| /* |
| * Copyright (c) 2001, 2023, Oracle and/or its affiliates. All rights reserved. |
| * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| * |
| * This code is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License version 2 only, as |
| * published by the Free Software Foundation. |
| * |
| * This code is distributed in the hope that it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| * version 2 for more details (a copy is included in the LICENSE file that |
| * accompanied this code). |
| * |
| * You should have received a copy of the GNU General Public License version |
| * 2 along with this work; if not, write to the Free Software Foundation, |
| * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| * |
| * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| * or visit www.oracle.com if you need additional information or have any |
| * questions. |
| * |
| */ |
| |
| #include "precompiled.hpp" |
| #include "classfile/classLoaderDataGraph.hpp" |
| #include "classfile/metadataOnStackMark.hpp" |
| #include "classfile/systemDictionary.hpp" |
| #include "code/codeCache.hpp" |
| #include "code/icBuffer.hpp" |
| #include "compiler/oopMap.hpp" |
| #include "gc/g1/g1Allocator.inline.hpp" |
| #include "gc/g1/g1Arguments.hpp" |
| #include "gc/g1/g1BarrierSet.hpp" |
| #include "gc/g1/g1BatchedTask.hpp" |
| #include "gc/g1/g1CollectedHeap.inline.hpp" |
| #include "gc/g1/g1CollectionSet.hpp" |
| #include "gc/g1/g1CollectionSetCandidates.hpp" |
| #include "gc/g1/g1CollectorState.hpp" |
| #include "gc/g1/g1ConcurrentRefine.hpp" |
| #include "gc/g1/g1ConcurrentRefineThread.hpp" |
| #include "gc/g1/g1ConcurrentMarkThread.inline.hpp" |
| #include "gc/g1/g1DirtyCardQueue.hpp" |
| #include "gc/g1/g1EvacStats.inline.hpp" |
| #include "gc/g1/g1FullCollector.hpp" |
| #include "gc/g1/g1GCCounters.hpp" |
| #include "gc/g1/g1GCParPhaseTimesTracker.hpp" |
| #include "gc/g1/g1GCPhaseTimes.hpp" |
| #include "gc/g1/g1GCPauseType.hpp" |
| #include "gc/g1/g1HeapSizingPolicy.hpp" |
| #include "gc/g1/g1HeapTransition.hpp" |
| #include "gc/g1/g1HeapVerifier.hpp" |
| #include "gc/g1/g1InitLogger.hpp" |
| #include "gc/g1/g1MemoryPool.hpp" |
| #include "gc/g1/g1MonotonicArenaFreeMemoryTask.hpp" |
| #include "gc/g1/g1OopClosures.inline.hpp" |
| #include "gc/g1/g1ParallelCleaning.hpp" |
| #include "gc/g1/g1ParScanThreadState.inline.hpp" |
| #include "gc/g1/g1PeriodicGCTask.hpp" |
| #include "gc/g1/g1Policy.hpp" |
| #include "gc/g1/g1RedirtyCardsQueue.hpp" |
| #include "gc/g1/g1RegionToSpaceMapper.hpp" |
| #include "gc/g1/g1RemSet.hpp" |
| #include "gc/g1/g1RootClosures.hpp" |
| #include "gc/g1/g1RootProcessor.hpp" |
| #include "gc/g1/g1SATBMarkQueueSet.hpp" |
| #include "gc/g1/g1ServiceThread.hpp" |
| #include "gc/g1/g1ThreadLocalData.hpp" |
| #include "gc/g1/g1Trace.hpp" |
| #include "gc/g1/g1UncommitRegionTask.hpp" |
| #include "gc/g1/g1VMOperations.hpp" |
| #include "gc/g1/g1YoungCollector.hpp" |
| #include "gc/g1/g1YoungGCEvacFailureInjector.hpp" |
| #include "gc/g1/heapRegion.inline.hpp" |
| #include "gc/g1/heapRegionRemSet.inline.hpp" |
| #include "gc/g1/heapRegionSet.inline.hpp" |
| #include "gc/shared/classUnloadingContext.hpp" |
| #include "gc/shared/concurrentGCBreakpoints.hpp" |
| #include "gc/shared/gcBehaviours.hpp" |
| #include "gc/shared/gcHeapSummary.hpp" |
| #include "gc/shared/gcId.hpp" |
| #include "gc/shared/gcLocker.inline.hpp" |
| #include "gc/shared/gcTimer.hpp" |
| #include "gc/shared/gcTraceTime.inline.hpp" |
| #include "gc/shared/generationSpec.hpp" |
| #include "gc/shared/isGCActiveMark.hpp" |
| #include "gc/shared/locationPrinter.inline.hpp" |
| #include "gc/shared/oopStorageParState.hpp" |
| #include "gc/shared/preservedMarks.inline.hpp" |
| #include "gc/shared/referenceProcessor.inline.hpp" |
| #include "gc/shared/suspendibleThreadSet.hpp" |
| #include "gc/shared/taskqueue.inline.hpp" |
| #include "gc/shared/taskTerminator.hpp" |
| #include "gc/shared/tlab_globals.hpp" |
| #include "gc/shared/workerPolicy.hpp" |
| #include "gc/shared/weakProcessor.inline.hpp" |
| #include "logging/log.hpp" |
| #include "memory/allocation.hpp" |
| #include "memory/heapInspection.hpp" |
| #include "memory/iterator.hpp" |
| #include "memory/metaspaceUtils.hpp" |
| #include "memory/resourceArea.hpp" |
| #include "memory/universe.hpp" |
| #include "oops/access.inline.hpp" |
| #include "oops/compressedOops.inline.hpp" |
| #include "oops/oop.inline.hpp" |
| #include "runtime/atomic.hpp" |
| #include "runtime/handles.inline.hpp" |
| #include "runtime/init.hpp" |
| #include "runtime/java.hpp" |
| #include "runtime/orderAccess.hpp" |
| #include "runtime/threadSMR.hpp" |
| #include "runtime/vmThread.hpp" |
| #include "utilities/align.hpp" |
| #include "utilities/autoRestore.hpp" |
| #include "utilities/bitMap.inline.hpp" |
| #include "utilities/globalDefinitions.hpp" |
| #include "utilities/stack.inline.hpp" |
| |
| size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0; |
| |
| // INVARIANTS/NOTES |
| // |
| // All allocation activity covered by the G1CollectedHeap interface is |
| // serialized by acquiring the HeapLock. This happens in mem_allocate |
| // and allocate_new_tlab, which are the "entry" points to the |
| // allocation code from the rest of the JVM. (Note that this does not |
| // apply to TLAB allocation, which is not part of this interface: it |
| // is done by clients of this interface.) |
| |
| void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) { |
| HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions); |
| } |
| |
| void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) { |
| // The from card cache is not the memory that is actually committed. So we cannot |
| // take advantage of the zero_filled parameter. |
| reset_from_card_cache(start_idx, num_regions); |
| } |
| |
| void G1CollectedHeap::run_batch_task(G1BatchedTask* cl) { |
| uint num_workers = MAX2(1u, MIN2(cl->num_workers_estimate(), workers()->active_workers())); |
| cl->set_max_workers(num_workers); |
| workers()->run_task(cl, num_workers); |
| } |
| |
| uint G1CollectedHeap::get_chunks_per_region() { |
| uint log_region_size = HeapRegion::LogOfHRGrainBytes; |
| // Limit the expected input values to current known possible values of the |
| // (log) region size. Adjust as necessary after testing if changing the permissible |
| // values for region size. |
| assert(log_region_size >= 20 && log_region_size <= 29, |
| "expected value in [20,29], but got %u", log_region_size); |
| return 1u << (log_region_size / 2 - 4); |
| } |
| |
| HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index, |
| MemRegion mr) { |
| return new HeapRegion(hrs_index, bot(), mr, &_card_set_config); |
| } |
| |
| // Private methods. |
| |
| HeapRegion* G1CollectedHeap::new_region(size_t word_size, |
| HeapRegionType type, |
| bool do_expand, |
| uint node_index) { |
| assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords, |
| "the only time we use this to allocate a humongous region is " |
| "when we are allocating a single humongous region"); |
| |
| HeapRegion* res = _hrm.allocate_free_region(type, node_index); |
| |
| if (res == nullptr && do_expand) { |
| // Currently, only attempts to allocate GC alloc regions set |
| // do_expand to true. So, we should only reach here during a |
| // safepoint. |
| assert(SafepointSynchronize::is_at_safepoint(), "invariant"); |
| |
| log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B", |
| word_size * HeapWordSize); |
| |
| assert(word_size * HeapWordSize < HeapRegion::GrainBytes, |
| "This kind of expansion should never be more than one region. Size: " SIZE_FORMAT, |
| word_size * HeapWordSize); |
| if (expand_single_region(node_index)) { |
| // Given that expand_single_region() succeeded in expanding the heap, and we |
| // always expand the heap by an amount aligned to the heap |
| // region size, the free list should in theory not be empty. |
| // In either case allocate_free_region() will check for null. |
| res = _hrm.allocate_free_region(type, node_index); |
| } |
| } |
| return res; |
| } |
| |
| void G1CollectedHeap::set_humongous_metadata(HeapRegion* first_hr, |
| uint num_regions, |
| size_t word_size, |
| bool update_remsets) { |
| // Calculate the new top of the humongous object. |
| HeapWord* obj_top = first_hr->bottom() + word_size; |
| // The word size sum of all the regions used |
| size_t word_size_sum = num_regions * HeapRegion::GrainWords; |
| assert(word_size <= word_size_sum, "sanity"); |
| |
| // How many words memory we "waste" which cannot hold a filler object. |
| size_t words_not_fillable = 0; |
| |
| // Pad out the unused tail of the last region with filler |
| // objects, for improved usage accounting. |
| |
| // How many words can we use for filler objects. |
| size_t words_fillable = word_size_sum - word_size; |
| |
| if (words_fillable >= G1CollectedHeap::min_fill_size()) { |
| G1CollectedHeap::fill_with_objects(obj_top, words_fillable); |
| } else { |
| // We have space to fill, but we cannot fit an object there. |
| words_not_fillable = words_fillable; |
| words_fillable = 0; |
| } |
| |
| // We will set up the first region as "starts humongous". This |
| // will also update the BOT covering all the regions to reflect |
| // that there is a single object that starts at the bottom of the |
| // first region. |
| first_hr->hr_clear(false /* clear_space */); |
| first_hr->set_starts_humongous(obj_top, words_fillable); |
| |
| if (update_remsets) { |
| _policy->remset_tracker()->update_at_allocate(first_hr); |
| } |
| |
| // Indices of first and last regions in the series. |
| uint first = first_hr->hrm_index(); |
| uint last = first + num_regions - 1; |
| |
| HeapRegion* hr = nullptr; |
| for (uint i = first + 1; i <= last; ++i) { |
| hr = region_at(i); |
| hr->hr_clear(false /* clear_space */); |
| hr->set_continues_humongous(first_hr); |
| if (update_remsets) { |
| _policy->remset_tracker()->update_at_allocate(hr); |
| } |
| } |
| |
| // Up to this point no concurrent thread would have been able to |
| // do any scanning on any region in this series. All the top |
| // fields still point to bottom, so the intersection between |
| // [bottom,top] and [card_start,card_end] will be empty. Before we |
| // update the top fields, we'll do a storestore to make sure that |
| // no thread sees the update to top before the zeroing of the |
| // object header and the BOT initialization. |
| OrderAccess::storestore(); |
| |
| // Now, we will update the top fields of the "continues humongous" |
| // regions except the last one. |
| for (uint i = first; i < last; ++i) { |
| hr = region_at(i); |
| hr->set_top(hr->end()); |
| } |
| |
| hr = region_at(last); |
| // If we cannot fit a filler object, we must set top to the end |
| // of the humongous object, otherwise we cannot iterate the heap |
| // and the BOT will not be complete. |
| hr->set_top(hr->end() - words_not_fillable); |
| |
| assert(hr->bottom() < obj_top && obj_top <= hr->end(), |
| "obj_top should be in last region"); |
| |
| assert(words_not_fillable == 0 || |
| first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(), |
| "Miscalculation in humongous allocation"); |
| } |
| |
| HeapWord* |
| G1CollectedHeap::humongous_obj_allocate_initialize_regions(HeapRegion* first_hr, |
| uint num_regions, |
| size_t word_size) { |
| assert(first_hr != nullptr, "pre-condition"); |
| assert(is_humongous(word_size), "word_size should be humongous"); |
| assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition"); |
| |
| // Index of last region in the series. |
| uint first = first_hr->hrm_index(); |
| uint last = first + num_regions - 1; |
| |
| // We need to initialize the region(s) we just discovered. This is |
| // a bit tricky given that it can happen concurrently with |
| // refinement threads refining cards on these regions and |
| // potentially wanting to refine the BOT as they are scanning |
| // those cards (this can happen shortly after a cleanup; see CR |
| // 6991377). So we have to set up the region(s) carefully and in |
| // a specific order. |
| |
| // The passed in hr will be the "starts humongous" region. The header |
| // of the new object will be placed at the bottom of this region. |
| HeapWord* new_obj = first_hr->bottom(); |
| |
| // First, we need to zero the header of the space that we will be |
| // allocating. When we update top further down, some refinement |
| // threads might try to scan the region. By zeroing the header we |
| // ensure that any thread that will try to scan the region will |
| // come across the zero klass word and bail out. |
| // |
| // NOTE: It would not have been correct to have used |
| // CollectedHeap::fill_with_object() and make the space look like |
| // an int array. The thread that is doing the allocation will |
| // later update the object header to a potentially different array |
| // type and, for a very short period of time, the klass and length |
| // fields will be inconsistent. This could cause a refinement |
| // thread to calculate the object size incorrectly. |
| Copy::fill_to_words(new_obj, oopDesc::header_size(), 0); |
| |
| // Next, update the metadata for the regions. |
| set_humongous_metadata(first_hr, num_regions, word_size, true); |
| |
| HeapRegion* last_hr = region_at(last); |
| size_t used = byte_size(first_hr->bottom(), last_hr->top()); |
| |
| increase_used(used); |
| |
| for (uint i = first; i <= last; ++i) { |
| HeapRegion *hr = region_at(i); |
| _humongous_set.add(hr); |
| _hr_printer.alloc(hr); |
| } |
| |
| return new_obj; |
| } |
| |
| size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) { |
| assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size); |
| return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords; |
| } |
| |
| // If could fit into free regions w/o expansion, try. |
| // Otherwise, if can expand, do so. |
| // Otherwise, if using ex regions might help, try with ex given back. |
| HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) { |
| assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); |
| |
| _verifier->verify_region_sets_optional(); |
| |
| uint obj_regions = (uint) humongous_obj_size_in_regions(word_size); |
| |
| // Policy: First try to allocate a humongous object in the free list. |
| HeapRegion* humongous_start = _hrm.allocate_humongous(obj_regions); |
| if (humongous_start == nullptr) { |
| // Policy: We could not find enough regions for the humongous object in the |
| // free list. Look through the heap to find a mix of free and uncommitted regions. |
| // If so, expand the heap and allocate the humongous object. |
| humongous_start = _hrm.expand_and_allocate_humongous(obj_regions); |
| if (humongous_start != nullptr) { |
| // We managed to find a region by expanding the heap. |
| log_debug(gc, ergo, heap)("Heap expansion (humongous allocation request). Allocation request: " SIZE_FORMAT "B", |
| word_size * HeapWordSize); |
| policy()->record_new_heap_size(num_regions()); |
| } else { |
| // Policy: Potentially trigger a defragmentation GC. |
| } |
| } |
| |
| HeapWord* result = nullptr; |
| if (humongous_start != nullptr) { |
| result = humongous_obj_allocate_initialize_regions(humongous_start, obj_regions, word_size); |
| assert(result != nullptr, "it should always return a valid result"); |
| |
| // A successful humongous object allocation changes the used space |
| // information of the old generation so we need to recalculate the |
| // sizes and update the jstat counters here. |
| monitoring_support()->update_sizes(); |
| } |
| |
| _verifier->verify_region_sets_optional(); |
| |
| return result; |
| } |
| |
| HeapWord* G1CollectedHeap::allocate_new_tlab(size_t min_size, |
| size_t requested_size, |
| size_t* actual_size) { |
| assert_heap_not_locked_and_not_at_safepoint(); |
| assert(!is_humongous(requested_size), "we do not allow humongous TLABs"); |
| |
| return attempt_allocation(min_size, requested_size, actual_size); |
| } |
| |
| HeapWord* |
| G1CollectedHeap::mem_allocate(size_t word_size, |
| bool* gc_overhead_limit_was_exceeded) { |
| assert_heap_not_locked_and_not_at_safepoint(); |
| |
| if (is_humongous(word_size)) { |
| return attempt_allocation_humongous(word_size); |
| } |
| size_t dummy = 0; |
| return attempt_allocation(word_size, word_size, &dummy); |
| } |
| |
| HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size) { |
| ResourceMark rm; // For retrieving the thread names in log messages. |
| |
| // Make sure you read the note in attempt_allocation_humongous(). |
| |
| assert_heap_not_locked_and_not_at_safepoint(); |
| assert(!is_humongous(word_size), "attempt_allocation_slow() should not " |
| "be called for humongous allocation requests"); |
| |
| // We should only get here after the first-level allocation attempt |
| // (attempt_allocation()) failed to allocate. |
| |
| // We will loop until a) we manage to successfully perform the |
| // allocation or b) we successfully schedule a collection which |
| // fails to perform the allocation. b) is the only case when we'll |
| // return null. |
| HeapWord* result = nullptr; |
| for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) { |
| bool should_try_gc; |
| uint gc_count_before; |
| |
| { |
| MutexLocker x(Heap_lock); |
| |
| // Now that we have the lock, we first retry the allocation in case another |
| // thread changed the region while we were waiting to acquire the lock. |
| result = _allocator->attempt_allocation_locked(word_size); |
| if (result != nullptr) { |
| return result; |
| } |
| |
| // If the GCLocker is active and we are bound for a GC, try expanding young gen. |
| // This is different to when only GCLocker::needs_gc() is set: try to avoid |
| // waiting because the GCLocker is active to not wait too long. |
| if (GCLocker::is_active_and_needs_gc() && policy()->can_expand_young_list()) { |
| // No need for an ergo message here, can_expand_young_list() does this when |
| // it returns true. |
| result = _allocator->attempt_allocation_force(word_size); |
| if (result != nullptr) { |
| return result; |
| } |
| } |
| |
| // Only try a GC if the GCLocker does not signal the need for a GC. Wait until |
| // the GCLocker initiated GC has been performed and then retry. This includes |
| // the case when the GC Locker is not active but has not been performed. |
| should_try_gc = !GCLocker::needs_gc(); |
| // Read the GC count while still holding the Heap_lock. |
| gc_count_before = total_collections(); |
| } |
| |
| if (should_try_gc) { |
| bool succeeded; |
| result = do_collection_pause(word_size, gc_count_before, &succeeded, GCCause::_g1_inc_collection_pause); |
| if (result != nullptr) { |
| assert(succeeded, "only way to get back a non-null result"); |
| log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT, |
| Thread::current()->name(), p2i(result)); |
| return result; |
| } |
| |
| if (succeeded) { |
| // We successfully scheduled a collection which failed to allocate. No |
| // point in trying to allocate further. We'll just return null. |
| log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate " |
| SIZE_FORMAT " words", Thread::current()->name(), word_size); |
| return nullptr; |
| } |
| log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT " words", |
| Thread::current()->name(), word_size); |
| } else { |
| // Failed to schedule a collection. |
| if (gclocker_retry_count > GCLockerRetryAllocationCount) { |
| log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating " |
| SIZE_FORMAT " words", Thread::current()->name(), word_size); |
| return nullptr; |
| } |
| log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name()); |
| // The GCLocker is either active or the GCLocker initiated |
| // GC has not yet been performed. Stall until it is and |
| // then retry the allocation. |
| GCLocker::stall_until_clear(); |
| gclocker_retry_count += 1; |
| } |
| |
| // We can reach here if we were unsuccessful in scheduling a |
| // collection (because another thread beat us to it) or if we were |
| // stalled due to the GC locker. In either can we should retry the |
| // allocation attempt in case another thread successfully |
| // performed a collection and reclaimed enough space. We do the |
| // first attempt (without holding the Heap_lock) here and the |
| // follow-on attempt will be at the start of the next loop |
| // iteration (after taking the Heap_lock). |
| size_t dummy = 0; |
| result = _allocator->attempt_allocation(word_size, word_size, &dummy); |
| if (result != nullptr) { |
| return result; |
| } |
| |
| // Give a warning if we seem to be looping forever. |
| if ((QueuedAllocationWarningCount > 0) && |
| (try_count % QueuedAllocationWarningCount == 0)) { |
| log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words", |
| Thread::current()->name(), try_count, word_size); |
| } |
| } |
| |
| ShouldNotReachHere(); |
| return nullptr; |
| } |
| |
| bool G1CollectedHeap::check_archive_addresses(MemRegion range) { |
| return _hrm.reserved().contains(range); |
| } |
| |
| template <typename Func> |
| void G1CollectedHeap::iterate_regions_in_range(MemRegion range, const Func& func) { |
| // Mark each G1 region touched by the range as old, add it to |
| // the old set, and set top. |
| HeapRegion* curr_region = _hrm.addr_to_region(range.start()); |
| HeapRegion* end_region = _hrm.addr_to_region(range.last()); |
| |
| while (curr_region != nullptr) { |
| bool is_last = curr_region == end_region; |
| HeapRegion* next_region = is_last ? nullptr : _hrm.next_region_in_heap(curr_region); |
| |
| func(curr_region, is_last); |
| |
| curr_region = next_region; |
| } |
| } |
| |
| bool G1CollectedHeap::alloc_archive_regions(MemRegion range) { |
| assert(!is_init_completed(), "Expect to be called at JVM init time"); |
| MutexLocker x(Heap_lock); |
| |
| MemRegion reserved = _hrm.reserved(); |
| |
| // Temporarily disable pretouching of heap pages. This interface is used |
| // when mmap'ing archived heap data in, so pre-touching is wasted. |
| FlagSetting fs(AlwaysPreTouch, false); |
| |
| // For the specified MemRegion range, allocate the corresponding G1 |
| // region(s) and mark them as old region(s). |
| HeapWord* start_address = range.start(); |
| size_t word_size = range.word_size(); |
| HeapWord* last_address = range.last(); |
| size_t commits = 0; |
| |
| guarantee(reserved.contains(start_address) && reserved.contains(last_address), |
| "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]", |
| p2i(start_address), p2i(last_address)); |
| |
| // Perform the actual region allocation, exiting if it fails. |
| // Then note how much new space we have allocated. |
| if (!_hrm.allocate_containing_regions(range, &commits, workers())) { |
| return false; |
| } |
| increase_used(word_size * HeapWordSize); |
| if (commits != 0) { |
| log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B", |
| HeapRegion::GrainWords * HeapWordSize * commits); |
| |
| } |
| |
| // Mark each G1 region touched by the range as old, add it to |
| // the old set, and set top. |
| auto set_region_to_old = [&] (HeapRegion* r, bool is_last) { |
| assert(r->is_empty(), "Region already in use (%u)", r->hrm_index()); |
| |
| HeapWord* top = is_last ? last_address + 1 : r->end(); |
| r->set_top(top); |
| |
| r->set_old(); |
| _hr_printer.alloc(r); |
| _old_set.add(r); |
| }; |
| |
| iterate_regions_in_range(range, set_region_to_old); |
| return true; |
| } |
| |
| void G1CollectedHeap::populate_archive_regions_bot_part(MemRegion range) { |
| assert(!is_init_completed(), "Expect to be called at JVM init time"); |
| |
| iterate_regions_in_range(range, |
| [&] (HeapRegion* r, bool is_last) { |
| r->update_bot(); |
| }); |
| } |
| |
| void G1CollectedHeap::dealloc_archive_regions(MemRegion range) { |
| assert(!is_init_completed(), "Expect to be called at JVM init time"); |
| MemRegion reserved = _hrm.reserved(); |
| size_t size_used = 0; |
| uint shrink_count = 0; |
| |
| // Free the G1 regions that are within the specified range. |
| MutexLocker x(Heap_lock); |
| HeapWord* start_address = range.start(); |
| HeapWord* last_address = range.last(); |
| |
| assert(reserved.contains(start_address) && reserved.contains(last_address), |
| "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]", |
| p2i(start_address), p2i(last_address)); |
| size_used += range.byte_size(); |
| |
| // Free, empty and uncommit regions with CDS archive content. |
| auto dealloc_archive_region = [&] (HeapRegion* r, bool is_last) { |
| guarantee(r->is_old(), "Expected old region at index %u", r->hrm_index()); |
| _old_set.remove(r); |
| r->set_free(); |
| r->set_top(r->bottom()); |
| _hrm.shrink_at(r->hrm_index(), 1); |
| shrink_count++; |
| }; |
| |
| iterate_regions_in_range(range, dealloc_archive_region); |
| |
| if (shrink_count != 0) { |
| log_debug(gc, ergo, heap)("Attempt heap shrinking (CDS archive regions). Total size: " SIZE_FORMAT "B", |
| HeapRegion::GrainWords * HeapWordSize * shrink_count); |
| // Explicit uncommit. |
| uncommit_regions(shrink_count); |
| } |
| decrease_used(size_used); |
| } |
| |
| inline HeapWord* G1CollectedHeap::attempt_allocation(size_t min_word_size, |
| size_t desired_word_size, |
| size_t* actual_word_size) { |
| assert_heap_not_locked_and_not_at_safepoint(); |
| assert(!is_humongous(desired_word_size), "attempt_allocation() should not " |
| "be called for humongous allocation requests"); |
| |
| HeapWord* result = _allocator->attempt_allocation(min_word_size, desired_word_size, actual_word_size); |
| |
| if (result == nullptr) { |
| *actual_word_size = desired_word_size; |
| result = attempt_allocation_slow(desired_word_size); |
| } |
| |
| assert_heap_not_locked(); |
| if (result != nullptr) { |
| assert(*actual_word_size != 0, "Actual size must have been set here"); |
| dirty_young_block(result, *actual_word_size); |
| } else { |
| *actual_word_size = 0; |
| } |
| |
| return result; |
| } |
| |
| HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size) { |
| ResourceMark rm; // For retrieving the thread names in log messages. |
| |
| // The structure of this method has a lot of similarities to |
| // attempt_allocation_slow(). The reason these two were not merged |
| // into a single one is that such a method would require several "if |
| // allocation is not humongous do this, otherwise do that" |
| // conditional paths which would obscure its flow. In fact, an early |
| // version of this code did use a unified method which was harder to |
| // follow and, as a result, it had subtle bugs that were hard to |
| // track down. So keeping these two methods separate allows each to |
| // be more readable. It will be good to keep these two in sync as |
| // much as possible. |
| |
| assert_heap_not_locked_and_not_at_safepoint(); |
| assert(is_humongous(word_size), "attempt_allocation_humongous() " |
| "should only be called for humongous allocations"); |
| |
| // Humongous objects can exhaust the heap quickly, so we should check if we |
| // need to start a marking cycle at each humongous object allocation. We do |
| // the check before we do the actual allocation. The reason for doing it |
| // before the allocation is that we avoid having to keep track of the newly |
| // allocated memory while we do a GC. |
| if (policy()->need_to_start_conc_mark("concurrent humongous allocation", |
| word_size)) { |
| collect(GCCause::_g1_humongous_allocation); |
| } |
| |
| // We will loop until a) we manage to successfully perform the |
| // allocation or b) we successfully schedule a collection which |
| // fails to perform the allocation. b) is the only case when we'll |
| // return null. |
| HeapWord* result = nullptr; |
| for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) { |
| bool should_try_gc; |
| uint gc_count_before; |
| |
| |
| { |
| MutexLocker x(Heap_lock); |
| |
| size_t size_in_regions = humongous_obj_size_in_regions(word_size); |
| // Given that humongous objects are not allocated in young |
| // regions, we'll first try to do the allocation without doing a |
| // collection hoping that there's enough space in the heap. |
| result = humongous_obj_allocate(word_size); |
| if (result != nullptr) { |
| policy()->old_gen_alloc_tracker()-> |
| add_allocated_humongous_bytes_since_last_gc(size_in_regions * HeapRegion::GrainBytes); |
| return result; |
| } |
| |
| // Only try a GC if the GCLocker does not signal the need for a GC. Wait until |
| // the GCLocker initiated GC has been performed and then retry. This includes |
| // the case when the GC Locker is not active but has not been performed. |
| should_try_gc = !GCLocker::needs_gc(); |
| // Read the GC count while still holding the Heap_lock. |
| gc_count_before = total_collections(); |
| } |
| |
| if (should_try_gc) { |
| bool succeeded; |
| result = do_collection_pause(word_size, gc_count_before, &succeeded, GCCause::_g1_humongous_allocation); |
| if (result != nullptr) { |
| assert(succeeded, "only way to get back a non-null result"); |
| log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT, |
| Thread::current()->name(), p2i(result)); |
| size_t size_in_regions = humongous_obj_size_in_regions(word_size); |
| policy()->old_gen_alloc_tracker()-> |
| record_collection_pause_humongous_allocation(size_in_regions * HeapRegion::GrainBytes); |
| return result; |
| } |
| |
| if (succeeded) { |
| // We successfully scheduled a collection which failed to allocate. No |
| // point in trying to allocate further. We'll just return null. |
| log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate " |
| SIZE_FORMAT " words", Thread::current()->name(), word_size); |
| return nullptr; |
| } |
| log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT "", |
| Thread::current()->name(), word_size); |
| } else { |
| // Failed to schedule a collection. |
| if (gclocker_retry_count > GCLockerRetryAllocationCount) { |
| log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating " |
| SIZE_FORMAT " words", Thread::current()->name(), word_size); |
| return nullptr; |
| } |
| log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name()); |
| // The GCLocker is either active or the GCLocker initiated |
| // GC has not yet been performed. Stall until it is and |
| // then retry the allocation. |
| GCLocker::stall_until_clear(); |
| gclocker_retry_count += 1; |
| } |
| |
| |
| // We can reach here if we were unsuccessful in scheduling a |
| // collection (because another thread beat us to it) or if we were |
| // stalled due to the GC locker. In either can we should retry the |
| // allocation attempt in case another thread successfully |
| // performed a collection and reclaimed enough space. |
| // Humongous object allocation always needs a lock, so we wait for the retry |
| // in the next iteration of the loop, unlike for the regular iteration case. |
| // Give a warning if we seem to be looping forever. |
| |
| if ((QueuedAllocationWarningCount > 0) && |
| (try_count % QueuedAllocationWarningCount == 0)) { |
| log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words", |
| Thread::current()->name(), try_count, word_size); |
| } |
| } |
| |
| ShouldNotReachHere(); |
| return nullptr; |
| } |
| |
| HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size, |
| bool expect_null_mutator_alloc_region) { |
| assert_at_safepoint_on_vm_thread(); |
| assert(!_allocator->has_mutator_alloc_region() || !expect_null_mutator_alloc_region, |
| "the current alloc region was unexpectedly found to be non-null"); |
| |
| if (!is_humongous(word_size)) { |
| return _allocator->attempt_allocation_locked(word_size); |
| } else { |
| HeapWord* result = humongous_obj_allocate(word_size); |
| if (result != nullptr && policy()->need_to_start_conc_mark("STW humongous allocation")) { |
| collector_state()->set_initiate_conc_mark_if_possible(true); |
| } |
| return result; |
| } |
| |
| ShouldNotReachHere(); |
| } |
| |
| class PostCompactionPrinterClosure: public HeapRegionClosure { |
| private: |
| G1HRPrinter* _hr_printer; |
| public: |
| bool do_heap_region(HeapRegion* hr) { |
| assert(!hr->is_young(), "not expecting to find young regions"); |
| _hr_printer->post_compaction(hr); |
| return false; |
| } |
| |
| PostCompactionPrinterClosure(G1HRPrinter* hr_printer) |
| : _hr_printer(hr_printer) { } |
| }; |
| |
| void G1CollectedHeap::print_heap_after_full_collection() { |
| // Post collection region logging. |
| // We should do this after we potentially resize the heap so |
| // that all the COMMIT / UNCOMMIT events are generated before |
| // the compaction events. |
| if (_hr_printer.is_active()) { |
| PostCompactionPrinterClosure cl(hr_printer()); |
| heap_region_iterate(&cl); |
| } |
| } |
| |
| bool G1CollectedHeap::abort_concurrent_cycle() { |
| // Disable discovery and empty the discovered lists |
| // for the CM ref processor. |
| _ref_processor_cm->disable_discovery(); |
| _ref_processor_cm->abandon_partial_discovery(); |
| _ref_processor_cm->verify_no_references_recorded(); |
| |
| // Abandon current iterations of concurrent marking and concurrent |
| // refinement, if any are in progress. |
| return concurrent_mark()->concurrent_cycle_abort(); |
| } |
| |
| void G1CollectedHeap::prepare_heap_for_full_collection() { |
| // Make sure we'll choose a new allocation region afterwards. |
| _allocator->release_mutator_alloc_regions(); |
| _allocator->abandon_gc_alloc_regions(); |
| |
| // We may have added regions to the current incremental collection |
| // set between the last GC or pause and now. We need to clear the |
| // incremental collection set and then start rebuilding it afresh |
| // after this full GC. |
| abandon_collection_set(collection_set()); |
| |
| _hrm.remove_all_free_regions(); |
| } |
| |
| void G1CollectedHeap::verify_before_full_collection() { |
| assert_used_and_recalculate_used_equal(this); |
| if (!VerifyBeforeGC) { |
| return; |
| } |
| if (!G1HeapVerifier::should_verify(G1HeapVerifier::G1VerifyFull)) { |
| return; |
| } |
| _verifier->verify_region_sets_optional(); |
| _verifier->verify_before_gc(); |
| _verifier->verify_bitmap_clear(true /* above_tams_only */); |
| } |
| |
| void G1CollectedHeap::prepare_for_mutator_after_full_collection() { |
| // Prepare heap for normal collections. |
| assert(num_free_regions() == 0, "we should not have added any free regions"); |
| rebuild_region_sets(false /* free_list_only */); |
| abort_refinement(); |
| resize_heap_if_necessary(); |
| uncommit_regions_if_necessary(); |
| |
| // Rebuild the code root lists for each region |
| rebuild_code_roots(); |
| |
| start_new_collection_set(); |
| _allocator->init_mutator_alloc_regions(); |
| |
| // Post collection state updates. |
| MetaspaceGC::compute_new_size(); |
| } |
| |
| void G1CollectedHeap::abort_refinement() { |
| // Discard all remembered set updates and reset refinement statistics. |
| G1BarrierSet::dirty_card_queue_set().abandon_logs_and_stats(); |
| assert(G1BarrierSet::dirty_card_queue_set().num_cards() == 0, |
| "DCQS should be empty"); |
| concurrent_refine()->get_and_reset_refinement_stats(); |
| } |
| |
| void G1CollectedHeap::verify_after_full_collection() { |
| if (!VerifyAfterGC) { |
| return; |
| } |
| if (!G1HeapVerifier::should_verify(G1HeapVerifier::G1VerifyFull)) { |
| return; |
| } |
| _hrm.verify_optional(); |
| _verifier->verify_region_sets_optional(); |
| _verifier->verify_after_gc(); |
| _verifier->verify_bitmap_clear(false /* above_tams_only */); |
| |
| // At this point there should be no regions in the |
| // entire heap tagged as young. |
| assert(check_young_list_empty(), "young list should be empty at this point"); |
| |
| // Note: since we've just done a full GC, concurrent |
| // marking is no longer active. Therefore we need not |
| // re-enable reference discovery for the CM ref processor. |
| // That will be done at the start of the next marking cycle. |
| // We also know that the STW processor should no longer |
| // discover any new references. |
| assert(!_ref_processor_stw->discovery_enabled(), "Postcondition"); |
| assert(!_ref_processor_cm->discovery_enabled(), "Postcondition"); |
| _ref_processor_stw->verify_no_references_recorded(); |
| _ref_processor_cm->verify_no_references_recorded(); |
| } |
| |
| bool G1CollectedHeap::do_full_collection(bool clear_all_soft_refs, |
| bool do_maximal_compaction) { |
| assert_at_safepoint_on_vm_thread(); |
| |
| if (GCLocker::check_active_before_gc()) { |
| // Full GC was not completed. |
| return false; |
| } |
| |
| const bool do_clear_all_soft_refs = clear_all_soft_refs || |
| soft_ref_policy()->should_clear_all_soft_refs(); |
| |
| G1FullGCMark gc_mark; |
| GCTraceTime(Info, gc) tm("Pause Full", nullptr, gc_cause(), true); |
| G1FullCollector collector(this, do_clear_all_soft_refs, do_maximal_compaction, gc_mark.tracer()); |
| |
| collector.prepare_collection(); |
| collector.collect(); |
| collector.complete_collection(); |
| |
| // Full collection was successfully completed. |
| return true; |
| } |
| |
| void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) { |
| // Currently, there is no facility in the do_full_collection(bool) API to notify |
| // the caller that the collection did not succeed (e.g., because it was locked |
| // out by the GC locker). So, right now, we'll ignore the return value. |
| |
| do_full_collection(clear_all_soft_refs, |
| false /* do_maximal_compaction */); |
| } |
| |
| bool G1CollectedHeap::upgrade_to_full_collection() { |
| GCCauseSetter compaction(this, GCCause::_g1_compaction_pause); |
| log_info(gc, ergo)("Attempting full compaction clearing soft references"); |
| bool success = do_full_collection(true /* clear_all_soft_refs */, |
| false /* do_maximal_compaction */); |
| // do_full_collection only fails if blocked by GC locker and that can't |
| // be the case here since we only call this when already completed one gc. |
| assert(success, "invariant"); |
| return success; |
| } |
| |
| void G1CollectedHeap::resize_heap_if_necessary() { |
| assert_at_safepoint_on_vm_thread(); |
| |
| bool should_expand; |
| size_t resize_amount = _heap_sizing_policy->full_collection_resize_amount(should_expand); |
| |
| if (resize_amount == 0) { |
| return; |
| } else if (should_expand) { |
| expand(resize_amount, _workers); |
| } else { |
| shrink(resize_amount); |
| } |
| } |
| |
| HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size, |
| bool do_gc, |
| bool maximal_compaction, |
| bool expect_null_mutator_alloc_region, |
| bool* gc_succeeded) { |
| *gc_succeeded = true; |
| // Let's attempt the allocation first. |
| HeapWord* result = |
| attempt_allocation_at_safepoint(word_size, |
| expect_null_mutator_alloc_region); |
| if (result != nullptr) { |
| return result; |
| } |
| |
| // In a G1 heap, we're supposed to keep allocation from failing by |
| // incremental pauses. Therefore, at least for now, we'll favor |
| // expansion over collection. (This might change in the future if we can |
| // do something smarter than full collection to satisfy a failed alloc.) |
| result = expand_and_allocate(word_size); |
| if (result != nullptr) { |
| return result; |
| } |
| |
| if (do_gc) { |
| GCCauseSetter compaction(this, GCCause::_g1_compaction_pause); |
| // Expansion didn't work, we'll try to do a Full GC. |
| // If maximal_compaction is set we clear all soft references and don't |
| // allow any dead wood to be left on the heap. |
| if (maximal_compaction) { |
| log_info(gc, ergo)("Attempting maximal full compaction clearing soft references"); |
| } else { |
| log_info(gc, ergo)("Attempting full compaction"); |
| } |
| *gc_succeeded = do_full_collection(maximal_compaction /* clear_all_soft_refs */ , |
| maximal_compaction /* do_maximal_compaction */); |
| } |
| |
| return nullptr; |
| } |
| |
| HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size, |
| bool* succeeded) { |
| assert_at_safepoint_on_vm_thread(); |
| |
| // Attempts to allocate followed by Full GC. |
| HeapWord* result = |
| satisfy_failed_allocation_helper(word_size, |
| true, /* do_gc */ |
| false, /* maximum_collection */ |
| false, /* expect_null_mutator_alloc_region */ |
| succeeded); |
| |
| if (result != nullptr || !*succeeded) { |
| return result; |
| } |
| |
| // Attempts to allocate followed by Full GC that will collect all soft references. |
| result = satisfy_failed_allocation_helper(word_size, |
| true, /* do_gc */ |
| true, /* maximum_collection */ |
| true, /* expect_null_mutator_alloc_region */ |
| succeeded); |
| |
| if (result != nullptr || !*succeeded) { |
| return result; |
| } |
| |
| // Attempts to allocate, no GC |
| result = satisfy_failed_allocation_helper(word_size, |
| false, /* do_gc */ |
| false, /* maximum_collection */ |
| true, /* expect_null_mutator_alloc_region */ |
| succeeded); |
| |
| if (result != nullptr) { |
| return result; |
| } |
| |
| assert(!soft_ref_policy()->should_clear_all_soft_refs(), |
| "Flag should have been handled and cleared prior to this point"); |
| |
| // What else? We might try synchronous finalization later. If the total |
| // space available is large enough for the allocation, then a more |
| // complete compaction phase than we've tried so far might be |
| // appropriate. |
| return nullptr; |
| } |
| |
| // Attempting to expand the heap sufficiently |
| // to support an allocation of the given "word_size". If |
| // successful, perform the allocation and return the address of the |
| // allocated block, or else null. |
| |
| HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) { |
| assert_at_safepoint_on_vm_thread(); |
| |
| _verifier->verify_region_sets_optional(); |
| |
| size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes); |
| log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B", |
| word_size * HeapWordSize); |
| |
| |
| if (expand(expand_bytes, _workers)) { |
| _hrm.verify_optional(); |
| _verifier->verify_region_sets_optional(); |
| return attempt_allocation_at_safepoint(word_size, |
| false /* expect_null_mutator_alloc_region */); |
| } |
| return nullptr; |
| } |
| |
| bool G1CollectedHeap::expand(size_t expand_bytes, WorkerThreads* pretouch_workers, double* expand_time_ms) { |
| size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes); |
| aligned_expand_bytes = align_up(aligned_expand_bytes, |
| HeapRegion::GrainBytes); |
| |
| log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B", |
| expand_bytes, aligned_expand_bytes); |
| |
| if (is_maximal_no_gc()) { |
| log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)"); |
| return false; |
| } |
| |
| double expand_heap_start_time_sec = os::elapsedTime(); |
| uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes); |
| assert(regions_to_expand > 0, "Must expand by at least one region"); |
| |
| uint expanded_by = _hrm.expand_by(regions_to_expand, pretouch_workers); |
| if (expand_time_ms != nullptr) { |
| *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS; |
| } |
| |
| assert(expanded_by > 0, "must have failed during commit."); |
| |
| size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes; |
| assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition"); |
| policy()->record_new_heap_size(num_regions()); |
| |
| return true; |
| } |
| |
| bool G1CollectedHeap::expand_single_region(uint node_index) { |
| uint expanded_by = _hrm.expand_on_preferred_node(node_index); |
| |
| if (expanded_by == 0) { |
| assert(is_maximal_no_gc(), "Should be no regions left, available: %u", _hrm.available()); |
| log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)"); |
| return false; |
| } |
| |
| policy()->record_new_heap_size(num_regions()); |
| return true; |
| } |
| |
| void G1CollectedHeap::shrink_helper(size_t shrink_bytes) { |
| size_t aligned_shrink_bytes = |
| ReservedSpace::page_align_size_down(shrink_bytes); |
| aligned_shrink_bytes = align_down(aligned_shrink_bytes, |
| HeapRegion::GrainBytes); |
| uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes); |
| |
| uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove); |
| size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes; |
| |
| log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B actual amount shrunk: " SIZE_FORMAT "B", |
| shrink_bytes, aligned_shrink_bytes, shrunk_bytes); |
| if (num_regions_removed > 0) { |
| log_debug(gc, heap)("Uncommittable regions after shrink: %u", num_regions_removed); |
| policy()->record_new_heap_size(num_regions()); |
| } else { |
| log_debug(gc, ergo, heap)("Did not shrink the heap (heap shrinking operation failed)"); |
| } |
| } |
| |
| void G1CollectedHeap::shrink(size_t shrink_bytes) { |
| _verifier->verify_region_sets_optional(); |
| |
| // We should only reach here at the end of a Full GC or during Remark which |
| // means we should not not be holding to any GC alloc regions. The method |
| // below will make sure of that and do any remaining clean up. |
| _allocator->abandon_gc_alloc_regions(); |
| |
| // Instead of tearing down / rebuilding the free lists here, we |
| // could instead use the remove_all_pending() method on free_list to |
| // remove only the ones that we need to remove. |
| _hrm.remove_all_free_regions(); |
| shrink_helper(shrink_bytes); |
| rebuild_region_sets(true /* free_list_only */); |
| |
| _hrm.verify_optional(); |
| _verifier->verify_region_sets_optional(); |
| } |
| |
| class OldRegionSetChecker : public HeapRegionSetChecker { |
| public: |
| void check_mt_safety() { |
| // Master Old Set MT safety protocol: |
| // (a) If we're at a safepoint, operations on the master old set |
| // should be invoked: |
| // - by the VM thread (which will serialize them), or |
| // - by the GC workers while holding the FreeList_lock, if we're |
| // at a safepoint for an evacuation pause (this lock is taken |
| // anyway when an GC alloc region is retired so that a new one |
| // is allocated from the free list), or |
| // - by the GC workers while holding the OldSets_lock, if we're at a |
| // safepoint for a cleanup pause. |
| // (b) If we're not at a safepoint, operations on the master old set |
| // should be invoked while holding the Heap_lock. |
| |
| if (SafepointSynchronize::is_at_safepoint()) { |
| guarantee(Thread::current()->is_VM_thread() || |
| FreeList_lock->owned_by_self() || OldSets_lock->owned_by_self(), |
| "master old set MT safety protocol at a safepoint"); |
| } else { |
| guarantee(Heap_lock->owned_by_self(), "master old set MT safety protocol outside a safepoint"); |
| } |
| } |
| bool is_correct_type(HeapRegion* hr) { return hr->is_old(); } |
| const char* get_description() { return "Old Regions"; } |
| }; |
| |
| class HumongousRegionSetChecker : public HeapRegionSetChecker { |
| public: |
| void check_mt_safety() { |
| // Humongous Set MT safety protocol: |
| // (a) If we're at a safepoint, operations on the master humongous |
| // set should be invoked by either the VM thread (which will |
| // serialize them) or by the GC workers while holding the |
| // OldSets_lock. |
| // (b) If we're not at a safepoint, operations on the master |
| // humongous set should be invoked while holding the Heap_lock. |
| |
| if (SafepointSynchronize::is_at_safepoint()) { |
| guarantee(Thread::current()->is_VM_thread() || |
| OldSets_lock->owned_by_self(), |
| "master humongous set MT safety protocol at a safepoint"); |
| } else { |
| guarantee(Heap_lock->owned_by_self(), |
| "master humongous set MT safety protocol outside a safepoint"); |
| } |
| } |
| bool is_correct_type(HeapRegion* hr) { return hr->is_humongous(); } |
| const char* get_description() { return "Humongous Regions"; } |
| }; |
| |
| G1CollectedHeap::G1CollectedHeap() : |
| CollectedHeap(), |
| _service_thread(nullptr), |
| _periodic_gc_task(nullptr), |
| _free_arena_memory_task(nullptr), |
| _workers(nullptr), |
| _card_table(nullptr), |
| _collection_pause_end(Ticks::now()), |
| _soft_ref_policy(), |
| _old_set("Old Region Set", new OldRegionSetChecker()), |
| _humongous_set("Humongous Region Set", new HumongousRegionSetChecker()), |
| _bot(nullptr), |
| _listener(), |
| _numa(G1NUMA::create()), |
| _hrm(), |
| _allocator(nullptr), |
| _evac_failure_injector(), |
| _verifier(nullptr), |
| _summary_bytes_used(0), |
| _bytes_used_during_gc(0), |
| _survivor_evac_stats("Young", YoungPLABSize, PLABWeight), |
| _old_evac_stats("Old", OldPLABSize, PLABWeight), |
| _monitoring_support(nullptr), |
| _num_humongous_objects(0), |
| _num_humongous_reclaim_candidates(0), |
| _hr_printer(), |
| _collector_state(), |
| _old_marking_cycles_started(0), |
| _old_marking_cycles_completed(0), |
| _eden(), |
| _survivor(), |
| _gc_timer_stw(new STWGCTimer()), |
| _gc_tracer_stw(new G1NewTracer()), |
| _policy(new G1Policy(_gc_timer_stw)), |
| _heap_sizing_policy(nullptr), |
| _collection_set(this, _policy), |
| _rem_set(nullptr), |
| _card_set_config(), |
| _card_set_freelist_pool(G1CardSetConfiguration::num_mem_object_types()), |
| _cm(nullptr), |
| _cm_thread(nullptr), |
| _cr(nullptr), |
| _task_queues(nullptr), |
| _ref_processor_stw(nullptr), |
| _is_alive_closure_stw(this), |
| _is_subject_to_discovery_stw(this), |
| _ref_processor_cm(nullptr), |
| _is_alive_closure_cm(this), |
| _is_subject_to_discovery_cm(this), |
| _region_attr() { |
| |
| _verifier = new G1HeapVerifier(this); |
| |
| _allocator = new G1Allocator(this); |
| |
| _heap_sizing_policy = G1HeapSizingPolicy::create(this, _policy->analytics()); |
| |
| _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords); |
| |
| // Override the default _filler_array_max_size so that no humongous filler |
| // objects are created. |
| _filler_array_max_size = _humongous_object_threshold_in_words; |
| |
| // Override the default _stack_chunk_max_size so that no humongous stack chunks are created |
| _stack_chunk_max_size = _humongous_object_threshold_in_words; |
| |
| uint n_queues = ParallelGCThreads; |
| _task_queues = new G1ScannerTasksQueueSet(n_queues); |
| |
| for (uint i = 0; i < n_queues; i++) { |
| G1ScannerTasksQueue* q = new G1ScannerTasksQueue(); |
| _task_queues->register_queue(i, q); |
| } |
| |
| _gc_tracer_stw->initialize(); |
| |
| guarantee(_task_queues != nullptr, "task_queues allocation failure."); |
| } |
| |
| G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description, |
| size_t size, |
| size_t translation_factor) { |
| size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1); |
| // Allocate a new reserved space, preferring to use large pages. |
| ReservedSpace rs(size, preferred_page_size); |
| size_t page_size = rs.page_size(); |
| G1RegionToSpaceMapper* result = |
| G1RegionToSpaceMapper::create_mapper(rs, |
| size, |
| page_size, |
| HeapRegion::GrainBytes, |
| translation_factor, |
| mtGC); |
| |
| os::trace_page_sizes_for_requested_size(description, |
| size, |
| page_size, |
| preferred_page_size, |
| rs.base(), |
| rs.size()); |
| |
| return result; |
| } |
| |
| jint G1CollectedHeap::initialize_concurrent_refinement() { |
| jint ecode = JNI_OK; |
| _cr = G1ConcurrentRefine::create(policy(), &ecode); |
| return ecode; |
| } |
| |
| jint G1CollectedHeap::initialize_service_thread() { |
| _service_thread = new G1ServiceThread(); |
| if (_service_thread->osthread() == nullptr) { |
| vm_shutdown_during_initialization("Could not create G1ServiceThread"); |
| return JNI_ENOMEM; |
| } |
| return JNI_OK; |
| } |
| |
| jint G1CollectedHeap::initialize() { |
| |
| // Necessary to satisfy locking discipline assertions. |
| |
| MutexLocker x(Heap_lock); |
| |
| // While there are no constraints in the GC code that HeapWordSize |
| // be any particular value, there are multiple other areas in the |
| // system which believe this to be true (e.g. oop->object_size in some |
| // cases incorrectly returns the size in wordSize units rather than |
| // HeapWordSize). |
| guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize"); |
| |
| size_t init_byte_size = InitialHeapSize; |
| size_t reserved_byte_size = G1Arguments::heap_reserved_size_bytes(); |
| |
| // Ensure that the sizes are properly aligned. |
| Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap"); |
| Universe::check_alignment(reserved_byte_size, HeapRegion::GrainBytes, "g1 heap"); |
| Universe::check_alignment(reserved_byte_size, HeapAlignment, "g1 heap"); |
| |
| // Reserve the maximum. |
| |
| // When compressed oops are enabled, the preferred heap base |
| // is calculated by subtracting the requested size from the |
| // 32Gb boundary and using the result as the base address for |
| // heap reservation. If the requested size is not aligned to |
| // HeapRegion::GrainBytes (i.e. the alignment that is passed |
| // into the ReservedHeapSpace constructor) then the actual |
| // base of the reserved heap may end up differing from the |
| // address that was requested (i.e. the preferred heap base). |
| // If this happens then we could end up using a non-optimal |
| // compressed oops mode. |
| |
| ReservedHeapSpace heap_rs = Universe::reserve_heap(reserved_byte_size, |
| HeapAlignment); |
| |
| initialize_reserved_region(heap_rs); |
| |
| // Create the barrier set for the entire reserved region. |
| G1CardTable* ct = new G1CardTable(heap_rs.region()); |
| G1BarrierSet* bs = new G1BarrierSet(ct); |
| bs->initialize(); |
| assert(bs->is_a(BarrierSet::G1BarrierSet), "sanity"); |
| BarrierSet::set_barrier_set(bs); |
| _card_table = ct; |
| |
| { |
| G1SATBMarkQueueSet& satbqs = bs->satb_mark_queue_set(); |
| satbqs.set_process_completed_buffers_threshold(G1SATBProcessCompletedThreshold); |
| satbqs.set_buffer_enqueue_threshold_percentage(G1SATBBufferEnqueueingThresholdPercent); |
| } |
| |
| // Create space mappers. |
| size_t page_size = heap_rs.page_size(); |
| G1RegionToSpaceMapper* heap_storage = |
| G1RegionToSpaceMapper::create_mapper(heap_rs, |
| heap_rs.size(), |
| page_size, |
| HeapRegion::GrainBytes, |
| 1, |
| mtJavaHeap); |
| if(heap_storage == nullptr) { |
| vm_shutdown_during_initialization("Could not initialize G1 heap"); |
| return JNI_ERR; |
| } |
| |
| os::trace_page_sizes("Heap", |
| MinHeapSize, |
| reserved_byte_size, |
| page_size, |
| heap_rs.base(), |
| heap_rs.size()); |
| heap_storage->set_mapping_changed_listener(&_listener); |
| |
| // Create storage for the BOT, card table and the bitmap. |
| G1RegionToSpaceMapper* bot_storage = |
| create_aux_memory_mapper("Block Offset Table", |
| G1BlockOffsetTable::compute_size(heap_rs.size() / HeapWordSize), |
| G1BlockOffsetTable::heap_map_factor()); |
| |
| G1RegionToSpaceMapper* cardtable_storage = |
| create_aux_memory_mapper("Card Table", |
| G1CardTable::compute_size(heap_rs.size() / HeapWordSize), |
| G1CardTable::heap_map_factor()); |
| |
| size_t bitmap_size = G1CMBitMap::compute_size(heap_rs.size()); |
| G1RegionToSpaceMapper* bitmap_storage = |
| create_aux_memory_mapper("Mark Bitmap", bitmap_size, G1CMBitMap::heap_map_factor()); |
| |
| _hrm.initialize(heap_storage, bitmap_storage, bot_storage, cardtable_storage); |
| _card_table->initialize(cardtable_storage); |
| |
| // 6843694 - ensure that the maximum region index can fit |
| // in the remembered set structures. |
| const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1; |
| guarantee((max_reserved_regions() - 1) <= max_region_idx, "too many regions"); |
| |
| // The G1FromCardCache reserves card with value 0 as "invalid", so the heap must not |
| // start within the first card. |
| guarantee((uintptr_t)(heap_rs.base()) >= G1CardTable::card_size(), "Java heap must not start within the first card."); |
| G1FromCardCache::initialize(max_reserved_regions()); |
| // Also create a G1 rem set. |
| _rem_set = new G1RemSet(this, _card_table); |
| _rem_set->initialize(max_reserved_regions()); |
| |
| size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1; |
| guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized"); |
| guarantee(HeapRegion::CardsPerRegion < max_cards_per_region, |
| "too many cards per region"); |
| |
| HeapRegionRemSet::initialize(_reserved); |
| |
| FreeRegionList::set_unrealistically_long_length(max_regions() + 1); |
| |
| _bot = new G1BlockOffsetTable(reserved(), bot_storage); |
| |
| { |
| size_t granularity = HeapRegion::GrainBytes; |
| |
| _region_attr.initialize(reserved(), granularity); |
| } |
| |
| _workers = new WorkerThreads("GC Thread", ParallelGCThreads); |
| if (_workers == nullptr) { |
| return JNI_ENOMEM; |
| } |
| _workers->initialize_workers(); |
| |
| _numa->set_region_info(HeapRegion::GrainBytes, page_size); |
| |
| // Create the G1ConcurrentMark data structure and thread. |
| // (Must do this late, so that "max_[reserved_]regions" is defined.) |
| _cm = new G1ConcurrentMark(this, bitmap_storage); |
| _cm_thread = _cm->cm_thread(); |
| |
| // Now expand into the initial heap size. |
| if (!expand(init_byte_size, _workers)) { |
| vm_shutdown_during_initialization("Failed to allocate initial heap."); |
| return JNI_ENOMEM; |
| } |
| |
| // Perform any initialization actions delegated to the policy. |
| policy()->init(this, &_collection_set); |
| |
| jint ecode = initialize_concurrent_refinement(); |
| if (ecode != JNI_OK) { |
| return ecode; |
| } |
| |
| ecode = initialize_service_thread(); |
| if (ecode != JNI_OK) { |
| return ecode; |
| } |
| |
| // Create and schedule the periodic gc task on the service thread. |
| _periodic_gc_task = new G1PeriodicGCTask("Periodic GC Task"); |
| _service_thread->register_task(_periodic_gc_task); |
| |
| _free_arena_memory_task = new G1MonotonicArenaFreeMemoryTask("Card Set Free Memory Task"); |
| _service_thread->register_task(_free_arena_memory_task); |
| |
| // Here we allocate the dummy HeapRegion that is required by the |
| // G1AllocRegion class. |
| HeapRegion* dummy_region = _hrm.get_dummy_region(); |
| |
| // We'll re-use the same region whether the alloc region will |
| // require BOT updates or not and, if it doesn't, then a non-young |
| // region will complain that it cannot support allocations without |
| // BOT updates. So we'll tag the dummy region as eden to avoid that. |
| dummy_region->set_eden(); |
| // Make sure it's full. |
| dummy_region->set_top(dummy_region->end()); |
| G1AllocRegion::setup(this, dummy_region); |
| |
| _allocator->init_mutator_alloc_regions(); |
| |
| // Do create of the monitoring and management support so that |
| // values in the heap have been properly initialized. |
| _monitoring_support = new G1MonitoringSupport(this); |
| |
| _collection_set.initialize(max_reserved_regions()); |
| |
| evac_failure_injector()->reset(); |
| |
| G1InitLogger::print(); |
| |
| return JNI_OK; |
| } |
| |
| bool G1CollectedHeap::concurrent_mark_is_terminating() const { |
| return _cm_thread->should_terminate(); |
| } |
| |
| void G1CollectedHeap::stop() { |
| // Stop all concurrent threads. We do this to make sure these threads |
| // do not continue to execute and access resources (e.g. logging) |
| // that are destroyed during shutdown. |
| _cr->stop(); |
| _service_thread->stop(); |
| _cm_thread->stop(); |
| } |
| |
| void G1CollectedHeap::safepoint_synchronize_begin() { |
| SuspendibleThreadSet::synchronize(); |
| } |
| |
| void G1CollectedHeap::safepoint_synchronize_end() { |
| SuspendibleThreadSet::desynchronize(); |
| } |
| |
| void G1CollectedHeap::post_initialize() { |
| CollectedHeap::post_initialize(); |
| ref_processing_init(); |
| } |
| |
| void G1CollectedHeap::ref_processing_init() { |
| // Reference processing in G1 currently works as follows: |
| // |
| // * There are two reference processor instances. One is |
| // used to record and process discovered references |
| // during concurrent marking; the other is used to |
| // record and process references during STW pauses |
| // (both full and incremental). |
| // * Both ref processors need to 'span' the entire heap as |
| // the regions in the collection set may be dotted around. |
| // |
| // * For the concurrent marking ref processor: |
| // * Reference discovery is enabled at concurrent start. |
| // * Reference discovery is disabled and the discovered |
| // references processed etc during remarking. |
| // * Reference discovery is MT (see below). |
| // * Reference discovery requires a barrier (see below). |
| // * Reference processing may or may not be MT |
| // (depending on the value of ParallelRefProcEnabled |
| // and ParallelGCThreads). |
| // * A full GC disables reference discovery by the CM |
| // ref processor and abandons any entries on it's |
| // discovered lists. |
| // |
| // * For the STW processor: |
| // * Non MT discovery is enabled at the start of a full GC. |
| // * Processing and enqueueing during a full GC is non-MT. |
| // * During a full GC, references are processed after marking. |
| // |
| // * Discovery (may or may not be MT) is enabled at the start |
| // of an incremental evacuation pause. |
| // * References are processed near the end of a STW evacuation pause. |
| // * For both types of GC: |
| // * Discovery is atomic - i.e. not concurrent. |
| // * Reference discovery will not need a barrier. |
| |
| // Concurrent Mark ref processor |
| _ref_processor_cm = |
| new ReferenceProcessor(&_is_subject_to_discovery_cm, |
| ParallelGCThreads, // degree of mt processing |
| // We discover with the gc worker threads during Remark, so both |
| // thread counts must be considered for discovery. |
| MAX2(ParallelGCThreads, ConcGCThreads), // degree of mt discovery |
| true, // Reference discovery is concurrent |
| &_is_alive_closure_cm); // is alive closure |
| |
| // STW ref processor |
| _ref_processor_stw = |
| new ReferenceProcessor(&_is_subject_to_discovery_stw, |
| ParallelGCThreads, // degree of mt processing |
| ParallelGCThreads, // degree of mt discovery |
| false, // Reference discovery is not concurrent |
| &_is_alive_closure_stw); // is alive closure |
| } |
| |
| SoftRefPolicy* G1CollectedHeap::soft_ref_policy() { |
| return &_soft_ref_policy; |
| } |
| |
| size_t G1CollectedHeap::capacity() const { |
| return _hrm.length() * HeapRegion::GrainBytes; |
| } |
| |
| size_t G1CollectedHeap::unused_committed_regions_in_bytes() const { |
| return _hrm.total_free_bytes(); |
| } |
| |
| // Computes the sum of the storage used by the various regions. |
| size_t G1CollectedHeap::used() const { |
| size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions(); |
| return result; |
| } |
| |
| size_t G1CollectedHeap::used_unlocked() const { |
| return _summary_bytes_used; |
| } |
| |
| class SumUsedClosure: public HeapRegionClosure { |
| size_t _used; |
| public: |
| SumUsedClosure() : _used(0) {} |
| bool do_heap_region(HeapRegion* r) { |
| _used += r->used(); |
| return false; |
| } |
| size_t result() { return _used; } |
| }; |
| |
| size_t G1CollectedHeap::recalculate_used() const { |
| SumUsedClosure blk; |
| heap_region_iterate(&blk); |
| return blk.result(); |
| } |
| |
| bool G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) { |
| return GCCause::is_user_requested_gc(cause) && ExplicitGCInvokesConcurrent; |
| } |
| |
| bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) { |
| switch (cause) { |
| case GCCause::_g1_humongous_allocation: return true; |
| case GCCause::_g1_periodic_collection: return G1PeriodicGCInvokesConcurrent; |
| case GCCause::_wb_breakpoint: return true; |
| case GCCause::_codecache_GC_aggressive: return true; |
| case GCCause::_codecache_GC_threshold: return true; |
| default: return is_user_requested_concurrent_full_gc(cause); |
| } |
| } |
| |
| void G1CollectedHeap::increment_old_marking_cycles_started() { |
| assert(_old_marking_cycles_started == _old_marking_cycles_completed || |
| _old_marking_cycles_started == _old_marking_cycles_completed + 1, |
| "Wrong marking cycle count (started: %d, completed: %d)", |
| _old_marking_cycles_started, _old_marking_cycles_completed); |
| |
| _old_marking_cycles_started++; |
| } |
| |
| void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent, |
| bool whole_heap_examined) { |
| MonitorLocker ml(G1OldGCCount_lock, Mutex::_no_safepoint_check_flag); |
| |
| // We assume that if concurrent == true, then the caller is a |
| // concurrent thread that was joined the Suspendible Thread |
| // Set. If there's ever a cheap way to check this, we should add an |
| // assert here. |
| |
| // Given that this method is called at the end of a Full GC or of a |
| // concurrent cycle, and those can be nested (i.e., a Full GC can |
| // interrupt a concurrent cycle), the number of full collections |
| // completed should be either one (in the case where there was no |
| // nesting) or two (when a Full GC interrupted a concurrent cycle) |
| // behind the number of full collections started. |
| |
| // This is the case for the inner caller, i.e. a Full GC. |
| assert(concurrent || |
| (_old_marking_cycles_started == _old_marking_cycles_completed + 1) || |
| (_old_marking_cycles_started == _old_marking_cycles_completed + 2), |
| "for inner caller (Full GC): _old_marking_cycles_started = %u " |
| "is inconsistent with _old_marking_cycles_completed = %u", |
| _old_marking_cycles_started, _old_marking_cycles_completed); |
| |
| // This is the case for the outer caller, i.e. the concurrent cycle. |
| assert(!concurrent || |
| (_old_marking_cycles_started == _old_marking_cycles_completed + 1), |
| "for outer caller (concurrent cycle): " |
| "_old_marking_cycles_started = %u " |
| "is inconsistent with _old_marking_cycles_completed = %u", |
| _old_marking_cycles_started, _old_marking_cycles_completed); |
| |
| _old_marking_cycles_completed += 1; |
| if (whole_heap_examined) { |
| // Signal that we have completed a visit to all live objects. |
| record_whole_heap_examined_timestamp(); |
| } |
| |
| // We need to clear the "in_progress" flag in the CM thread before |
| // we wake up any waiters (especially when ExplicitInvokesConcurrent |
| // is set) so that if a waiter requests another System.gc() it doesn't |
| // incorrectly see that a marking cycle is still in progress. |
| if (concurrent) { |
| _cm_thread->set_idle(); |
| } |
| |
| // Notify threads waiting in System.gc() (with ExplicitGCInvokesConcurrent) |
| // for a full GC to finish that their wait is over. |
| ml.notify_all(); |
| } |
| |
| // Helper for collect(). |
| static G1GCCounters collection_counters(G1CollectedHeap* g1h) { |
| MutexLocker ml(Heap_lock); |
| return G1GCCounters(g1h); |
| } |
| |
| void G1CollectedHeap::collect(GCCause::Cause cause) { |
| try_collect(cause, collection_counters(this)); |
| } |
| |
| // Return true if (x < y) with allowance for wraparound. |
| static bool gc_counter_less_than(uint x, uint y) { |
| return (x - y) > (UINT_MAX/2); |
| } |
| |
| // LOG_COLLECT_CONCURRENTLY(cause, msg, args...) |
| // Macro so msg printing is format-checked. |
| #define LOG_COLLECT_CONCURRENTLY(cause, ...) \ |
| do { \ |
| LogTarget(Trace, gc) LOG_COLLECT_CONCURRENTLY_lt; \ |
| if (LOG_COLLECT_CONCURRENTLY_lt.is_enabled()) { \ |
| ResourceMark rm; /* For thread name. */ \ |
| LogStream LOG_COLLECT_CONCURRENTLY_s(&LOG_COLLECT_CONCURRENTLY_lt); \ |
| LOG_COLLECT_CONCURRENTLY_s.print("%s: Try Collect Concurrently (%s): ", \ |
| Thread::current()->name(), \ |
| GCCause::to_string(cause)); \ |
| LOG_COLLECT_CONCURRENTLY_s.print(__VA_ARGS__); \ |
| } \ |
| } while (0) |
| |
| #define LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, result) \ |
| LOG_COLLECT_CONCURRENTLY(cause, "complete %s", BOOL_TO_STR(result)) |
| |
| bool G1CollectedHeap::try_collect_concurrently(GCCause::Cause cause, |
| uint gc_counter, |
| uint old_marking_started_before) { |
| assert_heap_not_locked(); |
| assert(should_do_concurrent_full_gc(cause), |
| "Non-concurrent cause %s", GCCause::to_string(cause)); |
| |
| for (uint i = 1; true; ++i) { |
| // Try to schedule concurrent start evacuation pause that will |
| // start a concurrent cycle. |
| LOG_COLLECT_CONCURRENTLY(cause, "attempt %u", i); |
| VM_G1TryInitiateConcMark op(gc_counter, cause); |
| VMThread::execute(&op); |
| |
| // Request is trivially finished. |
| if (cause == GCCause::_g1_periodic_collection) { |
| LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, op.gc_succeeded()); |
| return op.gc_succeeded(); |
| } |
| |
| // If VMOp skipped initiating concurrent marking cycle because |
| // we're terminating, then we're done. |
| if (op.terminating()) { |
| LOG_COLLECT_CONCURRENTLY(cause, "skipped: terminating"); |
| return false; |
| } |
| |
| // Lock to get consistent set of values. |
| uint old_marking_started_after; |
| uint old_marking_completed_after; |
| { |
| MutexLocker ml(Heap_lock); |
| // Update gc_counter for retrying VMOp if needed. Captured here to be |
| // consistent with the values we use below for termination tests. If |
| // a retry is needed after a possible wait, and another collection |
| // occurs in the meantime, it will cause our retry to be skipped and |
| // we'll recheck for termination with updated conditions from that |
| // more recent collection. That's what we want, rather than having |
| // our retry possibly perform an unnecessary collection. |
| gc_counter = total_collections(); |
| old_marking_started_after = _old_marking_cycles_started; |
| old_marking_completed_after = _old_marking_cycles_completed; |
| } |
| |
| if (cause == GCCause::_wb_breakpoint) { |
| if (op.gc_succeeded()) { |
| LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true); |
| return true; |
| } |
| // When _wb_breakpoint there can't be another cycle or deferred. |
| assert(!op.cycle_already_in_progress(), "invariant"); |
| assert(!op.whitebox_attached(), "invariant"); |
| // Concurrent cycle attempt might have been cancelled by some other |
| // collection, so retry. Unlike other cases below, we want to retry |
| // even if cancelled by a STW full collection, because we really want |
| // to start a concurrent cycle. |
| if (old_marking_started_before != old_marking_started_after) { |
| LOG_COLLECT_CONCURRENTLY(cause, "ignoring STW full GC"); |
| old_marking_started_before = old_marking_started_after; |
| } |
| } else if (!GCCause::is_user_requested_gc(cause)) { |
| // For an "automatic" (not user-requested) collection, we just need to |
| // ensure that progress is made. |
| // |
| // Request is finished if any of |
| // (1) the VMOp successfully performed a GC, |
| // (2) a concurrent cycle was already in progress, |
| // (3) whitebox is controlling concurrent cycles, |
| // (4) a new cycle was started (by this thread or some other), or |
| // (5) a Full GC was performed. |
| // Cases (4) and (5) are detected together by a change to |
| // _old_marking_cycles_started. |
| // |
| // Note that (1) does not imply (4). If we're still in the mixed |
| // phase of an earlier concurrent collection, the request to make the |
| // collection a concurrent start won't be honored. If we don't check for |
| // both conditions we'll spin doing back-to-back collections. |
| if (op.gc_succeeded() || |
| op.cycle_already_in_progress() || |
| op.whitebox_attached() || |
| (old_marking_started_before != old_marking_started_after)) { |
| LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true); |
| return true; |
| } |
| } else { // User-requested GC. |
| // For a user-requested collection, we want to ensure that a complete |
| // full collection has been performed before returning, but without |
| // waiting for more than needed. |
| |
| // For user-requested GCs (unlike non-UR), a successful VMOp implies a |
| // new cycle was started. That's good, because it's not clear what we |
| // should do otherwise. Trying again just does back to back GCs. |
| // Can't wait for someone else to start a cycle. And returning fails |
| // to meet the goal of ensuring a full collection was performed. |
| assert(!op.gc_succeeded() || |
| (old_marking_started_before != old_marking_started_after), |
| "invariant: succeeded %s, started before %u, started after %u", |
| BOOL_TO_STR(op.gc_succeeded()), |
| old_marking_started_before, old_marking_started_after); |
| |
| // Request is finished if a full collection (concurrent or stw) |
| // was started after this request and has completed, e.g. |
| // started_before < completed_after. |
| if (gc_counter_less_than(old_marking_started_before, |
| old_marking_completed_after)) { |
| LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true); |
| return true; |
| } |
| |
| if (old_marking_started_after != old_marking_completed_after) { |
| // If there is an in-progress cycle (possibly started by us), then |
| // wait for that cycle to complete, e.g. |
| // while completed_now < started_after. |
| LOG_COLLECT_CONCURRENTLY(cause, "wait"); |
| MonitorLocker ml(G1OldGCCount_lock); |
| while (gc_counter_less_than(_old_marking_cycles_completed, |
| old_marking_started_after)) { |
| ml.wait(); |
| } |
| // Request is finished if the collection we just waited for was |
| // started after this request. |
| if (old_marking_started_before != old_marking_started_after) { |
| LOG_COLLECT_CONCURRENTLY(cause, "complete after wait"); |
| return true; |
| } |
| } |
| |
| // If VMOp was successful then it started a new cycle that the above |
| // wait &etc should have recognized as finishing this request. This |
| // differs from a non-user-request, where gc_succeeded does not imply |
| // a new cycle was started. |
| assert(!op.gc_succeeded(), "invariant"); |
| |
| if (op.cycle_already_in_progress()) { |
| // If VMOp failed because a cycle was already in progress, it |
| // is now complete. But it didn't finish this user-requested |
| // GC, so try again. |
| LOG_COLLECT_CONCURRENTLY(cause, "retry after in-progress"); |
| continue; |
| } else if (op.whitebox_attached()) { |
| // If WhiteBox wants control, wait for notification of a state |
| // change in the controller, then try again. Don't wait for |
| // release of control, since collections may complete while in |
| // control. Note: This won't recognize a STW full collection |
| // while waiting; we can't wait on multiple monitors. |
| LOG_COLLECT_CONCURRENTLY(cause, "whitebox control stall"); |
| MonitorLocker ml(ConcurrentGCBreakpoints::monitor()); |
| if (ConcurrentGCBreakpoints::is_controlled()) { |
| ml.wait(); |
| } |
| continue; |
| } |
| } |
| |
| // Collection failed and should be retried. |
| assert(op.transient_failure(), "invariant"); |
| |
| if (GCLocker::is_active_and_needs_gc()) { |
| // If GCLocker is active, wait until clear before retrying. |
| LOG_COLLECT_CONCURRENTLY(cause, "gc-locker stall"); |
| GCLocker::stall_until_clear(); |
| } |
| |
| LOG_COLLECT_CONCURRENTLY(cause, "retry"); |
| } |
| } |
| |
| bool G1CollectedHeap::try_collect_fullgc(GCCause::Cause cause, |
| const G1GCCounters& counters_before) { |
| assert_heap_not_locked(); |
| |
| while(true) { |
| VM_G1CollectFull op(counters_before.total_collections(), |
| counters_before.total_full_collections(), |
| cause); |
| VMThread::execute(&op); |
| |
| // Request is trivially finished. |
| if (!GCCause::is_explicit_full_gc(cause) || op.gc_succeeded()) { |
| return op.gc_succeeded(); |
| } |
| |
| { |
| MutexLocker ml(Heap_lock); |
| if (counters_before.total_full_collections() != total_full_collections()) { |
| return true; |
| } |
| } |
| |
| if (GCLocker::is_active_and_needs_gc()) { |
| // If GCLocker is active, wait until clear before retrying. |
| GCLocker::stall_until_clear(); |
| } |
| } |
| } |
| |
| bool G1CollectedHeap::try_collect(GCCause::Cause cause, |
| const G1GCCounters& counters_before) { |
| if (should_do_concurrent_full_gc(cause)) { |
| return try_collect_concurrently(cause, |
| counters_before.total_collections(), |
| counters_before.old_marking_cycles_started()); |
| } else if (GCLocker::should_discard(cause, counters_before.total_collections())) { |
| // Indicate failure to be consistent with VMOp failure due to |
| // another collection slipping in after our gc_count but before |
| // our request is processed. |
| return false; |
| } else if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc |
| DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) { |
| |
| // Schedule a standard evacuation pause. We're setting word_size |
| // to 0 which means that we are not requesting a post-GC allocation. |
| VM_G1CollectForAllocation op(0, /* word_size */ |
| counters_before.total_collections(), |
| cause); |
| VMThread::execute(&op); |
| return op.gc_succeeded(); |
| } else { |
| // Schedule a Full GC. |
| return try_collect_fullgc(cause, counters_before); |
| } |
| } |
| |
| void G1CollectedHeap::start_concurrent_gc_for_metadata_allocation(GCCause::Cause gc_cause) { |
| GCCauseSetter x(this, gc_cause); |
| |
| // At this point we are supposed to start a concurrent cycle. We |
| // will do so if one is not already in progress. |
| bool should_start = policy()->force_concurrent_start_if_outside_cycle(gc_cause); |
| if (should_start) { |
| do_collection_pause_at_safepoint(); |
| } |
| } |
| |
| bool G1CollectedHeap::is_in(const void* p) const { |
| return is_in_reserved(p) && _hrm.is_available(addr_to_region(p)); |
| } |
| |
| // Iteration functions. |
| |
| // Iterates an ObjectClosure over all objects within a HeapRegion. |
| |
| class IterateObjectClosureRegionClosure: public HeapRegionClosure { |
| ObjectClosure* _cl; |
| public: |
| IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {} |
| bool do_heap_region(HeapRegion* r) { |
| if (!r->is_continues_humongous()) { |
| r->object_iterate(_cl); |
| } |
| return false; |
| } |
| }; |
| |
| void G1CollectedHeap::object_iterate(ObjectClosure* cl) { |
| IterateObjectClosureRegionClosure blk(cl); |
| heap_region_iterate(&blk); |
| } |
| |
| class G1ParallelObjectIterator : public ParallelObjectIteratorImpl { |
| private: |
| G1CollectedHeap* _heap; |
| HeapRegionClaimer _claimer; |
| |
| public: |
| G1ParallelObjectIterator(uint thread_num) : |
| _heap(G1CollectedHeap::heap()), |
| _claimer(thread_num == 0 ? G1CollectedHeap::heap()->workers()->active_workers() : thread_num) {} |
| |
| virtual void object_iterate(ObjectClosure* cl, uint worker_id) { |
| _heap->object_iterate_parallel(cl, worker_id, &_claimer); |
| } |
| }; |
| |
| ParallelObjectIteratorImpl* G1CollectedHeap::parallel_object_iterator(uint thread_num) { |
| return new G1ParallelObjectIterator(thread_num); |
| } |
| |
| void G1CollectedHeap::object_iterate_parallel(ObjectClosure* cl, uint worker_id, HeapRegionClaimer* claimer) { |
| IterateObjectClosureRegionClosure blk(cl); |
| heap_region_par_iterate_from_worker_offset(&blk, claimer, worker_id); |
| } |
| |
| void G1CollectedHeap::keep_alive(oop obj) { |
| G1BarrierSet::enqueue_preloaded(obj); |
| } |
| |
| void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const { |
| _hrm.iterate(cl); |
| } |
| |
| void G1CollectedHeap::heap_region_iterate(HeapRegionIndexClosure* cl) const { |
| _hrm.iterate(cl); |
| } |
| |
| void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl, |
| HeapRegionClaimer *hrclaimer, |
| uint worker_id) const { |
| _hrm.par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id)); |
| } |
| |
| void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl, |
| HeapRegionClaimer *hrclaimer) const { |
| _hrm.par_iterate(cl, hrclaimer, 0); |
| } |
| |
| void G1CollectedHeap::collection_set_iterate_all(HeapRegionClosure* cl) { |
| _collection_set.iterate(cl); |
| } |
| |
| void G1CollectedHeap::collection_set_par_iterate_all(HeapRegionClosure* cl, |
| HeapRegionClaimer* hr_claimer, |
| uint worker_id) { |
| _collection_set.par_iterate(cl, hr_claimer, worker_id); |
| } |
| |
| void G1CollectedHeap::collection_set_iterate_increment_from(HeapRegionClosure *cl, |
| HeapRegionClaimer* hr_claimer, |
| uint worker_id) { |
| _collection_set.iterate_incremental_part_from(cl, hr_claimer, worker_id); |
| } |
| |
| void G1CollectedHeap::par_iterate_regions_array(HeapRegionClosure* cl, |
| HeapRegionClaimer* hr_claimer, |
| const uint regions[], |
| size_t length, |
| uint worker_id) const { |
| assert_at_safepoint(); |
| if (length == 0) { |
| return; |
| } |
| uint total_workers = workers()->active_workers(); |
| |
| size_t start_pos = (worker_id * length) / total_workers; |
| size_t cur_pos = start_pos; |
| |
| do { |
| uint region_idx = regions[cur_pos]; |
| if (hr_claimer == nullptr || hr_claimer->claim_region(region_idx)) { |
| HeapRegion* r = region_at(region_idx); |
| bool result = cl->do_heap_region(r); |
| guarantee(!result, "Must not cancel iteration"); |
| } |
| |
| cur_pos++; |
| if (cur_pos == length) { |
| cur_pos = 0; |
| } |
| } while (cur_pos != start_pos); |
| } |
| |
| HeapWord* G1CollectedHeap::block_start(const void* addr) const { |
| HeapRegion* hr = heap_region_containing(addr); |
| // The CollectedHeap API requires us to not fail for any given address within |
| // the heap. HeapRegion::block_start() has been optimized to not accept addresses |
| // outside of the allocated area. |
| if (addr >= hr->top()) { |
| return nullptr; |
| } |
| return hr->block_start(addr); |
| } |
| |
| bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const { |
| HeapRegion* hr = heap_region_containing(addr); |
| return hr->block_is_obj(addr, hr->parsable_bottom_acquire()); |
| } |
| |
| size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const { |
| return (_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes; |
| } |
| |
| size_t G1CollectedHeap::tlab_used(Thread* ignored) const { |
| return _eden.length() * HeapRegion::GrainBytes; |
| } |
| |
| // For G1 TLABs should not contain humongous objects, so the maximum TLAB size |
| // must be equal to the humongous object limit. |
| size_t G1CollectedHeap::max_tlab_size() const { |
| return align_down(_humongous_object_threshold_in_words, MinObjAlignment); |
| } |
| |
| size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const { |
| return _allocator->unsafe_max_tlab_alloc(); |
| } |
| |
| size_t G1CollectedHeap::max_capacity() const { |
| return max_regions() * HeapRegion::GrainBytes; |
| } |
| |
| void G1CollectedHeap::prepare_for_verify() { |
| _verifier->prepare_for_verify(); |
| } |
| |
| void G1CollectedHeap::verify(VerifyOption vo) { |
| _verifier->verify(vo); |
| } |
| |
| bool G1CollectedHeap::supports_concurrent_gc_breakpoints() const { |
| return true; |
| } |
| |
| class PrintRegionClosure: public HeapRegionClosure { |
| outputStream* _st; |
| public: |
| PrintRegionClosure(outputStream* st) : _st(st) {} |
| bool do_heap_region(HeapRegion* r) { |
| r->print_on(_st); |
| return false; |
| } |
| }; |
| |
| bool G1CollectedHeap::is_obj_dead_cond(const oop obj, |
| const HeapRegion* hr, |
| const VerifyOption vo) const { |
| switch (vo) { |
| case VerifyOption::G1UseConcMarking: return is_obj_dead(obj, hr); |
| case VerifyOption::G1UseFullMarking: return is_obj_dead_full(obj, hr); |
| default: ShouldNotReachHere(); |
| } |
| return false; // keep some compilers happy |
| } |
| |
| bool G1CollectedHeap::is_obj_dead_cond(const oop obj, |
| const VerifyOption vo) const { |
| switch (vo) { |
| case VerifyOption::G1UseConcMarking: return is_obj_dead(obj); |
| case VerifyOption::G1UseFullMarking: return is_obj_dead_full(obj); |
| default: ShouldNotReachHere(); |
| } |
| return false; // keep some compilers happy |
| } |
| |
| void G1CollectedHeap::pin_object(JavaThread* thread, oop obj) { |
| GCLocker::lock_critical(thread); |
| } |
| |
| void G1CollectedHeap::unpin_object(JavaThread* thread, oop obj) { |
| GCLocker::unlock_critical(thread); |
| } |
| |
| void G1CollectedHeap::print_heap_regions() const { |
| LogTarget(Trace, gc, heap, region) lt; |
| if (lt.is_enabled()) { |
| LogStream ls(lt); |
| print_regions_on(&ls); |
| } |
| } |
| |
| void G1CollectedHeap::print_on(outputStream* st) const { |
| size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked(); |
| st->print(" %-20s", "garbage-first heap"); |
| st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K", |
| capacity()/K, heap_used/K); |
| st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")", |
| p2i(_hrm.reserved().start()), |
| p2i(_hrm.reserved().end())); |
| st->cr(); |
| st->print(" region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K); |
| uint young_regions = young_regions_count(); |
| st->print("%u young (" SIZE_FORMAT "K), ", young_regions, |
| (size_t) young_regions * HeapRegion::GrainBytes / K); |
| uint survivor_regions = survivor_regions_count(); |
| st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions, |
| (size_t) survivor_regions * HeapRegion::GrainBytes / K); |
| st->cr(); |
| if (_numa->is_enabled()) { |
| uint num_nodes = _numa->num_active_nodes(); |
| st->print(" remaining free region(s) on each NUMA node: "); |
| const int* node_ids = _numa->node_ids(); |
| for (uint node_index = 0; node_index < num_nodes; node_index++) { |
| uint num_free_regions = _hrm.num_free_regions(node_index); |
| st->print("%d=%u ", node_ids[node_index], num_free_regions); |
| } |
| st->cr(); |
| } |
| MetaspaceUtils::print_on(st); |
| } |
| |
| void G1CollectedHeap::print_regions_on(outputStream* st) const { |
| st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, " |
| "HS=humongous(starts), HC=humongous(continues), " |
| "CS=collection set, F=free, " |
| "TAMS=top-at-mark-start, " |
| "PB=parsable bottom"); |
| PrintRegionClosure blk(st); |
| heap_region_iterate(&blk); |
| } |
| |
| void G1CollectedHeap::print_extended_on(outputStream* st) const { |
| print_on(st); |
| |
| // Print the per-region information. |
| st->cr(); |
| print_regions_on(st); |
| } |
| |
| void G1CollectedHeap::print_on_error(outputStream* st) const { |
| this->CollectedHeap::print_on_error(st); |
| |
| if (_cm != nullptr) { |
| st->cr(); |
| _cm->print_on_error(st); |
| } |
| } |
| |
| void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const { |
| workers()->threads_do(tc); |
| tc->do_thread(_cm_thread); |
| _cm->threads_do(tc); |
| _cr->threads_do(tc); |
| tc->do_thread(_service_thread); |
| } |
| |
| void G1CollectedHeap::print_tracing_info() const { |
| rem_set()->print_summary_info(); |
| concurrent_mark()->print_summary_info(); |
| } |
| |
| bool G1CollectedHeap::print_location(outputStream* st, void* addr) const { |
| return BlockLocationPrinter<G1CollectedHeap>::print_location(st, addr); |
| } |
| |
| G1HeapSummary G1CollectedHeap::create_g1_heap_summary() { |
| |
| size_t eden_used_bytes = _monitoring_support->eden_space_used(); |
| size_t survivor_used_bytes = _monitoring_support->survivor_space_used(); |
| size_t old_gen_used_bytes = _monitoring_support->old_gen_used(); |
| size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked(); |
| |
| size_t eden_capacity_bytes = |
| (policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes; |
| |
| VirtualSpaceSummary heap_summary = create_heap_space_summary(); |
| return G1HeapSummary(heap_summary, heap_used, eden_used_bytes, eden_capacity_bytes, |
| survivor_used_bytes, old_gen_used_bytes, num_regions()); |
| } |
| |
| G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) { |
| return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(), |
| stats->unused(), stats->used(), stats->region_end_waste(), |
| stats->regions_filled(), stats->num_plab_filled(), |
| stats->direct_allocated(), stats->num_direct_allocated(), |
| stats->failure_used(), stats->failure_waste()); |
| } |
| |
| void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) { |
| const G1HeapSummary& heap_summary = create_g1_heap_summary(); |
| gc_tracer->report_gc_heap_summary(when, heap_summary); |
| |
| const MetaspaceSummary& metaspace_summary = create_metaspace_summary(); |
| gc_tracer->report_metaspace_summary(when, metaspace_summary); |
| } |
| |
| void G1CollectedHeap::gc_prologue(bool full) { |
| assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer"); |
| |
| // Update common counters. |
| increment_total_collections(full /* full gc */); |
| if (full || collector_state()->in_concurrent_start_gc()) { |
| increment_old_marking_cycles_started(); |
| } |
| } |
| |
| void G1CollectedHeap::gc_epilogue(bool full) { |
| // Update common counters. |
| if (full) { |
| // Update the number of full collections that have been completed. |
| increment_old_marking_cycles_completed(false /* concurrent */, true /* liveness_completed */); |
| } |
| |
| #if COMPILER2_OR_JVMCI |
| assert(DerivedPointerTable::is_empty(), "derived pointer present"); |
| #endif |
| |
| // We have just completed a GC. Update the soft reference |
| // policy with the new heap occupancy |
| Universe::heap()->update_capacity_and_used_at_gc(); |
| |
| _collection_pause_end = Ticks::now(); |
| |
| _free_arena_memory_task->notify_new_stats(&_young_gen_card_set_stats, |
| &_collection_set_candidates_card_set_stats); |
| } |
| |
| uint G1CollectedHeap::uncommit_regions(uint region_limit) { |
| return _hrm.uncommit_inactive_regions(region_limit); |
| } |
| |
| bool G1CollectedHeap::has_uncommittable_regions() { |
| return _hrm.has_inactive_regions(); |
| } |
| |
| void G1CollectedHeap::uncommit_regions_if_necessary() { |
| if (has_uncommittable_regions()) { |
| G1UncommitRegionTask::enqueue(); |
| } |
| } |
| |
| void G1CollectedHeap::verify_numa_regions(const char* desc) { |
| LogTarget(Trace, gc, heap, verify) lt; |
| |
| if (lt.is_enabled()) { |
| LogStream ls(lt); |
| // Iterate all heap regions to print matching between preferred numa id and actual numa id. |
| G1NodeIndexCheckClosure cl(desc, _numa, &ls); |
| heap_region_iterate(&cl); |
| } |
| } |
| |
| HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size, |
| uint gc_count_before, |
| bool* succeeded, |
| GCCause::Cause gc_cause) { |
| assert_heap_not_locked_and_not_at_safepoint(); |
| VM_G1CollectForAllocation op(word_size, gc_count_before, gc_cause); |
| VMThread::execute(&op); |
| |
| HeapWord* result = op.result(); |
| bool ret_succeeded = op.prologue_succeeded() && op.gc_succeeded(); |
| assert(result == nullptr || ret_succeeded, |
| "the result should be null if the VM did not succeed"); |
| *succeeded = ret_succeeded; |
| |
| assert_heap_not_locked(); |
| return result; |
| } |
| |
| void G1CollectedHeap::start_concurrent_cycle(bool concurrent_operation_is_full_mark) { |
| assert(!_cm_thread->in_progress(), "Can not start concurrent operation while in progress"); |
| |
| MutexLocker x(CGC_lock, Mutex::_no_safepoint_check_flag); |
| if (concurrent_operation_is_full_mark) { |
| _cm->post_concurrent_mark_start(); |
| _cm_thread->start_full_mark(); |
| } else { |
| _cm->post_concurrent_undo_start(); |
| _cm_thread->start_undo_mark(); |
| } |
| CGC_lock->notify(); |
| } |
| |
| bool G1CollectedHeap::is_potential_eager_reclaim_candidate(HeapRegion* r) const { |
| // We don't nominate objects with many remembered set entries, on |
| // the assumption that such objects are likely still live. |
| HeapRegionRemSet* rem_set = r->rem_set(); |
| |
| return rem_set->occupancy_less_or_equal_than(G1EagerReclaimRemSetThreshold); |
| } |
| |
| #ifndef PRODUCT |
| void G1CollectedHeap::verify_region_attr_remset_is_tracked() { |
| class VerifyRegionAttrRemSet : public HeapRegionClosure { |
| public: |
| virtual bool do_heap_region(HeapRegion* r) { |
| G1CollectedHeap* g1h = G1CollectedHeap::heap(); |
| bool const remset_is_tracked = g1h->region_attr(r->bottom()).remset_is_tracked(); |
| assert(r->rem_set()->is_tracked() == remset_is_tracked, |
| "Region %u remset tracking status (%s) different to region attribute (%s)", |
| r->hrm_index(), BOOL_TO_STR(r->rem_set()->is_tracked()), BOOL_TO_STR(remset_is_tracked)); |
| return false; |
| } |
| } cl; |
| heap_region_iterate(&cl); |
| } |
| #endif |
| |
| void G1CollectedHeap::start_new_collection_set() { |
| collection_set()->start_incremental_building(); |
| |
| clear_region_attr(); |
| |
| guarantee(_eden.length() == 0, "eden should have been cleared"); |
| policy()->transfer_survivors_to_cset(survivor()); |
| |
| // We redo the verification but now wrt to the new CSet which |
| // has just got initialized after the previous CSet was freed. |
| _cm->verify_no_collection_set_oops(); |
| } |
| |
| G1HeapVerifier::G1VerifyType G1CollectedHeap::young_collection_verify_type() const { |
| if (collector_state()->in_concurrent_start_gc()) { |
| return G1HeapVerifier::G1VerifyConcurrentStart; |
| } else if (collector_state()->in_young_only_phase()) { |
| return G1HeapVerifier::G1VerifyYoungNormal; |
| } else { |
| return G1HeapVerifier::G1VerifyMixed; |
| } |
| } |
| |
| void G1CollectedHeap::verify_before_young_collection(G1HeapVerifier::G1VerifyType type) { |
| if (!VerifyBeforeGC) { |
| return; |
| } |
| if (!G1HeapVerifier::should_verify(type)) { |
| return; |
| } |
| Ticks start = Ticks::now(); |
| _verifier->prepare_for_verify(); |
| _verifier->verify_region_sets_optional(); |
| _verifier->verify_dirty_young_regions(); |
| _verifier->verify_before_gc(); |
| verify_numa_regions("GC Start"); |
| phase_times()->record_verify_before_time_ms((Ticks::now() - start).seconds() * MILLIUNITS); |
| } |
| |
| void G1CollectedHeap::verify_after_young_collection(G1HeapVerifier::G1VerifyType type) { |
| if (!VerifyAfterGC) { |
| return; |
| } |
| if (!G1HeapVerifier::should_verify(type)) { |
| return; |
| } |
| Ticks start = Ticks::now(); |
| _verifier->verify_after_gc(); |
| verify_numa_regions("GC End"); |
| _verifier->verify_region_sets_optional(); |
| phase_times()->record_verify_after_time_ms((Ticks::now() - start).seconds() * MILLIUNITS); |
| } |
| |
| void G1CollectedHeap::expand_heap_after_young_collection(){ |
| size_t expand_bytes = _heap_sizing_policy->young_collection_expansion_amount(); |
| if (expand_bytes > 0) { |
| // No need for an ergo logging here, |
| // expansion_amount() does this when it returns a value > 0. |
| double expand_ms = 0.0; |
| if (!expand(expand_bytes, _workers, &expand_ms)) { |
| // We failed to expand the heap. Cannot do anything about it. |
| } |
| phase_times()->record_expand_heap_time(expand_ms); |
| } |
| } |
| |
| bool G1CollectedHeap::do_collection_pause_at_safepoint() { |
| assert_at_safepoint_on_vm_thread(); |
| guarantee(!is_gc_active(), "collection is not reentrant"); |
| |
| if (GCLocker::check_active_before_gc()) { |
| return false; |
| } |
| |
| do_collection_pause_at_safepoint_helper(); |
| return true; |
| } |
| |
| G1HeapPrinterMark::G1HeapPrinterMark(G1CollectedHeap* g1h) : _g1h(g1h), _heap_transition(g1h) { |
| // This summary needs to be printed before incrementing total collections. |
| _g1h->rem_set()->print_periodic_summary_info("Before GC RS summary", |
| _g1h->total_collections(), |
| true /* show_thread_times */); |
| _g1h->print_heap_before_gc(); |
| _g1h->print_heap_regions(); |
| } |
| |
| G1HeapPrinterMark::~G1HeapPrinterMark() { |
| _g1h->policy()->print_age_table(); |
| _g1h->rem_set()->print_coarsen_stats(); |
| // We are at the end of the GC. Total collections has already been increased. |
| _g1h->rem_set()->print_periodic_summary_info("After GC RS summary", |
| _g1h->total_collections() - 1, |
| false /* show_thread_times */); |
| |
| _heap_transition.print(); |
| _g1h->print_heap_regions(); |
| _g1h->print_heap_after_gc(); |
| // Print NUMA statistics. |
| _g1h->numa()->print_statistics(); |
| } |
| |
| G1JFRTracerMark::G1JFRTracerMark(STWGCTimer* timer, GCTracer* tracer) : |
| _timer(timer), _tracer(tracer) { |
| |
| _timer->register_gc_start(); |
| _tracer->report_gc_start(G1CollectedHeap::heap()->gc_cause(), _timer->gc_start()); |
| G1CollectedHeap::heap()->trace_heap_before_gc(_tracer); |
| } |
| |
| G1JFRTracerMark::~G1JFRTracerMark() { |
| G1CollectedHeap::heap()->trace_heap_after_gc(_tracer); |
| _timer->register_gc_end(); |
| _tracer->report_gc_end(_timer->gc_end(), _timer->time_partitions()); |
| } |
| |
| void G1CollectedHeap::prepare_for_mutator_after_young_collection() { |
| Ticks start = Ticks::now(); |
| |
| _survivor_evac_stats.adjust_desired_plab_size(); |
| _old_evac_stats.adjust_desired_plab_size(); |
| |
| // Start a new incremental collection set for the mutator phase. |
| start_new_collection_set(); |
| _allocator->init_mutator_alloc_regions(); |
| |
| phase_times()->record_prepare_for_mutator_time_ms((Ticks::now() - start).seconds() * 1000.0); |
| } |
| |
| void G1CollectedHeap::retire_tlabs() { |
| ensure_parsability(true); |
| } |
| |
| void G1CollectedHeap::do_collection_pause_at_safepoint_helper() { |
| ResourceMark rm; |
| |
| IsGCActiveMark active_gc_mark; |
| GCIdMark gc_id_mark; |
| SvcGCMarker sgcm(SvcGCMarker::MINOR); |
| |
| GCTraceCPUTime tcpu(_gc_tracer_stw); |
| |
| _bytes_used_during_gc = 0; |
| |
| policy()->decide_on_concurrent_start_pause(); |
| // Record whether this pause may need to trigger a concurrent operation. Later, |
| // when we signal the G1ConcurrentMarkThread, the collector state has already |
| // been reset for the next pause. |
| bool should_start_concurrent_mark_operation = collector_state()->in_concurrent_start_gc(); |
| |
| // Perform the collection. |
| G1YoungCollector collector(gc_cause()); |
| collector.collect(); |
| |
| // It should now be safe to tell the concurrent mark thread to start |
| // without its logging output interfering with the logging output |
| // that came from the pause. |
| if (should_start_concurrent_mark_operation) { |
| verifier()->verify_bitmap_clear(true /* above_tams_only */); |
| // CAUTION: after the start_concurrent_cycle() call below, the concurrent marking |
| // thread(s) could be running concurrently with us. Make sure that anything |
| // after this point does not assume that we are the only GC thread running. |
| // Note: of course, the actual marking work will not start until the safepoint |
| // itself is released in SuspendibleThreadSet::desynchronize(). |
| start_concurrent_cycle(collector.concurrent_operation_is_full_mark()); |
| ConcurrentGCBreakpoints::notify_idle_to_active(); |
| } |
| } |
| |
| void G1CollectedHeap::complete_cleaning(bool class_unloading_occurred) { |
| uint num_workers = workers()->active_workers(); |
| G1ParallelCleaningTask unlink_task(num_workers, class_unloading_occurred); |
| workers()->run_task(&unlink_task); |
| } |
| |
| void G1CollectedHeap::unload_classes_and_code(const char* description, BoolObjectClosure* is_alive, GCTimer* timer) { |
| GCTraceTime(Debug, gc, phases) debug(description, timer); |
| |
| ClassUnloadingContext ctx(workers()->active_workers(), |
| false /* unregister_nmethods_during_purge */, |
| false /* lock_codeblob_free_separately */); |
| { |
| CodeCache::UnlinkingScope scope(is_alive); |
| bool unloading_occurred = SystemDictionary::do_unloading(timer); |
| GCTraceTime(Debug, gc, phases) t("G1 Complete Cleaning", timer); |
| complete_cleaning(unloading_occurred); |
| } |
| { |
| GCTraceTime(Debug, gc, phases) t("Purge Unlinked NMethods", timer); |
| ctx.purge_nmethods(); |
| } |
| { |
| GCTraceTime(Debug, gc, phases) ur("Unregister NMethods", timer); |
| G1CollectedHeap::heap()->bulk_unregister_nmethods(); |
| } |
| { |
| GCTraceTime(Debug, gc, phases) t("Free Code Blobs", timer); |
| ctx.free_code_blobs(); |
| } |
| { |
| GCTraceTime(Debug, gc, phases) t("Purge Class Loader Data", timer); |
| ClassLoaderDataGraph::purge(true /* at_safepoint */); |
| DEBUG_ONLY(MetaspaceUtils::verify();) |
| } |
| } |
| |
| class G1BulkUnregisterNMethodTask : public WorkerTask { |
| HeapRegionClaimer _hrclaimer; |
| |
| class UnregisterNMethodsHeapRegionClosure : public HeapRegionClosure { |
| public: |
| |
| bool do_heap_region(HeapRegion* hr) { |
| hr->rem_set()->bulk_remove_code_roots(); |
| return false; |
| } |
| } _cl; |
| |
| public: |
| G1BulkUnregisterNMethodTask(uint num_workers) |
| : WorkerTask("G1 Remove Unlinked NMethods From Code Root Set Task"), |
| _hrclaimer(num_workers) { } |
| |
| void work(uint worker_id) { |
| G1CollectedHeap::heap()->heap_region_par_iterate_from_worker_offset(&_cl, &_hrclaimer, worker_id); |
| } |
| }; |
| |
| void G1CollectedHeap::bulk_unregister_nmethods() { |
| uint num_workers = workers()->active_workers(); |
| G1BulkUnregisterNMethodTask t(num_workers); |
| workers()->run_task(&t); |
| } |
| |
| bool G1STWSubjectToDiscoveryClosure::do_object_b(oop obj) { |
| assert(obj != nullptr, "must not be null"); |
| assert(_g1h->is_in_reserved(obj), "Trying to discover obj " PTR_FORMAT " not in heap", p2i(obj)); |
| // The areas the CM and STW ref processor manage must be disjoint. The is_in_cset() below |
| // may falsely indicate that this is not the case here: however the collection set only |
| // contains old regions when concurrent mark is not running. |
| return _g1h->is_in_cset(obj) || _g1h->heap_region_containing(obj)->is_survivor(); |
| } |
| |
| void G1CollectedHeap::make_pending_list_reachable() { |
| if (collector_state()->in_concurrent_start_gc()) { |
| oop pll_head = Universe::reference_pending_list(); |
| if (pll_head != nullptr) { |
| // Any valid worker id is fine here as we are in the VM thread and single-threaded. |
| _cm->mark_in_bitmap(0 /* worker_id */, pll_head); |
| } |
| } |
| } |
| |
| void G1CollectedHeap::set_humongous_stats(uint num_humongous_total, uint num_humongous_candidates) { |
| _num_humongous_objects = num_humongous_total; |
| _num_humongous_reclaim_candidates = num_humongous_candidates; |
| } |
| |
| bool G1CollectedHeap::should_sample_collection_set_candidates() const { |
| const G1CollectionSetCandidates* candidates = collection_set()->candidates(); |
| return !candidates->is_empty(); |
| } |
| |
| void G1CollectedHeap::set_collection_set_candidates_stats(G1MonotonicArenaMemoryStats& stats) { |
| _collection_set_candidates_card_set_stats = stats; |
| } |
| |
| void G1CollectedHeap::set_young_gen_card_set_stats(const G1MonotonicArenaMemoryStats& stats) { |
| _young_gen_card_set_stats = stats; |
| } |
| |
| void G1CollectedHeap::record_obj_copy_mem_stats() { |
| policy()->old_gen_alloc_tracker()-> |
| add_allocated_bytes_since_last_gc(_old_evac_stats.allocated() * HeapWordSize); |
| |
| _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats), |
| create_g1_evac_summary(&_old_evac_stats)); |
| } |
| |
| void G1CollectedHeap::clear_bitmap_for_region(HeapRegion* hr) { |
| concurrent_mark()->clear_bitmap_for_region(hr); |
| } |
| |
| void G1CollectedHeap::free_region(HeapRegion* hr, FreeRegionList* free_list) { |
| assert(!hr->is_free(), "the region should not be free"); |
| assert(!hr->is_empty(), "the region should not be empty"); |
| assert(_hrm.is_available(hr->hrm_index()), "region should be committed"); |
| |
| // Reset region metadata to allow reuse. |
| hr->hr_clear(true /* clear_space */); |
| _policy->remset_tracker()->update_at_free(hr); |
| |
| if (free_list != nullptr) { |
| free_list->add_ordered(hr); |
| } |
| } |
| |
| void G1CollectedHeap::free_humongous_region(HeapRegion* hr, |
| FreeRegionList* free_list) { |
| assert(hr->is_humongous(), "this is only for humongous regions"); |
| hr->clear_humongous(); |
| free_region(hr, free_list); |
| } |
| |
| void G1CollectedHeap::remove_from_old_gen_sets(const uint old_regions_removed, |
| const uint humongous_regions_removed) { |
| if (old_regions_removed > 0 || humongous_regions_removed > 0) { |
| MutexLocker x(OldSets_lock, Mutex::_no_safepoint_check_flag); |
| _old_set.bulk_remove(old_regions_removed); |
| _humongous_set.bulk_remove(humongous_regions_removed); |
| } |
| |
| } |
| |
| void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) { |
| assert(list != nullptr, "list can't be null"); |
| if (!list->is_empty()) { |
| MutexLocker x(FreeList_lock, Mutex::_no_safepoint_check_flag); |
| _hrm.insert_list_into_free_list(list); |
| } |
| } |
| |
| void G1CollectedHeap::decrement_summary_bytes(size_t bytes) { |
| decrease_used(bytes); |
| } |
| |
| void G1CollectedHeap::clear_eden() { |
| _eden.clear(); |
| } |
| |
| void G1CollectedHeap::clear_collection_set() { |
| collection_set()->clear(); |
| } |
| |
| void G1CollectedHeap::rebuild_free_region_list() { |
| Ticks start = Ticks::now(); |
| _hrm.rebuild_free_list(workers()); |
| phase_times()->record_total_rebuild_freelist_time_ms((Ticks::now() - start).seconds() * 1000.0); |
| } |
| |
| class G1AbandonCollectionSetClosure : public HeapRegionClosure { |
| public: |
| virtual bool do_heap_region(HeapRegion* r) { |
| assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index()); |
| G1CollectedHeap::heap()->clear_region_attr(r); |
| r->clear_young_index_in_cset(); |
| return false; |
| } |
| }; |
| |
| void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) { |
| G1AbandonCollectionSetClosure cl; |
| collection_set_iterate_all(&cl); |
| |
| collection_set->clear(); |
| collection_set->stop_incremental_building(); |
| } |
| |
| bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) { |
| return _allocator->is_retained_old_region(hr); |
| } |
| |
| void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) { |
| _eden.add(hr); |
| _policy->set_region_eden(hr); |
| } |
| |
| #ifdef ASSERT |
| |
| class NoYoungRegionsClosure: public HeapRegionClosure { |
| private: |
| bool _success; |
| public: |
| NoYoungRegionsClosure() : _success(true) { } |
| bool do_heap_region(HeapRegion* r) { |
| if (r->is_young()) { |
| log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young", |
| p2i(r->bottom()), p2i(r->end())); |
| _success = false; |
| } |
| return false; |
| } |
| bool success() { return _success; } |
| }; |
| |
| bool G1CollectedHeap::check_young_list_empty() { |
| bool ret = (young_regions_count() == 0); |
| |
| NoYoungRegionsClosure closure; |
| heap_region_iterate(&closure); |
| ret = ret && closure.success(); |
| |
| return ret; |
| } |
| |
| #endif // ASSERT |
| |
| // Remove the given HeapRegion from the appropriate region set. |
| void G1CollectedHeap::prepare_region_for_full_compaction(HeapRegion* hr) { |
| if (hr->is_humongous()) { |
| _humongous_set.remove(hr); |
| } else if (hr->is_old()) { |
| _old_set.remove(hr); |
| } else if (hr->is_young()) { |
| // Note that emptying the eden and survivor lists is postponed and instead |
| // done as the first step when rebuilding the regions sets again. The reason |
| // for this is that during a full GC string deduplication needs to know if |
| // a collected region was young or old when the full GC was initiated. |
| hr->uninstall_surv_rate_group(); |
| } else { |
| // We ignore free regions, we'll empty the free list afterwards. |
| assert(hr->is_free(), "it cannot be another type"); |
| } |
| } |
| |
| void G1CollectedHeap::increase_used(size_t bytes) { |
| _summary_bytes_used += bytes; |
| } |
| |
| void G1CollectedHeap::decrease_used(size_t bytes) { |
| assert(_summary_bytes_used >= bytes, |
| "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT, |
| _summary_bytes_used, bytes); |
| _summary_bytes_used -= bytes; |
| } |
| |
| void G1CollectedHeap::set_used(size_t bytes) { |
| _summary_bytes_used = bytes; |
| } |
| |
| class RebuildRegionSetsClosure : public HeapRegionClosure { |
| private: |
| bool _free_list_only; |
| |
| HeapRegionSet* _old_set; |
| HeapRegionSet* _humongous_set; |
| |
| HeapRegionManager* _hrm; |
| |
| size_t _total_used; |
| |
| public: |
| RebuildRegionSetsClosure(bool free_list_only, |
| HeapRegionSet* old_set, |
| HeapRegionSet* humongous_set, |
| HeapRegionManager* hrm) : |
| _free_list_only(free_list_only), _old_set(old_set), |
| _humongous_set(humongous_set), _hrm(hrm), _total_used(0) { |
| assert(_hrm->num_free_regions() == 0, "pre-condition"); |
| if (!free_list_only) { |
| assert(_old_set->is_empty(), "pre-condition"); |
| assert(_humongous_set->is_empty(), "pre-condition"); |
| } |
| } |
| |
| bool do_heap_region(HeapRegion* r) { |
| if (r->is_empty()) { |
| assert(r->rem_set()->is_empty(), "Empty regions should have empty remembered sets."); |
| // Add free regions to the free list |
| r->set_free(); |
| _hrm->insert_into_free_list(r); |
| } else if (!_free_list_only) { |
| assert(r->rem_set()->is_empty(), "At this point remembered sets must have been cleared."); |
| |
| if (r->is_humongous()) { |
| _humongous_set->add(r); |
| } else { |
| assert(r->is_young() || r->is_free() || r->is_old(), "invariant"); |
| // We now move all (non-humongous, non-old) regions to old gen, |
| // and register them as such. |
| r->move_to_old(); |
| _old_set->add(r); |
| } |
| _total_used += r->used(); |
| } |
| |
| return false; |
| } |
| |
| size_t total_used() { |
| return _total_used; |
| } |
| }; |
| |
| void G1CollectedHeap::rebuild_region_sets(bool free_list_only) { |
| assert_at_safepoint_on_vm_thread(); |
| |
| if (!free_list_only) { |
| _eden.clear(); |
| _survivor.clear(); |
| } |
| |
| RebuildRegionSetsClosure cl(free_list_only, |
| &_old_set, &_humongous_set, |
| &_hrm); |
| heap_region_iterate(&cl); |
| |
| if (!free_list_only) { |
| set_used(cl.total_used()); |
| } |
| assert_used_and_recalculate_used_equal(this); |
| } |
| |
| // Methods for the mutator alloc region |
| |
| HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size, |
| bool force, |
| uint node_index) { |
| assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); |
| bool should_allocate = policy()->should_allocate_mutator_region(); |
| if (force || should_allocate) { |
| HeapRegion* new_alloc_region = new_region(word_size, |
| HeapRegionType::Eden, |
| false /* do_expand */, |
| node_index); |
| if (new_alloc_region != nullptr) { |
| set_region_short_lived_locked(new_alloc_region); |
| _hr_printer.alloc(new_alloc_region, !should_allocate); |
| _policy->remset_tracker()->update_at_allocate(new_alloc_region); |
| return new_alloc_region; |
| } |
| } |
| return nullptr; |
| } |
| |
| void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region, |
| size_t allocated_bytes) { |
| assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); |
| assert(alloc_region->is_eden(), "all mutator alloc regions should be eden"); |
| |
| collection_set()->add_eden_region(alloc_region); |
| increase_used(allocated_bytes); |
| _eden.add_used_bytes(allocated_bytes); |
| _hr_printer.retire(alloc_region); |
| |
| // We update the eden sizes here, when the region is retired, |
| // instead of when it's allocated, since this is the point that its |
| // used space has been recorded in _summary_bytes_used. |
| monitoring_support()->update_eden_size(); |
| } |
| |
| // Methods for the GC alloc regions |
| |
| bool G1CollectedHeap::has_more_regions(G1HeapRegionAttr dest) { |
| if (dest.is_old()) { |
| return true; |
| } else { |
| return survivor_regions_count() < policy()->max_survivor_regions(); |
| } |
| } |
| |
| HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, G1HeapRegionAttr dest, uint node_index) { |
| assert(FreeList_lock->owned_by_self(), "pre-condition"); |
| |
| if (!has_more_regions(dest)) { |
| return nullptr; |
| } |
| |
| HeapRegionType type; |
| if (dest.is_young()) { |
| type = HeapRegionType::Survivor; |
| } else { |
| type = HeapRegionType::Old; |
| } |
| |
| HeapRegion* new_alloc_region = new_region(word_size, |
| type, |
| true /* do_expand */, |
| node_index); |
| |
| if (new_alloc_region != nullptr) { |
| if (type.is_survivor()) { |
| new_alloc_region->set_survivor(); |
| _survivor.add(new_alloc_region); |
| register_new_survivor_region_with_region_attr(new_alloc_region); |
| } else { |
| new_alloc_region->set_old(); |
| } |
| _policy->remset_tracker()->update_at_allocate(new_alloc_region); |
| register_region_with_region_attr(new_alloc_region); |
| _hr_printer.alloc(new_alloc_region); |
| return new_alloc_region; |
| } |
| return nullptr; |
| } |
| |
| void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region, |
| size_t allocated_bytes, |
| G1HeapRegionAttr dest) { |
| _bytes_used_during_gc += allocated_bytes; |
| if (dest.is_old()) { |
| old_set_add(alloc_region); |
| } else { |
| assert(dest.is_young(), "Retiring alloc region should be young (%d)", dest.type()); |
| _survivor.add_used_bytes(allocated_bytes); |
| } |
| |
| bool const during_im = collector_state()->in_concurrent_start_gc(); |
| if (during_im && allocated_bytes > 0) { |
| _cm->add_root_region(alloc_region); |
| } |
| _hr_printer.retire(alloc_region); |
| } |
| |
| HeapRegion* G1CollectedHeap::alloc_highest_free_region() { |
| bool expanded = false; |
| uint index = _hrm.find_highest_free(&expanded); |
| |
| if (index != G1_NO_HRM_INDEX) { |
| if (expanded) { |
| log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B", |
| HeapRegion::GrainWords * HeapWordSize); |
| } |
| return _hrm.allocate_free_regions_starting_at(index, 1); |
| } |
| return nullptr; |
| } |
| |
| void G1CollectedHeap::mark_evac_failure_object(uint worker_id, const oop obj, size_t obj_size) const { |
| assert(!_cm->is_marked_in_bitmap(obj), "must be"); |
| |
| _cm->raw_mark_in_bitmap(obj); |
| if (collector_state()->in_concurrent_start_gc()) { |
| _cm->add_to_liveness(worker_id, obj, obj_size); |
| } |
| } |
| |
| // Optimized nmethod scanning |
| class RegisterNMethodOopClosure: public OopClosure { |
| G1CollectedHeap* _g1h; |
| nmethod* _nm; |
| |
| public: |
| RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) : |
| _g1h(g1h), _nm(nm) {} |
| |
| void do_oop(oop* p) { |
| oop heap_oop = RawAccess<>::oop_load(p); |
| if (!CompressedOops::is_null(heap_oop)) { |
| oop obj = CompressedOops::decode_not_null(heap_oop); |
| HeapRegion* hr = _g1h->heap_region_containing(obj); |
| assert(!hr->is_continues_humongous(), |
| "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT |
| " starting at " HR_FORMAT, |
| p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())); |
| |
| hr->add_code_root(_nm); |
| } |
| } |
| |
| void do_oop(narrowOop* p) { ShouldNotReachHere(); } |
| }; |
| |
| void G1CollectedHeap::register_nmethod(nmethod* nm) { |
| guarantee(nm != nullptr, "sanity"); |
| RegisterNMethodOopClosure reg_cl(this, nm); |
| nm->oops_do(®_cl); |
| } |
| |
| void G1CollectedHeap::unregister_nmethod(nmethod* nm) { |
| // We always unregister nmethods in bulk during code unloading only. |
| ShouldNotReachHere(); |
| } |
| |
| void G1CollectedHeap::update_used_after_gc(bool evacuation_failed) { |
| if (evacuation_failed) { |
| // Reset the G1EvacuationFailureALot counters and flags |
| evac_failure_injector()->reset(); |
| |
| set_used(recalculate_used()); |
| } else { |
| // The "used" of the collection set have already been subtracted |
| // when they were freed. Add in the bytes used. |
| increase_used(_bytes_used_during_gc); |
| } |
| } |
| |
| class RebuildCodeRootClosure: public CodeBlobClosure { |
| G1CollectedHeap* _g1h; |
| |
| public: |
| RebuildCodeRootClosure(G1CollectedHeap* g1h) : |
| _g1h(g1h) {} |
| |
| void do_code_blob(CodeBlob* cb) { |
| nmethod* nm = cb->as_nmethod_or_null(); |
| if (nm != nullptr) { |
| _g1h->register_nmethod(nm); |
| } |
| } |
| }; |
| |
| void G1CollectedHeap::rebuild_code_roots() { |
| RebuildCodeRootClosure blob_cl(this); |
| CodeCache::blobs_do(&blob_cl); |
| } |
| |
| void G1CollectedHeap::initialize_serviceability() { |
| _monitoring_support->initialize_serviceability(); |
| } |
| |
| MemoryUsage G1CollectedHeap::memory_usage() { |
| return _monitoring_support->memory_usage(); |
| } |
| |
| GrowableArray<GCMemoryManager*> G1CollectedHeap::memory_managers() { |
| return _monitoring_support->memory_managers(); |
| } |
| |
| GrowableArray<MemoryPool*> G1CollectedHeap::memory_pools() { |
| return _monitoring_support->memory_pools(); |
| } |
| |
| void G1CollectedHeap::fill_with_dummy_object(HeapWord* start, HeapWord* end, bool zap) { |
| HeapRegion* region = heap_region_containing(start); |
| region->fill_with_dummy_object(start, pointer_delta(end, start), zap); |
| } |
| |
| void G1CollectedHeap::start_codecache_marking_cycle_if_inactive(bool concurrent_mark_start) { |
| // We can reach here with an active code cache marking cycle either because the |
| // previous G1 concurrent marking cycle was undone (if heap occupancy after the |
| // concurrent start young collection was below the threshold) or aborted. See |
| // CodeCache::on_gc_marking_cycle_finish() why this is. We must not start a new code |
| // cache cycle then. If we are about to start a new g1 concurrent marking cycle we |
| // still have to arm all nmethod entry barriers. They are needed for adding oop |
| // constants to the SATB snapshot. Full GC does not need nmethods to be armed. |
| if (!CodeCache::is_gc_marking_cycle_active()) { |
| CodeCache::on_gc_marking_cycle_start(); |
| } |
| if (concurrent_mark_start) { |
| CodeCache::arm_all_nmethods(); |
| } |
| } |
| |
| void G1CollectedHeap::finish_codecache_marking_cycle() { |
| CodeCache::on_gc_marking_cycle_finish(); |
| CodeCache::arm_all_nmethods(); |
| } |