blob: 447535f2f8600e9cd6d48c7e696ff6dd0cf20b11 [file] [log] [blame]
/*
* Copyright (c) 2001, 2023, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_GC_G1_G1COLLECTEDHEAP_HPP
#define SHARE_GC_G1_G1COLLECTEDHEAP_HPP
#include "gc/g1/g1BarrierSet.hpp"
#include "gc/g1/g1BiasedArray.hpp"
#include "gc/g1/g1CardTable.hpp"
#include "gc/g1/g1CardSet.hpp"
#include "gc/g1/g1CollectionSet.hpp"
#include "gc/g1/g1CollectorState.hpp"
#include "gc/g1/g1ConcurrentMark.hpp"
#include "gc/g1/g1EdenRegions.hpp"
#include "gc/g1/g1EvacStats.hpp"
#include "gc/g1/g1GCPauseType.hpp"
#include "gc/g1/g1HeapRegionAttr.hpp"
#include "gc/g1/g1HeapTransition.hpp"
#include "gc/g1/g1HeapVerifier.hpp"
#include "gc/g1/g1HRPrinter.hpp"
#include "gc/g1/g1MonitoringSupport.hpp"
#include "gc/g1/g1MonotonicArenaFreeMemoryTask.hpp"
#include "gc/g1/g1MonotonicArenaFreePool.hpp"
#include "gc/g1/g1NUMA.hpp"
#include "gc/g1/g1SurvivorRegions.hpp"
#include "gc/g1/g1YoungGCEvacFailureInjector.hpp"
#include "gc/g1/heapRegionManager.hpp"
#include "gc/g1/heapRegionSet.hpp"
#include "gc/shared/barrierSet.hpp"
#include "gc/shared/collectedHeap.hpp"
#include "gc/shared/gcHeapSummary.hpp"
#include "gc/shared/plab.hpp"
#include "gc/shared/softRefPolicy.hpp"
#include "gc/shared/taskqueue.hpp"
#include "memory/allocation.hpp"
#include "memory/iterator.hpp"
#include "memory/memRegion.hpp"
#include "runtime/mutexLocker.hpp"
#include "runtime/threadSMR.hpp"
#include "utilities/bitMap.hpp"
// A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
// It uses the "Garbage First" heap organization and algorithm, which
// may combine concurrent marking with parallel, incremental compaction of
// heap subsets that will yield large amounts of garbage.
// Forward declarations
class G1Allocator;
class G1BatchedTask;
class G1CardTableEntryClosure;
class G1ConcurrentMark;
class G1ConcurrentMarkThread;
class G1ConcurrentRefine;
class G1GCCounters;
class G1GCPhaseTimes;
class G1HeapSizingPolicy;
class G1NewTracer;
class G1RemSet;
class G1ServiceTask;
class G1ServiceThread;
class GCMemoryManager;
class HeapRegion;
class MemoryPool;
class nmethod;
class ReferenceProcessor;
class STWGCTimer;
class WorkerThreads;
typedef OverflowTaskQueue<ScannerTask, mtGC> G1ScannerTasksQueue;
typedef GenericTaskQueueSet<G1ScannerTasksQueue, mtGC> G1ScannerTasksQueueSet;
typedef int RegionIdx_t; // needs to hold [ 0..max_reserved_regions() )
typedef int CardIdx_t; // needs to hold [ 0..CardsPerRegion )
// The G1 STW is alive closure.
// An instance is embedded into the G1CH and used as the
// (optional) _is_alive_non_header closure in the STW
// reference processor. It is also extensively used during
// reference processing during STW evacuation pauses.
class G1STWIsAliveClosure : public BoolObjectClosure {
G1CollectedHeap* _g1h;
public:
G1STWIsAliveClosure(G1CollectedHeap* g1h) : _g1h(g1h) {}
bool do_object_b(oop p) override;
};
class G1STWSubjectToDiscoveryClosure : public BoolObjectClosure {
G1CollectedHeap* _g1h;
public:
G1STWSubjectToDiscoveryClosure(G1CollectedHeap* g1h) : _g1h(g1h) {}
bool do_object_b(oop p) override;
};
class G1RegionMappingChangedListener : public G1MappingChangedListener {
private:
void reset_from_card_cache(uint start_idx, size_t num_regions);
public:
void on_commit(uint start_idx, size_t num_regions, bool zero_filled) override;
};
// Helper to claim contiguous sets of JavaThread for processing by multiple threads.
class G1JavaThreadsListClaimer : public StackObj {
ThreadsListHandle _list;
uint _claim_step;
volatile uint _cur_claim;
// Attempts to claim _claim_step JavaThreads, returning an array of claimed
// JavaThread* with count elements. Returns null (and a zero count) if there
// are no more threads to claim.
JavaThread* const* claim(uint& count);
public:
G1JavaThreadsListClaimer(uint claim_step) : _list(), _claim_step(claim_step), _cur_claim(0) {
assert(claim_step > 0, "must be");
}
// Executes the given closure on the elements of the JavaThread list, chunking the
// JavaThread set in claim_step chunks for each caller to reduce parallelization
// overhead.
void apply(ThreadClosure* cl);
// Total number of JavaThreads that can be claimed.
uint length() const { return _list.length(); }
};
class G1CollectedHeap : public CollectedHeap {
friend class VM_G1CollectForAllocation;
friend class VM_G1CollectFull;
friend class VM_G1TryInitiateConcMark;
friend class VMStructs;
friend class MutatorAllocRegion;
friend class G1FullCollector;
friend class G1GCAllocRegion;
friend class G1HeapVerifier;
friend class G1YoungGCVerifierMark;
// Closures used in implementation.
friend class G1EvacuateRegionsTask;
friend class G1PLABAllocator;
// Other related classes.
friend class G1HeapPrinterMark;
friend class HeapRegionClaimer;
// Testing classes.
friend class G1CheckRegionAttrTableClosure;
private:
G1ServiceThread* _service_thread;
G1ServiceTask* _periodic_gc_task;
G1MonotonicArenaFreeMemoryTask* _free_arena_memory_task;
WorkerThreads* _workers;
G1CardTable* _card_table;
Ticks _collection_pause_end;
SoftRefPolicy _soft_ref_policy;
static size_t _humongous_object_threshold_in_words;
// These sets keep track of old and humongous regions respectively.
HeapRegionSet _old_set;
HeapRegionSet _humongous_set;
// Young gen memory statistics before GC.
G1MonotonicArenaMemoryStats _young_gen_card_set_stats;
// Collection set candidates memory statistics after GC.
G1MonotonicArenaMemoryStats _collection_set_candidates_card_set_stats;
// The block offset table for the G1 heap.
G1BlockOffsetTable* _bot;
public:
void rebuild_free_region_list();
// Start a new incremental collection set for the next pause.
void start_new_collection_set();
void prepare_region_for_full_compaction(HeapRegion* hr);
private:
// Rebuilds the region sets / lists so that they are repopulated to
// reflect the contents of the heap. The only exception is the
// humongous set which was not torn down in the first place. If
// free_list_only is true, it will only rebuild the free list.
void rebuild_region_sets(bool free_list_only);
// Callback for region mapping changed events.
G1RegionMappingChangedListener _listener;
// Handle G1 NUMA support.
G1NUMA* _numa;
// The sequence of all heap regions in the heap.
HeapRegionManager _hrm;
// Manages all allocations with regions except humongous object allocations.
G1Allocator* _allocator;
G1YoungGCEvacFailureInjector _evac_failure_injector;
// Manages all heap verification.
G1HeapVerifier* _verifier;
// Outside of GC pauses, the number of bytes used in all regions other
// than the current allocation region(s).
volatile size_t _summary_bytes_used;
void increase_used(size_t bytes);
void decrease_used(size_t bytes);
void set_used(size_t bytes);
// Number of bytes used in all regions during GC. Typically changed when
// retiring a GC alloc region.
size_t _bytes_used_during_gc;
public:
size_t bytes_used_during_gc() const { return _bytes_used_during_gc; }
private:
// GC allocation statistics policy for survivors.
G1EvacStats _survivor_evac_stats;
// GC allocation statistics policy for tenured objects.
G1EvacStats _old_evac_stats;
// Helper for monitoring and management support.
G1MonitoringSupport* _monitoring_support;
uint _num_humongous_objects; // Current amount of (all) humongous objects found in the heap.
uint _num_humongous_reclaim_candidates; // Number of humongous object eager reclaim candidates.
public:
uint num_humongous_objects() const { return _num_humongous_objects; }
uint num_humongous_reclaim_candidates() const { return _num_humongous_reclaim_candidates; }
bool has_humongous_reclaim_candidates() const { return _num_humongous_reclaim_candidates > 0; }
void set_humongous_stats(uint num_humongous_total, uint num_humongous_candidates);
bool should_sample_collection_set_candidates() const;
void set_collection_set_candidates_stats(G1MonotonicArenaMemoryStats& stats);
void set_young_gen_card_set_stats(const G1MonotonicArenaMemoryStats& stats);
private:
G1HRPrinter _hr_printer;
// Return true if an explicit GC should start a concurrent cycle instead
// of doing a STW full GC. A concurrent cycle should be started if:
// (a) cause == _g1_humongous_allocation,
// (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent,
// (c) cause == _dcmd_gc_run and +ExplicitGCInvokesConcurrent,
// (d) cause == _wb_breakpoint,
// (e) cause == _g1_periodic_collection and +G1PeriodicGCInvokesConcurrent.
bool should_do_concurrent_full_gc(GCCause::Cause cause);
// Attempt to start a concurrent cycle with the indicated cause.
// precondition: should_do_concurrent_full_gc(cause)
bool try_collect_concurrently(GCCause::Cause cause,
uint gc_counter,
uint old_marking_started_before);
bool try_collect_fullgc(GCCause::Cause cause,
const G1GCCounters& counters_before);
// indicates whether we are in young or mixed GC mode
G1CollectorState _collector_state;
// Keeps track of how many "old marking cycles" (i.e., Full GCs or
// concurrent cycles) we have started.
volatile uint _old_marking_cycles_started;
// Keeps track of how many "old marking cycles" (i.e., Full GCs or
// concurrent cycles) we have completed.
volatile uint _old_marking_cycles_completed;
// Create a memory mapper for auxiliary data structures of the given size and
// translation factor.
static G1RegionToSpaceMapper* create_aux_memory_mapper(const char* description,
size_t size,
size_t translation_factor);
void trace_heap(GCWhen::Type when, const GCTracer* tracer) override;
// These are macros so that, if the assert fires, we get the correct
// line number, file, etc.
#define heap_locking_asserts_params(_extra_message_) \
"%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s", \
(_extra_message_), \
BOOL_TO_STR(Heap_lock->owned_by_self()), \
BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()), \
BOOL_TO_STR(Thread::current()->is_VM_thread())
#define assert_heap_locked() \
do { \
assert(Heap_lock->owned_by_self(), \
heap_locking_asserts_params("should be holding the Heap_lock")); \
} while (0)
#define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_) \
do { \
assert(Heap_lock->owned_by_self() || \
(SafepointSynchronize::is_at_safepoint() && \
((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
heap_locking_asserts_params("should be holding the Heap_lock or " \
"should be at a safepoint")); \
} while (0)
#define assert_heap_locked_and_not_at_safepoint() \
do { \
assert(Heap_lock->owned_by_self() && \
!SafepointSynchronize::is_at_safepoint(), \
heap_locking_asserts_params("should be holding the Heap_lock and " \
"should not be at a safepoint")); \
} while (0)
#define assert_heap_not_locked() \
do { \
assert(!Heap_lock->owned_by_self(), \
heap_locking_asserts_params("should not be holding the Heap_lock")); \
} while (0)
#define assert_heap_not_locked_and_not_at_safepoint() \
do { \
assert(!Heap_lock->owned_by_self() && \
!SafepointSynchronize::is_at_safepoint(), \
heap_locking_asserts_params("should not be holding the Heap_lock and " \
"should not be at a safepoint")); \
} while (0)
#define assert_at_safepoint_on_vm_thread() \
do { \
assert_at_safepoint(); \
assert(Thread::current_or_null() != nullptr, "no current thread"); \
assert(Thread::current()->is_VM_thread(), "current thread is not VM thread"); \
} while (0)
#ifdef ASSERT
#define assert_used_and_recalculate_used_equal(g1h) \
do { \
size_t cur_used_bytes = g1h->used(); \
size_t recal_used_bytes = g1h->recalculate_used(); \
assert(cur_used_bytes == recal_used_bytes, "Used(" SIZE_FORMAT ") is not" \
" same as recalculated used(" SIZE_FORMAT ").", \
cur_used_bytes, recal_used_bytes); \
} while (0)
#else
#define assert_used_and_recalculate_used_equal(g1h) do {} while(0)
#endif
// The young region list.
G1EdenRegions _eden;
G1SurvivorRegions _survivor;
STWGCTimer* _gc_timer_stw;
G1NewTracer* _gc_tracer_stw;
// The current policy object for the collector.
G1Policy* _policy;
G1HeapSizingPolicy* _heap_sizing_policy;
G1CollectionSet _collection_set;
// Try to allocate a single non-humongous HeapRegion sufficient for
// an allocation of the given word_size. If do_expand is true,
// attempt to expand the heap if necessary to satisfy the allocation
// request. 'type' takes the type of region to be allocated. (Use constants
// Old, Eden, Humongous, Survivor defined in HeapRegionType.)
HeapRegion* new_region(size_t word_size,
HeapRegionType type,
bool do_expand,
uint node_index = G1NUMA::AnyNodeIndex);
// Initialize a contiguous set of free regions of length num_regions
// and starting at index first so that they appear as a single
// humongous region.
HeapWord* humongous_obj_allocate_initialize_regions(HeapRegion* first_hr,
uint num_regions,
size_t word_size);
// Attempt to allocate a humongous object of the given size. Return
// null if unsuccessful.
HeapWord* humongous_obj_allocate(size_t word_size);
// The following two methods, allocate_new_tlab() and
// mem_allocate(), are the two main entry points from the runtime
// into the G1's allocation routines. They have the following
// assumptions:
//
// * They should both be called outside safepoints.
//
// * They should both be called without holding the Heap_lock.
//
// * All allocation requests for new TLABs should go to
// allocate_new_tlab().
//
// * All non-TLAB allocation requests should go to mem_allocate().
//
// * If either call cannot satisfy the allocation request using the
// current allocating region, they will try to get a new one. If
// this fails, they will attempt to do an evacuation pause and
// retry the allocation.
//
// * If all allocation attempts fail, even after trying to schedule
// an evacuation pause, allocate_new_tlab() will return null,
// whereas mem_allocate() will attempt a heap expansion and/or
// schedule a Full GC.
//
// * We do not allow humongous-sized TLABs. So, allocate_new_tlab
// should never be called with word_size being humongous. All
// humongous allocation requests should go to mem_allocate() which
// will satisfy them with a special path.
HeapWord* allocate_new_tlab(size_t min_size,
size_t requested_size,
size_t* actual_size) override;
HeapWord* mem_allocate(size_t word_size,
bool* gc_overhead_limit_was_exceeded) override;
// First-level mutator allocation attempt: try to allocate out of
// the mutator alloc region without taking the Heap_lock. This
// should only be used for non-humongous allocations.
inline HeapWord* attempt_allocation(size_t min_word_size,
size_t desired_word_size,
size_t* actual_word_size);
// Second-level mutator allocation attempt: take the Heap_lock and
// retry the allocation attempt, potentially scheduling a GC
// pause. This should only be used for non-humongous allocations.
HeapWord* attempt_allocation_slow(size_t word_size);
// Takes the Heap_lock and attempts a humongous allocation. It can
// potentially schedule a GC pause.
HeapWord* attempt_allocation_humongous(size_t word_size);
// Allocation attempt that should be called during safepoints (e.g.,
// at the end of a successful GC). expect_null_mutator_alloc_region
// specifies whether the mutator alloc region is expected to be null
// or not.
HeapWord* attempt_allocation_at_safepoint(size_t word_size,
bool expect_null_mutator_alloc_region);
// These methods are the "callbacks" from the G1AllocRegion class.
// For mutator alloc regions.
HeapRegion* new_mutator_alloc_region(size_t word_size, bool force, uint node_index);
void retire_mutator_alloc_region(HeapRegion* alloc_region,
size_t allocated_bytes);
// For GC alloc regions.
bool has_more_regions(G1HeapRegionAttr dest);
HeapRegion* new_gc_alloc_region(size_t word_size, G1HeapRegionAttr dest, uint node_index);
void retire_gc_alloc_region(HeapRegion* alloc_region,
size_t allocated_bytes, G1HeapRegionAttr dest);
// - if clear_all_soft_refs is true, all soft references should be
// cleared during the GC.
// - if do_maximal_compaction is true, full gc will do a maximally
// compacting collection, leaving no dead wood.
// - it returns false if it is unable to do the collection due to the
// GC locker being active, true otherwise.
bool do_full_collection(bool clear_all_soft_refs,
bool do_maximal_compaction);
// Callback from VM_G1CollectFull operation, or collect_as_vm_thread.
void do_full_collection(bool clear_all_soft_refs) override;
// Helper to do a full collection that clears soft references.
bool upgrade_to_full_collection();
// Callback from VM_G1CollectForAllocation operation.
// This function does everything necessary/possible to satisfy a
// failed allocation request (including collection, expansion, etc.)
HeapWord* satisfy_failed_allocation(size_t word_size,
bool* succeeded);
// Internal helpers used during full GC to split it up to
// increase readability.
bool abort_concurrent_cycle();
void verify_before_full_collection();
void prepare_heap_for_full_collection();
void prepare_for_mutator_after_full_collection();
void abort_refinement();
void verify_after_full_collection();
void print_heap_after_full_collection();
// Helper method for satisfy_failed_allocation()
HeapWord* satisfy_failed_allocation_helper(size_t word_size,
bool do_gc,
bool maximal_compaction,
bool expect_null_mutator_alloc_region,
bool* gc_succeeded);
// Attempting to expand the heap sufficiently
// to support an allocation of the given "word_size". If
// successful, perform the allocation and return the address of the
// allocated block, or else null.
HeapWord* expand_and_allocate(size_t word_size);
void verify_numa_regions(const char* desc);
public:
// If during a concurrent start pause we may install a pending list head which is not
// otherwise reachable, ensure that it is marked in the bitmap for concurrent marking
// to discover.
void make_pending_list_reachable();
G1ServiceThread* service_thread() const { return _service_thread; }
WorkerThreads* workers() const { return _workers; }
// Run the given batch task using the workers.
void run_batch_task(G1BatchedTask* cl);
// Return "optimal" number of chunks per region we want to use for claiming areas
// within a region to claim.
// The returned value is a trade-off between granularity of work distribution and
// memory usage and maintenance costs of that table.
// Testing showed that 64 for 1M/2M region, 128 for 4M/8M regions, 256 for 16/32M regions,
// and so on seems to be such a good trade-off.
static uint get_chunks_per_region();
G1Allocator* allocator() {
return _allocator;
}
G1YoungGCEvacFailureInjector* evac_failure_injector() { return &_evac_failure_injector; }
G1HeapVerifier* verifier() {
return _verifier;
}
G1MonitoringSupport* monitoring_support() {
assert(_monitoring_support != nullptr, "should have been initialized");
return _monitoring_support;
}
void resize_heap_if_necessary();
// Check if there is memory to uncommit and if so schedule a task to do it.
void uncommit_regions_if_necessary();
// Immediately uncommit uncommittable regions.
uint uncommit_regions(uint region_limit);
bool has_uncommittable_regions();
G1NUMA* numa() const { return _numa; }
// Expand the garbage-first heap by at least the given size (in bytes!).
// Returns true if the heap was expanded by the requested amount;
// false otherwise.
// (Rounds up to a HeapRegion boundary.)
bool expand(size_t expand_bytes, WorkerThreads* pretouch_workers = nullptr, double* expand_time_ms = nullptr);
bool expand_single_region(uint node_index);
// Returns the PLAB statistics for a given destination.
inline G1EvacStats* alloc_buffer_stats(G1HeapRegionAttr dest);
// Determines PLAB size for a given destination.
inline size_t desired_plab_sz(G1HeapRegionAttr dest);
// Clamp the given PLAB word size to allowed values. Prevents humongous PLAB sizes
// for two reasons:
// * PLABs are allocated using a similar paths as oops, but should
// never be in a humongous region
// * Allowing humongous PLABs needlessly churns the region free lists
inline size_t clamp_plab_size(size_t value) const;
// Do anything common to GC's.
void gc_prologue(bool full);
void gc_epilogue(bool full);
// Does the given region fulfill remembered set based eager reclaim candidate requirements?
bool is_potential_eager_reclaim_candidate(HeapRegion* r) const;
inline bool is_humongous_reclaim_candidate(uint region);
// Remove from the reclaim candidate set. Also remove from the
// collection set so that later encounters avoid the slow path.
inline void set_humongous_is_live(oop obj);
// Register the given region to be part of the collection set.
inline void register_humongous_candidate_region_with_region_attr(uint index);
void set_humongous_metadata(HeapRegion* first_hr,
uint num_regions,
size_t word_size,
bool update_remsets);
// We register a region with the fast "in collection set" test. We
// simply set to true the array slot corresponding to this region.
void register_young_region_with_region_attr(HeapRegion* r) {
_region_attr.set_in_young(r->hrm_index());
}
inline void register_new_survivor_region_with_region_attr(HeapRegion* r);
inline void register_region_with_region_attr(HeapRegion* r);
inline void register_old_region_with_region_attr(HeapRegion* r);
inline void register_optional_region_with_region_attr(HeapRegion* r);
void clear_region_attr(const HeapRegion* hr) {
_region_attr.clear(hr);
}
void clear_region_attr() {
_region_attr.clear();
}
// Verify that the G1RegionAttr remset tracking corresponds to actual remset tracking
// for all regions.
void verify_region_attr_remset_is_tracked() PRODUCT_RETURN;
void clear_bitmap_for_region(HeapRegion* hr);
bool is_user_requested_concurrent_full_gc(GCCause::Cause cause);
// This is called at the start of either a concurrent cycle or a Full
// GC to update the number of old marking cycles started.
void increment_old_marking_cycles_started();
// This is called at the end of either a concurrent cycle or a Full
// GC to update the number of old marking cycles completed. Those two
// can happen in a nested fashion, i.e., we start a concurrent
// cycle, a Full GC happens half-way through it which ends first,
// and then the cycle notices that a Full GC happened and ends
// too. The concurrent parameter is a boolean to help us do a bit
// tighter consistency checking in the method. If concurrent is
// false, the caller is the inner caller in the nesting (i.e., the
// Full GC). If concurrent is true, the caller is the outer caller
// in this nesting (i.e., the concurrent cycle). Further nesting is
// not currently supported. The end of this call also notifies
// the G1OldGCCount_lock in case a Java thread is waiting for a full
// GC to happen (e.g., it called System.gc() with
// +ExplicitGCInvokesConcurrent).
// whole_heap_examined should indicate that during that old marking
// cycle the whole heap has been examined for live objects (as opposed
// to only parts, or aborted before completion).
void increment_old_marking_cycles_completed(bool concurrent, bool whole_heap_examined);
uint old_marking_cycles_started() const {
return _old_marking_cycles_started;
}
uint old_marking_cycles_completed() const {
return _old_marking_cycles_completed;
}
G1HRPrinter* hr_printer() { return &_hr_printer; }
// Allocates a new heap region instance.
HeapRegion* new_heap_region(uint hrs_index, MemRegion mr);
// Allocate the highest free region in the reserved heap. This will commit
// regions as necessary.
HeapRegion* alloc_highest_free_region();
// Frees a region by resetting its metadata and adding it to the free list
// passed as a parameter (this is usually a local list which will be appended
// to the master free list later or null if free list management is handled
// in another way).
// Callers must ensure they are the only one calling free on the given region
// at the same time.
void free_region(HeapRegion* hr, FreeRegionList* free_list);
// It dirties the cards that cover the block so that the post
// write barrier never queues anything when updating objects on this
// block. It is assumed (and in fact we assert) that the block
// belongs to a young region.
inline void dirty_young_block(HeapWord* start, size_t word_size);
// Frees a humongous region by collapsing it into individual regions
// and calling free_region() for each of them. The freed regions
// will be added to the free list that's passed as a parameter (this
// is usually a local list which will be appended to the master free
// list later).
// The method assumes that only a single thread is ever calling
// this for a particular region at once.
void free_humongous_region(HeapRegion* hr,
FreeRegionList* free_list);
// Facility for allocating a fixed range within the heap and marking
// the containing regions as 'old'. For use at JVM init time, when the
// caller may mmap archived heap data at the specified range.
// Verify that the range is within the reserved heap.
bool check_archive_addresses(MemRegion range);
// Execute func(HeapRegion* r, bool is_last) on every region covered by the
// given range.
template <typename Func>
void iterate_regions_in_range(MemRegion range, const Func& func);
// Commit the appropriate G1 region(s) containing the specified range
// and mark them as 'old' region(s).
bool alloc_archive_regions(MemRegion range);
// Populate the G1BlockOffsetTablePart for archived regions with the given
// memory range.
void populate_archive_regions_bot_part(MemRegion range);
// For the specified range, uncommit the containing G1 regions
// which had been allocated by alloc_archive_regions. This should be called
// at JVM init time if the archive heap's contents cannot be used (e.g., if
// CRC check fails).
void dealloc_archive_regions(MemRegion range);
private:
// Shrink the garbage-first heap by at most the given size (in bytes!).
// (Rounds down to a HeapRegion boundary.)
void shrink(size_t shrink_bytes);
void shrink_helper(size_t expand_bytes);
// Schedule the VM operation that will do an evacuation pause to
// satisfy an allocation request of word_size. *succeeded will
// return whether the VM operation was successful (it did do an
// evacuation pause) or not (another thread beat us to it or the GC
// locker was active). Given that we should not be holding the
// Heap_lock when we enter this method, we will pass the
// gc_count_before (i.e., total_collections()) as a parameter since
// it has to be read while holding the Heap_lock. Currently, both
// methods that call do_collection_pause() release the Heap_lock
// before the call, so it's easy to read gc_count_before just before.
HeapWord* do_collection_pause(size_t word_size,
uint gc_count_before,
bool* succeeded,
GCCause::Cause gc_cause);
// Perform an incremental collection at a safepoint, possibly
// followed by a by-policy upgrade to a full collection. Returns
// false if unable to do the collection due to the GC locker being
// active, true otherwise.
// precondition: at safepoint on VM thread
// precondition: !is_gc_active()
bool do_collection_pause_at_safepoint();
// Helper for do_collection_pause_at_safepoint, containing the guts
// of the incremental collection pause, executed by the vm thread.
void do_collection_pause_at_safepoint_helper();
G1HeapVerifier::G1VerifyType young_collection_verify_type() const;
void verify_before_young_collection(G1HeapVerifier::G1VerifyType type);
void verify_after_young_collection(G1HeapVerifier::G1VerifyType type);
public:
// Start a concurrent cycle.
void start_concurrent_cycle(bool concurrent_operation_is_full_mark);
void prepare_for_mutator_after_young_collection();
void retire_tlabs();
void expand_heap_after_young_collection();
// Update object copying statistics.
void record_obj_copy_mem_stats();
private:
// The g1 remembered set of the heap.
G1RemSet* _rem_set;
// Global card set configuration
G1CardSetConfiguration _card_set_config;
G1MonotonicArenaFreePool _card_set_freelist_pool;
public:
// After a collection pause, reset eden and the collection set.
void clear_eden();
void clear_collection_set();
// Abandon the current collection set without recording policy
// statistics or updating free lists.
void abandon_collection_set(G1CollectionSet* collection_set);
// The concurrent marker (and the thread it runs in.)
G1ConcurrentMark* _cm;
G1ConcurrentMarkThread* _cm_thread;
// The concurrent refiner.
G1ConcurrentRefine* _cr;
// The parallel task queues
G1ScannerTasksQueueSet *_task_queues;
// ("Weak") Reference processing support.
//
// G1 has 2 instances of the reference processor class.
//
// One (_ref_processor_cm) handles reference object discovery and subsequent
// processing during concurrent marking cycles. Discovery is enabled/disabled
// at the start/end of a concurrent marking cycle.
//
// The other (_ref_processor_stw) handles reference object discovery and
// processing during incremental evacuation pauses and full GC pauses.
//
// ## Incremental evacuation pauses
//
// STW ref processor discovery is enabled/disabled at the start/end of an
// incremental evacuation pause. No particular handling of the CM ref
// processor is needed, apart from treating the discovered references as
// roots; CM discovery does not need to be temporarily disabled as all
// marking threads are paused during incremental evacuation pauses.
//
// ## Full GC pauses
//
// We abort any ongoing concurrent marking cycle, disable CM discovery, and
// temporarily substitute a new closure for the STW ref processor's
// _is_alive_non_header field (old value is restored after the full GC). Then
// STW ref processor discovery is enabled, and marking & compaction
// commences.
// The (stw) reference processor...
ReferenceProcessor* _ref_processor_stw;
// During reference object discovery, the _is_alive_non_header
// closure (if non-null) is applied to the referent object to
// determine whether the referent is live. If so then the
// reference object does not need to be 'discovered' and can
// be treated as a regular oop. This has the benefit of reducing
// the number of 'discovered' reference objects that need to
// be processed.
//
// Instance of the is_alive closure for embedding into the
// STW reference processor as the _is_alive_non_header field.
// Supplying a value for the _is_alive_non_header field is
// optional but doing so prevents unnecessary additions to
// the discovered lists during reference discovery.
G1STWIsAliveClosure _is_alive_closure_stw;
G1STWSubjectToDiscoveryClosure _is_subject_to_discovery_stw;
// The (concurrent marking) reference processor...
ReferenceProcessor* _ref_processor_cm;
// Instance of the concurrent mark is_alive closure for embedding
// into the Concurrent Marking reference processor as the
// _is_alive_non_header field. Supplying a value for the
// _is_alive_non_header field is optional but doing so prevents
// unnecessary additions to the discovered lists during reference
// discovery.
G1CMIsAliveClosure _is_alive_closure_cm;
G1CMSubjectToDiscoveryClosure _is_subject_to_discovery_cm;
public:
G1ScannerTasksQueueSet* task_queues() const;
G1ScannerTasksQueue* task_queue(uint i) const;
// Create a G1CollectedHeap.
// Must call the initialize method afterwards.
// May not return if something goes wrong.
G1CollectedHeap();
private:
jint initialize_concurrent_refinement();
jint initialize_service_thread();
public:
// Initialize the G1CollectedHeap to have the initial and
// maximum sizes and remembered and barrier sets
// specified by the policy object.
jint initialize() override;
// Returns whether concurrent mark threads (and the VM) are about to terminate.
bool concurrent_mark_is_terminating() const;
void stop() override;
void safepoint_synchronize_begin() override;
void safepoint_synchronize_end() override;
// Does operations required after initialization has been done.
void post_initialize() override;
// Initialize weak reference processing.
void ref_processing_init();
Name kind() const override {
return CollectedHeap::G1;
}
const char* name() const override {
return "G1";
}
const G1CollectorState* collector_state() const { return &_collector_state; }
G1CollectorState* collector_state() { return &_collector_state; }
// The current policy object for the collector.
G1Policy* policy() const { return _policy; }
// The remembered set.
G1RemSet* rem_set() const { return _rem_set; }
const G1MonotonicArenaFreePool* card_set_freelist_pool() const { return &_card_set_freelist_pool; }
G1MonotonicArenaFreePool* card_set_freelist_pool() { return &_card_set_freelist_pool; }
inline G1GCPhaseTimes* phase_times() const;
const G1CollectionSet* collection_set() const { return &_collection_set; }
G1CollectionSet* collection_set() { return &_collection_set; }
inline bool is_collection_set_candidate(const HeapRegion* r) const;
SoftRefPolicy* soft_ref_policy() override;
void initialize_serviceability() override;
MemoryUsage memory_usage() override;
GrowableArray<GCMemoryManager*> memory_managers() override;
GrowableArray<MemoryPool*> memory_pools() override;
void fill_with_dummy_object(HeapWord* start, HeapWord* end, bool zap) override;
static void start_codecache_marking_cycle_if_inactive(bool concurrent_mark_start);
static void finish_codecache_marking_cycle();
// The shared block offset table array.
G1BlockOffsetTable* bot() const { return _bot; }
// Reference Processing accessors
// The STW reference processor....
ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
G1NewTracer* gc_tracer_stw() const { return _gc_tracer_stw; }
STWGCTimer* gc_timer_stw() const { return _gc_timer_stw; }
// The Concurrent Marking reference processor...
ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
size_t unused_committed_regions_in_bytes() const;
size_t capacity() const override;
size_t used() const override;
// This should be called when we're not holding the heap lock. The
// result might be a bit inaccurate.
size_t used_unlocked() const;
size_t recalculate_used() const;
// These virtual functions do the actual allocation.
// Some heaps may offer a contiguous region for shared non-blocking
// allocation, via inlined code (by exporting the address of the top and
// end fields defining the extent of the contiguous allocation region.)
// But G1CollectedHeap doesn't yet support this.
bool is_maximal_no_gc() const override {
return _hrm.available() == 0;
}
// Returns true if an incremental GC should be upgrade to a full gc. This
// is done when there are no free regions and the heap can't be expanded.
bool should_upgrade_to_full_gc() const {
return is_maximal_no_gc() && num_free_regions() == 0;
}
// The current number of regions in the heap.
uint num_regions() const { return _hrm.length(); }
// The max number of regions reserved for the heap. Except for static array
// sizing purposes you probably want to use max_regions().
uint max_reserved_regions() const { return _hrm.reserved_length(); }
// Max number of regions that can be committed.
uint max_regions() const { return _hrm.max_length(); }
// The number of regions that are completely free.
uint num_free_regions() const { return _hrm.num_free_regions(); }
// The number of regions that can be allocated into.
uint num_free_or_available_regions() const { return num_free_regions() + _hrm.available(); }
MemoryUsage get_auxiliary_data_memory_usage() const {
return _hrm.get_auxiliary_data_memory_usage();
}
// The number of regions that are not completely free.
uint num_used_regions() const { return num_regions() - num_free_regions(); }
#ifdef ASSERT
bool is_on_master_free_list(HeapRegion* hr) {
return _hrm.is_free(hr);
}
#endif // ASSERT
inline void old_set_add(HeapRegion* hr);
inline void old_set_remove(HeapRegion* hr);
size_t non_young_capacity_bytes() {
return (old_regions_count() + humongous_regions_count()) * HeapRegion::GrainBytes;
}
// Determine whether the given region is one that we are using as an
// old GC alloc region.
bool is_old_gc_alloc_region(HeapRegion* hr);
// Perform a collection of the heap; intended for use in implementing
// "System.gc". This probably implies as full a collection as the
// "CollectedHeap" supports.
void collect(GCCause::Cause cause) override;
// Perform a collection of the heap with the given cause.
// Returns whether this collection actually executed.
bool try_collect(GCCause::Cause cause, const G1GCCounters& counters_before);
void start_concurrent_gc_for_metadata_allocation(GCCause::Cause gc_cause);
void remove_from_old_gen_sets(const uint old_regions_removed,
const uint humongous_regions_removed);
void prepend_to_freelist(FreeRegionList* list);
void decrement_summary_bytes(size_t bytes);
bool is_in(const void* p) const override;
// Return "TRUE" iff the given object address is within the collection
// set. Assumes that the reference points into the heap.
inline bool is_in_cset(const HeapRegion *hr) const;
inline bool is_in_cset(oop obj) const;
inline bool is_in_cset(HeapWord* addr) const;
inline bool is_in_cset_or_humongous_candidate(const oop obj);
private:
// This array is used for a quick test on whether a reference points into
// the collection set or not. Each of the array's elements denotes whether the
// corresponding region is in the collection set or not.
G1HeapRegionAttrBiasedMappedArray _region_attr;
public:
inline G1HeapRegionAttr region_attr(const void* obj) const;
inline G1HeapRegionAttr region_attr(uint idx) const;
MemRegion reserved() const {
return _hrm.reserved();
}
bool is_in_reserved(const void* addr) const {
return reserved().contains(addr);
}
G1CardTable* card_table() const {
return _card_table;
}
// Iteration functions.
void object_iterate_parallel(ObjectClosure* cl, uint worker_id, HeapRegionClaimer* claimer);
// Iterate over all objects, calling "cl.do_object" on each.
void object_iterate(ObjectClosure* cl) override;
ParallelObjectIteratorImpl* parallel_object_iterator(uint thread_num) override;
// Keep alive an object that was loaded with AS_NO_KEEPALIVE.
void keep_alive(oop obj) override;
// Iterate over heap regions, in address order, terminating the
// iteration early if the "do_heap_region" method returns "true".
void heap_region_iterate(HeapRegionClosure* blk) const;
void heap_region_iterate(HeapRegionIndexClosure* blk) const;
// Return the region with the given index. It assumes the index is valid.
inline HeapRegion* region_at(uint index) const;
inline HeapRegion* region_at_or_null(uint index) const;
// Iterate over the regions that the humongous object starting at the given
// region and apply the given method with the signature f(HeapRegion*) on them.
template <typename Func>
void humongous_obj_regions_iterate(HeapRegion* start, const Func& f);
// Calculate the region index of the given address. Given address must be
// within the heap.
inline uint addr_to_region(const void* addr) const;
inline HeapWord* bottom_addr_for_region(uint index) const;
// Two functions to iterate over the heap regions in parallel. Threads
// compete using the HeapRegionClaimer to claim the regions before
// applying the closure on them.
// The _from_worker_offset version uses the HeapRegionClaimer and
// the worker id to calculate a start offset to prevent all workers to
// start from the point.
void heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
HeapRegionClaimer* hrclaimer,
uint worker_id) const;
void heap_region_par_iterate_from_start(HeapRegionClosure* cl,
HeapRegionClaimer* hrclaimer) const;
// Iterate over all regions in the collection set in parallel.
void collection_set_par_iterate_all(HeapRegionClosure* cl,
HeapRegionClaimer* hr_claimer,
uint worker_id);
// Iterate over all regions currently in the current collection set.
void collection_set_iterate_all(HeapRegionClosure* blk);
// Iterate over the regions in the current increment of the collection set.
// Starts the iteration so that the start regions of a given worker id over the
// set active_workers are evenly spread across the set of collection set regions
// to be iterated.
// The variant with the HeapRegionClaimer guarantees that the closure will be
// applied to a particular region exactly once.
void collection_set_iterate_increment_from(HeapRegionClosure *blk, uint worker_id) {
collection_set_iterate_increment_from(blk, nullptr, worker_id);
}
void collection_set_iterate_increment_from(HeapRegionClosure *blk, HeapRegionClaimer* hr_claimer, uint worker_id);
// Iterate over the array of region indexes, uint regions[length], applying
// the given HeapRegionClosure on each region. The worker_id will determine where
// to start the iteration to allow for more efficient parallel iteration.
void par_iterate_regions_array(HeapRegionClosure* cl,
HeapRegionClaimer* hr_claimer,
const uint regions[],
size_t length,
uint worker_id) const;
// Returns the HeapRegion that contains addr. addr must not be null.
inline HeapRegion* heap_region_containing(const void* addr) const;
// Returns the HeapRegion that contains addr, or null if that is an uncommitted
// region. addr must not be null.
inline HeapRegion* heap_region_containing_or_null(const void* addr) const;
// A CollectedHeap is divided into a dense sequence of "blocks"; that is,
// each address in the (reserved) heap is a member of exactly
// one block. The defining characteristic of a block is that it is
// possible to find its size, and thus to progress forward to the next
// block. (Blocks may be of different sizes.) Thus, blocks may
// represent Java objects, or they might be free blocks in a
// free-list-based heap (or subheap), as long as the two kinds are
// distinguishable and the size of each is determinable.
// Returns the address of the start of the "block" that contains the
// address "addr". We say "blocks" instead of "object" since some heaps
// may not pack objects densely; a chunk may either be an object or a
// non-object.
HeapWord* block_start(const void* addr) const;
// Requires "addr" to be the start of a block, and returns "TRUE" iff
// the block is an object.
bool block_is_obj(const HeapWord* addr) const;
// Section on thread-local allocation buffers (TLABs)
// See CollectedHeap for semantics.
size_t tlab_capacity(Thread* ignored) const override;
size_t tlab_used(Thread* ignored) const override;
size_t max_tlab_size() const override;
size_t unsafe_max_tlab_alloc(Thread* ignored) const override;
inline bool is_in_young(const oop obj) const;
inline bool requires_barriers(stackChunkOop obj) const override;
// Returns "true" iff the given word_size is "very large".
static bool is_humongous(size_t word_size) {
// Note this has to be strictly greater-than as the TLABs
// are capped at the humongous threshold and we want to
// ensure that we don't try to allocate a TLAB as
// humongous and that we don't allocate a humongous
// object in a TLAB.
return word_size > _humongous_object_threshold_in_words;
}
// Returns the humongous threshold for a specific region size
static size_t humongous_threshold_for(size_t region_size) {
return (region_size / 2);
}
// Returns the number of regions the humongous object of the given word size
// requires.
static size_t humongous_obj_size_in_regions(size_t word_size);
// Print the maximum heap capacity.
size_t max_capacity() const override;
Tickspan time_since_last_collection() const { return Ticks::now() - _collection_pause_end; }
// Convenience function to be used in situations where the heap type can be
// asserted to be this type.
static G1CollectedHeap* heap() {
return named_heap<G1CollectedHeap>(CollectedHeap::G1);
}
void set_region_short_lived_locked(HeapRegion* hr);
// add appropriate methods for any other surv rate groups
G1SurvivorRegions* survivor() { return &_survivor; }
uint eden_regions_count() const { return _eden.length(); }
uint eden_regions_count(uint node_index) const { return _eden.regions_on_node(node_index); }
uint survivor_regions_count() const { return _survivor.length(); }
uint survivor_regions_count(uint node_index) const { return _survivor.regions_on_node(node_index); }
size_t eden_regions_used_bytes() const { return _eden.used_bytes(); }
size_t survivor_regions_used_bytes() const { return _survivor.used_bytes(); }
uint young_regions_count() const { return _eden.length() + _survivor.length(); }
uint old_regions_count() const { return _old_set.length(); }
uint humongous_regions_count() const { return _humongous_set.length(); }
#ifdef ASSERT
bool check_young_list_empty();
#endif
bool is_marked(oop obj) const;
inline static bool is_obj_filler(const oop obj);
// Determine if an object is dead, given the object and also
// the region to which the object belongs.
inline bool is_obj_dead(const oop obj, const HeapRegion* hr) const;
// Determine if an object is dead, given only the object itself.
// This will find the region to which the object belongs and
// then call the region version of the same function.
// If obj is null it is not dead.
inline bool is_obj_dead(const oop obj) const;
inline bool is_obj_dead_full(const oop obj, const HeapRegion* hr) const;
inline bool is_obj_dead_full(const oop obj) const;
// Mark the live object that failed evacuation in the bitmap.
void mark_evac_failure_object(uint worker_id, oop obj, size_t obj_size) const;
G1ConcurrentMark* concurrent_mark() const { return _cm; }
// Refinement
G1ConcurrentRefine* concurrent_refine() const { return _cr; }
// Optimized nmethod scanning support routines
// Register the given nmethod with the G1 heap.
void register_nmethod(nmethod* nm) override;
// Unregister the given nmethod from the G1 heap.
void unregister_nmethod(nmethod* nm) override;
// No nmethod verification implemented.
void verify_nmethod(nmethod* nm) override {}
// Recalculate amount of used memory after GC. Must be called after all allocation
// has finished.
void update_used_after_gc(bool evacuation_failed);
// Rebuild the code root lists for each region
// after a full GC.
void rebuild_code_roots();
// Performs cleaning of data structures after class unloading.
void complete_cleaning(bool class_unloading_occurred);
void unload_classes_and_code(const char* description, BoolObjectClosure* cl, GCTimer* timer);
void bulk_unregister_nmethods();
// Verification
// Perform any cleanup actions necessary before allowing a verification.
void prepare_for_verify() override;
// Perform verification.
void verify(VerifyOption vo) override;
// WhiteBox testing support.
bool supports_concurrent_gc_breakpoints() const override;
WorkerThreads* safepoint_workers() override { return _workers; }
// The methods below are here for convenience and dispatch the
// appropriate method depending on value of the given VerifyOption
// parameter. The values for that parameter, and their meanings,
// are the same as those above.
bool is_obj_dead_cond(const oop obj,
const HeapRegion* hr,
const VerifyOption vo) const;
bool is_obj_dead_cond(const oop obj,
const VerifyOption vo) const;
G1HeapSummary create_g1_heap_summary();
G1EvacSummary create_g1_evac_summary(G1EvacStats* stats);
void pin_object(JavaThread* thread, oop obj) override;
void unpin_object(JavaThread* thread, oop obj) override;
// Printing
private:
void print_heap_regions() const;
void print_regions_on(outputStream* st) const;
public:
void print_on(outputStream* st) const override;
void print_extended_on(outputStream* st) const override;
void print_on_error(outputStream* st) const override;
void gc_threads_do(ThreadClosure* tc) const override;
// Override
void print_tracing_info() const override;
// Used to print information about locations in the hs_err file.
bool print_location(outputStream* st, void* addr) const override;
};
// Scoped object that performs common pre- and post-gc heap printing operations.
class G1HeapPrinterMark : public StackObj {
G1CollectedHeap* _g1h;
G1HeapTransition _heap_transition;
public:
G1HeapPrinterMark(G1CollectedHeap* g1h);
~G1HeapPrinterMark();
};
// Scoped object that performs common pre- and post-gc operations related to
// JFR events.
class G1JFRTracerMark : public StackObj {
protected:
STWGCTimer* _timer;
GCTracer* _tracer;
public:
G1JFRTracerMark(STWGCTimer* timer, GCTracer* tracer);
~G1JFRTracerMark();
};
#endif // SHARE_GC_G1_G1COLLECTEDHEAP_HPP