blob: 8a26d514b688b0d2196e98fcef4ef30992277766 [file] [log] [blame]
/*
* Copyright (c) 2014, 2023, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "opto/addnode.hpp"
#include "opto/callnode.hpp"
#include "opto/castnode.hpp"
#include "opto/connode.hpp"
#include "opto/matcher.hpp"
#include "opto/phaseX.hpp"
#include "opto/subnode.hpp"
#include "opto/type.hpp"
#include "castnode.hpp"
//=============================================================================
// If input is already higher or equal to cast type, then this is an identity.
Node* ConstraintCastNode::Identity(PhaseGVN* phase) {
if (_dependency == UnconditionalDependency) {
return this;
}
Node* dom = dominating_cast(phase, phase);
if (dom != nullptr) {
return dom;
}
return higher_equal_types(phase, in(1)) ? in(1) : this;
}
//------------------------------Value------------------------------------------
// Take 'join' of input and cast-up type
const Type* ConstraintCastNode::Value(PhaseGVN* phase) const {
if (in(0) && phase->type(in(0)) == Type::TOP) return Type::TOP;
const Type* in_type = phase->type(in(1));
const Type* ft = in_type->filter_speculative(_type);
// Check if both _type and in_type had a speculative type, but for the just
// computed ft the speculative type was dropped.
if (ft->speculative() == nullptr &&
_type->speculative() != nullptr &&
in_type->speculative() != nullptr) {
// Speculative type may have disagreed between cast and input, and was
// dropped in filtering. Recompute so that ft can take speculative type
// of in_type. If we did not do it now, a subsequent ::Value call would
// do it, and violate idempotence of ::Value.
ft = in_type->filter_speculative(ft);
}
#ifdef ASSERT
// Previous versions of this function had some special case logic,
// which is no longer necessary. Make sure of the required effects.
switch (Opcode()) {
case Op_CastII:
{
if (in_type == Type::TOP) {
assert(ft == Type::TOP, "special case #1");
}
const Type* rt = in_type->join_speculative(_type);
if (rt->empty()) {
assert(ft == Type::TOP, "special case #2");
}
break;
}
case Op_CastPP:
if (in_type == TypePtr::NULL_PTR &&
_type->isa_ptr() && _type->is_ptr()->_ptr == TypePtr::NotNull) {
assert(ft == Type::TOP, "special case #3");
break;
}
}
#endif //ASSERT
return ft;
}
//------------------------------Ideal------------------------------------------
// Return a node which is more "ideal" than the current node. Strip out
// control copies
Node *ConstraintCastNode::Ideal(PhaseGVN *phase, bool can_reshape) {
return (in(0) && remove_dead_region(phase, can_reshape)) ? this : nullptr;
}
uint ConstraintCastNode::hash() const {
return TypeNode::hash() + (int)_dependency + (_extra_types != nullptr ? _extra_types->hash() : 0);
}
bool ConstraintCastNode::cmp(const Node &n) const {
if (!TypeNode::cmp(n)) {
return false;
}
ConstraintCastNode& cast = (ConstraintCastNode&) n;
if (cast._dependency != _dependency) {
return false;
}
if (_extra_types == nullptr || cast._extra_types == nullptr) {
return _extra_types == cast._extra_types;
}
return _extra_types->eq(cast._extra_types);
}
uint ConstraintCastNode::size_of() const {
return sizeof(*this);
}
Node* ConstraintCastNode::make_cast(int opcode, Node* c, Node* n, const Type* t, DependencyType dependency,
const TypeTuple* extra_types) {
switch(opcode) {
case Op_CastII: {
Node* cast = new CastIINode(n, t, dependency, false, extra_types);
cast->set_req(0, c);
return cast;
}
case Op_CastLL: {
Node* cast = new CastLLNode(n, t, dependency, extra_types);
cast->set_req(0, c);
return cast;
}
case Op_CastPP: {
Node* cast = new CastPPNode(n, t, dependency, extra_types);
cast->set_req(0, c);
return cast;
}
case Op_CastFF: {
Node* cast = new CastFFNode(n, t, dependency, extra_types);
cast->set_req(0, c);
return cast;
}
case Op_CastDD: {
Node* cast = new CastDDNode(n, t, dependency, extra_types);
cast->set_req(0, c);
return cast;
}
case Op_CastVV: {
Node* cast = new CastVVNode(n, t, dependency, extra_types);
cast->set_req(0, c);
return cast;
}
case Op_CheckCastPP: return new CheckCastPPNode(c, n, t, dependency, extra_types);
default:
fatal("Bad opcode %d", opcode);
}
return nullptr;
}
Node* ConstraintCastNode::make(Node* c, Node *n, const Type *t, DependencyType dependency, BasicType bt) {
switch(bt) {
case T_INT: {
return make_cast(Op_CastII, c, n, t, dependency, nullptr);
}
case T_LONG: {
return make_cast(Op_CastLL, c, n, t, dependency, nullptr);
}
default:
fatal("Bad basic type %s", type2name(bt));
}
return nullptr;
}
TypeNode* ConstraintCastNode::dominating_cast(PhaseGVN* gvn, PhaseTransform* pt) const {
if (_dependency == UnconditionalDependency) {
return nullptr;
}
Node* val = in(1);
Node* ctl = in(0);
int opc = Opcode();
if (ctl == nullptr) {
return nullptr;
}
// Range check CastIIs may all end up under a single range check and
// in that case only the narrower CastII would be kept by the code
// below which would be incorrect.
if (is_CastII() && as_CastII()->has_range_check()) {
return nullptr;
}
if (type()->isa_rawptr() && (gvn->type_or_null(val) == nullptr || gvn->type(val)->isa_oopptr())) {
return nullptr;
}
for (DUIterator_Fast imax, i = val->fast_outs(imax); i < imax; i++) {
Node* u = val->fast_out(i);
if (u != this &&
u->outcnt() > 0 &&
u->Opcode() == opc &&
u->in(0) != nullptr &&
higher_equal_types(gvn, u)) {
if (pt->is_dominator(u->in(0), ctl)) {
return u->as_Type();
}
if (is_CheckCastPP() && u->in(1)->is_Proj() && u->in(1)->in(0)->is_Allocate() &&
u->in(0)->is_Proj() && u->in(0)->in(0)->is_Initialize() &&
u->in(1)->in(0)->as_Allocate()->initialization() == u->in(0)->in(0)) {
// CheckCastPP following an allocation always dominates all
// use of the allocation result
return u->as_Type();
}
}
}
return nullptr;
}
bool ConstraintCastNode::higher_equal_types(PhaseGVN* phase, const Node* other) const {
const Type* t = phase->type(other);
if (!t->higher_equal_speculative(type())) {
return false;
}
if (_extra_types != nullptr) {
for (uint i = 0; i < _extra_types->cnt(); ++i) {
if (!t->higher_equal_speculative(_extra_types->field_at(i))) {
return false;
}
}
}
return true;
}
#ifndef PRODUCT
void ConstraintCastNode::dump_spec(outputStream *st) const {
TypeNode::dump_spec(st);
if (_extra_types != nullptr) {
st->print(" extra types: ");
_extra_types->dump_on(st);
}
if (_dependency != RegularDependency) {
st->print(" %s dependency", _dependency == StrongDependency ? "strong" : "unconditional");
}
}
#endif
const Type* CastIINode::Value(PhaseGVN* phase) const {
const Type *res = ConstraintCastNode::Value(phase);
if (res == Type::TOP) {
return Type::TOP;
}
assert(res->isa_int(), "res must be int");
// Similar to ConvI2LNode::Value() for the same reasons
// see if we can remove type assertion after loop opts
// But here we have to pay extra attention:
// Do not narrow the type of range check dependent CastIINodes to
// avoid corruption of the graph if a CastII is replaced by TOP but
// the corresponding range check is not removed.
if (!_range_check_dependency) {
res = widen_type(phase, res, T_INT);
}
return res;
}
static Node* find_or_make_integer_cast(PhaseIterGVN* igvn, Node* parent, Node* control, const TypeInteger* type, ConstraintCastNode::DependencyType dependency, BasicType bt) {
Node* n = ConstraintCastNode::make(control, parent, type, dependency, bt);
Node* existing = igvn->hash_find_insert(n);
if (existing != nullptr) {
n->destruct(igvn);
return existing;
}
return igvn->register_new_node_with_optimizer(n);
}
Node *CastIINode::Ideal(PhaseGVN *phase, bool can_reshape) {
Node* progress = ConstraintCastNode::Ideal(phase, can_reshape);
if (progress != nullptr) {
return progress;
}
if (can_reshape && !_range_check_dependency && !phase->C->post_loop_opts_phase()) {
// makes sure we run ::Value to potentially remove type assertion after loop opts
phase->C->record_for_post_loop_opts_igvn(this);
}
if (!_range_check_dependency) {
return optimize_integer_cast(phase, T_INT);
}
return nullptr;
}
Node* CastIINode::Identity(PhaseGVN* phase) {
Node* progress = ConstraintCastNode::Identity(phase);
if (progress != this) {
return progress;
}
if (_range_check_dependency) {
if (phase->C->post_loop_opts_phase()) {
return this->in(1);
} else {
phase->C->record_for_post_loop_opts_igvn(this);
}
}
return this;
}
bool CastIINode::cmp(const Node &n) const {
return ConstraintCastNode::cmp(n) && ((CastIINode&)n)._range_check_dependency == _range_check_dependency;
}
uint CastIINode::size_of() const {
return sizeof(*this);
}
#ifndef PRODUCT
void CastIINode::dump_spec(outputStream* st) const {
ConstraintCastNode::dump_spec(st);
if (_range_check_dependency) {
st->print(" range check dependency");
}
}
#endif
const Type* CastLLNode::Value(PhaseGVN* phase) const {
const Type* res = ConstraintCastNode::Value(phase);
if (res == Type::TOP) {
return Type::TOP;
}
assert(res->isa_long(), "res must be long");
return widen_type(phase, res, T_LONG);
}
Node* CastLLNode::Ideal(PhaseGVN* phase, bool can_reshape) {
Node* progress = ConstraintCastNode::Ideal(phase, can_reshape);
if (progress != nullptr) {
return progress;
}
if (!phase->C->post_loop_opts_phase()) {
// makes sure we run ::Value to potentially remove type assertion after loop opts
phase->C->record_for_post_loop_opts_igvn(this);
}
// transform (CastLL (ConvI2L ..)) into (ConvI2L (CastII ..)) if the type of the CastLL is narrower than the type of
// the ConvI2L.
Node* in1 = in(1);
if (in1 != nullptr && in1->Opcode() == Op_ConvI2L) {
const Type* t = Value(phase);
const Type* t_in = phase->type(in1);
if (t != Type::TOP && t_in != Type::TOP) {
const TypeLong* tl = t->is_long();
const TypeLong* t_in_l = t_in->is_long();
assert(tl->_lo >= t_in_l->_lo && tl->_hi <= t_in_l->_hi, "CastLL type should be narrower than or equal to the type of its input");
assert((tl != t_in_l) == (tl->_lo > t_in_l->_lo || tl->_hi < t_in_l->_hi), "if type differs then this nodes's type must be narrower");
if (tl != t_in_l) {
const TypeInt* ti = TypeInt::make(checked_cast<jint>(tl->_lo), checked_cast<jint>(tl->_hi), tl->_widen);
Node* castii = phase->transform(new CastIINode(in(0), in1->in(1), ti));
Node* convi2l = in1->clone();
convi2l->set_req(1, castii);
return convi2l;
}
}
}
return optimize_integer_cast(phase, T_LONG);
}
//------------------------------Value------------------------------------------
// Take 'join' of input and cast-up type, unless working with an Interface
const Type* CheckCastPPNode::Value(PhaseGVN* phase) const {
if( in(0) && phase->type(in(0)) == Type::TOP ) return Type::TOP;
const Type *inn = phase->type(in(1));
if( inn == Type::TOP ) return Type::TOP; // No information yet
if (inn->isa_oopptr() && _type->isa_oopptr()) {
return ConstraintCastNode::Value(phase);
}
const TypePtr *in_type = inn->isa_ptr();
const TypePtr *my_type = _type->isa_ptr();
const Type *result = _type;
if (in_type != nullptr && my_type != nullptr) {
TypePtr::PTR in_ptr = in_type->ptr();
if (in_ptr == TypePtr::Null) {
result = in_type;
} else if (in_ptr != TypePtr::Constant) {
result = my_type->cast_to_ptr_type(my_type->join_ptr(in_ptr));
}
}
return result;
}
//=============================================================================
//------------------------------Value------------------------------------------
const Type* CastX2PNode::Value(PhaseGVN* phase) const {
const Type* t = phase->type(in(1));
if (t == Type::TOP) return Type::TOP;
if (t->base() == Type_X && t->singleton()) {
uintptr_t bits = (uintptr_t) t->is_intptr_t()->get_con();
if (bits == 0) return TypePtr::NULL_PTR;
return TypeRawPtr::make((address) bits);
}
return CastX2PNode::bottom_type();
}
//------------------------------Idealize---------------------------------------
static inline bool fits_in_int(const Type* t, bool but_not_min_int = false) {
if (t == Type::TOP) return false;
const TypeX* tl = t->is_intptr_t();
jint lo = min_jint;
jint hi = max_jint;
if (but_not_min_int) ++lo; // caller wants to negate the value w/o overflow
return (tl->_lo >= lo) && (tl->_hi <= hi);
}
static inline Node* addP_of_X2P(PhaseGVN *phase,
Node* base,
Node* dispX,
bool negate = false) {
if (negate) {
dispX = phase->transform(new SubXNode(phase->MakeConX(0), dispX));
}
return new AddPNode(phase->C->top(),
phase->transform(new CastX2PNode(base)),
dispX);
}
Node *CastX2PNode::Ideal(PhaseGVN *phase, bool can_reshape) {
// convert CastX2P(AddX(x, y)) to AddP(CastX2P(x), y) if y fits in an int
int op = in(1)->Opcode();
Node* x;
Node* y;
switch (op) {
case Op_SubX:
x = in(1)->in(1);
// Avoid ideal transformations ping-pong between this and AddP for raw pointers.
if (phase->find_intptr_t_con(x, -1) == 0)
break;
y = in(1)->in(2);
if (fits_in_int(phase->type(y), true)) {
return addP_of_X2P(phase, x, y, true);
}
break;
case Op_AddX:
x = in(1)->in(1);
y = in(1)->in(2);
if (fits_in_int(phase->type(y))) {
return addP_of_X2P(phase, x, y);
}
if (fits_in_int(phase->type(x))) {
return addP_of_X2P(phase, y, x);
}
break;
}
return nullptr;
}
//------------------------------Identity---------------------------------------
Node* CastX2PNode::Identity(PhaseGVN* phase) {
if (in(1)->Opcode() == Op_CastP2X) return in(1)->in(1);
return this;
}
//=============================================================================
//------------------------------Value------------------------------------------
const Type* CastP2XNode::Value(PhaseGVN* phase) const {
const Type* t = phase->type(in(1));
if (t == Type::TOP) return Type::TOP;
if (t->base() == Type::RawPtr && t->singleton()) {
uintptr_t bits = (uintptr_t) t->is_rawptr()->get_con();
return TypeX::make(bits);
}
return CastP2XNode::bottom_type();
}
Node *CastP2XNode::Ideal(PhaseGVN *phase, bool can_reshape) {
return (in(0) && remove_dead_region(phase, can_reshape)) ? this : nullptr;
}
//------------------------------Identity---------------------------------------
Node* CastP2XNode::Identity(PhaseGVN* phase) {
if (in(1)->Opcode() == Op_CastX2P) return in(1)->in(1);
return this;
}
Node* ConstraintCastNode::make_cast_for_type(Node* c, Node* in, const Type* type, DependencyType dependency,
const TypeTuple* types) {
Node* cast= nullptr;
if (type->isa_int()) {
cast = make_cast(Op_CastII, c, in, type, dependency, types);
} else if (type->isa_long()) {
cast = make_cast(Op_CastLL, c, in, type, dependency, types);
} else if (type->isa_float()) {
cast = make_cast(Op_CastFF, c, in, type, dependency, types);
} else if (type->isa_double()) {
cast = make_cast(Op_CastDD, c, in, type, dependency, types);
} else if (type->isa_vect()) {
cast = make_cast(Op_CastVV, c, in, type, dependency, types);
} else if (type->isa_ptr()) {
cast = make_cast(Op_CastPP, c, in, type, dependency, types);
}
return cast;
}
Node* ConstraintCastNode::optimize_integer_cast(PhaseGVN* phase, BasicType bt) {
PhaseIterGVN *igvn = phase->is_IterGVN();
const TypeInteger* this_type = this->type()->is_integer(bt);
Node* z = in(1);
const TypeInteger* rx = nullptr;
const TypeInteger* ry = nullptr;
// Similar to ConvI2LNode::Ideal() for the same reasons
if (Compile::push_thru_add(phase, z, this_type, rx, ry, bt, bt)) {
if (igvn == nullptr) {
// Postpone this optimization to iterative GVN, where we can handle deep
// AddI chains without an exponential number of recursive Ideal() calls.
phase->record_for_igvn(this);
return nullptr;
}
int op = z->Opcode();
Node* x = z->in(1);
Node* y = z->in(2);
Node* cx = find_or_make_integer_cast(igvn, x, in(0), rx, _dependency, bt);
Node* cy = find_or_make_integer_cast(igvn, y, in(0), ry, _dependency, bt);
if (op == Op_Add(bt)) {
return AddNode::make(cx, cy, bt);
} else {
assert(op == Op_Sub(bt), "");
return SubNode::make(cx, cy, bt);
}
return nullptr;
}
return nullptr;
}
const Type* ConstraintCastNode::widen_type(const PhaseGVN* phase, const Type* res, BasicType bt) const {
if (!phase->C->post_loop_opts_phase()) {
return res;
}
const TypeInteger* this_type = res->is_integer(bt);
const TypeInteger* in_type = phase->type(in(1))->isa_integer(bt);
if (in_type != nullptr &&
(in_type->lo_as_long() != this_type->lo_as_long() ||
in_type->hi_as_long() != this_type->hi_as_long())) {
jlong lo1 = this_type->lo_as_long();
jlong hi1 = this_type->hi_as_long();
int w1 = this_type->_widen;
if (lo1 >= 0) {
// Keep a range assertion of >=0.
lo1 = 0; hi1 = max_signed_integer(bt);
} else if (hi1 < 0) {
// Keep a range assertion of <0.
lo1 = min_signed_integer(bt); hi1 = -1;
} else {
lo1 = min_signed_integer(bt); hi1 = max_signed_integer(bt);
}
return TypeInteger::make(MAX2(in_type->lo_as_long(), lo1),
MIN2(in_type->hi_as_long(), hi1),
MAX2((int)in_type->_widen, w1), bt);
}
return res;
}