| /* |
| * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved. |
| * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| * |
| * This code is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License version 2 only, as |
| * published by the Free Software Foundation. |
| * |
| * This code is distributed in the hope that it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| * version 2 for more details (a copy is included in the LICENSE file that |
| * accompanied this code). |
| * |
| * You should have received a copy of the GNU General Public License version |
| * 2 along with this work; if not, write to the Free Software Foundation, |
| * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| * |
| * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| * or visit www.oracle.com if you need additional information or have any |
| * questions. |
| * |
| */ |
| |
| #include "precompiled.hpp" |
| #include "memory/allocation.inline.hpp" |
| #include "opto/addnode.hpp" |
| #include "opto/castnode.hpp" |
| #include "opto/cfgnode.hpp" |
| #include "opto/connode.hpp" |
| #include "opto/machnode.hpp" |
| #include "opto/movenode.hpp" |
| #include "opto/mulnode.hpp" |
| #include "opto/phaseX.hpp" |
| #include "opto/subnode.hpp" |
| |
| // Portions of code courtesy of Clifford Click |
| |
| // Classic Add functionality. This covers all the usual 'add' behaviors for |
| // an algebraic ring. Add-integer, add-float, add-double, and binary-or are |
| // all inherited from this class. The various identity values are supplied |
| // by virtual functions. |
| |
| |
| //============================================================================= |
| //------------------------------hash------------------------------------------- |
| // Hash function over AddNodes. Needs to be commutative; i.e., I swap |
| // (commute) inputs to AddNodes willy-nilly so the hash function must return |
| // the same value in the presence of edge swapping. |
| uint AddNode::hash() const { |
| return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode(); |
| } |
| |
| //------------------------------Identity--------------------------------------- |
| // If either input is a constant 0, return the other input. |
| Node* AddNode::Identity(PhaseGVN* phase) { |
| const Type *zero = add_id(); // The additive identity |
| if( phase->type( in(1) )->higher_equal( zero ) ) return in(2); |
| if( phase->type( in(2) )->higher_equal( zero ) ) return in(1); |
| return this; |
| } |
| |
| //------------------------------commute---------------------------------------- |
| // Commute operands to move loads and constants to the right. |
| static bool commute(PhaseGVN* phase, Node* add) { |
| Node *in1 = add->in(1); |
| Node *in2 = add->in(2); |
| |
| // convert "max(a,b) + min(a,b)" into "a+b". |
| if ((in1->Opcode() == add->as_Add()->max_opcode() && in2->Opcode() == add->as_Add()->min_opcode()) |
| || (in1->Opcode() == add->as_Add()->min_opcode() && in2->Opcode() == add->as_Add()->max_opcode())) { |
| Node *in11 = in1->in(1); |
| Node *in12 = in1->in(2); |
| |
| Node *in21 = in2->in(1); |
| Node *in22 = in2->in(2); |
| |
| if ((in11 == in21 && in12 == in22) || |
| (in11 == in22 && in12 == in21)) { |
| add->set_req_X(1, in11, phase); |
| add->set_req_X(2, in12, phase); |
| return true; |
| } |
| } |
| |
| bool con_left = phase->type(in1)->singleton(); |
| bool con_right = phase->type(in2)->singleton(); |
| |
| // Convert "1+x" into "x+1". |
| // Right is a constant; leave it |
| if( con_right ) return false; |
| // Left is a constant; move it right. |
| if( con_left ) { |
| add->swap_edges(1, 2); |
| return true; |
| } |
| |
| // Convert "Load+x" into "x+Load". |
| // Now check for loads |
| if (in2->is_Load()) { |
| if (!in1->is_Load()) { |
| // already x+Load to return |
| return false; |
| } |
| // both are loads, so fall through to sort inputs by idx |
| } else if( in1->is_Load() ) { |
| // Left is a Load and Right is not; move it right. |
| add->swap_edges(1, 2); |
| return true; |
| } |
| |
| PhiNode *phi; |
| // Check for tight loop increments: Loop-phi of Add of loop-phi |
| if (in1->is_Phi() && (phi = in1->as_Phi()) && phi->region()->is_Loop() && phi->in(2) == add) |
| return false; |
| if (in2->is_Phi() && (phi = in2->as_Phi()) && phi->region()->is_Loop() && phi->in(2) == add) { |
| add->swap_edges(1, 2); |
| return true; |
| } |
| |
| // Otherwise, sort inputs (commutativity) to help value numbering. |
| if( in1->_idx > in2->_idx ) { |
| add->swap_edges(1, 2); |
| return true; |
| } |
| return false; |
| } |
| |
| //------------------------------Idealize--------------------------------------- |
| // If we get here, we assume we are associative! |
| Node *AddNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
| const Type *t1 = phase->type(in(1)); |
| const Type *t2 = phase->type(in(2)); |
| bool con_left = t1->singleton(); |
| bool con_right = t2->singleton(); |
| |
| // Check for commutative operation desired |
| if (commute(phase, this)) return this; |
| |
| AddNode *progress = nullptr; // Progress flag |
| |
| // Convert "(x+1)+2" into "x+(1+2)". If the right input is a |
| // constant, and the left input is an add of a constant, flatten the |
| // expression tree. |
| Node *add1 = in(1); |
| Node *add2 = in(2); |
| int add1_op = add1->Opcode(); |
| int this_op = Opcode(); |
| if (con_right && t2 != Type::TOP && // Right input is a constant? |
| add1_op == this_op) { // Left input is an Add? |
| |
| // Type of left _in right input |
| const Type *t12 = phase->type(add1->in(2)); |
| if (t12->singleton() && t12 != Type::TOP) { // Left input is an add of a constant? |
| // Check for rare case of closed data cycle which can happen inside |
| // unreachable loops. In these cases the computation is undefined. |
| #ifdef ASSERT |
| Node *add11 = add1->in(1); |
| int add11_op = add11->Opcode(); |
| if ((add1 == add1->in(1)) |
| || (add11_op == this_op && add11->in(1) == add1)) { |
| assert(false, "dead loop in AddNode::Ideal"); |
| } |
| #endif |
| // The Add of the flattened expression |
| Node *x1 = add1->in(1); |
| Node *x2 = phase->makecon(add1->as_Add()->add_ring(t2, t12)); |
| set_req_X(2, x2, phase); |
| set_req_X(1, x1, phase); |
| progress = this; // Made progress |
| add1 = in(1); |
| add1_op = add1->Opcode(); |
| } |
| } |
| |
| // Convert "(x+1)+y" into "(x+y)+1". Push constants down the expression tree. |
| if (add1_op == this_op && !con_right) { |
| Node *a12 = add1->in(2); |
| const Type *t12 = phase->type( a12 ); |
| if (t12->singleton() && t12 != Type::TOP && (add1 != add1->in(1)) && |
| !(add1->in(1)->is_Phi() && (add1->in(1)->as_Phi()->is_tripcount(T_INT) || add1->in(1)->as_Phi()->is_tripcount(T_LONG)))) { |
| assert(add1->in(1) != this, "dead loop in AddNode::Ideal"); |
| add2 = add1->clone(); |
| add2->set_req(2, in(2)); |
| add2 = phase->transform(add2); |
| set_req_X(1, add2, phase); |
| set_req_X(2, a12, phase); |
| progress = this; |
| add2 = a12; |
| } |
| } |
| |
| // Convert "x+(y+1)" into "(x+y)+1". Push constants down the expression tree. |
| int add2_op = add2->Opcode(); |
| if (add2_op == this_op && !con_left) { |
| Node *a22 = add2->in(2); |
| const Type *t22 = phase->type( a22 ); |
| if (t22->singleton() && t22 != Type::TOP && (add2 != add2->in(1)) && |
| !(add2->in(1)->is_Phi() && (add2->in(1)->as_Phi()->is_tripcount(T_INT) || add2->in(1)->as_Phi()->is_tripcount(T_LONG)))) { |
| assert(add2->in(1) != this, "dead loop in AddNode::Ideal"); |
| Node *addx = add2->clone(); |
| addx->set_req(1, in(1)); |
| addx->set_req(2, add2->in(1)); |
| addx = phase->transform(addx); |
| set_req_X(1, addx, phase); |
| set_req_X(2, a22, phase); |
| progress = this; |
| } |
| } |
| |
| return progress; |
| } |
| |
| //------------------------------Value----------------------------------------- |
| // An add node sums it's two _in. If one input is an RSD, we must mixin |
| // the other input's symbols. |
| const Type* AddNode::Value(PhaseGVN* phase) const { |
| // Either input is TOP ==> the result is TOP |
| const Type *t1 = phase->type( in(1) ); |
| const Type *t2 = phase->type( in(2) ); |
| if( t1 == Type::TOP ) return Type::TOP; |
| if( t2 == Type::TOP ) return Type::TOP; |
| |
| // Either input is BOTTOM ==> the result is the local BOTTOM |
| const Type *bot = bottom_type(); |
| if( (t1 == bot) || (t2 == bot) || |
| (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) ) |
| return bot; |
| |
| // Check for an addition involving the additive identity |
| const Type *tadd = add_of_identity( t1, t2 ); |
| if( tadd ) return tadd; |
| |
| return add_ring(t1,t2); // Local flavor of type addition |
| } |
| |
| //------------------------------add_identity----------------------------------- |
| // Check for addition of the identity |
| const Type *AddNode::add_of_identity( const Type *t1, const Type *t2 ) const { |
| const Type *zero = add_id(); // The additive identity |
| if( t1->higher_equal( zero ) ) return t2; |
| if( t2->higher_equal( zero ) ) return t1; |
| |
| return nullptr; |
| } |
| |
| AddNode* AddNode::make(Node* in1, Node* in2, BasicType bt) { |
| switch (bt) { |
| case T_INT: |
| return new AddINode(in1, in2); |
| case T_LONG: |
| return new AddLNode(in1, in2); |
| default: |
| fatal("Not implemented for %s", type2name(bt)); |
| } |
| return nullptr; |
| } |
| |
| //============================================================================= |
| //------------------------------Idealize--------------------------------------- |
| Node* AddNode::IdealIL(PhaseGVN* phase, bool can_reshape, BasicType bt) { |
| Node* in1 = in(1); |
| Node* in2 = in(2); |
| int op1 = in1->Opcode(); |
| int op2 = in2->Opcode(); |
| // Fold (con1-x)+con2 into (con1+con2)-x |
| if (op1 == Op_Add(bt) && op2 == Op_Sub(bt)) { |
| // Swap edges to try optimizations below |
| in1 = in2; |
| in2 = in(1); |
| op1 = op2; |
| op2 = in2->Opcode(); |
| } |
| if (op1 == Op_Sub(bt)) { |
| const Type* t_sub1 = phase->type(in1->in(1)); |
| const Type* t_2 = phase->type(in2 ); |
| if (t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP) { |
| return SubNode::make(phase->makecon(add_ring(t_sub1, t_2)), in1->in(2), bt); |
| } |
| // Convert "(a-b)+(c-d)" into "(a+c)-(b+d)" |
| if (op2 == Op_Sub(bt)) { |
| // Check for dead cycle: d = (a-b)+(c-d) |
| assert( in1->in(2) != this && in2->in(2) != this, |
| "dead loop in AddINode::Ideal" ); |
| Node* sub = SubNode::make(nullptr, nullptr, bt); |
| Node* sub_in1; |
| PhaseIterGVN* igvn = phase->is_IterGVN(); |
| // During IGVN, if both inputs of the new AddNode are a tree of SubNodes, this same transformation will be applied |
| // to every node of the tree. Calling transform() causes the transformation to be applied recursively, once per |
| // tree node whether some subtrees are identical or not. Pushing to the IGVN worklist instead, causes the transform |
| // to be applied once per unique subtrees (because all uses of a subtree are updated with the result of the |
| // transformation). In case of a large tree, this can make a difference in compilation time. |
| if (igvn != nullptr) { |
| sub_in1 = igvn->register_new_node_with_optimizer(AddNode::make(in1->in(1), in2->in(1), bt)); |
| } else { |
| sub_in1 = phase->transform(AddNode::make(in1->in(1), in2->in(1), bt)); |
| } |
| Node* sub_in2; |
| if (igvn != nullptr) { |
| sub_in2 = igvn->register_new_node_with_optimizer(AddNode::make(in1->in(2), in2->in(2), bt)); |
| } else { |
| sub_in2 = phase->transform(AddNode::make(in1->in(2), in2->in(2), bt)); |
| } |
| sub->init_req(1, sub_in1); |
| sub->init_req(2, sub_in2); |
| return sub; |
| } |
| // Convert "(a-b)+(b+c)" into "(a+c)" |
| if (op2 == Op_Add(bt) && in1->in(2) == in2->in(1)) { |
| assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddINode::Ideal/AddLNode::Ideal"); |
| return AddNode::make(in1->in(1), in2->in(2), bt); |
| } |
| // Convert "(a-b)+(c+b)" into "(a+c)" |
| if (op2 == Op_Add(bt) && in1->in(2) == in2->in(2)) { |
| assert(in1->in(1) != this && in2->in(1) != this,"dead loop in AddINode::Ideal/AddLNode::Ideal"); |
| return AddNode::make(in1->in(1), in2->in(1), bt); |
| } |
| } |
| |
| // Convert (con - y) + x into "(x - y) + con" |
| if (op1 == Op_Sub(bt) && in1->in(1)->Opcode() == Op_ConIL(bt) |
| && in1 != in1->in(2) && !(in1->in(2)->is_Phi() && in1->in(2)->as_Phi()->is_tripcount(bt))) { |
| return AddNode::make(phase->transform(SubNode::make(in2, in1->in(2), bt)), in1->in(1), bt); |
| } |
| |
| // Convert x + (con - y) into "(x - y) + con" |
| if (op2 == Op_Sub(bt) && in2->in(1)->Opcode() == Op_ConIL(bt) |
| && in2 != in2->in(2) && !(in2->in(2)->is_Phi() && in2->in(2)->as_Phi()->is_tripcount(bt))) { |
| return AddNode::make(phase->transform(SubNode::make(in1, in2->in(2), bt)), in2->in(1), bt); |
| } |
| |
| // Associative |
| if (op1 == Op_Mul(bt) && op2 == Op_Mul(bt)) { |
| Node* add_in1 = nullptr; |
| Node* add_in2 = nullptr; |
| Node* mul_in = nullptr; |
| |
| if (in1->in(1) == in2->in(1)) { |
| // Convert "a*b+a*c into a*(b+c) |
| add_in1 = in1->in(2); |
| add_in2 = in2->in(2); |
| mul_in = in1->in(1); |
| } else if (in1->in(2) == in2->in(1)) { |
| // Convert a*b+b*c into b*(a+c) |
| add_in1 = in1->in(1); |
| add_in2 = in2->in(2); |
| mul_in = in1->in(2); |
| } else if (in1->in(2) == in2->in(2)) { |
| // Convert a*c+b*c into (a+b)*c |
| add_in1 = in1->in(1); |
| add_in2 = in2->in(1); |
| mul_in = in1->in(2); |
| } else if (in1->in(1) == in2->in(2)) { |
| // Convert a*b+c*a into a*(b+c) |
| add_in1 = in1->in(2); |
| add_in2 = in2->in(1); |
| mul_in = in1->in(1); |
| } |
| |
| if (mul_in != nullptr) { |
| Node* add = phase->transform(AddNode::make(add_in1, add_in2, bt)); |
| return MulNode::make(mul_in, add, bt); |
| } |
| } |
| |
| // Convert (x >>> rshift) + (x << lshift) into RotateRight(x, rshift) |
| if (Matcher::match_rule_supported(Op_RotateRight) && |
| ((op1 == Op_URShift(bt) && op2 == Op_LShift(bt)) || (op1 == Op_LShift(bt) && op2 == Op_URShift(bt))) && |
| in1->in(1) != nullptr && in1->in(1) == in2->in(1)) { |
| Node* rshift = op1 == Op_URShift(bt) ? in1->in(2) : in2->in(2); |
| Node* lshift = op1 == Op_URShift(bt) ? in2->in(2) : in1->in(2); |
| if (rshift != nullptr && lshift != nullptr) { |
| const TypeInt* rshift_t = phase->type(rshift)->isa_int(); |
| const TypeInt* lshift_t = phase->type(lshift)->isa_int(); |
| int bits = bt == T_INT ? 32 : 64; |
| int mask = bt == T_INT ? 0x1F : 0x3F; |
| if (lshift_t != nullptr && lshift_t->is_con() && |
| rshift_t != nullptr && rshift_t->is_con() && |
| ((lshift_t->get_con() & mask) == (bits - (rshift_t->get_con() & mask)))) { |
| return new RotateRightNode(in1->in(1), phase->intcon(rshift_t->get_con() & mask), TypeInteger::bottom(bt)); |
| } |
| } |
| } |
| |
| return AddNode::Ideal(phase, can_reshape); |
| } |
| |
| |
| Node* AddINode::Ideal(PhaseGVN* phase, bool can_reshape) { |
| Node* in1 = in(1); |
| Node* in2 = in(2); |
| int op1 = in1->Opcode(); |
| int op2 = in2->Opcode(); |
| |
| // Convert (x>>>z)+y into (x+(y<<z))>>>z for small constant z and y. |
| // Helps with array allocation math constant folding |
| // See 4790063: |
| // Unrestricted transformation is unsafe for some runtime values of 'x' |
| // ( x == 0, z == 1, y == -1 ) fails |
| // ( x == -5, z == 1, y == 1 ) fails |
| // Transform works for small z and small negative y when the addition |
| // (x + (y << z)) does not cross zero. |
| // Implement support for negative y and (x >= -(y << z)) |
| // Have not observed cases where type information exists to support |
| // positive y and (x <= -(y << z)) |
| if (op1 == Op_URShiftI && op2 == Op_ConI && |
| in1->in(2)->Opcode() == Op_ConI) { |
| jint z = phase->type(in1->in(2))->is_int()->get_con() & 0x1f; // only least significant 5 bits matter |
| jint y = phase->type(in2)->is_int()->get_con(); |
| |
| if (z < 5 && -5 < y && y < 0) { |
| const Type* t_in11 = phase->type(in1->in(1)); |
| if( t_in11 != Type::TOP && (t_in11->is_int()->_lo >= -(y << z))) { |
| Node* a = phase->transform(new AddINode( in1->in(1), phase->intcon(y<<z))); |
| return new URShiftINode(a, in1->in(2)); |
| } |
| } |
| } |
| |
| return AddNode::IdealIL(phase, can_reshape, T_INT); |
| } |
| |
| |
| //------------------------------Identity--------------------------------------- |
| // Fold (x-y)+y OR y+(x-y) into x |
| Node* AddINode::Identity(PhaseGVN* phase) { |
| if (in(1)->Opcode() == Op_SubI && in(1)->in(2) == in(2)) { |
| return in(1)->in(1); |
| } else if (in(2)->Opcode() == Op_SubI && in(2)->in(2) == in(1)) { |
| return in(2)->in(1); |
| } |
| return AddNode::Identity(phase); |
| } |
| |
| |
| //------------------------------add_ring--------------------------------------- |
| // Supplied function returns the sum of the inputs. Guaranteed never |
| // to be passed a TOP or BOTTOM type, these are filtered out by |
| // pre-check. |
| const Type *AddINode::add_ring( const Type *t0, const Type *t1 ) const { |
| const TypeInt *r0 = t0->is_int(); // Handy access |
| const TypeInt *r1 = t1->is_int(); |
| int lo = java_add(r0->_lo, r1->_lo); |
| int hi = java_add(r0->_hi, r1->_hi); |
| if( !(r0->is_con() && r1->is_con()) ) { |
| // Not both constants, compute approximate result |
| if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) { |
| lo = min_jint; hi = max_jint; // Underflow on the low side |
| } |
| if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) { |
| lo = min_jint; hi = max_jint; // Overflow on the high side |
| } |
| if( lo > hi ) { // Handle overflow |
| lo = min_jint; hi = max_jint; |
| } |
| } else { |
| // both constants, compute precise result using 'lo' and 'hi' |
| // Semantics define overflow and underflow for integer addition |
| // as expected. In particular: 0x80000000 + 0x80000000 --> 0x0 |
| } |
| return TypeInt::make( lo, hi, MAX2(r0->_widen,r1->_widen) ); |
| } |
| |
| |
| //============================================================================= |
| //------------------------------Idealize--------------------------------------- |
| Node* AddLNode::Ideal(PhaseGVN* phase, bool can_reshape) { |
| return AddNode::IdealIL(phase, can_reshape, T_LONG); |
| } |
| |
| |
| //------------------------------Identity--------------------------------------- |
| // Fold (x-y)+y OR y+(x-y) into x |
| Node* AddLNode::Identity(PhaseGVN* phase) { |
| if (in(1)->Opcode() == Op_SubL && in(1)->in(2) == in(2)) { |
| return in(1)->in(1); |
| } else if (in(2)->Opcode() == Op_SubL && in(2)->in(2) == in(1)) { |
| return in(2)->in(1); |
| } |
| return AddNode::Identity(phase); |
| } |
| |
| |
| //------------------------------add_ring--------------------------------------- |
| // Supplied function returns the sum of the inputs. Guaranteed never |
| // to be passed a TOP or BOTTOM type, these are filtered out by |
| // pre-check. |
| const Type *AddLNode::add_ring( const Type *t0, const Type *t1 ) const { |
| const TypeLong *r0 = t0->is_long(); // Handy access |
| const TypeLong *r1 = t1->is_long(); |
| jlong lo = java_add(r0->_lo, r1->_lo); |
| jlong hi = java_add(r0->_hi, r1->_hi); |
| if( !(r0->is_con() && r1->is_con()) ) { |
| // Not both constants, compute approximate result |
| if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) { |
| lo =min_jlong; hi = max_jlong; // Underflow on the low side |
| } |
| if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) { |
| lo = min_jlong; hi = max_jlong; // Overflow on the high side |
| } |
| if( lo > hi ) { // Handle overflow |
| lo = min_jlong; hi = max_jlong; |
| } |
| } else { |
| // both constants, compute precise result using 'lo' and 'hi' |
| // Semantics define overflow and underflow for integer addition |
| // as expected. In particular: 0x80000000 + 0x80000000 --> 0x0 |
| } |
| return TypeLong::make( lo, hi, MAX2(r0->_widen,r1->_widen) ); |
| } |
| |
| |
| //============================================================================= |
| //------------------------------add_of_identity-------------------------------- |
| // Check for addition of the identity |
| const Type *AddFNode::add_of_identity( const Type *t1, const Type *t2 ) const { |
| // x ADD 0 should return x unless 'x' is a -zero |
| // |
| // const Type *zero = add_id(); // The additive identity |
| // jfloat f1 = t1->getf(); |
| // jfloat f2 = t2->getf(); |
| // |
| // if( t1->higher_equal( zero ) ) return t2; |
| // if( t2->higher_equal( zero ) ) return t1; |
| |
| return nullptr; |
| } |
| |
| //------------------------------add_ring--------------------------------------- |
| // Supplied function returns the sum of the inputs. |
| // This also type-checks the inputs for sanity. Guaranteed never to |
| // be passed a TOP or BOTTOM type, these are filtered out by pre-check. |
| const Type *AddFNode::add_ring( const Type *t0, const Type *t1 ) const { |
| // We must be adding 2 float constants. |
| return TypeF::make( t0->getf() + t1->getf() ); |
| } |
| |
| //------------------------------Ideal------------------------------------------ |
| Node *AddFNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
| // Floating point additions are not associative because of boundary conditions (infinity) |
| return commute(phase, this) ? this : nullptr; |
| } |
| |
| |
| //============================================================================= |
| //------------------------------add_of_identity-------------------------------- |
| // Check for addition of the identity |
| const Type *AddDNode::add_of_identity( const Type *t1, const Type *t2 ) const { |
| // x ADD 0 should return x unless 'x' is a -zero |
| // |
| // const Type *zero = add_id(); // The additive identity |
| // jfloat f1 = t1->getf(); |
| // jfloat f2 = t2->getf(); |
| // |
| // if( t1->higher_equal( zero ) ) return t2; |
| // if( t2->higher_equal( zero ) ) return t1; |
| |
| return nullptr; |
| } |
| //------------------------------add_ring--------------------------------------- |
| // Supplied function returns the sum of the inputs. |
| // This also type-checks the inputs for sanity. Guaranteed never to |
| // be passed a TOP or BOTTOM type, these are filtered out by pre-check. |
| const Type *AddDNode::add_ring( const Type *t0, const Type *t1 ) const { |
| // We must be adding 2 double constants. |
| return TypeD::make( t0->getd() + t1->getd() ); |
| } |
| |
| //------------------------------Ideal------------------------------------------ |
| Node *AddDNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
| // Floating point additions are not associative because of boundary conditions (infinity) |
| return commute(phase, this) ? this : nullptr; |
| } |
| |
| |
| //============================================================================= |
| //------------------------------Identity--------------------------------------- |
| // If one input is a constant 0, return the other input. |
| Node* AddPNode::Identity(PhaseGVN* phase) { |
| return ( phase->type( in(Offset) )->higher_equal( TypeX_ZERO ) ) ? in(Address) : this; |
| } |
| |
| //------------------------------Idealize--------------------------------------- |
| Node *AddPNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
| // Bail out if dead inputs |
| if( phase->type( in(Address) ) == Type::TOP ) return nullptr; |
| |
| // If the left input is an add of a constant, flatten the expression tree. |
| const Node *n = in(Address); |
| if (n->is_AddP() && n->in(Base) == in(Base)) { |
| const AddPNode *addp = n->as_AddP(); // Left input is an AddP |
| assert( !addp->in(Address)->is_AddP() || |
| addp->in(Address)->as_AddP() != addp, |
| "dead loop in AddPNode::Ideal" ); |
| // Type of left input's right input |
| const Type *t = phase->type( addp->in(Offset) ); |
| if( t == Type::TOP ) return nullptr; |
| const TypeX *t12 = t->is_intptr_t(); |
| if( t12->is_con() ) { // Left input is an add of a constant? |
| // If the right input is a constant, combine constants |
| const Type *temp_t2 = phase->type( in(Offset) ); |
| if( temp_t2 == Type::TOP ) return nullptr; |
| const TypeX *t2 = temp_t2->is_intptr_t(); |
| Node* address; |
| Node* offset; |
| if( t2->is_con() ) { |
| // The Add of the flattened expression |
| address = addp->in(Address); |
| offset = phase->MakeConX(t2->get_con() + t12->get_con()); |
| } else { |
| // Else move the constant to the right. ((A+con)+B) into ((A+B)+con) |
| address = phase->transform(new AddPNode(in(Base),addp->in(Address),in(Offset))); |
| offset = addp->in(Offset); |
| } |
| set_req_X(Address, address, phase); |
| set_req_X(Offset, offset, phase); |
| return this; |
| } |
| } |
| |
| // Raw pointers? |
| if( in(Base)->bottom_type() == Type::TOP ) { |
| // If this is a null+long form (from unsafe accesses), switch to a rawptr. |
| if (phase->type(in(Address)) == TypePtr::NULL_PTR) { |
| Node* offset = in(Offset); |
| return new CastX2PNode(offset); |
| } |
| } |
| |
| // If the right is an add of a constant, push the offset down. |
| // Convert: (ptr + (offset+con)) into (ptr+offset)+con. |
| // The idea is to merge array_base+scaled_index groups together, |
| // and only have different constant offsets from the same base. |
| const Node *add = in(Offset); |
| if( add->Opcode() == Op_AddX && add->in(1) != add ) { |
| const Type *t22 = phase->type( add->in(2) ); |
| if( t22->singleton() && (t22 != Type::TOP) ) { // Right input is an add of a constant? |
| set_req(Address, phase->transform(new AddPNode(in(Base),in(Address),add->in(1)))); |
| set_req_X(Offset, add->in(2), phase); // puts add on igvn worklist if needed |
| return this; // Made progress |
| } |
| } |
| |
| return nullptr; // No progress |
| } |
| |
| //------------------------------bottom_type------------------------------------ |
| // Bottom-type is the pointer-type with unknown offset. |
| const Type *AddPNode::bottom_type() const { |
| if (in(Address) == nullptr) return TypePtr::BOTTOM; |
| const TypePtr *tp = in(Address)->bottom_type()->isa_ptr(); |
| if( !tp ) return Type::TOP; // TOP input means TOP output |
| assert( in(Offset)->Opcode() != Op_ConP, "" ); |
| const Type *t = in(Offset)->bottom_type(); |
| if( t == Type::TOP ) |
| return tp->add_offset(Type::OffsetTop); |
| const TypeX *tx = t->is_intptr_t(); |
| intptr_t txoffset = Type::OffsetBot; |
| if (tx->is_con()) { // Left input is an add of a constant? |
| txoffset = tx->get_con(); |
| } |
| return tp->add_offset(txoffset); |
| } |
| |
| //------------------------------Value------------------------------------------ |
| const Type* AddPNode::Value(PhaseGVN* phase) const { |
| // Either input is TOP ==> the result is TOP |
| const Type *t1 = phase->type( in(Address) ); |
| const Type *t2 = phase->type( in(Offset) ); |
| if( t1 == Type::TOP ) return Type::TOP; |
| if( t2 == Type::TOP ) return Type::TOP; |
| |
| // Left input is a pointer |
| const TypePtr *p1 = t1->isa_ptr(); |
| // Right input is an int |
| const TypeX *p2 = t2->is_intptr_t(); |
| // Add 'em |
| intptr_t p2offset = Type::OffsetBot; |
| if (p2->is_con()) { // Left input is an add of a constant? |
| p2offset = p2->get_con(); |
| } |
| return p1->add_offset(p2offset); |
| } |
| |
| //------------------------Ideal_base_and_offset-------------------------------- |
| // Split an oop pointer into a base and offset. |
| // (The offset might be Type::OffsetBot in the case of an array.) |
| // Return the base, or null if failure. |
| Node* AddPNode::Ideal_base_and_offset(Node* ptr, PhaseValues* phase, |
| // second return value: |
| intptr_t& offset) { |
| if (ptr->is_AddP()) { |
| Node* base = ptr->in(AddPNode::Base); |
| Node* addr = ptr->in(AddPNode::Address); |
| Node* offs = ptr->in(AddPNode::Offset); |
| if (base == addr || base->is_top()) { |
| offset = phase->find_intptr_t_con(offs, Type::OffsetBot); |
| if (offset != Type::OffsetBot) { |
| return addr; |
| } |
| } |
| } |
| offset = Type::OffsetBot; |
| return nullptr; |
| } |
| |
| //------------------------------unpack_offsets---------------------------------- |
| // Collect the AddP offset values into the elements array, giving up |
| // if there are more than length. |
| int AddPNode::unpack_offsets(Node* elements[], int length) { |
| int count = 0; |
| Node* addr = this; |
| Node* base = addr->in(AddPNode::Base); |
| while (addr->is_AddP()) { |
| if (addr->in(AddPNode::Base) != base) { |
| // give up |
| return -1; |
| } |
| elements[count++] = addr->in(AddPNode::Offset); |
| if (count == length) { |
| // give up |
| return -1; |
| } |
| addr = addr->in(AddPNode::Address); |
| } |
| if (addr != base) { |
| return -1; |
| } |
| return count; |
| } |
| |
| //------------------------------match_edge------------------------------------- |
| // Do we Match on this edge index or not? Do not match base pointer edge |
| uint AddPNode::match_edge(uint idx) const { |
| return idx > Base; |
| } |
| |
| //============================================================================= |
| //------------------------------Identity--------------------------------------- |
| Node* OrINode::Identity(PhaseGVN* phase) { |
| // x | x => x |
| if (in(1) == in(2)) { |
| return in(1); |
| } |
| |
| return AddNode::Identity(phase); |
| } |
| |
| // Find shift value for Integer or Long OR. |
| Node* rotate_shift(PhaseGVN* phase, Node* lshift, Node* rshift, int mask) { |
| // val << norm_con_shift | val >> ({32|64} - norm_con_shift) => rotate_left val, norm_con_shift |
| const TypeInt* lshift_t = phase->type(lshift)->isa_int(); |
| const TypeInt* rshift_t = phase->type(rshift)->isa_int(); |
| if (lshift_t != nullptr && lshift_t->is_con() && |
| rshift_t != nullptr && rshift_t->is_con() && |
| ((lshift_t->get_con() & mask) == ((mask + 1) - (rshift_t->get_con() & mask)))) { |
| return phase->intcon(lshift_t->get_con() & mask); |
| } |
| // val << var_shift | val >> ({0|32|64} - var_shift) => rotate_left val, var_shift |
| if (rshift->Opcode() == Op_SubI && rshift->in(2) == lshift && rshift->in(1)->is_Con()){ |
| const TypeInt* shift_t = phase->type(rshift->in(1))->isa_int(); |
| if (shift_t != nullptr && shift_t->is_con() && |
| (shift_t->get_con() == 0 || shift_t->get_con() == (mask + 1))) { |
| return lshift; |
| } |
| } |
| return nullptr; |
| } |
| |
| Node* OrINode::Ideal(PhaseGVN* phase, bool can_reshape) { |
| int lopcode = in(1)->Opcode(); |
| int ropcode = in(2)->Opcode(); |
| if (Matcher::match_rule_supported(Op_RotateLeft) && |
| lopcode == Op_LShiftI && ropcode == Op_URShiftI && in(1)->in(1) == in(2)->in(1)) { |
| Node* lshift = in(1)->in(2); |
| Node* rshift = in(2)->in(2); |
| Node* shift = rotate_shift(phase, lshift, rshift, 0x1F); |
| if (shift != nullptr) { |
| return new RotateLeftNode(in(1)->in(1), shift, TypeInt::INT); |
| } |
| return nullptr; |
| } |
| if (Matcher::match_rule_supported(Op_RotateRight) && |
| lopcode == Op_URShiftI && ropcode == Op_LShiftI && in(1)->in(1) == in(2)->in(1)) { |
| Node* rshift = in(1)->in(2); |
| Node* lshift = in(2)->in(2); |
| Node* shift = rotate_shift(phase, rshift, lshift, 0x1F); |
| if (shift != nullptr) { |
| return new RotateRightNode(in(1)->in(1), shift, TypeInt::INT); |
| } |
| } |
| return nullptr; |
| } |
| |
| //------------------------------add_ring--------------------------------------- |
| // Supplied function returns the sum of the inputs IN THE CURRENT RING. For |
| // the logical operations the ring's ADD is really a logical OR function. |
| // This also type-checks the inputs for sanity. Guaranteed never to |
| // be passed a TOP or BOTTOM type, these are filtered out by pre-check. |
| const Type *OrINode::add_ring( const Type *t0, const Type *t1 ) const { |
| const TypeInt *r0 = t0->is_int(); // Handy access |
| const TypeInt *r1 = t1->is_int(); |
| |
| // If both args are bool, can figure out better types |
| if ( r0 == TypeInt::BOOL ) { |
| if ( r1 == TypeInt::ONE) { |
| return TypeInt::ONE; |
| } else if ( r1 == TypeInt::BOOL ) { |
| return TypeInt::BOOL; |
| } |
| } else if ( r0 == TypeInt::ONE ) { |
| if ( r1 == TypeInt::BOOL ) { |
| return TypeInt::ONE; |
| } |
| } |
| |
| // If either input is not a constant, just return all integers. |
| if( !r0->is_con() || !r1->is_con() ) |
| return TypeInt::INT; // Any integer, but still no symbols. |
| |
| // Otherwise just OR them bits. |
| return TypeInt::make( r0->get_con() | r1->get_con() ); |
| } |
| |
| //============================================================================= |
| //------------------------------Identity--------------------------------------- |
| Node* OrLNode::Identity(PhaseGVN* phase) { |
| // x | x => x |
| if (in(1) == in(2)) { |
| return in(1); |
| } |
| |
| return AddNode::Identity(phase); |
| } |
| |
| Node* OrLNode::Ideal(PhaseGVN* phase, bool can_reshape) { |
| int lopcode = in(1)->Opcode(); |
| int ropcode = in(2)->Opcode(); |
| if (Matcher::match_rule_supported(Op_RotateLeft) && |
| lopcode == Op_LShiftL && ropcode == Op_URShiftL && in(1)->in(1) == in(2)->in(1)) { |
| Node* lshift = in(1)->in(2); |
| Node* rshift = in(2)->in(2); |
| Node* shift = rotate_shift(phase, lshift, rshift, 0x3F); |
| if (shift != nullptr) { |
| return new RotateLeftNode(in(1)->in(1), shift, TypeLong::LONG); |
| } |
| return nullptr; |
| } |
| if (Matcher::match_rule_supported(Op_RotateRight) && |
| lopcode == Op_URShiftL && ropcode == Op_LShiftL && in(1)->in(1) == in(2)->in(1)) { |
| Node* rshift = in(1)->in(2); |
| Node* lshift = in(2)->in(2); |
| Node* shift = rotate_shift(phase, rshift, lshift, 0x3F); |
| if (shift != nullptr) { |
| return new RotateRightNode(in(1)->in(1), shift, TypeLong::LONG); |
| } |
| } |
| return nullptr; |
| } |
| |
| //------------------------------add_ring--------------------------------------- |
| const Type *OrLNode::add_ring( const Type *t0, const Type *t1 ) const { |
| const TypeLong *r0 = t0->is_long(); // Handy access |
| const TypeLong *r1 = t1->is_long(); |
| |
| // If either input is not a constant, just return all integers. |
| if( !r0->is_con() || !r1->is_con() ) |
| return TypeLong::LONG; // Any integer, but still no symbols. |
| |
| // Otherwise just OR them bits. |
| return TypeLong::make( r0->get_con() | r1->get_con() ); |
| } |
| |
| //---------------------------Helper ------------------------------------------- |
| /* Decide if the given node is used only in arithmetic expressions(add or sub). |
| */ |
| static bool is_used_in_only_arithmetic(Node* n, BasicType bt) { |
| for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { |
| Node* u = n->fast_out(i); |
| if (u->Opcode() != Op_Add(bt) && u->Opcode() != Op_Sub(bt)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| //============================================================================= |
| //------------------------------Idealize--------------------------------------- |
| Node* XorINode::Ideal(PhaseGVN* phase, bool can_reshape) { |
| Node* in1 = in(1); |
| Node* in2 = in(2); |
| |
| // Convert ~x into -1-x when ~x is used in an arithmetic expression |
| // or x itself is an expression. |
| if (phase->type(in2) == TypeInt::MINUS_1) { // follows LHS^(-1), i.e., ~LHS |
| if (phase->is_IterGVN()) { |
| if (is_used_in_only_arithmetic(this, T_INT) |
| // LHS is arithmetic |
| || (in1->Opcode() == Op_AddI || in1->Opcode() == Op_SubI)) { |
| return new SubINode(in2, in1); |
| } |
| } else { |
| // graph could be incomplete in GVN so we postpone to IGVN |
| phase->record_for_igvn(this); |
| } |
| } |
| |
| // Propagate xor through constant cmoves. This pattern can occur after expansion of Conv2B nodes. |
| const TypeInt* in2_type = phase->type(in2)->isa_int(); |
| if (in1->Opcode() == Op_CMoveI && in2_type != nullptr && in2_type->is_con()) { |
| int in2_val = in2_type->get_con(); |
| |
| // Get types of both sides of the CMove |
| const TypeInt* left = phase->type(in1->in(CMoveNode::IfFalse))->isa_int(); |
| const TypeInt* right = phase->type(in1->in(CMoveNode::IfTrue))->isa_int(); |
| |
| // Ensure that both sides are int constants |
| if (left != nullptr && right != nullptr && left->is_con() && right->is_con()) { |
| Node* cond = in1->in(CMoveNode::Condition); |
| |
| // Check that the comparison is a bool and that the cmp node type is correct |
| if (cond->is_Bool()) { |
| int cmp_op = cond->in(1)->Opcode(); |
| |
| if (cmp_op == Op_CmpI || cmp_op == Op_CmpP) { |
| int l_val = left->get_con(); |
| int r_val = right->get_con(); |
| |
| return new CMoveINode(cond, phase->intcon(l_val ^ in2_val), phase->intcon(r_val ^ in2_val), TypeInt::INT); |
| } |
| } |
| } |
| } |
| |
| return AddNode::Ideal(phase, can_reshape); |
| } |
| |
| const Type* XorINode::Value(PhaseGVN* phase) const { |
| Node* in1 = in(1); |
| Node* in2 = in(2); |
| const Type* t1 = phase->type(in1); |
| const Type* t2 = phase->type(in2); |
| if (t1 == Type::TOP || t2 == Type::TOP) { |
| return Type::TOP; |
| } |
| // x ^ x ==> 0 |
| if (in1->eqv_uncast(in2)) { |
| return add_id(); |
| } |
| // result of xor can only have bits sets where any of the |
| // inputs have bits set. lo can always become 0. |
| const TypeInt* t1i = t1->is_int(); |
| const TypeInt* t2i = t2->is_int(); |
| if ((t1i->_lo >= 0) && |
| (t1i->_hi > 0) && |
| (t2i->_lo >= 0) && |
| (t2i->_hi > 0)) { |
| // hi - set all bits below the highest bit. Using round_down to avoid overflow. |
| const TypeInt* t1x = TypeInt::make(0, round_down_power_of_2(t1i->_hi) + (round_down_power_of_2(t1i->_hi) - 1), t1i->_widen); |
| const TypeInt* t2x = TypeInt::make(0, round_down_power_of_2(t2i->_hi) + (round_down_power_of_2(t2i->_hi) - 1), t2i->_widen); |
| return t1x->meet(t2x); |
| } |
| return AddNode::Value(phase); |
| } |
| |
| |
| //------------------------------add_ring--------------------------------------- |
| // Supplied function returns the sum of the inputs IN THE CURRENT RING. For |
| // the logical operations the ring's ADD is really a logical OR function. |
| // This also type-checks the inputs for sanity. Guaranteed never to |
| // be passed a TOP or BOTTOM type, these are filtered out by pre-check. |
| const Type *XorINode::add_ring( const Type *t0, const Type *t1 ) const { |
| const TypeInt *r0 = t0->is_int(); // Handy access |
| const TypeInt *r1 = t1->is_int(); |
| |
| // Complementing a boolean? |
| if( r0 == TypeInt::BOOL && ( r1 == TypeInt::ONE |
| || r1 == TypeInt::BOOL)) |
| return TypeInt::BOOL; |
| |
| if( !r0->is_con() || !r1->is_con() ) // Not constants |
| return TypeInt::INT; // Any integer, but still no symbols. |
| |
| // Otherwise just XOR them bits. |
| return TypeInt::make( r0->get_con() ^ r1->get_con() ); |
| } |
| |
| //============================================================================= |
| //------------------------------add_ring--------------------------------------- |
| const Type *XorLNode::add_ring( const Type *t0, const Type *t1 ) const { |
| const TypeLong *r0 = t0->is_long(); // Handy access |
| const TypeLong *r1 = t1->is_long(); |
| |
| // If either input is not a constant, just return all integers. |
| if( !r0->is_con() || !r1->is_con() ) |
| return TypeLong::LONG; // Any integer, but still no symbols. |
| |
| // Otherwise just OR them bits. |
| return TypeLong::make( r0->get_con() ^ r1->get_con() ); |
| } |
| |
| Node* XorLNode::Ideal(PhaseGVN* phase, bool can_reshape) { |
| Node* in1 = in(1); |
| Node* in2 = in(2); |
| |
| // Convert ~x into -1-x when ~x is used in an arithmetic expression |
| // or x itself is an arithmetic expression. |
| if (phase->type(in2) == TypeLong::MINUS_1) { // follows LHS^(-1), i.e., ~LHS |
| if (phase->is_IterGVN()) { |
| if (is_used_in_only_arithmetic(this, T_LONG) |
| // LHS is arithmetic |
| || (in1->Opcode() == Op_AddL || in1->Opcode() == Op_SubL)) { |
| return new SubLNode(in2, in1); |
| } |
| } else { |
| // graph could be incomplete in GVN so we postpone to IGVN |
| phase->record_for_igvn(this); |
| } |
| } |
| return AddNode::Ideal(phase, can_reshape); |
| } |
| |
| const Type* XorLNode::Value(PhaseGVN* phase) const { |
| Node* in1 = in(1); |
| Node* in2 = in(2); |
| const Type* t1 = phase->type(in1); |
| const Type* t2 = phase->type(in2); |
| if (t1 == Type::TOP || t2 == Type::TOP) { |
| return Type::TOP; |
| } |
| // x ^ x ==> 0 |
| if (in1->eqv_uncast(in2)) { |
| return add_id(); |
| } |
| // result of xor can only have bits sets where any of the |
| // inputs have bits set. lo can always become 0. |
| const TypeLong* t1l = t1->is_long(); |
| const TypeLong* t2l = t2->is_long(); |
| if ((t1l->_lo >= 0) && |
| (t1l->_hi > 0) && |
| (t2l->_lo >= 0) && |
| (t2l->_hi > 0)) { |
| // hi - set all bits below the highest bit. Using round_down to avoid overflow. |
| const TypeLong* t1x = TypeLong::make(0, round_down_power_of_2(t1l->_hi) + (round_down_power_of_2(t1l->_hi) - 1), t1l->_widen); |
| const TypeLong* t2x = TypeLong::make(0, round_down_power_of_2(t2l->_hi) + (round_down_power_of_2(t2l->_hi) - 1), t2l->_widen); |
| return t1x->meet(t2x); |
| } |
| return AddNode::Value(phase); |
| } |
| |
| Node* build_min_max_int(Node* a, Node* b, bool is_max) { |
| if (is_max) { |
| return new MaxINode(a, b); |
| } else { |
| return new MinINode(a, b); |
| } |
| } |
| |
| Node* MaxNode::build_min_max(Node* a, Node* b, bool is_max, bool is_unsigned, const Type* t, PhaseGVN& gvn) { |
| bool is_int = gvn.type(a)->isa_int(); |
| assert(is_int || gvn.type(a)->isa_long(), "int or long inputs"); |
| assert(is_int == (gvn.type(b)->isa_int() != nullptr), "inconsistent inputs"); |
| BasicType bt = is_int ? T_INT: T_LONG; |
| Node* hook = nullptr; |
| if (gvn.is_IterGVN()) { |
| // Make sure a and b are not destroyed |
| hook = new Node(2); |
| hook->init_req(0, a); |
| hook->init_req(1, b); |
| } |
| Node* res = nullptr; |
| if (is_int && !is_unsigned) { |
| res = gvn.transform(build_min_max_int(a, b, is_max)); |
| assert(gvn.type(res)->is_int()->_lo >= t->is_int()->_lo && gvn.type(res)->is_int()->_hi <= t->is_int()->_hi, "type doesn't match"); |
| } else { |
| Node* cmp = nullptr; |
| if (is_max) { |
| cmp = gvn.transform(CmpNode::make(a, b, bt, is_unsigned)); |
| } else { |
| cmp = gvn.transform(CmpNode::make(b, a, bt, is_unsigned)); |
| } |
| Node* bol = gvn.transform(new BoolNode(cmp, BoolTest::lt)); |
| res = gvn.transform(CMoveNode::make(nullptr, bol, a, b, t)); |
| } |
| if (hook != nullptr) { |
| hook->destruct(&gvn); |
| } |
| return res; |
| } |
| |
| Node* MaxNode::build_min_max_diff_with_zero(Node* a, Node* b, bool is_max, const Type* t, PhaseGVN& gvn) { |
| bool is_int = gvn.type(a)->isa_int(); |
| assert(is_int || gvn.type(a)->isa_long(), "int or long inputs"); |
| assert(is_int == (gvn.type(b)->isa_int() != nullptr), "inconsistent inputs"); |
| BasicType bt = is_int ? T_INT: T_LONG; |
| Node* zero = gvn.integercon(0, bt); |
| Node* hook = nullptr; |
| if (gvn.is_IterGVN()) { |
| // Make sure a and b are not destroyed |
| hook = new Node(2); |
| hook->init_req(0, a); |
| hook->init_req(1, b); |
| } |
| Node* cmp = nullptr; |
| if (is_max) { |
| cmp = gvn.transform(CmpNode::make(a, b, bt, false)); |
| } else { |
| cmp = gvn.transform(CmpNode::make(b, a, bt, false)); |
| } |
| Node* sub = gvn.transform(SubNode::make(a, b, bt)); |
| Node* bol = gvn.transform(new BoolNode(cmp, BoolTest::lt)); |
| Node* res = gvn.transform(CMoveNode::make(nullptr, bol, sub, zero, t)); |
| if (hook != nullptr) { |
| hook->destruct(&gvn); |
| } |
| return res; |
| } |
| |
| // Check if addition of an integer with type 't' and a constant 'c' can overflow. |
| static bool can_overflow(const TypeInt* t, jint c) { |
| jint t_lo = t->_lo; |
| jint t_hi = t->_hi; |
| return ((c < 0 && (java_add(t_lo, c) > t_lo)) || |
| (c > 0 && (java_add(t_hi, c) < t_hi))); |
| } |
| |
| // Let <x, x_off> = x_operands and <y, y_off> = y_operands. |
| // If x == y and neither add(x, x_off) nor add(y, y_off) overflow, return |
| // add(x, op(x_off, y_off)). Otherwise, return nullptr. |
| Node* MaxNode::extract_add(PhaseGVN* phase, ConstAddOperands x_operands, ConstAddOperands y_operands) { |
| Node* x = x_operands.first; |
| Node* y = y_operands.first; |
| int opcode = Opcode(); |
| assert(opcode == Op_MaxI || opcode == Op_MinI, "Unexpected opcode"); |
| const TypeInt* tx = phase->type(x)->isa_int(); |
| jint x_off = x_operands.second; |
| jint y_off = y_operands.second; |
| if (x == y && tx != nullptr && |
| !can_overflow(tx, x_off) && |
| !can_overflow(tx, y_off)) { |
| jint c = opcode == Op_MinI ? MIN2(x_off, y_off) : MAX2(x_off, y_off); |
| return new AddINode(x, phase->intcon(c)); |
| } |
| return nullptr; |
| } |
| |
| // Try to cast n as an integer addition with a constant. Return: |
| // <x, C>, if n == add(x, C), where 'C' is a non-TOP constant; |
| // <nullptr, 0>, if n == add(x, C), where 'C' is a TOP constant; or |
| // <n, 0>, otherwise. |
| static ConstAddOperands as_add_with_constant(Node* n) { |
| if (n->Opcode() != Op_AddI) { |
| return ConstAddOperands(n, 0); |
| } |
| Node* x = n->in(1); |
| Node* c = n->in(2); |
| if (!c->is_Con()) { |
| return ConstAddOperands(n, 0); |
| } |
| const Type* c_type = c->bottom_type(); |
| if (c_type == Type::TOP) { |
| return ConstAddOperands(nullptr, 0); |
| } |
| return ConstAddOperands(x, c_type->is_int()->get_con()); |
| } |
| |
| Node* MaxNode::IdealI(PhaseGVN* phase, bool can_reshape) { |
| int opcode = Opcode(); |
| assert(opcode == Op_MinI || opcode == Op_MaxI, "Unexpected opcode"); |
| // Try to transform the following pattern, in any of its four possible |
| // permutations induced by op's commutativity: |
| // op(op(add(inner, inner_off), inner_other), add(outer, outer_off)) |
| // into |
| // op(add(inner, op(inner_off, outer_off)), inner_other), |
| // where: |
| // op is either MinI or MaxI, and |
| // inner == outer, and |
| // the additions cannot overflow. |
| for (uint inner_op_index = 1; inner_op_index <= 2; inner_op_index++) { |
| if (in(inner_op_index)->Opcode() != opcode) { |
| continue; |
| } |
| Node* outer_add = in(inner_op_index == 1 ? 2 : 1); |
| ConstAddOperands outer_add_operands = as_add_with_constant(outer_add); |
| if (outer_add_operands.first == nullptr) { |
| return nullptr; // outer_add has a TOP input, no need to continue. |
| } |
| // One operand is a MinI/MaxI and the other is an integer addition with |
| // constant. Test the operands of the inner MinI/MaxI. |
| for (uint inner_add_index = 1; inner_add_index <= 2; inner_add_index++) { |
| Node* inner_op = in(inner_op_index); |
| Node* inner_add = inner_op->in(inner_add_index); |
| ConstAddOperands inner_add_operands = as_add_with_constant(inner_add); |
| if (inner_add_operands.first == nullptr) { |
| return nullptr; // inner_add has a TOP input, no need to continue. |
| } |
| // Try to extract the inner add. |
| Node* add_extracted = extract_add(phase, inner_add_operands, outer_add_operands); |
| if (add_extracted == nullptr) { |
| continue; |
| } |
| Node* add_transformed = phase->transform(add_extracted); |
| Node* inner_other = inner_op->in(inner_add_index == 1 ? 2 : 1); |
| return build_min_max_int(add_transformed, inner_other, opcode == Op_MaxI); |
| } |
| } |
| // Try to transform |
| // op(add(x, x_off), add(y, y_off)) |
| // into |
| // add(x, op(x_off, y_off)), |
| // where: |
| // op is either MinI or MaxI, and |
| // inner == outer, and |
| // the additions cannot overflow. |
| ConstAddOperands xC = as_add_with_constant(in(1)); |
| ConstAddOperands yC = as_add_with_constant(in(2)); |
| if (xC.first == nullptr || yC.first == nullptr) return nullptr; |
| return extract_add(phase, xC, yC); |
| } |
| |
| // Ideal transformations for MaxINode |
| Node* MaxINode::Ideal(PhaseGVN* phase, bool can_reshape) { |
| return IdealI(phase, can_reshape); |
| } |
| |
| //============================================================================= |
| //------------------------------add_ring--------------------------------------- |
| // Supplied function returns the sum of the inputs. |
| const Type *MaxINode::add_ring( const Type *t0, const Type *t1 ) const { |
| const TypeInt *r0 = t0->is_int(); // Handy access |
| const TypeInt *r1 = t1->is_int(); |
| |
| // Otherwise just MAX them bits. |
| return TypeInt::make( MAX2(r0->_lo,r1->_lo), MAX2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) ); |
| } |
| |
| //============================================================================= |
| //------------------------------Idealize--------------------------------------- |
| // MINs show up in range-check loop limit calculations. Look for |
| // "MIN2(x+c0,MIN2(y,x+c1))". Pick the smaller constant: "MIN2(x+c0,y)" |
| Node* MinINode::Ideal(PhaseGVN* phase, bool can_reshape) { |
| return IdealI(phase, can_reshape); |
| } |
| |
| //------------------------------add_ring--------------------------------------- |
| // Supplied function returns the sum of the inputs. |
| const Type *MinINode::add_ring( const Type *t0, const Type *t1 ) const { |
| const TypeInt *r0 = t0->is_int(); // Handy access |
| const TypeInt *r1 = t1->is_int(); |
| |
| // Otherwise just MIN them bits. |
| return TypeInt::make( MIN2(r0->_lo,r1->_lo), MIN2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) ); |
| } |
| |
| // Collapse the "addition with overflow-protection" pattern, and the symmetrical |
| // "subtraction with underflow-protection" pattern. These are created during the |
| // unrolling, when we have to adjust the limit by subtracting the stride, but want |
| // to protect against underflow: MaxL(SubL(limit, stride), min_jint). |
| // If we have more than one of those in a sequence: |
| // |
| // x con2 |
| // | | |
| // AddL clamp2 |
| // | | |
| // Max/MinL con1 |
| // | | |
| // AddL clamp1 |
| // | | |
| // Max/MinL (n) |
| // |
| // We want to collapse it to: |
| // |
| // x con1 con2 |
| // | | | |
| // | AddLNode (new_con) |
| // | | |
| // AddLNode clamp1 |
| // | | |
| // Max/MinL (n) |
| // |
| // Note: we assume that SubL was already replaced by an AddL, and that the stride |
| // has its sign flipped: SubL(limit, stride) -> AddL(limit, -stride). |
| Node* fold_subI_no_underflow_pattern(Node* n, PhaseGVN* phase) { |
| assert(n->Opcode() == Op_MaxL || n->Opcode() == Op_MinL, "sanity"); |
| // Check that the two clamps have the correct values. |
| jlong clamp = (n->Opcode() == Op_MaxL) ? min_jint : max_jint; |
| auto is_clamp = [&](Node* c) { |
| const TypeLong* t = phase->type(c)->isa_long(); |
| return t != nullptr && t->is_con() && |
| t->get_con() == clamp; |
| }; |
| // Check that the constants are negative if MaxL, and positive if MinL. |
| auto is_sub_con = [&](Node* c) { |
| const TypeLong* t = phase->type(c)->isa_long(); |
| return t != nullptr && t->is_con() && |
| t->get_con() < max_jint && t->get_con() > min_jint && |
| (t->get_con() < 0) == (n->Opcode() == Op_MaxL); |
| }; |
| // Verify the graph level by level: |
| Node* add1 = n->in(1); |
| Node* clamp1 = n->in(2); |
| if (add1->Opcode() == Op_AddL && is_clamp(clamp1)) { |
| Node* max2 = add1->in(1); |
| Node* con1 = add1->in(2); |
| if (max2->Opcode() == n->Opcode() && is_sub_con(con1)) { |
| Node* add2 = max2->in(1); |
| Node* clamp2 = max2->in(2); |
| if (add2->Opcode() == Op_AddL && is_clamp(clamp2)) { |
| Node* x = add2->in(1); |
| Node* con2 = add2->in(2); |
| if (is_sub_con(con2)) { |
| Node* new_con = phase->transform(new AddLNode(con1, con2)); |
| Node* new_sub = phase->transform(new AddLNode(x, new_con)); |
| n->set_req_X(1, new_sub, phase); |
| return n; |
| } |
| } |
| } |
| } |
| return nullptr; |
| } |
| |
| const Type* MaxLNode::add_ring(const Type* t0, const Type* t1) const { |
| const TypeLong* r0 = t0->is_long(); |
| const TypeLong* r1 = t1->is_long(); |
| |
| return TypeLong::make(MAX2(r0->_lo, r1->_lo), MAX2(r0->_hi, r1->_hi), MAX2(r0->_widen, r1->_widen)); |
| } |
| |
| Node* MaxLNode::Identity(PhaseGVN* phase) { |
| const TypeLong* t1 = phase->type(in(1))->is_long(); |
| const TypeLong* t2 = phase->type(in(2))->is_long(); |
| |
| // Can we determine maximum statically? |
| if (t1->_lo >= t2->_hi) { |
| return in(1); |
| } else if (t2->_lo >= t1->_hi) { |
| return in(2); |
| } |
| |
| return MaxNode::Identity(phase); |
| } |
| |
| Node* MaxLNode::Ideal(PhaseGVN* phase, bool can_reshape) { |
| Node* n = AddNode::Ideal(phase, can_reshape); |
| if (n != nullptr) { |
| return n; |
| } |
| if (can_reshape) { |
| return fold_subI_no_underflow_pattern(this, phase); |
| } |
| return nullptr; |
| } |
| |
| const Type* MinLNode::add_ring(const Type* t0, const Type* t1) const { |
| const TypeLong* r0 = t0->is_long(); |
| const TypeLong* r1 = t1->is_long(); |
| |
| return TypeLong::make(MIN2(r0->_lo, r1->_lo), MIN2(r0->_hi, r1->_hi), MIN2(r0->_widen, r1->_widen)); |
| } |
| |
| Node* MinLNode::Identity(PhaseGVN* phase) { |
| const TypeLong* t1 = phase->type(in(1))->is_long(); |
| const TypeLong* t2 = phase->type(in(2))->is_long(); |
| |
| // Can we determine minimum statically? |
| if (t1->_lo >= t2->_hi) { |
| return in(2); |
| } else if (t2->_lo >= t1->_hi) { |
| return in(1); |
| } |
| |
| return MaxNode::Identity(phase); |
| } |
| |
| Node* MinLNode::Ideal(PhaseGVN* phase, bool can_reshape) { |
| Node* n = AddNode::Ideal(phase, can_reshape); |
| if (n != nullptr) { |
| return n; |
| } |
| if (can_reshape) { |
| return fold_subI_no_underflow_pattern(this, phase); |
| } |
| return nullptr; |
| } |
| |
| //------------------------------add_ring--------------------------------------- |
| const Type *MinFNode::add_ring( const Type *t0, const Type *t1 ) const { |
| const TypeF *r0 = t0->is_float_constant(); |
| const TypeF *r1 = t1->is_float_constant(); |
| |
| if (r0->is_nan()) { |
| return r0; |
| } |
| if (r1->is_nan()) { |
| return r1; |
| } |
| |
| float f0 = r0->getf(); |
| float f1 = r1->getf(); |
| if (f0 != 0.0f || f1 != 0.0f) { |
| return f0 < f1 ? r0 : r1; |
| } |
| |
| // handle min of 0.0, -0.0 case. |
| return (jint_cast(f0) < jint_cast(f1)) ? r0 : r1; |
| } |
| |
| //------------------------------add_ring--------------------------------------- |
| const Type *MinDNode::add_ring( const Type *t0, const Type *t1 ) const { |
| const TypeD *r0 = t0->is_double_constant(); |
| const TypeD *r1 = t1->is_double_constant(); |
| |
| if (r0->is_nan()) { |
| return r0; |
| } |
| if (r1->is_nan()) { |
| return r1; |
| } |
| |
| double d0 = r0->getd(); |
| double d1 = r1->getd(); |
| if (d0 != 0.0 || d1 != 0.0) { |
| return d0 < d1 ? r0 : r1; |
| } |
| |
| // handle min of 0.0, -0.0 case. |
| return (jlong_cast(d0) < jlong_cast(d1)) ? r0 : r1; |
| } |
| |
| //------------------------------add_ring--------------------------------------- |
| const Type *MaxFNode::add_ring( const Type *t0, const Type *t1 ) const { |
| const TypeF *r0 = t0->is_float_constant(); |
| const TypeF *r1 = t1->is_float_constant(); |
| |
| if (r0->is_nan()) { |
| return r0; |
| } |
| if (r1->is_nan()) { |
| return r1; |
| } |
| |
| float f0 = r0->getf(); |
| float f1 = r1->getf(); |
| if (f0 != 0.0f || f1 != 0.0f) { |
| return f0 > f1 ? r0 : r1; |
| } |
| |
| // handle max of 0.0,-0.0 case. |
| return (jint_cast(f0) > jint_cast(f1)) ? r0 : r1; |
| } |
| |
| //------------------------------add_ring--------------------------------------- |
| const Type *MaxDNode::add_ring( const Type *t0, const Type *t1 ) const { |
| const TypeD *r0 = t0->is_double_constant(); |
| const TypeD *r1 = t1->is_double_constant(); |
| |
| if (r0->is_nan()) { |
| return r0; |
| } |
| if (r1->is_nan()) { |
| return r1; |
| } |
| |
| double d0 = r0->getd(); |
| double d1 = r1->getd(); |
| if (d0 != 0.0 || d1 != 0.0) { |
| return d0 > d1 ? r0 : r1; |
| } |
| |
| // handle max of 0.0, -0.0 case. |
| return (jlong_cast(d0) > jlong_cast(d1)) ? r0 : r1; |
| } |