::evpsrld(dst, mask, nds, src, merge, vector_len);
} else {
Assembler::evpsrlvd(dst, mask, nds, src, merge, vector_len);
}
}
void evpsrlq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
if (!is_varshift) {
Assembler::evpsrlq(dst, mask, nds, src, merge, vector_len);
} else {
Assembler::evpsrlvq(dst, mask, nds, src, merge, vector_len);
}
}
void evpsraw(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
if (!is_varshift) {
Assembler::evpsraw(dst, mask, nds, src, merge, vector_len);
} else {
Assembler::evpsravw(dst, mask, nds, src, merge, vector_len);
}
}
void evpsrad(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
if (!is_varshift) {
Assembler::evpsrad(dst, mask, nds, src, merge, vector_len);
} else {
Assembler::evpsravd(dst, mask, nds, src, merge, vector_len);
}
}
void evpsraq(XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len, bool is_varshift) {
if (!is_varshift) {
Assembler::evpsraq(dst, mask, nds, src, merge, vector_len);
} else {
Assembler::evpsravq(dst, mask, nds, src, merge, vector_len);
}
}
void evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
void evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
void evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
void evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
void vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
void vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
void vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
void vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
void vptest(XMMRegister dst, XMMRegister src);
void vptest(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::vptest(dst, src, vector_len); }
void punpcklbw(XMMRegister dst, XMMRegister src);
void punpcklbw(XMMRegister dst, Address src) { Assembler::punpcklbw(dst, src); }
void pshufd(XMMRegister dst, Address src, int mode);
void pshufd(XMMRegister dst, XMMRegister src, int mode) { Assembler::pshufd(dst, src, mode); }
void pshuflw(XMMRegister dst, XMMRegister src, int mode);
void pshuflw(XMMRegister dst, Address src, int mode) { Assembler::pshuflw(dst, src, mode); }
void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
void evpord(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
void vdivsd(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vdivsd(dst, nds, src); }
void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
void vdivss(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vdivss(dst, nds, src); }
void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
void vmulsd(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vmulsd(dst, nds, src); }
void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
void vmulss(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vmulss(dst, nds, src); }
void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
void vsubsd(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vsubsd(dst, nds, src); }
void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
void vsubss(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vsubss(dst, nds, src); }
void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch = noreg);
// AVX Vector instructions
void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
Assembler::vpxor(dst, nds, src, vector_len);
else
Assembler::vxorpd(dst, nds, src, vector_len);
}
void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
Assembler::vpxor(dst, nds, src, vector_len);
else
Assembler::vxorpd(dst, nds, src, vector_len);
}
void vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
// Simple version for AVX2 256bit vectors
void vpxor(XMMRegister dst, XMMRegister src) {
assert(UseAVX >= 2, "Should be at least AVX2");
Assembler::vpxor(dst, dst, src, AVX_256bit);
}
void vpxor(XMMRegister dst, Address src) {
assert(UseAVX >= 2, "Should be at least AVX2");
Assembler::vpxor(dst, dst, src, AVX_256bit);
}
void vpermd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpermd(dst, nds, src, vector_len); }
void vpermd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
Assembler::vinserti32x4(dst, nds, src, imm8);
} else if (UseAVX > 1) {
// vinserti128 is available only in AVX2
Assembler::vinserti128(dst, nds, src, imm8);
} else {
Assembler::vinsertf128(dst, nds, src, imm8);
}
}
void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
Assembler::vinserti32x4(dst, nds, src, imm8);
} else if (UseAVX > 1) {
// vinserti128 is available only in AVX2
Assembler::vinserti128(dst, nds, src, imm8);
} else {
Assembler::vinsertf128(dst, nds, src, imm8);
}
}
void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
Assembler::vextracti32x4(dst, src, imm8);
} else if (UseAVX > 1) {
// vextracti128 is available only in AVX2
Assembler::vextracti128(dst, src, imm8);
} else {
Assembler::vextractf128(dst, src, imm8);
}
}
void vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
Assembler::vextracti32x4(dst, src, imm8);
} else if (UseAVX > 1) {
// vextracti128 is available only in AVX2
Assembler::vextracti128(dst, src, imm8);
} else {
Assembler::vextractf128(dst, src, imm8);
}
}
// 128bit copy to/from high 128 bits of 256bit (YMM) vector registers
void vinserti128_high(XMMRegister dst, XMMRegister src) {
vinserti128(dst, dst, src, 1);
}
void vinserti128_high(XMMRegister dst, Address src) {
vinserti128(dst, dst, src, 1);
}
void vextracti128_high(XMMRegister dst, XMMRegister src) {
vextracti128(dst, src, 1);
}
void vextracti128_high(Address dst, XMMRegister src) {
vextracti128(dst, src, 1);
}
void vinsertf128_high(XMMRegister dst, XMMRegister src) {
if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
Assembler::vinsertf32x4(dst, dst, src, 1);
} else {
Assembler::vinsertf128(dst, dst, src, 1);
}
}
void vinsertf128_high(XMMRegister dst, Address src) {
if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
Assembler::vinsertf32x4(dst, dst, src, 1);
} else {
Assembler::vinsertf128(dst, dst, src, 1);
}
}
void vextractf128_high(XMMRegister dst, XMMRegister src) {
if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
Assembler::vextractf32x4(dst, src, 1);
} else {
Assembler::vextractf128(dst, src, 1);
}
}
void vextractf128_high(Address dst, XMMRegister src) {
if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
Assembler::vextractf32x4(dst, src, 1);
} else {
Assembler::vextractf128(dst, src, 1);
}
}
// 256bit copy to/from high 256 bits of 512bit (ZMM) vector registers
void vinserti64x4_high(XMMRegister dst, XMMRegister src) {
Assembler::vinserti64x4(dst, dst, src, 1);
}
void vinsertf64x4_high(XMMRegister dst, XMMRegister src) {
Assembler::vinsertf64x4(dst, dst, src, 1);
}
void vextracti64x4_high(XMMRegister dst, XMMRegister src) {
Assembler::vextracti64x4(dst, src, 1);
}
void vextractf64x4_high(XMMRegister dst, XMMRegister src) {
Assembler::vextractf64x4(dst, src, 1);
}
void vextractf64x4_high(Address dst, XMMRegister src) {
Assembler::vextractf64x4(dst, src, 1);
}
void vinsertf64x4_high(XMMRegister dst, Address src) {
Assembler::vinsertf64x4(dst, dst, src, 1);
}
// 128bit copy to/from low 128 bits of 256bit (YMM) vector registers
void vinserti128_low(XMMRegister dst, XMMRegister src) {
vinserti128(dst, dst, src, 0);
}
void vinserti128_low(XMMRegister dst, Address src) {
vinserti128(dst, dst, src, 0);
}
void vextracti128_low(XMMRegister dst, XMMRegister src) {
vextracti128(dst, src, 0);
}
void vextracti128_low(Address dst, XMMRegister src) {
vextracti128(dst, src, 0);
}
void vinsertf128_low(XMMRegister dst, XMMRegister src) {
if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
Assembler::vinsertf32x4(dst, dst, src, 0);
} else {
Assembler::vinsertf128(dst, dst, src, 0);
}
}
void vinsertf128_low(XMMRegister dst, Address src) {
if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
Assembler::vinsertf32x4(dst, dst, src, 0);
} else {
Assembler::vinsertf128(dst, dst, src, 0);
}
}
void vextractf128_low(XMMRegister dst, XMMRegister src) {
if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
Assembler::vextractf32x4(dst, src, 0);
} else {
Assembler::vextractf128(dst, src, 0);
}
}
void vextractf128_low(Address dst, XMMRegister src) {
if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
Assembler::vextractf32x4(dst, src, 0);
} else {
Assembler::vextractf128(dst, src, 0);
}
}
// 256bit copy to/from low 256 bits of 512bit (ZMM) vector registers
void vinserti64x4_low(XMMRegister dst, XMMRegister src) {
Assembler::vinserti64x4(dst, dst, src, 0);
}
void vinsertf64x4_low(XMMRegister dst, XMMRegister src) {
Assembler::vinsertf64x4(dst, dst, src, 0);
}
void vextracti64x4_low(XMMRegister dst, XMMRegister src) {
Assembler::vextracti64x4(dst, src, 0);
}
void vextractf64x4_low(XMMRegister dst, XMMRegister src) {
Assembler::vextractf64x4(dst, src, 0);
}
void vextractf64x4_low(Address dst, XMMRegister src) {
Assembler::vextractf64x4(dst, src, 0);
}
void vinsertf64x4_low(XMMRegister dst, Address src) {
Assembler::vinsertf64x4(dst, dst, src, 0);
}
// Carry-Less Multiplication Quadword
void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
// 0x00 - multiply lower 64 bits [0:63]
Assembler::vpclmulqdq(dst, nds, src, 0x00);
}
void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
// 0x11 - multiply upper 64 bits [64:127]
Assembler::vpclmulqdq(dst, nds, src, 0x11);
}
void vpclmullqhqdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
// 0x10 - multiply nds[0:63] and src[64:127]
Assembler::vpclmulqdq(dst, nds, src, 0x10);
}
void vpclmulhqlqdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
//0x01 - multiply nds[64:127] and src[0:63]
Assembler::vpclmulqdq(dst, nds, src, 0x01);
}
void evpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
// 0x00 - multiply lower 64 bits [0:63]
Assembler::evpclmulqdq(dst, nds, src, 0x00, vector_len);
}
void evpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
// 0x11 - multiply upper 64 bits [64:127]
Assembler::evpclmulqdq(dst, nds, src, 0x11, vector_len);
}
// AVX-512 mask operations.
void kand(BasicType etype, KRegister dst, KRegister src1, KRegister src2);
void kor(BasicType type, KRegister dst, KRegister src1, KRegister src2);
void knot(uint masklen, KRegister dst, KRegister src, KRegister ktmp = knoreg, Register rtmp = noreg);
void kxor(BasicType type, KRegister dst, KRegister src1, KRegister src2);
void kortest(uint masklen, KRegister src1, KRegister src2);
void ktest(uint masklen, KRegister src1, KRegister src2);
void evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
void evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
void evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
void evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
void evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
void evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
void evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len);
void evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len);
void evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc);
void evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc);
void evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc);
void evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc);
using Assembler::evpandq;
void evpandq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
using Assembler::evpaddq;
void evpaddq(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, bool merge, int vector_len, Register rscratch = noreg);
using Assembler::evporq;
void evporq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch = noreg);
using Assembler::vpternlogq;
void vpternlogq(XMMRegister dst, int imm8, XMMRegister src2, AddressLiteral src3, int vector_len, Register rscratch = noreg);
void cmov32( Condition cc, Register dst, Address src);
void cmov32( Condition cc, Register dst, Register src);
void cmov( Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
void cmovptr(Condition cc, Register dst, Address src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
void movoop(Register dst, jobject obj);
void movoop(Address dst, jobject obj, Register rscratch);
void mov_metadata(Register dst, Metadata* obj);
void mov_metadata(Address dst, Metadata* obj, Register rscratch);
void movptr(Register dst, Register src);
void movptr(Register dst, Address src);
void movptr(Register dst, AddressLiteral src);
void movptr(Register dst, ArrayAddress src);
void movptr(Register dst, intptr_t src);
void movptr(Address dst, Register src);
void movptr(Address dst, int32_t imm);
void movptr(Address dst, intptr_t src, Register rscratch);
void movptr(ArrayAddress dst, Register src, Register rscratch);
void movptr(Register dst, RegisterOrConstant src) {
if (src.is_constant()) movptr(dst, src.as_constant());
else movptr(dst, src.as_register());
}
// to avoid hiding movl
void mov32(Register dst, AddressLiteral src);
void mov32(AddressLiteral dst, Register src, Register rscratch = noreg);
// Import other mov() methods from the parent class or else
// they will be hidden by the following overriding declaration.
using Assembler::movdl;
void movdl(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
using Assembler::movq;
void movq(XMMRegister dst, AddressLiteral src, Register rscratch = noreg);
// Can push value or effective address
void pushptr(AddressLiteral src, Register rscratch);
void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
void pushoop(jobject obj, Register rscratch);
void pushklass(Metadata* obj, Register rscratch);
// sign extend as need a l to ptr sized element
void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
public:
// clear memory of size 'cnt' qwords, starting at 'base';
// if 'is_large' is set, do not try to produce short loop
void clear_mem(Register base, Register cnt, Register rtmp, XMMRegister xtmp, bool is_large, KRegister mask=knoreg);
// clear memory initialization sequence for constant size;
void clear_mem(Register base, int cnt, Register rtmp, XMMRegister xtmp, KRegister mask=knoreg);
// clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM registers
void xmm_clear_mem(Register base, Register cnt, Register rtmp, XMMRegister xtmp, KRegister mask=knoreg);
// Fill primitive arrays
void generate_fill(BasicType t, bool aligned,
Register to, Register value, Register count,
Register rtmp, XMMRegister xtmp);
void encode_iso_array(Register src, Register dst, Register len,
XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
XMMRegister tmp4, Register tmp5, Register result, bool ascii);
#ifdef _LP64
void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
Register y, Register y_idx, Register z,
Register carry, Register product,
Register idx, Register kdx);
void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
Register yz_idx, Register idx,
Register carry, Register product, int offset);
void multiply_128_x_128_bmi2_loop(Register y, Register z,
Register carry, Register carry2,
Register idx, Register jdx,
Register yz_idx1, Register yz_idx2,
Register tmp, Register tmp3, Register tmp4);
void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
Register yz_idx, Register idx, Register jdx,
Register carry, Register product,
Register carry2);
void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
Register tmp2);
void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
Register rdxReg, Register raxReg);
void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
Register tmp3, Register tmp4);
void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
Register raxReg);
void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
Register raxReg);
void vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
Register result, Register tmp1, Register tmp2,
XMMRegister vec1, XMMRegister vec2, XMMRegister vec3);
#endif
// CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
void update_byte_crc32(Register crc, Register val, Register table);
void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
#ifdef _LP64
void kernel_crc32_avx512(Register crc, Register buf, Register len, Register table, Register tmp1, Register tmp2);
void kernel_crc32_avx512_256B(Register crc, Register buf, Register len, Register key, Register pos,
Register tmp1, Register tmp2, Label& L_barrett, Label& L_16B_reduction_loop,
Label& L_get_last_two_xmms, Label& L_128_done, Label& L_cleanup);
#endif // _LP64
// CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic
// Note on a naming convention:
// Prefix w = register only used on a Westmere+ architecture
// Prefix n = register only used on a Nehalem architecture
#ifdef _LP64
void crc32c_ipl_alg4(Register in_out, uint32_t n,
Register tmp1, Register tmp2, Register tmp3);
#else
void crc32c_ipl_alg4(Register in_out, uint32_t n,
Register tmp1, Register tmp2, Register tmp3,
XMMRegister xtmp1, XMMRegister xtmp2);
#endif
void crc32c_pclmulqdq(XMMRegister w_xtmp1,
Register in_out,
uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
XMMRegister w_xtmp2,
Register tmp1,
Register n_tmp2, Register n_tmp3);
void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
Register tmp1, Register tmp2,
Register n_tmp3);
void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
Register in_out1, Register in_out2, Register in_out3,
Register tmp1, Register tmp2, Register tmp3,
XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
Register tmp4, Register tmp5,
Register n_tmp6);
void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
Register tmp1, Register tmp2, Register tmp3,
Register tmp4, Register tmp5, Register tmp6,
XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
bool is_pclmulqdq_supported);
// Fold 128-bit data chunk
void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
#ifdef _LP64
// Fold 512-bit data chunk
void fold512bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, Register pos, int offset);
#endif // _LP64
// Fold 8-bit data
void fold_8bit_crc32(Register crc, Register table, Register tmp);
void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
// Compress char[] array to byte[].
void char_array_compress(Register src, Register dst, Register len,
XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
XMMRegister tmp4, Register tmp5, Register result,
KRegister mask1 = knoreg, KRegister mask2 = knoreg);
// Inflate byte[] array to char[].
void byte_array_inflate(Register src, Register dst, Register len,
XMMRegister tmp1, Register tmp2, KRegister mask = knoreg);
void fill_masked(BasicType bt, Address dst, XMMRegister xmm, KRegister mask,
Register length, Register temp, int vec_enc);
void fill64_masked(uint shift, Register dst, int disp,
XMMRegister xmm, KRegister mask, Register length,
Register temp, bool use64byteVector = false);
void fill32_masked(uint shift, Register dst, int disp,
XMMRegister xmm, KRegister mask, Register length,
Register temp);
void fill32(Address dst, XMMRegister xmm);
void fill32(Register dst, int disp, XMMRegister xmm);
void fill64(Address dst, XMMRegister xmm, bool use64byteVector = false);
void fill64(Register dst, int dis, XMMRegister xmm, bool use64byteVector = false);
#ifdef _LP64
void convert_f2i(Register dst, XMMRegister src);
void convert_d2i(Register dst, XMMRegister src);
void convert_f2l(Register dst, XMMRegister src);
void convert_d2l(Register dst, XMMRegister src);
void round_double(Register dst, XMMRegister src, Register rtmp, Register rcx);
void round_float(Register dst, XMMRegister src, Register rtmp, Register rcx);
void cache_wb(Address line);
void cache_wbsync(bool is_pre);
#ifdef COMPILER2_OR_JVMCI
void generate_fill_avx3(BasicType type, Register to, Register value,
Register count, Register rtmp, XMMRegister xtmp);
#endif // COMPILER2_OR_JVMCI
#endif // _LP64
void vallones(XMMRegister dst, int vector_len);
void check_stack_alignment(Register sp, const char* msg, unsigned bias = 0, Register tmp = noreg);
void lightweight_lock(Register obj, Register hdr, Register thread, Register tmp, Label& slow);
void lightweight_unlock(Register obj, Register hdr, Register tmp, Label& slow);
};
/**
* class SkipIfEqual:
*
* Instantiating this class will result in assembly code being output that will
* jump around any code emitted between the creation of the instance and it's
* automatic destruction at the end of a scope block, depending on the value of
* the flag passed to the constructor, which will be checked at run-time.
*/
class SkipIfEqual {
private:
MacroAssembler* _masm;
Label _label;
public:
SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value, Register rscratch);
~SkipIfEqual();
};
#endif // CPU_X86_MACROASSEMBLER_X86_HPP