blob: 4f2e0abbe9596fe0d0cc8dd5e129c9f121b946b8 [file] [log] [blame]
/*
* Copyright (c) 2000, 2023, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/shared/cardTable.hpp"
#include "gc/shared/collectedHeap.hpp"
#include "gc/shared/gcLogPrecious.hpp"
#include "gc/shared/gc_globals.hpp"
#include "gc/shared/space.inline.hpp"
#include "logging/log.hpp"
#include "memory/virtualspace.hpp"
#include "runtime/init.hpp"
#include "runtime/java.hpp"
#include "runtime/os.hpp"
#include "services/memTracker.hpp"
#include "utilities/align.hpp"
#if INCLUDE_PARALLELGC
#include "gc/parallel/objectStartArray.hpp"
#endif
uint CardTable::_card_shift = 0;
uint CardTable::_card_size = 0;
uint CardTable::_card_size_in_words = 0;
void CardTable::initialize_card_size() {
assert(UseG1GC || UseParallelGC || UseSerialGC,
"Initialize card size should only be called by card based collectors.");
_card_size = GCCardSizeInBytes;
_card_shift = log2i_exact(_card_size);
_card_size_in_words = _card_size / sizeof(HeapWord);
// Set blockOffsetTable size based on card table entry size
BOTConstants::initialize_bot_size(_card_shift);
#if INCLUDE_PARALLELGC
// Set ObjectStartArray block size based on card table entry size
ObjectStartArray::initialize_block_size(_card_shift);
#endif
log_info_p(gc, init)("CardTable entry size: " UINT32_FORMAT, _card_size);
}
size_t CardTable::compute_byte_map_size(size_t num_bytes) {
assert(_page_size != 0, "uninitialized, check declaration order");
const size_t granularity = os::vm_allocation_granularity();
return align_up(num_bytes, MAX2(_page_size, granularity));
}
CardTable::CardTable(MemRegion whole_heap) :
_whole_heap(whole_heap),
_page_size(os::vm_page_size()),
_byte_map_size(0),
_byte_map(nullptr),
_byte_map_base(nullptr),
_guard_region()
{
assert((uintptr_t(_whole_heap.start()) & (_card_size - 1)) == 0, "heap must start at card boundary");
assert((uintptr_t(_whole_heap.end()) & (_card_size - 1)) == 0, "heap must end at card boundary");
}
void CardTable::initialize(void* region0_start, void* region1_start) {
size_t num_cards = cards_required(_whole_heap.word_size());
// each card takes 1 byte; + 1 for the guard card
size_t num_bytes = num_cards + 1;
_byte_map_size = compute_byte_map_size(num_bytes);
HeapWord* low_bound = _whole_heap.start();
HeapWord* high_bound = _whole_heap.end();
const size_t rs_align = _page_size == os::vm_page_size() ? 0 :
MAX2(_page_size, os::vm_allocation_granularity());
ReservedSpace heap_rs(_byte_map_size, rs_align, _page_size);
MemTracker::record_virtual_memory_type((address)heap_rs.base(), mtGC);
os::trace_page_sizes("Card Table", num_bytes, num_bytes,
_page_size, heap_rs.base(), heap_rs.size());
if (!heap_rs.is_reserved()) {
vm_exit_during_initialization("Could not reserve enough space for the "
"card marking array");
}
// The assembler store_check code will do an unsigned shift of the oop,
// then add it to _byte_map_base, i.e.
//
// _byte_map = _byte_map_base + (uintptr_t(low_bound) >> card_shift)
_byte_map = (CardValue*) heap_rs.base();
_byte_map_base = _byte_map - (uintptr_t(low_bound) >> _card_shift);
assert(byte_for(low_bound) == &_byte_map[0], "Checking start of map");
assert(byte_for(high_bound-1) <= &_byte_map[last_valid_index()], "Checking end of map");
CardValue* guard_card = &_byte_map[num_cards];
assert(is_aligned(guard_card, _page_size), "must be on its own OS page");
_guard_region = MemRegion((HeapWord*)guard_card, _page_size);
initialize_covered_region(region0_start, region1_start);
log_trace(gc, barrier)("CardTable::CardTable: ");
log_trace(gc, barrier)(" &_byte_map[0]: " PTR_FORMAT " &_byte_map[last_valid_index()]: " PTR_FORMAT,
p2i(&_byte_map[0]), p2i(&_byte_map[last_valid_index()]));
log_trace(gc, barrier)(" _byte_map_base: " PTR_FORMAT, p2i(_byte_map_base));
}
MemRegion CardTable::committed_for(const MemRegion mr) const {
HeapWord* addr_l = (HeapWord*)align_down(byte_for(mr.start()), _page_size);
HeapWord* addr_r = mr.is_empty()
? addr_l
: (HeapWord*)align_up(byte_after(mr.last()), _page_size);
if (mr.start() == _covered[0].start()) {
// In case the card for gen-boundary is not page-size aligned, the crossing page belongs to _covered[1].
addr_r = MIN2(addr_r, (HeapWord*)align_down(byte_for(_covered[1].start()), _page_size));
}
return MemRegion(addr_l, addr_r);
}
void CardTable::initialize_covered_region(void* region0_start, void* region1_start) {
assert(_whole_heap.start() == region0_start, "precondition");
assert(region0_start < region1_start, "precondition");
assert(_covered[0].start() == nullptr, "precondition");
assert(_covered[1].start() == nullptr, "precondition");
_covered[0] = MemRegion((HeapWord*)region0_start, (size_t)0);
_covered[1] = MemRegion((HeapWord*)region1_start, (size_t)0);
}
void CardTable::resize_covered_region(MemRegion new_region) {
assert(UseSerialGC || UseParallelGC, "only these two collectors");
assert(_whole_heap.contains(new_region),
"attempt to cover area not in reserved area");
assert(_covered[0].start() != nullptr, "precondition");
assert(_covered[1].start() != nullptr, "precondition");
int idx = new_region.start() == _whole_heap.start() ? 0 : 1;
// We don't allow changes to the start of a region, only the end.
assert(_covered[idx].start() == new_region.start(), "inv");
MemRegion old_committed = committed_for(_covered[idx]);
_covered[idx] = new_region;
MemRegion new_committed = committed_for(new_region);
if (new_committed.word_size() == old_committed.word_size()) {
return;
}
if (new_committed.word_size() > old_committed.word_size()) {
// Expand.
MemRegion delta = MemRegion(old_committed.end(),
new_committed.word_size() - old_committed.word_size());
os::commit_memory_or_exit((char*)delta.start(),
delta.byte_size(),
_page_size,
!ExecMem,
"card table expansion");
memset(delta.start(), clean_card, delta.byte_size());
} else {
// Shrink.
MemRegion delta = MemRegion(new_committed.end(),
old_committed.word_size() - new_committed.word_size());
bool res = os::uncommit_memory((char*)delta.start(),
delta.byte_size());
assert(res, "uncommit should succeed");
}
log_trace(gc, barrier)("CardTable::resize_covered_region: ");
log_trace(gc, barrier)(" _covered[%d].start(): " PTR_FORMAT " _covered[%d].last(): " PTR_FORMAT,
idx, p2i(_covered[idx].start()), idx, p2i(_covered[idx].last()));
log_trace(gc, barrier)(" committed_start: " PTR_FORMAT " committed_last: " PTR_FORMAT,
p2i(new_committed.start()), p2i(new_committed.last()));
log_trace(gc, barrier)(" byte_for(start): " PTR_FORMAT " byte_for(last): " PTR_FORMAT,
p2i(byte_for(_covered[idx].start())), p2i(byte_for(_covered[idx].last())));
log_trace(gc, barrier)(" addr_for(start): " PTR_FORMAT " addr_for(last): " PTR_FORMAT,
p2i(addr_for((CardValue*) new_committed.start())), p2i(addr_for((CardValue*) new_committed.last())));
#ifdef ASSERT
// Touch the last card of the covered region to show that it
// is committed (or SEGV).
if (is_init_completed()) {
(void) (*(volatile CardValue*)byte_for(_covered[idx].last()));
}
#endif
}
// Note that these versions are precise! The scanning code has to handle the
// fact that the write barrier may be either precise or imprecise.
void CardTable::dirty_MemRegion(MemRegion mr) {
assert(align_down(mr.start(), HeapWordSize) == mr.start(), "Unaligned start");
assert(align_up (mr.end(), HeapWordSize) == mr.end(), "Unaligned end" );
CardValue* cur = byte_for(mr.start());
CardValue* last = byte_after(mr.last());
while (cur < last) {
*cur = dirty_card;
cur++;
}
}
void CardTable::clear_MemRegion(MemRegion mr) {
// Be conservative: only clean cards entirely contained within the
// region.
CardValue* cur;
if (mr.start() == _whole_heap.start()) {
cur = byte_for(mr.start());
} else {
assert(mr.start() > _whole_heap.start(), "mr is not covered.");
cur = byte_after(mr.start() - 1);
}
CardValue* last = byte_after(mr.last());
memset(cur, clean_card, pointer_delta(last, cur, sizeof(CardValue)));
}
uintx CardTable::ct_max_alignment_constraint() {
// Calculate maximum alignment using GCCardSizeInBytes as card_size hasn't been set yet
return GCCardSizeInBytes * os::vm_page_size();
}
void CardTable::invalidate(MemRegion mr) {
assert(align_down(mr.start(), HeapWordSize) == mr.start(), "Unaligned start");
assert(align_up (mr.end(), HeapWordSize) == mr.end(), "Unaligned end" );
for (int i = 0; i < max_covered_regions; i++) {
MemRegion mri = mr.intersection(_covered[i]);
if (!mri.is_empty()) dirty_MemRegion(mri);
}
}
#ifndef PRODUCT
void CardTable::verify_region(MemRegion mr, CardValue val, bool val_equals) {
CardValue* start = byte_for(mr.start());
CardValue* end = byte_for(mr.last());
bool failures = false;
for (CardValue* curr = start; curr <= end; ++curr) {
CardValue curr_val = *curr;
bool failed = (val_equals) ? (curr_val != val) : (curr_val == val);
if (failed) {
if (!failures) {
log_error(gc, verify)("== CT verification failed: [" PTR_FORMAT "," PTR_FORMAT "]", p2i(start), p2i(end));
log_error(gc, verify)("== %sexpecting value: %d", (val_equals) ? "" : "not ", val);
failures = true;
}
log_error(gc, verify)("== card " PTR_FORMAT " [" PTR_FORMAT "," PTR_FORMAT "], val: %d",
p2i(curr), p2i(addr_for(curr)),
p2i((HeapWord*) (((size_t) addr_for(curr)) + _card_size)),
(int) curr_val);
}
}
guarantee(!failures, "there should not have been any failures");
}
void CardTable::verify_not_dirty_region(MemRegion mr) {
verify_region(mr, dirty_card, false /* val_equals */);
}
void CardTable::verify_dirty_region(MemRegion mr) {
verify_region(mr, dirty_card, true /* val_equals */);
}
#endif
void CardTable::print_on(outputStream* st) const {
st->print_cr("Card table byte_map: [" PTR_FORMAT "," PTR_FORMAT "] _byte_map_base: " PTR_FORMAT,
p2i(_byte_map), p2i(_byte_map + _byte_map_size), p2i(_byte_map_base));
}