blob: 91fc66b1204bcd2798660da4eaafb6a3e6f0da6a [file] [log] [blame]
/*
* Copyright (c) 2023, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2013, 2022, Red Hat, Inc. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "memory/allocation.hpp"
#include "memory/universe.hpp"
#include "gc/shared/classUnloadingContext.hpp"
#include "gc/shared/gcArguments.hpp"
#include "gc/shared/gcTimer.hpp"
#include "gc/shared/gcTraceTime.inline.hpp"
#include "gc/shared/locationPrinter.inline.hpp"
#include "gc/shared/memAllocator.hpp"
#include "gc/shared/plab.hpp"
#include "gc/shared/tlab_globals.hpp"
#include "gc/shenandoah/shenandoahBarrierSet.hpp"
#include "gc/shenandoah/shenandoahClosures.inline.hpp"
#include "gc/shenandoah/shenandoahCollectionSet.hpp"
#include "gc/shenandoah/shenandoahCollectorPolicy.hpp"
#include "gc/shenandoah/shenandoahConcurrentMark.hpp"
#include "gc/shenandoah/shenandoahMarkingContext.inline.hpp"
#include "gc/shenandoah/shenandoahControlThread.hpp"
#include "gc/shenandoah/shenandoahFreeSet.hpp"
#include "gc/shenandoah/shenandoahPhaseTimings.hpp"
#include "gc/shenandoah/shenandoahHeap.inline.hpp"
#include "gc/shenandoah/shenandoahHeapRegion.inline.hpp"
#include "gc/shenandoah/shenandoahHeapRegionSet.hpp"
#include "gc/shenandoah/shenandoahInitLogger.hpp"
#include "gc/shenandoah/shenandoahMarkingContext.inline.hpp"
#include "gc/shenandoah/shenandoahMemoryPool.hpp"
#include "gc/shenandoah/shenandoahMetrics.hpp"
#include "gc/shenandoah/shenandoahMonitoringSupport.hpp"
#include "gc/shenandoah/shenandoahOopClosures.inline.hpp"
#include "gc/shenandoah/shenandoahPacer.inline.hpp"
#include "gc/shenandoah/shenandoahPadding.hpp"
#include "gc/shenandoah/shenandoahParallelCleaning.inline.hpp"
#include "gc/shenandoah/shenandoahReferenceProcessor.hpp"
#include "gc/shenandoah/shenandoahRootProcessor.inline.hpp"
#include "gc/shenandoah/shenandoahSTWMark.hpp"
#include "gc/shenandoah/shenandoahUtils.hpp"
#include "gc/shenandoah/shenandoahVerifier.hpp"
#include "gc/shenandoah/shenandoahCodeRoots.hpp"
#include "gc/shenandoah/shenandoahVMOperations.hpp"
#include "gc/shenandoah/shenandoahWorkGroup.hpp"
#include "gc/shenandoah/shenandoahWorkerPolicy.hpp"
#include "gc/shenandoah/mode/shenandoahIUMode.hpp"
#include "gc/shenandoah/mode/shenandoahPassiveMode.hpp"
#include "gc/shenandoah/mode/shenandoahSATBMode.hpp"
#if INCLUDE_JFR
#include "gc/shenandoah/shenandoahJfrSupport.hpp"
#endif
#include "classfile/systemDictionary.hpp"
#include "code/codeCache.hpp"
#include "memory/classLoaderMetaspace.hpp"
#include "memory/metaspaceUtils.hpp"
#include "oops/compressedOops.inline.hpp"
#include "prims/jvmtiTagMap.hpp"
#include "runtime/atomic.hpp"
#include "runtime/globals.hpp"
#include "runtime/interfaceSupport.inline.hpp"
#include "runtime/java.hpp"
#include "runtime/orderAccess.hpp"
#include "runtime/safepointMechanism.hpp"
#include "runtime/vmThread.hpp"
#include "services/mallocTracker.hpp"
#include "services/memTracker.hpp"
#include "utilities/events.hpp"
#include "utilities/powerOfTwo.hpp"
class ShenandoahPretouchHeapTask : public WorkerTask {
private:
ShenandoahRegionIterator _regions;
const size_t _page_size;
public:
ShenandoahPretouchHeapTask(size_t page_size) :
WorkerTask("Shenandoah Pretouch Heap"),
_page_size(page_size) {}
virtual void work(uint worker_id) {
ShenandoahHeapRegion* r = _regions.next();
while (r != nullptr) {
if (r->is_committed()) {
os::pretouch_memory(r->bottom(), r->end(), _page_size);
}
r = _regions.next();
}
}
};
class ShenandoahPretouchBitmapTask : public WorkerTask {
private:
ShenandoahRegionIterator _regions;
char* _bitmap_base;
const size_t _bitmap_size;
const size_t _page_size;
public:
ShenandoahPretouchBitmapTask(char* bitmap_base, size_t bitmap_size, size_t page_size) :
WorkerTask("Shenandoah Pretouch Bitmap"),
_bitmap_base(bitmap_base),
_bitmap_size(bitmap_size),
_page_size(page_size) {}
virtual void work(uint worker_id) {
ShenandoahHeapRegion* r = _regions.next();
while (r != nullptr) {
size_t start = r->index() * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor();
size_t end = (r->index() + 1) * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor();
assert (end <= _bitmap_size, "end is sane: " SIZE_FORMAT " < " SIZE_FORMAT, end, _bitmap_size);
if (r->is_committed()) {
os::pretouch_memory(_bitmap_base + start, _bitmap_base + end, _page_size);
}
r = _regions.next();
}
}
};
jint ShenandoahHeap::initialize() {
//
// Figure out heap sizing
//
size_t init_byte_size = InitialHeapSize;
size_t min_byte_size = MinHeapSize;
size_t max_byte_size = MaxHeapSize;
size_t heap_alignment = HeapAlignment;
size_t reg_size_bytes = ShenandoahHeapRegion::region_size_bytes();
Universe::check_alignment(max_byte_size, reg_size_bytes, "Shenandoah heap");
Universe::check_alignment(init_byte_size, reg_size_bytes, "Shenandoah heap");
_num_regions = ShenandoahHeapRegion::region_count();
assert(_num_regions == (max_byte_size / reg_size_bytes),
"Regions should cover entire heap exactly: " SIZE_FORMAT " != " SIZE_FORMAT "/" SIZE_FORMAT,
_num_regions, max_byte_size, reg_size_bytes);
// Now we know the number of regions, initialize the heuristics.
initialize_heuristics();
size_t num_committed_regions = init_byte_size / reg_size_bytes;
num_committed_regions = MIN2(num_committed_regions, _num_regions);
assert(num_committed_regions <= _num_regions, "sanity");
_initial_size = num_committed_regions * reg_size_bytes;
size_t num_min_regions = min_byte_size / reg_size_bytes;
num_min_regions = MIN2(num_min_regions, _num_regions);
assert(num_min_regions <= _num_regions, "sanity");
_minimum_size = num_min_regions * reg_size_bytes;
// Default to max heap size.
_soft_max_size = _num_regions * reg_size_bytes;
_committed = _initial_size;
size_t heap_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
size_t bitmap_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
size_t region_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
//
// Reserve and commit memory for heap
//
ReservedHeapSpace heap_rs = Universe::reserve_heap(max_byte_size, heap_alignment);
initialize_reserved_region(heap_rs);
_heap_region = MemRegion((HeapWord*)heap_rs.base(), heap_rs.size() / HeapWordSize);
_heap_region_special = heap_rs.special();
assert((((size_t) base()) & ShenandoahHeapRegion::region_size_bytes_mask()) == 0,
"Misaligned heap: " PTR_FORMAT, p2i(base()));
#if SHENANDOAH_OPTIMIZED_MARKTASK
// The optimized ShenandoahMarkTask takes some bits away from the full object bits.
// Fail if we ever attempt to address more than we can.
if ((uintptr_t)heap_rs.end() >= ShenandoahMarkTask::max_addressable()) {
FormatBuffer<512> buf("Shenandoah reserved [" PTR_FORMAT ", " PTR_FORMAT") for the heap, \n"
"but max object address is " PTR_FORMAT ". Try to reduce heap size, or try other \n"
"VM options that allocate heap at lower addresses (HeapBaseMinAddress, AllocateHeapAt, etc).",
p2i(heap_rs.base()), p2i(heap_rs.end()), ShenandoahMarkTask::max_addressable());
vm_exit_during_initialization("Fatal Error", buf);
}
#endif
ReservedSpace sh_rs = heap_rs.first_part(max_byte_size);
if (!_heap_region_special) {
os::commit_memory_or_exit(sh_rs.base(), _initial_size, heap_alignment, false,
"Cannot commit heap memory");
}
//
// Reserve and commit memory for bitmap(s)
//
_bitmap_size = ShenandoahMarkBitMap::compute_size(heap_rs.size());
_bitmap_size = align_up(_bitmap_size, bitmap_page_size);
size_t bitmap_bytes_per_region = reg_size_bytes / ShenandoahMarkBitMap::heap_map_factor();
guarantee(bitmap_bytes_per_region != 0,
"Bitmap bytes per region should not be zero");
guarantee(is_power_of_2(bitmap_bytes_per_region),
"Bitmap bytes per region should be power of two: " SIZE_FORMAT, bitmap_bytes_per_region);
if (bitmap_page_size > bitmap_bytes_per_region) {
_bitmap_regions_per_slice = bitmap_page_size / bitmap_bytes_per_region;
_bitmap_bytes_per_slice = bitmap_page_size;
} else {
_bitmap_regions_per_slice = 1;
_bitmap_bytes_per_slice = bitmap_bytes_per_region;
}
guarantee(_bitmap_regions_per_slice >= 1,
"Should have at least one region per slice: " SIZE_FORMAT,
_bitmap_regions_per_slice);
guarantee(((_bitmap_bytes_per_slice) % bitmap_page_size) == 0,
"Bitmap slices should be page-granular: bps = " SIZE_FORMAT ", page size = " SIZE_FORMAT,
_bitmap_bytes_per_slice, bitmap_page_size);
ReservedSpace bitmap(_bitmap_size, bitmap_page_size);
MemTracker::record_virtual_memory_type(bitmap.base(), mtGC);
_bitmap_region = MemRegion((HeapWord*) bitmap.base(), bitmap.size() / HeapWordSize);
_bitmap_region_special = bitmap.special();
size_t bitmap_init_commit = _bitmap_bytes_per_slice *
align_up(num_committed_regions, _bitmap_regions_per_slice) / _bitmap_regions_per_slice;
bitmap_init_commit = MIN2(_bitmap_size, bitmap_init_commit);
if (!_bitmap_region_special) {
os::commit_memory_or_exit((char *) _bitmap_region.start(), bitmap_init_commit, bitmap_page_size, false,
"Cannot commit bitmap memory");
}
_marking_context = new ShenandoahMarkingContext(_heap_region, _bitmap_region, _num_regions, _max_workers);
if (ShenandoahVerify) {
ReservedSpace verify_bitmap(_bitmap_size, bitmap_page_size);
if (!verify_bitmap.special()) {
os::commit_memory_or_exit(verify_bitmap.base(), verify_bitmap.size(), bitmap_page_size, false,
"Cannot commit verification bitmap memory");
}
MemTracker::record_virtual_memory_type(verify_bitmap.base(), mtGC);
MemRegion verify_bitmap_region = MemRegion((HeapWord *) verify_bitmap.base(), verify_bitmap.size() / HeapWordSize);
_verification_bit_map.initialize(_heap_region, verify_bitmap_region);
_verifier = new ShenandoahVerifier(this, &_verification_bit_map);
}
// Reserve aux bitmap for use in object_iterate(). We don't commit it here.
ReservedSpace aux_bitmap(_bitmap_size, bitmap_page_size);
MemTracker::record_virtual_memory_type(aux_bitmap.base(), mtGC);
_aux_bitmap_region = MemRegion((HeapWord*) aux_bitmap.base(), aux_bitmap.size() / HeapWordSize);
_aux_bitmap_region_special = aux_bitmap.special();
_aux_bit_map.initialize(_heap_region, _aux_bitmap_region);
//
// Create regions and region sets
//
size_t region_align = align_up(sizeof(ShenandoahHeapRegion), SHENANDOAH_CACHE_LINE_SIZE);
size_t region_storage_size = align_up(region_align * _num_regions, region_page_size);
region_storage_size = align_up(region_storage_size, os::vm_allocation_granularity());
ReservedSpace region_storage(region_storage_size, region_page_size);
MemTracker::record_virtual_memory_type(region_storage.base(), mtGC);
if (!region_storage.special()) {
os::commit_memory_or_exit(region_storage.base(), region_storage_size, region_page_size, false,
"Cannot commit region memory");
}
// Try to fit the collection set bitmap at lower addresses. This optimizes code generation for cset checks.
// Go up until a sensible limit (subject to encoding constraints) and try to reserve the space there.
// If not successful, bite a bullet and allocate at whatever address.
{
size_t cset_align = MAX2<size_t>(os::vm_page_size(), os::vm_allocation_granularity());
size_t cset_size = align_up(((size_t) sh_rs.base() + sh_rs.size()) >> ShenandoahHeapRegion::region_size_bytes_shift(), cset_align);
uintptr_t min = round_up_power_of_2(cset_align);
uintptr_t max = (1u << 30u);
for (uintptr_t addr = min; addr <= max; addr <<= 1u) {
char* req_addr = (char*)addr;
assert(is_aligned(req_addr, cset_align), "Should be aligned");
ReservedSpace cset_rs(cset_size, cset_align, os::vm_page_size(), req_addr);
if (cset_rs.is_reserved()) {
assert(cset_rs.base() == req_addr, "Allocated where requested: " PTR_FORMAT ", " PTR_FORMAT, p2i(cset_rs.base()), addr);
_collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base());
break;
}
}
if (_collection_set == nullptr) {
ReservedSpace cset_rs(cset_size, cset_align, os::vm_page_size());
_collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base());
}
}
_regions = NEW_C_HEAP_ARRAY(ShenandoahHeapRegion*, _num_regions, mtGC);
_free_set = new ShenandoahFreeSet(this, _num_regions);
{
ShenandoahHeapLocker locker(lock());
for (size_t i = 0; i < _num_regions; i++) {
HeapWord* start = (HeapWord*)sh_rs.base() + ShenandoahHeapRegion::region_size_words() * i;
bool is_committed = i < num_committed_regions;
void* loc = region_storage.base() + i * region_align;
ShenandoahHeapRegion* r = new (loc) ShenandoahHeapRegion(start, i, is_committed);
assert(is_aligned(r, SHENANDOAH_CACHE_LINE_SIZE), "Sanity");
_marking_context->initialize_top_at_mark_start(r);
_regions[i] = r;
assert(!collection_set()->is_in(i), "New region should not be in collection set");
}
// Initialize to complete
_marking_context->mark_complete();
_free_set->rebuild();
}
if (AlwaysPreTouch) {
// For NUMA, it is important to pre-touch the storage under bitmaps with worker threads,
// before initialize() below zeroes it with initializing thread. For any given region,
// we touch the region and the corresponding bitmaps from the same thread.
ShenandoahPushWorkerScope scope(workers(), _max_workers, false);
_pretouch_heap_page_size = heap_page_size;
_pretouch_bitmap_page_size = bitmap_page_size;
#ifdef LINUX
// UseTransparentHugePages would madvise that backing memory can be coalesced into huge
// pages. But, the kernel needs to know that every small page is used, in order to coalesce
// them into huge one. Therefore, we need to pretouch with smaller pages.
if (UseTransparentHugePages) {
_pretouch_heap_page_size = (size_t)os::vm_page_size();
_pretouch_bitmap_page_size = (size_t)os::vm_page_size();
}
#endif
// OS memory managers may want to coalesce back-to-back pages. Make their jobs
// simpler by pre-touching continuous spaces (heap and bitmap) separately.
ShenandoahPretouchBitmapTask bcl(bitmap.base(), _bitmap_size, _pretouch_bitmap_page_size);
_workers->run_task(&bcl);
ShenandoahPretouchHeapTask hcl(_pretouch_heap_page_size);
_workers->run_task(&hcl);
}
//
// Initialize the rest of GC subsystems
//
_liveness_cache = NEW_C_HEAP_ARRAY(ShenandoahLiveData*, _max_workers, mtGC);
for (uint worker = 0; worker < _max_workers; worker++) {
_liveness_cache[worker] = NEW_C_HEAP_ARRAY(ShenandoahLiveData, _num_regions, mtGC);
Copy::fill_to_bytes(_liveness_cache[worker], _num_regions * sizeof(ShenandoahLiveData));
}
// There should probably be Shenandoah-specific options for these,
// just as there are G1-specific options.
{
ShenandoahSATBMarkQueueSet& satbqs = ShenandoahBarrierSet::satb_mark_queue_set();
satbqs.set_process_completed_buffers_threshold(20); // G1SATBProcessCompletedThreshold
satbqs.set_buffer_enqueue_threshold_percentage(60); // G1SATBBufferEnqueueingThresholdPercent
}
_monitoring_support = new ShenandoahMonitoringSupport(this);
_phase_timings = new ShenandoahPhaseTimings(max_workers());
ShenandoahCodeRoots::initialize();
if (ShenandoahPacing) {
_pacer = new ShenandoahPacer(this);
_pacer->setup_for_idle();
} else {
_pacer = nullptr;
}
_control_thread = new ShenandoahControlThread();
ShenandoahInitLogger::print();
return JNI_OK;
}
void ShenandoahHeap::initialize_mode() {
if (ShenandoahGCMode != nullptr) {
if (strcmp(ShenandoahGCMode, "satb") == 0) {
_gc_mode = new ShenandoahSATBMode();
} else if (strcmp(ShenandoahGCMode, "iu") == 0) {
_gc_mode = new ShenandoahIUMode();
} else if (strcmp(ShenandoahGCMode, "passive") == 0) {
_gc_mode = new ShenandoahPassiveMode();
} else {
vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option");
}
} else {
vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option (null)");
}
_gc_mode->initialize_flags();
if (_gc_mode->is_diagnostic() && !UnlockDiagnosticVMOptions) {
vm_exit_during_initialization(
err_msg("GC mode \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.",
_gc_mode->name()));
}
if (_gc_mode->is_experimental() && !UnlockExperimentalVMOptions) {
vm_exit_during_initialization(
err_msg("GC mode \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.",
_gc_mode->name()));
}
}
void ShenandoahHeap::initialize_heuristics() {
assert(_gc_mode != nullptr, "Must be initialized");
_heuristics = _gc_mode->initialize_heuristics();
if (_heuristics->is_diagnostic() && !UnlockDiagnosticVMOptions) {
vm_exit_during_initialization(
err_msg("Heuristics \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.",
_heuristics->name()));
}
if (_heuristics->is_experimental() && !UnlockExperimentalVMOptions) {
vm_exit_during_initialization(
err_msg("Heuristics \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.",
_heuristics->name()));
}
}
#ifdef _MSC_VER
#pragma warning( push )
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif
ShenandoahHeap::ShenandoahHeap(ShenandoahCollectorPolicy* policy) :
CollectedHeap(),
_initial_size(0),
_used(0),
_committed(0),
_bytes_allocated_since_gc_start(0),
_max_workers(MAX2(ConcGCThreads, ParallelGCThreads)),
_workers(nullptr),
_safepoint_workers(nullptr),
_heap_region_special(false),
_num_regions(0),
_regions(nullptr),
_update_refs_iterator(this),
_gc_state_changed(false),
_control_thread(nullptr),
_shenandoah_policy(policy),
_gc_mode(nullptr),
_heuristics(nullptr),
_free_set(nullptr),
_pacer(nullptr),
_verifier(nullptr),
_phase_timings(nullptr),
_monitoring_support(nullptr),
_memory_pool(nullptr),
_stw_memory_manager("Shenandoah Pauses"),
_cycle_memory_manager("Shenandoah Cycles"),
_gc_timer(new ConcurrentGCTimer()),
_soft_ref_policy(),
_log_min_obj_alignment_in_bytes(LogMinObjAlignmentInBytes),
_ref_processor(new ShenandoahReferenceProcessor(MAX2(_max_workers, 1U))),
_marking_context(nullptr),
_bitmap_size(0),
_bitmap_regions_per_slice(0),
_bitmap_bytes_per_slice(0),
_bitmap_region_special(false),
_aux_bitmap_region_special(false),
_liveness_cache(nullptr),
_collection_set(nullptr)
{
// Initialize GC mode early, so we can adjust barrier support
initialize_mode();
BarrierSet::set_barrier_set(new ShenandoahBarrierSet(this));
_max_workers = MAX2(_max_workers, 1U);
_workers = new ShenandoahWorkerThreads("Shenandoah GC Threads", _max_workers);
if (_workers == nullptr) {
vm_exit_during_initialization("Failed necessary allocation.");
} else {
_workers->initialize_workers();
}
if (ParallelGCThreads > 1) {
_safepoint_workers = new ShenandoahWorkerThreads("Safepoint Cleanup Thread",
ParallelGCThreads);
_safepoint_workers->initialize_workers();
}
}
#ifdef _MSC_VER
#pragma warning( pop )
#endif
class ShenandoahResetBitmapTask : public WorkerTask {
private:
ShenandoahRegionIterator _regions;
public:
ShenandoahResetBitmapTask() :
WorkerTask("Shenandoah Reset Bitmap") {}
void work(uint worker_id) {
ShenandoahHeapRegion* region = _regions.next();
ShenandoahHeap* heap = ShenandoahHeap::heap();
ShenandoahMarkingContext* const ctx = heap->marking_context();
while (region != nullptr) {
if (heap->is_bitmap_slice_committed(region)) {
ctx->clear_bitmap(region);
}
region = _regions.next();
}
}
};
void ShenandoahHeap::reset_mark_bitmap() {
assert_gc_workers(_workers->active_workers());
mark_incomplete_marking_context();
ShenandoahResetBitmapTask task;
_workers->run_task(&task);
}
void ShenandoahHeap::print_on(outputStream* st) const {
st->print_cr("Shenandoah Heap");
st->print_cr(" " SIZE_FORMAT "%s max, " SIZE_FORMAT "%s soft max, " SIZE_FORMAT "%s committed, " SIZE_FORMAT "%s used",
byte_size_in_proper_unit(max_capacity()), proper_unit_for_byte_size(max_capacity()),
byte_size_in_proper_unit(soft_max_capacity()), proper_unit_for_byte_size(soft_max_capacity()),
byte_size_in_proper_unit(committed()), proper_unit_for_byte_size(committed()),
byte_size_in_proper_unit(used()), proper_unit_for_byte_size(used()));
st->print_cr(" " SIZE_FORMAT " x " SIZE_FORMAT"%s regions",
num_regions(),
byte_size_in_proper_unit(ShenandoahHeapRegion::region_size_bytes()),
proper_unit_for_byte_size(ShenandoahHeapRegion::region_size_bytes()));
st->print("Status: ");
if (has_forwarded_objects()) st->print("has forwarded objects, ");
if (is_concurrent_mark_in_progress()) st->print("marking, ");
if (is_evacuation_in_progress()) st->print("evacuating, ");
if (is_update_refs_in_progress()) st->print("updating refs, ");
if (is_degenerated_gc_in_progress()) st->print("degenerated gc, ");
if (is_full_gc_in_progress()) st->print("full gc, ");
if (is_full_gc_move_in_progress()) st->print("full gc move, ");
if (is_concurrent_weak_root_in_progress()) st->print("concurrent weak roots, ");
if (is_concurrent_strong_root_in_progress() &&
!is_concurrent_weak_root_in_progress()) st->print("concurrent strong roots, ");
if (cancelled_gc()) {
st->print("cancelled");
} else {
st->print("not cancelled");
}
st->cr();
st->print_cr("Reserved region:");
st->print_cr(" - [" PTR_FORMAT ", " PTR_FORMAT ") ",
p2i(reserved_region().start()),
p2i(reserved_region().end()));
ShenandoahCollectionSet* cset = collection_set();
st->print_cr("Collection set:");
if (cset != nullptr) {
st->print_cr(" - map (vanilla): " PTR_FORMAT, p2i(cset->map_address()));
st->print_cr(" - map (biased): " PTR_FORMAT, p2i(cset->biased_map_address()));
} else {
st->print_cr(" (null)");
}
st->cr();
MetaspaceUtils::print_on(st);
if (Verbose) {
st->cr();
print_heap_regions_on(st);
}
}
class ShenandoahInitWorkerGCLABClosure : public ThreadClosure {
public:
void do_thread(Thread* thread) {
assert(thread != nullptr, "Sanity");
assert(thread->is_Worker_thread(), "Only worker thread expected");
ShenandoahThreadLocalData::initialize_gclab(thread);
}
};
void ShenandoahHeap::post_initialize() {
CollectedHeap::post_initialize();
MutexLocker ml(Threads_lock);
ShenandoahInitWorkerGCLABClosure init_gclabs;
_workers->threads_do(&init_gclabs);
// gclab can not be initialized early during VM startup, as it can not determinate its max_size.
// Now, we will let WorkerThreads to initialize gclab when new worker is created.
_workers->set_initialize_gclab();
if (_safepoint_workers != nullptr) {
_safepoint_workers->threads_do(&init_gclabs);
_safepoint_workers->set_initialize_gclab();
}
_heuristics->initialize();
JFR_ONLY(ShenandoahJFRSupport::register_jfr_type_serializers());
}
size_t ShenandoahHeap::used() const {
return Atomic::load(&_used);
}
size_t ShenandoahHeap::committed() const {
return Atomic::load(&_committed);
}
void ShenandoahHeap::increase_committed(size_t bytes) {
shenandoah_assert_heaplocked_or_safepoint();
_committed += bytes;
}
void ShenandoahHeap::decrease_committed(size_t bytes) {
shenandoah_assert_heaplocked_or_safepoint();
_committed -= bytes;
}
void ShenandoahHeap::increase_used(size_t bytes) {
Atomic::add(&_used, bytes, memory_order_relaxed);
}
void ShenandoahHeap::set_used(size_t bytes) {
Atomic::store(&_used, bytes);
}
void ShenandoahHeap::decrease_used(size_t bytes) {
assert(used() >= bytes, "never decrease heap size by more than we've left");
Atomic::sub(&_used, bytes, memory_order_relaxed);
}
void ShenandoahHeap::increase_allocated(size_t bytes) {
Atomic::add(&_bytes_allocated_since_gc_start, bytes, memory_order_relaxed);
}
void ShenandoahHeap::notify_mutator_alloc_words(size_t words, bool waste) {
size_t bytes = words * HeapWordSize;
if (!waste) {
increase_used(bytes);
}
increase_allocated(bytes);
if (ShenandoahPacing) {
control_thread()->pacing_notify_alloc(words);
if (waste) {
pacer()->claim_for_alloc(words, true);
}
}
}
size_t ShenandoahHeap::capacity() const {
return committed();
}
size_t ShenandoahHeap::max_capacity() const {
return _num_regions * ShenandoahHeapRegion::region_size_bytes();
}
size_t ShenandoahHeap::soft_max_capacity() const {
size_t v = Atomic::load(&_soft_max_size);
assert(min_capacity() <= v && v <= max_capacity(),
"Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT,
min_capacity(), v, max_capacity());
return v;
}
void ShenandoahHeap::set_soft_max_capacity(size_t v) {
assert(min_capacity() <= v && v <= max_capacity(),
"Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT,
min_capacity(), v, max_capacity());
Atomic::store(&_soft_max_size, v);
}
size_t ShenandoahHeap::min_capacity() const {
return _minimum_size;
}
size_t ShenandoahHeap::initial_capacity() const {
return _initial_size;
}
bool ShenandoahHeap::is_in(const void* p) const {
HeapWord* heap_base = (HeapWord*) base();
HeapWord* last_region_end = heap_base + ShenandoahHeapRegion::region_size_words() * num_regions();
return p >= heap_base && p < last_region_end;
}
void ShenandoahHeap::op_uncommit(double shrink_before, size_t shrink_until) {
assert (ShenandoahUncommit, "should be enabled");
// Application allocates from the beginning of the heap, and GC allocates at
// the end of it. It is more efficient to uncommit from the end, so that applications
// could enjoy the near committed regions. GC allocations are much less frequent,
// and therefore can accept the committing costs.
size_t count = 0;
for (size_t i = num_regions(); i > 0; i--) { // care about size_t underflow
ShenandoahHeapRegion* r = get_region(i - 1);
if (r->is_empty_committed() && (r->empty_time() < shrink_before)) {
ShenandoahHeapLocker locker(lock());
if (r->is_empty_committed()) {
if (committed() < shrink_until + ShenandoahHeapRegion::region_size_bytes()) {
break;
}
r->make_uncommitted();
count++;
}
}
SpinPause(); // allow allocators to take the lock
}
if (count > 0) {
control_thread()->notify_heap_changed();
}
}
HeapWord* ShenandoahHeap::allocate_from_gclab_slow(Thread* thread, size_t size) {
// New object should fit the GCLAB size
size_t min_size = MAX2(size, PLAB::min_size());
// Figure out size of new GCLAB, looking back at heuristics. Expand aggressively.
size_t new_size = ShenandoahThreadLocalData::gclab_size(thread) * 2;
new_size = MIN2(new_size, PLAB::max_size());
new_size = MAX2(new_size, PLAB::min_size());
// Record new heuristic value even if we take any shortcut. This captures
// the case when moderately-sized objects always take a shortcut. At some point,
// heuristics should catch up with them.
ShenandoahThreadLocalData::set_gclab_size(thread, new_size);
if (new_size < size) {
// New size still does not fit the object. Fall back to shared allocation.
// This avoids retiring perfectly good GCLABs, when we encounter a large object.
return nullptr;
}
// Retire current GCLAB, and allocate a new one.
PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
gclab->retire();
size_t actual_size = 0;
HeapWord* gclab_buf = allocate_new_gclab(min_size, new_size, &actual_size);
if (gclab_buf == nullptr) {
return nullptr;
}
assert (size <= actual_size, "allocation should fit");
if (ZeroTLAB) {
// ..and clear it.
Copy::zero_to_words(gclab_buf, actual_size);
} else {
// ...and zap just allocated object.
#ifdef ASSERT
// Skip mangling the space corresponding to the object header to
// ensure that the returned space is not considered parsable by
// any concurrent GC thread.
size_t hdr_size = oopDesc::header_size();
Copy::fill_to_words(gclab_buf + hdr_size, actual_size - hdr_size, badHeapWordVal);
#endif // ASSERT
}
gclab->set_buf(gclab_buf, actual_size);
return gclab->allocate(size);
}
HeapWord* ShenandoahHeap::allocate_new_tlab(size_t min_size,
size_t requested_size,
size_t* actual_size) {
ShenandoahAllocRequest req = ShenandoahAllocRequest::for_tlab(min_size, requested_size);
HeapWord* res = allocate_memory(req);
if (res != nullptr) {
*actual_size = req.actual_size();
} else {
*actual_size = 0;
}
return res;
}
HeapWord* ShenandoahHeap::allocate_new_gclab(size_t min_size,
size_t word_size,
size_t* actual_size) {
ShenandoahAllocRequest req = ShenandoahAllocRequest::for_gclab(min_size, word_size);
HeapWord* res = allocate_memory(req);
if (res != nullptr) {
*actual_size = req.actual_size();
} else {
*actual_size = 0;
}
return res;
}
HeapWord* ShenandoahHeap::allocate_memory(ShenandoahAllocRequest& req) {
intptr_t pacer_epoch = 0;
bool in_new_region = false;
HeapWord* result = nullptr;
if (req.is_mutator_alloc()) {
if (ShenandoahPacing) {
pacer()->pace_for_alloc(req.size());
pacer_epoch = pacer()->epoch();
}
if (!ShenandoahAllocFailureALot || !should_inject_alloc_failure()) {
result = allocate_memory_under_lock(req, in_new_region);
}
// Allocation failed, block until control thread reacted, then retry allocation.
//
// It might happen that one of the threads requesting allocation would unblock
// way later after GC happened, only to fail the second allocation, because
// other threads have already depleted the free storage. In this case, a better
// strategy is to try again, as long as GC makes progress (or until at least
// one full GC has completed).
size_t original_count = shenandoah_policy()->full_gc_count();
while (result == nullptr
&& (_progress_last_gc.is_set() || original_count == shenandoah_policy()->full_gc_count())) {
control_thread()->handle_alloc_failure(req);
result = allocate_memory_under_lock(req, in_new_region);
}
} else {
assert(req.is_gc_alloc(), "Can only accept GC allocs here");
result = allocate_memory_under_lock(req, in_new_region);
// Do not call handle_alloc_failure() here, because we cannot block.
// The allocation failure would be handled by the LRB slowpath with handle_alloc_failure_evac().
}
if (in_new_region) {
control_thread()->notify_heap_changed();
}
if (result != nullptr) {
size_t requested = req.size();
size_t actual = req.actual_size();
assert (req.is_lab_alloc() || (requested == actual),
"Only LAB allocations are elastic: %s, requested = " SIZE_FORMAT ", actual = " SIZE_FORMAT,
ShenandoahAllocRequest::alloc_type_to_string(req.type()), requested, actual);
if (req.is_mutator_alloc()) {
notify_mutator_alloc_words(actual, false);
// If we requested more than we were granted, give the rest back to pacer.
// This only matters if we are in the same pacing epoch: do not try to unpace
// over the budget for the other phase.
if (ShenandoahPacing && (pacer_epoch > 0) && (requested > actual)) {
pacer()->unpace_for_alloc(pacer_epoch, requested - actual);
}
} else {
increase_used(actual*HeapWordSize);
}
}
return result;
}
HeapWord* ShenandoahHeap::allocate_memory_under_lock(ShenandoahAllocRequest& req, bool& in_new_region) {
ShenandoahHeapLocker locker(lock());
return _free_set->allocate(req, in_new_region);
}
HeapWord* ShenandoahHeap::mem_allocate(size_t size,
bool* gc_overhead_limit_was_exceeded) {
ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared(size);
return allocate_memory(req);
}
MetaWord* ShenandoahHeap::satisfy_failed_metadata_allocation(ClassLoaderData* loader_data,
size_t size,
Metaspace::MetadataType mdtype) {
MetaWord* result;
// Inform metaspace OOM to GC heuristics if class unloading is possible.
if (heuristics()->can_unload_classes()) {
ShenandoahHeuristics* h = heuristics();
h->record_metaspace_oom();
}
// Expand and retry allocation
result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype);
if (result != nullptr) {
return result;
}
// Start full GC
collect(GCCause::_metadata_GC_clear_soft_refs);
// Retry allocation
result = loader_data->metaspace_non_null()->allocate(size, mdtype);
if (result != nullptr) {
return result;
}
// Expand and retry allocation
result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype);
if (result != nullptr) {
return result;
}
// Out of memory
return nullptr;
}
class ShenandoahConcurrentEvacuateRegionObjectClosure : public ObjectClosure {
private:
ShenandoahHeap* const _heap;
Thread* const _thread;
public:
ShenandoahConcurrentEvacuateRegionObjectClosure(ShenandoahHeap* heap) :
_heap(heap), _thread(Thread::current()) {}
void do_object(oop p) {
shenandoah_assert_marked(nullptr, p);
if (!p->is_forwarded()) {
_heap->evacuate_object(p, _thread);
}
}
};
class ShenandoahEvacuationTask : public WorkerTask {
private:
ShenandoahHeap* const _sh;
ShenandoahCollectionSet* const _cs;
bool _concurrent;
public:
ShenandoahEvacuationTask(ShenandoahHeap* sh,
ShenandoahCollectionSet* cs,
bool concurrent) :
WorkerTask("Shenandoah Evacuation"),
_sh(sh),
_cs(cs),
_concurrent(concurrent)
{}
void work(uint worker_id) {
if (_concurrent) {
ShenandoahConcurrentWorkerSession worker_session(worker_id);
ShenandoahSuspendibleThreadSetJoiner stsj;
ShenandoahEvacOOMScope oom_evac_scope;
do_work();
} else {
ShenandoahParallelWorkerSession worker_session(worker_id);
ShenandoahEvacOOMScope oom_evac_scope;
do_work();
}
}
private:
void do_work() {
ShenandoahConcurrentEvacuateRegionObjectClosure cl(_sh);
ShenandoahHeapRegion* r;
while ((r =_cs->claim_next()) != nullptr) {
assert(r->has_live(), "Region " SIZE_FORMAT " should have been reclaimed early", r->index());
_sh->marked_object_iterate(r, &cl);
if (ShenandoahPacing) {
_sh->pacer()->report_evac(r->used() >> LogHeapWordSize);
}
if (_sh->check_cancelled_gc_and_yield(_concurrent)) {
break;
}
}
}
};
void ShenandoahHeap::evacuate_collection_set(bool concurrent) {
ShenandoahEvacuationTask task(this, _collection_set, concurrent);
workers()->run_task(&task);
}
void ShenandoahHeap::trash_cset_regions() {
ShenandoahHeapLocker locker(lock());
ShenandoahCollectionSet* set = collection_set();
ShenandoahHeapRegion* r;
set->clear_current_index();
while ((r = set->next()) != nullptr) {
r->make_trash();
}
collection_set()->clear();
}
void ShenandoahHeap::print_heap_regions_on(outputStream* st) const {
st->print_cr("Heap Regions:");
st->print_cr("Region state: EU=empty-uncommitted, EC=empty-committed, R=regular, H=humongous start, HP=pinned humongous start");
st->print_cr(" HC=humongous continuation, CS=collection set, TR=trash, P=pinned, CSP=pinned collection set");
st->print_cr("BTE=bottom/top/end, TAMS=top-at-mark-start");
st->print_cr("UWM=update watermark, U=used");
st->print_cr("T=TLAB allocs, G=GCLAB allocs");
st->print_cr("S=shared allocs, L=live data");
st->print_cr("CP=critical pins");
for (size_t i = 0; i < num_regions(); i++) {
get_region(i)->print_on(st);
}
}
void ShenandoahHeap::trash_humongous_region_at(ShenandoahHeapRegion* start) {
assert(start->is_humongous_start(), "reclaim regions starting with the first one");
oop humongous_obj = cast_to_oop(start->bottom());
size_t size = humongous_obj->size();
size_t required_regions = ShenandoahHeapRegion::required_regions(size * HeapWordSize);
size_t index = start->index() + required_regions - 1;
assert(!start->has_live(), "liveness must be zero");
for(size_t i = 0; i < required_regions; i++) {
// Reclaim from tail. Otherwise, assertion fails when printing region to trace log,
// as it expects that every region belongs to a humongous region starting with a humongous start region.
ShenandoahHeapRegion* region = get_region(index --);
assert(region->is_humongous(), "expect correct humongous start or continuation");
assert(!region->is_cset(), "Humongous region should not be in collection set");
region->make_trash_immediate();
}
}
class ShenandoahCheckCleanGCLABClosure : public ThreadClosure {
public:
ShenandoahCheckCleanGCLABClosure() {}
void do_thread(Thread* thread) {
PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name());
assert(gclab->words_remaining() == 0, "GCLAB should not need retirement");
}
};
class ShenandoahRetireGCLABClosure : public ThreadClosure {
private:
bool const _resize;
public:
ShenandoahRetireGCLABClosure(bool resize) : _resize(resize) {}
void do_thread(Thread* thread) {
PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name());
gclab->retire();
if (_resize && ShenandoahThreadLocalData::gclab_size(thread) > 0) {
ShenandoahThreadLocalData::set_gclab_size(thread, 0);
}
}
};
void ShenandoahHeap::labs_make_parsable() {
assert(UseTLAB, "Only call with UseTLAB");
ShenandoahRetireGCLABClosure cl(false);
for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
ThreadLocalAllocBuffer& tlab = t->tlab();
tlab.make_parsable();
cl.do_thread(t);
}
workers()->threads_do(&cl);
}
void ShenandoahHeap::tlabs_retire(bool resize) {
assert(UseTLAB, "Only call with UseTLAB");
assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled");
ThreadLocalAllocStats stats;
for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
ThreadLocalAllocBuffer& tlab = t->tlab();
tlab.retire(&stats);
if (resize) {
tlab.resize();
}
}
stats.publish();
#ifdef ASSERT
ShenandoahCheckCleanGCLABClosure cl;
for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
cl.do_thread(t);
}
workers()->threads_do(&cl);
#endif
}
void ShenandoahHeap::gclabs_retire(bool resize) {
assert(UseTLAB, "Only call with UseTLAB");
assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled");
ShenandoahRetireGCLABClosure cl(resize);
for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
cl.do_thread(t);
}
workers()->threads_do(&cl);
if (safepoint_workers() != nullptr) {
safepoint_workers()->threads_do(&cl);
}
}
// Returns size in bytes
size_t ShenandoahHeap::unsafe_max_tlab_alloc(Thread *thread) const {
// Return the max allowed size, and let the allocation path
// figure out the safe size for current allocation.
return ShenandoahHeapRegion::max_tlab_size_bytes();
}
size_t ShenandoahHeap::max_tlab_size() const {
// Returns size in words
return ShenandoahHeapRegion::max_tlab_size_words();
}
void ShenandoahHeap::collect(GCCause::Cause cause) {
control_thread()->request_gc(cause);
}
void ShenandoahHeap::do_full_collection(bool clear_all_soft_refs) {
//assert(false, "Shouldn't need to do full collections");
}
HeapWord* ShenandoahHeap::block_start(const void* addr) const {
ShenandoahHeapRegion* r = heap_region_containing(addr);
if (r != nullptr) {
return r->block_start(addr);
}
return nullptr;
}
bool ShenandoahHeap::block_is_obj(const HeapWord* addr) const {
ShenandoahHeapRegion* r = heap_region_containing(addr);
return r->block_is_obj(addr);
}
bool ShenandoahHeap::print_location(outputStream* st, void* addr) const {
return BlockLocationPrinter<ShenandoahHeap>::print_location(st, addr);
}
void ShenandoahHeap::prepare_for_verify() {
if (SafepointSynchronize::is_at_safepoint() && UseTLAB) {
labs_make_parsable();
}
}
void ShenandoahHeap::gc_threads_do(ThreadClosure* tcl) const {
tcl->do_thread(_control_thread);
workers()->threads_do(tcl);
if (_safepoint_workers != nullptr) {
_safepoint_workers->threads_do(tcl);
}
}
void ShenandoahHeap::print_tracing_info() const {
LogTarget(Info, gc, stats) lt;
if (lt.is_enabled()) {
ResourceMark rm;
LogStream ls(lt);
phase_timings()->print_global_on(&ls);
ls.cr();
ls.cr();
shenandoah_policy()->print_gc_stats(&ls);
ls.cr();
ls.cr();
}
}
void ShenandoahHeap::verify(VerifyOption vo) {
if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) {
if (ShenandoahVerify) {
verifier()->verify_generic(vo);
} else {
// TODO: Consider allocating verification bitmaps on demand,
// and turn this on unconditionally.
}
}
}
size_t ShenandoahHeap::tlab_capacity(Thread *thr) const {
return _free_set->capacity();
}
class ObjectIterateScanRootClosure : public BasicOopIterateClosure {
private:
MarkBitMap* _bitmap;
ShenandoahScanObjectStack* _oop_stack;
ShenandoahHeap* const _heap;
ShenandoahMarkingContext* const _marking_context;
template <class T>
void do_oop_work(T* p) {
T o = RawAccess<>::oop_load(p);
if (!CompressedOops::is_null(o)) {
oop obj = CompressedOops::decode_not_null(o);
if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) {
// There may be dead oops in weak roots in concurrent root phase, do not touch them.
return;
}
obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj);
assert(oopDesc::is_oop(obj), "must be a valid oop");
if (!_bitmap->is_marked(obj)) {
_bitmap->mark(obj);
_oop_stack->push(obj);
}
}
}
public:
ObjectIterateScanRootClosure(MarkBitMap* bitmap, ShenandoahScanObjectStack* oop_stack) :
_bitmap(bitmap), _oop_stack(oop_stack), _heap(ShenandoahHeap::heap()),
_marking_context(_heap->marking_context()) {}
void do_oop(oop* p) { do_oop_work(p); }
void do_oop(narrowOop* p) { do_oop_work(p); }
};
/*
* This is public API, used in preparation of object_iterate().
* Since we don't do linear scan of heap in object_iterate() (see comment below), we don't
* need to make the heap parsable. For Shenandoah-internal linear heap scans that we can
* control, we call SH::tlabs_retire, SH::gclabs_retire.
*/
void ShenandoahHeap::ensure_parsability(bool retire_tlabs) {
// No-op.
}
/*
* Iterates objects in the heap. This is public API, used for, e.g., heap dumping.
*
* We cannot safely iterate objects by doing a linear scan at random points in time. Linear
* scanning needs to deal with dead objects, which may have dead Klass* pointers (e.g.
* calling oopDesc::size() would crash) or dangling reference fields (crashes) etc. Linear
* scanning therefore depends on having a valid marking bitmap to support it. However, we only
* have a valid marking bitmap after successful marking. In particular, we *don't* have a valid
* marking bitmap during marking, after aborted marking or during/after cleanup (when we just
* wiped the bitmap in preparation for next marking).
*
* For all those reasons, we implement object iteration as a single marking traversal, reporting
* objects as we mark+traverse through the heap, starting from GC roots. JVMTI IterateThroughHeap
* is allowed to report dead objects, but is not required to do so.
*/
void ShenandoahHeap::object_iterate(ObjectClosure* cl) {
// Reset bitmap
if (!prepare_aux_bitmap_for_iteration())
return;
ShenandoahScanObjectStack oop_stack;
ObjectIterateScanRootClosure oops(&_aux_bit_map, &oop_stack);
// Seed the stack with root scan
scan_roots_for_iteration(&oop_stack, &oops);
// Work through the oop stack to traverse heap
while (! oop_stack.is_empty()) {
oop obj = oop_stack.pop();
assert(oopDesc::is_oop(obj), "must be a valid oop");
cl->do_object(obj);
obj->oop_iterate(&oops);
}
assert(oop_stack.is_empty(), "should be empty");
// Reclaim bitmap
reclaim_aux_bitmap_for_iteration();
}
bool ShenandoahHeap::prepare_aux_bitmap_for_iteration() {
assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints");
if (!_aux_bitmap_region_special && !os::commit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size(), false)) {
log_warning(gc)("Could not commit native memory for auxiliary marking bitmap for heap iteration");
return false;
}
// Reset bitmap
_aux_bit_map.clear();
return true;
}
void ShenandoahHeap::scan_roots_for_iteration(ShenandoahScanObjectStack* oop_stack, ObjectIterateScanRootClosure* oops) {
// Process GC roots according to current GC cycle
// This populates the work stack with initial objects
// It is important to relinquish the associated locks before diving
// into heap dumper
uint n_workers = safepoint_workers() != nullptr ? safepoint_workers()->active_workers() : 1;
ShenandoahHeapIterationRootScanner rp(n_workers);
rp.roots_do(oops);
}
void ShenandoahHeap::reclaim_aux_bitmap_for_iteration() {
if (!_aux_bitmap_region_special && !os::uncommit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size())) {
log_warning(gc)("Could not uncommit native memory for auxiliary marking bitmap for heap iteration");
}
}
// Closure for parallelly iterate objects
class ShenandoahObjectIterateParScanClosure : public BasicOopIterateClosure {
private:
MarkBitMap* _bitmap;
ShenandoahObjToScanQueue* _queue;
ShenandoahHeap* const _heap;
ShenandoahMarkingContext* const _marking_context;
template <class T>
void do_oop_work(T* p) {
T o = RawAccess<>::oop_load(p);
if (!CompressedOops::is_null(o)) {
oop obj = CompressedOops::decode_not_null(o);
if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) {
// There may be dead oops in weak roots in concurrent root phase, do not touch them.
return;
}
obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj);
assert(oopDesc::is_oop(obj), "Must be a valid oop");
if (_bitmap->par_mark(obj)) {
_queue->push(ShenandoahMarkTask(obj));
}
}
}
public:
ShenandoahObjectIterateParScanClosure(MarkBitMap* bitmap, ShenandoahObjToScanQueue* q) :
_bitmap(bitmap), _queue(q), _heap(ShenandoahHeap::heap()),
_marking_context(_heap->marking_context()) {}
void do_oop(oop* p) { do_oop_work(p); }
void do_oop(narrowOop* p) { do_oop_work(p); }
};
// Object iterator for parallel heap iteraion.
// The root scanning phase happenes in construction as a preparation of
// parallel marking queues.
// Every worker processes it's own marking queue. work-stealing is used
// to balance workload.
class ShenandoahParallelObjectIterator : public ParallelObjectIteratorImpl {
private:
uint _num_workers;
bool _init_ready;
MarkBitMap* _aux_bit_map;
ShenandoahHeap* _heap;
ShenandoahScanObjectStack _roots_stack; // global roots stack
ShenandoahObjToScanQueueSet* _task_queues;
public:
ShenandoahParallelObjectIterator(uint num_workers, MarkBitMap* bitmap) :
_num_workers(num_workers),
_init_ready(false),
_aux_bit_map(bitmap),
_heap(ShenandoahHeap::heap()) {
// Initialize bitmap
_init_ready = _heap->prepare_aux_bitmap_for_iteration();
if (!_init_ready) {
return;
}
ObjectIterateScanRootClosure oops(_aux_bit_map, &_roots_stack);
_heap->scan_roots_for_iteration(&_roots_stack, &oops);
_init_ready = prepare_worker_queues();
}
~ShenandoahParallelObjectIterator() {
// Reclaim bitmap
_heap->reclaim_aux_bitmap_for_iteration();
// Reclaim queue for workers
if (_task_queues!= nullptr) {
for (uint i = 0; i < _num_workers; ++i) {
ShenandoahObjToScanQueue* q = _task_queues->queue(i);
if (q != nullptr) {
delete q;
_task_queues->register_queue(i, nullptr);
}
}
delete _task_queues;
_task_queues = nullptr;
}
}
virtual void object_iterate(ObjectClosure* cl, uint worker_id) {
if (_init_ready) {
object_iterate_parallel(cl, worker_id, _task_queues);
}
}
private:
// Divide global root_stack into worker queues
bool prepare_worker_queues() {
_task_queues = new ShenandoahObjToScanQueueSet((int) _num_workers);
// Initialize queues for every workers
for (uint i = 0; i < _num_workers; ++i) {
ShenandoahObjToScanQueue* task_queue = new ShenandoahObjToScanQueue();
_task_queues->register_queue(i, task_queue);
}
// Divide roots among the workers. Assume that object referencing distribution
// is related with root kind, use round-robin to make every worker have same chance
// to process every kind of roots
size_t roots_num = _roots_stack.size();
if (roots_num == 0) {
// No work to do
return false;
}
for (uint j = 0; j < roots_num; j++) {
uint stack_id = j % _num_workers;
oop obj = _roots_stack.pop();
_task_queues->queue(stack_id)->push(ShenandoahMarkTask(obj));
}
return true;
}
void object_iterate_parallel(ObjectClosure* cl,
uint worker_id,
ShenandoahObjToScanQueueSet* queue_set) {
assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints");
assert(queue_set != nullptr, "task queue must not be null");
ShenandoahObjToScanQueue* q = queue_set->queue(worker_id);
assert(q != nullptr, "object iterate queue must not be null");
ShenandoahMarkTask t;
ShenandoahObjectIterateParScanClosure oops(_aux_bit_map, q);
// Work through the queue to traverse heap.
// Steal when there is no task in queue.
while (q->pop(t) || queue_set->steal(worker_id, t)) {
oop obj = t.obj();
assert(oopDesc::is_oop(obj), "must be a valid oop");
cl->do_object(obj);
obj->oop_iterate(&oops);
}
assert(q->is_empty(), "should be empty");
}
};
ParallelObjectIteratorImpl* ShenandoahHeap::parallel_object_iterator(uint workers) {
return new ShenandoahParallelObjectIterator(workers, &_aux_bit_map);
}
// Keep alive an object that was loaded with AS_NO_KEEPALIVE.
void ShenandoahHeap::keep_alive(oop obj) {
if (is_concurrent_mark_in_progress() && (obj != nullptr)) {
ShenandoahBarrierSet::barrier_set()->enqueue(obj);
}
}
void ShenandoahHeap::heap_region_iterate(ShenandoahHeapRegionClosure* blk) const {
for (size_t i = 0; i < num_regions(); i++) {
ShenandoahHeapRegion* current = get_region(i);
blk->heap_region_do(current);
}
}
class ShenandoahParallelHeapRegionTask : public WorkerTask {
private:
ShenandoahHeap* const _heap;
ShenandoahHeapRegionClosure* const _blk;
shenandoah_padding(0);
volatile size_t _index;
shenandoah_padding(1);
public:
ShenandoahParallelHeapRegionTask(ShenandoahHeapRegionClosure* blk) :
WorkerTask("Shenandoah Parallel Region Operation"),
_heap(ShenandoahHeap::heap()), _blk(blk), _index(0) {}
void work(uint worker_id) {
ShenandoahParallelWorkerSession worker_session(worker_id);
size_t stride = ShenandoahParallelRegionStride;
size_t max = _heap->num_regions();
while (Atomic::load(&_index) < max) {
size_t cur = Atomic::fetch_then_add(&_index, stride, memory_order_relaxed);
size_t start = cur;
size_t end = MIN2(cur + stride, max);
if (start >= max) break;
for (size_t i = cur; i < end; i++) {
ShenandoahHeapRegion* current = _heap->get_region(i);
_blk->heap_region_do(current);
}
}
}
};
void ShenandoahHeap::parallel_heap_region_iterate(ShenandoahHeapRegionClosure* blk) const {
assert(blk->is_thread_safe(), "Only thread-safe closures here");
if (num_regions() > ShenandoahParallelRegionStride) {
ShenandoahParallelHeapRegionTask task(blk);
workers()->run_task(&task);
} else {
heap_region_iterate(blk);
}
}
class ShenandoahInitMarkUpdateRegionStateClosure : public ShenandoahHeapRegionClosure {
private:
ShenandoahMarkingContext* const _ctx;
public:
ShenandoahInitMarkUpdateRegionStateClosure() : _ctx(ShenandoahHeap::heap()->marking_context()) {}
void heap_region_do(ShenandoahHeapRegion* r) {
assert(!r->has_live(), "Region " SIZE_FORMAT " should have no live data", r->index());
if (r->is_active()) {
// Check if region needs updating its TAMS. We have updated it already during concurrent
// reset, so it is very likely we don't need to do another write here.
if (_ctx->top_at_mark_start(r) != r->top()) {
_ctx->capture_top_at_mark_start(r);
}
} else {
assert(_ctx->top_at_mark_start(r) == r->top(),
"Region " SIZE_FORMAT " should already have correct TAMS", r->index());
}
}
bool is_thread_safe() { return true; }
};
class ShenandoahRendezvousClosure : public HandshakeClosure {
public:
inline ShenandoahRendezvousClosure() : HandshakeClosure("ShenandoahRendezvous") {}
inline void do_thread(Thread* thread) {}
};
void ShenandoahHeap::rendezvous_threads() {
ShenandoahRendezvousClosure cl;
Handshake::execute(&cl);
}
void ShenandoahHeap::recycle_trash() {
free_set()->recycle_trash();
}
class ShenandoahResetUpdateRegionStateClosure : public ShenandoahHeapRegionClosure {
private:
ShenandoahMarkingContext* const _ctx;
public:
ShenandoahResetUpdateRegionStateClosure() : _ctx(ShenandoahHeap::heap()->marking_context()) {}
void heap_region_do(ShenandoahHeapRegion* r) {
if (r->is_active()) {
// Reset live data and set TAMS optimistically. We would recheck these under the pause
// anyway to capture any updates that happened since now.
r->clear_live_data();
_ctx->capture_top_at_mark_start(r);
}
}
bool is_thread_safe() { return true; }
};
void ShenandoahHeap::prepare_gc() {
reset_mark_bitmap();
ShenandoahResetUpdateRegionStateClosure cl;
parallel_heap_region_iterate(&cl);
}
class ShenandoahFinalMarkUpdateRegionStateClosure : public ShenandoahHeapRegionClosure {
private:
ShenandoahMarkingContext* const _ctx;
ShenandoahHeapLock* const _lock;
public:
ShenandoahFinalMarkUpdateRegionStateClosure() :
_ctx(ShenandoahHeap::heap()->complete_marking_context()), _lock(ShenandoahHeap::heap()->lock()) {}
void heap_region_do(ShenandoahHeapRegion* r) {
if (r->is_active()) {
// All allocations past TAMS are implicitly live, adjust the region data.
// Bitmaps/TAMS are swapped at this point, so we need to poll complete bitmap.
HeapWord *tams = _ctx->top_at_mark_start(r);
HeapWord *top = r->top();
if (top > tams) {
r->increase_live_data_alloc_words(pointer_delta(top, tams));
}
// We are about to select the collection set, make sure it knows about
// current pinning status. Also, this allows trashing more regions that
// now have their pinning status dropped.
if (r->is_pinned()) {
if (r->pin_count() == 0) {
ShenandoahHeapLocker locker(_lock);
r->make_unpinned();
}
} else {
if (r->pin_count() > 0) {
ShenandoahHeapLocker locker(_lock);
r->make_pinned();
}
}
// Remember limit for updating refs. It's guaranteed that we get no
// from-space-refs written from here on.
r->set_update_watermark_at_safepoint(r->top());
} else {
assert(!r->has_live(), "Region " SIZE_FORMAT " should have no live data", r->index());
assert(_ctx->top_at_mark_start(r) == r->top(),
"Region " SIZE_FORMAT " should have correct TAMS", r->index());
}
}
bool is_thread_safe() { return true; }
};
void ShenandoahHeap::prepare_regions_and_collection_set(bool concurrent) {
assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC");
{
ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::final_update_region_states :
ShenandoahPhaseTimings::degen_gc_final_update_region_states);
ShenandoahFinalMarkUpdateRegionStateClosure cl;
parallel_heap_region_iterate(&cl);
assert_pinned_region_status();
}
{
ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::choose_cset :
ShenandoahPhaseTimings::degen_gc_choose_cset);
ShenandoahHeapLocker locker(lock());
_collection_set->clear();
heuristics()->choose_collection_set(_collection_set);
}
{
ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::final_rebuild_freeset :
ShenandoahPhaseTimings::degen_gc_final_rebuild_freeset);
ShenandoahHeapLocker locker(lock());
_free_set->rebuild();
}
}
void ShenandoahHeap::do_class_unloading() {
_unloader.unload();
}
void ShenandoahHeap::stw_weak_refs(bool full_gc) {
// Weak refs processing
ShenandoahPhaseTimings::Phase phase = full_gc ? ShenandoahPhaseTimings::full_gc_weakrefs
: ShenandoahPhaseTimings::degen_gc_weakrefs;
ShenandoahTimingsTracker t(phase);
ShenandoahGCWorkerPhase worker_phase(phase);
ref_processor()->process_references(phase, workers(), false /* concurrent */);
}
void ShenandoahHeap::prepare_update_heap_references(bool concurrent) {
assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "must be at safepoint");
// Evacuation is over, no GCLABs are needed anymore. GCLABs are under URWM, so we need to
// make them parsable for update code to work correctly. Plus, we can compute new sizes
// for future GCLABs here.
if (UseTLAB) {
ShenandoahGCPhase phase(concurrent ?
ShenandoahPhaseTimings::init_update_refs_manage_gclabs :
ShenandoahPhaseTimings::degen_gc_init_update_refs_manage_gclabs);
gclabs_retire(ResizeTLAB);
}
_update_refs_iterator.reset();
}
void ShenandoahHeap::propagate_gc_state_to_java_threads() {
assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint");
if (_gc_state_changed) {
_gc_state_changed = false;
char state = gc_state();
for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
ShenandoahThreadLocalData::set_gc_state(t, state);
}
}
}
void ShenandoahHeap::set_gc_state(uint mask, bool value) {
assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint");
_gc_state.set_cond(mask, value);
_gc_state_changed = true;
}
void ShenandoahHeap::set_concurrent_mark_in_progress(bool in_progress) {
assert(!has_forwarded_objects(), "Not expected before/after mark phase");
set_gc_state(MARKING, in_progress);
ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(in_progress, !in_progress);
}
void ShenandoahHeap::set_evacuation_in_progress(bool in_progress) {
assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Only call this at safepoint");
set_gc_state(EVACUATION, in_progress);
}
void ShenandoahHeap::set_concurrent_strong_root_in_progress(bool in_progress) {
if (in_progress) {
_concurrent_strong_root_in_progress.set();
} else {
_concurrent_strong_root_in_progress.unset();
}
}
void ShenandoahHeap::set_concurrent_weak_root_in_progress(bool cond) {
set_gc_state(WEAK_ROOTS, cond);
}
GCTracer* ShenandoahHeap::tracer() {
return shenandoah_policy()->tracer();
}
size_t ShenandoahHeap::tlab_used(Thread* thread) const {
return _free_set->used();
}
bool ShenandoahHeap::try_cancel_gc() {
jbyte prev = _cancelled_gc.cmpxchg(CANCELLED, CANCELLABLE);
return prev == CANCELLABLE;
}
void ShenandoahHeap::cancel_gc(GCCause::Cause cause) {
if (try_cancel_gc()) {
FormatBuffer<> msg("Cancelling GC: %s", GCCause::to_string(cause));
log_info(gc)("%s", msg.buffer());
Events::log(Thread::current(), "%s", msg.buffer());
}
}
uint ShenandoahHeap::max_workers() {
return _max_workers;
}
void ShenandoahHeap::stop() {
// The shutdown sequence should be able to terminate when GC is running.
// Step 0. Notify policy to disable event recording.
_shenandoah_policy->record_shutdown();
// Step 1. Notify control thread that we are in shutdown.
// Note that we cannot do that with stop(), because stop() is blocking and waits for the actual shutdown.
// Doing stop() here would wait for the normal GC cycle to complete, never falling through to cancel below.
control_thread()->prepare_for_graceful_shutdown();
// Step 2. Notify GC workers that we are cancelling GC.
cancel_gc(GCCause::_shenandoah_stop_vm);
// Step 3. Wait until GC worker exits normally.
control_thread()->stop();
}
void ShenandoahHeap::stw_unload_classes(bool full_gc) {
if (!unload_classes()) return;
ClassUnloadingContext ctx(_workers->active_workers(),
true /* unregister_nmethods_during_purge */,
false /* lock_codeblob_free_separately */);
// Unload classes and purge SystemDictionary.
{
ShenandoahPhaseTimings::Phase phase = full_gc ?
ShenandoahPhaseTimings::full_gc_purge_class_unload :
ShenandoahPhaseTimings::degen_gc_purge_class_unload;
ShenandoahIsAliveSelector is_alive;
{
CodeCache::UnlinkingScope scope(is_alive.is_alive_closure());
ShenandoahGCPhase gc_phase(phase);
ShenandoahGCWorkerPhase worker_phase(phase);
bool unloading_occurred = SystemDictionary::do_unloading(gc_timer());
uint num_workers = _workers->active_workers();
ShenandoahClassUnloadingTask unlink_task(phase, num_workers, unloading_occurred);
_workers->run_task(&unlink_task);
}
// Release unloaded nmethods's memory.
ClassUnloadingContext::context()->purge_and_free_nmethods();
}
{
ShenandoahGCPhase phase(full_gc ?
ShenandoahPhaseTimings::full_gc_purge_cldg :
ShenandoahPhaseTimings::degen_gc_purge_cldg);
ClassLoaderDataGraph::purge(true /* at_safepoint */);
}
// Resize and verify metaspace
MetaspaceGC::compute_new_size();
DEBUG_ONLY(MetaspaceUtils::verify();)
}
// Weak roots are either pre-evacuated (final mark) or updated (final updaterefs),
// so they should not have forwarded oops.
// However, we do need to "null" dead oops in the roots, if can not be done
// in concurrent cycles.
void ShenandoahHeap::stw_process_weak_roots(bool full_gc) {
uint num_workers = _workers->active_workers();
ShenandoahPhaseTimings::Phase timing_phase = full_gc ?
ShenandoahPhaseTimings::full_gc_purge_weak_par :
ShenandoahPhaseTimings::degen_gc_purge_weak_par;
ShenandoahGCPhase phase(timing_phase);
ShenandoahGCWorkerPhase worker_phase(timing_phase);
// Cleanup weak roots
if (has_forwarded_objects()) {
ShenandoahForwardedIsAliveClosure is_alive;
ShenandoahUpdateRefsClosure keep_alive;
ShenandoahParallelWeakRootsCleaningTask<ShenandoahForwardedIsAliveClosure, ShenandoahUpdateRefsClosure>
cleaning_task(timing_phase, &is_alive, &keep_alive, num_workers);
_workers->run_task(&cleaning_task);
} else {
ShenandoahIsAliveClosure is_alive;
#ifdef ASSERT
ShenandoahAssertNotForwardedClosure verify_cl;
ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, ShenandoahAssertNotForwardedClosure>
cleaning_task(timing_phase, &is_alive, &verify_cl, num_workers);
#else
ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, DoNothingClosure>
cleaning_task(timing_phase, &is_alive, &do_nothing_cl, num_workers);
#endif
_workers->run_task(&cleaning_task);
}
}
void ShenandoahHeap::parallel_cleaning(bool full_gc) {
assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
assert(is_stw_gc_in_progress(), "Only for Degenerated and Full GC");
ShenandoahGCPhase phase(full_gc ?
ShenandoahPhaseTimings::full_gc_purge :
ShenandoahPhaseTimings::degen_gc_purge);
stw_weak_refs(full_gc);
stw_process_weak_roots(full_gc);
stw_unload_classes(full_gc);
}
void ShenandoahHeap::set_has_forwarded_objects(bool cond) {
set_gc_state(HAS_FORWARDED, cond);
}
void ShenandoahHeap::set_unload_classes(bool uc) {
_unload_classes.set_cond(uc);
}
bool ShenandoahHeap::unload_classes() const {
return _unload_classes.is_set();
}
address ShenandoahHeap::in_cset_fast_test_addr() {
ShenandoahHeap* heap = ShenandoahHeap::heap();
assert(heap->collection_set() != nullptr, "Sanity");
return (address) heap->collection_set()->biased_map_address();
}
size_t ShenandoahHeap::bytes_allocated_since_gc_start() {
return Atomic::load(&_bytes_allocated_since_gc_start);
}
void ShenandoahHeap::reset_bytes_allocated_since_gc_start() {
Atomic::store(&_bytes_allocated_since_gc_start, (size_t)0);
}
void ShenandoahHeap::set_degenerated_gc_in_progress(bool in_progress) {
_degenerated_gc_in_progress.set_cond(in_progress);
}
void ShenandoahHeap::set_full_gc_in_progress(bool in_progress) {
_full_gc_in_progress.set_cond(in_progress);
}
void ShenandoahHeap::set_full_gc_move_in_progress(bool in_progress) {
assert (is_full_gc_in_progress(), "should be");
_full_gc_move_in_progress.set_cond(in_progress);
}
void ShenandoahHeap::set_update_refs_in_progress(bool in_progress) {
set_gc_state(UPDATEREFS, in_progress);
}
void ShenandoahHeap::register_nmethod(nmethod* nm) {
ShenandoahCodeRoots::register_nmethod(nm);
}
void ShenandoahHeap::unregister_nmethod(nmethod* nm) {
ShenandoahCodeRoots::unregister_nmethod(nm);
}
void ShenandoahHeap::pin_object(JavaThread* thr, oop o) {
heap_region_containing(o)->record_pin();
}
void ShenandoahHeap::unpin_object(JavaThread* thr, oop o) {
ShenandoahHeapRegion* r = heap_region_containing(o);
assert(r != nullptr, "Sanity");
assert(r->pin_count() > 0, "Region " SIZE_FORMAT " should have non-zero pins", r->index());
r->record_unpin();
}
void ShenandoahHeap::sync_pinned_region_status() {
ShenandoahHeapLocker locker(lock());
for (size_t i = 0; i < num_regions(); i++) {
ShenandoahHeapRegion *r = get_region(i);
if (r->is_active()) {
if (r->is_pinned()) {
if (r->pin_count() == 0) {
r->make_unpinned();
}
} else {
if (r->pin_count() > 0) {
r->make_pinned();
}
}
}
}
assert_pinned_region_status();
}
#ifdef ASSERT
void ShenandoahHeap::assert_pinned_region_status() {
for (size_t i = 0; i < num_regions(); i++) {
ShenandoahHeapRegion* r = get_region(i);
assert((r->is_pinned() && r->pin_count() > 0) || (!r->is_pinned() && r->pin_count() == 0),
"Region " SIZE_FORMAT " pinning status is inconsistent", i);
}
}
#endif
ConcurrentGCTimer* ShenandoahHeap::gc_timer() const {
return _gc_timer;
}
void ShenandoahHeap::prepare_concurrent_roots() {
assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
assert(!is_stw_gc_in_progress(), "Only concurrent GC");
set_concurrent_strong_root_in_progress(!collection_set()->is_empty());
set_concurrent_weak_root_in_progress(true);
if (unload_classes()) {
_unloader.prepare();
}
}
void ShenandoahHeap::finish_concurrent_roots() {
assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
assert(!is_stw_gc_in_progress(), "Only concurrent GC");
if (unload_classes()) {
_unloader.finish();
}
}
#ifdef ASSERT
void ShenandoahHeap::assert_gc_workers(uint nworkers) {
assert(nworkers > 0 && nworkers <= max_workers(), "Sanity");
if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) {
if (UseDynamicNumberOfGCThreads) {
assert(nworkers <= ParallelGCThreads, "Cannot use more than it has");
} else {
// Use ParallelGCThreads inside safepoints
assert(nworkers == ParallelGCThreads, "Use ParallelGCThreads within safepoints");
}
} else {
if (UseDynamicNumberOfGCThreads) {
assert(nworkers <= ConcGCThreads, "Cannot use more than it has");
} else {
// Use ConcGCThreads outside safepoints
assert(nworkers == ConcGCThreads, "Use ConcGCThreads outside safepoints");
}
}
}
#endif
ShenandoahVerifier* ShenandoahHeap::verifier() {
guarantee(ShenandoahVerify, "Should be enabled");
assert (_verifier != nullptr, "sanity");
return _verifier;
}
template<bool CONCURRENT>
class ShenandoahUpdateHeapRefsTask : public WorkerTask {
private:
ShenandoahHeap* _heap;
ShenandoahRegionIterator* _regions;
public:
ShenandoahUpdateHeapRefsTask(ShenandoahRegionIterator* regions) :
WorkerTask("Shenandoah Update References"),
_heap(ShenandoahHeap::heap()),
_regions(regions) {
}
void work(uint worker_id) {
if (CONCURRENT) {
ShenandoahConcurrentWorkerSession worker_session(worker_id);
ShenandoahSuspendibleThreadSetJoiner stsj;
do_work<ShenandoahConcUpdateRefsClosure>();
} else {
ShenandoahParallelWorkerSession worker_session(worker_id);
do_work<ShenandoahSTWUpdateRefsClosure>();
}
}
private:
template<class T>
void do_work() {
T cl;
ShenandoahHeapRegion* r = _regions->next();
ShenandoahMarkingContext* const ctx = _heap->complete_marking_context();
while (r != nullptr) {
HeapWord* update_watermark = r->get_update_watermark();
assert (update_watermark >= r->bottom(), "sanity");
if (r->is_active() && !r->is_cset()) {
_heap->marked_object_oop_iterate(r, &cl, update_watermark);
}
if (ShenandoahPacing) {
_heap->pacer()->report_updaterefs(pointer_delta(update_watermark, r->bottom()));
}
if (_heap->check_cancelled_gc_and_yield(CONCURRENT)) {
return;
}
r = _regions->next();
}
}
};
void ShenandoahHeap::update_heap_references(bool concurrent) {
assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC");
if (concurrent) {
ShenandoahUpdateHeapRefsTask<true> task(&_update_refs_iterator);
workers()->run_task(&task);
} else {
ShenandoahUpdateHeapRefsTask<false> task(&_update_refs_iterator);
workers()->run_task(&task);
}
}
class ShenandoahFinalUpdateRefsUpdateRegionStateClosure : public ShenandoahHeapRegionClosure {
private:
ShenandoahHeapLock* const _lock;
public:
ShenandoahFinalUpdateRefsUpdateRegionStateClosure() : _lock(ShenandoahHeap::heap()->lock()) {}
void heap_region_do(ShenandoahHeapRegion* r) {
// Drop unnecessary "pinned" state from regions that does not have CP marks
// anymore, as this would allow trashing them.
if (r->is_active()) {
if (r->is_pinned()) {
if (r->pin_count() == 0) {
ShenandoahHeapLocker locker(_lock);
r->make_unpinned();
}
} else {
if (r->pin_count() > 0) {
ShenandoahHeapLocker locker(_lock);
r->make_pinned();
}
}
}
}
bool is_thread_safe() { return true; }
};
void ShenandoahHeap::update_heap_region_states(bool concurrent) {
assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC");
{
ShenandoahGCPhase phase(concurrent ?
ShenandoahPhaseTimings::final_update_refs_update_region_states :
ShenandoahPhaseTimings::degen_gc_final_update_refs_update_region_states);
ShenandoahFinalUpdateRefsUpdateRegionStateClosure cl;
parallel_heap_region_iterate(&cl);
assert_pinned_region_status();
}
{
ShenandoahGCPhase phase(concurrent ?
ShenandoahPhaseTimings::final_update_refs_trash_cset :
ShenandoahPhaseTimings::degen_gc_final_update_refs_trash_cset);
trash_cset_regions();
}
}
void ShenandoahHeap::rebuild_free_set(bool concurrent) {
{
ShenandoahGCPhase phase(concurrent ?
ShenandoahPhaseTimings::final_update_refs_rebuild_freeset :
ShenandoahPhaseTimings::degen_gc_final_update_refs_rebuild_freeset);
ShenandoahHeapLocker locker(lock());
_free_set->rebuild();
}
}
void ShenandoahHeap::print_extended_on(outputStream *st) const {
print_on(st);
st->cr();
print_heap_regions_on(st);
}
bool ShenandoahHeap::is_bitmap_slice_committed(ShenandoahHeapRegion* r, bool skip_self) {
size_t slice = r->index() / _bitmap_regions_per_slice;
size_t regions_from = _bitmap_regions_per_slice * slice;
size_t regions_to = MIN2(num_regions(), _bitmap_regions_per_slice * (slice + 1));
for (size_t g = regions_from; g < regions_to; g++) {
assert (g / _bitmap_regions_per_slice == slice, "same slice");
if (skip_self && g == r->index()) continue;
if (get_region(g)->is_committed()) {
return true;
}
}
return false;
}
bool ShenandoahHeap::commit_bitmap_slice(ShenandoahHeapRegion* r) {
shenandoah_assert_heaplocked();
// Bitmaps in special regions do not need commits
if (_bitmap_region_special) {
return true;
}
if (is_bitmap_slice_committed(r, true)) {
// Some other region from the group is already committed, meaning the bitmap
// slice is already committed, we exit right away.
return true;
}
// Commit the bitmap slice:
size_t slice = r->index() / _bitmap_regions_per_slice;
size_t off = _bitmap_bytes_per_slice * slice;
size_t len = _bitmap_bytes_per_slice;
char* start = (char*) _bitmap_region.start() + off;
if (!os::commit_memory(start, len, false)) {
return false;
}
if (AlwaysPreTouch) {
os::pretouch_memory(start, start + len, _pretouch_bitmap_page_size);
}
return true;
}
bool ShenandoahHeap::uncommit_bitmap_slice(ShenandoahHeapRegion *r) {
shenandoah_assert_heaplocked();
// Bitmaps in special regions do not need uncommits
if (_bitmap_region_special) {
return true;
}
if (is_bitmap_slice_committed(r, true)) {
// Some other region from the group is still committed, meaning the bitmap
// slice is should stay committed, exit right away.
return true;
}
// Uncommit the bitmap slice:
size_t slice = r->index() / _bitmap_regions_per_slice;
size_t off = _bitmap_bytes_per_slice * slice;
size_t len = _bitmap_bytes_per_slice;
if (!os::uncommit_memory((char*)_bitmap_region.start() + off, len)) {
return false;
}
return true;
}
void ShenandoahHeap::safepoint_synchronize_begin() {
SuspendibleThreadSet::synchronize();
}
void ShenandoahHeap::safepoint_synchronize_end() {
SuspendibleThreadSet::desynchronize();
}
void ShenandoahHeap::entry_uncommit(double shrink_before, size_t shrink_until) {
static const char *msg = "Concurrent uncommit";
ShenandoahConcurrentPhase gc_phase(msg, ShenandoahPhaseTimings::conc_uncommit, true /* log_heap_usage */);
EventMark em("%s", msg);
op_uncommit(shrink_before, shrink_until);
}
void ShenandoahHeap::try_inject_alloc_failure() {
if (ShenandoahAllocFailureALot && !cancelled_gc() && ((os::random() % 1000) > 950)) {
_inject_alloc_failure.set();
os::naked_short_sleep(1);
if (cancelled_gc()) {
log_info(gc)("Allocation failure was successfully injected");
}
}
}
bool ShenandoahHeap::should_inject_alloc_failure() {
return _inject_alloc_failure.is_set() && _inject_alloc_failure.try_unset();
}
void ShenandoahHeap::initialize_serviceability() {
_memory_pool = new ShenandoahMemoryPool(this);
_cycle_memory_manager.add_pool(_memory_pool);
_stw_memory_manager.add_pool(_memory_pool);
}
GrowableArray<GCMemoryManager*> ShenandoahHeap::memory_managers() {
GrowableArray<GCMemoryManager*> memory_managers(2);
memory_managers.append(&_cycle_memory_manager);
memory_managers.append(&_stw_memory_manager);
return memory_managers;
}
GrowableArray<MemoryPool*> ShenandoahHeap::memory_pools() {
GrowableArray<MemoryPool*> memory_pools(1);
memory_pools.append(_memory_pool);
return memory_pools;
}
MemoryUsage ShenandoahHeap::memory_usage() {
return _memory_pool->get_memory_usage();
}
ShenandoahRegionIterator::ShenandoahRegionIterator() :
_heap(ShenandoahHeap::heap()),
_index(0) {}
ShenandoahRegionIterator::ShenandoahRegionIterator(ShenandoahHeap* heap) :
_heap(heap),
_index(0) {}
void ShenandoahRegionIterator::reset() {
_index = 0;
}
bool ShenandoahRegionIterator::has_next() const {
return _index < _heap->num_regions();
}
char ShenandoahHeap::gc_state() const {
return _gc_state.raw_value();
}
ShenandoahLiveData* ShenandoahHeap::get_liveness_cache(uint worker_id) {
#ifdef ASSERT
assert(_liveness_cache != nullptr, "sanity");
assert(worker_id < _max_workers, "sanity");
for (uint i = 0; i < num_regions(); i++) {
assert(_liveness_cache[worker_id][i] == 0, "liveness cache should be empty");
}
#endif
return _liveness_cache[worker_id];
}
void ShenandoahHeap::flush_liveness_cache(uint worker_id) {
assert(worker_id < _max_workers, "sanity");
assert(_liveness_cache != nullptr, "sanity");
ShenandoahLiveData* ld = _liveness_cache[worker_id];
for (uint i = 0; i < num_regions(); i++) {
ShenandoahLiveData live = ld[i];
if (live > 0) {
ShenandoahHeapRegion* r = get_region(i);
r->increase_live_data_gc_words(live);
ld[i] = 0;
}
}
}
bool ShenandoahHeap::requires_barriers(stackChunkOop obj) const {
if (is_idle()) return false;
// Objects allocated after marking start are implicitly alive, don't need any barriers during
// marking phase.
if (is_concurrent_mark_in_progress() &&
!marking_context()->allocated_after_mark_start(obj)) {
return true;
}
// Can not guarantee obj is deeply good.
if (has_forwarded_objects()) {
return true;
}
return false;
}