| /* |
| * Copyright (c) 2001, 2023, Oracle and/or its affiliates. All rights reserved. |
| * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| * |
| * This code is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License version 2 only, as |
| * published by the Free Software Foundation. |
| * |
| * This code is distributed in the hope that it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| * version 2 for more details (a copy is included in the LICENSE file that |
| * accompanied this code). |
| * |
| * You should have received a copy of the GNU General Public License version |
| * 2 along with this work; if not, write to the Free Software Foundation, |
| * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| * |
| * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| * or visit www.oracle.com if you need additional information or have any |
| * questions. |
| * |
| */ |
| |
| #ifndef SHARE_GC_G1_G1COLLECTEDHEAP_HPP |
| #define SHARE_GC_G1_G1COLLECTEDHEAP_HPP |
| |
| #include "gc/g1/g1BarrierSet.hpp" |
| #include "gc/g1/g1BiasedArray.hpp" |
| #include "gc/g1/g1CardTable.hpp" |
| #include "gc/g1/g1CardSet.hpp" |
| #include "gc/g1/g1CollectionSet.hpp" |
| #include "gc/g1/g1CollectorState.hpp" |
| #include "gc/g1/g1ConcurrentMark.hpp" |
| #include "gc/g1/g1EdenRegions.hpp" |
| #include "gc/g1/g1EvacStats.hpp" |
| #include "gc/g1/g1GCPauseType.hpp" |
| #include "gc/g1/g1HeapRegionAttr.hpp" |
| #include "gc/g1/g1HeapTransition.hpp" |
| #include "gc/g1/g1HeapVerifier.hpp" |
| #include "gc/g1/g1HRPrinter.hpp" |
| #include "gc/g1/g1MonitoringSupport.hpp" |
| #include "gc/g1/g1MonotonicArenaFreeMemoryTask.hpp" |
| #include "gc/g1/g1MonotonicArenaFreePool.hpp" |
| #include "gc/g1/g1NUMA.hpp" |
| #include "gc/g1/g1SurvivorRegions.hpp" |
| #include "gc/g1/g1YoungGCEvacFailureInjector.hpp" |
| #include "gc/g1/heapRegionManager.hpp" |
| #include "gc/g1/heapRegionSet.hpp" |
| #include "gc/shared/barrierSet.hpp" |
| #include "gc/shared/collectedHeap.hpp" |
| #include "gc/shared/gcHeapSummary.hpp" |
| #include "gc/shared/plab.hpp" |
| #include "gc/shared/softRefPolicy.hpp" |
| #include "gc/shared/taskqueue.hpp" |
| #include "memory/allocation.hpp" |
| #include "memory/iterator.hpp" |
| #include "memory/memRegion.hpp" |
| #include "runtime/mutexLocker.hpp" |
| #include "runtime/threadSMR.hpp" |
| #include "utilities/bitMap.hpp" |
| |
| // A "G1CollectedHeap" is an implementation of a java heap for HotSpot. |
| // It uses the "Garbage First" heap organization and algorithm, which |
| // may combine concurrent marking with parallel, incremental compaction of |
| // heap subsets that will yield large amounts of garbage. |
| |
| // Forward declarations |
| class G1Allocator; |
| class G1BatchedTask; |
| class G1CardTableEntryClosure; |
| class G1ConcurrentMark; |
| class G1ConcurrentMarkThread; |
| class G1ConcurrentRefine; |
| class G1GCCounters; |
| class G1GCPhaseTimes; |
| class G1HeapSizingPolicy; |
| class G1NewTracer; |
| class G1RemSet; |
| class G1ServiceTask; |
| class G1ServiceThread; |
| class GCMemoryManager; |
| class HeapRegion; |
| class MemoryPool; |
| class nmethod; |
| class ReferenceProcessor; |
| class STWGCTimer; |
| class WorkerThreads; |
| |
| typedef OverflowTaskQueue<ScannerTask, mtGC> G1ScannerTasksQueue; |
| typedef GenericTaskQueueSet<G1ScannerTasksQueue, mtGC> G1ScannerTasksQueueSet; |
| |
| typedef int RegionIdx_t; // needs to hold [ 0..max_reserved_regions() ) |
| typedef int CardIdx_t; // needs to hold [ 0..CardsPerRegion ) |
| |
| // The G1 STW is alive closure. |
| // An instance is embedded into the G1CH and used as the |
| // (optional) _is_alive_non_header closure in the STW |
| // reference processor. It is also extensively used during |
| // reference processing during STW evacuation pauses. |
| class G1STWIsAliveClosure : public BoolObjectClosure { |
| G1CollectedHeap* _g1h; |
| public: |
| G1STWIsAliveClosure(G1CollectedHeap* g1h) : _g1h(g1h) {} |
| bool do_object_b(oop p) override; |
| }; |
| |
| class G1STWSubjectToDiscoveryClosure : public BoolObjectClosure { |
| G1CollectedHeap* _g1h; |
| public: |
| G1STWSubjectToDiscoveryClosure(G1CollectedHeap* g1h) : _g1h(g1h) {} |
| bool do_object_b(oop p) override; |
| }; |
| |
| class G1RegionMappingChangedListener : public G1MappingChangedListener { |
| private: |
| void reset_from_card_cache(uint start_idx, size_t num_regions); |
| public: |
| void on_commit(uint start_idx, size_t num_regions, bool zero_filled) override; |
| }; |
| |
| // Helper to claim contiguous sets of JavaThread for processing by multiple threads. |
| class G1JavaThreadsListClaimer : public StackObj { |
| ThreadsListHandle _list; |
| uint _claim_step; |
| |
| volatile uint _cur_claim; |
| |
| // Attempts to claim _claim_step JavaThreads, returning an array of claimed |
| // JavaThread* with count elements. Returns null (and a zero count) if there |
| // are no more threads to claim. |
| JavaThread* const* claim(uint& count); |
| |
| public: |
| G1JavaThreadsListClaimer(uint claim_step) : _list(), _claim_step(claim_step), _cur_claim(0) { |
| assert(claim_step > 0, "must be"); |
| } |
| |
| // Executes the given closure on the elements of the JavaThread list, chunking the |
| // JavaThread set in claim_step chunks for each caller to reduce parallelization |
| // overhead. |
| void apply(ThreadClosure* cl); |
| |
| // Total number of JavaThreads that can be claimed. |
| uint length() const { return _list.length(); } |
| }; |
| |
| class G1CollectedHeap : public CollectedHeap { |
| friend class VM_G1CollectForAllocation; |
| friend class VM_G1CollectFull; |
| friend class VM_G1TryInitiateConcMark; |
| friend class VMStructs; |
| friend class MutatorAllocRegion; |
| friend class G1FullCollector; |
| friend class G1GCAllocRegion; |
| friend class G1HeapVerifier; |
| |
| friend class G1YoungGCVerifierMark; |
| |
| // Closures used in implementation. |
| friend class G1EvacuateRegionsTask; |
| friend class G1PLABAllocator; |
| |
| // Other related classes. |
| friend class G1HeapPrinterMark; |
| friend class HeapRegionClaimer; |
| |
| // Testing classes. |
| friend class G1CheckRegionAttrTableClosure; |
| |
| private: |
| G1ServiceThread* _service_thread; |
| G1ServiceTask* _periodic_gc_task; |
| G1MonotonicArenaFreeMemoryTask* _free_arena_memory_task; |
| |
| WorkerThreads* _workers; |
| G1CardTable* _card_table; |
| |
| Ticks _collection_pause_end; |
| |
| SoftRefPolicy _soft_ref_policy; |
| |
| static size_t _humongous_object_threshold_in_words; |
| |
| // These sets keep track of old and humongous regions respectively. |
| HeapRegionSet _old_set; |
| HeapRegionSet _humongous_set; |
| |
| // Young gen memory statistics before GC. |
| G1MonotonicArenaMemoryStats _young_gen_card_set_stats; |
| // Collection set candidates memory statistics after GC. |
| G1MonotonicArenaMemoryStats _collection_set_candidates_card_set_stats; |
| |
| // The block offset table for the G1 heap. |
| G1BlockOffsetTable* _bot; |
| |
| public: |
| void rebuild_free_region_list(); |
| // Start a new incremental collection set for the next pause. |
| void start_new_collection_set(); |
| |
| void prepare_region_for_full_compaction(HeapRegion* hr); |
| |
| private: |
| // Rebuilds the region sets / lists so that they are repopulated to |
| // reflect the contents of the heap. The only exception is the |
| // humongous set which was not torn down in the first place. If |
| // free_list_only is true, it will only rebuild the free list. |
| void rebuild_region_sets(bool free_list_only); |
| |
| // Callback for region mapping changed events. |
| G1RegionMappingChangedListener _listener; |
| |
| // Handle G1 NUMA support. |
| G1NUMA* _numa; |
| |
| // The sequence of all heap regions in the heap. |
| HeapRegionManager _hrm; |
| |
| // Manages all allocations with regions except humongous object allocations. |
| G1Allocator* _allocator; |
| |
| G1YoungGCEvacFailureInjector _evac_failure_injector; |
| |
| // Manages all heap verification. |
| G1HeapVerifier* _verifier; |
| |
| // Outside of GC pauses, the number of bytes used in all regions other |
| // than the current allocation region(s). |
| volatile size_t _summary_bytes_used; |
| |
| void increase_used(size_t bytes); |
| void decrease_used(size_t bytes); |
| |
| void set_used(size_t bytes); |
| |
| // Number of bytes used in all regions during GC. Typically changed when |
| // retiring a GC alloc region. |
| size_t _bytes_used_during_gc; |
| |
| public: |
| size_t bytes_used_during_gc() const { return _bytes_used_during_gc; } |
| |
| private: |
| // GC allocation statistics policy for survivors. |
| G1EvacStats _survivor_evac_stats; |
| |
| // GC allocation statistics policy for tenured objects. |
| G1EvacStats _old_evac_stats; |
| |
| // Helper for monitoring and management support. |
| G1MonitoringSupport* _monitoring_support; |
| |
| uint _num_humongous_objects; // Current amount of (all) humongous objects found in the heap. |
| uint _num_humongous_reclaim_candidates; // Number of humongous object eager reclaim candidates. |
| public: |
| uint num_humongous_objects() const { return _num_humongous_objects; } |
| uint num_humongous_reclaim_candidates() const { return _num_humongous_reclaim_candidates; } |
| bool has_humongous_reclaim_candidates() const { return _num_humongous_reclaim_candidates > 0; } |
| |
| void set_humongous_stats(uint num_humongous_total, uint num_humongous_candidates); |
| |
| bool should_sample_collection_set_candidates() const; |
| void set_collection_set_candidates_stats(G1MonotonicArenaMemoryStats& stats); |
| void set_young_gen_card_set_stats(const G1MonotonicArenaMemoryStats& stats); |
| |
| private: |
| |
| G1HRPrinter _hr_printer; |
| |
| // Return true if an explicit GC should start a concurrent cycle instead |
| // of doing a STW full GC. A concurrent cycle should be started if: |
| // (a) cause == _g1_humongous_allocation, |
| // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent, |
| // (c) cause == _dcmd_gc_run and +ExplicitGCInvokesConcurrent, |
| // (d) cause == _wb_breakpoint, |
| // (e) cause == _g1_periodic_collection and +G1PeriodicGCInvokesConcurrent. |
| bool should_do_concurrent_full_gc(GCCause::Cause cause); |
| |
| // Attempt to start a concurrent cycle with the indicated cause. |
| // precondition: should_do_concurrent_full_gc(cause) |
| bool try_collect_concurrently(GCCause::Cause cause, |
| uint gc_counter, |
| uint old_marking_started_before); |
| |
| bool try_collect_fullgc(GCCause::Cause cause, |
| const G1GCCounters& counters_before); |
| |
| // indicates whether we are in young or mixed GC mode |
| G1CollectorState _collector_state; |
| |
| // Keeps track of how many "old marking cycles" (i.e., Full GCs or |
| // concurrent cycles) we have started. |
| volatile uint _old_marking_cycles_started; |
| |
| // Keeps track of how many "old marking cycles" (i.e., Full GCs or |
| // concurrent cycles) we have completed. |
| volatile uint _old_marking_cycles_completed; |
| |
| // Create a memory mapper for auxiliary data structures of the given size and |
| // translation factor. |
| static G1RegionToSpaceMapper* create_aux_memory_mapper(const char* description, |
| size_t size, |
| size_t translation_factor); |
| |
| void trace_heap(GCWhen::Type when, const GCTracer* tracer) override; |
| |
| // These are macros so that, if the assert fires, we get the correct |
| // line number, file, etc. |
| |
| #define heap_locking_asserts_params(_extra_message_) \ |
| "%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s", \ |
| (_extra_message_), \ |
| BOOL_TO_STR(Heap_lock->owned_by_self()), \ |
| BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()), \ |
| BOOL_TO_STR(Thread::current()->is_VM_thread()) |
| |
| #define assert_heap_locked() \ |
| do { \ |
| assert(Heap_lock->owned_by_self(), \ |
| heap_locking_asserts_params("should be holding the Heap_lock")); \ |
| } while (0) |
| |
| #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_) \ |
| do { \ |
| assert(Heap_lock->owned_by_self() || \ |
| (SafepointSynchronize::is_at_safepoint() && \ |
| ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \ |
| heap_locking_asserts_params("should be holding the Heap_lock or " \ |
| "should be at a safepoint")); \ |
| } while (0) |
| |
| #define assert_heap_locked_and_not_at_safepoint() \ |
| do { \ |
| assert(Heap_lock->owned_by_self() && \ |
| !SafepointSynchronize::is_at_safepoint(), \ |
| heap_locking_asserts_params("should be holding the Heap_lock and " \ |
| "should not be at a safepoint")); \ |
| } while (0) |
| |
| #define assert_heap_not_locked() \ |
| do { \ |
| assert(!Heap_lock->owned_by_self(), \ |
| heap_locking_asserts_params("should not be holding the Heap_lock")); \ |
| } while (0) |
| |
| #define assert_heap_not_locked_and_not_at_safepoint() \ |
| do { \ |
| assert(!Heap_lock->owned_by_self() && \ |
| !SafepointSynchronize::is_at_safepoint(), \ |
| heap_locking_asserts_params("should not be holding the Heap_lock and " \ |
| "should not be at a safepoint")); \ |
| } while (0) |
| |
| #define assert_at_safepoint_on_vm_thread() \ |
| do { \ |
| assert_at_safepoint(); \ |
| assert(Thread::current_or_null() != nullptr, "no current thread"); \ |
| assert(Thread::current()->is_VM_thread(), "current thread is not VM thread"); \ |
| } while (0) |
| |
| #ifdef ASSERT |
| #define assert_used_and_recalculate_used_equal(g1h) \ |
| do { \ |
| size_t cur_used_bytes = g1h->used(); \ |
| size_t recal_used_bytes = g1h->recalculate_used(); \ |
| assert(cur_used_bytes == recal_used_bytes, "Used(" SIZE_FORMAT ") is not" \ |
| " same as recalculated used(" SIZE_FORMAT ").", \ |
| cur_used_bytes, recal_used_bytes); \ |
| } while (0) |
| #else |
| #define assert_used_and_recalculate_used_equal(g1h) do {} while(0) |
| #endif |
| |
| // The young region list. |
| G1EdenRegions _eden; |
| G1SurvivorRegions _survivor; |
| |
| STWGCTimer* _gc_timer_stw; |
| |
| G1NewTracer* _gc_tracer_stw; |
| |
| // The current policy object for the collector. |
| G1Policy* _policy; |
| G1HeapSizingPolicy* _heap_sizing_policy; |
| |
| G1CollectionSet _collection_set; |
| |
| // Try to allocate a single non-humongous HeapRegion sufficient for |
| // an allocation of the given word_size. If do_expand is true, |
| // attempt to expand the heap if necessary to satisfy the allocation |
| // request. 'type' takes the type of region to be allocated. (Use constants |
| // Old, Eden, Humongous, Survivor defined in HeapRegionType.) |
| HeapRegion* new_region(size_t word_size, |
| HeapRegionType type, |
| bool do_expand, |
| uint node_index = G1NUMA::AnyNodeIndex); |
| |
| // Initialize a contiguous set of free regions of length num_regions |
| // and starting at index first so that they appear as a single |
| // humongous region. |
| HeapWord* humongous_obj_allocate_initialize_regions(HeapRegion* first_hr, |
| uint num_regions, |
| size_t word_size); |
| |
| // Attempt to allocate a humongous object of the given size. Return |
| // null if unsuccessful. |
| HeapWord* humongous_obj_allocate(size_t word_size); |
| |
| // The following two methods, allocate_new_tlab() and |
| // mem_allocate(), are the two main entry points from the runtime |
| // into the G1's allocation routines. They have the following |
| // assumptions: |
| // |
| // * They should both be called outside safepoints. |
| // |
| // * They should both be called without holding the Heap_lock. |
| // |
| // * All allocation requests for new TLABs should go to |
| // allocate_new_tlab(). |
| // |
| // * All non-TLAB allocation requests should go to mem_allocate(). |
| // |
| // * If either call cannot satisfy the allocation request using the |
| // current allocating region, they will try to get a new one. If |
| // this fails, they will attempt to do an evacuation pause and |
| // retry the allocation. |
| // |
| // * If all allocation attempts fail, even after trying to schedule |
| // an evacuation pause, allocate_new_tlab() will return null, |
| // whereas mem_allocate() will attempt a heap expansion and/or |
| // schedule a Full GC. |
| // |
| // * We do not allow humongous-sized TLABs. So, allocate_new_tlab |
| // should never be called with word_size being humongous. All |
| // humongous allocation requests should go to mem_allocate() which |
| // will satisfy them with a special path. |
| |
| HeapWord* allocate_new_tlab(size_t min_size, |
| size_t requested_size, |
| size_t* actual_size) override; |
| |
| HeapWord* mem_allocate(size_t word_size, |
| bool* gc_overhead_limit_was_exceeded) override; |
| |
| // First-level mutator allocation attempt: try to allocate out of |
| // the mutator alloc region without taking the Heap_lock. This |
| // should only be used for non-humongous allocations. |
| inline HeapWord* attempt_allocation(size_t min_word_size, |
| size_t desired_word_size, |
| size_t* actual_word_size); |
| |
| // Second-level mutator allocation attempt: take the Heap_lock and |
| // retry the allocation attempt, potentially scheduling a GC |
| // pause. This should only be used for non-humongous allocations. |
| HeapWord* attempt_allocation_slow(size_t word_size); |
| |
| // Takes the Heap_lock and attempts a humongous allocation. It can |
| // potentially schedule a GC pause. |
| HeapWord* attempt_allocation_humongous(size_t word_size); |
| |
| // Allocation attempt that should be called during safepoints (e.g., |
| // at the end of a successful GC). expect_null_mutator_alloc_region |
| // specifies whether the mutator alloc region is expected to be null |
| // or not. |
| HeapWord* attempt_allocation_at_safepoint(size_t word_size, |
| bool expect_null_mutator_alloc_region); |
| |
| // These methods are the "callbacks" from the G1AllocRegion class. |
| |
| // For mutator alloc regions. |
| HeapRegion* new_mutator_alloc_region(size_t word_size, bool force, uint node_index); |
| void retire_mutator_alloc_region(HeapRegion* alloc_region, |
| size_t allocated_bytes); |
| |
| // For GC alloc regions. |
| bool has_more_regions(G1HeapRegionAttr dest); |
| HeapRegion* new_gc_alloc_region(size_t word_size, G1HeapRegionAttr dest, uint node_index); |
| void retire_gc_alloc_region(HeapRegion* alloc_region, |
| size_t allocated_bytes, G1HeapRegionAttr dest); |
| |
| // - if clear_all_soft_refs is true, all soft references should be |
| // cleared during the GC. |
| // - if do_maximal_compaction is true, full gc will do a maximally |
| // compacting collection, leaving no dead wood. |
| // - it returns false if it is unable to do the collection due to the |
| // GC locker being active, true otherwise. |
| bool do_full_collection(bool clear_all_soft_refs, |
| bool do_maximal_compaction); |
| |
| // Callback from VM_G1CollectFull operation, or collect_as_vm_thread. |
| void do_full_collection(bool clear_all_soft_refs) override; |
| |
| // Helper to do a full collection that clears soft references. |
| bool upgrade_to_full_collection(); |
| |
| // Callback from VM_G1CollectForAllocation operation. |
| // This function does everything necessary/possible to satisfy a |
| // failed allocation request (including collection, expansion, etc.) |
| HeapWord* satisfy_failed_allocation(size_t word_size, |
| bool* succeeded); |
| // Internal helpers used during full GC to split it up to |
| // increase readability. |
| bool abort_concurrent_cycle(); |
| void verify_before_full_collection(); |
| void prepare_heap_for_full_collection(); |
| void prepare_for_mutator_after_full_collection(); |
| void abort_refinement(); |
| void verify_after_full_collection(); |
| void print_heap_after_full_collection(); |
| |
| // Helper method for satisfy_failed_allocation() |
| HeapWord* satisfy_failed_allocation_helper(size_t word_size, |
| bool do_gc, |
| bool maximal_compaction, |
| bool expect_null_mutator_alloc_region, |
| bool* gc_succeeded); |
| |
| // Attempting to expand the heap sufficiently |
| // to support an allocation of the given "word_size". If |
| // successful, perform the allocation and return the address of the |
| // allocated block, or else null. |
| HeapWord* expand_and_allocate(size_t word_size); |
| |
| void verify_numa_regions(const char* desc); |
| |
| public: |
| // If during a concurrent start pause we may install a pending list head which is not |
| // otherwise reachable, ensure that it is marked in the bitmap for concurrent marking |
| // to discover. |
| void make_pending_list_reachable(); |
| |
| G1ServiceThread* service_thread() const { return _service_thread; } |
| |
| WorkerThreads* workers() const { return _workers; } |
| |
| // Run the given batch task using the workers. |
| void run_batch_task(G1BatchedTask* cl); |
| |
| // Return "optimal" number of chunks per region we want to use for claiming areas |
| // within a region to claim. |
| // The returned value is a trade-off between granularity of work distribution and |
| // memory usage and maintenance costs of that table. |
| // Testing showed that 64 for 1M/2M region, 128 for 4M/8M regions, 256 for 16/32M regions, |
| // and so on seems to be such a good trade-off. |
| static uint get_chunks_per_region(); |
| |
| G1Allocator* allocator() { |
| return _allocator; |
| } |
| |
| G1YoungGCEvacFailureInjector* evac_failure_injector() { return &_evac_failure_injector; } |
| |
| G1HeapVerifier* verifier() { |
| return _verifier; |
| } |
| |
| G1MonitoringSupport* monitoring_support() { |
| assert(_monitoring_support != nullptr, "should have been initialized"); |
| return _monitoring_support; |
| } |
| |
| void resize_heap_if_necessary(); |
| |
| // Check if there is memory to uncommit and if so schedule a task to do it. |
| void uncommit_regions_if_necessary(); |
| // Immediately uncommit uncommittable regions. |
| uint uncommit_regions(uint region_limit); |
| bool has_uncommittable_regions(); |
| |
| G1NUMA* numa() const { return _numa; } |
| |
| // Expand the garbage-first heap by at least the given size (in bytes!). |
| // Returns true if the heap was expanded by the requested amount; |
| // false otherwise. |
| // (Rounds up to a HeapRegion boundary.) |
| bool expand(size_t expand_bytes, WorkerThreads* pretouch_workers = nullptr, double* expand_time_ms = nullptr); |
| bool expand_single_region(uint node_index); |
| |
| // Returns the PLAB statistics for a given destination. |
| inline G1EvacStats* alloc_buffer_stats(G1HeapRegionAttr dest); |
| |
| // Determines PLAB size for a given destination. |
| inline size_t desired_plab_sz(G1HeapRegionAttr dest); |
| // Clamp the given PLAB word size to allowed values. Prevents humongous PLAB sizes |
| // for two reasons: |
| // * PLABs are allocated using a similar paths as oops, but should |
| // never be in a humongous region |
| // * Allowing humongous PLABs needlessly churns the region free lists |
| inline size_t clamp_plab_size(size_t value) const; |
| |
| // Do anything common to GC's. |
| void gc_prologue(bool full); |
| void gc_epilogue(bool full); |
| |
| // Does the given region fulfill remembered set based eager reclaim candidate requirements? |
| bool is_potential_eager_reclaim_candidate(HeapRegion* r) const; |
| |
| inline bool is_humongous_reclaim_candidate(uint region); |
| |
| // Remove from the reclaim candidate set. Also remove from the |
| // collection set so that later encounters avoid the slow path. |
| inline void set_humongous_is_live(oop obj); |
| |
| // Register the given region to be part of the collection set. |
| inline void register_humongous_candidate_region_with_region_attr(uint index); |
| |
| void set_humongous_metadata(HeapRegion* first_hr, |
| uint num_regions, |
| size_t word_size, |
| bool update_remsets); |
| |
| // We register a region with the fast "in collection set" test. We |
| // simply set to true the array slot corresponding to this region. |
| void register_young_region_with_region_attr(HeapRegion* r) { |
| _region_attr.set_in_young(r->hrm_index()); |
| } |
| inline void register_new_survivor_region_with_region_attr(HeapRegion* r); |
| inline void register_region_with_region_attr(HeapRegion* r); |
| inline void register_old_region_with_region_attr(HeapRegion* r); |
| inline void register_optional_region_with_region_attr(HeapRegion* r); |
| |
| void clear_region_attr(const HeapRegion* hr) { |
| _region_attr.clear(hr); |
| } |
| |
| void clear_region_attr() { |
| _region_attr.clear(); |
| } |
| |
| // Verify that the G1RegionAttr remset tracking corresponds to actual remset tracking |
| // for all regions. |
| void verify_region_attr_remset_is_tracked() PRODUCT_RETURN; |
| |
| void clear_bitmap_for_region(HeapRegion* hr); |
| |
| bool is_user_requested_concurrent_full_gc(GCCause::Cause cause); |
| |
| // This is called at the start of either a concurrent cycle or a Full |
| // GC to update the number of old marking cycles started. |
| void increment_old_marking_cycles_started(); |
| |
| // This is called at the end of either a concurrent cycle or a Full |
| // GC to update the number of old marking cycles completed. Those two |
| // can happen in a nested fashion, i.e., we start a concurrent |
| // cycle, a Full GC happens half-way through it which ends first, |
| // and then the cycle notices that a Full GC happened and ends |
| // too. The concurrent parameter is a boolean to help us do a bit |
| // tighter consistency checking in the method. If concurrent is |
| // false, the caller is the inner caller in the nesting (i.e., the |
| // Full GC). If concurrent is true, the caller is the outer caller |
| // in this nesting (i.e., the concurrent cycle). Further nesting is |
| // not currently supported. The end of this call also notifies |
| // the G1OldGCCount_lock in case a Java thread is waiting for a full |
| // GC to happen (e.g., it called System.gc() with |
| // +ExplicitGCInvokesConcurrent). |
| // whole_heap_examined should indicate that during that old marking |
| // cycle the whole heap has been examined for live objects (as opposed |
| // to only parts, or aborted before completion). |
| void increment_old_marking_cycles_completed(bool concurrent, bool whole_heap_examined); |
| |
| uint old_marking_cycles_started() const { |
| return _old_marking_cycles_started; |
| } |
| |
| uint old_marking_cycles_completed() const { |
| return _old_marking_cycles_completed; |
| } |
| |
| G1HRPrinter* hr_printer() { return &_hr_printer; } |
| |
| // Allocates a new heap region instance. |
| HeapRegion* new_heap_region(uint hrs_index, MemRegion mr); |
| |
| // Allocate the highest free region in the reserved heap. This will commit |
| // regions as necessary. |
| HeapRegion* alloc_highest_free_region(); |
| |
| // Frees a region by resetting its metadata and adding it to the free list |
| // passed as a parameter (this is usually a local list which will be appended |
| // to the master free list later or null if free list management is handled |
| // in another way). |
| // Callers must ensure they are the only one calling free on the given region |
| // at the same time. |
| void free_region(HeapRegion* hr, FreeRegionList* free_list); |
| |
| // It dirties the cards that cover the block so that the post |
| // write barrier never queues anything when updating objects on this |
| // block. It is assumed (and in fact we assert) that the block |
| // belongs to a young region. |
| inline void dirty_young_block(HeapWord* start, size_t word_size); |
| |
| // Frees a humongous region by collapsing it into individual regions |
| // and calling free_region() for each of them. The freed regions |
| // will be added to the free list that's passed as a parameter (this |
| // is usually a local list which will be appended to the master free |
| // list later). |
| // The method assumes that only a single thread is ever calling |
| // this for a particular region at once. |
| void free_humongous_region(HeapRegion* hr, |
| FreeRegionList* free_list); |
| |
| // Facility for allocating a fixed range within the heap and marking |
| // the containing regions as 'old'. For use at JVM init time, when the |
| // caller may mmap archived heap data at the specified range. |
| |
| // Verify that the range is within the reserved heap. |
| bool check_archive_addresses(MemRegion range); |
| |
| // Execute func(HeapRegion* r, bool is_last) on every region covered by the |
| // given range. |
| template <typename Func> |
| void iterate_regions_in_range(MemRegion range, const Func& func); |
| |
| // Commit the appropriate G1 region(s) containing the specified range |
| // and mark them as 'old' region(s). |
| bool alloc_archive_regions(MemRegion range); |
| |
| // Populate the G1BlockOffsetTablePart for archived regions with the given |
| // memory range. |
| void populate_archive_regions_bot_part(MemRegion range); |
| |
| // For the specified range, uncommit the containing G1 regions |
| // which had been allocated by alloc_archive_regions. This should be called |
| // at JVM init time if the archive heap's contents cannot be used (e.g., if |
| // CRC check fails). |
| void dealloc_archive_regions(MemRegion range); |
| |
| private: |
| |
| // Shrink the garbage-first heap by at most the given size (in bytes!). |
| // (Rounds down to a HeapRegion boundary.) |
| void shrink(size_t shrink_bytes); |
| void shrink_helper(size_t expand_bytes); |
| |
| // Schedule the VM operation that will do an evacuation pause to |
| // satisfy an allocation request of word_size. *succeeded will |
| // return whether the VM operation was successful (it did do an |
| // evacuation pause) or not (another thread beat us to it or the GC |
| // locker was active). Given that we should not be holding the |
| // Heap_lock when we enter this method, we will pass the |
| // gc_count_before (i.e., total_collections()) as a parameter since |
| // it has to be read while holding the Heap_lock. Currently, both |
| // methods that call do_collection_pause() release the Heap_lock |
| // before the call, so it's easy to read gc_count_before just before. |
| HeapWord* do_collection_pause(size_t word_size, |
| uint gc_count_before, |
| bool* succeeded, |
| GCCause::Cause gc_cause); |
| |
| // Perform an incremental collection at a safepoint, possibly |
| // followed by a by-policy upgrade to a full collection. Returns |
| // false if unable to do the collection due to the GC locker being |
| // active, true otherwise. |
| // precondition: at safepoint on VM thread |
| // precondition: !is_gc_active() |
| bool do_collection_pause_at_safepoint(); |
| |
| // Helper for do_collection_pause_at_safepoint, containing the guts |
| // of the incremental collection pause, executed by the vm thread. |
| void do_collection_pause_at_safepoint_helper(); |
| |
| G1HeapVerifier::G1VerifyType young_collection_verify_type() const; |
| void verify_before_young_collection(G1HeapVerifier::G1VerifyType type); |
| void verify_after_young_collection(G1HeapVerifier::G1VerifyType type); |
| |
| public: |
| // Start a concurrent cycle. |
| void start_concurrent_cycle(bool concurrent_operation_is_full_mark); |
| |
| void prepare_for_mutator_after_young_collection(); |
| |
| void retire_tlabs(); |
| |
| void expand_heap_after_young_collection(); |
| // Update object copying statistics. |
| void record_obj_copy_mem_stats(); |
| |
| private: |
| // The g1 remembered set of the heap. |
| G1RemSet* _rem_set; |
| // Global card set configuration |
| G1CardSetConfiguration _card_set_config; |
| |
| G1MonotonicArenaFreePool _card_set_freelist_pool; |
| |
| public: |
| // After a collection pause, reset eden and the collection set. |
| void clear_eden(); |
| void clear_collection_set(); |
| |
| // Abandon the current collection set without recording policy |
| // statistics or updating free lists. |
| void abandon_collection_set(G1CollectionSet* collection_set); |
| |
| // The concurrent marker (and the thread it runs in.) |
| G1ConcurrentMark* _cm; |
| G1ConcurrentMarkThread* _cm_thread; |
| |
| // The concurrent refiner. |
| G1ConcurrentRefine* _cr; |
| |
| // The parallel task queues |
| G1ScannerTasksQueueSet *_task_queues; |
| |
| // ("Weak") Reference processing support. |
| // |
| // G1 has 2 instances of the reference processor class. |
| // |
| // One (_ref_processor_cm) handles reference object discovery and subsequent |
| // processing during concurrent marking cycles. Discovery is enabled/disabled |
| // at the start/end of a concurrent marking cycle. |
| // |
| // The other (_ref_processor_stw) handles reference object discovery and |
| // processing during incremental evacuation pauses and full GC pauses. |
| // |
| // ## Incremental evacuation pauses |
| // |
| // STW ref processor discovery is enabled/disabled at the start/end of an |
| // incremental evacuation pause. No particular handling of the CM ref |
| // processor is needed, apart from treating the discovered references as |
| // roots; CM discovery does not need to be temporarily disabled as all |
| // marking threads are paused during incremental evacuation pauses. |
| // |
| // ## Full GC pauses |
| // |
| // We abort any ongoing concurrent marking cycle, disable CM discovery, and |
| // temporarily substitute a new closure for the STW ref processor's |
| // _is_alive_non_header field (old value is restored after the full GC). Then |
| // STW ref processor discovery is enabled, and marking & compaction |
| // commences. |
| |
| // The (stw) reference processor... |
| ReferenceProcessor* _ref_processor_stw; |
| |
| // During reference object discovery, the _is_alive_non_header |
| // closure (if non-null) is applied to the referent object to |
| // determine whether the referent is live. If so then the |
| // reference object does not need to be 'discovered' and can |
| // be treated as a regular oop. This has the benefit of reducing |
| // the number of 'discovered' reference objects that need to |
| // be processed. |
| // |
| // Instance of the is_alive closure for embedding into the |
| // STW reference processor as the _is_alive_non_header field. |
| // Supplying a value for the _is_alive_non_header field is |
| // optional but doing so prevents unnecessary additions to |
| // the discovered lists during reference discovery. |
| G1STWIsAliveClosure _is_alive_closure_stw; |
| |
| G1STWSubjectToDiscoveryClosure _is_subject_to_discovery_stw; |
| |
| // The (concurrent marking) reference processor... |
| ReferenceProcessor* _ref_processor_cm; |
| |
| // Instance of the concurrent mark is_alive closure for embedding |
| // into the Concurrent Marking reference processor as the |
| // _is_alive_non_header field. Supplying a value for the |
| // _is_alive_non_header field is optional but doing so prevents |
| // unnecessary additions to the discovered lists during reference |
| // discovery. |
| G1CMIsAliveClosure _is_alive_closure_cm; |
| |
| G1CMSubjectToDiscoveryClosure _is_subject_to_discovery_cm; |
| public: |
| |
| G1ScannerTasksQueueSet* task_queues() const; |
| G1ScannerTasksQueue* task_queue(uint i) const; |
| |
| // Create a G1CollectedHeap. |
| // Must call the initialize method afterwards. |
| // May not return if something goes wrong. |
| G1CollectedHeap(); |
| |
| private: |
| jint initialize_concurrent_refinement(); |
| jint initialize_service_thread(); |
| public: |
| // Initialize the G1CollectedHeap to have the initial and |
| // maximum sizes and remembered and barrier sets |
| // specified by the policy object. |
| jint initialize() override; |
| |
| // Returns whether concurrent mark threads (and the VM) are about to terminate. |
| bool concurrent_mark_is_terminating() const; |
| |
| void stop() override; |
| void safepoint_synchronize_begin() override; |
| void safepoint_synchronize_end() override; |
| |
| // Does operations required after initialization has been done. |
| void post_initialize() override; |
| |
| // Initialize weak reference processing. |
| void ref_processing_init(); |
| |
| Name kind() const override { |
| return CollectedHeap::G1; |
| } |
| |
| const char* name() const override { |
| return "G1"; |
| } |
| |
| const G1CollectorState* collector_state() const { return &_collector_state; } |
| G1CollectorState* collector_state() { return &_collector_state; } |
| |
| // The current policy object for the collector. |
| G1Policy* policy() const { return _policy; } |
| // The remembered set. |
| G1RemSet* rem_set() const { return _rem_set; } |
| |
| const G1MonotonicArenaFreePool* card_set_freelist_pool() const { return &_card_set_freelist_pool; } |
| G1MonotonicArenaFreePool* card_set_freelist_pool() { return &_card_set_freelist_pool; } |
| |
| inline G1GCPhaseTimes* phase_times() const; |
| |
| const G1CollectionSet* collection_set() const { return &_collection_set; } |
| G1CollectionSet* collection_set() { return &_collection_set; } |
| |
| inline bool is_collection_set_candidate(const HeapRegion* r) const; |
| |
| SoftRefPolicy* soft_ref_policy() override; |
| |
| void initialize_serviceability() override; |
| MemoryUsage memory_usage() override; |
| GrowableArray<GCMemoryManager*> memory_managers() override; |
| GrowableArray<MemoryPool*> memory_pools() override; |
| |
| void fill_with_dummy_object(HeapWord* start, HeapWord* end, bool zap) override; |
| |
| static void start_codecache_marking_cycle_if_inactive(bool concurrent_mark_start); |
| static void finish_codecache_marking_cycle(); |
| |
| // The shared block offset table array. |
| G1BlockOffsetTable* bot() const { return _bot; } |
| |
| // Reference Processing accessors |
| |
| // The STW reference processor.... |
| ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; } |
| |
| G1NewTracer* gc_tracer_stw() const { return _gc_tracer_stw; } |
| STWGCTimer* gc_timer_stw() const { return _gc_timer_stw; } |
| |
| // The Concurrent Marking reference processor... |
| ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; } |
| |
| size_t unused_committed_regions_in_bytes() const; |
| |
| size_t capacity() const override; |
| size_t used() const override; |
| // This should be called when we're not holding the heap lock. The |
| // result might be a bit inaccurate. |
| size_t used_unlocked() const; |
| size_t recalculate_used() const; |
| |
| // These virtual functions do the actual allocation. |
| // Some heaps may offer a contiguous region for shared non-blocking |
| // allocation, via inlined code (by exporting the address of the top and |
| // end fields defining the extent of the contiguous allocation region.) |
| // But G1CollectedHeap doesn't yet support this. |
| |
| bool is_maximal_no_gc() const override { |
| return _hrm.available() == 0; |
| } |
| |
| // Returns true if an incremental GC should be upgrade to a full gc. This |
| // is done when there are no free regions and the heap can't be expanded. |
| bool should_upgrade_to_full_gc() const { |
| return is_maximal_no_gc() && num_free_regions() == 0; |
| } |
| |
| // The current number of regions in the heap. |
| uint num_regions() const { return _hrm.length(); } |
| |
| // The max number of regions reserved for the heap. Except for static array |
| // sizing purposes you probably want to use max_regions(). |
| uint max_reserved_regions() const { return _hrm.reserved_length(); } |
| |
| // Max number of regions that can be committed. |
| uint max_regions() const { return _hrm.max_length(); } |
| |
| // The number of regions that are completely free. |
| uint num_free_regions() const { return _hrm.num_free_regions(); } |
| |
| // The number of regions that can be allocated into. |
| uint num_free_or_available_regions() const { return num_free_regions() + _hrm.available(); } |
| |
| MemoryUsage get_auxiliary_data_memory_usage() const { |
| return _hrm.get_auxiliary_data_memory_usage(); |
| } |
| |
| // The number of regions that are not completely free. |
| uint num_used_regions() const { return num_regions() - num_free_regions(); } |
| |
| #ifdef ASSERT |
| bool is_on_master_free_list(HeapRegion* hr) { |
| return _hrm.is_free(hr); |
| } |
| #endif // ASSERT |
| |
| inline void old_set_add(HeapRegion* hr); |
| inline void old_set_remove(HeapRegion* hr); |
| |
| size_t non_young_capacity_bytes() { |
| return (old_regions_count() + humongous_regions_count()) * HeapRegion::GrainBytes; |
| } |
| |
| // Determine whether the given region is one that we are using as an |
| // old GC alloc region. |
| bool is_old_gc_alloc_region(HeapRegion* hr); |
| |
| // Perform a collection of the heap; intended for use in implementing |
| // "System.gc". This probably implies as full a collection as the |
| // "CollectedHeap" supports. |
| void collect(GCCause::Cause cause) override; |
| |
| // Perform a collection of the heap with the given cause. |
| // Returns whether this collection actually executed. |
| bool try_collect(GCCause::Cause cause, const G1GCCounters& counters_before); |
| |
| void start_concurrent_gc_for_metadata_allocation(GCCause::Cause gc_cause); |
| |
| void remove_from_old_gen_sets(const uint old_regions_removed, |
| const uint humongous_regions_removed); |
| void prepend_to_freelist(FreeRegionList* list); |
| void decrement_summary_bytes(size_t bytes); |
| |
| bool is_in(const void* p) const override; |
| |
| // Return "TRUE" iff the given object address is within the collection |
| // set. Assumes that the reference points into the heap. |
| inline bool is_in_cset(const HeapRegion *hr) const; |
| inline bool is_in_cset(oop obj) const; |
| inline bool is_in_cset(HeapWord* addr) const; |
| |
| inline bool is_in_cset_or_humongous_candidate(const oop obj); |
| |
| private: |
| // This array is used for a quick test on whether a reference points into |
| // the collection set or not. Each of the array's elements denotes whether the |
| // corresponding region is in the collection set or not. |
| G1HeapRegionAttrBiasedMappedArray _region_attr; |
| |
| public: |
| |
| inline G1HeapRegionAttr region_attr(const void* obj) const; |
| inline G1HeapRegionAttr region_attr(uint idx) const; |
| |
| MemRegion reserved() const { |
| return _hrm.reserved(); |
| } |
| |
| bool is_in_reserved(const void* addr) const { |
| return reserved().contains(addr); |
| } |
| |
| G1CardTable* card_table() const { |
| return _card_table; |
| } |
| |
| // Iteration functions. |
| |
| void object_iterate_parallel(ObjectClosure* cl, uint worker_id, HeapRegionClaimer* claimer); |
| |
| // Iterate over all objects, calling "cl.do_object" on each. |
| void object_iterate(ObjectClosure* cl) override; |
| |
| ParallelObjectIteratorImpl* parallel_object_iterator(uint thread_num) override; |
| |
| // Keep alive an object that was loaded with AS_NO_KEEPALIVE. |
| void keep_alive(oop obj) override; |
| |
| // Iterate over heap regions, in address order, terminating the |
| // iteration early if the "do_heap_region" method returns "true". |
| void heap_region_iterate(HeapRegionClosure* blk) const; |
| void heap_region_iterate(HeapRegionIndexClosure* blk) const; |
| |
| // Return the region with the given index. It assumes the index is valid. |
| inline HeapRegion* region_at(uint index) const; |
| inline HeapRegion* region_at_or_null(uint index) const; |
| |
| // Iterate over the regions that the humongous object starting at the given |
| // region and apply the given method with the signature f(HeapRegion*) on them. |
| template <typename Func> |
| void humongous_obj_regions_iterate(HeapRegion* start, const Func& f); |
| |
| // Calculate the region index of the given address. Given address must be |
| // within the heap. |
| inline uint addr_to_region(const void* addr) const; |
| |
| inline HeapWord* bottom_addr_for_region(uint index) const; |
| |
| // Two functions to iterate over the heap regions in parallel. Threads |
| // compete using the HeapRegionClaimer to claim the regions before |
| // applying the closure on them. |
| // The _from_worker_offset version uses the HeapRegionClaimer and |
| // the worker id to calculate a start offset to prevent all workers to |
| // start from the point. |
| void heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl, |
| HeapRegionClaimer* hrclaimer, |
| uint worker_id) const; |
| |
| void heap_region_par_iterate_from_start(HeapRegionClosure* cl, |
| HeapRegionClaimer* hrclaimer) const; |
| |
| // Iterate over all regions in the collection set in parallel. |
| void collection_set_par_iterate_all(HeapRegionClosure* cl, |
| HeapRegionClaimer* hr_claimer, |
| uint worker_id); |
| |
| // Iterate over all regions currently in the current collection set. |
| void collection_set_iterate_all(HeapRegionClosure* blk); |
| |
| // Iterate over the regions in the current increment of the collection set. |
| // Starts the iteration so that the start regions of a given worker id over the |
| // set active_workers are evenly spread across the set of collection set regions |
| // to be iterated. |
| // The variant with the HeapRegionClaimer guarantees that the closure will be |
| // applied to a particular region exactly once. |
| void collection_set_iterate_increment_from(HeapRegionClosure *blk, uint worker_id) { |
| collection_set_iterate_increment_from(blk, nullptr, worker_id); |
| } |
| void collection_set_iterate_increment_from(HeapRegionClosure *blk, HeapRegionClaimer* hr_claimer, uint worker_id); |
| // Iterate over the array of region indexes, uint regions[length], applying |
| // the given HeapRegionClosure on each region. The worker_id will determine where |
| // to start the iteration to allow for more efficient parallel iteration. |
| void par_iterate_regions_array(HeapRegionClosure* cl, |
| HeapRegionClaimer* hr_claimer, |
| const uint regions[], |
| size_t length, |
| uint worker_id) const; |
| |
| // Returns the HeapRegion that contains addr. addr must not be null. |
| inline HeapRegion* heap_region_containing(const void* addr) const; |
| |
| // Returns the HeapRegion that contains addr, or null if that is an uncommitted |
| // region. addr must not be null. |
| inline HeapRegion* heap_region_containing_or_null(const void* addr) const; |
| |
| // A CollectedHeap is divided into a dense sequence of "blocks"; that is, |
| // each address in the (reserved) heap is a member of exactly |
| // one block. The defining characteristic of a block is that it is |
| // possible to find its size, and thus to progress forward to the next |
| // block. (Blocks may be of different sizes.) Thus, blocks may |
| // represent Java objects, or they might be free blocks in a |
| // free-list-based heap (or subheap), as long as the two kinds are |
| // distinguishable and the size of each is determinable. |
| |
| // Returns the address of the start of the "block" that contains the |
| // address "addr". We say "blocks" instead of "object" since some heaps |
| // may not pack objects densely; a chunk may either be an object or a |
| // non-object. |
| HeapWord* block_start(const void* addr) const; |
| |
| // Requires "addr" to be the start of a block, and returns "TRUE" iff |
| // the block is an object. |
| bool block_is_obj(const HeapWord* addr) const; |
| |
| // Section on thread-local allocation buffers (TLABs) |
| // See CollectedHeap for semantics. |
| |
| size_t tlab_capacity(Thread* ignored) const override; |
| size_t tlab_used(Thread* ignored) const override; |
| size_t max_tlab_size() const override; |
| size_t unsafe_max_tlab_alloc(Thread* ignored) const override; |
| |
| inline bool is_in_young(const oop obj) const; |
| inline bool requires_barriers(stackChunkOop obj) const override; |
| |
| // Returns "true" iff the given word_size is "very large". |
| static bool is_humongous(size_t word_size) { |
| // Note this has to be strictly greater-than as the TLABs |
| // are capped at the humongous threshold and we want to |
| // ensure that we don't try to allocate a TLAB as |
| // humongous and that we don't allocate a humongous |
| // object in a TLAB. |
| return word_size > _humongous_object_threshold_in_words; |
| } |
| |
| // Returns the humongous threshold for a specific region size |
| static size_t humongous_threshold_for(size_t region_size) { |
| return (region_size / 2); |
| } |
| |
| // Returns the number of regions the humongous object of the given word size |
| // requires. |
| static size_t humongous_obj_size_in_regions(size_t word_size); |
| |
| // Print the maximum heap capacity. |
| size_t max_capacity() const override; |
| |
| Tickspan time_since_last_collection() const { return Ticks::now() - _collection_pause_end; } |
| |
| // Convenience function to be used in situations where the heap type can be |
| // asserted to be this type. |
| static G1CollectedHeap* heap() { |
| return named_heap<G1CollectedHeap>(CollectedHeap::G1); |
| } |
| |
| void set_region_short_lived_locked(HeapRegion* hr); |
| // add appropriate methods for any other surv rate groups |
| |
| G1SurvivorRegions* survivor() { return &_survivor; } |
| |
| uint eden_regions_count() const { return _eden.length(); } |
| uint eden_regions_count(uint node_index) const { return _eden.regions_on_node(node_index); } |
| uint survivor_regions_count() const { return _survivor.length(); } |
| uint survivor_regions_count(uint node_index) const { return _survivor.regions_on_node(node_index); } |
| size_t eden_regions_used_bytes() const { return _eden.used_bytes(); } |
| size_t survivor_regions_used_bytes() const { return _survivor.used_bytes(); } |
| uint young_regions_count() const { return _eden.length() + _survivor.length(); } |
| uint old_regions_count() const { return _old_set.length(); } |
| uint humongous_regions_count() const { return _humongous_set.length(); } |
| |
| #ifdef ASSERT |
| bool check_young_list_empty(); |
| #endif |
| |
| bool is_marked(oop obj) const; |
| |
| inline static bool is_obj_filler(const oop obj); |
| // Determine if an object is dead, given the object and also |
| // the region to which the object belongs. |
| inline bool is_obj_dead(const oop obj, const HeapRegion* hr) const; |
| |
| // Determine if an object is dead, given only the object itself. |
| // This will find the region to which the object belongs and |
| // then call the region version of the same function. |
| // If obj is null it is not dead. |
| inline bool is_obj_dead(const oop obj) const; |
| |
| inline bool is_obj_dead_full(const oop obj, const HeapRegion* hr) const; |
| inline bool is_obj_dead_full(const oop obj) const; |
| |
| // Mark the live object that failed evacuation in the bitmap. |
| void mark_evac_failure_object(uint worker_id, oop obj, size_t obj_size) const; |
| |
| G1ConcurrentMark* concurrent_mark() const { return _cm; } |
| |
| // Refinement |
| |
| G1ConcurrentRefine* concurrent_refine() const { return _cr; } |
| |
| // Optimized nmethod scanning support routines |
| |
| // Register the given nmethod with the G1 heap. |
| void register_nmethod(nmethod* nm) override; |
| |
| // Unregister the given nmethod from the G1 heap. |
| void unregister_nmethod(nmethod* nm) override; |
| |
| // No nmethod verification implemented. |
| void verify_nmethod(nmethod* nm) override {} |
| |
| // Recalculate amount of used memory after GC. Must be called after all allocation |
| // has finished. |
| void update_used_after_gc(bool evacuation_failed); |
| |
| // Rebuild the code root lists for each region |
| // after a full GC. |
| void rebuild_code_roots(); |
| |
| // Performs cleaning of data structures after class unloading. |
| void complete_cleaning(bool class_unloading_occurred); |
| |
| void unload_classes_and_code(const char* description, BoolObjectClosure* cl, GCTimer* timer); |
| |
| void bulk_unregister_nmethods(); |
| |
| // Verification |
| |
| // Perform any cleanup actions necessary before allowing a verification. |
| void prepare_for_verify() override; |
| |
| // Perform verification. |
| void verify(VerifyOption vo) override; |
| |
| // WhiteBox testing support. |
| bool supports_concurrent_gc_breakpoints() const override; |
| |
| WorkerThreads* safepoint_workers() override { return _workers; } |
| |
| // The methods below are here for convenience and dispatch the |
| // appropriate method depending on value of the given VerifyOption |
| // parameter. The values for that parameter, and their meanings, |
| // are the same as those above. |
| |
| bool is_obj_dead_cond(const oop obj, |
| const HeapRegion* hr, |
| const VerifyOption vo) const; |
| |
| bool is_obj_dead_cond(const oop obj, |
| const VerifyOption vo) const; |
| |
| G1HeapSummary create_g1_heap_summary(); |
| G1EvacSummary create_g1_evac_summary(G1EvacStats* stats); |
| |
| void pin_object(JavaThread* thread, oop obj) override; |
| void unpin_object(JavaThread* thread, oop obj) override; |
| |
| // Printing |
| private: |
| void print_heap_regions() const; |
| void print_regions_on(outputStream* st) const; |
| |
| public: |
| void print_on(outputStream* st) const override; |
| void print_extended_on(outputStream* st) const override; |
| void print_on_error(outputStream* st) const override; |
| |
| void gc_threads_do(ThreadClosure* tc) const override; |
| |
| // Override |
| void print_tracing_info() const override; |
| |
| // Used to print information about locations in the hs_err file. |
| bool print_location(outputStream* st, void* addr) const override; |
| }; |
| |
| // Scoped object that performs common pre- and post-gc heap printing operations. |
| class G1HeapPrinterMark : public StackObj { |
| G1CollectedHeap* _g1h; |
| G1HeapTransition _heap_transition; |
| |
| public: |
| G1HeapPrinterMark(G1CollectedHeap* g1h); |
| ~G1HeapPrinterMark(); |
| }; |
| |
| // Scoped object that performs common pre- and post-gc operations related to |
| // JFR events. |
| class G1JFRTracerMark : public StackObj { |
| protected: |
| STWGCTimer* _timer; |
| GCTracer* _tracer; |
| |
| public: |
| G1JFRTracerMark(STWGCTimer* timer, GCTracer* tracer); |
| ~G1JFRTracerMark(); |
| }; |
| |
| #endif // SHARE_GC_G1_G1COLLECTEDHEAP_HPP |