blob: d92b43f0ea54e7ef21cd055848d0d0fe030a43c2 [file] [log] [blame]
/*
* Copyright (c) 2003, 2023, Oracle and/or its affiliates. All rights reserved.
* Copyright 2007, 2008, 2009, 2010, 2011 Red Hat, Inc.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/assembler.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/interpreterRuntime.hpp"
#include "interpreter/zero/bytecodeInterpreter.hpp"
#include "interpreter/zero/zeroInterpreter.hpp"
#include "interpreter/zero/zeroInterpreterGenerator.hpp"
#include "oops/access.inline.hpp"
#include "oops/cpCache.inline.hpp"
#include "oops/klass.inline.hpp"
#include "oops/methodData.hpp"
#include "oops/method.hpp"
#include "oops/oop.inline.hpp"
#include "prims/jvmtiExport.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/interfaceSupport.inline.hpp"
#include "runtime/jniHandles.inline.hpp"
#include "runtime/timer.hpp"
#include "runtime/timerTrace.hpp"
#include "utilities/debug.hpp"
#include "utilities/macros.hpp"
#include "entry_zero.hpp"
#include "stack_zero.inline.hpp"
void ZeroInterpreter::initialize_stub() {
if (_code != nullptr) return;
// generate interpreter
int code_size = InterpreterCodeSize;
NOT_PRODUCT(code_size *= 4;) // debug uses extra interpreter code space
_code = new StubQueue(new InterpreterCodeletInterface, code_size, nullptr,
"Interpreter");
}
void ZeroInterpreter::initialize_code() {
AbstractInterpreter::initialize();
// generate interpreter
{ ResourceMark rm;
TraceTime timer("Interpreter generation", TRACETIME_LOG(Info, startuptime));
ZeroInterpreterGenerator g;
if (PrintInterpreter) print();
}
}
void ZeroInterpreter::invoke_method(Method* method, address entry_point, TRAPS) {
((ZeroEntry *) entry_point)->invoke(method, THREAD);
}
void ZeroInterpreter::invoke_osr(Method* method,
address entry_point,
address osr_buf,
TRAPS) {
((ZeroEntry *) entry_point)->invoke_osr(method, osr_buf, THREAD);
}
InterpreterCodelet* ZeroInterpreter::codelet_containing(address pc) {
// FIXME: I'm pretty sure _code is null and this is never called, which is why it's copied.
return (InterpreterCodelet*)_code->stub_containing(pc);
}
#define fixup_after_potential_safepoint() \
method = istate->method()
#define CALL_VM_NOCHECK_NOFIX(func) \
thread->set_last_Java_frame(); \
func; \
thread->reset_last_Java_frame();
#define CALL_VM_NOCHECK(func) \
CALL_VM_NOCHECK_NOFIX(func) \
fixup_after_potential_safepoint()
int ZeroInterpreter::normal_entry(Method* method, intptr_t UNUSED, TRAPS) {
JavaThread *thread = THREAD;
// Allocate and initialize our frame.
InterpreterFrame *frame = InterpreterFrame::build(method, CHECK_0);
thread->push_zero_frame(frame);
// Execute those bytecodes!
main_loop(0, THREAD);
// No deoptimized frames on the stack
return 0;
}
int ZeroInterpreter::Reference_get_entry(Method* method, intptr_t UNUSED, TRAPS) {
JavaThread* thread = THREAD;
ZeroStack* stack = thread->zero_stack();
intptr_t* topOfStack = stack->sp();
oop ref = STACK_OBJECT(0);
// Shortcut if reference is known null
if (ref == nullptr) {
return normal_entry(method, 0, THREAD);
}
// Read the referent with weaker semantics, and let GCs handle the rest.
const int referent_offset = java_lang_ref_Reference::referent_offset();
oop obj = HeapAccess<IN_HEAP | ON_WEAK_OOP_REF>::oop_load_at(ref, referent_offset);
SET_STACK_OBJECT(obj, 0);
// No deoptimized frames on the stack
return 0;
}
intptr_t narrow(BasicType type, intptr_t result) {
// mask integer result to narrower return type.
switch (type) {
case T_BOOLEAN:
return result&1;
case T_BYTE:
return (intptr_t)(jbyte)result;
case T_CHAR:
return (intptr_t)(uintptr_t)(jchar)result;
case T_SHORT:
return (intptr_t)(jshort)result;
case T_OBJECT: // nothing to do fall through
case T_ARRAY:
case T_LONG:
case T_INT:
case T_FLOAT:
case T_DOUBLE:
case T_VOID:
return result;
default:
ShouldNotReachHere();
return result; // silence compiler warnings
}
}
void ZeroInterpreter::main_loop(int recurse, TRAPS) {
JavaThread *thread = THREAD;
ZeroStack *stack = thread->zero_stack();
// If we are entering from a deopt we may need to call
// ourself a few times in order to get to our frame.
if (recurse)
main_loop(recurse - 1, THREAD);
InterpreterFrame *frame = thread->top_zero_frame()->as_interpreter_frame();
interpreterState istate = frame->interpreter_state();
Method* method = istate->method();
intptr_t *result = nullptr;
int result_slots = 0;
while (true) {
// We can set up the frame anchor with everything we want at
// this point as we are thread_in_Java and no safepoints can
// occur until we go to vm mode. We do have to clear flags
// on return from vm but that is it.
thread->set_last_Java_frame();
// Call the interpreter
if (JvmtiExport::can_post_interpreter_events()) {
if (RewriteBytecodes) {
BytecodeInterpreter::run<true, true>(istate);
} else {
BytecodeInterpreter::run<true, false>(istate);
}
} else {
if (RewriteBytecodes) {
BytecodeInterpreter::run<false, true>(istate);
} else {
BytecodeInterpreter::run<false, false>(istate);
}
}
fixup_after_potential_safepoint();
// If we are unwinding, notify the stack watermarks machinery.
// Should do this before resetting the frame anchor.
if (istate->msg() == BytecodeInterpreter::return_from_method ||
istate->msg() == BytecodeInterpreter::do_osr) {
stack_watermark_unwind_check(thread);
} else {
assert(istate->msg() == BytecodeInterpreter::call_method ||
istate->msg() == BytecodeInterpreter::more_monitors ||
istate->msg() == BytecodeInterpreter::throwing_exception,
"Should be one of these otherwise");
}
// Clear the frame anchor
thread->reset_last_Java_frame();
// Examine the message from the interpreter to decide what to do
if (istate->msg() == BytecodeInterpreter::call_method) {
Method* callee = istate->callee();
// Trim back the stack to put the parameters at the top
stack->set_sp(istate->stack() + 1);
// Make the call
Interpreter::invoke_method(callee, istate->callee_entry_point(), THREAD);
fixup_after_potential_safepoint();
// Convert the result
istate->set_stack(stack->sp() - 1);
// Restore the stack
stack->set_sp(istate->stack_limit() + 1);
// Resume the interpreter
istate->set_msg(BytecodeInterpreter::method_resume);
}
else if (istate->msg() == BytecodeInterpreter::more_monitors) {
int monitor_words = frame::interpreter_frame_monitor_size();
// Allocate the space
stack->overflow_check(monitor_words, THREAD);
if (HAS_PENDING_EXCEPTION)
break;
stack->alloc(monitor_words * wordSize);
// Move the expression stack contents
for (intptr_t *p = istate->stack() + 1; p < istate->stack_base(); p++)
*(p - monitor_words) = *p;
// Move the expression stack pointers
istate->set_stack_limit(istate->stack_limit() - monitor_words);
istate->set_stack(istate->stack() - monitor_words);
istate->set_stack_base(istate->stack_base() - monitor_words);
// Zero the new monitor so the interpreter can find it.
((BasicObjectLock *) istate->stack_base())->set_obj(nullptr);
// Resume the interpreter
istate->set_msg(BytecodeInterpreter::got_monitors);
}
else if (istate->msg() == BytecodeInterpreter::return_from_method) {
// Copy the result into the caller's frame
result_slots = type2size[method->result_type()];
assert(result_slots >= 0 && result_slots <= 2, "what?");
result = istate->stack() + result_slots;
break;
}
else if (istate->msg() == BytecodeInterpreter::throwing_exception) {
assert(HAS_PENDING_EXCEPTION, "should do");
break;
}
else if (istate->msg() == BytecodeInterpreter::do_osr) {
// Unwind the current frame
thread->pop_zero_frame();
// Remove any extension of the previous frame
int extra_locals = method->max_locals() - method->size_of_parameters();
stack->set_sp(stack->sp() + extra_locals);
// Jump into the OSR method
Interpreter::invoke_osr(
method, istate->osr_entry(), istate->osr_buf(), THREAD);
return;
}
else {
ShouldNotReachHere();
}
}
// Unwind the current frame
thread->pop_zero_frame();
// Pop our local variables
stack->set_sp(stack->sp() + method->max_locals());
// Push our result
for (int i = 0; i < result_slots; i++) {
// Adjust result to smaller
union {
intptr_t res;
jint res_jint;
};
res = result[-i];
if (result_slots == 1) {
BasicType t = method->result_type();
if (is_subword_type(t)) {
res_jint = (jint)narrow(t, res_jint);
}
}
stack->push(res);
}
}
int ZeroInterpreter::native_entry(Method* method, intptr_t UNUSED, TRAPS) {
// Make sure method is native and not abstract
assert(method->is_native() && !method->is_abstract(), "should be");
JavaThread *thread = THREAD;
ZeroStack *stack = thread->zero_stack();
// Allocate and initialize our frame
InterpreterFrame *frame = InterpreterFrame::build(method, CHECK_0);
thread->push_zero_frame(frame);
interpreterState istate = frame->interpreter_state();
intptr_t *locals = istate->locals();
// Lock if necessary
BasicObjectLock *monitor;
monitor = nullptr;
if (method->is_synchronized()) {
monitor = (BasicObjectLock*) istate->stack_base();
oop lockee = monitor->obj();
markWord disp = lockee->mark().set_unlocked();
monitor->lock()->set_displaced_header(disp);
bool call_vm = (LockingMode == LM_MONITOR);
bool inc_monitor_count = true;
if (call_vm || lockee->cas_set_mark(markWord::from_pointer(monitor), disp) != disp) {
// Is it simple recursive case?
if (!call_vm && thread->is_lock_owned((address) disp.clear_lock_bits().to_pointer())) {
monitor->lock()->set_displaced_header(markWord::from_pointer(nullptr));
} else {
inc_monitor_count = false;
CALL_VM_NOCHECK(InterpreterRuntime::monitorenter(thread, monitor));
if (HAS_PENDING_EXCEPTION)
goto unwind_and_return;
}
}
if (inc_monitor_count) {
THREAD->inc_held_monitor_count();
}
}
// Get the signature handler
InterpreterRuntime::SignatureHandler *handler; {
address handlerAddr = method->signature_handler();
if (handlerAddr == nullptr) {
CALL_VM_NOCHECK(InterpreterRuntime::prepare_native_call(thread, method));
if (HAS_PENDING_EXCEPTION)
goto unlock_unwind_and_return;
handlerAddr = method->signature_handler();
assert(handlerAddr != nullptr, "eh?");
}
if (handlerAddr == (address) InterpreterRuntime::slow_signature_handler) {
CALL_VM_NOCHECK(handlerAddr =
InterpreterRuntime::slow_signature_handler(thread, method, nullptr,nullptr));
if (HAS_PENDING_EXCEPTION)
goto unlock_unwind_and_return;
}
handler = \
InterpreterRuntime::SignatureHandler::from_handlerAddr(handlerAddr);
}
// Get the native function entry point
address function;
function = method->native_function();
assert(function != nullptr, "should be set if signature handler is");
// Build the argument list
stack->overflow_check(handler->argument_count() * 2, THREAD);
if (HAS_PENDING_EXCEPTION)
goto unlock_unwind_and_return;
void **arguments;
void *mirror; {
arguments =
(void **) stack->alloc(handler->argument_count() * sizeof(void **));
void **dst = arguments;
void *env = thread->jni_environment();
*(dst++) = &env;
if (method->is_static()) {
istate->set_oop_temp(
method->constants()->pool_holder()->java_mirror());
mirror = istate->oop_temp_addr();
*(dst++) = &mirror;
}
intptr_t *src = locals;
for (int i = dst - arguments; i < handler->argument_count(); i++) {
ffi_type *type = handler->argument_type(i);
if (type == &ffi_type_pointer) {
if (*src) {
stack->push((intptr_t) src);
*(dst++) = stack->sp();
}
else {
*(dst++) = src;
}
src--;
}
else if (type->size == 4) {
*(dst++) = src--;
}
else if (type->size == 8) {
src--;
*(dst++) = src--;
}
else {
ShouldNotReachHere();
}
}
}
// Set up the Java frame anchor
thread->set_last_Java_frame();
// Change the thread state to _thread_in_native
ThreadStateTransition::transition_from_java(thread, _thread_in_native);
// Make the call
intptr_t result[4 - LogBytesPerWord];
ffi_call(handler->cif(), (void (*)()) function, result, arguments);
// Change the thread state back to _thread_in_Java and ensure it
// is seen by the GC thread.
// ThreadStateTransition::transition_from_native() cannot be used
// here because it does not check for asynchronous exceptions.
// We have to manage the transition ourself.
thread->set_thread_state_fence(_thread_in_native_trans);
// Handle safepoint operations, pending suspend requests,
// and pending asynchronous exceptions.
if (SafepointMechanism::should_process(thread) ||
thread->has_special_condition_for_native_trans()) {
JavaThread::check_special_condition_for_native_trans(thread);
CHECK_UNHANDLED_OOPS_ONLY(thread->clear_unhandled_oops());
}
// Finally we can change the thread state to _thread_in_Java.
thread->set_thread_state(_thread_in_Java);
fixup_after_potential_safepoint();
// Notify the stack watermarks machinery that we are unwinding.
// Should do this before resetting the frame anchor.
stack_watermark_unwind_check(thread);
// Clear the frame anchor
thread->reset_last_Java_frame();
// If the result was an oop then unbox it and store it in
// oop_temp where the garbage collector can see it before
// we release the handle it might be protected by.
if (handler->result_type() == &ffi_type_pointer) {
if (result[0] == 0) {
istate->set_oop_temp(nullptr);
} else {
jobject handle = reinterpret_cast<jobject>(result[0]);
istate->set_oop_temp(JNIHandles::resolve(handle));
}
}
// Reset handle block
thread->active_handles()->clear();
unlock_unwind_and_return:
// Unlock if necessary
if (monitor) {
BasicLock *lock = monitor->lock();
markWord header = lock->displaced_header();
oop rcvr = monitor->obj();
monitor->set_obj(nullptr);
bool dec_monitor_count = true;
if (header.to_pointer() != nullptr) {
markWord old_header = markWord::encode(lock);
if (rcvr->cas_set_mark(header, old_header) != old_header) {
monitor->set_obj(rcvr);
dec_monitor_count = false;
InterpreterRuntime::monitorexit(monitor);
}
}
if (dec_monitor_count) {
THREAD->dec_held_monitor_count();
}
}
unwind_and_return:
// Unwind the current activation
thread->pop_zero_frame();
// Pop our parameters
stack->set_sp(stack->sp() + method->size_of_parameters());
// Push our result
if (!HAS_PENDING_EXCEPTION) {
BasicType type = method->result_type();
stack->set_sp(stack->sp() - type2size[type]);
switch (type) {
case T_VOID:
break;
case T_BOOLEAN:
#ifndef VM_LITTLE_ENDIAN
result[0] <<= (BitsPerWord - BitsPerByte);
#endif
SET_LOCALS_INT(*(jboolean *) result != 0, 0);
break;
case T_CHAR:
#ifndef VM_LITTLE_ENDIAN
result[0] <<= (BitsPerWord - BitsPerShort);
#endif
SET_LOCALS_INT(*(jchar *) result, 0);
break;
case T_BYTE:
#ifndef VM_LITTLE_ENDIAN
result[0] <<= (BitsPerWord - BitsPerByte);
#endif
SET_LOCALS_INT(*(jbyte *) result, 0);
break;
case T_SHORT:
#ifndef VM_LITTLE_ENDIAN
result[0] <<= (BitsPerWord - BitsPerShort);
#endif
SET_LOCALS_INT(*(jshort *) result, 0);
break;
case T_INT:
#ifndef VM_LITTLE_ENDIAN
result[0] <<= (BitsPerWord - BitsPerInt);
#endif
SET_LOCALS_INT(*(jint *) result, 0);
break;
case T_LONG:
SET_LOCALS_LONG(*(jlong *) result, 0);
break;
case T_FLOAT:
SET_LOCALS_FLOAT(*(jfloat *) result, 0);
break;
case T_DOUBLE:
SET_LOCALS_DOUBLE(*(jdouble *) result, 0);
break;
case T_OBJECT:
case T_ARRAY:
SET_LOCALS_OBJECT(istate->oop_temp(), 0);
break;
default:
ShouldNotReachHere();
}
}
// Already did every pending exception check here.
// If HAS_PENDING_EXCEPTION is true, the interpreter would handle the rest.
if (CheckJNICalls) {
THREAD->clear_pending_jni_exception_check();
}
// No deoptimized frames on the stack
return 0;
}
int ZeroInterpreter::getter_entry(Method* method, intptr_t UNUSED, TRAPS) {
JavaThread* thread = THREAD;
// Drop into the slow path if we need a safepoint check
if (SafepointMechanism::should_process(thread)) {
return normal_entry(method, 0, THREAD);
}
// Read the field index from the bytecode:
// 0: aload_0
// 1: getfield
// 2: index
// 3: index
// 4: return
//
// NB this is not raw bytecode: index is in machine order
assert(method->is_getter(), "Expect the particular bytecode shape");
u1* code = method->code_base();
u2 index = Bytes::get_native_u2(&code[2]);
// Get the entry from the constant pool cache, and drop into
// the slow path if it has not been resolved
ConstantPoolCache* cache = method->constants()->cache();
ConstantPoolCacheEntry* entry = cache->entry_at(index);
if (!entry->is_resolved(Bytecodes::_getfield)) {
return normal_entry(method, 0, THREAD);
}
ZeroStack* stack = thread->zero_stack();
intptr_t* topOfStack = stack->sp();
// Load the object pointer and drop into the slow path
// if we have a NullPointerException
oop object = STACK_OBJECT(0);
if (object == nullptr) {
return normal_entry(method, 0, THREAD);
}
// If needed, allocate additional slot on stack: we already have one
// for receiver, and double/long need another one.
switch (entry->flag_state()) {
case ltos:
case dtos:
stack->overflow_check(1, CHECK_0);
stack->alloc(wordSize);
topOfStack = stack->sp();
break;
default:
;
}
// Read the field to stack(0)
int offset = entry->f2_as_index();
if (entry->is_volatile()) {
if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
OrderAccess::fence();
}
switch (entry->flag_state()) {
case btos:
case ztos: SET_STACK_INT(object->byte_field_acquire(offset), 0); break;
case ctos: SET_STACK_INT(object->char_field_acquire(offset), 0); break;
case stos: SET_STACK_INT(object->short_field_acquire(offset), 0); break;
case itos: SET_STACK_INT(object->int_field_acquire(offset), 0); break;
case ltos: SET_STACK_LONG(object->long_field_acquire(offset), 0); break;
case ftos: SET_STACK_FLOAT(object->float_field_acquire(offset), 0); break;
case dtos: SET_STACK_DOUBLE(object->double_field_acquire(offset), 0); break;
case atos: SET_STACK_OBJECT(object->obj_field_acquire(offset), 0); break;
default:
ShouldNotReachHere();
}
} else {
switch (entry->flag_state()) {
case btos:
case ztos: SET_STACK_INT(object->byte_field(offset), 0); break;
case ctos: SET_STACK_INT(object->char_field(offset), 0); break;
case stos: SET_STACK_INT(object->short_field(offset), 0); break;
case itos: SET_STACK_INT(object->int_field(offset), 0); break;
case ltos: SET_STACK_LONG(object->long_field(offset), 0); break;
case ftos: SET_STACK_FLOAT(object->float_field(offset), 0); break;
case dtos: SET_STACK_DOUBLE(object->double_field(offset), 0); break;
case atos: SET_STACK_OBJECT(object->obj_field(offset), 0); break;
default:
ShouldNotReachHere();
}
}
// No deoptimized frames on the stack
return 0;
}
int ZeroInterpreter::setter_entry(Method* method, intptr_t UNUSED, TRAPS) {
JavaThread* thread = THREAD;
// Drop into the slow path if we need a safepoint check
if (SafepointMechanism::should_process(thread)) {
return normal_entry(method, 0, THREAD);
}
// Read the field index from the bytecode:
// 0: aload_0
// 1: *load_1
// 2: putfield
// 3: index
// 4: index
// 5: return
//
// NB this is not raw bytecode: index is in machine order
assert(method->is_setter(), "Expect the particular bytecode shape");
u1* code = method->code_base();
u2 index = Bytes::get_native_u2(&code[3]);
// Get the entry from the constant pool cache, and drop into
// the slow path if it has not been resolved
ConstantPoolCache* cache = method->constants()->cache();
ConstantPoolCacheEntry* entry = cache->entry_at(index);
if (!entry->is_resolved(Bytecodes::_putfield)) {
return normal_entry(method, 0, THREAD);
}
ZeroStack* stack = thread->zero_stack();
intptr_t* topOfStack = stack->sp();
// Figure out where the receiver is. If there is a long/double
// operand on stack top, then receiver is two slots down.
oop object = nullptr;
switch (entry->flag_state()) {
case ltos:
case dtos:
object = STACK_OBJECT(-2);
break;
default:
object = STACK_OBJECT(-1);
break;
}
// Load the receiver pointer and drop into the slow path
// if we have a NullPointerException
if (object == nullptr) {
return normal_entry(method, 0, THREAD);
}
// Store the stack(0) to field
int offset = entry->f2_as_index();
if (entry->is_volatile()) {
switch (entry->flag_state()) {
case btos: object->release_byte_field_put(offset, STACK_INT(0)); break;
case ztos: object->release_byte_field_put(offset, STACK_INT(0) & 1); break; // only store LSB
case ctos: object->release_char_field_put(offset, STACK_INT(0)); break;
case stos: object->release_short_field_put(offset, STACK_INT(0)); break;
case itos: object->release_int_field_put(offset, STACK_INT(0)); break;
case ltos: object->release_long_field_put(offset, STACK_LONG(0)); break;
case ftos: object->release_float_field_put(offset, STACK_FLOAT(0)); break;
case dtos: object->release_double_field_put(offset, STACK_DOUBLE(0)); break;
case atos: object->release_obj_field_put(offset, STACK_OBJECT(0)); break;
default:
ShouldNotReachHere();
}
OrderAccess::storeload();
} else {
switch (entry->flag_state()) {
case btos: object->byte_field_put(offset, STACK_INT(0)); break;
case ztos: object->byte_field_put(offset, STACK_INT(0) & 1); break; // only store LSB
case ctos: object->char_field_put(offset, STACK_INT(0)); break;
case stos: object->short_field_put(offset, STACK_INT(0)); break;
case itos: object->int_field_put(offset, STACK_INT(0)); break;
case ltos: object->long_field_put(offset, STACK_LONG(0)); break;
case ftos: object->float_field_put(offset, STACK_FLOAT(0)); break;
case dtos: object->double_field_put(offset, STACK_DOUBLE(0)); break;
case atos: object->obj_field_put(offset, STACK_OBJECT(0)); break;
default:
ShouldNotReachHere();
}
}
// Nothing is returned, pop out parameters
stack->set_sp(stack->sp() + method->size_of_parameters());
// No deoptimized frames on the stack
return 0;
}
int ZeroInterpreter::empty_entry(Method* method, intptr_t UNUSED, TRAPS) {
JavaThread *thread = THREAD;
ZeroStack *stack = thread->zero_stack();
// Drop into the slow path if we need a safepoint check
if (SafepointMechanism::should_process(thread)) {
return normal_entry(method, 0, THREAD);
}
// Pop our parameters
stack->set_sp(stack->sp() + method->size_of_parameters());
// No deoptimized frames on the stack
return 0;
}
InterpreterFrame *InterpreterFrame::build(Method* const method, TRAPS) {
JavaThread *thread = THREAD;
ZeroStack *stack = thread->zero_stack();
// Calculate the size of the frame we'll build, including
// any adjustments to the caller's frame that we'll make.
int extra_locals = 0;
int monitor_words = 0;
int stack_words = 0;
if (!method->is_native()) {
extra_locals = method->max_locals() - method->size_of_parameters();
stack_words = method->max_stack();
}
if (method->is_synchronized()) {
monitor_words = frame::interpreter_frame_monitor_size();
}
stack->overflow_check(
extra_locals + header_words + monitor_words + stack_words, CHECK_NULL);
// Adjust the caller's stack frame to accommodate any additional
// local variables we have contiguously with our parameters.
for (int i = 0; i < extra_locals; i++)
stack->push(0);
intptr_t *locals;
if (method->is_native())
locals = stack->sp() + (method->size_of_parameters() - 1);
else
locals = stack->sp() + (method->max_locals() - 1);
stack->push(0); // next_frame, filled in later
intptr_t *fp = stack->sp();
assert(fp - stack->sp() == next_frame_off, "should be");
stack->push(INTERPRETER_FRAME);
assert(fp - stack->sp() == frame_type_off, "should be");
interpreterState istate =
(interpreterState) stack->alloc(sizeof(BytecodeInterpreter));
assert(fp - stack->sp() == istate_off, "should be");
istate->set_locals(locals);
istate->set_method(method);
istate->set_mirror(method->method_holder()->java_mirror());
istate->set_self_link(istate);
istate->set_prev_link(nullptr);
istate->set_thread(thread);
istate->set_bcp(method->is_native() ? nullptr : method->code_base());
istate->set_constants(method->constants()->cache());
istate->set_msg(BytecodeInterpreter::method_entry);
istate->set_oop_temp(nullptr);
istate->set_callee(nullptr);
istate->set_monitor_base((BasicObjectLock *) stack->sp());
if (method->is_synchronized()) {
BasicObjectLock *monitor =
(BasicObjectLock *) stack->alloc(monitor_words * wordSize);
oop object;
if (method->is_static())
object = method->constants()->pool_holder()->java_mirror();
else
object = cast_to_oop((void*)locals[0]);
monitor->set_obj(object);
}
istate->set_stack_base(stack->sp());
istate->set_stack(stack->sp() - 1);
if (stack_words)
stack->alloc(stack_words * wordSize);
istate->set_stack_limit(stack->sp() - 1);
return (InterpreterFrame *) fp;
}
InterpreterFrame *InterpreterFrame::build(int size, TRAPS) {
ZeroStack *stack = THREAD->zero_stack();
int size_in_words = size >> LogBytesPerWord;
assert(size_in_words * wordSize == size, "unaligned");
assert(size_in_words >= header_words, "too small");
stack->overflow_check(size_in_words, CHECK_NULL);
stack->push(0); // next_frame, filled in later
intptr_t *fp = stack->sp();
assert(fp - stack->sp() == next_frame_off, "should be");
stack->push(INTERPRETER_FRAME);
assert(fp - stack->sp() == frame_type_off, "should be");
interpreterState istate =
(interpreterState) stack->alloc(sizeof(BytecodeInterpreter));
assert(fp - stack->sp() == istate_off, "should be");
istate->set_self_link(nullptr); // mark invalid
stack->alloc((size_in_words - header_words) * wordSize);
return (InterpreterFrame *) fp;
}
address ZeroInterpreter::return_entry(TosState state, int length, Bytecodes::Code code) {
ShouldNotCallThis();
return nullptr;
}
address ZeroInterpreter::deopt_entry(TosState state, int length) {
return nullptr;
}
address ZeroInterpreter::remove_activation_preserving_args_entry() {
// Do an uncommon trap type entry. c++ interpreter will know
// to pop frame and preserve the args
return Interpreter::deopt_entry(vtos, 0);
}
address ZeroInterpreter::remove_activation_early_entry(TosState state) {
return nullptr;
}
// Helper for figuring out if frames are interpreter frames
bool ZeroInterpreter::contains(address pc) {
return false; // make frame::print_value_on work
}
void ZeroInterpreter::stack_watermark_unwind_check(JavaThread* thread) {
// If frame pointer is in the danger zone, notify the runtime that
// it needs to act before continuing the unwinding.
uintptr_t fp = (uintptr_t)thread->last_Java_fp();
uintptr_t watermark = thread->poll_data()->get_polling_word();
if (fp > watermark) {
InterpreterRuntime::at_unwind(thread);
}
}