| /* |
| * Copyright (c) 2005, 2023, Oracle and/or its affiliates. All rights reserved. |
| * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| * |
| * This code is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License version 2 only, as |
| * published by the Free Software Foundation. |
| * |
| * This code is distributed in the hope that it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| * version 2 for more details (a copy is included in the LICENSE file that |
| * accompanied this code). |
| * |
| * You should have received a copy of the GNU General Public License version |
| * 2 along with this work; if not, write to the Free Software Foundation, |
| * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| * |
| * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| * or visit www.oracle.com if you need additional information or have any |
| * questions. |
| * |
| */ |
| |
| #include "precompiled.hpp" |
| #include "ci/ciArrayKlass.hpp" |
| #include "ci/ciEnv.hpp" |
| #include "ci/ciKlass.hpp" |
| #include "ci/ciMethod.hpp" |
| #include "classfile/javaClasses.inline.hpp" |
| #include "classfile/vmClasses.hpp" |
| #include "code/dependencies.hpp" |
| #include "compiler/compileLog.hpp" |
| #include "compiler/compileBroker.hpp" |
| #include "compiler/compileTask.hpp" |
| #include "memory/resourceArea.hpp" |
| #include "oops/klass.hpp" |
| #include "oops/oop.inline.hpp" |
| #include "oops/objArrayKlass.hpp" |
| #include "runtime/flags/flagSetting.hpp" |
| #include "runtime/handles.hpp" |
| #include "runtime/handles.inline.hpp" |
| #include "runtime/javaThread.inline.hpp" |
| #include "runtime/jniHandles.inline.hpp" |
| #include "runtime/mutexLocker.hpp" |
| #include "runtime/perfData.hpp" |
| #include "runtime/vmThread.hpp" |
| #include "utilities/copy.hpp" |
| |
| |
| #ifdef ASSERT |
| static bool must_be_in_vm() { |
| Thread* thread = Thread::current(); |
| if (thread->is_Java_thread()) { |
| return JavaThread::cast(thread)->thread_state() == _thread_in_vm; |
| } else { |
| return true; // Could be VMThread or GC thread |
| } |
| } |
| #endif //ASSERT |
| |
| bool Dependencies::_verify_in_progress = false; // don't -Xlog:dependencies |
| |
| void Dependencies::initialize(ciEnv* env) { |
| Arena* arena = env->arena(); |
| _oop_recorder = env->oop_recorder(); |
| _log = env->log(); |
| _dep_seen = new(arena) GrowableArray<int>(arena, 500, 0, 0); |
| #if INCLUDE_JVMCI |
| _using_dep_values = false; |
| #endif |
| DEBUG_ONLY(_deps[end_marker] = nullptr); |
| for (int i = (int)FIRST_TYPE; i < (int)TYPE_LIMIT; i++) { |
| _deps[i] = new(arena) GrowableArray<ciBaseObject*>(arena, 10, 0, 0); |
| } |
| _content_bytes = nullptr; |
| _size_in_bytes = (size_t)-1; |
| |
| assert(TYPE_LIMIT <= (1<<LG2_TYPE_LIMIT), "sanity"); |
| } |
| |
| void Dependencies::assert_evol_method(ciMethod* m) { |
| assert_common_1(evol_method, m); |
| } |
| |
| void Dependencies::assert_leaf_type(ciKlass* ctxk) { |
| if (ctxk->is_array_klass()) { |
| // As a special case, support this assertion on an array type, |
| // which reduces to an assertion on its element type. |
| // Note that this cannot be done with assertions that |
| // relate to concreteness or abstractness. |
| ciType* elemt = ctxk->as_array_klass()->base_element_type(); |
| if (!elemt->is_instance_klass()) return; // Ex: int[][] |
| ctxk = elemt->as_instance_klass(); |
| //if (ctxk->is_final()) return; // Ex: String[][] |
| } |
| check_ctxk(ctxk); |
| assert_common_1(leaf_type, ctxk); |
| } |
| |
| void Dependencies::assert_abstract_with_unique_concrete_subtype(ciKlass* ctxk, ciKlass* conck) { |
| check_ctxk_abstract(ctxk); |
| assert_common_2(abstract_with_unique_concrete_subtype, ctxk, conck); |
| } |
| |
| void Dependencies::assert_unique_concrete_method(ciKlass* ctxk, ciMethod* uniqm) { |
| check_ctxk(ctxk); |
| check_unique_method(ctxk, uniqm); |
| assert_common_2(unique_concrete_method_2, ctxk, uniqm); |
| } |
| |
| void Dependencies::assert_unique_concrete_method(ciKlass* ctxk, ciMethod* uniqm, ciKlass* resolved_klass, ciMethod* resolved_method) { |
| check_ctxk(ctxk); |
| check_unique_method(ctxk, uniqm); |
| if (UseVtableBasedCHA) { |
| assert_common_4(unique_concrete_method_4, ctxk, uniqm, resolved_klass, resolved_method); |
| } else { |
| assert_common_2(unique_concrete_method_2, ctxk, uniqm); |
| } |
| } |
| |
| void Dependencies::assert_unique_implementor(ciInstanceKlass* ctxk, ciInstanceKlass* uniqk) { |
| check_ctxk(ctxk); |
| check_unique_implementor(ctxk, uniqk); |
| assert_common_2(unique_implementor, ctxk, uniqk); |
| } |
| |
| void Dependencies::assert_has_no_finalizable_subclasses(ciKlass* ctxk) { |
| check_ctxk(ctxk); |
| assert_common_1(no_finalizable_subclasses, ctxk); |
| } |
| |
| void Dependencies::assert_call_site_target_value(ciCallSite* call_site, ciMethodHandle* method_handle) { |
| assert_common_2(call_site_target_value, call_site, method_handle); |
| } |
| |
| #if INCLUDE_JVMCI |
| |
| Dependencies::Dependencies(Arena* arena, OopRecorder* oop_recorder, CompileLog* log) { |
| _oop_recorder = oop_recorder; |
| _log = log; |
| _dep_seen = new(arena) GrowableArray<int>(arena, 500, 0, 0); |
| _using_dep_values = true; |
| DEBUG_ONLY(_dep_values[end_marker] = nullptr); |
| for (int i = (int)FIRST_TYPE; i < (int)TYPE_LIMIT; i++) { |
| _dep_values[i] = new(arena) GrowableArray<DepValue>(arena, 10, 0, DepValue()); |
| } |
| _content_bytes = nullptr; |
| _size_in_bytes = (size_t)-1; |
| |
| assert(TYPE_LIMIT <= (1<<LG2_TYPE_LIMIT), "sanity"); |
| } |
| |
| void Dependencies::assert_evol_method(Method* m) { |
| assert_common_1(evol_method, DepValue(_oop_recorder, m)); |
| } |
| |
| void Dependencies::assert_has_no_finalizable_subclasses(Klass* ctxk) { |
| check_ctxk(ctxk); |
| assert_common_1(no_finalizable_subclasses, DepValue(_oop_recorder, ctxk)); |
| } |
| |
| void Dependencies::assert_leaf_type(Klass* ctxk) { |
| if (ctxk->is_array_klass()) { |
| // As a special case, support this assertion on an array type, |
| // which reduces to an assertion on its element type. |
| // Note that this cannot be done with assertions that |
| // relate to concreteness or abstractness. |
| BasicType elemt = ArrayKlass::cast(ctxk)->element_type(); |
| if (is_java_primitive(elemt)) return; // Ex: int[][] |
| ctxk = ObjArrayKlass::cast(ctxk)->bottom_klass(); |
| //if (ctxk->is_final()) return; // Ex: String[][] |
| } |
| check_ctxk(ctxk); |
| assert_common_1(leaf_type, DepValue(_oop_recorder, ctxk)); |
| } |
| |
| void Dependencies::assert_abstract_with_unique_concrete_subtype(Klass* ctxk, Klass* conck) { |
| check_ctxk_abstract(ctxk); |
| DepValue ctxk_dv(_oop_recorder, ctxk); |
| DepValue conck_dv(_oop_recorder, conck, &ctxk_dv); |
| assert_common_2(abstract_with_unique_concrete_subtype, ctxk_dv, conck_dv); |
| } |
| |
| void Dependencies::assert_unique_implementor(InstanceKlass* ctxk, InstanceKlass* uniqk) { |
| check_ctxk(ctxk); |
| assert(ctxk->is_interface(), "not an interface"); |
| assert(ctxk->implementor() == uniqk, "not a unique implementor"); |
| assert_common_2(unique_implementor, DepValue(_oop_recorder, ctxk), DepValue(_oop_recorder, uniqk)); |
| } |
| |
| void Dependencies::assert_unique_concrete_method(Klass* ctxk, Method* uniqm) { |
| check_ctxk(ctxk); |
| check_unique_method(ctxk, uniqm); |
| assert_common_2(unique_concrete_method_2, DepValue(_oop_recorder, ctxk), DepValue(_oop_recorder, uniqm)); |
| } |
| |
| void Dependencies::assert_call_site_target_value(oop call_site, oop method_handle) { |
| assert_common_2(call_site_target_value, DepValue(_oop_recorder, JNIHandles::make_local(call_site)), DepValue(_oop_recorder, JNIHandles::make_local(method_handle))); |
| } |
| |
| #endif // INCLUDE_JVMCI |
| |
| |
| // Helper function. If we are adding a new dep. under ctxk2, |
| // try to find an old dep. under a broader* ctxk1. If there is |
| // |
| bool Dependencies::maybe_merge_ctxk(GrowableArray<ciBaseObject*>* deps, |
| int ctxk_i, ciKlass* ctxk2) { |
| ciKlass* ctxk1 = deps->at(ctxk_i)->as_metadata()->as_klass(); |
| if (ctxk2->is_subtype_of(ctxk1)) { |
| return true; // success, and no need to change |
| } else if (ctxk1->is_subtype_of(ctxk2)) { |
| // new context class fully subsumes previous one |
| deps->at_put(ctxk_i, ctxk2); |
| return true; |
| } else { |
| return false; |
| } |
| } |
| |
| void Dependencies::assert_common_1(DepType dept, ciBaseObject* x) { |
| assert(dep_args(dept) == 1, "sanity"); |
| log_dependency(dept, x); |
| GrowableArray<ciBaseObject*>* deps = _deps[dept]; |
| |
| // see if the same (or a similar) dep is already recorded |
| if (note_dep_seen(dept, x)) { |
| assert(deps->find(x) >= 0, "sanity"); |
| } else { |
| deps->append(x); |
| } |
| } |
| |
| void Dependencies::assert_common_2(DepType dept, |
| ciBaseObject* x0, ciBaseObject* x1) { |
| assert(dep_args(dept) == 2, "sanity"); |
| log_dependency(dept, x0, x1); |
| GrowableArray<ciBaseObject*>* deps = _deps[dept]; |
| |
| // see if the same (or a similar) dep is already recorded |
| bool has_ctxk = has_explicit_context_arg(dept); |
| if (has_ctxk) { |
| assert(dep_context_arg(dept) == 0, "sanity"); |
| if (note_dep_seen(dept, x1)) { |
| // look in this bucket for redundant assertions |
| const int stride = 2; |
| for (int i = deps->length(); (i -= stride) >= 0; ) { |
| ciBaseObject* y1 = deps->at(i+1); |
| if (x1 == y1) { // same subject; check the context |
| if (maybe_merge_ctxk(deps, i+0, x0->as_metadata()->as_klass())) { |
| return; |
| } |
| } |
| } |
| } |
| } else { |
| bool dep_seen_x0 = note_dep_seen(dept, x0); // records x0 for future queries |
| bool dep_seen_x1 = note_dep_seen(dept, x1); // records x1 for future queries |
| if (dep_seen_x0 && dep_seen_x1) { |
| // look in this bucket for redundant assertions |
| const int stride = 2; |
| for (int i = deps->length(); (i -= stride) >= 0; ) { |
| ciBaseObject* y0 = deps->at(i+0); |
| ciBaseObject* y1 = deps->at(i+1); |
| if (x0 == y0 && x1 == y1) { |
| return; |
| } |
| } |
| } |
| } |
| |
| // append the assertion in the correct bucket: |
| deps->append(x0); |
| deps->append(x1); |
| } |
| |
| void Dependencies::assert_common_4(DepType dept, |
| ciKlass* ctxk, ciBaseObject* x1, ciBaseObject* x2, ciBaseObject* x3) { |
| assert(has_explicit_context_arg(dept), "sanity"); |
| assert(dep_context_arg(dept) == 0, "sanity"); |
| assert(dep_args(dept) == 4, "sanity"); |
| log_dependency(dept, ctxk, x1, x2, x3); |
| GrowableArray<ciBaseObject*>* deps = _deps[dept]; |
| |
| // see if the same (or a similar) dep is already recorded |
| bool dep_seen_x1 = note_dep_seen(dept, x1); // records x1 for future queries |
| bool dep_seen_x2 = note_dep_seen(dept, x2); // records x2 for future queries |
| bool dep_seen_x3 = note_dep_seen(dept, x3); // records x3 for future queries |
| if (dep_seen_x1 && dep_seen_x2 && dep_seen_x3) { |
| // look in this bucket for redundant assertions |
| const int stride = 4; |
| for (int i = deps->length(); (i -= stride) >= 0; ) { |
| ciBaseObject* y1 = deps->at(i+1); |
| ciBaseObject* y2 = deps->at(i+2); |
| ciBaseObject* y3 = deps->at(i+3); |
| if (x1 == y1 && x2 == y2 && x3 == y3) { // same subjects; check the context |
| if (maybe_merge_ctxk(deps, i+0, ctxk)) { |
| return; |
| } |
| } |
| } |
| } |
| // append the assertion in the correct bucket: |
| deps->append(ctxk); |
| deps->append(x1); |
| deps->append(x2); |
| deps->append(x3); |
| } |
| |
| #if INCLUDE_JVMCI |
| bool Dependencies::maybe_merge_ctxk(GrowableArray<DepValue>* deps, |
| int ctxk_i, DepValue ctxk2_dv) { |
| Klass* ctxk1 = deps->at(ctxk_i).as_klass(_oop_recorder); |
| Klass* ctxk2 = ctxk2_dv.as_klass(_oop_recorder); |
| if (ctxk2->is_subtype_of(ctxk1)) { |
| return true; // success, and no need to change |
| } else if (ctxk1->is_subtype_of(ctxk2)) { |
| // new context class fully subsumes previous one |
| deps->at_put(ctxk_i, ctxk2_dv); |
| return true; |
| } else { |
| return false; |
| } |
| } |
| |
| void Dependencies::assert_common_1(DepType dept, DepValue x) { |
| assert(dep_args(dept) == 1, "sanity"); |
| //log_dependency(dept, x); |
| GrowableArray<DepValue>* deps = _dep_values[dept]; |
| |
| // see if the same (or a similar) dep is already recorded |
| if (note_dep_seen(dept, x)) { |
| assert(deps->find(x) >= 0, "sanity"); |
| } else { |
| deps->append(x); |
| } |
| } |
| |
| void Dependencies::assert_common_2(DepType dept, |
| DepValue x0, DepValue x1) { |
| assert(dep_args(dept) == 2, "sanity"); |
| //log_dependency(dept, x0, x1); |
| GrowableArray<DepValue>* deps = _dep_values[dept]; |
| |
| // see if the same (or a similar) dep is already recorded |
| bool has_ctxk = has_explicit_context_arg(dept); |
| if (has_ctxk) { |
| assert(dep_context_arg(dept) == 0, "sanity"); |
| if (note_dep_seen(dept, x1)) { |
| // look in this bucket for redundant assertions |
| const int stride = 2; |
| for (int i = deps->length(); (i -= stride) >= 0; ) { |
| DepValue y1 = deps->at(i+1); |
| if (x1 == y1) { // same subject; check the context |
| if (maybe_merge_ctxk(deps, i+0, x0)) { |
| return; |
| } |
| } |
| } |
| } |
| } else { |
| bool dep_seen_x0 = note_dep_seen(dept, x0); // records x0 for future queries |
| bool dep_seen_x1 = note_dep_seen(dept, x1); // records x1 for future queries |
| if (dep_seen_x0 && dep_seen_x1) { |
| // look in this bucket for redundant assertions |
| const int stride = 2; |
| for (int i = deps->length(); (i -= stride) >= 0; ) { |
| DepValue y0 = deps->at(i+0); |
| DepValue y1 = deps->at(i+1); |
| if (x0 == y0 && x1 == y1) { |
| return; |
| } |
| } |
| } |
| } |
| |
| // append the assertion in the correct bucket: |
| deps->append(x0); |
| deps->append(x1); |
| } |
| #endif // INCLUDE_JVMCI |
| |
| /// Support for encoding dependencies into an nmethod: |
| |
| void Dependencies::copy_to(nmethod* nm) { |
| address beg = nm->dependencies_begin(); |
| address end = nm->dependencies_end(); |
| guarantee(end - beg >= (ptrdiff_t) size_in_bytes(), "bad sizing"); |
| Copy::disjoint_words((HeapWord*) content_bytes(), |
| (HeapWord*) beg, |
| size_in_bytes() / sizeof(HeapWord)); |
| assert(size_in_bytes() % sizeof(HeapWord) == 0, "copy by words"); |
| } |
| |
| static int sort_dep(ciBaseObject** p1, ciBaseObject** p2, int narg) { |
| for (int i = 0; i < narg; i++) { |
| int diff = p1[i]->ident() - p2[i]->ident(); |
| if (diff != 0) return diff; |
| } |
| return 0; |
| } |
| static int sort_dep_arg_1(ciBaseObject** p1, ciBaseObject** p2) |
| { return sort_dep(p1, p2, 1); } |
| static int sort_dep_arg_2(ciBaseObject** p1, ciBaseObject** p2) |
| { return sort_dep(p1, p2, 2); } |
| static int sort_dep_arg_3(ciBaseObject** p1, ciBaseObject** p2) |
| { return sort_dep(p1, p2, 3); } |
| static int sort_dep_arg_4(ciBaseObject** p1, ciBaseObject** p2) |
| { return sort_dep(p1, p2, 4); } |
| |
| #if INCLUDE_JVMCI |
| // metadata deps are sorted before object deps |
| static int sort_dep_value(Dependencies::DepValue* p1, Dependencies::DepValue* p2, int narg) { |
| for (int i = 0; i < narg; i++) { |
| int diff = p1[i].sort_key() - p2[i].sort_key(); |
| if (diff != 0) return diff; |
| } |
| return 0; |
| } |
| static int sort_dep_value_arg_1(Dependencies::DepValue* p1, Dependencies::DepValue* p2) |
| { return sort_dep_value(p1, p2, 1); } |
| static int sort_dep_value_arg_2(Dependencies::DepValue* p1, Dependencies::DepValue* p2) |
| { return sort_dep_value(p1, p2, 2); } |
| static int sort_dep_value_arg_3(Dependencies::DepValue* p1, Dependencies::DepValue* p2) |
| { return sort_dep_value(p1, p2, 3); } |
| #endif // INCLUDE_JVMCI |
| |
| void Dependencies::sort_all_deps() { |
| #if INCLUDE_JVMCI |
| if (_using_dep_values) { |
| for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) { |
| DepType dept = (DepType)deptv; |
| GrowableArray<DepValue>* deps = _dep_values[dept]; |
| if (deps->length() <= 1) continue; |
| switch (dep_args(dept)) { |
| case 1: deps->sort(sort_dep_value_arg_1, 1); break; |
| case 2: deps->sort(sort_dep_value_arg_2, 2); break; |
| case 3: deps->sort(sort_dep_value_arg_3, 3); break; |
| default: ShouldNotReachHere(); break; |
| } |
| } |
| return; |
| } |
| #endif // INCLUDE_JVMCI |
| for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) { |
| DepType dept = (DepType)deptv; |
| GrowableArray<ciBaseObject*>* deps = _deps[dept]; |
| if (deps->length() <= 1) continue; |
| switch (dep_args(dept)) { |
| case 1: deps->sort(sort_dep_arg_1, 1); break; |
| case 2: deps->sort(sort_dep_arg_2, 2); break; |
| case 3: deps->sort(sort_dep_arg_3, 3); break; |
| case 4: deps->sort(sort_dep_arg_4, 4); break; |
| default: ShouldNotReachHere(); break; |
| } |
| } |
| } |
| |
| size_t Dependencies::estimate_size_in_bytes() { |
| size_t est_size = 100; |
| #if INCLUDE_JVMCI |
| if (_using_dep_values) { |
| for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) { |
| DepType dept = (DepType)deptv; |
| GrowableArray<DepValue>* deps = _dep_values[dept]; |
| est_size += deps->length() * 2; // tags and argument(s) |
| } |
| return est_size; |
| } |
| #endif // INCLUDE_JVMCI |
| for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) { |
| DepType dept = (DepType)deptv; |
| GrowableArray<ciBaseObject*>* deps = _deps[dept]; |
| est_size += deps->length()*2; // tags and argument(s) |
| } |
| return est_size; |
| } |
| |
| ciKlass* Dependencies::ctxk_encoded_as_null(DepType dept, ciBaseObject* x) { |
| switch (dept) { |
| case unique_concrete_method_2: |
| case unique_concrete_method_4: |
| return x->as_metadata()->as_method()->holder(); |
| default: |
| return nullptr; // let nullptr be nullptr |
| } |
| } |
| |
| Klass* Dependencies::ctxk_encoded_as_null(DepType dept, Metadata* x) { |
| assert(must_be_in_vm(), "raw oops here"); |
| switch (dept) { |
| case unique_concrete_method_2: |
| case unique_concrete_method_4: |
| assert(x->is_method(), "sanity"); |
| return ((Method*)x)->method_holder(); |
| default: |
| return nullptr; // let nullptr be nullptr |
| } |
| } |
| |
| void Dependencies::encode_content_bytes() { |
| sort_all_deps(); |
| |
| // cast is safe, no deps can overflow INT_MAX |
| CompressedWriteStream bytes((int)estimate_size_in_bytes()); |
| |
| #if INCLUDE_JVMCI |
| if (_using_dep_values) { |
| for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) { |
| DepType dept = (DepType)deptv; |
| GrowableArray<DepValue>* deps = _dep_values[dept]; |
| if (deps->length() == 0) continue; |
| int stride = dep_args(dept); |
| int ctxkj = dep_context_arg(dept); // -1 if no context arg |
| assert(stride > 0, "sanity"); |
| for (int i = 0; i < deps->length(); i += stride) { |
| jbyte code_byte = (jbyte)dept; |
| int skipj = -1; |
| if (ctxkj >= 0 && ctxkj+1 < stride) { |
| Klass* ctxk = deps->at(i+ctxkj+0).as_klass(_oop_recorder); |
| DepValue x = deps->at(i+ctxkj+1); // following argument |
| if (ctxk == ctxk_encoded_as_null(dept, x.as_metadata(_oop_recorder))) { |
| skipj = ctxkj; // we win: maybe one less oop to keep track of |
| code_byte |= default_context_type_bit; |
| } |
| } |
| bytes.write_byte(code_byte); |
| for (int j = 0; j < stride; j++) { |
| if (j == skipj) continue; |
| DepValue v = deps->at(i+j); |
| int idx = v.index(); |
| bytes.write_int(idx); |
| } |
| } |
| } |
| } else { |
| #endif // INCLUDE_JVMCI |
| for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) { |
| DepType dept = (DepType)deptv; |
| GrowableArray<ciBaseObject*>* deps = _deps[dept]; |
| if (deps->length() == 0) continue; |
| int stride = dep_args(dept); |
| int ctxkj = dep_context_arg(dept); // -1 if no context arg |
| assert(stride > 0, "sanity"); |
| for (int i = 0; i < deps->length(); i += stride) { |
| jbyte code_byte = (jbyte)dept; |
| int skipj = -1; |
| if (ctxkj >= 0 && ctxkj+1 < stride) { |
| ciKlass* ctxk = deps->at(i+ctxkj+0)->as_metadata()->as_klass(); |
| ciBaseObject* x = deps->at(i+ctxkj+1); // following argument |
| if (ctxk == ctxk_encoded_as_null(dept, x)) { |
| skipj = ctxkj; // we win: maybe one less oop to keep track of |
| code_byte |= default_context_type_bit; |
| } |
| } |
| bytes.write_byte(code_byte); |
| for (int j = 0; j < stride; j++) { |
| if (j == skipj) continue; |
| ciBaseObject* v = deps->at(i+j); |
| int idx; |
| if (v->is_object()) { |
| idx = _oop_recorder->find_index(v->as_object()->constant_encoding()); |
| } else { |
| ciMetadata* meta = v->as_metadata(); |
| idx = _oop_recorder->find_index(meta->constant_encoding()); |
| } |
| bytes.write_int(idx); |
| } |
| } |
| } |
| #if INCLUDE_JVMCI |
| } |
| #endif |
| |
| // write a sentinel byte to mark the end |
| bytes.write_byte(end_marker); |
| |
| // round it out to a word boundary |
| while (bytes.position() % sizeof(HeapWord) != 0) { |
| bytes.write_byte(end_marker); |
| } |
| |
| // check whether the dept byte encoding really works |
| assert((jbyte)default_context_type_bit != 0, "byte overflow"); |
| |
| _content_bytes = bytes.buffer(); |
| _size_in_bytes = bytes.position(); |
| } |
| |
| |
| const char* Dependencies::_dep_name[TYPE_LIMIT] = { |
| "end_marker", |
| "evol_method", |
| "leaf_type", |
| "abstract_with_unique_concrete_subtype", |
| "unique_concrete_method_2", |
| "unique_concrete_method_4", |
| "unique_implementor", |
| "no_finalizable_subclasses", |
| "call_site_target_value" |
| }; |
| |
| int Dependencies::_dep_args[TYPE_LIMIT] = { |
| -1,// end_marker |
| 1, // evol_method m |
| 1, // leaf_type ctxk |
| 2, // abstract_with_unique_concrete_subtype ctxk, k |
| 2, // unique_concrete_method_2 ctxk, m |
| 4, // unique_concrete_method_4 ctxk, m, resolved_klass, resolved_method |
| 2, // unique_implementor ctxk, implementor |
| 1, // no_finalizable_subclasses ctxk |
| 2 // call_site_target_value call_site, method_handle |
| }; |
| |
| const char* Dependencies::dep_name(Dependencies::DepType dept) { |
| if (!dept_in_mask(dept, all_types)) return "?bad-dep?"; |
| return _dep_name[dept]; |
| } |
| |
| int Dependencies::dep_args(Dependencies::DepType dept) { |
| if (!dept_in_mask(dept, all_types)) return -1; |
| return _dep_args[dept]; |
| } |
| |
| void Dependencies::check_valid_dependency_type(DepType dept) { |
| guarantee(FIRST_TYPE <= dept && dept < TYPE_LIMIT, "invalid dependency type: %d", (int) dept); |
| } |
| |
| Dependencies::DepType Dependencies::validate_dependencies(CompileTask* task, char** failure_detail) { |
| int klass_violations = 0; |
| DepType result = end_marker; |
| for (Dependencies::DepStream deps(this); deps.next(); ) { |
| Klass* witness = deps.check_dependency(); |
| if (witness != nullptr) { |
| if (klass_violations == 0) { |
| result = deps.type(); |
| if (failure_detail != nullptr && klass_violations == 0) { |
| // Use a fixed size buffer to prevent the string stream from |
| // resizing in the context of an inner resource mark. |
| char* buffer = NEW_RESOURCE_ARRAY(char, O_BUFLEN); |
| stringStream st(buffer, O_BUFLEN); |
| deps.print_dependency(&st, witness, true); |
| *failure_detail = st.as_string(); |
| } |
| } |
| klass_violations++; |
| if (xtty == nullptr) { |
| // If we're not logging then a single violation is sufficient, |
| // otherwise we want to log all the dependences which were |
| // violated. |
| break; |
| } |
| } |
| } |
| |
| return result; |
| } |
| |
| // for the sake of the compiler log, print out current dependencies: |
| void Dependencies::log_all_dependencies() { |
| if (log() == nullptr) return; |
| ResourceMark rm; |
| for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) { |
| DepType dept = (DepType)deptv; |
| GrowableArray<ciBaseObject*>* deps = _deps[dept]; |
| int deplen = deps->length(); |
| if (deplen == 0) { |
| continue; |
| } |
| int stride = dep_args(dept); |
| GrowableArray<ciBaseObject*>* ciargs = new GrowableArray<ciBaseObject*>(stride); |
| for (int i = 0; i < deps->length(); i += stride) { |
| for (int j = 0; j < stride; j++) { |
| // flush out the identities before printing |
| ciargs->push(deps->at(i+j)); |
| } |
| write_dependency_to(log(), dept, ciargs); |
| ciargs->clear(); |
| } |
| guarantee(deplen == deps->length(), "deps array cannot grow inside nested ResoureMark scope"); |
| } |
| } |
| |
| void Dependencies::write_dependency_to(CompileLog* log, |
| DepType dept, |
| GrowableArray<DepArgument>* args, |
| Klass* witness) { |
| if (log == nullptr) { |
| return; |
| } |
| ResourceMark rm; |
| ciEnv* env = ciEnv::current(); |
| GrowableArray<ciBaseObject*>* ciargs = new GrowableArray<ciBaseObject*>(args->length()); |
| for (GrowableArrayIterator<DepArgument> it = args->begin(); it != args->end(); ++it) { |
| DepArgument arg = *it; |
| if (arg.is_oop()) { |
| ciargs->push(env->get_object(arg.oop_value())); |
| } else { |
| ciargs->push(env->get_metadata(arg.metadata_value())); |
| } |
| } |
| int argslen = ciargs->length(); |
| Dependencies::write_dependency_to(log, dept, ciargs, witness); |
| guarantee(argslen == ciargs->length(), "ciargs array cannot grow inside nested ResoureMark scope"); |
| } |
| |
| void Dependencies::write_dependency_to(CompileLog* log, |
| DepType dept, |
| GrowableArray<ciBaseObject*>* args, |
| Klass* witness) { |
| if (log == nullptr) { |
| return; |
| } |
| ResourceMark rm; |
| GrowableArray<int>* argids = new GrowableArray<int>(args->length()); |
| for (GrowableArrayIterator<ciBaseObject*> it = args->begin(); it != args->end(); ++it) { |
| ciBaseObject* obj = *it; |
| if (obj->is_object()) { |
| argids->push(log->identify(obj->as_object())); |
| } else { |
| argids->push(log->identify(obj->as_metadata())); |
| } |
| } |
| if (witness != nullptr) { |
| log->begin_elem("dependency_failed"); |
| } else { |
| log->begin_elem("dependency"); |
| } |
| log->print(" type='%s'", dep_name(dept)); |
| const int ctxkj = dep_context_arg(dept); // -1 if no context arg |
| if (ctxkj >= 0 && ctxkj < argids->length()) { |
| log->print(" ctxk='%d'", argids->at(ctxkj)); |
| } |
| // write remaining arguments, if any. |
| for (int j = 0; j < argids->length(); j++) { |
| if (j == ctxkj) continue; // already logged |
| if (j == 1) { |
| log->print( " x='%d'", argids->at(j)); |
| } else { |
| log->print(" x%d='%d'", j, argids->at(j)); |
| } |
| } |
| if (witness != nullptr) { |
| log->object("witness", witness); |
| log->stamp(); |
| } |
| log->end_elem(); |
| } |
| |
| void Dependencies::write_dependency_to(xmlStream* xtty, |
| DepType dept, |
| GrowableArray<DepArgument>* args, |
| Klass* witness) { |
| if (xtty == nullptr) { |
| return; |
| } |
| Thread* thread = Thread::current(); |
| HandleMark rm(thread); |
| ttyLocker ttyl; |
| int ctxkj = dep_context_arg(dept); // -1 if no context arg |
| if (witness != nullptr) { |
| xtty->begin_elem("dependency_failed"); |
| } else { |
| xtty->begin_elem("dependency"); |
| } |
| xtty->print(" type='%s'", dep_name(dept)); |
| if (ctxkj >= 0) { |
| xtty->object("ctxk", args->at(ctxkj).metadata_value()); |
| } |
| // write remaining arguments, if any. |
| for (int j = 0; j < args->length(); j++) { |
| if (j == ctxkj) continue; // already logged |
| DepArgument arg = args->at(j); |
| if (j == 1) { |
| if (arg.is_oop()) { |
| xtty->object("x", Handle(thread, arg.oop_value())); |
| } else { |
| xtty->object("x", arg.metadata_value()); |
| } |
| } else { |
| char xn[12]; |
| os::snprintf_checked(xn, sizeof(xn), "x%d", j); |
| if (arg.is_oop()) { |
| xtty->object(xn, Handle(thread, arg.oop_value())); |
| } else { |
| xtty->object(xn, arg.metadata_value()); |
| } |
| } |
| } |
| if (witness != nullptr) { |
| xtty->object("witness", witness); |
| xtty->stamp(); |
| } |
| xtty->end_elem(); |
| } |
| |
| void Dependencies::print_dependency(DepType dept, GrowableArray<DepArgument>* args, |
| Klass* witness, outputStream* st) { |
| ResourceMark rm; |
| ttyLocker ttyl; // keep the following output all in one block |
| st->print_cr("%s of type %s", |
| (witness == nullptr)? "Dependency": "Failed dependency", |
| dep_name(dept)); |
| // print arguments |
| int ctxkj = dep_context_arg(dept); // -1 if no context arg |
| for (int j = 0; j < args->length(); j++) { |
| DepArgument arg = args->at(j); |
| bool put_star = false; |
| if (arg.is_null()) continue; |
| const char* what; |
| if (j == ctxkj) { |
| assert(arg.is_metadata(), "must be"); |
| what = "context"; |
| put_star = !Dependencies::is_concrete_klass((Klass*)arg.metadata_value()); |
| } else if (arg.is_method()) { |
| what = "method "; |
| put_star = !Dependencies::is_concrete_method((Method*)arg.metadata_value(), nullptr); |
| } else if (arg.is_klass()) { |
| what = "class "; |
| } else { |
| what = "object "; |
| } |
| st->print(" %s = %s", what, (put_star? "*": "")); |
| if (arg.is_klass()) { |
| st->print("%s", ((Klass*)arg.metadata_value())->external_name()); |
| } else if (arg.is_method()) { |
| ((Method*)arg.metadata_value())->print_value_on(st); |
| } else if (arg.is_oop()) { |
| arg.oop_value()->print_value_on(st); |
| } else { |
| ShouldNotReachHere(); // Provide impl for this type. |
| } |
| |
| st->cr(); |
| } |
| if (witness != nullptr) { |
| bool put_star = !Dependencies::is_concrete_klass(witness); |
| st->print_cr(" witness = %s%s", |
| (put_star? "*": ""), |
| witness->external_name()); |
| } |
| } |
| |
| void Dependencies::DepStream::log_dependency(Klass* witness) { |
| if (_deps == nullptr && xtty == nullptr) return; // fast cutout for runtime |
| ResourceMark rm; |
| const int nargs = argument_count(); |
| GrowableArray<DepArgument>* args = new GrowableArray<DepArgument>(nargs); |
| for (int j = 0; j < nargs; j++) { |
| if (is_oop_argument(j)) { |
| args->push(argument_oop(j)); |
| } else { |
| args->push(argument(j)); |
| } |
| } |
| int argslen = args->length(); |
| if (_deps != nullptr && _deps->log() != nullptr) { |
| if (ciEnv::current() != nullptr) { |
| Dependencies::write_dependency_to(_deps->log(), type(), args, witness); |
| } else { |
| // Treat the CompileLog as an xmlstream instead |
| Dependencies::write_dependency_to((xmlStream*)_deps->log(), type(), args, witness); |
| } |
| } else { |
| Dependencies::write_dependency_to(xtty, type(), args, witness); |
| } |
| guarantee(argslen == args->length(), "args array cannot grow inside nested ResoureMark scope"); |
| } |
| |
| void Dependencies::DepStream::print_dependency(outputStream* st, Klass* witness, bool verbose) { |
| ResourceMark rm; |
| int nargs = argument_count(); |
| GrowableArray<DepArgument>* args = new GrowableArray<DepArgument>(nargs); |
| for (int j = 0; j < nargs; j++) { |
| if (is_oop_argument(j)) { |
| args->push(argument_oop(j)); |
| } else { |
| args->push(argument(j)); |
| } |
| } |
| int argslen = args->length(); |
| Dependencies::print_dependency(type(), args, witness, st); |
| if (verbose) { |
| if (_code != nullptr) { |
| st->print(" code: "); |
| _code->print_value_on(st); |
| st->cr(); |
| } |
| } |
| guarantee(argslen == args->length(), "args array cannot grow inside nested ResoureMark scope"); |
| } |
| |
| |
| /// Dependency stream support (decodes dependencies from an nmethod): |
| |
| #ifdef ASSERT |
| void Dependencies::DepStream::initial_asserts(size_t byte_limit) { |
| assert(must_be_in_vm(), "raw oops here"); |
| _byte_limit = byte_limit; |
| _type = (DepType)(end_marker-1); // defeat "already at end" assert |
| assert((_code!=nullptr) + (_deps!=nullptr) == 1, "one or t'other"); |
| } |
| #endif //ASSERT |
| |
| bool Dependencies::DepStream::next() { |
| assert(_type != end_marker, "already at end"); |
| if (_bytes.position() == 0 && _code != nullptr |
| && _code->dependencies_size() == 0) { |
| // Method has no dependencies at all. |
| return false; |
| } |
| int code_byte = (_bytes.read_byte() & 0xFF); |
| if (code_byte == end_marker) { |
| DEBUG_ONLY(_type = end_marker); |
| return false; |
| } else { |
| int ctxk_bit = (code_byte & Dependencies::default_context_type_bit); |
| code_byte -= ctxk_bit; |
| DepType dept = (DepType)code_byte; |
| _type = dept; |
| Dependencies::check_valid_dependency_type(dept); |
| int stride = _dep_args[dept]; |
| assert(stride == dep_args(dept), "sanity"); |
| int skipj = -1; |
| if (ctxk_bit != 0) { |
| skipj = 0; // currently the only context argument is at zero |
| assert(skipj == dep_context_arg(dept), "zero arg always ctxk"); |
| } |
| for (int j = 0; j < stride; j++) { |
| _xi[j] = (j == skipj)? 0: _bytes.read_int(); |
| } |
| DEBUG_ONLY(_xi[stride] = -1); // help detect overruns |
| return true; |
| } |
| } |
| |
| inline Metadata* Dependencies::DepStream::recorded_metadata_at(int i) { |
| Metadata* o = nullptr; |
| if (_code != nullptr) { |
| o = _code->metadata_at(i); |
| } else { |
| o = _deps->oop_recorder()->metadata_at(i); |
| } |
| return o; |
| } |
| |
| inline oop Dependencies::DepStream::recorded_oop_at(int i) { |
| return (_code != nullptr) |
| ? _code->oop_at(i) |
| : JNIHandles::resolve(_deps->oop_recorder()->oop_at(i)); |
| } |
| |
| Metadata* Dependencies::DepStream::argument(int i) { |
| Metadata* result = recorded_metadata_at(argument_index(i)); |
| |
| if (result == nullptr) { // Explicit context argument can be compressed |
| int ctxkj = dep_context_arg(type()); // -1 if no explicit context arg |
| if (ctxkj >= 0 && i == ctxkj && ctxkj+1 < argument_count()) { |
| result = ctxk_encoded_as_null(type(), argument(ctxkj+1)); |
| } |
| } |
| |
| assert(result == nullptr || result->is_klass() || result->is_method(), "must be"); |
| return result; |
| } |
| |
| /** |
| * Returns a unique identifier for each dependency argument. |
| */ |
| uintptr_t Dependencies::DepStream::get_identifier(int i) { |
| if (is_oop_argument(i)) { |
| return (uintptr_t)(oopDesc*)argument_oop(i); |
| } else { |
| return (uintptr_t)argument(i); |
| } |
| } |
| |
| oop Dependencies::DepStream::argument_oop(int i) { |
| oop result = recorded_oop_at(argument_index(i)); |
| assert(oopDesc::is_oop_or_null(result), "must be"); |
| return result; |
| } |
| |
| InstanceKlass* Dependencies::DepStream::context_type() { |
| assert(must_be_in_vm(), "raw oops here"); |
| |
| // Most dependencies have an explicit context type argument. |
| { |
| int ctxkj = dep_context_arg(type()); // -1 if no explicit context arg |
| if (ctxkj >= 0) { |
| Metadata* k = argument(ctxkj); |
| assert(k != nullptr && k->is_klass(), "type check"); |
| return InstanceKlass::cast((Klass*)k); |
| } |
| } |
| |
| // Some dependencies are using the klass of the first object |
| // argument as implicit context type. |
| { |
| int ctxkj = dep_implicit_context_arg(type()); |
| if (ctxkj >= 0) { |
| Klass* k = argument_oop(ctxkj)->klass(); |
| assert(k != nullptr, "type check"); |
| return InstanceKlass::cast(k); |
| } |
| } |
| |
| // And some dependencies don't have a context type at all, |
| // e.g. evol_method. |
| return nullptr; |
| } |
| |
| // ----------------- DependencySignature -------------------------------------- |
| bool DependencySignature::equals(DependencySignature const& s1, DependencySignature const& s2) { |
| if ((s1.type() != s2.type()) || (s1.args_count() != s2.args_count())) { |
| return false; |
| } |
| |
| for (int i = 0; i < s1.args_count(); i++) { |
| if (s1.arg(i) != s2.arg(i)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| /// Checking dependencies |
| |
| // This hierarchy walker inspects subtypes of a given type, trying to find a "bad" class which breaks a dependency. |
| // Such a class is called a "witness" to the broken dependency. |
| // While searching around, we ignore "participants", which are already known to the dependency. |
| class AbstractClassHierarchyWalker { |
| public: |
| enum { PARTICIPANT_LIMIT = 3 }; |
| |
| private: |
| // if non-zero, tells how many witnesses to convert to participants |
| uint _record_witnesses; |
| |
| // special classes which are not allowed to be witnesses: |
| Klass* _participants[PARTICIPANT_LIMIT+1]; |
| uint _num_participants; |
| |
| #ifdef ASSERT |
| uint _nof_requests; // one-shot walker |
| #endif // ASSERT |
| |
| static PerfCounter* _perf_find_witness_anywhere_calls_count; |
| static PerfCounter* _perf_find_witness_anywhere_steps_count; |
| static PerfCounter* _perf_find_witness_in_calls_count; |
| |
| protected: |
| virtual Klass* find_witness_in(KlassDepChange& changes) = 0; |
| virtual Klass* find_witness_anywhere(InstanceKlass* context_type) = 0; |
| |
| AbstractClassHierarchyWalker(Klass* participant) : _record_witnesses(0), _num_participants(0) |
| #ifdef ASSERT |
| , _nof_requests(0) |
| #endif // ASSERT |
| { |
| for (uint i = 0; i < PARTICIPANT_LIMIT+1; i++) { |
| _participants[i] = nullptr; |
| } |
| if (participant != nullptr) { |
| add_participant(participant); |
| } |
| } |
| |
| bool is_participant(Klass* k) { |
| for (uint i = 0; i < _num_participants; i++) { |
| if (_participants[i] == k) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| bool record_witness(Klass* witness) { |
| if (_record_witnesses > 0) { |
| --_record_witnesses; |
| add_participant(witness); |
| return false; // not a witness |
| } else { |
| return true; // is a witness |
| } |
| } |
| |
| class CountingClassHierarchyIterator : public ClassHierarchyIterator { |
| private: |
| jlong _nof_steps; |
| public: |
| CountingClassHierarchyIterator(InstanceKlass* root) : ClassHierarchyIterator(root), _nof_steps(0) {} |
| |
| void next() { |
| _nof_steps++; |
| ClassHierarchyIterator::next(); |
| } |
| |
| ~CountingClassHierarchyIterator() { |
| if (UsePerfData) { |
| _perf_find_witness_anywhere_steps_count->inc(_nof_steps); |
| } |
| } |
| }; |
| |
| public: |
| uint num_participants() { return _num_participants; } |
| Klass* participant(uint n) { |
| assert(n <= _num_participants, "oob"); |
| if (n < _num_participants) { |
| return _participants[n]; |
| } else { |
| return nullptr; |
| } |
| } |
| |
| void add_participant(Klass* participant) { |
| assert(!is_participant(participant), "sanity"); |
| assert(_num_participants + _record_witnesses < PARTICIPANT_LIMIT, "oob"); |
| uint np = _num_participants++; |
| _participants[np] = participant; |
| } |
| |
| void record_witnesses(uint add) { |
| if (add > PARTICIPANT_LIMIT) add = PARTICIPANT_LIMIT; |
| assert(_num_participants + add < PARTICIPANT_LIMIT, "oob"); |
| _record_witnesses = add; |
| } |
| |
| Klass* find_witness(InstanceKlass* context_type, KlassDepChange* changes = nullptr); |
| |
| static void init(); |
| static void print_statistics(); |
| }; |
| |
| PerfCounter* AbstractClassHierarchyWalker::_perf_find_witness_anywhere_calls_count = nullptr; |
| PerfCounter* AbstractClassHierarchyWalker::_perf_find_witness_anywhere_steps_count = nullptr; |
| PerfCounter* AbstractClassHierarchyWalker::_perf_find_witness_in_calls_count = nullptr; |
| |
| void AbstractClassHierarchyWalker::init() { |
| if (UsePerfData) { |
| EXCEPTION_MARK; |
| _perf_find_witness_anywhere_calls_count = |
| PerfDataManager::create_counter(SUN_CI, "findWitnessAnywhere", PerfData::U_Events, CHECK); |
| _perf_find_witness_anywhere_steps_count = |
| PerfDataManager::create_counter(SUN_CI, "findWitnessAnywhereSteps", PerfData::U_Events, CHECK); |
| _perf_find_witness_in_calls_count = |
| PerfDataManager::create_counter(SUN_CI, "findWitnessIn", PerfData::U_Events, CHECK); |
| } |
| } |
| |
| Klass* AbstractClassHierarchyWalker::find_witness(InstanceKlass* context_type, KlassDepChange* changes) { |
| // Current thread must be in VM (not native mode, as in CI): |
| assert(must_be_in_vm(), "raw oops here"); |
| // Must not move the class hierarchy during this check: |
| assert_locked_or_safepoint(Compile_lock); |
| assert(_nof_requests++ == 0, "repeated requests are not supported"); |
| |
| assert(changes == nullptr || changes->involves_context(context_type), "irrelevant dependency"); |
| |
| // (Note: Interfaces do not have subclasses.) |
| // If it is an interface, search its direct implementors. |
| // (Their subclasses are additional indirect implementors. See InstanceKlass::add_implementor().) |
| if (context_type->is_interface()) { |
| int nof_impls = context_type->nof_implementors(); |
| if (nof_impls == 0) { |
| return nullptr; // no implementors |
| } else if (nof_impls == 1) { // unique implementor |
| assert(context_type != context_type->implementor(), "not unique"); |
| context_type = context_type->implementor(); |
| } else { // nof_impls >= 2 |
| // Avoid this case: *I.m > { A.m, C }; B.m > C |
| // Here, I.m has 2 concrete implementations, but m appears unique |
| // as A.m, because the search misses B.m when checking C. |
| // The inherited method B.m was getting missed by the walker |
| // when interface 'I' was the starting point. |
| // %%% Until this is fixed more systematically, bail out. |
| return context_type; |
| } |
| } |
| assert(!context_type->is_interface(), "no interfaces allowed"); |
| |
| if (changes != nullptr) { |
| if (UsePerfData) { |
| _perf_find_witness_in_calls_count->inc(); |
| } |
| return find_witness_in(*changes); |
| } else { |
| if (UsePerfData) { |
| _perf_find_witness_anywhere_calls_count->inc(); |
| } |
| return find_witness_anywhere(context_type); |
| } |
| } |
| |
| class ConcreteSubtypeFinder : public AbstractClassHierarchyWalker { |
| private: |
| bool is_witness(Klass* k); |
| |
| protected: |
| virtual Klass* find_witness_in(KlassDepChange& changes); |
| virtual Klass* find_witness_anywhere(InstanceKlass* context_type); |
| |
| public: |
| ConcreteSubtypeFinder(Klass* participant = nullptr) : AbstractClassHierarchyWalker(participant) {} |
| }; |
| |
| bool ConcreteSubtypeFinder::is_witness(Klass* k) { |
| if (Dependencies::is_concrete_klass(k)) { |
| return record_witness(k); // concrete subtype |
| } else { |
| return false; // not a concrete class |
| } |
| } |
| |
| Klass* ConcreteSubtypeFinder::find_witness_in(KlassDepChange& changes) { |
| // When looking for unexpected concrete types, do not look beneath expected ones: |
| // * CX > CC > C' is OK, even if C' is new. |
| // * CX > { CC, C' } is not OK if C' is new, and C' is the witness. |
| Klass* new_type = changes.as_new_klass_change()->new_type(); |
| assert(!is_participant(new_type), "only old classes are participants"); |
| // If the new type is a subtype of a participant, we are done. |
| for (uint i = 0; i < num_participants(); i++) { |
| if (changes.involves_context(participant(i))) { |
| // new guy is protected from this check by previous participant |
| return nullptr; |
| } |
| } |
| if (is_witness(new_type)) { |
| return new_type; |
| } |
| // No witness found. The dependency remains unbroken. |
| return nullptr; |
| } |
| |
| Klass* ConcreteSubtypeFinder::find_witness_anywhere(InstanceKlass* context_type) { |
| for (CountingClassHierarchyIterator iter(context_type); !iter.done(); iter.next()) { |
| Klass* sub = iter.klass(); |
| // Do not report participant types. |
| if (is_participant(sub)) { |
| // Don't walk beneath a participant since it hides witnesses. |
| iter.skip_subclasses(); |
| } else if (is_witness(sub)) { |
| return sub; // found a witness |
| } |
| } |
| // No witness found. The dependency remains unbroken. |
| return nullptr; |
| } |
| |
| class ConcreteMethodFinder : public AbstractClassHierarchyWalker { |
| private: |
| Symbol* _name; |
| Symbol* _signature; |
| |
| // cache of method lookups |
| Method* _found_methods[PARTICIPANT_LIMIT+1]; |
| |
| bool is_witness(Klass* k); |
| |
| protected: |
| virtual Klass* find_witness_in(KlassDepChange& changes); |
| virtual Klass* find_witness_anywhere(InstanceKlass* context_type); |
| |
| public: |
| bool witnessed_reabstraction_in_supers(Klass* k); |
| |
| ConcreteMethodFinder(Method* m, Klass* participant = nullptr) : AbstractClassHierarchyWalker(participant) { |
| assert(m != nullptr && m->is_method(), "sanity"); |
| _name = m->name(); |
| _signature = m->signature(); |
| |
| for (int i = 0; i < PARTICIPANT_LIMIT+1; i++) { |
| _found_methods[i] = nullptr; |
| } |
| } |
| |
| // Note: If n==num_participants, returns nullptr. |
| Method* found_method(uint n) { |
| assert(n <= num_participants(), "oob"); |
| Method* fm = _found_methods[n]; |
| assert(n == num_participants() || fm != nullptr, "proper usage"); |
| if (fm != nullptr && fm->method_holder() != participant(n)) { |
| // Default methods from interfaces can be added to classes. In |
| // that case the holder of the method is not the class but the |
| // interface where it's defined. |
| assert(fm->is_default_method(), "sanity"); |
| return nullptr; |
| } |
| return fm; |
| } |
| |
| void add_participant(Klass* participant) { |
| AbstractClassHierarchyWalker::add_participant(participant); |
| _found_methods[num_participants()] = nullptr; |
| } |
| |
| bool record_witness(Klass* witness, Method* m) { |
| _found_methods[num_participants()] = m; |
| return AbstractClassHierarchyWalker::record_witness(witness); |
| } |
| |
| private: |
| static PerfCounter* _perf_find_witness_anywhere_calls_count; |
| static PerfCounter* _perf_find_witness_anywhere_steps_count; |
| static PerfCounter* _perf_find_witness_in_calls_count; |
| |
| public: |
| static void init(); |
| static void print_statistics(); |
| }; |
| |
| bool ConcreteMethodFinder::is_witness(Klass* k) { |
| if (is_participant(k)) { |
| return false; // do not report participant types |
| } |
| if (k->is_instance_klass()) { |
| InstanceKlass* ik = InstanceKlass::cast(k); |
| // Search class hierarchy first, skipping private implementations |
| // as they never override any inherited methods |
| Method* m = ik->find_instance_method(_name, _signature, Klass::PrivateLookupMode::skip); |
| if (Dependencies::is_concrete_method(m, ik)) { |
| return record_witness(k, m); // concrete method found |
| } else { |
| // Check for re-abstraction of method |
| if (!ik->is_interface() && m != nullptr && m->is_abstract()) { |
| // Found a matching abstract method 'm' in the class hierarchy. |
| // This is fine iff 'k' is an abstract class and all concrete subtypes |
| // of 'k' override 'm' and are participates of the current search. |
| ConcreteSubtypeFinder wf; |
| for (uint i = 0; i < num_participants(); i++) { |
| Klass* p = participant(i); |
| wf.add_participant(p); |
| } |
| Klass* w = wf.find_witness(ik); |
| if (w != nullptr) { |
| Method* wm = InstanceKlass::cast(w)->find_instance_method(_name, _signature, Klass::PrivateLookupMode::skip); |
| if (!Dependencies::is_concrete_method(wm, w)) { |
| // Found a concrete subtype 'w' which does not override abstract method 'm'. |
| // Bail out because 'm' could be called with 'w' as receiver (leading to an |
| // AbstractMethodError) and thus the method we are looking for is not unique. |
| return record_witness(k, m); |
| } |
| } |
| } |
| // Check interface defaults also, if any exist. |
| Array<Method*>* default_methods = ik->default_methods(); |
| if (default_methods != nullptr) { |
| Method* dm = ik->find_method(default_methods, _name, _signature); |
| if (Dependencies::is_concrete_method(dm, nullptr)) { |
| return record_witness(k, dm); // default method found |
| } |
| } |
| return false; // no concrete method found |
| } |
| } else { |
| return false; // no methods to find in an array type |
| } |
| } |
| |
| Klass* ConcreteMethodFinder::find_witness_in(KlassDepChange& changes) { |
| // When looking for unexpected concrete methods, look beneath expected ones, to see if there are overrides. |
| // * CX.m > CC.m > C'.m is not OK, if C'.m is new, and C' is the witness. |
| Klass* new_type = changes.as_new_klass_change()->new_type(); |
| assert(!is_participant(new_type), "only old classes are participants"); |
| if (is_witness(new_type)) { |
| return new_type; |
| } else { |
| // No witness found, but is_witness() doesn't detect method re-abstraction in case of spot-checking. |
| if (witnessed_reabstraction_in_supers(new_type)) { |
| return new_type; |
| } |
| } |
| // No witness found. The dependency remains unbroken. |
| return nullptr; |
| } |
| |
| bool ConcreteMethodFinder::witnessed_reabstraction_in_supers(Klass* k) { |
| if (!k->is_instance_klass()) { |
| return false; // no methods to find in an array type |
| } else { |
| // Looking for a case when an abstract method is inherited into a concrete class. |
| if (Dependencies::is_concrete_klass(k) && !k->is_interface()) { |
| Method* m = InstanceKlass::cast(k)->find_instance_method(_name, _signature, Klass::PrivateLookupMode::skip); |
| if (m != nullptr) { |
| return false; // no reabstraction possible: local method found |
| } |
| for (InstanceKlass* super = k->java_super(); super != nullptr; super = super->java_super()) { |
| m = super->find_instance_method(_name, _signature, Klass::PrivateLookupMode::skip); |
| if (m != nullptr) { // inherited method found |
| if (m->is_abstract() || m->is_overpass()) { |
| return record_witness(super, m); // abstract method found |
| } |
| return false; |
| } |
| } |
| // Miranda. |
| return true; |
| } |
| return false; |
| } |
| } |
| |
| |
| Klass* ConcreteMethodFinder::find_witness_anywhere(InstanceKlass* context_type) { |
| // Walk hierarchy under a context type, looking for unexpected types. |
| for (CountingClassHierarchyIterator iter(context_type); !iter.done(); iter.next()) { |
| Klass* sub = iter.klass(); |
| if (is_witness(sub)) { |
| return sub; // found a witness |
| } |
| } |
| // No witness found. The dependency remains unbroken. |
| return nullptr; |
| } |
| |
| // For some method m and some class ctxk (subclass of method holder), |
| // enumerate all distinct overrides of m in concrete subclasses of ctxk. |
| // It relies on vtable/itable information to perform method selection on each linked subclass |
| // and ignores all non yet linked ones (speculatively treat them as "effectively abstract"). |
| class LinkedConcreteMethodFinder : public AbstractClassHierarchyWalker { |
| private: |
| InstanceKlass* _resolved_klass; // resolved class (JVMS-5.4.3.1) |
| InstanceKlass* _declaring_klass; // the holder of resolved method (JVMS-5.4.3.3) |
| int _vtable_index; // vtable/itable index of the resolved method |
| bool _do_itable_lookup; // choose between itable and vtable lookup logic |
| |
| // cache of method lookups |
| Method* _found_methods[PARTICIPANT_LIMIT+1]; |
| |
| bool is_witness(Klass* k); |
| Method* select_method(InstanceKlass* recv_klass); |
| static int compute_vtable_index(InstanceKlass* resolved_klass, Method* resolved_method, bool& is_itable_index); |
| static bool is_concrete_klass(InstanceKlass* ik); |
| |
| void add_participant(Method* m, Klass* participant) { |
| uint np = num_participants(); |
| AbstractClassHierarchyWalker::add_participant(participant); |
| assert(np + 1 == num_participants(), "sanity"); |
| _found_methods[np] = m; // record the method for the participant |
| } |
| |
| bool record_witness(Klass* witness, Method* m) { |
| for (uint i = 0; i < num_participants(); i++) { |
| if (found_method(i) == m) { |
| return false; // already recorded |
| } |
| } |
| // Record not yet seen method. |
| _found_methods[num_participants()] = m; |
| return AbstractClassHierarchyWalker::record_witness(witness); |
| } |
| |
| void initialize(Method* participant) { |
| for (uint i = 0; i < PARTICIPANT_LIMIT+1; i++) { |
| _found_methods[i] = nullptr; |
| } |
| if (participant != nullptr) { |
| add_participant(participant, participant->method_holder()); |
| } |
| } |
| |
| protected: |
| virtual Klass* find_witness_in(KlassDepChange& changes); |
| virtual Klass* find_witness_anywhere(InstanceKlass* context_type); |
| |
| public: |
| // In order to perform method selection, the following info is needed: |
| // (1) interface or virtual call; |
| // (2) vtable/itable index; |
| // (3) declaring class (in case of interface call). |
| // |
| // It is prepared based on the results of method resolution: resolved class and resolved method (as specified in JVMS-5.4.3.3). |
| // Optionally, a method which was previously determined as a unique target (uniqm) is added as a participant |
| // to enable dependency spot-checking and speed up the search. |
| LinkedConcreteMethodFinder(InstanceKlass* resolved_klass, Method* resolved_method, Method* uniqm = nullptr) : AbstractClassHierarchyWalker(nullptr) { |
| assert(UseVtableBasedCHA, "required"); |
| assert(resolved_klass->is_linked(), "required"); |
| assert(resolved_method->method_holder()->is_linked(), "required"); |
| assert(!resolved_method->can_be_statically_bound(), "no vtable index available"); |
| |
| _resolved_klass = resolved_klass; |
| _declaring_klass = resolved_method->method_holder(); |
| _vtable_index = compute_vtable_index(resolved_klass, resolved_method, |
| _do_itable_lookup); // out parameter |
| assert(_vtable_index >= 0, "invalid vtable index"); |
| |
| initialize(uniqm); |
| } |
| |
| // Note: If n==num_participants, returns nullptr. |
| Method* found_method(uint n) { |
| assert(n <= num_participants(), "oob"); |
| assert(participant(n) != nullptr || n == num_participants(), "proper usage"); |
| return _found_methods[n]; |
| } |
| }; |
| |
| Klass* LinkedConcreteMethodFinder::find_witness_in(KlassDepChange& changes) { |
| Klass* type = changes.type(); |
| |
| assert(!is_participant(type), "only old classes are participants"); |
| |
| if (is_witness(type)) { |
| return type; |
| } |
| return nullptr; // No witness found. The dependency remains unbroken. |
| } |
| |
| Klass* LinkedConcreteMethodFinder::find_witness_anywhere(InstanceKlass* context_type) { |
| for (CountingClassHierarchyIterator iter(context_type); !iter.done(); iter.next()) { |
| Klass* sub = iter.klass(); |
| if (is_witness(sub)) { |
| return sub; |
| } |
| if (sub->is_instance_klass() && !InstanceKlass::cast(sub)->is_linked()) { |
| iter.skip_subclasses(); // ignore not yet linked classes |
| } |
| } |
| return nullptr; // No witness found. The dependency remains unbroken. |
| } |
| |
| bool LinkedConcreteMethodFinder::is_witness(Klass* k) { |
| if (is_participant(k)) { |
| return false; // do not report participant types |
| } else if (k->is_instance_klass()) { |
| InstanceKlass* ik = InstanceKlass::cast(k); |
| if (is_concrete_klass(ik)) { |
| Method* m = select_method(ik); |
| return record_witness(ik, m); |
| } else { |
| return false; // ignore non-concrete holder class |
| } |
| } else { |
| return false; // no methods to find in an array type |
| } |
| } |
| |
| Method* LinkedConcreteMethodFinder::select_method(InstanceKlass* recv_klass) { |
| Method* selected_method = nullptr; |
| if (_do_itable_lookup) { |
| assert(_declaring_klass->is_interface(), "sanity"); |
| bool implements_interface; // initialized by method_at_itable_or_null() |
| selected_method = recv_klass->method_at_itable_or_null(_declaring_klass, _vtable_index, |
| implements_interface); // out parameter |
| assert(implements_interface, "not implemented"); |
| } else { |
| selected_method = recv_klass->method_at_vtable(_vtable_index); |
| } |
| return selected_method; // nullptr when corresponding slot is empty (AbstractMethodError case) |
| } |
| |
| int LinkedConcreteMethodFinder::compute_vtable_index(InstanceKlass* resolved_klass, Method* resolved_method, |
| // out parameter |
| bool& is_itable_index) { |
| if (resolved_klass->is_interface() && resolved_method->has_itable_index()) { |
| is_itable_index = true; |
| return resolved_method->itable_index(); |
| } |
| // Check for default or miranda method first. |
| InstanceKlass* declaring_klass = resolved_method->method_holder(); |
| if (!resolved_klass->is_interface() && declaring_klass->is_interface()) { |
| is_itable_index = false; |
| return resolved_klass->vtable_index_of_interface_method(resolved_method); |
| } |
| // At this point we are sure that resolved_method is virtual and not |
| // a default or miranda method; therefore, it must have a valid vtable index. |
| assert(resolved_method->has_vtable_index(), ""); |
| is_itable_index = false; |
| return resolved_method->vtable_index(); |
| } |
| |
| bool LinkedConcreteMethodFinder::is_concrete_klass(InstanceKlass* ik) { |
| if (!Dependencies::is_concrete_klass(ik)) { |
| return false; // not concrete |
| } |
| if (ik->is_interface()) { |
| return false; // interfaces aren't concrete |
| } |
| if (!ik->is_linked()) { |
| return false; // not yet linked classes don't have instances |
| } |
| return true; |
| } |
| |
| #ifdef ASSERT |
| // Assert that m is inherited into ctxk, without intervening overrides. |
| // (May return true even if this is not true, in corner cases where we punt.) |
| bool Dependencies::verify_method_context(InstanceKlass* ctxk, Method* m) { |
| if (m->is_private()) { |
| return false; // Quick lose. Should not happen. |
| } |
| if (m->method_holder() == ctxk) { |
| return true; // Quick win. |
| } |
| if (!(m->is_public() || m->is_protected())) { |
| // The override story is complex when packages get involved. |
| return true; // Must punt the assertion to true. |
| } |
| Method* lm = ctxk->lookup_method(m->name(), m->signature()); |
| if (lm == nullptr) { |
| // It might be an interface method |
| lm = ctxk->lookup_method_in_ordered_interfaces(m->name(), m->signature()); |
| } |
| if (lm == m) { |
| // Method m is inherited into ctxk. |
| return true; |
| } |
| if (lm != nullptr) { |
| if (!(lm->is_public() || lm->is_protected())) { |
| // Method is [package-]private, so the override story is complex. |
| return true; // Must punt the assertion to true. |
| } |
| if (lm->is_static()) { |
| // Static methods don't override non-static so punt |
| return true; |
| } |
| if (!Dependencies::is_concrete_method(lm, ctxk) && |
| !Dependencies::is_concrete_method(m, ctxk)) { |
| // They are both non-concrete |
| if (lm->method_holder()->is_subtype_of(m->method_holder())) { |
| // Method m is overridden by lm, but both are non-concrete. |
| return true; |
| } |
| if (lm->method_holder()->is_interface() && m->method_holder()->is_interface() && |
| ctxk->is_subtype_of(m->method_holder()) && ctxk->is_subtype_of(lm->method_holder())) { |
| // Interface method defined in multiple super interfaces |
| return true; |
| } |
| } |
| } |
| ResourceMark rm; |
| tty->print_cr("Dependency method not found in the associated context:"); |
| tty->print_cr(" context = %s", ctxk->external_name()); |
| tty->print( " method = "); m->print_short_name(tty); tty->cr(); |
| if (lm != nullptr) { |
| tty->print( " found = "); lm->print_short_name(tty); tty->cr(); |
| } |
| return false; |
| } |
| #endif // ASSERT |
| |
| bool Dependencies::is_concrete_klass(Klass* k) { |
| if (k->is_abstract()) return false; |
| // %%% We could treat classes which are concrete but |
| // have not yet been instantiated as virtually abstract. |
| // This would require a deoptimization barrier on first instantiation. |
| //if (k->is_not_instantiated()) return false; |
| return true; |
| } |
| |
| bool Dependencies::is_concrete_method(Method* m, Klass* k) { |
| // nullptr is not a concrete method. |
| if (m == nullptr) { |
| return false; |
| } |
| // Statics are irrelevant to virtual call sites. |
| if (m->is_static()) { |
| return false; |
| } |
| // Abstract methods are not concrete. |
| if (m->is_abstract()) { |
| return false; |
| } |
| // Overpass (error) methods are not concrete if k is abstract. |
| if (m->is_overpass() && k != nullptr) { |
| return !k->is_abstract(); |
| } |
| // Note "true" is conservative answer: overpass clause is false if k == nullptr, |
| // implies return true if answer depends on overpass clause. |
| return true; |
| } |
| |
| Klass* Dependencies::find_finalizable_subclass(InstanceKlass* ik) { |
| for (ClassHierarchyIterator iter(ik); !iter.done(); iter.next()) { |
| Klass* sub = iter.klass(); |
| if (sub->has_finalizer() && !sub->is_interface()) { |
| return sub; |
| } |
| } |
| return nullptr; // not found |
| } |
| |
| bool Dependencies::is_concrete_klass(ciInstanceKlass* k) { |
| if (k->is_abstract()) return false; |
| // We could also return false if k does not yet appear to be |
| // instantiated, if the VM version supports this distinction also. |
| //if (k->is_not_instantiated()) return false; |
| return true; |
| } |
| |
| bool Dependencies::has_finalizable_subclass(ciInstanceKlass* k) { |
| return k->has_finalizable_subclass(); |
| } |
| |
| // Any use of the contents (bytecodes) of a method must be |
| // marked by an "evol_method" dependency, if those contents |
| // can change. (Note: A method is always dependent on itself.) |
| Klass* Dependencies::check_evol_method(Method* m) { |
| assert(must_be_in_vm(), "raw oops here"); |
| // Did somebody do a JVMTI RedefineClasses while our backs were turned? |
| // Or is there a now a breakpoint? |
| // (Assumes compiled code cannot handle bkpts; change if UseFastBreakpoints.) |
| if (m->is_old() |
| || m->number_of_breakpoints() > 0) { |
| return m->method_holder(); |
| } else { |
| return nullptr; |
| } |
| } |
| |
| // This is a strong assertion: It is that the given type |
| // has no subtypes whatever. It is most useful for |
| // optimizing checks on reflected types or on array types. |
| // (Checks on types which are derived from real instances |
| // can be optimized more strongly than this, because we |
| // know that the checked type comes from a concrete type, |
| // and therefore we can disregard abstract types.) |
| Klass* Dependencies::check_leaf_type(InstanceKlass* ctxk) { |
| assert(must_be_in_vm(), "raw oops here"); |
| assert_locked_or_safepoint(Compile_lock); |
| Klass* sub = ctxk->subklass(); |
| if (sub != nullptr) { |
| return sub; |
| } else if (ctxk->nof_implementors() != 0) { |
| // if it is an interface, it must be unimplemented |
| // (if it is not an interface, nof_implementors is always zero) |
| InstanceKlass* impl = ctxk->implementor(); |
| assert(impl != nullptr, "must be set"); |
| return impl; |
| } else { |
| return nullptr; |
| } |
| } |
| |
| // Test the assertion that conck is the only concrete subtype* of ctxk. |
| // The type conck itself is allowed to have have further concrete subtypes. |
| // This allows the compiler to narrow occurrences of ctxk by conck, |
| // when dealing with the types of actual instances. |
| Klass* Dependencies::check_abstract_with_unique_concrete_subtype(InstanceKlass* ctxk, |
| Klass* conck, |
| NewKlassDepChange* changes) { |
| ConcreteSubtypeFinder wf(conck); |
| Klass* k = wf.find_witness(ctxk, changes); |
| return k; |
| } |
| |
| |
| // Find the unique concrete proper subtype of ctxk, or nullptr if there |
| // is more than one concrete proper subtype. If there are no concrete |
| // proper subtypes, return ctxk itself, whether it is concrete or not. |
| // The returned subtype is allowed to have have further concrete subtypes. |
| // That is, return CC1 for CX > CC1 > CC2, but nullptr for CX > { CC1, CC2 }. |
| Klass* Dependencies::find_unique_concrete_subtype(InstanceKlass* ctxk) { |
| ConcreteSubtypeFinder wf(ctxk); // Ignore ctxk when walking. |
| wf.record_witnesses(1); // Record one other witness when walking. |
| Klass* wit = wf.find_witness(ctxk); |
| if (wit != nullptr) return nullptr; // Too many witnesses. |
| Klass* conck = wf.participant(0); |
| if (conck == nullptr) { |
| return ctxk; // Return ctxk as a flag for "no subtypes". |
| } else { |
| #ifndef PRODUCT |
| // Make sure the dependency mechanism will pass this discovery: |
| if (VerifyDependencies) { |
| // Turn off dependency tracing while actually testing deps. |
| FlagSetting fs(_verify_in_progress, true); |
| if (!Dependencies::is_concrete_klass(ctxk)) { |
| guarantee(nullptr == (void *) |
| check_abstract_with_unique_concrete_subtype(ctxk, conck), |
| "verify dep."); |
| } |
| } |
| #endif //PRODUCT |
| return conck; |
| } |
| } |
| |
| // Try to determine whether root method in some context is concrete or not based on the information about the unique method |
| // in that context. It exploits the fact that concrete root method is always inherited into the context when there's a unique method. |
| // Hence, unique method holder is always a supertype of the context class when root method is concrete. |
| // Examples for concrete_root_method |
| // C (C.m uniqm) |
| // | |
| // CX (ctxk) uniqm is inherited into context. |
| // |
| // CX (ctxk) (CX.m uniqm) here uniqm is defined in ctxk. |
| // Examples for !concrete_root_method |
| // CX (ctxk) |
| // | |
| // C (C.m uniqm) uniqm is in subtype of ctxk. |
| bool Dependencies::is_concrete_root_method(Method* uniqm, InstanceKlass* ctxk) { |
| if (uniqm == nullptr) { |
| return false; // match Dependencies::is_concrete_method() behavior |
| } |
| // Theoretically, the "direction" of subtype check matters here. |
| // On one hand, in case of interface context with a single implementor, uniqm can be in a superclass of the implementor which |
| // is not related to context class. |
| // On another hand, uniqm could come from an interface unrelated to the context class, but right now it is not possible: |
| // it is required that uniqm->method_holder() is the participant (uniqm->method_holder() <: ctxk), hence a default method |
| // can't be used as unique. |
| if (ctxk->is_interface()) { |
| InstanceKlass* implementor = ctxk->implementor(); |
| assert(implementor != ctxk, "single implementor only"); // should have been invalidated earlier |
| ctxk = implementor; |
| } |
| InstanceKlass* holder = uniqm->method_holder(); |
| assert(!holder->is_interface(), "no default methods allowed"); |
| assert(ctxk->is_subclass_of(holder) || holder->is_subclass_of(ctxk), "not related"); |
| return ctxk->is_subclass_of(holder); |
| } |
| |
| // If a class (or interface) has a unique concrete method uniqm, return nullptr. |
| // Otherwise, return a class that contains an interfering method. |
| Klass* Dependencies::check_unique_concrete_method(InstanceKlass* ctxk, |
| Method* uniqm, |
| NewKlassDepChange* changes) { |
| ConcreteMethodFinder wf(uniqm, uniqm->method_holder()); |
| Klass* k = wf.find_witness(ctxk, changes); |
| if (k != nullptr) { |
| return k; |
| } |
| if (!Dependencies::is_concrete_root_method(uniqm, ctxk) || changes != nullptr) { |
| Klass* conck = find_witness_AME(ctxk, uniqm, changes); |
| if (conck != nullptr) { |
| // Found a concrete subtype 'conck' which does not override abstract root method. |
| return conck; |
| } |
| } |
| return nullptr; |
| } |
| |
| Klass* Dependencies::check_unique_implementor(InstanceKlass* ctxk, Klass* uniqk, NewKlassDepChange* changes) { |
| assert(ctxk->is_interface(), "sanity"); |
| assert(ctxk->nof_implementors() > 0, "no implementors"); |
| if (ctxk->nof_implementors() == 1) { |
| assert(ctxk->implementor() == uniqk, "sanity"); |
| return nullptr; |
| } |
| return ctxk; // no unique implementor |
| } |
| |
| // Search for AME. |
| // There are two version of checks. |
| // 1) Spot checking version(Classload time). Newly added class is checked for AME. |
| // Checks whether abstract/overpass method is inherited into/declared in newly added concrete class. |
| // 2) Compile time analysis for abstract/overpass(abstract klass) root_m. The non uniqm subtrees are checked for concrete classes. |
| Klass* Dependencies::find_witness_AME(InstanceKlass* ctxk, Method* m, KlassDepChange* changes) { |
| if (m != nullptr) { |
| if (changes != nullptr) { |
| // Spot checking version. |
| ConcreteMethodFinder wf(m); |
| Klass* new_type = changes->as_new_klass_change()->new_type(); |
| if (wf.witnessed_reabstraction_in_supers(new_type)) { |
| return new_type; |
| } |
| } else { |
| // Note: It is required that uniqm->method_holder() is the participant (see ClassHierarchyWalker::found_method()). |
| ConcreteSubtypeFinder wf(m->method_holder()); |
| Klass* conck = wf.find_witness(ctxk); |
| if (conck != nullptr) { |
| Method* cm = InstanceKlass::cast(conck)->find_instance_method(m->name(), m->signature(), Klass::PrivateLookupMode::skip); |
| if (!Dependencies::is_concrete_method(cm, conck)) { |
| return conck; |
| } |
| } |
| } |
| } |
| return nullptr; |
| } |
| |
| // This function is used by find_unique_concrete_method(non vtable based) |
| // to check whether subtype method overrides the base method. |
| static bool overrides(Method* sub_m, Method* base_m) { |
| assert(base_m != nullptr, "base method should be non null"); |
| if (sub_m == nullptr) { |
| return false; |
| } |
| /** |
| * If base_m is public or protected then sub_m always overrides. |
| * If base_m is !public, !protected and !private (i.e. base_m is package private) |
| * then sub_m should be in the same package as that of base_m. |
| * For package private base_m this is conservative approach as it allows only subset of all allowed cases in |
| * the jvm specification. |
| **/ |
| if (base_m->is_public() || base_m->is_protected() || |
| base_m->method_holder()->is_same_class_package(sub_m->method_holder())) { |
| return true; |
| } |
| return false; |
| } |
| |
| // Find the set of all non-abstract methods under ctxk that match m. |
| // (The method m must be defined or inherited in ctxk.) |
| // Include m itself in the set, unless it is abstract. |
| // If this set has exactly one element, return that element. |
| Method* Dependencies::find_unique_concrete_method(InstanceKlass* ctxk, Method* m, Klass** participant) { |
| // Return nullptr if m is marked old; must have been a redefined method. |
| if (m->is_old()) { |
| return nullptr; |
| } |
| if (m->is_default_method()) { |
| return nullptr; // not supported |
| } |
| assert(verify_method_context(ctxk, m), "proper context"); |
| ConcreteMethodFinder wf(m); |
| wf.record_witnesses(1); |
| Klass* wit = wf.find_witness(ctxk); |
| if (wit != nullptr) return nullptr; // Too many witnesses. |
| Method* fm = wf.found_method(0); // Will be nullptr if num_parts == 0. |
| if (participant != nullptr) { |
| (*participant) = wf.participant(0); |
| } |
| if (!Dependencies::is_concrete_method(fm, nullptr)) { |
| fm = nullptr; // ignore abstract methods |
| } |
| if (Dependencies::is_concrete_method(m, ctxk)) { |
| if (fm == nullptr) { |
| // It turns out that m was always the only implementation. |
| fm = m; |
| } else if (fm != m) { |
| // Two conflicting implementations after all. |
| // (This can happen if m is inherited into ctxk and fm overrides it.) |
| return nullptr; |
| } |
| } else if (Dependencies::find_witness_AME(ctxk, fm) != nullptr) { |
| // Found a concrete subtype which does not override abstract root method. |
| return nullptr; |
| } else if (!overrides(fm, m)) { |
| // Found method doesn't override abstract root method. |
| return nullptr; |
| } |
| assert(Dependencies::is_concrete_root_method(fm, ctxk) == Dependencies::is_concrete_method(m, ctxk), "mismatch"); |
| #ifndef PRODUCT |
| // Make sure the dependency mechanism will pass this discovery: |
| if (VerifyDependencies && fm != nullptr) { |
| guarantee(nullptr == (void *)check_unique_concrete_method(ctxk, fm), |
| "verify dep."); |
| } |
| #endif //PRODUCT |
| return fm; |
| } |
| |
| // If a class (or interface) has a unique concrete method uniqm, return nullptr. |
| // Otherwise, return a class that contains an interfering method. |
| Klass* Dependencies::check_unique_concrete_method(InstanceKlass* ctxk, |
| Method* uniqm, |
| Klass* resolved_klass, |
| Method* resolved_method, |
| KlassDepChange* changes) { |
| assert(UseVtableBasedCHA, "required"); |
| assert(!ctxk->is_interface() || ctxk == resolved_klass, "sanity"); |
| assert(!resolved_method->can_be_statically_bound() || resolved_method == uniqm, "sanity"); |
| assert(resolved_klass->is_subtype_of(resolved_method->method_holder()), "sanity"); |
| |
| if (!InstanceKlass::cast(resolved_klass)->is_linked() || |
| !resolved_method->method_holder()->is_linked() || |
| resolved_method->can_be_statically_bound()) { |
| // Dependency is redundant, but benign. Just keep it to avoid unnecessary recompilation. |
| return nullptr; // no vtable index available |
| } |
| |
| LinkedConcreteMethodFinder mf(InstanceKlass::cast(resolved_klass), resolved_method, uniqm); |
| return mf.find_witness(ctxk, changes); |
| } |
| |
| // Find the set of all non-abstract methods under ctxk that match m. |
| // (The method m must be defined or inherited in ctxk.) |
| // Include m itself in the set, unless it is abstract. |
| // If this set has exactly one element, return that element. |
| // Not yet linked subclasses of ctxk are ignored since they don't have any instances yet. |
| // Additionally, resolved_klass and resolved_method complete the description of the call site being analyzed. |
| Method* Dependencies::find_unique_concrete_method(InstanceKlass* ctxk, Method* m, Klass* resolved_klass, Method* resolved_method) { |
| // Return nullptr if m is marked old; must have been a redefined method. |
| if (m->is_old()) { |
| return nullptr; |
| } |
| if (!InstanceKlass::cast(resolved_klass)->is_linked() || |
| !resolved_method->method_holder()->is_linked() || |
| resolved_method->can_be_statically_bound()) { |
| return m; // nothing to do: no witness under ctxk |
| } |
| LinkedConcreteMethodFinder wf(InstanceKlass::cast(resolved_klass), resolved_method); |
| assert(Dependencies::verify_method_context(ctxk, m), "proper context"); |
| wf.record_witnesses(1); |
| Klass* wit = wf.find_witness(ctxk); |
| if (wit != nullptr) { |
| return nullptr; // Too many witnesses. |
| } |
| // p == nullptr when no participants are found (wf.num_participants() == 0). |
| // fm == nullptr case has 2 meanings: |
| // * when p == nullptr: no method found; |
| // * when p != nullptr: AbstractMethodError-throwing method found. |
| // Also, found method should always be accompanied by a participant class. |
| Klass* p = wf.participant(0); |
| Method* fm = wf.found_method(0); |
| assert(fm == nullptr || p != nullptr, "no participant"); |
| // Normalize all error-throwing cases to nullptr. |
| if (fm == Universe::throw_illegal_access_error() || |
| fm == Universe::throw_no_such_method_error() || |
| !Dependencies::is_concrete_method(fm, p)) { |
| fm = nullptr; // error-throwing method |
| } |
| if (Dependencies::is_concrete_method(m, ctxk)) { |
| if (p == nullptr) { |
| // It turns out that m was always the only implementation. |
| assert(fm == nullptr, "sanity"); |
| fm = m; |
| } |
| } |
| #ifndef PRODUCT |
| // Make sure the dependency mechanism will pass this discovery: |
| if (VerifyDependencies && fm != nullptr) { |
| guarantee(nullptr == check_unique_concrete_method(ctxk, fm, resolved_klass, resolved_method), |
| "verify dep."); |
| } |
| #endif // PRODUCT |
| assert(fm == nullptr || !fm->is_abstract(), "sanity"); |
| // Old CHA conservatively reports concrete methods in abstract classes |
| // irrespective of whether they have concrete subclasses or not. |
| // Also, abstract root method case is not fully supported. |
| #ifdef ASSERT |
| Klass* uniqp = nullptr; |
| Method* uniqm = Dependencies::find_unique_concrete_method(ctxk, m, &uniqp); |
| assert(uniqm == nullptr || uniqm == fm || |
| m->is_abstract() || |
| uniqm->method_holder()->is_abstract() || |
| (fm == nullptr && uniqm != nullptr && uniqp != nullptr && !InstanceKlass::cast(uniqp)->is_linked()), |
| "sanity"); |
| #endif // ASSERT |
| return fm; |
| } |
| |
| Klass* Dependencies::check_has_no_finalizable_subclasses(InstanceKlass* ctxk, NewKlassDepChange* changes) { |
| InstanceKlass* search_at = ctxk; |
| if (changes != nullptr) { |
| search_at = changes->new_type(); // just look at the new bit |
| } |
| return find_finalizable_subclass(search_at); |
| } |
| |
| Klass* Dependencies::check_call_site_target_value(oop call_site, oop method_handle, CallSiteDepChange* changes) { |
| assert(call_site != nullptr, "sanity"); |
| assert(method_handle != nullptr, "sanity"); |
| assert(call_site->is_a(vmClasses::CallSite_klass()), "sanity"); |
| |
| if (changes == nullptr) { |
| // Validate all CallSites |
| if (java_lang_invoke_CallSite::target(call_site) != method_handle) |
| return call_site->klass(); // assertion failed |
| } else { |
| // Validate the given CallSite |
| if (call_site == changes->call_site() && java_lang_invoke_CallSite::target(call_site) != changes->method_handle()) { |
| assert(method_handle != changes->method_handle(), "must be"); |
| return call_site->klass(); // assertion failed |
| } |
| } |
| return nullptr; // assertion still valid |
| } |
| |
| void Dependencies::DepStream::trace_and_log_witness(Klass* witness) { |
| if (_verify_in_progress) return; // don't log |
| if (witness != nullptr) { |
| LogTarget(Debug, dependencies) lt; |
| if (lt.is_enabled()) { |
| LogStream ls(<); |
| print_dependency(&ls, witness, /*verbose=*/ true); |
| } |
| // The following is a no-op unless logging is enabled: |
| log_dependency(witness); |
| } |
| } |
| |
| Klass* Dependencies::DepStream::check_new_klass_dependency(NewKlassDepChange* changes) { |
| assert_locked_or_safepoint(Compile_lock); |
| Dependencies::check_valid_dependency_type(type()); |
| |
| Klass* witness = nullptr; |
| switch (type()) { |
| case evol_method: |
| witness = check_evol_method(method_argument(0)); |
| break; |
| case leaf_type: |
| witness = check_leaf_type(context_type()); |
| break; |
| case abstract_with_unique_concrete_subtype: |
| witness = check_abstract_with_unique_concrete_subtype(context_type(), type_argument(1), changes); |
| break; |
| case unique_concrete_method_2: |
| witness = check_unique_concrete_method(context_type(), method_argument(1), changes); |
| break; |
| case unique_concrete_method_4: |
| witness = check_unique_concrete_method(context_type(), method_argument(1), type_argument(2), method_argument(3), changes); |
| break; |
| case unique_implementor: |
| witness = check_unique_implementor(context_type(), type_argument(1), changes); |
| break; |
| case no_finalizable_subclasses: |
| witness = check_has_no_finalizable_subclasses(context_type(), changes); |
| break; |
| default: |
| witness = nullptr; |
| break; |
| } |
| trace_and_log_witness(witness); |
| return witness; |
| } |
| |
| Klass* Dependencies::DepStream::check_klass_init_dependency(KlassInitDepChange* changes) { |
| assert_locked_or_safepoint(Compile_lock); |
| Dependencies::check_valid_dependency_type(type()); |
| |
| // No new types added. Only unique_concrete_method_4 is sensitive to class initialization changes. |
| Klass* witness = nullptr; |
| switch (type()) { |
| case unique_concrete_method_4: |
| witness = check_unique_concrete_method(context_type(), method_argument(1), type_argument(2), method_argument(3), changes); |
| break; |
| default: |
| witness = nullptr; |
| break; |
| } |
| trace_and_log_witness(witness); |
| return witness; |
| } |
| |
| Klass* Dependencies::DepStream::check_klass_dependency(KlassDepChange* changes) { |
| assert_locked_or_safepoint(Compile_lock); |
| Dependencies::check_valid_dependency_type(type()); |
| |
| if (changes != nullptr) { |
| if (UseVtableBasedCHA && changes->is_klass_init_change()) { |
| return check_klass_init_dependency(changes->as_klass_init_change()); |
| } else { |
| return check_new_klass_dependency(changes->as_new_klass_change()); |
| } |
| } else { |
| Klass* witness = check_new_klass_dependency(nullptr); |
| // check_klass_init_dependency duplicates check_new_klass_dependency checks when class hierarchy change info is absent. |
| assert(witness != nullptr || check_klass_init_dependency(nullptr) == nullptr, "missed dependency"); |
| return witness; |
| } |
| } |
| |
| Klass* Dependencies::DepStream::check_call_site_dependency(CallSiteDepChange* changes) { |
| assert_locked_or_safepoint(Compile_lock); |
| Dependencies::check_valid_dependency_type(type()); |
| |
| Klass* witness = nullptr; |
| switch (type()) { |
| case call_site_target_value: |
| witness = check_call_site_target_value(argument_oop(0), argument_oop(1), changes); |
| break; |
| default: |
| witness = nullptr; |
| break; |
| } |
| trace_and_log_witness(witness); |
| return witness; |
| } |
| |
| |
| Klass* Dependencies::DepStream::spot_check_dependency_at(DepChange& changes) { |
| // Handle klass dependency |
| if (changes.is_klass_change() && changes.as_klass_change()->involves_context(context_type())) |
| return check_klass_dependency(changes.as_klass_change()); |
| |
| // Handle CallSite dependency |
| if (changes.is_call_site_change()) |
| return check_call_site_dependency(changes.as_call_site_change()); |
| |
| // irrelevant dependency; skip it |
| return nullptr; |
| } |
| |
| |
| void DepChange::print() { print_on(tty); } |
| |
| void DepChange::print_on(outputStream* st) { |
| int nsup = 0, nint = 0; |
| for (ContextStream str(*this); str.next(); ) { |
| InstanceKlass* k = str.klass(); |
| switch (str.change_type()) { |
| case Change_new_type: |
| st->print_cr(" dependee = %s", k->external_name()); |
| break; |
| case Change_new_sub: |
| if (!WizardMode) { |
| ++nsup; |
| } else { |
| st->print_cr(" context super = %s", k->external_name()); |
| } |
| break; |
| case Change_new_impl: |
| if (!WizardMode) { |
| ++nint; |
| } else { |
| st->print_cr(" context interface = %s", k->external_name()); |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| if (nsup + nint != 0) { |
| st->print_cr(" context supers = %d, interfaces = %d", nsup, nint); |
| } |
| } |
| |
| void DepChange::ContextStream::start() { |
| InstanceKlass* type = (_changes.is_klass_change() ? _changes.as_klass_change()->type() : (InstanceKlass*) nullptr); |
| _change_type = (type == nullptr ? NO_CHANGE : Start_Klass); |
| _klass = type; |
| _ti_base = nullptr; |
| _ti_index = 0; |
| _ti_limit = 0; |
| } |
| |
| bool DepChange::ContextStream::next() { |
| switch (_change_type) { |
| case Start_Klass: // initial state; _klass is the new type |
| _ti_base = _klass->transitive_interfaces(); |
| _ti_index = 0; |
| _change_type = Change_new_type; |
| return true; |
| case Change_new_type: |
| // fall through: |
| _change_type = Change_new_sub; |
| case Change_new_sub: |
| // 6598190: brackets workaround Sun Studio C++ compiler bug 6629277 |
| { |
| _klass = _klass->java_super(); |
| if (_klass != nullptr) { |
| return true; |
| } |
| } |
| // else set up _ti_limit and fall through: |
| _ti_limit = (_ti_base == nullptr) ? 0 : _ti_base->length(); |
| _change_type = Change_new_impl; |
| case Change_new_impl: |
| if (_ti_index < _ti_limit) { |
| _klass = _ti_base->at(_ti_index++); |
| return true; |
| } |
| // fall through: |
| _change_type = NO_CHANGE; // iterator is exhausted |
| case NO_CHANGE: |
| break; |
| default: |
| ShouldNotReachHere(); |
| } |
| return false; |
| } |
| |
| void KlassDepChange::initialize() { |
| // entire transaction must be under this lock: |
| assert_lock_strong(Compile_lock); |
| |
| // Mark all dependee and all its superclasses |
| // Mark transitive interfaces |
| for (ContextStream str(*this); str.next(); ) { |
| InstanceKlass* d = str.klass(); |
| assert(!d->is_marked_dependent(), "checking"); |
| d->set_is_marked_dependent(true); |
| } |
| } |
| |
| KlassDepChange::~KlassDepChange() { |
| // Unmark all dependee and all its superclasses |
| // Unmark transitive interfaces |
| for (ContextStream str(*this); str.next(); ) { |
| InstanceKlass* d = str.klass(); |
| d->set_is_marked_dependent(false); |
| } |
| } |
| |
| bool KlassDepChange::involves_context(Klass* k) { |
| if (k == nullptr || !k->is_instance_klass()) { |
| return false; |
| } |
| InstanceKlass* ik = InstanceKlass::cast(k); |
| bool is_contained = ik->is_marked_dependent(); |
| assert(is_contained == type()->is_subtype_of(k), |
| "correct marking of potential context types"); |
| return is_contained; |
| } |
| |
| void Dependencies::print_statistics() { |
| AbstractClassHierarchyWalker::print_statistics(); |
| } |
| |
| void AbstractClassHierarchyWalker::print_statistics() { |
| if (UsePerfData) { |
| jlong deps_find_witness_calls = _perf_find_witness_anywhere_calls_count->get_value(); |
| jlong deps_find_witness_steps = _perf_find_witness_anywhere_steps_count->get_value(); |
| jlong deps_find_witness_singles = _perf_find_witness_in_calls_count->get_value(); |
| |
| ttyLocker ttyl; |
| tty->print_cr("Dependency check (find_witness) " |
| "calls=" JLONG_FORMAT ", steps=" JLONG_FORMAT " (avg=%.1f), singles=" JLONG_FORMAT, |
| deps_find_witness_calls, |
| deps_find_witness_steps, |
| (double)deps_find_witness_steps / deps_find_witness_calls, |
| deps_find_witness_singles); |
| if (xtty != nullptr) { |
| xtty->elem("deps_find_witness calls='" JLONG_FORMAT "' steps='" JLONG_FORMAT "' singles='" JLONG_FORMAT "'", |
| deps_find_witness_calls, |
| deps_find_witness_steps, |
| deps_find_witness_singles); |
| } |
| } |
| } |
| |
| CallSiteDepChange::CallSiteDepChange(Handle call_site, Handle method_handle) : |
| _call_site(call_site), |
| _method_handle(method_handle) { |
| assert(_call_site()->is_a(vmClasses::CallSite_klass()), "must be"); |
| assert(_method_handle.is_null() || _method_handle()->is_a(vmClasses::MethodHandle_klass()), "must be"); |
| } |
| |
| void dependencies_init() { |
| AbstractClassHierarchyWalker::init(); |
| } |