| /* |
| * Copyright (c) 2018, 2022, Oracle and/or its affiliates. All rights reserved. |
| * Copyright (c) 2020, Red Hat, Inc. and/or its affiliates. |
| * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| * |
| * This code is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License version 2 only, as |
| * published by the Free Software Foundation. |
| * |
| * This code is distributed in the hope that it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| * version 2 for more details (a copy is included in the LICENSE file that |
| * accompanied this code). |
| * |
| * You should have received a copy of the GNU General Public License version |
| * 2 along with this work; if not, write to the Free Software Foundation, |
| * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| * |
| * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| * or visit www.oracle.com if you need additional information or have any |
| * questions. |
| * |
| */ |
| |
| #ifndef SHARE_VM_GC_SHENANDOAH_SHENANDOAHMARKBITMAP_INLINE_HPP |
| #define SHARE_VM_GC_SHENANDOAH_SHENANDOAHMARKBITMAP_INLINE_HPP |
| |
| #include "gc/shenandoah/shenandoahMarkBitMap.hpp" |
| |
| #include "runtime/atomic.hpp" |
| #include "utilities/count_trailing_zeros.hpp" |
| |
| inline size_t ShenandoahMarkBitMap::address_to_index(const HeapWord* addr) const { |
| return (pointer_delta(addr, _covered.start()) << 1) >> _shift; |
| } |
| |
| inline HeapWord* ShenandoahMarkBitMap::index_to_address(size_t offset) const { |
| return _covered.start() + ((offset >> 1) << _shift); |
| } |
| |
| inline bool ShenandoahMarkBitMap::mark_strong(HeapWord* heap_addr, bool& was_upgraded) { |
| check_mark(heap_addr); |
| |
| idx_t bit = address_to_index(heap_addr); |
| verify_index(bit); |
| volatile bm_word_t* const addr = word_addr(bit); |
| const bm_word_t mask = bit_mask(bit); |
| const bm_word_t mask_weak = (bm_word_t)1 << (bit_in_word(bit) + 1); |
| bm_word_t old_val = Atomic::load(addr); |
| |
| do { |
| const bm_word_t new_val = old_val | mask; |
| if (new_val == old_val) { |
| assert(!was_upgraded, "Should be false already"); |
| return false; // Someone else beat us to it. |
| } |
| const bm_word_t cur_val = Atomic::cmpxchg(addr, old_val, new_val, memory_order_relaxed); |
| if (cur_val == old_val) { |
| was_upgraded = (cur_val & mask_weak) != 0; |
| return true; // Success. |
| } |
| old_val = cur_val; // The value changed, try again. |
| } while (true); |
| } |
| |
| inline bool ShenandoahMarkBitMap::mark_weak(HeapWord* heap_addr) { |
| check_mark(heap_addr); |
| |
| idx_t bit = address_to_index(heap_addr); |
| verify_index(bit); |
| volatile bm_word_t* const addr = word_addr(bit); |
| const bm_word_t mask_weak = (bm_word_t)1 << (bit_in_word(bit) + 1); |
| const bm_word_t mask_strong = (bm_word_t)1 << bit_in_word(bit); |
| bm_word_t old_val = Atomic::load(addr); |
| |
| do { |
| if ((old_val & mask_strong) != 0) { |
| return false; // Already marked strong |
| } |
| const bm_word_t new_val = old_val | mask_weak; |
| if (new_val == old_val) { |
| return false; // Someone else beat us to it. |
| } |
| const bm_word_t cur_val = Atomic::cmpxchg(addr, old_val, new_val, memory_order_relaxed); |
| if (cur_val == old_val) { |
| return true; // Success. |
| } |
| old_val = cur_val; // The value changed, try again. |
| } while (true); |
| } |
| |
| inline bool ShenandoahMarkBitMap::is_marked_strong(HeapWord* addr) const { |
| check_mark(addr); |
| return at(address_to_index(addr)); |
| } |
| |
| inline bool ShenandoahMarkBitMap::is_marked_weak(HeapWord* addr) const { |
| check_mark(addr); |
| return at(address_to_index(addr) + 1); |
| } |
| |
| inline bool ShenandoahMarkBitMap::is_marked(HeapWord* addr) const { |
| check_mark(addr); |
| idx_t index = address_to_index(addr); |
| verify_index(index); |
| bm_word_t mask = (bm_word_t)3 << bit_in_word(index); |
| return (*word_addr(index) & mask) != 0; |
| } |
| |
| template<ShenandoahMarkBitMap::bm_word_t flip, bool aligned_right> |
| inline ShenandoahMarkBitMap::idx_t ShenandoahMarkBitMap::get_next_bit_impl(idx_t l_index, idx_t r_index) const { |
| STATIC_ASSERT(flip == find_ones_flip || flip == find_zeros_flip); |
| verify_range(l_index, r_index); |
| assert(!aligned_right || is_aligned(r_index, BitsPerWord), "r_index not aligned"); |
| |
| // The first word often contains an interesting bit, either due to |
| // density or because of features of the calling algorithm. So it's |
| // important to examine that first word with a minimum of fuss, |
| // minimizing setup time for later words that will be wasted if the |
| // first word is indeed interesting. |
| |
| // The benefit from aligned_right being true is relatively small. |
| // It saves an operation in the setup for the word search loop. |
| // It also eliminates the range check on the final result. |
| // However, callers often have a comparison with r_index, and |
| // inlining often allows the two comparisons to be combined; it is |
| // important when !aligned_right that return paths either return |
| // r_index or a value dominated by a comparison with r_index. |
| // aligned_right is still helpful when the caller doesn't have a |
| // range check because features of the calling algorithm guarantee |
| // an interesting bit will be present. |
| |
| if (l_index < r_index) { |
| // Get the word containing l_index, and shift out low bits. |
| idx_t index = to_words_align_down(l_index); |
| bm_word_t cword = (map(index) ^ flip) >> bit_in_word(l_index); |
| if ((cword & 1) != 0) { |
| // The first bit is similarly often interesting. When it matters |
| // (density or features of the calling algorithm make it likely |
| // the first bit is set), going straight to the next clause compares |
| // poorly with doing this check first; count_trailing_zeros can be |
| // relatively expensive, plus there is the additional range check. |
| // But when the first bit isn't set, the cost of having tested for |
| // it is relatively small compared to the rest of the search. |
| return l_index; |
| } else if (cword != 0) { |
| // Flipped and shifted first word is non-zero. |
| idx_t result = l_index + count_trailing_zeros(cword); |
| if (aligned_right || (result < r_index)) return result; |
| // Result is beyond range bound; return r_index. |
| } else { |
| // Flipped and shifted first word is zero. Word search through |
| // aligned up r_index for a non-zero flipped word. |
| idx_t limit = aligned_right |
| ? to_words_align_down(r_index) // Minuscule savings when aligned. |
| : to_words_align_up(r_index); |
| while (++index < limit) { |
| cword = map(index) ^ flip; |
| if (cword != 0) { |
| idx_t result = bit_index(index) + count_trailing_zeros(cword); |
| if (aligned_right || (result < r_index)) return result; |
| // Result is beyond range bound; return r_index. |
| assert((index + 1) == limit, "invariant"); |
| break; |
| } |
| } |
| // No bits in range; return r_index. |
| } |
| } |
| return r_index; |
| } |
| |
| inline ShenandoahMarkBitMap::idx_t ShenandoahMarkBitMap::get_next_one_offset(idx_t l_offset, idx_t r_offset) const { |
| return get_next_bit_impl<find_ones_flip, false>(l_offset, r_offset); |
| } |
| |
| // Returns a bit mask for a range of bits [beg, end) within a single word. Each |
| // bit in the mask is 0 if the bit is in the range, 1 if not in the range. The |
| // returned mask can be used directly to clear the range, or inverted to set the |
| // range. Note: end must not be 0. |
| inline ShenandoahMarkBitMap::bm_word_t |
| ShenandoahMarkBitMap::inverted_bit_mask_for_range(idx_t beg, idx_t end) const { |
| assert(end != 0, "does not work when end == 0"); |
| assert(beg == end || to_words_align_down(beg) == to_words_align_down(end - 1), |
| "must be a single-word range"); |
| bm_word_t mask = bit_mask(beg) - 1; // low (right) bits |
| if (bit_in_word(end) != 0) { |
| mask |= ~(bit_mask(end) - 1); // high (left) bits |
| } |
| return mask; |
| } |
| |
| inline void ShenandoahMarkBitMap::clear_range_of_words(bm_word_t* map, idx_t beg, idx_t end) { |
| for (idx_t i = beg; i < end; ++i) map[i] = 0; |
| } |
| |
| inline void ShenandoahMarkBitMap::clear_large_range_of_words(idx_t beg, idx_t end) { |
| assert(beg <= end, "underflow"); |
| memset(_map + beg, 0, (end - beg) * sizeof(bm_word_t)); |
| } |
| |
| inline void ShenandoahMarkBitMap::clear_range_of_words(idx_t beg, idx_t end) { |
| clear_range_of_words(_map, beg, end); |
| } |
| |
| |
| #endif // SHARE_VM_GC_SHENANDOAH_SHENANDOAHMARKBITMAP_INLINE_HPP |