blob: fc445142bd57b3d9f5ebbf3139287714bda26aeb [file] [log] [blame]
/*
* Copyright (c) 2001, 2023, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/g1/g1Arguments.hpp"
#include "gc/g1/g1CollectedHeap.inline.hpp"
#include "gc/g1/g1ConcurrentRefine.hpp"
#include "gc/g1/g1CommittedRegionMap.inline.hpp"
#include "gc/g1/g1NUMAStats.hpp"
#include "gc/g1/heapRegion.hpp"
#include "gc/g1/heapRegionManager.inline.hpp"
#include "gc/g1/heapRegionSet.inline.hpp"
#include "jfr/jfrEvents.hpp"
#include "logging/logStream.hpp"
#include "memory/allocation.hpp"
#include "runtime/atomic.hpp"
#include "runtime/mutexLocker.hpp"
#include "runtime/orderAccess.hpp"
#include "utilities/bitMap.inline.hpp"
class MasterFreeRegionListChecker : public HeapRegionSetChecker {
public:
void check_mt_safety() {
// Master Free List MT safety protocol:
// (a) If we're at a safepoint, operations on the master free list
// should be invoked by either the VM thread (which will serialize
// them) or by the GC workers while holding the
// FreeList_lock.
// (b) If we're not at a safepoint, operations on the master free
// list should be invoked while holding the Heap_lock.
if (SafepointSynchronize::is_at_safepoint()) {
guarantee(Thread::current()->is_VM_thread() ||
FreeList_lock->owned_by_self(), "master free list MT safety protocol at a safepoint");
} else {
guarantee(Heap_lock->owned_by_self(), "master free list MT safety protocol outside a safepoint");
}
}
bool is_correct_type(HeapRegion* hr) { return hr->is_free(); }
const char* get_description() { return "Free Regions"; }
};
HeapRegionManager::HeapRegionManager() :
_bot_mapper(nullptr),
_cardtable_mapper(nullptr),
_committed_map(),
_allocated_heapregions_length(0),
_regions(), _heap_mapper(nullptr),
_bitmap_mapper(nullptr),
_free_list("Free list", new MasterFreeRegionListChecker())
{ }
void HeapRegionManager::initialize(G1RegionToSpaceMapper* heap_storage,
G1RegionToSpaceMapper* bitmap,
G1RegionToSpaceMapper* bot,
G1RegionToSpaceMapper* cardtable) {
_allocated_heapregions_length = 0;
_heap_mapper = heap_storage;
_bitmap_mapper = bitmap;
_bot_mapper = bot;
_cardtable_mapper = cardtable;
_regions.initialize(heap_storage->reserved(), HeapRegion::GrainBytes);
_committed_map.initialize(reserved_length());
}
HeapRegion* HeapRegionManager::allocate_free_region(HeapRegionType type, uint requested_node_index) {
HeapRegion* hr = nullptr;
bool from_head = !type.is_young();
G1NUMA* numa = G1NUMA::numa();
if (requested_node_index != G1NUMA::AnyNodeIndex && numa->is_enabled()) {
// Try to allocate with requested node index.
hr = _free_list.remove_region_with_node_index(from_head, requested_node_index);
}
if (hr == nullptr) {
// If there's a single active node or we did not get a region from our requested node,
// try without requested node index.
hr = _free_list.remove_region(from_head);
}
if (hr != nullptr) {
assert(hr->next() == nullptr, "Single region should not have next");
assert(is_available(hr->hrm_index()), "Must be committed");
if (numa->is_enabled() && hr->node_index() < numa->num_active_nodes()) {
numa->update_statistics(G1NUMAStats::NewRegionAlloc, requested_node_index, hr->node_index());
}
}
return hr;
}
HeapRegion* HeapRegionManager::allocate_humongous_from_free_list(uint num_regions) {
uint candidate = find_contiguous_in_free_list(num_regions);
if (candidate == G1_NO_HRM_INDEX) {
return nullptr;
}
return allocate_free_regions_starting_at(candidate, num_regions);
}
HeapRegion* HeapRegionManager::allocate_humongous_allow_expand(uint num_regions) {
uint candidate = find_contiguous_allow_expand(num_regions);
if (candidate == G1_NO_HRM_INDEX) {
return nullptr;
}
expand_exact(candidate, num_regions, G1CollectedHeap::heap()->workers());
return allocate_free_regions_starting_at(candidate, num_regions);
}
HeapRegion* HeapRegionManager::allocate_humongous(uint num_regions) {
// Special case a single region to avoid expensive search.
if (num_regions == 1) {
return allocate_free_region(HeapRegionType::Humongous, G1NUMA::AnyNodeIndex);
}
return allocate_humongous_from_free_list(num_regions);
}
HeapRegion* HeapRegionManager::expand_and_allocate_humongous(uint num_regions) {
return allocate_humongous_allow_expand(num_regions);
}
#ifdef ASSERT
bool HeapRegionManager::is_free(HeapRegion* hr) const {
return _free_list.contains(hr);
}
#endif
HeapRegion* HeapRegionManager::new_heap_region(uint hrm_index) {
G1CollectedHeap* g1h = G1CollectedHeap::heap();
HeapWord* bottom = g1h->bottom_addr_for_region(hrm_index);
MemRegion mr(bottom, bottom + HeapRegion::GrainWords);
assert(reserved().contains(mr), "invariant");
return g1h->new_heap_region(hrm_index, mr);
}
void HeapRegionManager::expand(uint start, uint num_regions, WorkerThreads* pretouch_workers) {
commit_regions(start, num_regions, pretouch_workers);
for (uint i = start; i < start + num_regions; i++) {
HeapRegion* hr = _regions.get_by_index(i);
if (hr == nullptr) {
hr = new_heap_region(i);
OrderAccess::storestore();
_regions.set_by_index(i, hr);
_allocated_heapregions_length = MAX2(_allocated_heapregions_length, i + 1);
}
G1CollectedHeap::heap()->hr_printer()->commit(hr);
}
activate_regions(start, num_regions);
}
void HeapRegionManager::commit_regions(uint index, size_t num_regions, WorkerThreads* pretouch_workers) {
guarantee(num_regions > 0, "Must commit more than zero regions");
guarantee(num_regions <= available(),
"Cannot commit more than the maximum amount of regions");
_heap_mapper->commit_regions(index, num_regions, pretouch_workers);
// Also commit auxiliary data
_bitmap_mapper->commit_regions(index, num_regions, pretouch_workers);
_bot_mapper->commit_regions(index, num_regions, pretouch_workers);
_cardtable_mapper->commit_regions(index, num_regions, pretouch_workers);
}
void HeapRegionManager::uncommit_regions(uint start, uint num_regions) {
guarantee(num_regions > 0, "No point in calling this for zero regions");
uint end = start + num_regions;
G1HRPrinter* printer = G1CollectedHeap::heap()->hr_printer();
if (printer->is_active()) {
for (uint i = start; i < end; i++) {
// Can't use at() here since region is no longer marked available.
HeapRegion* hr = _regions.get_by_index(i);
assert(hr != nullptr, "Region should still be present");
printer->uncommit(hr);
}
}
// Uncommit heap memory
_heap_mapper->uncommit_regions(start, num_regions);
// Also uncommit auxiliary data
_bitmap_mapper->uncommit_regions(start, num_regions);
_bot_mapper->uncommit_regions(start, num_regions);
_cardtable_mapper->uncommit_regions(start, num_regions);
_committed_map.uncommit(start, end);
}
void HeapRegionManager::initialize_regions(uint start, uint num_regions) {
for (uint i = start; i < start + num_regions; i++) {
assert(is_available(i), "Just made region %u available but is apparently not.", i);
HeapRegion* hr = at(i);
hr->initialize();
hr->set_node_index(G1NUMA::numa()->index_for_region(hr));
insert_into_free_list(hr);
G1CollectedHeap::heap()->hr_printer()->active(hr);
}
}
void HeapRegionManager::activate_regions(uint start, uint num_regions) {
_committed_map.activate(start, start + num_regions);
initialize_regions(start, num_regions);
}
void HeapRegionManager::reactivate_regions(uint start, uint num_regions) {
assert(num_regions > 0, "No point in calling this for zero regions");
clear_auxiliary_data_structures(start, num_regions);
_committed_map.reactivate(start, start + num_regions);
initialize_regions(start, num_regions);
}
void HeapRegionManager::deactivate_regions(uint start, uint num_regions) {
assert(num_regions > 0, "Need to specify at least one region to uncommit, tried to uncommit zero regions at %u", start);
assert(length() >= num_regions, "pre-condition");
// Reset NUMA index to and print state change.
uint end = start + num_regions;
for (uint i = start; i < end; i++) {
HeapRegion* hr = at(i);
hr->set_node_index(G1NUMA::UnknownNodeIndex);
G1CollectedHeap::heap()->hr_printer()->inactive(hr);
}
_committed_map.deactivate(start, end);
}
void HeapRegionManager::clear_auxiliary_data_structures(uint start, uint num_regions) {
// Signal marking bitmaps to clear the given regions.
_bitmap_mapper->signal_mapping_changed(start, num_regions);
// Signal G1BlockOffsetTable to clear the given regions.
_bot_mapper->signal_mapping_changed(start, num_regions);
// Signal G1CardTable to clear the given regions.
_cardtable_mapper->signal_mapping_changed(start, num_regions);
}
MemoryUsage HeapRegionManager::get_auxiliary_data_memory_usage() const {
size_t used_sz =
_bitmap_mapper->committed_size() +
_bot_mapper->committed_size() +
_cardtable_mapper->committed_size();
size_t committed_sz =
_bitmap_mapper->reserved_size() +
_bot_mapper->reserved_size() +
_cardtable_mapper->reserved_size();
return MemoryUsage(0, used_sz, committed_sz, committed_sz);
}
bool HeapRegionManager::has_inactive_regions() const {
return _committed_map.num_inactive() > 0;
}
uint HeapRegionManager::uncommit_inactive_regions(uint limit) {
assert(limit > 0, "Need to specify at least one region to uncommit");
uint uncommitted = 0;
uint offset = 0;
do {
MutexLocker uc(Uncommit_lock, Mutex::_no_safepoint_check_flag);
HeapRegionRange range = _committed_map.next_inactive_range(offset);
// No more regions available for uncommit. Return the number of regions
// already uncommitted or 0 if there were no longer any inactive regions.
if (range.length() == 0) {
return uncommitted;
}
uint start = range.start();
uint num_regions = MIN2(range.length(), limit - uncommitted);
uncommitted += num_regions;
uncommit_regions(start, num_regions);
} while (uncommitted < limit);
assert(uncommitted == limit, "Invariant");
return uncommitted;
}
uint HeapRegionManager::expand_inactive(uint num_regions) {
uint offset = 0;
uint expanded = 0;
do {
HeapRegionRange regions = _committed_map.next_inactive_range(offset);
if (regions.length() == 0) {
// No more unavailable regions.
break;
}
uint to_expand = MIN2(num_regions - expanded, regions.length());
reactivate_regions(regions.start(), to_expand);
expanded += to_expand;
offset = regions.end();
} while (expanded < num_regions);
return expanded;
}
uint HeapRegionManager::expand_any(uint num_regions, WorkerThreads* pretouch_workers) {
assert(num_regions > 0, "Must expand at least 1 region");
uint offset = 0;
uint expanded = 0;
do {
HeapRegionRange regions = _committed_map.next_committable_range(offset);
if (regions.length() == 0) {
// No more unavailable regions.
break;
}
uint to_expand = MIN2(num_regions - expanded, regions.length());
expand(regions.start(), to_expand, pretouch_workers);
expanded += to_expand;
offset = regions.end();
} while (expanded < num_regions);
return expanded;
}
uint HeapRegionManager::expand_by(uint num_regions, WorkerThreads* pretouch_workers) {
assert(num_regions > 0, "Must expand at least 1 region");
// First "undo" any requests to uncommit memory concurrently by
// reverting such regions to being available.
uint expanded = expand_inactive(num_regions);
// Commit more regions if needed.
if (expanded < num_regions) {
expanded += expand_any(num_regions - expanded, pretouch_workers);
}
verify_optional();
return expanded;
}
void HeapRegionManager::expand_exact(uint start, uint num_regions, WorkerThreads* pretouch_workers) {
assert(num_regions != 0, "Need to request at least one region");
uint end = start + num_regions;
for (uint i = start; i < end; i++) {
// First check inactive. If the regions is inactive, try to reactivate it
// before it get uncommitted by the G1SeriveThread.
if (_committed_map.inactive(i)) {
// Need to grab the lock since this can be called by a java thread
// doing humongous allocations.
MutexLocker uc(Uncommit_lock, Mutex::_no_safepoint_check_flag);
// State might change while getting the lock.
if (_committed_map.inactive(i)) {
reactivate_regions(i, 1);
}
}
// Not else-if to catch the case where the inactive region was uncommitted
// while waiting to get the lock.
if (!_committed_map.active(i)) {
expand(i, 1, pretouch_workers);
}
assert(at(i)->is_free(), "Region must be free at this point");
}
verify_optional();
}
uint HeapRegionManager::expand_on_preferred_node(uint preferred_index) {
uint expand_candidate = UINT_MAX;
if (available() >= 1) {
for (uint i = 0; i < reserved_length(); i++) {
if (is_available(i)) {
// Already in use continue
continue;
}
// Always save the candidate so we can expand later on.
expand_candidate = i;
if (is_on_preferred_index(expand_candidate, preferred_index)) {
// We have found a candidate on the preferred node, break.
break;
}
}
}
if (expand_candidate == UINT_MAX) {
// No regions left, expand failed.
return 0;
}
expand_exact(expand_candidate, 1, nullptr);
return 1;
}
bool HeapRegionManager::is_on_preferred_index(uint region_index, uint preferred_node_index) {
uint region_node_index = G1NUMA::numa()->preferred_node_index_for_index(region_index);
return region_node_index == preferred_node_index;
}
#ifdef ASSERT
void HeapRegionManager::assert_contiguous_range(uint start, uint num_regions) {
// General sanity check, regions found should either be available and empty
// or not available so that we can make them available and use them.
for (uint i = start; i < (start + num_regions); i++) {
HeapRegion* hr = _regions.get_by_index(i);
assert(!is_available(i) || hr->is_free(),
"Found region sequence starting at " UINT32_FORMAT ", length " UINT32_FORMAT
" that is not free at " UINT32_FORMAT ". Hr is " PTR_FORMAT ", type is %s",
start, num_regions, i, p2i(hr), hr->get_type_str());
}
}
#endif
uint HeapRegionManager::find_contiguous_in_range(uint start, uint end, uint num_regions) {
assert(start <= end, "precondition");
assert(num_regions >= 1, "precondition");
uint candidate = start; // First region in candidate sequence.
uint unchecked = candidate; // First unchecked region in candidate.
// While the candidate sequence fits in the range...
while (num_regions <= (end - candidate)) {
// Walk backward over the regions for the current candidate.
for (uint i = candidate + num_regions - 1; true; --i) {
if (is_available(i) && !at(i)->is_free()) {
// Region i can't be used, so restart with i+1 as the start
// of a new candidate sequence, and with the region after the
// old candidate sequence being the first unchecked region.
unchecked = candidate + num_regions;
candidate = i + 1;
break;
} else if (i == unchecked) {
// All regions of candidate sequence have passed check.
assert_contiguous_range(candidate, num_regions);
return candidate;
}
}
}
return G1_NO_HRM_INDEX;
}
uint HeapRegionManager::find_contiguous_in_free_list(uint num_regions) {
uint candidate = G1_NO_HRM_INDEX;
HeapRegionRange range(0,0);
do {
range = _committed_map.next_active_range(range.end());
candidate = find_contiguous_in_range(range.start(), range.end(), num_regions);
} while (candidate == G1_NO_HRM_INDEX && range.end() < reserved_length());
return candidate;
}
uint HeapRegionManager::find_contiguous_allow_expand(uint num_regions) {
// Check if we can actually satisfy the allocation.
if (num_regions > available()) {
return G1_NO_HRM_INDEX;
}
// Find any candidate.
return find_contiguous_in_range(0, reserved_length(), num_regions);
}
HeapRegion* HeapRegionManager::next_region_in_heap(const HeapRegion* r) const {
guarantee(r != nullptr, "Start region must be a valid region");
guarantee(is_available(r->hrm_index()), "Trying to iterate starting from region %u which is not in the heap", r->hrm_index());
for (uint i = r->hrm_index() + 1; i < _allocated_heapregions_length; i++) {
HeapRegion* hr = _regions.get_by_index(i);
if (is_available(i)) {
return hr;
}
}
return nullptr;
}
void HeapRegionManager::iterate(HeapRegionClosure* blk) const {
uint len = reserved_length();
for (uint i = 0; i < len; i++) {
if (!is_available(i)) {
continue;
}
guarantee(at(i) != nullptr, "Tried to access region %u that has a null HeapRegion*", i);
bool res = blk->do_heap_region(at(i));
if (res) {
blk->set_incomplete();
return;
}
}
}
void HeapRegionManager::iterate(HeapRegionIndexClosure* blk) const {
uint len = reserved_length();
for (uint i = 0; i < len; i++) {
if (!is_available(i)) {
continue;
}
bool res = blk->do_heap_region_index(i);
if (res) {
blk->set_incomplete();
return;
}
}
}
uint HeapRegionManager::find_highest_free(bool* expanded) {
// Loop downwards from the highest region index, looking for an
// entry which is either free or not yet committed. If not yet
// committed, expand at that index.
for (uint curr = reserved_length(); curr-- > 0;) {
HeapRegion *hr = _regions.get_by_index(curr);
if (hr == nullptr || !is_available(curr)) {
// Found uncommitted and free region, expand to make it available for use.
expand_exact(curr, 1, nullptr);
assert(at(curr)->is_free(), "Region (%u) must be available and free after expand", curr);
*expanded = true;
return curr;
}
if (hr->is_free()) {
*expanded = false;
return curr;
}
}
return G1_NO_HRM_INDEX;
}
bool HeapRegionManager::allocate_containing_regions(MemRegion range, size_t* commit_count, WorkerThreads* pretouch_workers) {
size_t commits = 0;
uint start_index = (uint)_regions.get_index_by_address(range.start());
uint last_index = (uint)_regions.get_index_by_address(range.last());
// Ensure that each G1 region in the range is free, returning false if not.
// Commit those that are not yet available, and keep count.
for (uint curr_index = start_index; curr_index <= last_index; curr_index++) {
if (!is_available(curr_index)) {
commits++;
expand_exact(curr_index, 1, pretouch_workers);
}
HeapRegion* curr_region = _regions.get_by_index(curr_index);
if (!curr_region->is_free()) {
return false;
}
}
allocate_free_regions_starting_at(start_index, (last_index - start_index) + 1);
*commit_count = commits;
return true;
}
void HeapRegionManager::par_iterate(HeapRegionClosure* blk, HeapRegionClaimer* hrclaimer, const uint start_index) const {
// Every worker will actually look at all regions, skipping over regions that
// are currently not committed.
// This also (potentially) iterates over regions newly allocated during GC. This
// is no problem except for some extra work.
const uint n_regions = hrclaimer->n_regions();
for (uint count = 0; count < n_regions; count++) {
const uint index = (start_index + count) % n_regions;
assert(index < n_regions, "sanity");
// Skip over unavailable regions
if (!is_available(index)) {
continue;
}
HeapRegion* r = _regions.get_by_index(index);
// We'll ignore regions already claimed.
if (hrclaimer->is_region_claimed(index)) {
continue;
}
// OK, try to claim it
if (!hrclaimer->claim_region(index)) {
continue;
}
bool res = blk->do_heap_region(r);
if (res) {
return;
}
}
}
uint HeapRegionManager::shrink_by(uint num_regions_to_remove) {
assert(length() > 0, "the region sequence should not be empty");
assert(length() <= _allocated_heapregions_length, "invariant");
assert(_allocated_heapregions_length > 0, "we should have at least one region committed");
assert(num_regions_to_remove < length(), "We should never remove all regions");
if (num_regions_to_remove == 0) {
return 0;
}
uint removed = 0;
uint cur = _allocated_heapregions_length - 1;
uint idx_last_found = 0;
uint num_last_found = 0;
while ((removed < num_regions_to_remove) &&
(num_last_found = find_empty_from_idx_reverse(cur, &idx_last_found)) > 0) {
uint to_remove = MIN2(num_regions_to_remove - removed, num_last_found);
shrink_at(idx_last_found + num_last_found - to_remove, to_remove);
cur = idx_last_found;
removed += to_remove;
}
verify_optional();
return removed;
}
void HeapRegionManager::shrink_at(uint index, size_t num_regions) {
#ifdef ASSERT
for (uint i = index; i < (index + num_regions); i++) {
assert(is_available(i), "Expected available region at index %u", i);
assert(at(i)->is_empty(), "Expected empty region at index %u", i);
assert(at(i)->is_free(), "Expected free region at index %u", i);
}
#endif
// Mark regions as inactive making them ready for uncommit.
deactivate_regions(index, (uint) num_regions);
}
uint HeapRegionManager::find_empty_from_idx_reverse(uint start_idx, uint* res_idx) const {
guarantee(start_idx < _allocated_heapregions_length, "checking");
guarantee(res_idx != nullptr, "checking");
uint num_regions_found = 0;
jlong cur = start_idx;
while (cur != -1 && !(is_available(cur) && at(cur)->is_empty())) {
cur--;
}
if (cur == -1) {
return num_regions_found;
}
jlong old_cur = cur;
// cur indexes the first empty region
while (cur != -1 && is_available(cur) && at(cur)->is_empty()) {
cur--;
}
*res_idx = cur + 1;
num_regions_found = old_cur - cur;
#ifdef ASSERT
for (uint i = *res_idx; i < (*res_idx + num_regions_found); i++) {
assert(at(i)->is_empty(), "just checking");
}
#endif
return num_regions_found;
}
void HeapRegionManager::verify() {
guarantee(length() <= _allocated_heapregions_length,
"invariant: _length: %u _allocated_length: %u",
length(), _allocated_heapregions_length);
guarantee(_allocated_heapregions_length <= reserved_length(),
"invariant: _allocated_length: %u _max_length: %u",
_allocated_heapregions_length, reserved_length());
guarantee(length() <= max_length(),
"invariant: committed regions: %u max_regions: %u",
length(), max_length());
bool prev_committed = true;
uint num_committed = 0;
HeapWord* prev_end = heap_bottom();
for (uint i = 0; i < _allocated_heapregions_length; i++) {
if (!is_available(i)) {
prev_committed = false;
continue;
}
num_committed++;
HeapRegion* hr = _regions.get_by_index(i);
guarantee(hr != nullptr, "invariant: i: %u", i);
guarantee(!prev_committed || hr->bottom() == prev_end,
"invariant i: %u " HR_FORMAT " prev_end: " PTR_FORMAT,
i, HR_FORMAT_PARAMS(hr), p2i(prev_end));
guarantee(hr->hrm_index() == i,
"invariant: i: %u hrm_index(): %u", i, hr->hrm_index());
// Asserts will fire if i is >= _length
HeapWord* addr = hr->bottom();
guarantee(addr_to_region(addr) == hr, "sanity");
// We cannot check whether the region is part of a particular set: at the time
// this method may be called, we have only completed allocation of the regions,
// but not put into a region set.
prev_committed = true;
prev_end = hr->end();
}
for (uint i = _allocated_heapregions_length; i < reserved_length(); i++) {
guarantee(_regions.get_by_index(i) == nullptr, "invariant i: %u", i);
}
guarantee(num_committed == length(), "Found %u committed regions, but should be %u", num_committed, length());
_free_list.verify();
}
#ifndef PRODUCT
void HeapRegionManager::verify_optional() {
verify();
}
#endif // PRODUCT
HeapRegionClaimer::HeapRegionClaimer(uint n_workers) :
_n_workers(n_workers), _n_regions(G1CollectedHeap::heap()->_hrm._allocated_heapregions_length), _claims(nullptr) {
uint* new_claims = NEW_C_HEAP_ARRAY(uint, _n_regions, mtGC);
memset(new_claims, Unclaimed, sizeof(*_claims) * _n_regions);
_claims = new_claims;
}
HeapRegionClaimer::~HeapRegionClaimer() {
FREE_C_HEAP_ARRAY(uint, _claims);
}
uint HeapRegionClaimer::offset_for_worker(uint worker_id) const {
assert(_n_workers > 0, "must be set");
assert(worker_id < _n_workers, "Invalid worker_id.");
return _n_regions * worker_id / _n_workers;
}
bool HeapRegionClaimer::is_region_claimed(uint region_index) const {
assert(region_index < _n_regions, "Invalid index.");
return _claims[region_index] == Claimed;
}
bool HeapRegionClaimer::claim_region(uint region_index) {
assert(region_index < _n_regions, "Invalid index.");
uint old_val = Atomic::cmpxchg(&_claims[region_index], Unclaimed, Claimed);
return old_val == Unclaimed;
}
class G1RebuildFreeListTask : public WorkerTask {
HeapRegionManager* _hrm;
FreeRegionList* _worker_freelists;
uint _worker_chunk_size;
uint _num_workers;
public:
G1RebuildFreeListTask(HeapRegionManager* hrm, uint num_workers) :
WorkerTask("G1 Rebuild Free List Task"),
_hrm(hrm),
_worker_freelists(NEW_C_HEAP_ARRAY(FreeRegionList, num_workers, mtGC)),
_worker_chunk_size((_hrm->reserved_length() + num_workers - 1) / num_workers),
_num_workers(num_workers) {
for (uint worker = 0; worker < _num_workers; worker++) {
::new (&_worker_freelists[worker]) FreeRegionList("Appendable Worker Free List");
}
}
~G1RebuildFreeListTask() {
for (uint worker = 0; worker < _num_workers; worker++) {
_worker_freelists[worker].~FreeRegionList();
}
FREE_C_HEAP_ARRAY(FreeRegionList, _worker_freelists);
}
FreeRegionList* worker_freelist(uint worker) {
return &_worker_freelists[worker];
}
// Each worker creates a free list for a chunk of the heap. The chunks won't
// be overlapping so we don't need to do any claiming.
void work(uint worker_id) {
Ticks start_time = Ticks::now();
EventGCPhaseParallel event;
uint start = worker_id * _worker_chunk_size;
uint end = MIN2(start + _worker_chunk_size, _hrm->reserved_length());
// If start is outside the heap, this worker has nothing to do.
if (start > end) {
return;
}
FreeRegionList *free_list = worker_freelist(worker_id);
for (uint i = start; i < end; i++) {
HeapRegion *region = _hrm->at_or_null(i);
if (region != nullptr && region->is_free()) {
// Need to clear old links to allow to be added to new freelist.
region->unlink_from_list();
free_list->add_to_tail(region);
}
}
event.commit(GCId::current(), worker_id, G1GCPhaseTimes::phase_name(G1GCPhaseTimes::RebuildFreeList));
G1CollectedHeap::heap()->phase_times()->record_time_secs(G1GCPhaseTimes::RebuildFreeList, worker_id, (Ticks::now() - start_time).seconds());
}
};
void HeapRegionManager::rebuild_free_list(WorkerThreads* workers) {
// Abandon current free list to allow a rebuild.
_free_list.abandon();
uint const num_workers = clamp(max_length(), 1u, workers->active_workers());
G1RebuildFreeListTask task(this, num_workers);
log_debug(gc, ergo)("Running %s using %u workers for rebuilding free list of regions",
task.name(), num_workers);
workers->run_task(&task, num_workers);
// Link the partial free lists together.
Ticks serial_time = Ticks::now();
for (uint worker = 0; worker < num_workers; worker++) {
_free_list.append_ordered(task.worker_freelist(worker));
}
G1CollectedHeap::heap()->phase_times()->record_serial_rebuild_freelist_time_ms((Ticks::now() - serial_time).seconds() * 1000.0);
}