| /* |
| * Copyright (c) 1999, 2024, Oracle and/or its affiliates. All rights reserved. |
| * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| * |
| * This code is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License version 2 only, as |
| * published by the Free Software Foundation. |
| * |
| * This code is distributed in the hope that it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| * version 2 for more details (a copy is included in the LICENSE file that |
| * accompanied this code). |
| * |
| * You should have received a copy of the GNU General Public License version |
| * 2 along with this work; if not, write to the Free Software Foundation, |
| * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| * |
| * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| * or visit www.oracle.com if you need additional information or have any |
| * questions. |
| * |
| */ |
| |
| #include "classfile/classLoader.hpp" |
| #include "jvm.h" |
| #include "jvmtifiles/jvmti.h" |
| #include "logging/log.hpp" |
| #include "memory/allocation.inline.hpp" |
| #include "os_posix.inline.hpp" |
| #include "runtime/globals_extension.hpp" |
| #include "runtime/osThread.hpp" |
| #include "runtime/frame.inline.hpp" |
| #include "runtime/interfaceSupport.inline.hpp" |
| #include "runtime/sharedRuntime.hpp" |
| #include "services/attachListener.hpp" |
| #include "services/memTracker.hpp" |
| #include "runtime/arguments.hpp" |
| #include "runtime/atomic.hpp" |
| #include "runtime/java.hpp" |
| #include "runtime/orderAccess.hpp" |
| #include "runtime/park.hpp" |
| #include "runtime/perfMemory.hpp" |
| #include "utilities/align.hpp" |
| #include "utilities/defaultStream.hpp" |
| #include "utilities/events.hpp" |
| #include "utilities/formatBuffer.hpp" |
| #include "utilities/globalDefinitions.hpp" |
| #include "utilities/macros.hpp" |
| #include "utilities/vmError.hpp" |
| #ifdef AIX |
| #include "loadlib_aix.hpp" |
| #include "os_aix.hpp" |
| #endif |
| #ifdef LINUX |
| #include "os_linux.hpp" |
| #endif |
| |
| #include <dirent.h> |
| #include <dlfcn.h> |
| #include <grp.h> |
| #include <locale.h> |
| #include <netdb.h> |
| #include <pwd.h> |
| #include <pthread.h> |
| #include <signal.h> |
| #include <sys/mman.h> |
| #include <sys/resource.h> |
| #include <sys/socket.h> |
| #include <spawn.h> |
| #include <sys/time.h> |
| #include <sys/times.h> |
| #include <sys/types.h> |
| #include <sys/utsname.h> |
| #include <sys/wait.h> |
| #include <time.h> |
| #include <unistd.h> |
| #include <utmpx.h> |
| |
| #ifdef __APPLE__ |
| #include <crt_externs.h> |
| #endif |
| |
| #define ROOT_UID 0 |
| |
| #ifndef MAP_ANONYMOUS |
| #define MAP_ANONYMOUS MAP_ANON |
| #endif |
| |
| #define check_with_errno(check_type, cond, msg) \ |
| do { \ |
| int err = errno; \ |
| check_type(cond, "%s; error='%s' (errno=%s)", msg, os::strerror(err), \ |
| os::errno_name(err)); \ |
| } while (false) |
| |
| #define assert_with_errno(cond, msg) check_with_errno(assert, cond, msg) |
| #define guarantee_with_errno(cond, msg) check_with_errno(guarantee, cond, msg) |
| |
| static jlong initial_time_count = 0; |
| |
| static int clock_tics_per_sec = 100; |
| |
| // Platform minimum stack allowed |
| size_t os::_os_min_stack_allowed = PTHREAD_STACK_MIN; |
| |
| // Check core dump limit and report possible place where core can be found |
| void os::check_dump_limit(char* buffer, size_t bufferSize) { |
| if (!FLAG_IS_DEFAULT(CreateCoredumpOnCrash) && !CreateCoredumpOnCrash) { |
| jio_snprintf(buffer, bufferSize, "CreateCoredumpOnCrash is disabled from command line"); |
| VMError::record_coredump_status(buffer, false); |
| return; |
| } |
| |
| int n; |
| struct rlimit rlim; |
| bool success; |
| |
| char core_path[PATH_MAX]; |
| n = get_core_path(core_path, PATH_MAX); |
| |
| if (n <= 0) { |
| jio_snprintf(buffer, bufferSize, "core.%d (may not exist)", current_process_id()); |
| success = true; |
| #ifdef LINUX |
| } else if (core_path[0] == '"') { // redirect to user process |
| jio_snprintf(buffer, bufferSize, "Core dumps may be processed with %s", core_path); |
| success = true; |
| #endif |
| } else if (getrlimit(RLIMIT_CORE, &rlim) != 0) { |
| jio_snprintf(buffer, bufferSize, "%s (may not exist)", core_path); |
| success = true; |
| } else { |
| switch(rlim.rlim_cur) { |
| case RLIM_INFINITY: |
| jio_snprintf(buffer, bufferSize, "%s", core_path); |
| success = true; |
| break; |
| case 0: |
| jio_snprintf(buffer, bufferSize, "Core dumps have been disabled. To enable core dumping, try \"ulimit -c unlimited\" before starting Java again"); |
| success = false; |
| break; |
| default: |
| jio_snprintf(buffer, bufferSize, "%s (max size " UINT64_FORMAT " k). To ensure a full core dump, try \"ulimit -c unlimited\" before starting Java again", core_path, uint64_t(rlim.rlim_cur) / K); |
| success = true; |
| break; |
| } |
| } |
| |
| VMError::record_coredump_status(buffer, success); |
| } |
| |
| int os::get_native_stack(address* stack, int frames, int toSkip) { |
| int frame_idx = 0; |
| int num_of_frames; // number of frames captured |
| frame fr = os::current_frame(); |
| while (fr.pc() && frame_idx < frames) { |
| if (toSkip > 0) { |
| toSkip --; |
| } else { |
| stack[frame_idx ++] = fr.pc(); |
| } |
| if (fr.fp() == nullptr || fr.cb() != nullptr || |
| fr.sender_pc() == nullptr || os::is_first_C_frame(&fr)) break; |
| |
| if (fr.sender_pc() && !os::is_first_C_frame(&fr)) { |
| fr = os::get_sender_for_C_frame(&fr); |
| } else { |
| break; |
| } |
| } |
| num_of_frames = frame_idx; |
| for (; frame_idx < frames; frame_idx ++) { |
| stack[frame_idx] = nullptr; |
| } |
| |
| return num_of_frames; |
| } |
| |
| int os::get_last_error() { |
| return errno; |
| } |
| |
| size_t os::lasterror(char *buf, size_t len) { |
| if (errno == 0) return 0; |
| |
| const char *s = os::strerror(errno); |
| size_t n = ::strlen(s); |
| if (n >= len) { |
| n = len - 1; |
| } |
| ::strncpy(buf, s, n); |
| buf[n] = '\0'; |
| return n; |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // breakpoint support |
| |
| void os::breakpoint() { |
| BREAKPOINT; |
| } |
| |
| extern "C" void breakpoint() { |
| // use debugger to set breakpoint here |
| } |
| |
| // Return true if user is running as root. |
| bool os::have_special_privileges() { |
| static bool privileges = (getuid() != geteuid()) || (getgid() != getegid()); |
| return privileges; |
| } |
| |
| void os::wait_for_keypress_at_exit(void) { |
| // don't do anything on posix platforms |
| return; |
| } |
| |
| int os::create_file_for_heap(const char* dir) { |
| int fd; |
| |
| #if defined(LINUX) && defined(O_TMPFILE) |
| char* native_dir = os::strdup(dir); |
| if (native_dir == nullptr) { |
| vm_exit_during_initialization(err_msg("strdup failed during creation of backing file for heap (%s)", os::strerror(errno))); |
| return -1; |
| } |
| os::native_path(native_dir); |
| fd = os::open(dir, O_TMPFILE | O_RDWR, S_IRUSR | S_IWUSR); |
| os::free(native_dir); |
| |
| if (fd == -1) |
| #endif |
| { |
| const char name_template[] = "/jvmheap.XXXXXX"; |
| |
| size_t fullname_len = strlen(dir) + strlen(name_template); |
| char *fullname = (char*)os::malloc(fullname_len + 1, mtInternal); |
| if (fullname == nullptr) { |
| vm_exit_during_initialization(err_msg("Malloc failed during creation of backing file for heap (%s)", os::strerror(errno))); |
| return -1; |
| } |
| int n = snprintf(fullname, fullname_len + 1, "%s%s", dir, name_template); |
| assert((size_t)n == fullname_len, "Unexpected number of characters in string"); |
| |
| os::native_path(fullname); |
| |
| // create a new file. |
| fd = mkstemp(fullname); |
| |
| if (fd < 0) { |
| warning("Could not create file for heap with template %s", fullname); |
| os::free(fullname); |
| return -1; |
| } else { |
| // delete the name from the filesystem. When 'fd' is closed, the file (and space) will be deleted. |
| int ret = unlink(fullname); |
| assert_with_errno(ret == 0, "unlink returned error"); |
| } |
| |
| os::free(fullname); |
| } |
| |
| return fd; |
| } |
| |
| // Is a (classpath) directory empty? |
| bool os::dir_is_empty(const char* path) { |
| DIR *dir = nullptr; |
| struct dirent *ptr; |
| |
| dir = ::opendir(path); |
| if (dir == nullptr) return true; |
| |
| // Scan the directory |
| bool result = true; |
| while (result && (ptr = ::readdir(dir)) != nullptr) { |
| if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) { |
| result = false; |
| } |
| } |
| ::closedir(dir); |
| return result; |
| } |
| |
| static char* reserve_mmapped_memory(size_t bytes, char* requested_addr) { |
| char * addr; |
| int flags = MAP_PRIVATE NOT_AIX( | MAP_NORESERVE ) | MAP_ANONYMOUS; |
| if (requested_addr != nullptr) { |
| assert((uintptr_t)requested_addr % os::vm_page_size() == 0, "Requested address should be aligned to OS page size"); |
| flags |= MAP_FIXED; |
| } |
| |
| // Map reserved/uncommitted pages PROT_NONE so we fail early if we |
| // touch an uncommitted page. Otherwise, the read/write might |
| // succeed if we have enough swap space to back the physical page. |
| addr = (char*)::mmap(requested_addr, bytes, PROT_NONE, |
| flags, -1, 0); |
| |
| if (addr != MAP_FAILED) { |
| MemTracker::record_virtual_memory_reserve((address)addr, bytes, CALLER_PC); |
| return addr; |
| } |
| return nullptr; |
| } |
| |
| static int util_posix_fallocate(int fd, off_t offset, off_t len) { |
| static_assert(sizeof(off_t) == 8, "Expected Large File Support in this file"); |
| #ifdef __APPLE__ |
| fstore_t store = { F_ALLOCATECONTIG, F_PEOFPOSMODE, 0, len }; |
| // First we try to get a continuous chunk of disk space |
| int ret = fcntl(fd, F_PREALLOCATE, &store); |
| if (ret == -1) { |
| // Maybe we are too fragmented, try to allocate non-continuous range |
| store.fst_flags = F_ALLOCATEALL; |
| ret = fcntl(fd, F_PREALLOCATE, &store); |
| } |
| if(ret != -1) { |
| return ftruncate(fd, len); |
| } |
| return -1; |
| #else |
| return posix_fallocate(fd, offset, len); |
| #endif |
| } |
| |
| // Map the given address range to the provided file descriptor. |
| char* os::map_memory_to_file(char* base, size_t size, int fd) { |
| assert(fd != -1, "File descriptor is not valid"); |
| |
| // allocate space for the file |
| int ret = util_posix_fallocate(fd, 0, (off_t)size); |
| if (ret != 0) { |
| vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory. error(%d)", ret)); |
| return nullptr; |
| } |
| |
| int prot = PROT_READ | PROT_WRITE; |
| int flags = MAP_SHARED; |
| if (base != nullptr) { |
| flags |= MAP_FIXED; |
| } |
| char* addr = (char*)mmap(base, size, prot, flags, fd, 0); |
| |
| if (addr == MAP_FAILED) { |
| warning("Failed mmap to file. (%s)", os::strerror(errno)); |
| return nullptr; |
| } |
| if (base != nullptr && addr != base) { |
| if (!os::release_memory(addr, size)) { |
| warning("Could not release memory on unsuccessful file mapping"); |
| } |
| return nullptr; |
| } |
| return addr; |
| } |
| |
| char* os::replace_existing_mapping_with_file_mapping(char* base, size_t size, int fd) { |
| assert(fd != -1, "File descriptor is not valid"); |
| assert(base != nullptr, "Base cannot be null"); |
| |
| return map_memory_to_file(base, size, fd); |
| } |
| |
| static size_t calculate_aligned_extra_size(size_t size, size_t alignment) { |
| assert((alignment & (os::vm_allocation_granularity() - 1)) == 0, |
| "Alignment must be a multiple of allocation granularity (page size)"); |
| assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned"); |
| |
| size_t extra_size = size + alignment; |
| assert(extra_size >= size, "overflow, size is too large to allow alignment"); |
| return extra_size; |
| } |
| |
| // After a bigger chunk was mapped, unmaps start and end parts to get the requested alignment. |
| static char* chop_extra_memory(size_t size, size_t alignment, char* extra_base, size_t extra_size) { |
| // Do manual alignment |
| char* aligned_base = align_up(extra_base, alignment); |
| |
| // [ | | ] |
| // ^ extra_base |
| // ^ extra_base + begin_offset == aligned_base |
| // extra_base + begin_offset + size ^ |
| // extra_base + extra_size ^ |
| // |<>| == begin_offset |
| // end_offset == |<>| |
| size_t begin_offset = aligned_base - extra_base; |
| size_t end_offset = (extra_base + extra_size) - (aligned_base + size); |
| |
| if (begin_offset > 0) { |
| os::release_memory(extra_base, begin_offset); |
| } |
| |
| if (end_offset > 0) { |
| os::release_memory(extra_base + begin_offset + size, end_offset); |
| } |
| |
| return aligned_base; |
| } |
| |
| // Multiple threads can race in this code, and can remap over each other with MAP_FIXED, |
| // so on posix, unmap the section at the start and at the end of the chunk that we mapped |
| // rather than unmapping and remapping the whole chunk to get requested alignment. |
| char* os::reserve_memory_aligned(size_t size, size_t alignment, bool exec) { |
| size_t extra_size = calculate_aligned_extra_size(size, alignment); |
| char* extra_base = os::reserve_memory(extra_size, exec); |
| if (extra_base == nullptr) { |
| return nullptr; |
| } |
| return chop_extra_memory(size, alignment, extra_base, extra_size); |
| } |
| |
| char* os::map_memory_to_file_aligned(size_t size, size_t alignment, int file_desc) { |
| size_t extra_size = calculate_aligned_extra_size(size, alignment); |
| // For file mapping, we do not call os:map_memory_to_file(size,fd) since: |
| // - we later chop away parts of the mapping using os::release_memory and that could fail if the |
| // original mmap call had been tied to an fd. |
| // - The memory API os::reserve_memory uses is an implementation detail. It may (and usually is) |
| // mmap but it also may System V shared memory which cannot be uncommitted as a whole, so |
| // chopping off and unmapping excess bits back and front (see below) would not work. |
| char* extra_base = reserve_mmapped_memory(extra_size, nullptr); |
| if (extra_base == nullptr) { |
| return nullptr; |
| } |
| char* aligned_base = chop_extra_memory(size, alignment, extra_base, extra_size); |
| // After we have an aligned address, we can replace anonymous mapping with file mapping |
| if (replace_existing_mapping_with_file_mapping(aligned_base, size, file_desc) == nullptr) { |
| vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory")); |
| } |
| MemTracker::record_virtual_memory_commit((address)aligned_base, size, CALLER_PC); |
| return aligned_base; |
| } |
| |
| int os::vsnprintf(char* buf, size_t len, const char* fmt, va_list args) { |
| // All supported POSIX platforms provide C99 semantics. |
| ALLOW_C_FUNCTION(::vsnprintf, int result = ::vsnprintf(buf, len, fmt, args);) |
| // If an encoding error occurred (result < 0) then it's not clear |
| // whether the buffer is NUL terminated, so ensure it is. |
| if ((result < 0) && (len > 0)) { |
| buf[len - 1] = '\0'; |
| } |
| return result; |
| } |
| |
| int os::get_fileno(FILE* fp) { |
| return NOT_AIX(::)fileno(fp); |
| } |
| |
| struct tm* os::gmtime_pd(const time_t* clock, struct tm* res) { |
| return gmtime_r(clock, res); |
| } |
| |
| void os::Posix::print_load_average(outputStream* st) { |
| st->print("load average: "); |
| double loadavg[3]; |
| int res = os::loadavg(loadavg, 3); |
| if (res != -1) { |
| st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]); |
| } else { |
| st->print(" Unavailable"); |
| } |
| st->cr(); |
| } |
| |
| // boot/uptime information; |
| // unfortunately it does not work on macOS and Linux because the utx chain has no entry |
| // for reboot at least on my test machines |
| void os::Posix::print_uptime_info(outputStream* st) { |
| int bootsec = -1; |
| int currsec = time(nullptr); |
| struct utmpx* ent; |
| setutxent(); |
| while ((ent = getutxent())) { |
| if (!strcmp("system boot", ent->ut_line)) { |
| bootsec = ent->ut_tv.tv_sec; |
| break; |
| } |
| } |
| |
| if (bootsec != -1) { |
| os::print_dhm(st, "OS uptime:", (long) (currsec-bootsec)); |
| } |
| } |
| |
| static void print_rlimit(outputStream* st, const char* msg, |
| int resource, bool output_k = false) { |
| struct rlimit rlim; |
| |
| st->print(" %s ", msg); |
| int res = getrlimit(resource, &rlim); |
| if (res == -1) { |
| st->print("could not obtain value"); |
| } else { |
| // soft limit |
| if (rlim.rlim_cur == RLIM_INFINITY) { st->print("infinity"); } |
| else { |
| if (output_k) { st->print(UINT64_FORMAT "k", uint64_t(rlim.rlim_cur) / K); } |
| else { st->print(UINT64_FORMAT, uint64_t(rlim.rlim_cur)); } |
| } |
| // hard limit |
| st->print("/"); |
| if (rlim.rlim_max == RLIM_INFINITY) { st->print("infinity"); } |
| else { |
| if (output_k) { st->print(UINT64_FORMAT "k", uint64_t(rlim.rlim_max) / K); } |
| else { st->print(UINT64_FORMAT, uint64_t(rlim.rlim_max)); } |
| } |
| } |
| } |
| |
| void os::Posix::print_rlimit_info(outputStream* st) { |
| st->print("rlimit (soft/hard):"); |
| print_rlimit(st, "STACK", RLIMIT_STACK, true); |
| print_rlimit(st, ", CORE", RLIMIT_CORE, true); |
| |
| #if defined(AIX) |
| st->print(", NPROC "); |
| st->print("%d", sysconf(_SC_CHILD_MAX)); |
| |
| print_rlimit(st, ", THREADS", RLIMIT_THREADS); |
| #else |
| print_rlimit(st, ", NPROC", RLIMIT_NPROC); |
| #endif |
| |
| print_rlimit(st, ", NOFILE", RLIMIT_NOFILE); |
| print_rlimit(st, ", AS", RLIMIT_AS, true); |
| print_rlimit(st, ", CPU", RLIMIT_CPU); |
| print_rlimit(st, ", DATA", RLIMIT_DATA, true); |
| |
| // maximum size of files that the process may create |
| print_rlimit(st, ", FSIZE", RLIMIT_FSIZE, true); |
| |
| #if defined(LINUX) || defined(__APPLE__) |
| // maximum number of bytes of memory that may be locked into RAM |
| // (rounded down to the nearest multiple of system pagesize) |
| print_rlimit(st, ", MEMLOCK", RLIMIT_MEMLOCK, true); |
| #endif |
| |
| // MacOS; The maximum size (in bytes) to which a process's resident set size may grow. |
| #if defined(__APPLE__) |
| print_rlimit(st, ", RSS", RLIMIT_RSS, true); |
| #endif |
| |
| st->cr(); |
| } |
| |
| void os::Posix::print_uname_info(outputStream* st) { |
| // kernel |
| st->print("uname: "); |
| struct utsname name; |
| uname(&name); |
| st->print("%s ", name.sysname); |
| #ifdef ASSERT |
| st->print("%s ", name.nodename); |
| #endif |
| st->print("%s ", name.release); |
| st->print("%s ", name.version); |
| st->print("%s", name.machine); |
| st->cr(); |
| } |
| |
| void os::Posix::print_umask(outputStream* st, mode_t umsk) { |
| st->print((umsk & S_IRUSR) ? "r" : "-"); |
| st->print((umsk & S_IWUSR) ? "w" : "-"); |
| st->print((umsk & S_IXUSR) ? "x" : "-"); |
| st->print((umsk & S_IRGRP) ? "r" : "-"); |
| st->print((umsk & S_IWGRP) ? "w" : "-"); |
| st->print((umsk & S_IXGRP) ? "x" : "-"); |
| st->print((umsk & S_IROTH) ? "r" : "-"); |
| st->print((umsk & S_IWOTH) ? "w" : "-"); |
| st->print((umsk & S_IXOTH) ? "x" : "-"); |
| } |
| |
| void os::print_user_info(outputStream* st) { |
| unsigned id = (unsigned) ::getuid(); |
| st->print("uid : %u ", id); |
| id = (unsigned) ::geteuid(); |
| st->print("euid : %u ", id); |
| id = (unsigned) ::getgid(); |
| st->print("gid : %u ", id); |
| id = (unsigned) ::getegid(); |
| st->print_cr("egid : %u", id); |
| st->cr(); |
| |
| mode_t umsk = ::umask(0); |
| ::umask(umsk); |
| st->print("umask: %04o (", (unsigned) umsk); |
| os::Posix::print_umask(st, umsk); |
| st->print_cr(")"); |
| st->cr(); |
| } |
| |
| // Print all active locale categories, one line each |
| void os::print_active_locale(outputStream* st) { |
| st->print_cr("Active Locale:"); |
| // Posix is quiet about how exactly LC_ALL is implemented. |
| // Just print it out too, in case LC_ALL is held separately |
| // from the individual categories. |
| #define LOCALE_CAT_DO(f) \ |
| f(LC_ALL) \ |
| f(LC_COLLATE) \ |
| f(LC_CTYPE) \ |
| f(LC_MESSAGES) \ |
| f(LC_MONETARY) \ |
| f(LC_NUMERIC) \ |
| f(LC_TIME) |
| #define XX(cat) { cat, #cat }, |
| const struct { int c; const char* name; } categories[] = { |
| LOCALE_CAT_DO(XX) |
| { -1, nullptr } |
| }; |
| #undef XX |
| #undef LOCALE_CAT_DO |
| for (int i = 0; categories[i].c != -1; i ++) { |
| const char* locale = setlocale(categories[i].c, nullptr); |
| st->print_cr("%s=%s", categories[i].name, |
| ((locale != nullptr) ? locale : "<unknown>")); |
| } |
| } |
| |
| void os::print_jni_name_prefix_on(outputStream* st, int args_size) { |
| // no prefix required |
| } |
| |
| void os::print_jni_name_suffix_on(outputStream* st, int args_size) { |
| // no suffix required |
| } |
| |
| bool os::get_host_name(char* buf, size_t buflen) { |
| struct utsname name; |
| uname(&name); |
| jio_snprintf(buf, buflen, "%s", name.nodename); |
| return true; |
| } |
| |
| #ifndef _LP64 |
| // Helper, on 32bit, for os::has_allocatable_memory_limit |
| static bool is_allocatable(size_t s) { |
| if (s < 2 * G) { |
| return true; |
| } |
| // Use raw anonymous mmap here; no need to go through any |
| // of our reservation layers. We will unmap right away. |
| void* p = ::mmap(nullptr, s, PROT_NONE, |
| MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS, -1, 0); |
| if (p == MAP_FAILED) { |
| return false; |
| } else { |
| ::munmap(p, s); |
| return true; |
| } |
| } |
| #endif // !_LP64 |
| |
| |
| bool os::has_allocatable_memory_limit(size_t* limit) { |
| struct rlimit rlim; |
| int getrlimit_res = getrlimit(RLIMIT_AS, &rlim); |
| // if there was an error when calling getrlimit, assume that there is no limitation |
| // on virtual memory. |
| bool result; |
| if ((getrlimit_res != 0) || (rlim.rlim_cur == RLIM_INFINITY)) { |
| result = false; |
| } else { |
| *limit = (size_t)rlim.rlim_cur; |
| result = true; |
| } |
| #ifdef _LP64 |
| return result; |
| #else |
| // arbitrary virtual space limit for 32 bit Unices found by testing. If |
| // getrlimit above returned a limit, bound it with this limit. Otherwise |
| // directly use it. |
| const size_t max_virtual_limit = 3800*M; |
| if (result) { |
| *limit = MIN2(*limit, max_virtual_limit); |
| } else { |
| *limit = max_virtual_limit; |
| } |
| |
| // bound by actually allocatable memory. The algorithm uses two bounds, an |
| // upper and a lower limit. The upper limit is the current highest amount of |
| // memory that could not be allocated, the lower limit is the current highest |
| // amount of memory that could be allocated. |
| // The algorithm iteratively refines the result by halving the difference |
| // between these limits, updating either the upper limit (if that value could |
| // not be allocated) or the lower limit (if the that value could be allocated) |
| // until the difference between these limits is "small". |
| |
| // the minimum amount of memory we care about allocating. |
| const size_t min_allocation_size = M; |
| |
| size_t upper_limit = *limit; |
| |
| // first check a few trivial cases |
| if (is_allocatable(upper_limit) || (upper_limit <= min_allocation_size)) { |
| *limit = upper_limit; |
| } else if (!is_allocatable(min_allocation_size)) { |
| // we found that not even min_allocation_size is allocatable. Return it |
| // anyway. There is no point to search for a better value any more. |
| *limit = min_allocation_size; |
| } else { |
| // perform the binary search. |
| size_t lower_limit = min_allocation_size; |
| while ((upper_limit - lower_limit) > min_allocation_size) { |
| size_t temp_limit = ((upper_limit - lower_limit) / 2) + lower_limit; |
| temp_limit = align_down(temp_limit, min_allocation_size); |
| if (is_allocatable(temp_limit)) { |
| lower_limit = temp_limit; |
| } else { |
| upper_limit = temp_limit; |
| } |
| } |
| *limit = lower_limit; |
| } |
| return true; |
| #endif |
| } |
| |
| void* os::get_default_process_handle() { |
| #ifdef __APPLE__ |
| // MacOS X needs to use RTLD_FIRST instead of RTLD_LAZY |
| // to avoid finding unexpected symbols on second (or later) |
| // loads of a library. |
| return (void*)::dlopen(nullptr, RTLD_FIRST); |
| #else |
| return (void*)::dlopen(nullptr, RTLD_LAZY); |
| #endif |
| } |
| |
| void* os::dll_lookup(void* handle, const char* name) { |
| return dlsym(handle, name); |
| } |
| |
| void os::dll_unload(void *lib) { |
| // os::Linux::dll_path returns a pointer to a string that is owned by the dynamic loader. Upon |
| // calling dlclose the dynamic loader may free the memory containing the string, thus we need to |
| // copy the string to be able to reference it after dlclose. |
| const char* l_path = nullptr; |
| #ifdef LINUX |
| char* l_pathdup = nullptr; |
| l_path = os::Linux::dll_path(lib); |
| if (l_path != nullptr) { |
| l_path = l_pathdup = os::strdup(l_path); |
| } |
| #endif // LINUX |
| if (l_path == nullptr) { |
| l_path = "<not available>"; |
| } |
| |
| char ebuf[1024]; |
| bool res = os::pd_dll_unload(lib, ebuf, sizeof(ebuf)); |
| |
| if (res) { |
| Events::log_dll_message(nullptr, "Unloaded shared library \"%s\" [" INTPTR_FORMAT "]", |
| l_path, p2i(lib)); |
| log_info(os)("Unloaded shared library \"%s\" [" INTPTR_FORMAT "]", l_path, p2i(lib)); |
| } else { |
| Events::log_dll_message(nullptr, "Attempt to unload shared library \"%s\" [" INTPTR_FORMAT "] failed, %s", |
| l_path, p2i(lib), ebuf); |
| log_info(os)("Attempt to unload shared library \"%s\" [" INTPTR_FORMAT "] failed, %s", |
| l_path, p2i(lib), ebuf); |
| } |
| LINUX_ONLY(os::free(l_pathdup)); |
| } |
| |
| jlong os::lseek(int fd, jlong offset, int whence) { |
| return (jlong) ::lseek(fd, offset, whence); |
| } |
| |
| int os::ftruncate(int fd, jlong length) { |
| return ::ftruncate(fd, length); |
| } |
| |
| const char* os::get_current_directory(char *buf, size_t buflen) { |
| return getcwd(buf, buflen); |
| } |
| |
| FILE* os::fdopen(int fd, const char* mode) { |
| return ::fdopen(fd, mode); |
| } |
| |
| ssize_t os::pd_write(int fd, const void *buf, size_t nBytes) { |
| ssize_t res; |
| RESTARTABLE(::write(fd, buf, nBytes), res); |
| return res; |
| } |
| |
| ssize_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) { |
| return ::pread(fd, buf, nBytes, offset); |
| } |
| |
| void os::flockfile(FILE* fp) { |
| ::flockfile(fp); |
| } |
| |
| void os::funlockfile(FILE* fp) { |
| ::funlockfile(fp); |
| } |
| |
| DIR* os::opendir(const char* dirname) { |
| assert(dirname != nullptr, "just checking"); |
| return ::opendir(dirname); |
| } |
| |
| struct dirent* os::readdir(DIR* dirp) { |
| assert(dirp != nullptr, "just checking"); |
| return ::readdir(dirp); |
| } |
| |
| int os::closedir(DIR *dirp) { |
| assert(dirp != nullptr, "just checking"); |
| return ::closedir(dirp); |
| } |
| |
| int os::socket_close(int fd) { |
| return ::close(fd); |
| } |
| |
| int os::recv(int fd, char* buf, size_t nBytes, uint flags) { |
| RESTARTABLE_RETURN_INT(::recv(fd, buf, nBytes, flags)); |
| } |
| |
| int os::send(int fd, char* buf, size_t nBytes, uint flags) { |
| RESTARTABLE_RETURN_INT(::send(fd, buf, nBytes, flags)); |
| } |
| |
| int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) { |
| return os::send(fd, buf, nBytes, flags); |
| } |
| |
| int os::connect(int fd, struct sockaddr* him, socklen_t len) { |
| RESTARTABLE_RETURN_INT(::connect(fd, him, len)); |
| } |
| |
| void os::exit(int num) { |
| ALLOW_C_FUNCTION(::exit, ::exit(num);) |
| } |
| |
| void os::_exit(int num) { |
| ALLOW_C_FUNCTION(::_exit, ::_exit(num);) |
| } |
| |
| bool os::dont_yield() { |
| return DontYieldALot; |
| } |
| |
| void os::naked_yield() { |
| sched_yield(); |
| } |
| |
| // Builds a platform dependent Agent_OnLoad_<lib_name> function name |
| // which is used to find statically linked in agents. |
| // Parameters: |
| // sym_name: Symbol in library we are looking for |
| // lib_name: Name of library to look in, null for shared libs. |
| // is_absolute_path == true if lib_name is absolute path to agent |
| // such as "/a/b/libL.so" |
| // == false if only the base name of the library is passed in |
| // such as "L" |
| char* os::build_agent_function_name(const char *sym_name, const char *lib_name, |
| bool is_absolute_path) { |
| char *agent_entry_name; |
| size_t len; |
| size_t name_len; |
| size_t prefix_len = strlen(JNI_LIB_PREFIX); |
| size_t suffix_len = strlen(JNI_LIB_SUFFIX); |
| const char *start; |
| |
| if (lib_name != nullptr) { |
| name_len = strlen(lib_name); |
| if (is_absolute_path) { |
| // Need to strip path, prefix and suffix |
| if ((start = strrchr(lib_name, *os::file_separator())) != nullptr) { |
| lib_name = ++start; |
| } |
| if (strlen(lib_name) <= (prefix_len + suffix_len)) { |
| return nullptr; |
| } |
| lib_name += prefix_len; |
| name_len = strlen(lib_name) - suffix_len; |
| } |
| } |
| len = (lib_name != nullptr ? name_len : 0) + strlen(sym_name) + 2; |
| agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread); |
| if (agent_entry_name == nullptr) { |
| return nullptr; |
| } |
| strcpy(agent_entry_name, sym_name); |
| if (lib_name != nullptr) { |
| strcat(agent_entry_name, "_"); |
| strncat(agent_entry_name, lib_name, name_len); |
| } |
| return agent_entry_name; |
| } |
| |
| // Sleep forever; naked call to OS-specific sleep; use with CAUTION |
| void os::infinite_sleep() { |
| while (true) { // sleep forever ... |
| ::sleep(100); // ... 100 seconds at a time |
| } |
| } |
| |
| void os::naked_short_nanosleep(jlong ns) { |
| struct timespec req; |
| assert(ns > -1 && ns < NANOUNITS, "Un-interruptable sleep, short time use only"); |
| req.tv_sec = 0; |
| req.tv_nsec = ns; |
| ::nanosleep(&req, nullptr); |
| return; |
| } |
| |
| void os::naked_short_sleep(jlong ms) { |
| assert(ms < MILLIUNITS, "Un-interruptable sleep, short time use only"); |
| os::naked_short_nanosleep(millis_to_nanos(ms)); |
| return; |
| } |
| |
| char* os::Posix::describe_pthread_attr(char* buf, size_t buflen, const pthread_attr_t* attr) { |
| size_t stack_size = 0; |
| size_t guard_size = 0; |
| int detachstate = 0; |
| pthread_attr_getstacksize(attr, &stack_size); |
| pthread_attr_getguardsize(attr, &guard_size); |
| // Work around glibc stack guard issue, see os::create_thread() in os_linux.cpp. |
| LINUX_ONLY(if (os::Linux::adjustStackSizeForGuardPages()) stack_size -= guard_size;) |
| pthread_attr_getdetachstate(attr, &detachstate); |
| jio_snprintf(buf, buflen, "stacksize: " SIZE_FORMAT "k, guardsize: " SIZE_FORMAT "k, %s", |
| stack_size / K, guard_size / K, |
| (detachstate == PTHREAD_CREATE_DETACHED ? "detached" : "joinable")); |
| return buf; |
| } |
| |
| char* os::Posix::realpath(const char* filename, char* outbuf, size_t outbuflen) { |
| |
| if (filename == nullptr || outbuf == nullptr || outbuflen < 1) { |
| assert(false, "os::Posix::realpath: invalid arguments."); |
| errno = EINVAL; |
| return nullptr; |
| } |
| |
| char* result = nullptr; |
| |
| // This assumes platform realpath() is implemented according to POSIX.1-2008. |
| // POSIX.1-2008 allows to specify null for the output buffer, in which case |
| // output buffer is dynamically allocated and must be ::free()'d by the caller. |
| ALLOW_C_FUNCTION(::realpath, char* p = ::realpath(filename, nullptr);) |
| if (p != nullptr) { |
| if (strlen(p) < outbuflen) { |
| strcpy(outbuf, p); |
| result = outbuf; |
| } else { |
| errno = ENAMETOOLONG; |
| } |
| ALLOW_C_FUNCTION(::free, ::free(p);) // *not* os::free |
| } else { |
| // Fallback for platforms struggling with modern Posix standards (AIX 5.3, 6.1). If realpath |
| // returns EINVAL, this may indicate that realpath is not POSIX.1-2008 compatible and |
| // that it complains about the null we handed down as user buffer. |
| // In this case, use the user provided buffer but at least check whether realpath caused |
| // a memory overwrite. |
| if (errno == EINVAL) { |
| outbuf[outbuflen - 1] = '\0'; |
| ALLOW_C_FUNCTION(::realpath, p = ::realpath(filename, outbuf);) |
| if (p != nullptr) { |
| guarantee(outbuf[outbuflen - 1] == '\0', "realpath buffer overwrite detected."); |
| result = p; |
| } |
| } |
| } |
| return result; |
| |
| } |
| |
| int os::stat(const char *path, struct stat *sbuf) { |
| return ::stat(path, sbuf); |
| } |
| |
| char * os::native_path(char *path) { |
| return path; |
| } |
| |
| bool os::same_files(const char* file1, const char* file2) { |
| if (file1 == nullptr && file2 == nullptr) { |
| return true; |
| } |
| |
| if (file1 == nullptr || file2 == nullptr) { |
| return false; |
| } |
| |
| if (strcmp(file1, file2) == 0) { |
| return true; |
| } |
| |
| bool is_same = false; |
| struct stat st1; |
| struct stat st2; |
| |
| if (os::stat(file1, &st1) < 0) { |
| return false; |
| } |
| |
| if (os::stat(file2, &st2) < 0) { |
| return false; |
| } |
| |
| if (st1.st_dev == st2.st_dev && st1.st_ino == st2.st_ino) { |
| // same files |
| is_same = true; |
| } |
| return is_same; |
| } |
| |
| // Called when creating the thread. The minimum stack sizes have already been calculated |
| size_t os::Posix::get_initial_stack_size(ThreadType thr_type, size_t req_stack_size) { |
| size_t stack_size; |
| if (req_stack_size == 0) { |
| stack_size = default_stack_size(thr_type); |
| } else { |
| stack_size = req_stack_size; |
| } |
| |
| switch (thr_type) { |
| case os::java_thread: |
| // Java threads use ThreadStackSize which default value can be |
| // changed with the flag -Xss |
| if (req_stack_size == 0 && JavaThread::stack_size_at_create() > 0) { |
| // no requested size and we have a more specific default value |
| stack_size = JavaThread::stack_size_at_create(); |
| } |
| stack_size = MAX2(stack_size, |
| _java_thread_min_stack_allowed); |
| break; |
| case os::compiler_thread: |
| if (req_stack_size == 0 && CompilerThreadStackSize > 0) { |
| // no requested size and we have a more specific default value |
| stack_size = (size_t)(CompilerThreadStackSize * K); |
| } |
| stack_size = MAX2(stack_size, |
| _compiler_thread_min_stack_allowed); |
| break; |
| case os::vm_thread: |
| case os::gc_thread: |
| case os::watcher_thread: |
| default: // presume the unknown thr_type is a VM internal |
| if (req_stack_size == 0 && VMThreadStackSize > 0) { |
| // no requested size and we have a more specific default value |
| stack_size = (size_t)(VMThreadStackSize * K); |
| } |
| |
| stack_size = MAX2(stack_size, |
| _vm_internal_thread_min_stack_allowed); |
| break; |
| } |
| |
| // pthread_attr_setstacksize() may require that the size be rounded up to the OS page size. |
| // Be careful not to round up to 0. Align down in that case. |
| if (stack_size <= SIZE_MAX - vm_page_size()) { |
| stack_size = align_up(stack_size, vm_page_size()); |
| } else { |
| stack_size = align_down(stack_size, vm_page_size()); |
| } |
| |
| return stack_size; |
| } |
| |
| #ifndef ZERO |
| #ifndef ARM |
| static bool get_frame_at_stack_banging_point(JavaThread* thread, address pc, const void* ucVoid, frame* fr) { |
| if (Interpreter::contains(pc)) { |
| // interpreter performs stack banging after the fixed frame header has |
| // been generated while the compilers perform it before. To maintain |
| // semantic consistency between interpreted and compiled frames, the |
| // method returns the Java sender of the current frame. |
| *fr = os::fetch_frame_from_context(ucVoid); |
| if (!fr->is_first_java_frame()) { |
| // get_frame_at_stack_banging_point() is only called when we |
| // have well defined stacks so java_sender() calls do not need |
| // to assert safe_for_sender() first. |
| *fr = fr->java_sender(); |
| } |
| } else { |
| // more complex code with compiled code |
| assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above"); |
| CodeBlob* cb = CodeCache::find_blob(pc); |
| if (cb == nullptr || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) { |
| // Not sure where the pc points to, fallback to default |
| // stack overflow handling |
| return false; |
| } else { |
| // in compiled code, the stack banging is performed just after the return pc |
| // has been pushed on the stack |
| *fr = os::fetch_compiled_frame_from_context(ucVoid); |
| if (!fr->is_java_frame()) { |
| assert(!fr->is_first_frame(), "Safety check"); |
| // See java_sender() comment above. |
| *fr = fr->java_sender(); |
| } |
| } |
| } |
| assert(fr->is_java_frame(), "Safety check"); |
| return true; |
| } |
| #endif // ARM |
| |
| // This return true if the signal handler should just continue, ie. return after calling this |
| bool os::Posix::handle_stack_overflow(JavaThread* thread, address addr, address pc, |
| const void* ucVoid, address* stub) { |
| // stack overflow |
| StackOverflow* overflow_state = thread->stack_overflow_state(); |
| if (overflow_state->in_stack_yellow_reserved_zone(addr)) { |
| if (thread->thread_state() == _thread_in_Java) { |
| #ifndef ARM |
| // arm32 doesn't have this |
| // vthreads don't support this |
| if (!thread->is_vthread_mounted() && overflow_state->in_stack_reserved_zone(addr)) { |
| frame fr; |
| if (get_frame_at_stack_banging_point(thread, pc, ucVoid, &fr)) { |
| assert(fr.is_java_frame(), "Must be a Java frame"); |
| frame activation = |
| SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr); |
| if (activation.sp() != nullptr) { |
| overflow_state->disable_stack_reserved_zone(); |
| if (activation.is_interpreted_frame()) { |
| overflow_state->set_reserved_stack_activation((address)(activation.fp() |
| // Some platforms use frame pointers for interpreter frames, others use initial sp. |
| #if !defined(PPC64) && !defined(S390) |
| + frame::interpreter_frame_initial_sp_offset |
| #endif |
| )); |
| } else { |
| overflow_state->set_reserved_stack_activation((address)activation.unextended_sp()); |
| } |
| return true; // just continue |
| } |
| } |
| } |
| #endif // ARM |
| // Throw a stack overflow exception. Guard pages will be re-enabled |
| // while unwinding the stack. |
| overflow_state->disable_stack_yellow_reserved_zone(); |
| *stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW); |
| } else { |
| // Thread was in the vm or native code. Return and try to finish. |
| overflow_state->disable_stack_yellow_reserved_zone(); |
| return true; // just continue |
| } |
| } else if (overflow_state->in_stack_red_zone(addr)) { |
| // Fatal red zone violation. Disable the guard pages and keep |
| // on handling the signal. |
| overflow_state->disable_stack_red_zone(); |
| tty->print_raw_cr("An irrecoverable stack overflow has occurred."); |
| |
| // This is a likely cause, but hard to verify. Let's just print |
| // it as a hint. |
| tty->print_raw_cr("Please check if any of your loaded .so files has " |
| "enabled executable stack (see man page execstack(8))"); |
| |
| } else { |
| #ifdef LINUX |
| // This only works with os::Linux::manually_expand_stack() |
| |
| // Accessing stack address below sp may cause SEGV if current |
| // thread has MAP_GROWSDOWN stack. This should only happen when |
| // current thread was created by user code with MAP_GROWSDOWN flag |
| // and then attached to VM. See notes in os_linux.cpp. |
| if (thread->osthread()->expanding_stack() == 0) { |
| thread->osthread()->set_expanding_stack(); |
| if (os::Linux::manually_expand_stack(thread, addr)) { |
| thread->osthread()->clear_expanding_stack(); |
| return true; // just continue |
| } |
| thread->osthread()->clear_expanding_stack(); |
| } else { |
| fatal("recursive segv. expanding stack."); |
| } |
| #else |
| tty->print_raw_cr("SIGSEGV happened inside stack but outside yellow and red zone."); |
| #endif // LINUX |
| } |
| return false; |
| } |
| #endif // ZERO |
| |
| bool os::Posix::is_root(uid_t uid){ |
| return ROOT_UID == uid; |
| } |
| |
| bool os::Posix::matches_effective_uid_or_root(uid_t uid) { |
| return is_root(uid) || geteuid() == uid; |
| } |
| |
| bool os::Posix::matches_effective_uid_and_gid_or_root(uid_t uid, gid_t gid) { |
| return is_root(uid) || (geteuid() == uid && getegid() == gid); |
| } |
| |
| // Shared clock/time and other supporting routines for pthread_mutex/cond |
| // initialization. This is enabled on Solaris but only some of the clock/time |
| // functionality is actually used there. |
| |
| // Shared condattr object for use with relative timed-waits. Will be associated |
| // with CLOCK_MONOTONIC if available to avoid issues with time-of-day changes, |
| // but otherwise whatever default is used by the platform - generally the |
| // time-of-day clock. |
| static pthread_condattr_t _condAttr[1]; |
| |
| // Shared mutexattr to explicitly set the type to PTHREAD_MUTEX_NORMAL as not |
| // all systems (e.g. FreeBSD) map the default to "normal". |
| static pthread_mutexattr_t _mutexAttr[1]; |
| |
| // common basic initialization that is always supported |
| static void pthread_init_common(void) { |
| int status; |
| if ((status = pthread_condattr_init(_condAttr)) != 0) { |
| fatal("pthread_condattr_init: %s", os::strerror(status)); |
| } |
| if ((status = pthread_mutexattr_init(_mutexAttr)) != 0) { |
| fatal("pthread_mutexattr_init: %s", os::strerror(status)); |
| } |
| if ((status = pthread_mutexattr_settype(_mutexAttr, PTHREAD_MUTEX_NORMAL)) != 0) { |
| fatal("pthread_mutexattr_settype: %s", os::strerror(status)); |
| } |
| PlatformMutex::init(); |
| } |
| |
| static int (*_pthread_condattr_setclock)(pthread_condattr_t *, clockid_t) = nullptr; |
| |
| static bool _use_clock_monotonic_condattr = false; |
| |
| // Determine what POSIX API's are present and do appropriate |
| // configuration. |
| void os::Posix::init(void) { |
| #if defined(_ALLBSD_SOURCE) |
| clock_tics_per_sec = CLK_TCK; |
| #else |
| clock_tics_per_sec = sysconf(_SC_CLK_TCK); |
| #endif |
| // NOTE: no logging available when this is called. Put logging |
| // statements in init_2(). |
| |
| // Check for pthread_condattr_setclock support. |
| |
| // libpthread is already loaded. |
| int (*condattr_setclock_func)(pthread_condattr_t*, clockid_t) = |
| (int (*)(pthread_condattr_t*, clockid_t))dlsym(RTLD_DEFAULT, |
| "pthread_condattr_setclock"); |
| if (condattr_setclock_func != nullptr) { |
| _pthread_condattr_setclock = condattr_setclock_func; |
| } |
| |
| // Now do general initialization. |
| |
| pthread_init_common(); |
| |
| int status; |
| if (_pthread_condattr_setclock != nullptr) { |
| if ((status = _pthread_condattr_setclock(_condAttr, CLOCK_MONOTONIC)) != 0) { |
| if (status == EINVAL) { |
| _use_clock_monotonic_condattr = false; |
| warning("Unable to use monotonic clock with relative timed-waits" \ |
| " - changes to the time-of-day clock may have adverse affects"); |
| } else { |
| fatal("pthread_condattr_setclock: %s", os::strerror(status)); |
| } |
| } else { |
| _use_clock_monotonic_condattr = true; |
| } |
| } |
| |
| initial_time_count = javaTimeNanos(); |
| } |
| |
| void os::Posix::init_2(void) { |
| log_info(os)("Use of CLOCK_MONOTONIC is supported"); |
| log_info(os)("Use of pthread_condattr_setclock is%s supported", |
| (_pthread_condattr_setclock != nullptr ? "" : " not")); |
| log_info(os)("Relative timed-wait using pthread_cond_timedwait is associated with %s", |
| _use_clock_monotonic_condattr ? "CLOCK_MONOTONIC" : "the default clock"); |
| } |
| |
| // Utility to convert the given timeout to an absolute timespec |
| // (based on the appropriate clock) to use with pthread_cond_timewait, |
| // and sem_timedwait(). |
| // The clock queried here must be the clock used to manage the |
| // timeout of the condition variable or semaphore. |
| // |
| // The passed in timeout value is either a relative time in nanoseconds |
| // or an absolute time in milliseconds. A relative timeout will be |
| // associated with CLOCK_MONOTONIC if available, unless the real-time clock |
| // is explicitly requested; otherwise, or if absolute, |
| // the default time-of-day clock will be used. |
| |
| // Given time is a 64-bit value and the time_t used in the timespec is |
| // sometimes a signed-32-bit value we have to watch for overflow if times |
| // way in the future are given. Further on Solaris versions |
| // prior to 10 there is a restriction (see cond_timedwait) that the specified |
| // number of seconds, in abstime, is less than current_time + 100000000. |
| // As it will be over 20 years before "now + 100000000" will overflow we can |
| // ignore overflow and just impose a hard-limit on seconds using the value |
| // of "now + 100000000". This places a limit on the timeout of about 3.17 |
| // years from "now". |
| // |
| #define MAX_SECS 100000000 |
| |
| // Calculate a new absolute time that is "timeout" nanoseconds from "now". |
| // "unit" indicates the unit of "now_part_sec" (may be nanos or micros depending |
| // on which clock API is being used). |
| static void calc_rel_time(timespec* abstime, jlong timeout, jlong now_sec, |
| jlong now_part_sec, jlong unit) { |
| time_t max_secs = now_sec + MAX_SECS; |
| |
| jlong seconds = timeout / NANOUNITS; |
| timeout %= NANOUNITS; // remaining nanos |
| |
| if (seconds >= MAX_SECS) { |
| // More seconds than we can add, so pin to max_secs. |
| abstime->tv_sec = max_secs; |
| abstime->tv_nsec = 0; |
| } else { |
| abstime->tv_sec = now_sec + seconds; |
| long nanos = (now_part_sec * (NANOUNITS / unit)) + timeout; |
| if (nanos >= NANOUNITS) { // overflow |
| abstime->tv_sec += 1; |
| nanos -= NANOUNITS; |
| } |
| abstime->tv_nsec = nanos; |
| } |
| } |
| |
| // Unpack the given deadline in milliseconds since the epoch, into the given timespec. |
| // The current time in seconds is also passed in to enforce an upper bound as discussed above. |
| static void unpack_abs_time(timespec* abstime, jlong deadline, jlong now_sec) { |
| time_t max_secs = now_sec + MAX_SECS; |
| |
| jlong seconds = deadline / MILLIUNITS; |
| jlong millis = deadline % MILLIUNITS; |
| |
| if (seconds >= max_secs) { |
| // Absolute seconds exceeds allowed max, so pin to max_secs. |
| abstime->tv_sec = max_secs; |
| abstime->tv_nsec = 0; |
| } else { |
| abstime->tv_sec = seconds; |
| abstime->tv_nsec = millis_to_nanos(millis); |
| } |
| } |
| |
| static jlong millis_to_nanos_bounded(jlong millis) { |
| // We have to watch for overflow when converting millis to nanos, |
| // but if millis is that large then we will end up limiting to |
| // MAX_SECS anyway, so just do that here. |
| if (millis / MILLIUNITS > MAX_SECS) { |
| millis = jlong(MAX_SECS) * MILLIUNITS; |
| } |
| return millis_to_nanos(millis); |
| } |
| |
| static void to_abstime(timespec* abstime, jlong timeout, |
| bool isAbsolute, bool isRealtime) { |
| DEBUG_ONLY(int max_secs = MAX_SECS;) |
| |
| if (timeout < 0) { |
| timeout = 0; |
| } |
| |
| clockid_t clock = CLOCK_MONOTONIC; |
| if (isAbsolute || (!_use_clock_monotonic_condattr || isRealtime)) { |
| clock = CLOCK_REALTIME; |
| } |
| |
| struct timespec now; |
| int status = clock_gettime(clock, &now); |
| assert(status == 0, "clock_gettime error: %s", os::strerror(errno)); |
| |
| if (!isAbsolute) { |
| calc_rel_time(abstime, timeout, now.tv_sec, now.tv_nsec, NANOUNITS); |
| } else { |
| unpack_abs_time(abstime, timeout, now.tv_sec); |
| } |
| DEBUG_ONLY(max_secs += now.tv_sec;) |
| |
| assert(abstime->tv_sec >= 0, "tv_sec < 0"); |
| assert(abstime->tv_sec <= max_secs, "tv_sec > max_secs"); |
| assert(abstime->tv_nsec >= 0, "tv_nsec < 0"); |
| assert(abstime->tv_nsec < NANOUNITS, "tv_nsec >= NANOUNITS"); |
| } |
| |
| // Create an absolute time 'millis' milliseconds in the future, using the |
| // real-time (time-of-day) clock. Used by PosixSemaphore. |
| void os::Posix::to_RTC_abstime(timespec* abstime, int64_t millis) { |
| to_abstime(abstime, millis_to_nanos_bounded(millis), |
| false /* not absolute */, |
| true /* use real-time clock */); |
| } |
| |
| // Common (partly) shared time functions |
| |
| jlong os::javaTimeMillis() { |
| struct timespec ts; |
| int status = clock_gettime(CLOCK_REALTIME, &ts); |
| assert(status == 0, "clock_gettime error: %s", os::strerror(errno)); |
| return jlong(ts.tv_sec) * MILLIUNITS + |
| jlong(ts.tv_nsec) / NANOUNITS_PER_MILLIUNIT; |
| } |
| |
| void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) { |
| struct timespec ts; |
| int status = clock_gettime(CLOCK_REALTIME, &ts); |
| assert(status == 0, "clock_gettime error: %s", os::strerror(errno)); |
| seconds = jlong(ts.tv_sec); |
| nanos = jlong(ts.tv_nsec); |
| } |
| |
| // macOS and AIX have platform specific implementations for javaTimeNanos() |
| // using native clock/timer access APIs. These have historically worked well |
| // for those platforms, but it may be possible for them to switch to the |
| // generic clock_gettime mechanism in the future. |
| #if !defined(__APPLE__) && !defined(AIX) |
| |
| jlong os::javaTimeNanos() { |
| struct timespec tp; |
| int status = clock_gettime(CLOCK_MONOTONIC, &tp); |
| assert(status == 0, "clock_gettime error: %s", os::strerror(errno)); |
| jlong result = jlong(tp.tv_sec) * NANOSECS_PER_SEC + jlong(tp.tv_nsec); |
| return result; |
| } |
| |
| // for timer info max values which include all bits |
| #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF) |
| |
| void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) { |
| // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past |
| info_ptr->max_value = ALL_64_BITS; |
| info_ptr->may_skip_backward = false; // not subject to resetting or drifting |
| info_ptr->may_skip_forward = false; // not subject to resetting or drifting |
| info_ptr->kind = JVMTI_TIMER_ELAPSED; // elapsed not CPU time |
| } |
| #endif // ! APPLE && !AIX |
| |
| // Time since start-up in seconds to a fine granularity. |
| double os::elapsedTime() { |
| return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution |
| } |
| |
| jlong os::elapsed_counter() { |
| return os::javaTimeNanos() - initial_time_count; |
| } |
| |
| jlong os::elapsed_frequency() { |
| return NANOSECS_PER_SEC; // nanosecond resolution |
| } |
| |
| bool os::supports_vtime() { return true; } |
| |
| // Return the real, user, and system times in seconds from an |
| // arbitrary fixed point in the past. |
| bool os::getTimesSecs(double* process_real_time, |
| double* process_user_time, |
| double* process_system_time) { |
| struct tms ticks; |
| clock_t real_ticks = times(&ticks); |
| |
| if (real_ticks == (clock_t) (-1)) { |
| return false; |
| } else { |
| double ticks_per_second = (double) clock_tics_per_sec; |
| *process_user_time = ((double) ticks.tms_utime) / ticks_per_second; |
| *process_system_time = ((double) ticks.tms_stime) / ticks_per_second; |
| *process_real_time = ((double) real_ticks) / ticks_per_second; |
| |
| return true; |
| } |
| } |
| |
| char * os::local_time_string(char *buf, size_t buflen) { |
| struct tm t; |
| time_t long_time; |
| time(&long_time); |
| localtime_r(&long_time, &t); |
| jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d", |
| t.tm_year + 1900, t.tm_mon + 1, t.tm_mday, |
| t.tm_hour, t.tm_min, t.tm_sec); |
| return buf; |
| } |
| |
| struct tm* os::localtime_pd(const time_t* clock, struct tm* res) { |
| return localtime_r(clock, res); |
| } |
| |
| // PlatformEvent |
| // |
| // Assumption: |
| // Only one parker can exist on an event, which is why we allocate |
| // them per-thread. Multiple unparkers can coexist. |
| // |
| // _event serves as a restricted-range semaphore. |
| // -1 : thread is blocked, i.e. there is a waiter |
| // 0 : neutral: thread is running or ready, |
| // could have been signaled after a wait started |
| // 1 : signaled - thread is running or ready |
| // |
| // Having three states allows for some detection of bad usage - see |
| // comments on unpark(). |
| |
| PlatformEvent::PlatformEvent() { |
| int status = pthread_cond_init(_cond, _condAttr); |
| assert_status(status == 0, status, "cond_init"); |
| status = pthread_mutex_init(_mutex, _mutexAttr); |
| assert_status(status == 0, status, "mutex_init"); |
| _event = 0; |
| _nParked = 0; |
| } |
| |
| void PlatformEvent::park() { // AKA "down()" |
| // Transitions for _event: |
| // -1 => -1 : illegal |
| // 1 => 0 : pass - return immediately |
| // 0 => -1 : block; then set _event to 0 before returning |
| |
| // Invariant: Only the thread associated with the PlatformEvent |
| // may call park(). |
| assert(_nParked == 0, "invariant"); |
| |
| int v; |
| |
| // atomically decrement _event |
| for (;;) { |
| v = _event; |
| if (Atomic::cmpxchg(&_event, v, v - 1) == v) break; |
| } |
| guarantee(v >= 0, "invariant"); |
| |
| if (v == 0) { // Do this the hard way by blocking ... |
| int status = pthread_mutex_lock(_mutex); |
| assert_status(status == 0, status, "mutex_lock"); |
| guarantee(_nParked == 0, "invariant"); |
| ++_nParked; |
| while (_event < 0) { |
| // OS-level "spurious wakeups" are ignored |
| status = pthread_cond_wait(_cond, _mutex); |
| assert_status(status == 0 MACOS_ONLY(|| status == ETIMEDOUT), |
| status, "cond_wait"); |
| } |
| --_nParked; |
| |
| _event = 0; |
| status = pthread_mutex_unlock(_mutex); |
| assert_status(status == 0, status, "mutex_unlock"); |
| // Paranoia to ensure our locked and lock-free paths interact |
| // correctly with each other. |
| OrderAccess::fence(); |
| } |
| guarantee(_event >= 0, "invariant"); |
| } |
| |
| int PlatformEvent::park(jlong millis) { |
| return park_nanos(millis_to_nanos_bounded(millis)); |
| } |
| |
| int PlatformEvent::park_nanos(jlong nanos) { |
| assert(nanos > 0, "nanos are positive"); |
| |
| // Transitions for _event: |
| // -1 => -1 : illegal |
| // 1 => 0 : pass - return immediately |
| // 0 => -1 : block; then set _event to 0 before returning |
| |
| // Invariant: Only the thread associated with the Event/PlatformEvent |
| // may call park(). |
| assert(_nParked == 0, "invariant"); |
| |
| int v; |
| // atomically decrement _event |
| for (;;) { |
| v = _event; |
| if (Atomic::cmpxchg(&_event, v, v - 1) == v) break; |
| } |
| guarantee(v >= 0, "invariant"); |
| |
| if (v == 0) { // Do this the hard way by blocking ... |
| struct timespec abst; |
| to_abstime(&abst, nanos, false, false); |
| |
| int ret = OS_TIMEOUT; |
| int status = pthread_mutex_lock(_mutex); |
| assert_status(status == 0, status, "mutex_lock"); |
| guarantee(_nParked == 0, "invariant"); |
| ++_nParked; |
| |
| while (_event < 0) { |
| status = pthread_cond_timedwait(_cond, _mutex, &abst); |
| assert_status(status == 0 || status == ETIMEDOUT, |
| status, "cond_timedwait"); |
| // OS-level "spurious wakeups" are ignored |
| if (status == ETIMEDOUT) break; |
| } |
| --_nParked; |
| |
| if (_event >= 0) { |
| ret = OS_OK; |
| } |
| |
| _event = 0; |
| status = pthread_mutex_unlock(_mutex); |
| assert_status(status == 0, status, "mutex_unlock"); |
| // Paranoia to ensure our locked and lock-free paths interact |
| // correctly with each other. |
| OrderAccess::fence(); |
| return ret; |
| } |
| return OS_OK; |
| } |
| |
| void PlatformEvent::unpark() { |
| // Transitions for _event: |
| // 0 => 1 : just return |
| // 1 => 1 : just return |
| // -1 => either 0 or 1; must signal target thread |
| // That is, we can safely transition _event from -1 to either |
| // 0 or 1. |
| // See also: "Semaphores in Plan 9" by Mullender & Cox |
| // |
| // Note: Forcing a transition from "-1" to "1" on an unpark() means |
| // that it will take two back-to-back park() calls for the owning |
| // thread to block. This has the benefit of forcing a spurious return |
| // from the first park() call after an unpark() call which will help |
| // shake out uses of park() and unpark() without checking state conditions |
| // properly. This spurious return doesn't manifest itself in any user code |
| // but only in the correctly written condition checking loops of ObjectMonitor, |
| // Mutex/Monitor, and JavaThread::sleep |
| |
| if (Atomic::xchg(&_event, 1) >= 0) return; |
| |
| int status = pthread_mutex_lock(_mutex); |
| assert_status(status == 0, status, "mutex_lock"); |
| int anyWaiters = _nParked; |
| assert(anyWaiters == 0 || anyWaiters == 1, "invariant"); |
| status = pthread_mutex_unlock(_mutex); |
| assert_status(status == 0, status, "mutex_unlock"); |
| |
| // Note that we signal() *after* dropping the lock for "immortal" Events. |
| // This is safe and avoids a common class of futile wakeups. In rare |
| // circumstances this can cause a thread to return prematurely from |
| // cond_{timed}wait() but the spurious wakeup is benign and the victim |
| // will simply re-test the condition and re-park itself. |
| // This provides particular benefit if the underlying platform does not |
| // provide wait morphing. |
| |
| if (anyWaiters != 0) { |
| status = pthread_cond_signal(_cond); |
| assert_status(status == 0, status, "cond_signal"); |
| } |
| } |
| |
| // JSR166 support |
| |
| PlatformParker::PlatformParker() : _counter(0), _cur_index(-1) { |
| int status = pthread_cond_init(&_cond[REL_INDEX], _condAttr); |
| assert_status(status == 0, status, "cond_init rel"); |
| status = pthread_cond_init(&_cond[ABS_INDEX], nullptr); |
| assert_status(status == 0, status, "cond_init abs"); |
| status = pthread_mutex_init(_mutex, _mutexAttr); |
| assert_status(status == 0, status, "mutex_init"); |
| } |
| |
| PlatformParker::~PlatformParker() { |
| int status = pthread_cond_destroy(&_cond[REL_INDEX]); |
| assert_status(status == 0, status, "cond_destroy rel"); |
| status = pthread_cond_destroy(&_cond[ABS_INDEX]); |
| assert_status(status == 0, status, "cond_destroy abs"); |
| status = pthread_mutex_destroy(_mutex); |
| assert_status(status == 0, status, "mutex_destroy"); |
| } |
| |
| // Parker::park decrements count if > 0, else does a condvar wait. Unpark |
| // sets count to 1 and signals condvar. Only one thread ever waits |
| // on the condvar. Contention seen when trying to park implies that someone |
| // is unparking you, so don't wait. And spurious returns are fine, so there |
| // is no need to track notifications. |
| |
| void Parker::park(bool isAbsolute, jlong time) { |
| |
| // Optional fast-path check: |
| // Return immediately if a permit is available. |
| // We depend on Atomic::xchg() having full barrier semantics |
| // since we are doing a lock-free update to _counter. |
| if (Atomic::xchg(&_counter, 0) > 0) return; |
| |
| JavaThread *jt = JavaThread::current(); |
| |
| // Optional optimization -- avoid state transitions if there's |
| // an interrupt pending. |
| if (jt->is_interrupted(false)) { |
| return; |
| } |
| |
| // Next, demultiplex/decode time arguments |
| struct timespec absTime; |
| if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all |
| return; |
| } |
| if (time > 0) { |
| to_abstime(&absTime, time, isAbsolute, false); |
| } |
| |
| // Enter safepoint region |
| // Beware of deadlocks such as 6317397. |
| // The per-thread Parker:: mutex is a classic leaf-lock. |
| // In particular a thread must never block on the Threads_lock while |
| // holding the Parker:: mutex. If safepoints are pending both the |
| // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock. |
| ThreadBlockInVM tbivm(jt); |
| |
| // Can't access interrupt state now that we are _thread_blocked. If we've |
| // been interrupted since we checked above then _counter will be > 0. |
| |
| // Don't wait if cannot get lock since interference arises from |
| // unparking. |
| if (pthread_mutex_trylock(_mutex) != 0) { |
| return; |
| } |
| |
| int status; |
| if (_counter > 0) { // no wait needed |
| _counter = 0; |
| status = pthread_mutex_unlock(_mutex); |
| assert_status(status == 0, status, "invariant"); |
| // Paranoia to ensure our locked and lock-free paths interact |
| // correctly with each other and Java-level accesses. |
| OrderAccess::fence(); |
| return; |
| } |
| |
| OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */); |
| |
| assert(_cur_index == -1, "invariant"); |
| if (time == 0) { |
| _cur_index = REL_INDEX; // arbitrary choice when not timed |
| status = pthread_cond_wait(&_cond[_cur_index], _mutex); |
| assert_status(status == 0 MACOS_ONLY(|| status == ETIMEDOUT), |
| status, "cond_wait"); |
| } |
| else { |
| _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX; |
| status = pthread_cond_timedwait(&_cond[_cur_index], _mutex, &absTime); |
| assert_status(status == 0 || status == ETIMEDOUT, |
| status, "cond_timedwait"); |
| } |
| _cur_index = -1; |
| |
| _counter = 0; |
| status = pthread_mutex_unlock(_mutex); |
| assert_status(status == 0, status, "invariant"); |
| // Paranoia to ensure our locked and lock-free paths interact |
| // correctly with each other and Java-level accesses. |
| OrderAccess::fence(); |
| } |
| |
| void Parker::unpark() { |
| int status = pthread_mutex_lock(_mutex); |
| assert_status(status == 0, status, "invariant"); |
| const int s = _counter; |
| _counter = 1; |
| // must capture correct index before unlocking |
| int index = _cur_index; |
| status = pthread_mutex_unlock(_mutex); |
| assert_status(status == 0, status, "invariant"); |
| |
| // Note that we signal() *after* dropping the lock for "immortal" Events. |
| // This is safe and avoids a common class of futile wakeups. In rare |
| // circumstances this can cause a thread to return prematurely from |
| // cond_{timed}wait() but the spurious wakeup is benign and the victim |
| // will simply re-test the condition and re-park itself. |
| // This provides particular benefit if the underlying platform does not |
| // provide wait morphing. |
| |
| if (s < 1 && index != -1) { |
| // thread is definitely parked |
| status = pthread_cond_signal(&_cond[index]); |
| assert_status(status == 0, status, "invariant"); |
| } |
| } |
| |
| // Platform Mutex/Monitor implementation |
| |
| #if PLATFORM_MONITOR_IMPL_INDIRECT |
| |
| PlatformMutex::Mutex::Mutex() : _next(nullptr) { |
| int status = pthread_mutex_init(&_mutex, _mutexAttr); |
| assert_status(status == 0, status, "mutex_init"); |
| } |
| |
| PlatformMutex::Mutex::~Mutex() { |
| int status = pthread_mutex_destroy(&_mutex); |
| assert_status(status == 0, status, "mutex_destroy"); |
| } |
| |
| pthread_mutex_t PlatformMutex::_freelist_lock; |
| PlatformMutex::Mutex* PlatformMutex::_mutex_freelist = nullptr; |
| |
| void PlatformMutex::init() { |
| int status = pthread_mutex_init(&_freelist_lock, _mutexAttr); |
| assert_status(status == 0, status, "freelist lock init"); |
| } |
| |
| struct PlatformMutex::WithFreeListLocked : public StackObj { |
| WithFreeListLocked() { |
| int status = pthread_mutex_lock(&_freelist_lock); |
| assert_status(status == 0, status, "freelist lock"); |
| } |
| |
| ~WithFreeListLocked() { |
| int status = pthread_mutex_unlock(&_freelist_lock); |
| assert_status(status == 0, status, "freelist unlock"); |
| } |
| }; |
| |
| PlatformMutex::PlatformMutex() { |
| { |
| WithFreeListLocked wfl; |
| _impl = _mutex_freelist; |
| if (_impl != nullptr) { |
| _mutex_freelist = _impl->_next; |
| _impl->_next = nullptr; |
| return; |
| } |
| } |
| _impl = new Mutex(); |
| } |
| |
| PlatformMutex::~PlatformMutex() { |
| WithFreeListLocked wfl; |
| assert(_impl->_next == nullptr, "invariant"); |
| _impl->_next = _mutex_freelist; |
| _mutex_freelist = _impl; |
| } |
| |
| PlatformMonitor::Cond::Cond() : _next(nullptr) { |
| int status = pthread_cond_init(&_cond, _condAttr); |
| assert_status(status == 0, status, "cond_init"); |
| } |
| |
| PlatformMonitor::Cond::~Cond() { |
| int status = pthread_cond_destroy(&_cond); |
| assert_status(status == 0, status, "cond_destroy"); |
| } |
| |
| PlatformMonitor::Cond* PlatformMonitor::_cond_freelist = nullptr; |
| |
| PlatformMonitor::PlatformMonitor() { |
| { |
| WithFreeListLocked wfl; |
| _impl = _cond_freelist; |
| if (_impl != nullptr) { |
| _cond_freelist = _impl->_next; |
| _impl->_next = nullptr; |
| return; |
| } |
| } |
| _impl = new Cond(); |
| } |
| |
| PlatformMonitor::~PlatformMonitor() { |
| WithFreeListLocked wfl; |
| assert(_impl->_next == nullptr, "invariant"); |
| _impl->_next = _cond_freelist; |
| _cond_freelist = _impl; |
| } |
| |
| #else |
| |
| PlatformMutex::PlatformMutex() { |
| int status = pthread_mutex_init(&_mutex, _mutexAttr); |
| assert_status(status == 0, status, "mutex_init"); |
| } |
| |
| PlatformMutex::~PlatformMutex() { |
| int status = pthread_mutex_destroy(&_mutex); |
| assert_status(status == 0, status, "mutex_destroy"); |
| } |
| |
| PlatformMonitor::PlatformMonitor() { |
| int status = pthread_cond_init(&_cond, _condAttr); |
| assert_status(status == 0, status, "cond_init"); |
| } |
| |
| PlatformMonitor::~PlatformMonitor() { |
| int status = pthread_cond_destroy(&_cond); |
| assert_status(status == 0, status, "cond_destroy"); |
| } |
| |
| #endif // PLATFORM_MONITOR_IMPL_INDIRECT |
| |
| // Must already be locked |
| int PlatformMonitor::wait(uint64_t millis) { |
| if (millis > 0) { |
| struct timespec abst; |
| // We have to watch for overflow when converting millis to nanos, |
| // but if millis is that large then we will end up limiting to |
| // MAX_SECS anyway, so just do that here. This also handles values |
| // larger than int64_t max. |
| if (millis / MILLIUNITS > MAX_SECS) { |
| millis = uint64_t(MAX_SECS) * MILLIUNITS; |
| } |
| to_abstime(&abst, millis_to_nanos(int64_t(millis)), false, false); |
| |
| int ret = OS_TIMEOUT; |
| int status = pthread_cond_timedwait(cond(), mutex(), &abst); |
| assert_status(status == 0 || status == ETIMEDOUT, |
| status, "cond_timedwait"); |
| if (status == 0) { |
| ret = OS_OK; |
| } |
| return ret; |
| } else { |
| int status = pthread_cond_wait(cond(), mutex()); |
| assert_status(status == 0 MACOS_ONLY(|| status == ETIMEDOUT), |
| status, "cond_wait"); |
| return OS_OK; |
| } |
| } |
| |
| // Darwin has no "environ" in a dynamic library. |
| #ifdef __APPLE__ |
| #define environ (*_NSGetEnviron()) |
| #else |
| extern char** environ; |
| #endif |
| |
| char** os::get_environ() { return environ; } |
| |
| // Run the specified command in a separate process. Return its exit value, |
| // or -1 on failure (e.g. can't fork a new process). |
| // Notes: -Unlike system(), this function can be called from signal handler. It |
| // doesn't block SIGINT et al. |
| // -this function is unsafe to use in non-error situations, mainly |
| // because the child process will inherit all parent descriptors. |
| int os::fork_and_exec(const char* cmd) { |
| const char* argv[4] = {"sh", "-c", cmd, nullptr}; |
| pid_t pid = -1; |
| char** env = os::get_environ(); |
| // Note: cast is needed because posix_spawn() requires - for compatibility with ancient |
| // C-code - a non-const argv/envp pointer array. But it is fine to hand in literal |
| // strings and just cast the constness away. See also ProcessImpl_md.c. |
| int rc = ::posix_spawn(&pid, "/bin/sh", nullptr, nullptr, (char**) argv, env); |
| if (rc == 0) { |
| int status; |
| // Wait for the child process to exit. This returns immediately if |
| // the child has already exited. */ |
| while (::waitpid(pid, &status, 0) < 0) { |
| switch (errno) { |
| case ECHILD: return 0; |
| case EINTR: break; |
| default: return -1; |
| } |
| } |
| if (WIFEXITED(status)) { |
| // The child exited normally; get its exit code. |
| return WEXITSTATUS(status); |
| } else if (WIFSIGNALED(status)) { |
| // The child exited because of a signal |
| // The best value to return is 0x80 + signal number, |
| // because that is what all Unix shells do, and because |
| // it allows callers to distinguish between process exit and |
| // process death by signal. |
| return 0x80 + WTERMSIG(status); |
| } else { |
| // Unknown exit code; pass it through |
| return status; |
| } |
| } else { |
| // Don't log, we are inside error handling |
| return -1; |
| } |
| } |
| |
| bool os::message_box(const char* title, const char* message) { |
| int i; |
| fdStream err(defaultStream::error_fd()); |
| for (i = 0; i < 78; i++) err.print_raw("="); |
| err.cr(); |
| err.print_raw_cr(title); |
| for (i = 0; i < 78; i++) err.print_raw("-"); |
| err.cr(); |
| err.print_raw_cr(message); |
| for (i = 0; i < 78; i++) err.print_raw("="); |
| err.cr(); |
| |
| char buf[16]; |
| // Prevent process from exiting upon "read error" without consuming all CPU |
| while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); } |
| |
| return buf[0] == 'y' || buf[0] == 'Y'; |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // runtime exit support |
| |
| // Note: os::shutdown() might be called very early during initialization, or |
| // called from signal handler. Before adding something to os::shutdown(), make |
| // sure it is async-safe and can handle partially initialized VM. |
| void os::shutdown() { |
| |
| // allow PerfMemory to attempt cleanup of any persistent resources |
| perfMemory_exit(); |
| |
| // needs to remove object in file system |
| AttachListener::abort(); |
| |
| // flush buffered output, finish log files |
| ostream_abort(); |
| |
| // Check for abort hook |
| abort_hook_t abort_hook = Arguments::abort_hook(); |
| if (abort_hook != nullptr) { |
| abort_hook(); |
| } |
| |
| } |
| |
| // Note: os::abort() might be called very early during initialization, or |
| // called from signal handler. Before adding something to os::abort(), make |
| // sure it is async-safe and can handle partially initialized VM. |
| // Also note we can abort while other threads continue to run, so we can |
| // easily trigger secondary faults in those threads. To reduce the likelihood |
| // of that we use _exit rather than exit, so that no atexit hooks get run. |
| // But note that os::shutdown() could also trigger secondary faults. |
| void os::abort(bool dump_core, void* siginfo, const void* context) { |
| os::shutdown(); |
| if (dump_core) { |
| LINUX_ONLY(if (DumpPrivateMappingsInCore) ClassLoader::close_jrt_image();) |
| ::abort(); // dump core |
| } |
| os::_exit(1); |
| } |
| |
| // Die immediately, no exit hook, no abort hook, no cleanup. |
| // Dump a core file, if possible, for debugging. |
| void os::die() { |
| if (TestUnresponsiveErrorHandler && !CreateCoredumpOnCrash) { |
| // For TimeoutInErrorHandlingTest.java, we just kill the VM |
| // and don't take the time to generate a core file. |
| ::raise(SIGKILL); |
| // ::raise is not noreturn, even though with SIGKILL it definitely won't |
| // return. Hence "fall through" to ::abort, which is declared noreturn. |
| } |
| ::abort(); |
| } |
| |
| const char* os::file_separator() { return "/"; } |
| const char* os::line_separator() { return "\n"; } |
| const char* os::path_separator() { return ":"; } |