blob: adf0527681b5ea9440320f49257e6c710bd82cf2 [file] [log] [blame]
/*
* Copyright (c) 2018, 2023, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "code/codeCache.hpp"
#include "code/nmethod.hpp"
#include "gc/shared/barrierSet.hpp"
#include "gc/shared/barrierSetAssembler.hpp"
#include "gc/shared/barrierSetNMethod.hpp"
#include "gc/shared/collectedHeap.hpp"
#include "logging/log.hpp"
#include "memory/iterator.hpp"
#include "memory/universe.hpp"
#include "oops/access.inline.hpp"
#include "oops/method.inline.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/javaThread.hpp"
#include "runtime/threadWXSetters.inline.hpp"
#include "runtime/threads.hpp"
#include "utilities/debug.hpp"
#if INCLUDE_JVMCI
#include "jvmci/jvmciRuntime.hpp"
#endif
int BarrierSetNMethod::disarmed_guard_value() const {
return *disarmed_guard_value_address();
}
bool BarrierSetNMethod::supports_entry_barrier(nmethod* nm) {
if (nm->method()->is_method_handle_intrinsic()) {
return false;
}
if (nm->method()->is_continuation_enter_intrinsic()) {
return false;
}
if (nm->method()->is_continuation_yield_intrinsic()) {
return false;
}
if (nm->method()->is_continuation_native_intrinsic()) {
guarantee(false, "Unknown Continuation native intrinsic");
return false;
}
if (nm->is_native_method() || nm->is_compiled_by_c2() || nm->is_compiled_by_c1()) {
return true;
}
#if INCLUDE_JVMCI
if (nm->is_compiled_by_jvmci() && nm->jvmci_nmethod_data()->has_entry_barrier()) {
return true;
}
#endif
return false;
}
void BarrierSetNMethod::disarm(nmethod* nm) {
set_guard_value(nm, disarmed_guard_value());
}
bool BarrierSetNMethod::is_armed(nmethod* nm) {
return guard_value(nm) != disarmed_guard_value();
}
bool BarrierSetNMethod::nmethod_entry_barrier(nmethod* nm) {
class OopKeepAliveClosure : public OopClosure {
public:
virtual void do_oop(oop* p) {
// Loads on nmethod oops are phantom strength.
//
// Note that we could have used NativeAccess<ON_PHANTOM_OOP_REF>::oop_load(p),
// but that would have *required* us to convert the returned LoadOopProxy to an oop,
// or else keep alive load barrier will never be called. It's the LoadOopProxy-to-oop
// conversion that performs the load barriers. This is too subtle, so we instead
// perform an explicit keep alive call.
oop obj = NativeAccess<ON_PHANTOM_OOP_REF | AS_NO_KEEPALIVE>::oop_load(p);
if (obj != nullptr) {
Universe::heap()->keep_alive(obj);
}
}
virtual void do_oop(narrowOop* p) { ShouldNotReachHere(); }
};
// If the nmethod is the only thing pointing to the oops, and we are using a
// SATB GC, then it is important that this code marks them live.
// Also, with concurrent GC, it is possible that frames in continuation stack
// chunks are not visited if they are allocated after concurrent GC started.
OopKeepAliveClosure cl;
nm->oops_do(&cl);
// CodeCache unloading support
nm->mark_as_maybe_on_stack();
disarm(nm);
return true;
}
int* BarrierSetNMethod::disarmed_guard_value_address() const {
return (int*) &_current_phase;
}
ByteSize BarrierSetNMethod::thread_disarmed_guard_value_offset() const {
return Thread::nmethod_disarmed_guard_value_offset();
}
class BarrierSetNMethodArmClosure : public ThreadClosure {
private:
int _disarmed_guard_value;
public:
BarrierSetNMethodArmClosure(int disarmed_guard_value) :
_disarmed_guard_value(disarmed_guard_value) {}
virtual void do_thread(Thread* thread) {
thread->set_nmethod_disarmed_guard_value(_disarmed_guard_value);
}
};
void BarrierSetNMethod::arm_all_nmethods() {
// Change to a new global GC phase. Doing this requires changing the thread-local
// disarm value for all threads, to reflect the new GC phase.
// We wrap around at INT_MAX. That means that we assume nmethods won't have ABA
// problems in their nmethod disarm values after INT_MAX - 1 GCs. Every time a GC
// completes, ABA problems are removed, but if a concurrent GC is started and then
// aborted N times, that is when there could be ABA problems. If there are anything
// close to INT_MAX - 1 GCs starting without being able to finish, something is
// seriously wrong.
++_current_phase;
if (_current_phase == INT_MAX) {
_current_phase = 1;
}
BarrierSetNMethodArmClosure cl(_current_phase);
Threads::threads_do(&cl);
#if (defined(AARCH64) || defined(RISCV64)) && !defined(ZERO)
// We clear the patching epoch when disarming nmethods, so that
// the counter won't overflow.
BarrierSetAssembler::clear_patching_epoch();
#endif
}
int BarrierSetNMethod::nmethod_stub_entry_barrier(address* return_address_ptr) {
// Enable WXWrite: the function is called directly from nmethod_entry_barrier
// stub.
MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, Thread::current()));
address return_address = *return_address_ptr;
AARCH64_PORT_ONLY(return_address = pauth_strip_pointer(return_address));
CodeBlob* cb = CodeCache::find_blob(return_address);
assert(cb != nullptr, "invariant");
nmethod* nm = cb->as_nmethod();
BarrierSetNMethod* bs_nm = BarrierSet::barrier_set()->barrier_set_nmethod();
if (!bs_nm->is_armed(nm)) {
return 0;
}
assert(!nm->is_osr_method(), "Should not reach here");
// Called upon first entry after being armed
bool may_enter = bs_nm->nmethod_entry_barrier(nm);
// In case a concurrent thread disarmed the nmethod, we need to ensure the new instructions
// are made visible, by using a cross modify fence. Note that this is synchronous cross modifying
// code, where the existence of new instructions is communicated via data (the guard value).
// This cross modify fence is only needed when the nmethod entry barrier modifies the
// instructions. Not all platforms currently do that, so if this check becomes expensive,
// it can be made conditional on the nmethod_patching_type.
OrderAccess::cross_modify_fence();
// Diagnostic option to force deoptimization 1 in 3 times. It is otherwise
// a very rare event.
if (DeoptimizeNMethodBarriersALot) {
static volatile uint32_t counter=0;
if (Atomic::add(&counter, 1u) % 3 == 0) {
may_enter = false;
}
}
if (!may_enter) {
log_trace(nmethod, barrier)("Deoptimizing nmethod: " PTR_FORMAT, p2i(nm));
bs_nm->deoptimize(nm, return_address_ptr);
}
return may_enter ? 0 : 1;
}
bool BarrierSetNMethod::nmethod_osr_entry_barrier(nmethod* nm) {
// This check depends on the invariant that all nmethods that are deoptimized / made not entrant
// are NOT disarmed.
// This invariant is important because a method can be deoptimized after the method have been
// resolved / looked up by OSR by another thread. By not deoptimizing them we guarantee that
// a deoptimized method will always hit the barrier and come to the same conclusion - deoptimize
if (!is_armed(nm)) {
return true;
}
assert(nm->is_osr_method(), "Should not reach here");
log_trace(nmethod, barrier)("Running osr nmethod entry barrier: " PTR_FORMAT, p2i(nm));
bool result = nmethod_entry_barrier(nm);
OrderAccess::cross_modify_fence();
return result;
}