blob: 530754d2e03f4d939cb2b2df3e9280639dd273a8 [file] [log] [blame]
/*
* Copyright (c) 2023, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "cds/archiveHeapWriter.hpp"
#include "cds/filemap.hpp"
#include "cds/heapShared.hpp"
#include "gc/shared/collectedHeap.hpp"
#include "memory/iterator.inline.hpp"
#include "memory/oopFactory.hpp"
#include "memory/universe.hpp"
#include "oops/compressedOops.hpp"
#include "oops/oop.inline.hpp"
#include "oops/objArrayOop.inline.hpp"
#include "oops/oopHandle.inline.hpp"
#include "oops/typeArrayKlass.hpp"
#include "oops/typeArrayOop.hpp"
#include "runtime/java.hpp"
#include "runtime/mutexLocker.hpp"
#include "utilities/bitMap.inline.hpp"
#if INCLUDE_G1GC
#include "gc/g1/g1CollectedHeap.hpp"
#include "gc/g1/heapRegion.hpp"
#endif
#if INCLUDE_CDS_JAVA_HEAP
GrowableArrayCHeap<u1, mtClassShared>* ArchiveHeapWriter::_buffer;
// The following are offsets from buffer_bottom()
size_t ArchiveHeapWriter::_buffer_used;
size_t ArchiveHeapWriter::_heap_roots_bottom_offset;
size_t ArchiveHeapWriter::_heap_roots_word_size;
address ArchiveHeapWriter::_requested_bottom;
address ArchiveHeapWriter::_requested_top;
GrowableArrayCHeap<ArchiveHeapWriter::NativePointerInfo, mtClassShared>* ArchiveHeapWriter::_native_pointers;
GrowableArrayCHeap<oop, mtClassShared>* ArchiveHeapWriter::_source_objs;
ArchiveHeapWriter::BufferOffsetToSourceObjectTable*
ArchiveHeapWriter::_buffer_offset_to_source_obj_table = nullptr;
void ArchiveHeapWriter::init() {
if (HeapShared::can_write()) {
Universe::heap()->collect(GCCause::_java_lang_system_gc);
_buffer_offset_to_source_obj_table = new BufferOffsetToSourceObjectTable();
_requested_bottom = nullptr;
_requested_top = nullptr;
_native_pointers = new GrowableArrayCHeap<NativePointerInfo, mtClassShared>(2048);
_source_objs = new GrowableArrayCHeap<oop, mtClassShared>(10000);
guarantee(UseG1GC, "implementation limitation");
guarantee(MIN_GC_REGION_ALIGNMENT <= /*G1*/HeapRegion::min_region_size_in_words() * HeapWordSize, "must be");
}
}
void ArchiveHeapWriter::add_source_obj(oop src_obj) {
_source_objs->append(src_obj);
}
void ArchiveHeapWriter::write(GrowableArrayCHeap<oop, mtClassShared>* roots,
ArchiveHeapInfo* heap_info) {
assert(HeapShared::can_write(), "sanity");
allocate_buffer();
copy_source_objs_to_buffer(roots);
set_requested_address(heap_info);
relocate_embedded_oops(roots, heap_info);
}
bool ArchiveHeapWriter::is_too_large_to_archive(oop o) {
return is_too_large_to_archive(o->size());
}
bool ArchiveHeapWriter::is_string_too_large_to_archive(oop string) {
typeArrayOop value = java_lang_String::value_no_keepalive(string);
return is_too_large_to_archive(value);
}
bool ArchiveHeapWriter::is_too_large_to_archive(size_t size) {
assert(size > 0, "no zero-size object");
assert(size * HeapWordSize > size, "no overflow");
static_assert(MIN_GC_REGION_ALIGNMENT > 0, "must be positive");
size_t byte_size = size * HeapWordSize;
if (byte_size > size_t(MIN_GC_REGION_ALIGNMENT)) {
return true;
} else {
return false;
}
}
// Various lookup functions between source_obj, buffered_obj and requested_obj
bool ArchiveHeapWriter::is_in_requested_range(oop o) {
assert(_requested_bottom != nullptr, "do not call before _requested_bottom is initialized");
address a = cast_from_oop<address>(o);
return (_requested_bottom <= a && a < _requested_top);
}
oop ArchiveHeapWriter::requested_obj_from_buffer_offset(size_t offset) {
oop req_obj = cast_to_oop(_requested_bottom + offset);
assert(is_in_requested_range(req_obj), "must be");
return req_obj;
}
oop ArchiveHeapWriter::source_obj_to_requested_obj(oop src_obj) {
assert(DumpSharedSpaces, "dump-time only");
HeapShared::CachedOopInfo* p = HeapShared::archived_object_cache()->get(src_obj);
if (p != nullptr) {
return requested_obj_from_buffer_offset(p->buffer_offset());
} else {
return nullptr;
}
}
oop ArchiveHeapWriter::buffered_addr_to_source_obj(address buffered_addr) {
oop* p = _buffer_offset_to_source_obj_table->get(buffered_address_to_offset(buffered_addr));
if (p != nullptr) {
return *p;
} else {
return nullptr;
}
}
address ArchiveHeapWriter::buffered_addr_to_requested_addr(address buffered_addr) {
return _requested_bottom + buffered_address_to_offset(buffered_addr);
}
oop ArchiveHeapWriter::heap_roots_requested_address() {
return cast_to_oop(_requested_bottom + _heap_roots_bottom_offset);
}
address ArchiveHeapWriter::requested_address() {
assert(_buffer != nullptr, "must be initialized");
return _requested_bottom;
}
void ArchiveHeapWriter::allocate_buffer() {
int initial_buffer_size = 100000;
_buffer = new GrowableArrayCHeap<u1, mtClassShared>(initial_buffer_size);
_buffer_used = 0;
ensure_buffer_space(1); // so that buffer_bottom() works
}
void ArchiveHeapWriter::ensure_buffer_space(size_t min_bytes) {
// We usually have very small heaps. If we get a huge one it's probably caused by a bug.
guarantee(min_bytes <= max_jint, "we dont support archiving more than 2G of objects");
_buffer->at_grow(to_array_index(min_bytes));
}
void ArchiveHeapWriter::copy_roots_to_buffer(GrowableArrayCHeap<oop, mtClassShared>* roots) {
Klass* k = Universe::objectArrayKlassObj(); // already relocated to point to archived klass
int length = roots->length();
_heap_roots_word_size = objArrayOopDesc::object_size(length);
size_t byte_size = _heap_roots_word_size * HeapWordSize;
if (byte_size >= MIN_GC_REGION_ALIGNMENT) {
log_error(cds, heap)("roots array is too large. Please reduce the number of classes");
vm_exit(1);
}
maybe_fill_gc_region_gap(byte_size);
size_t new_used = _buffer_used + byte_size;
ensure_buffer_space(new_used);
HeapWord* mem = offset_to_buffered_address<HeapWord*>(_buffer_used);
memset(mem, 0, byte_size);
{
// This is copied from MemAllocator::finish
oopDesc::set_mark(mem, markWord::prototype());
oopDesc::release_set_klass(mem, k);
}
{
// This is copied from ObjArrayAllocator::initialize
arrayOopDesc::set_length(mem, length);
}
objArrayOop arrayOop = objArrayOop(cast_to_oop(mem));
for (int i = 0; i < length; i++) {
// Do not use arrayOop->obj_at_put(i, o) as arrayOop is outside of the real heap!
oop o = roots->at(i);
if (UseCompressedOops) {
* arrayOop->obj_at_addr<narrowOop>(i) = CompressedOops::encode(o);
} else {
* arrayOop->obj_at_addr<oop>(i) = o;
}
}
log_info(cds, heap)("archived obj roots[%d] = " SIZE_FORMAT " bytes, klass = %p, obj = %p", length, byte_size, k, mem);
_heap_roots_bottom_offset = _buffer_used;
_buffer_used = new_used;
}
void ArchiveHeapWriter::copy_source_objs_to_buffer(GrowableArrayCHeap<oop, mtClassShared>* roots) {
for (int i = 0; i < _source_objs->length(); i++) {
oop src_obj = _source_objs->at(i);
HeapShared::CachedOopInfo* info = HeapShared::archived_object_cache()->get(src_obj);
assert(info != nullptr, "must be");
size_t buffer_offset = copy_one_source_obj_to_buffer(src_obj);
info->set_buffer_offset(buffer_offset);
_buffer_offset_to_source_obj_table->put(buffer_offset, src_obj);
}
copy_roots_to_buffer(roots);
log_info(cds)("Size of heap region = " SIZE_FORMAT " bytes, %d objects, %d roots",
_buffer_used, _source_objs->length() + 1, roots->length());
}
size_t ArchiveHeapWriter::filler_array_byte_size(int length) {
size_t byte_size = objArrayOopDesc::object_size(length) * HeapWordSize;
return byte_size;
}
int ArchiveHeapWriter::filler_array_length(size_t fill_bytes) {
assert(is_object_aligned(fill_bytes), "must be");
size_t elemSize = (UseCompressedOops ? sizeof(narrowOop) : sizeof(oop));
int initial_length = to_array_length(fill_bytes / elemSize);
for (int length = initial_length; length >= 0; length --) {
size_t array_byte_size = filler_array_byte_size(length);
if (array_byte_size == fill_bytes) {
return length;
}
}
ShouldNotReachHere();
return -1;
}
void ArchiveHeapWriter::init_filler_array_at_buffer_top(int array_length, size_t fill_bytes) {
assert(UseCompressedClassPointers, "Archived heap only supported for compressed klasses");
Klass* oak = Universe::objectArrayKlassObj(); // already relocated to point to archived klass
HeapWord* mem = offset_to_buffered_address<HeapWord*>(_buffer_used);
memset(mem, 0, fill_bytes);
oopDesc::set_mark(mem, markWord::prototype());
narrowKlass nk = ArchiveBuilder::current()->get_requested_narrow_klass(oak);
cast_to_oop(mem)->set_narrow_klass(nk);
arrayOopDesc::set_length(mem, array_length);
}
void ArchiveHeapWriter::maybe_fill_gc_region_gap(size_t required_byte_size) {
// We fill only with arrays (so we don't need to use a single HeapWord filler if the
// leftover space is smaller than a zero-sized array object). Therefore, we need to
// make sure there's enough space of min_filler_byte_size in the current region after
// required_byte_size has been allocated. If not, fill the remainder of the current
// region.
size_t min_filler_byte_size = filler_array_byte_size(0);
size_t new_used = _buffer_used + required_byte_size + min_filler_byte_size;
const size_t cur_min_region_bottom = align_down(_buffer_used, MIN_GC_REGION_ALIGNMENT);
const size_t next_min_region_bottom = align_down(new_used, MIN_GC_REGION_ALIGNMENT);
if (cur_min_region_bottom != next_min_region_bottom) {
// Make sure that no objects span across MIN_GC_REGION_ALIGNMENT. This way
// we can map the region in any region-based collector.
assert(next_min_region_bottom > cur_min_region_bottom, "must be");
assert(next_min_region_bottom - cur_min_region_bottom == MIN_GC_REGION_ALIGNMENT,
"no buffered object can be larger than %d bytes", MIN_GC_REGION_ALIGNMENT);
const size_t filler_end = next_min_region_bottom;
const size_t fill_bytes = filler_end - _buffer_used;
assert(fill_bytes > 0, "must be");
ensure_buffer_space(filler_end);
int array_length = filler_array_length(fill_bytes);
log_info(cds, heap)("Inserting filler obj array of %d elements (" SIZE_FORMAT " bytes total) @ buffer offset " SIZE_FORMAT,
array_length, fill_bytes, _buffer_used);
init_filler_array_at_buffer_top(array_length, fill_bytes);
_buffer_used = filler_end;
}
}
size_t ArchiveHeapWriter::copy_one_source_obj_to_buffer(oop src_obj) {
assert(!is_too_large_to_archive(src_obj), "already checked");
size_t byte_size = src_obj->size() * HeapWordSize;
assert(byte_size > 0, "no zero-size objects");
// For region-based collectors such as G1, the archive heap may be mapped into
// multiple regions. We need to make sure that we don't have an object that can possible
// span across two regions.
maybe_fill_gc_region_gap(byte_size);
size_t new_used = _buffer_used + byte_size;
assert(new_used > _buffer_used, "no wrap around");
size_t cur_min_region_bottom = align_down(_buffer_used, MIN_GC_REGION_ALIGNMENT);
size_t next_min_region_bottom = align_down(new_used, MIN_GC_REGION_ALIGNMENT);
assert(cur_min_region_bottom == next_min_region_bottom, "no object should cross minimal GC region boundaries");
ensure_buffer_space(new_used);
address from = cast_from_oop<address>(src_obj);
address to = offset_to_buffered_address<address>(_buffer_used);
assert(is_object_aligned(_buffer_used), "sanity");
assert(is_object_aligned(byte_size), "sanity");
memcpy(to, from, byte_size);
size_t buffered_obj_offset = _buffer_used;
_buffer_used = new_used;
return buffered_obj_offset;
}
void ArchiveHeapWriter::set_requested_address(ArchiveHeapInfo* info) {
assert(!info->is_used(), "only set once");
assert(UseG1GC, "must be");
address heap_end = (address)G1CollectedHeap::heap()->reserved().end();
log_info(cds, heap)("Heap end = %p", heap_end);
size_t heap_region_byte_size = _buffer_used;
assert(heap_region_byte_size > 0, "must archived at least one object!");
_requested_bottom = align_down(heap_end - heap_region_byte_size, HeapRegion::GrainBytes);
assert(is_aligned(_requested_bottom, HeapRegion::GrainBytes), "sanity");
_requested_top = _requested_bottom + _buffer_used;
info->set_memregion(MemRegion(offset_to_buffered_address<HeapWord*>(0),
offset_to_buffered_address<HeapWord*>(_buffer_used)));
}
// Oop relocation
template <typename T> T* ArchiveHeapWriter::requested_addr_to_buffered_addr(T* p) {
assert(is_in_requested_range(cast_to_oop(p)), "must be");
address addr = address(p);
assert(addr >= _requested_bottom, "must be");
size_t offset = addr - _requested_bottom;
return offset_to_buffered_address<T*>(offset);
}
template <typename T> oop ArchiveHeapWriter::load_source_oop_from_buffer(T* buffered_addr) {
oop o = load_oop_from_buffer(buffered_addr);
assert(!in_buffer(cast_from_oop<address>(o)), "must point to source oop");
return o;
}
template <typename T> void ArchiveHeapWriter::store_requested_oop_in_buffer(T* buffered_addr,
oop request_oop) {
assert(is_in_requested_range(request_oop), "must be");
store_oop_in_buffer(buffered_addr, request_oop);
}
void ArchiveHeapWriter::store_oop_in_buffer(oop* buffered_addr, oop requested_obj) {
// Make heap content deterministic. See comments inside HeapShared::to_requested_address.
*buffered_addr = HeapShared::to_requested_address(requested_obj);
}
void ArchiveHeapWriter::store_oop_in_buffer(narrowOop* buffered_addr, oop requested_obj) {
// Note: HeapShared::to_requested_address() is not necessary because
// the heap always starts at a deterministic address with UseCompressedOops==true.
narrowOop val = CompressedOops::encode_not_null(requested_obj);
*buffered_addr = val;
}
oop ArchiveHeapWriter::load_oop_from_buffer(oop* buffered_addr) {
return *buffered_addr;
}
oop ArchiveHeapWriter::load_oop_from_buffer(narrowOop* buffered_addr) {
return CompressedOops::decode(*buffered_addr);
}
template <typename T> void ArchiveHeapWriter::relocate_field_in_buffer(T* field_addr_in_buffer, CHeapBitMap* oopmap) {
oop source_referent = load_source_oop_from_buffer<T>(field_addr_in_buffer);
if (!CompressedOops::is_null(source_referent)) {
oop request_referent = source_obj_to_requested_obj(source_referent);
store_requested_oop_in_buffer<T>(field_addr_in_buffer, request_referent);
mark_oop_pointer<T>(field_addr_in_buffer, oopmap);
}
}
template <typename T> void ArchiveHeapWriter::mark_oop_pointer(T* buffered_addr, CHeapBitMap* oopmap) {
T* request_p = (T*)(buffered_addr_to_requested_addr((address)buffered_addr));
address requested_region_bottom;
assert(request_p >= (T*)_requested_bottom, "sanity");
assert(request_p < (T*)_requested_top, "sanity");
requested_region_bottom = _requested_bottom;
// Mark the pointer in the oopmap
T* region_bottom = (T*)requested_region_bottom;
assert(request_p >= region_bottom, "must be");
BitMap::idx_t idx = request_p - region_bottom;
assert(idx < oopmap->size(), "overflow");
oopmap->set_bit(idx);
}
void ArchiveHeapWriter::update_header_for_requested_obj(oop requested_obj, oop src_obj, Klass* src_klass) {
assert(UseCompressedClassPointers, "Archived heap only supported for compressed klasses");
narrowKlass nk = ArchiveBuilder::current()->get_requested_narrow_klass(src_klass);
address buffered_addr = requested_addr_to_buffered_addr(cast_from_oop<address>(requested_obj));
oop fake_oop = cast_to_oop(buffered_addr);
fake_oop->set_narrow_klass(nk);
// We need to retain the identity_hash, because it may have been used by some hashtables
// in the shared heap. This also has the side effect of pre-initializing the
// identity_hash for all shared objects, so they are less likely to be written
// into during run time, increasing the potential of memory sharing.
if (src_obj != nullptr) {
int src_hash = src_obj->identity_hash();
fake_oop->set_mark(markWord::prototype().copy_set_hash(src_hash));
assert(fake_oop->mark().is_unlocked(), "sanity");
DEBUG_ONLY(int archived_hash = fake_oop->identity_hash());
assert(src_hash == archived_hash, "Different hash codes: original %x, archived %x", src_hash, archived_hash);
}
}
// Relocate an element in the buffered copy of HeapShared::roots()
template <typename T> void ArchiveHeapWriter::relocate_root_at(oop requested_roots, int index, CHeapBitMap* oopmap) {
size_t offset = (size_t)((objArrayOop)requested_roots)->obj_at_offset<T>(index);
relocate_field_in_buffer<T>((T*)(buffered_heap_roots_addr() + offset), oopmap);
}
class ArchiveHeapWriter::EmbeddedOopRelocator: public BasicOopIterateClosure {
oop _src_obj;
address _buffered_obj;
CHeapBitMap* _oopmap;
public:
EmbeddedOopRelocator(oop src_obj, address buffered_obj, CHeapBitMap* oopmap) :
_src_obj(src_obj), _buffered_obj(buffered_obj), _oopmap(oopmap) {}
void do_oop(narrowOop *p) { EmbeddedOopRelocator::do_oop_work(p); }
void do_oop( oop *p) { EmbeddedOopRelocator::do_oop_work(p); }
private:
template <class T> void do_oop_work(T *p) {
size_t field_offset = pointer_delta(p, _src_obj, sizeof(char));
ArchiveHeapWriter::relocate_field_in_buffer<T>((T*)(_buffered_obj + field_offset), _oopmap);
}
};
// Update all oop fields embedded in the buffered objects
void ArchiveHeapWriter::relocate_embedded_oops(GrowableArrayCHeap<oop, mtClassShared>* roots,
ArchiveHeapInfo* heap_info) {
size_t oopmap_unit = (UseCompressedOops ? sizeof(narrowOop) : sizeof(oop));
size_t heap_region_byte_size = _buffer_used;
heap_info->oopmap()->resize(heap_region_byte_size / oopmap_unit);
auto iterator = [&] (oop src_obj, HeapShared::CachedOopInfo& info) {
oop requested_obj = requested_obj_from_buffer_offset(info.buffer_offset());
update_header_for_requested_obj(requested_obj, src_obj, src_obj->klass());
address buffered_obj = offset_to_buffered_address<address>(info.buffer_offset());
EmbeddedOopRelocator relocator(src_obj, buffered_obj, heap_info->oopmap());
src_obj->oop_iterate(&relocator);
};
HeapShared::archived_object_cache()->iterate_all(iterator);
// Relocate HeapShared::roots(), which is created in copy_roots_to_buffer() and
// doesn't have a corresponding src_obj, so we can't use EmbeddedOopRelocator on it.
oop requested_roots = requested_obj_from_buffer_offset(_heap_roots_bottom_offset);
update_header_for_requested_obj(requested_roots, nullptr, Universe::objectArrayKlassObj());
int length = roots != nullptr ? roots->length() : 0;
for (int i = 0; i < length; i++) {
if (UseCompressedOops) {
relocate_root_at<narrowOop>(requested_roots, i, heap_info->oopmap());
} else {
relocate_root_at<oop>(requested_roots, i, heap_info->oopmap());
}
}
compute_ptrmap(heap_info);
}
void ArchiveHeapWriter::mark_native_pointer(oop src_obj, int field_offset) {
Metadata* ptr = src_obj->metadata_field_acquire(field_offset);
if (ptr != nullptr) {
NativePointerInfo info;
info._src_obj = src_obj;
info._field_offset = field_offset;
_native_pointers->append(info);
}
}
void ArchiveHeapWriter::compute_ptrmap(ArchiveHeapInfo* heap_info) {
int num_non_null_ptrs = 0;
Metadata** bottom = (Metadata**) _requested_bottom;
Metadata** top = (Metadata**) _requested_top; // exclusive
heap_info->ptrmap()->resize(top - bottom);
BitMap::idx_t max_idx = 32; // paranoid - don't make it too small
for (int i = 0; i < _native_pointers->length(); i++) {
NativePointerInfo info = _native_pointers->at(i);
oop src_obj = info._src_obj;
int field_offset = info._field_offset;
HeapShared::CachedOopInfo* p = HeapShared::archived_object_cache()->get(src_obj);
// requested_field_addr = the address of this field in the requested space
oop requested_obj = requested_obj_from_buffer_offset(p->buffer_offset());
Metadata** requested_field_addr = (Metadata**)(cast_from_oop<address>(requested_obj) + field_offset);
assert(bottom <= requested_field_addr && requested_field_addr < top, "range check");
// Mark this field in the bitmap
BitMap::idx_t idx = requested_field_addr - bottom;
heap_info->ptrmap()->set_bit(idx);
num_non_null_ptrs ++;
max_idx = MAX2(max_idx, idx);
// Set the native pointer to the requested address of the metadata (at runtime, the metadata will have
// this address if the RO/RW regions are mapped at the default location).
Metadata** buffered_field_addr = requested_addr_to_buffered_addr(requested_field_addr);
Metadata* native_ptr = *buffered_field_addr;
assert(native_ptr != nullptr, "sanity");
address buffered_native_ptr = ArchiveBuilder::current()->get_buffered_addr((address)native_ptr);
address requested_native_ptr = ArchiveBuilder::current()->to_requested(buffered_native_ptr);
*buffered_field_addr = (Metadata*)requested_native_ptr;
}
heap_info->ptrmap()->resize(max_idx + 1);
log_info(cds, heap)("calculate_ptrmap: marked %d non-null native pointers for heap region (" SIZE_FORMAT " bits)",
num_non_null_ptrs, size_t(heap_info->ptrmap()->size()));
}
#endif // INCLUDE_CDS_JAVA_HEAP