| /* |
| * Copyright (c) 1999, 2023, Oracle and/or its affiliates. All rights reserved. |
| * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| * |
| * This code is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License version 2 only, as |
| * published by the Free Software Foundation. |
| * |
| * This code is distributed in the hope that it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| * version 2 for more details (a copy is included in the LICENSE file that |
| * accompanied this code). |
| * |
| * You should have received a copy of the GNU General Public License version |
| * 2 along with this work; if not, write to the Free Software Foundation, |
| * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| * |
| * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| * or visit www.oracle.com if you need additional information or have any |
| * questions. |
| * |
| */ |
| |
| #include "precompiled.hpp" |
| #include "asm/macroAssembler.hpp" |
| #include "ci/ciUtilities.inline.hpp" |
| #include "classfile/vmIntrinsics.hpp" |
| #include "compiler/compileBroker.hpp" |
| #include "compiler/compileLog.hpp" |
| #include "gc/shared/barrierSet.hpp" |
| #include "jfr/support/jfrIntrinsics.hpp" |
| #include "memory/resourceArea.hpp" |
| #include "oops/klass.inline.hpp" |
| #include "oops/objArrayKlass.hpp" |
| #include "opto/addnode.hpp" |
| #include "opto/arraycopynode.hpp" |
| #include "opto/c2compiler.hpp" |
| #include "opto/castnode.hpp" |
| #include "opto/cfgnode.hpp" |
| #include "opto/convertnode.hpp" |
| #include "opto/countbitsnode.hpp" |
| #include "opto/idealKit.hpp" |
| #include "opto/library_call.hpp" |
| #include "opto/mathexactnode.hpp" |
| #include "opto/mulnode.hpp" |
| #include "opto/narrowptrnode.hpp" |
| #include "opto/opaquenode.hpp" |
| #include "opto/parse.hpp" |
| #include "opto/runtime.hpp" |
| #include "opto/rootnode.hpp" |
| #include "opto/subnode.hpp" |
| #include "prims/jvmtiThreadState.hpp" |
| #include "prims/unsafe.hpp" |
| #include "runtime/jniHandles.inline.hpp" |
| #include "runtime/objectMonitor.hpp" |
| #include "runtime/sharedRuntime.hpp" |
| #include "runtime/stubRoutines.hpp" |
| #include "utilities/macros.hpp" |
| #include "utilities/powerOfTwo.hpp" |
| |
| //---------------------------make_vm_intrinsic---------------------------- |
| CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) { |
| vmIntrinsicID id = m->intrinsic_id(); |
| assert(id != vmIntrinsics::_none, "must be a VM intrinsic"); |
| |
| if (!m->is_loaded()) { |
| // Do not attempt to inline unloaded methods. |
| return nullptr; |
| } |
| |
| C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization); |
| bool is_available = false; |
| |
| { |
| // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag |
| // the compiler must transition to '_thread_in_vm' state because both |
| // methods access VM-internal data. |
| VM_ENTRY_MARK; |
| methodHandle mh(THREAD, m->get_Method()); |
| is_available = compiler != nullptr && compiler->is_intrinsic_available(mh, C->directive()); |
| if (is_available && is_virtual) { |
| is_available = vmIntrinsics::does_virtual_dispatch(id); |
| } |
| } |
| |
| if (is_available) { |
| assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility"); |
| assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?"); |
| return new LibraryIntrinsic(m, is_virtual, |
| vmIntrinsics::predicates_needed(id), |
| vmIntrinsics::does_virtual_dispatch(id), |
| id); |
| } else { |
| return nullptr; |
| } |
| } |
| |
| JVMState* LibraryIntrinsic::generate(JVMState* jvms) { |
| LibraryCallKit kit(jvms, this); |
| Compile* C = kit.C; |
| int nodes = C->unique(); |
| #ifndef PRODUCT |
| if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { |
| char buf[1000]; |
| const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); |
| tty->print_cr("Intrinsic %s", str); |
| } |
| #endif |
| ciMethod* callee = kit.callee(); |
| const int bci = kit.bci(); |
| #ifdef ASSERT |
| Node* ctrl = kit.control(); |
| #endif |
| // Try to inline the intrinsic. |
| if (callee->check_intrinsic_candidate() && |
| kit.try_to_inline(_last_predicate)) { |
| const char *inline_msg = is_virtual() ? "(intrinsic, virtual)" |
| : "(intrinsic)"; |
| CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, inline_msg); |
| if (C->print_intrinsics() || C->print_inlining()) { |
| C->print_inlining(callee, jvms->depth() - 1, bci, inline_msg); |
| } |
| C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); |
| if (C->log()) { |
| C->log()->elem("intrinsic id='%s'%s nodes='%d'", |
| vmIntrinsics::name_at(intrinsic_id()), |
| (is_virtual() ? " virtual='1'" : ""), |
| C->unique() - nodes); |
| } |
| // Push the result from the inlined method onto the stack. |
| kit.push_result(); |
| C->print_inlining_update(this); |
| return kit.transfer_exceptions_into_jvms(); |
| } |
| |
| // The intrinsic bailed out |
| assert(ctrl == kit.control(), "Control flow was added although the intrinsic bailed out"); |
| if (jvms->has_method()) { |
| // Not a root compile. |
| const char* msg; |
| if (callee->intrinsic_candidate()) { |
| msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)"; |
| } else { |
| msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated" |
| : "failed to inline (intrinsic), method not annotated"; |
| } |
| CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, msg); |
| if (C->print_intrinsics() || C->print_inlining()) { |
| C->print_inlining(callee, jvms->depth() - 1, bci, msg); |
| } |
| } else { |
| // Root compile |
| ResourceMark rm; |
| stringStream msg_stream; |
| msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", |
| vmIntrinsics::name_at(intrinsic_id()), |
| is_virtual() ? " (virtual)" : "", bci); |
| const char *msg = msg_stream.freeze(); |
| log_debug(jit, inlining)("%s", msg); |
| if (C->print_intrinsics() || C->print_inlining()) { |
| tty->print("%s", msg); |
| } |
| } |
| C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); |
| C->print_inlining_update(this); |
| |
| return nullptr; |
| } |
| |
| Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) { |
| LibraryCallKit kit(jvms, this); |
| Compile* C = kit.C; |
| int nodes = C->unique(); |
| _last_predicate = predicate; |
| #ifndef PRODUCT |
| assert(is_predicated() && predicate < predicates_count(), "sanity"); |
| if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { |
| char buf[1000]; |
| const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); |
| tty->print_cr("Predicate for intrinsic %s", str); |
| } |
| #endif |
| ciMethod* callee = kit.callee(); |
| const int bci = kit.bci(); |
| |
| Node* slow_ctl = kit.try_to_predicate(predicate); |
| if (!kit.failing()) { |
| const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)" |
| : "(intrinsic, predicate)"; |
| CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, inline_msg); |
| if (C->print_intrinsics() || C->print_inlining()) { |
| C->print_inlining(callee, jvms->depth() - 1, bci, inline_msg); |
| } |
| C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); |
| if (C->log()) { |
| C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'", |
| vmIntrinsics::name_at(intrinsic_id()), |
| (is_virtual() ? " virtual='1'" : ""), |
| C->unique() - nodes); |
| } |
| return slow_ctl; // Could be null if the check folds. |
| } |
| |
| // The intrinsic bailed out |
| if (jvms->has_method()) { |
| // Not a root compile. |
| const char* msg = "failed to generate predicate for intrinsic"; |
| CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, msg); |
| if (C->print_intrinsics() || C->print_inlining()) { |
| C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg); |
| } |
| } else { |
| // Root compile |
| ResourceMark rm; |
| stringStream msg_stream; |
| msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", |
| vmIntrinsics::name_at(intrinsic_id()), |
| is_virtual() ? " (virtual)" : "", bci); |
| const char *msg = msg_stream.freeze(); |
| log_debug(jit, inlining)("%s", msg); |
| if (C->print_intrinsics() || C->print_inlining()) { |
| C->print_inlining_stream()->print("%s", msg); |
| } |
| } |
| C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); |
| return nullptr; |
| } |
| |
| bool LibraryCallKit::try_to_inline(int predicate) { |
| // Handle symbolic names for otherwise undistinguished boolean switches: |
| const bool is_store = true; |
| const bool is_compress = true; |
| const bool is_static = true; |
| const bool is_volatile = true; |
| |
| if (!jvms()->has_method()) { |
| // Root JVMState has a null method. |
| assert(map()->memory()->Opcode() == Op_Parm, ""); |
| // Insert the memory aliasing node |
| set_all_memory(reset_memory()); |
| } |
| assert(merged_memory(), ""); |
| |
| switch (intrinsic_id()) { |
| case vmIntrinsics::_hashCode: return inline_native_hashcode(intrinsic()->is_virtual(), !is_static); |
| case vmIntrinsics::_identityHashCode: return inline_native_hashcode(/*!virtual*/ false, is_static); |
| case vmIntrinsics::_getClass: return inline_native_getClass(); |
| |
| case vmIntrinsics::_ceil: |
| case vmIntrinsics::_floor: |
| case vmIntrinsics::_rint: |
| case vmIntrinsics::_dsin: |
| case vmIntrinsics::_dcos: |
| case vmIntrinsics::_dtan: |
| case vmIntrinsics::_dabs: |
| case vmIntrinsics::_fabs: |
| case vmIntrinsics::_iabs: |
| case vmIntrinsics::_labs: |
| case vmIntrinsics::_datan2: |
| case vmIntrinsics::_dsqrt: |
| case vmIntrinsics::_dsqrt_strict: |
| case vmIntrinsics::_dexp: |
| case vmIntrinsics::_dlog: |
| case vmIntrinsics::_dlog10: |
| case vmIntrinsics::_dpow: |
| case vmIntrinsics::_dcopySign: |
| case vmIntrinsics::_fcopySign: |
| case vmIntrinsics::_dsignum: |
| case vmIntrinsics::_roundF: |
| case vmIntrinsics::_roundD: |
| case vmIntrinsics::_fsignum: return inline_math_native(intrinsic_id()); |
| |
| case vmIntrinsics::_notify: |
| case vmIntrinsics::_notifyAll: |
| return inline_notify(intrinsic_id()); |
| |
| case vmIntrinsics::_addExactI: return inline_math_addExactI(false /* add */); |
| case vmIntrinsics::_addExactL: return inline_math_addExactL(false /* add */); |
| case vmIntrinsics::_decrementExactI: return inline_math_subtractExactI(true /* decrement */); |
| case vmIntrinsics::_decrementExactL: return inline_math_subtractExactL(true /* decrement */); |
| case vmIntrinsics::_incrementExactI: return inline_math_addExactI(true /* increment */); |
| case vmIntrinsics::_incrementExactL: return inline_math_addExactL(true /* increment */); |
| case vmIntrinsics::_multiplyExactI: return inline_math_multiplyExactI(); |
| case vmIntrinsics::_multiplyExactL: return inline_math_multiplyExactL(); |
| case vmIntrinsics::_multiplyHigh: return inline_math_multiplyHigh(); |
| case vmIntrinsics::_unsignedMultiplyHigh: return inline_math_unsignedMultiplyHigh(); |
| case vmIntrinsics::_negateExactI: return inline_math_negateExactI(); |
| case vmIntrinsics::_negateExactL: return inline_math_negateExactL(); |
| case vmIntrinsics::_subtractExactI: return inline_math_subtractExactI(false /* subtract */); |
| case vmIntrinsics::_subtractExactL: return inline_math_subtractExactL(false /* subtract */); |
| |
| case vmIntrinsics::_arraycopy: return inline_arraycopy(); |
| |
| case vmIntrinsics::_compareToL: return inline_string_compareTo(StrIntrinsicNode::LL); |
| case vmIntrinsics::_compareToU: return inline_string_compareTo(StrIntrinsicNode::UU); |
| case vmIntrinsics::_compareToLU: return inline_string_compareTo(StrIntrinsicNode::LU); |
| case vmIntrinsics::_compareToUL: return inline_string_compareTo(StrIntrinsicNode::UL); |
| |
| case vmIntrinsics::_indexOfL: return inline_string_indexOf(StrIntrinsicNode::LL); |
| case vmIntrinsics::_indexOfU: return inline_string_indexOf(StrIntrinsicNode::UU); |
| case vmIntrinsics::_indexOfUL: return inline_string_indexOf(StrIntrinsicNode::UL); |
| case vmIntrinsics::_indexOfIL: return inline_string_indexOfI(StrIntrinsicNode::LL); |
| case vmIntrinsics::_indexOfIU: return inline_string_indexOfI(StrIntrinsicNode::UU); |
| case vmIntrinsics::_indexOfIUL: return inline_string_indexOfI(StrIntrinsicNode::UL); |
| case vmIntrinsics::_indexOfU_char: return inline_string_indexOfChar(StrIntrinsicNode::U); |
| case vmIntrinsics::_indexOfL_char: return inline_string_indexOfChar(StrIntrinsicNode::L); |
| |
| case vmIntrinsics::_equalsL: return inline_string_equals(StrIntrinsicNode::LL); |
| case vmIntrinsics::_equalsU: return inline_string_equals(StrIntrinsicNode::UU); |
| |
| case vmIntrinsics::_vectorizedHashCode: return inline_vectorizedHashCode(); |
| |
| case vmIntrinsics::_toBytesStringU: return inline_string_toBytesU(); |
| case vmIntrinsics::_getCharsStringU: return inline_string_getCharsU(); |
| case vmIntrinsics::_getCharStringU: return inline_string_char_access(!is_store); |
| case vmIntrinsics::_putCharStringU: return inline_string_char_access( is_store); |
| |
| case vmIntrinsics::_compressStringC: |
| case vmIntrinsics::_compressStringB: return inline_string_copy( is_compress); |
| case vmIntrinsics::_inflateStringC: |
| case vmIntrinsics::_inflateStringB: return inline_string_copy(!is_compress); |
| |
| case vmIntrinsics::_getReference: return inline_unsafe_access(!is_store, T_OBJECT, Relaxed, false); |
| case vmIntrinsics::_getBoolean: return inline_unsafe_access(!is_store, T_BOOLEAN, Relaxed, false); |
| case vmIntrinsics::_getByte: return inline_unsafe_access(!is_store, T_BYTE, Relaxed, false); |
| case vmIntrinsics::_getShort: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, false); |
| case vmIntrinsics::_getChar: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, false); |
| case vmIntrinsics::_getInt: return inline_unsafe_access(!is_store, T_INT, Relaxed, false); |
| case vmIntrinsics::_getLong: return inline_unsafe_access(!is_store, T_LONG, Relaxed, false); |
| case vmIntrinsics::_getFloat: return inline_unsafe_access(!is_store, T_FLOAT, Relaxed, false); |
| case vmIntrinsics::_getDouble: return inline_unsafe_access(!is_store, T_DOUBLE, Relaxed, false); |
| |
| case vmIntrinsics::_putReference: return inline_unsafe_access( is_store, T_OBJECT, Relaxed, false); |
| case vmIntrinsics::_putBoolean: return inline_unsafe_access( is_store, T_BOOLEAN, Relaxed, false); |
| case vmIntrinsics::_putByte: return inline_unsafe_access( is_store, T_BYTE, Relaxed, false); |
| case vmIntrinsics::_putShort: return inline_unsafe_access( is_store, T_SHORT, Relaxed, false); |
| case vmIntrinsics::_putChar: return inline_unsafe_access( is_store, T_CHAR, Relaxed, false); |
| case vmIntrinsics::_putInt: return inline_unsafe_access( is_store, T_INT, Relaxed, false); |
| case vmIntrinsics::_putLong: return inline_unsafe_access( is_store, T_LONG, Relaxed, false); |
| case vmIntrinsics::_putFloat: return inline_unsafe_access( is_store, T_FLOAT, Relaxed, false); |
| case vmIntrinsics::_putDouble: return inline_unsafe_access( is_store, T_DOUBLE, Relaxed, false); |
| |
| case vmIntrinsics::_getReferenceVolatile: return inline_unsafe_access(!is_store, T_OBJECT, Volatile, false); |
| case vmIntrinsics::_getBooleanVolatile: return inline_unsafe_access(!is_store, T_BOOLEAN, Volatile, false); |
| case vmIntrinsics::_getByteVolatile: return inline_unsafe_access(!is_store, T_BYTE, Volatile, false); |
| case vmIntrinsics::_getShortVolatile: return inline_unsafe_access(!is_store, T_SHORT, Volatile, false); |
| case vmIntrinsics::_getCharVolatile: return inline_unsafe_access(!is_store, T_CHAR, Volatile, false); |
| case vmIntrinsics::_getIntVolatile: return inline_unsafe_access(!is_store, T_INT, Volatile, false); |
| case vmIntrinsics::_getLongVolatile: return inline_unsafe_access(!is_store, T_LONG, Volatile, false); |
| case vmIntrinsics::_getFloatVolatile: return inline_unsafe_access(!is_store, T_FLOAT, Volatile, false); |
| case vmIntrinsics::_getDoubleVolatile: return inline_unsafe_access(!is_store, T_DOUBLE, Volatile, false); |
| |
| case vmIntrinsics::_putReferenceVolatile: return inline_unsafe_access( is_store, T_OBJECT, Volatile, false); |
| case vmIntrinsics::_putBooleanVolatile: return inline_unsafe_access( is_store, T_BOOLEAN, Volatile, false); |
| case vmIntrinsics::_putByteVolatile: return inline_unsafe_access( is_store, T_BYTE, Volatile, false); |
| case vmIntrinsics::_putShortVolatile: return inline_unsafe_access( is_store, T_SHORT, Volatile, false); |
| case vmIntrinsics::_putCharVolatile: return inline_unsafe_access( is_store, T_CHAR, Volatile, false); |
| case vmIntrinsics::_putIntVolatile: return inline_unsafe_access( is_store, T_INT, Volatile, false); |
| case vmIntrinsics::_putLongVolatile: return inline_unsafe_access( is_store, T_LONG, Volatile, false); |
| case vmIntrinsics::_putFloatVolatile: return inline_unsafe_access( is_store, T_FLOAT, Volatile, false); |
| case vmIntrinsics::_putDoubleVolatile: return inline_unsafe_access( is_store, T_DOUBLE, Volatile, false); |
| |
| case vmIntrinsics::_getShortUnaligned: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, true); |
| case vmIntrinsics::_getCharUnaligned: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, true); |
| case vmIntrinsics::_getIntUnaligned: return inline_unsafe_access(!is_store, T_INT, Relaxed, true); |
| case vmIntrinsics::_getLongUnaligned: return inline_unsafe_access(!is_store, T_LONG, Relaxed, true); |
| |
| case vmIntrinsics::_putShortUnaligned: return inline_unsafe_access( is_store, T_SHORT, Relaxed, true); |
| case vmIntrinsics::_putCharUnaligned: return inline_unsafe_access( is_store, T_CHAR, Relaxed, true); |
| case vmIntrinsics::_putIntUnaligned: return inline_unsafe_access( is_store, T_INT, Relaxed, true); |
| case vmIntrinsics::_putLongUnaligned: return inline_unsafe_access( is_store, T_LONG, Relaxed, true); |
| |
| case vmIntrinsics::_getReferenceAcquire: return inline_unsafe_access(!is_store, T_OBJECT, Acquire, false); |
| case vmIntrinsics::_getBooleanAcquire: return inline_unsafe_access(!is_store, T_BOOLEAN, Acquire, false); |
| case vmIntrinsics::_getByteAcquire: return inline_unsafe_access(!is_store, T_BYTE, Acquire, false); |
| case vmIntrinsics::_getShortAcquire: return inline_unsafe_access(!is_store, T_SHORT, Acquire, false); |
| case vmIntrinsics::_getCharAcquire: return inline_unsafe_access(!is_store, T_CHAR, Acquire, false); |
| case vmIntrinsics::_getIntAcquire: return inline_unsafe_access(!is_store, T_INT, Acquire, false); |
| case vmIntrinsics::_getLongAcquire: return inline_unsafe_access(!is_store, T_LONG, Acquire, false); |
| case vmIntrinsics::_getFloatAcquire: return inline_unsafe_access(!is_store, T_FLOAT, Acquire, false); |
| case vmIntrinsics::_getDoubleAcquire: return inline_unsafe_access(!is_store, T_DOUBLE, Acquire, false); |
| |
| case vmIntrinsics::_putReferenceRelease: return inline_unsafe_access( is_store, T_OBJECT, Release, false); |
| case vmIntrinsics::_putBooleanRelease: return inline_unsafe_access( is_store, T_BOOLEAN, Release, false); |
| case vmIntrinsics::_putByteRelease: return inline_unsafe_access( is_store, T_BYTE, Release, false); |
| case vmIntrinsics::_putShortRelease: return inline_unsafe_access( is_store, T_SHORT, Release, false); |
| case vmIntrinsics::_putCharRelease: return inline_unsafe_access( is_store, T_CHAR, Release, false); |
| case vmIntrinsics::_putIntRelease: return inline_unsafe_access( is_store, T_INT, Release, false); |
| case vmIntrinsics::_putLongRelease: return inline_unsafe_access( is_store, T_LONG, Release, false); |
| case vmIntrinsics::_putFloatRelease: return inline_unsafe_access( is_store, T_FLOAT, Release, false); |
| case vmIntrinsics::_putDoubleRelease: return inline_unsafe_access( is_store, T_DOUBLE, Release, false); |
| |
| case vmIntrinsics::_getReferenceOpaque: return inline_unsafe_access(!is_store, T_OBJECT, Opaque, false); |
| case vmIntrinsics::_getBooleanOpaque: return inline_unsafe_access(!is_store, T_BOOLEAN, Opaque, false); |
| case vmIntrinsics::_getByteOpaque: return inline_unsafe_access(!is_store, T_BYTE, Opaque, false); |
| case vmIntrinsics::_getShortOpaque: return inline_unsafe_access(!is_store, T_SHORT, Opaque, false); |
| case vmIntrinsics::_getCharOpaque: return inline_unsafe_access(!is_store, T_CHAR, Opaque, false); |
| case vmIntrinsics::_getIntOpaque: return inline_unsafe_access(!is_store, T_INT, Opaque, false); |
| case vmIntrinsics::_getLongOpaque: return inline_unsafe_access(!is_store, T_LONG, Opaque, false); |
| case vmIntrinsics::_getFloatOpaque: return inline_unsafe_access(!is_store, T_FLOAT, Opaque, false); |
| case vmIntrinsics::_getDoubleOpaque: return inline_unsafe_access(!is_store, T_DOUBLE, Opaque, false); |
| |
| case vmIntrinsics::_putReferenceOpaque: return inline_unsafe_access( is_store, T_OBJECT, Opaque, false); |
| case vmIntrinsics::_putBooleanOpaque: return inline_unsafe_access( is_store, T_BOOLEAN, Opaque, false); |
| case vmIntrinsics::_putByteOpaque: return inline_unsafe_access( is_store, T_BYTE, Opaque, false); |
| case vmIntrinsics::_putShortOpaque: return inline_unsafe_access( is_store, T_SHORT, Opaque, false); |
| case vmIntrinsics::_putCharOpaque: return inline_unsafe_access( is_store, T_CHAR, Opaque, false); |
| case vmIntrinsics::_putIntOpaque: return inline_unsafe_access( is_store, T_INT, Opaque, false); |
| case vmIntrinsics::_putLongOpaque: return inline_unsafe_access( is_store, T_LONG, Opaque, false); |
| case vmIntrinsics::_putFloatOpaque: return inline_unsafe_access( is_store, T_FLOAT, Opaque, false); |
| case vmIntrinsics::_putDoubleOpaque: return inline_unsafe_access( is_store, T_DOUBLE, Opaque, false); |
| |
| case vmIntrinsics::_compareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap, Volatile); |
| case vmIntrinsics::_compareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap, Volatile); |
| case vmIntrinsics::_compareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap, Volatile); |
| case vmIntrinsics::_compareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap, Volatile); |
| case vmIntrinsics::_compareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap, Volatile); |
| |
| case vmIntrinsics::_weakCompareAndSetReferencePlain: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed); |
| case vmIntrinsics::_weakCompareAndSetReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire); |
| case vmIntrinsics::_weakCompareAndSetReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release); |
| case vmIntrinsics::_weakCompareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile); |
| case vmIntrinsics::_weakCompareAndSetBytePlain: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Relaxed); |
| case vmIntrinsics::_weakCompareAndSetByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Acquire); |
| case vmIntrinsics::_weakCompareAndSetByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Release); |
| case vmIntrinsics::_weakCompareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Volatile); |
| case vmIntrinsics::_weakCompareAndSetShortPlain: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Relaxed); |
| case vmIntrinsics::_weakCompareAndSetShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Acquire); |
| case vmIntrinsics::_weakCompareAndSetShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Release); |
| case vmIntrinsics::_weakCompareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Volatile); |
| case vmIntrinsics::_weakCompareAndSetIntPlain: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Relaxed); |
| case vmIntrinsics::_weakCompareAndSetIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Acquire); |
| case vmIntrinsics::_weakCompareAndSetIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Release); |
| case vmIntrinsics::_weakCompareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Volatile); |
| case vmIntrinsics::_weakCompareAndSetLongPlain: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Relaxed); |
| case vmIntrinsics::_weakCompareAndSetLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Acquire); |
| case vmIntrinsics::_weakCompareAndSetLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Release); |
| case vmIntrinsics::_weakCompareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Volatile); |
| |
| case vmIntrinsics::_compareAndExchangeReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Volatile); |
| case vmIntrinsics::_compareAndExchangeReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Acquire); |
| case vmIntrinsics::_compareAndExchangeReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Release); |
| case vmIntrinsics::_compareAndExchangeByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Volatile); |
| case vmIntrinsics::_compareAndExchangeByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Acquire); |
| case vmIntrinsics::_compareAndExchangeByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Release); |
| case vmIntrinsics::_compareAndExchangeShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Volatile); |
| case vmIntrinsics::_compareAndExchangeShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Acquire); |
| case vmIntrinsics::_compareAndExchangeShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Release); |
| case vmIntrinsics::_compareAndExchangeInt: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Volatile); |
| case vmIntrinsics::_compareAndExchangeIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Acquire); |
| case vmIntrinsics::_compareAndExchangeIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Release); |
| case vmIntrinsics::_compareAndExchangeLong: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Volatile); |
| case vmIntrinsics::_compareAndExchangeLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Acquire); |
| case vmIntrinsics::_compareAndExchangeLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Release); |
| |
| case vmIntrinsics::_getAndAddByte: return inline_unsafe_load_store(T_BYTE, LS_get_add, Volatile); |
| case vmIntrinsics::_getAndAddShort: return inline_unsafe_load_store(T_SHORT, LS_get_add, Volatile); |
| case vmIntrinsics::_getAndAddInt: return inline_unsafe_load_store(T_INT, LS_get_add, Volatile); |
| case vmIntrinsics::_getAndAddLong: return inline_unsafe_load_store(T_LONG, LS_get_add, Volatile); |
| |
| case vmIntrinsics::_getAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_get_set, Volatile); |
| case vmIntrinsics::_getAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_get_set, Volatile); |
| case vmIntrinsics::_getAndSetInt: return inline_unsafe_load_store(T_INT, LS_get_set, Volatile); |
| case vmIntrinsics::_getAndSetLong: return inline_unsafe_load_store(T_LONG, LS_get_set, Volatile); |
| case vmIntrinsics::_getAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_get_set, Volatile); |
| |
| case vmIntrinsics::_loadFence: |
| case vmIntrinsics::_storeFence: |
| case vmIntrinsics::_storeStoreFence: |
| case vmIntrinsics::_fullFence: return inline_unsafe_fence(intrinsic_id()); |
| |
| case vmIntrinsics::_onSpinWait: return inline_onspinwait(); |
| |
| case vmIntrinsics::_currentCarrierThread: return inline_native_currentCarrierThread(); |
| case vmIntrinsics::_currentThread: return inline_native_currentThread(); |
| case vmIntrinsics::_setCurrentThread: return inline_native_setCurrentThread(); |
| |
| case vmIntrinsics::_scopedValueCache: return inline_native_scopedValueCache(); |
| case vmIntrinsics::_setScopedValueCache: return inline_native_setScopedValueCache(); |
| |
| #if INCLUDE_JVMTI |
| case vmIntrinsics::_notifyJvmtiVThreadStart: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_start()), |
| "notifyJvmtiStart", true, false); |
| case vmIntrinsics::_notifyJvmtiVThreadEnd: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_end()), |
| "notifyJvmtiEnd", false, true); |
| case vmIntrinsics::_notifyJvmtiVThreadMount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_mount()), |
| "notifyJvmtiMount", false, false); |
| case vmIntrinsics::_notifyJvmtiVThreadUnmount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_unmount()), |
| "notifyJvmtiUnmount", false, false); |
| case vmIntrinsics::_notifyJvmtiVThreadHideFrames: return inline_native_notify_jvmti_hide(); |
| #endif |
| |
| #ifdef JFR_HAVE_INTRINSICS |
| case vmIntrinsics::_counterTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JfrTime::time_function()), "counterTime"); |
| case vmIntrinsics::_getEventWriter: return inline_native_getEventWriter(); |
| case vmIntrinsics::_jvm_commit: return inline_native_jvm_commit(); |
| #endif |
| case vmIntrinsics::_currentTimeMillis: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis"); |
| case vmIntrinsics::_nanoTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime"); |
| case vmIntrinsics::_writeback0: return inline_unsafe_writeback0(); |
| case vmIntrinsics::_writebackPreSync0: return inline_unsafe_writebackSync0(true); |
| case vmIntrinsics::_writebackPostSync0: return inline_unsafe_writebackSync0(false); |
| case vmIntrinsics::_allocateInstance: return inline_unsafe_allocate(); |
| case vmIntrinsics::_copyMemory: return inline_unsafe_copyMemory(); |
| case vmIntrinsics::_getLength: return inline_native_getLength(); |
| case vmIntrinsics::_copyOf: return inline_array_copyOf(false); |
| case vmIntrinsics::_copyOfRange: return inline_array_copyOf(true); |
| case vmIntrinsics::_equalsB: return inline_array_equals(StrIntrinsicNode::LL); |
| case vmIntrinsics::_equalsC: return inline_array_equals(StrIntrinsicNode::UU); |
| case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT); |
| case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG); |
| case vmIntrinsics::_clone: return inline_native_clone(intrinsic()->is_virtual()); |
| |
| case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true); |
| case vmIntrinsics::_newArray: return inline_unsafe_newArray(false); |
| |
| case vmIntrinsics::_isAssignableFrom: return inline_native_subtype_check(); |
| |
| case vmIntrinsics::_isInstance: |
| case vmIntrinsics::_getModifiers: |
| case vmIntrinsics::_isInterface: |
| case vmIntrinsics::_isArray: |
| case vmIntrinsics::_isPrimitive: |
| case vmIntrinsics::_isHidden: |
| case vmIntrinsics::_getSuperclass: |
| case vmIntrinsics::_getClassAccessFlags: return inline_native_Class_query(intrinsic_id()); |
| |
| case vmIntrinsics::_floatToRawIntBits: |
| case vmIntrinsics::_floatToIntBits: |
| case vmIntrinsics::_intBitsToFloat: |
| case vmIntrinsics::_doubleToRawLongBits: |
| case vmIntrinsics::_doubleToLongBits: |
| case vmIntrinsics::_longBitsToDouble: |
| case vmIntrinsics::_floatToFloat16: |
| case vmIntrinsics::_float16ToFloat: return inline_fp_conversions(intrinsic_id()); |
| |
| case vmIntrinsics::_floatIsFinite: |
| case vmIntrinsics::_floatIsInfinite: |
| case vmIntrinsics::_doubleIsFinite: |
| case vmIntrinsics::_doubleIsInfinite: return inline_fp_range_check(intrinsic_id()); |
| |
| case vmIntrinsics::_numberOfLeadingZeros_i: |
| case vmIntrinsics::_numberOfLeadingZeros_l: |
| case vmIntrinsics::_numberOfTrailingZeros_i: |
| case vmIntrinsics::_numberOfTrailingZeros_l: |
| case vmIntrinsics::_bitCount_i: |
| case vmIntrinsics::_bitCount_l: |
| case vmIntrinsics::_reverse_i: |
| case vmIntrinsics::_reverse_l: |
| case vmIntrinsics::_reverseBytes_i: |
| case vmIntrinsics::_reverseBytes_l: |
| case vmIntrinsics::_reverseBytes_s: |
| case vmIntrinsics::_reverseBytes_c: return inline_number_methods(intrinsic_id()); |
| |
| case vmIntrinsics::_compress_i: |
| case vmIntrinsics::_compress_l: |
| case vmIntrinsics::_expand_i: |
| case vmIntrinsics::_expand_l: return inline_bitshuffle_methods(intrinsic_id()); |
| |
| case vmIntrinsics::_compareUnsigned_i: |
| case vmIntrinsics::_compareUnsigned_l: return inline_compare_unsigned(intrinsic_id()); |
| |
| case vmIntrinsics::_divideUnsigned_i: |
| case vmIntrinsics::_divideUnsigned_l: |
| case vmIntrinsics::_remainderUnsigned_i: |
| case vmIntrinsics::_remainderUnsigned_l: return inline_divmod_methods(intrinsic_id()); |
| |
| case vmIntrinsics::_getCallerClass: return inline_native_Reflection_getCallerClass(); |
| |
| case vmIntrinsics::_Reference_get: return inline_reference_get(); |
| case vmIntrinsics::_Reference_refersTo0: return inline_reference_refersTo0(false); |
| case vmIntrinsics::_PhantomReference_refersTo0: return inline_reference_refersTo0(true); |
| |
| case vmIntrinsics::_Class_cast: return inline_Class_cast(); |
| |
| case vmIntrinsics::_aescrypt_encryptBlock: |
| case vmIntrinsics::_aescrypt_decryptBlock: return inline_aescrypt_Block(intrinsic_id()); |
| |
| case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: |
| case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: |
| return inline_cipherBlockChaining_AESCrypt(intrinsic_id()); |
| |
| case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: |
| case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: |
| return inline_electronicCodeBook_AESCrypt(intrinsic_id()); |
| |
| case vmIntrinsics::_counterMode_AESCrypt: |
| return inline_counterMode_AESCrypt(intrinsic_id()); |
| |
| case vmIntrinsics::_galoisCounterMode_AESCrypt: |
| return inline_galoisCounterMode_AESCrypt(); |
| |
| case vmIntrinsics::_md5_implCompress: |
| case vmIntrinsics::_sha_implCompress: |
| case vmIntrinsics::_sha2_implCompress: |
| case vmIntrinsics::_sha5_implCompress: |
| case vmIntrinsics::_sha3_implCompress: |
| return inline_digestBase_implCompress(intrinsic_id()); |
| |
| case vmIntrinsics::_digestBase_implCompressMB: |
| return inline_digestBase_implCompressMB(predicate); |
| |
| case vmIntrinsics::_multiplyToLen: |
| return inline_multiplyToLen(); |
| |
| case vmIntrinsics::_squareToLen: |
| return inline_squareToLen(); |
| |
| case vmIntrinsics::_mulAdd: |
| return inline_mulAdd(); |
| |
| case vmIntrinsics::_montgomeryMultiply: |
| return inline_montgomeryMultiply(); |
| case vmIntrinsics::_montgomerySquare: |
| return inline_montgomerySquare(); |
| |
| case vmIntrinsics::_bigIntegerRightShiftWorker: |
| return inline_bigIntegerShift(true); |
| case vmIntrinsics::_bigIntegerLeftShiftWorker: |
| return inline_bigIntegerShift(false); |
| |
| case vmIntrinsics::_vectorizedMismatch: |
| return inline_vectorizedMismatch(); |
| |
| case vmIntrinsics::_ghash_processBlocks: |
| return inline_ghash_processBlocks(); |
| case vmIntrinsics::_chacha20Block: |
| return inline_chacha20Block(); |
| case vmIntrinsics::_base64_encodeBlock: |
| return inline_base64_encodeBlock(); |
| case vmIntrinsics::_base64_decodeBlock: |
| return inline_base64_decodeBlock(); |
| case vmIntrinsics::_poly1305_processBlocks: |
| return inline_poly1305_processBlocks(); |
| |
| case vmIntrinsics::_encodeISOArray: |
| case vmIntrinsics::_encodeByteISOArray: |
| return inline_encodeISOArray(false); |
| case vmIntrinsics::_encodeAsciiArray: |
| return inline_encodeISOArray(true); |
| |
| case vmIntrinsics::_updateCRC32: |
| return inline_updateCRC32(); |
| case vmIntrinsics::_updateBytesCRC32: |
| return inline_updateBytesCRC32(); |
| case vmIntrinsics::_updateByteBufferCRC32: |
| return inline_updateByteBufferCRC32(); |
| |
| case vmIntrinsics::_updateBytesCRC32C: |
| return inline_updateBytesCRC32C(); |
| case vmIntrinsics::_updateDirectByteBufferCRC32C: |
| return inline_updateDirectByteBufferCRC32C(); |
| |
| case vmIntrinsics::_updateBytesAdler32: |
| return inline_updateBytesAdler32(); |
| case vmIntrinsics::_updateByteBufferAdler32: |
| return inline_updateByteBufferAdler32(); |
| |
| case vmIntrinsics::_profileBoolean: |
| return inline_profileBoolean(); |
| case vmIntrinsics::_isCompileConstant: |
| return inline_isCompileConstant(); |
| |
| case vmIntrinsics::_countPositives: |
| return inline_countPositives(); |
| |
| case vmIntrinsics::_fmaD: |
| case vmIntrinsics::_fmaF: |
| return inline_fma(intrinsic_id()); |
| |
| case vmIntrinsics::_isDigit: |
| case vmIntrinsics::_isLowerCase: |
| case vmIntrinsics::_isUpperCase: |
| case vmIntrinsics::_isWhitespace: |
| return inline_character_compare(intrinsic_id()); |
| |
| case vmIntrinsics::_min: |
| case vmIntrinsics::_max: |
| case vmIntrinsics::_min_strict: |
| case vmIntrinsics::_max_strict: |
| return inline_min_max(intrinsic_id()); |
| |
| case vmIntrinsics::_maxF: |
| case vmIntrinsics::_minF: |
| case vmIntrinsics::_maxD: |
| case vmIntrinsics::_minD: |
| case vmIntrinsics::_maxF_strict: |
| case vmIntrinsics::_minF_strict: |
| case vmIntrinsics::_maxD_strict: |
| case vmIntrinsics::_minD_strict: |
| return inline_fp_min_max(intrinsic_id()); |
| |
| case vmIntrinsics::_VectorUnaryOp: |
| return inline_vector_nary_operation(1); |
| case vmIntrinsics::_VectorBinaryOp: |
| return inline_vector_nary_operation(2); |
| case vmIntrinsics::_VectorTernaryOp: |
| return inline_vector_nary_operation(3); |
| case vmIntrinsics::_VectorFromBitsCoerced: |
| return inline_vector_frombits_coerced(); |
| case vmIntrinsics::_VectorShuffleIota: |
| return inline_vector_shuffle_iota(); |
| case vmIntrinsics::_VectorMaskOp: |
| return inline_vector_mask_operation(); |
| case vmIntrinsics::_VectorShuffleToVector: |
| return inline_vector_shuffle_to_vector(); |
| case vmIntrinsics::_VectorLoadOp: |
| return inline_vector_mem_operation(/*is_store=*/false); |
| case vmIntrinsics::_VectorLoadMaskedOp: |
| return inline_vector_mem_masked_operation(/*is_store*/false); |
| case vmIntrinsics::_VectorStoreOp: |
| return inline_vector_mem_operation(/*is_store=*/true); |
| case vmIntrinsics::_VectorStoreMaskedOp: |
| return inline_vector_mem_masked_operation(/*is_store=*/true); |
| case vmIntrinsics::_VectorGatherOp: |
| return inline_vector_gather_scatter(/*is_scatter*/ false); |
| case vmIntrinsics::_VectorScatterOp: |
| return inline_vector_gather_scatter(/*is_scatter*/ true); |
| case vmIntrinsics::_VectorReductionCoerced: |
| return inline_vector_reduction(); |
| case vmIntrinsics::_VectorTest: |
| return inline_vector_test(); |
| case vmIntrinsics::_VectorBlend: |
| return inline_vector_blend(); |
| case vmIntrinsics::_VectorRearrange: |
| return inline_vector_rearrange(); |
| case vmIntrinsics::_VectorCompare: |
| return inline_vector_compare(); |
| case vmIntrinsics::_VectorBroadcastInt: |
| return inline_vector_broadcast_int(); |
| case vmIntrinsics::_VectorConvert: |
| return inline_vector_convert(); |
| case vmIntrinsics::_VectorInsert: |
| return inline_vector_insert(); |
| case vmIntrinsics::_VectorExtract: |
| return inline_vector_extract(); |
| case vmIntrinsics::_VectorCompressExpand: |
| return inline_vector_compress_expand(); |
| case vmIntrinsics::_IndexVector: |
| return inline_index_vector(); |
| case vmIntrinsics::_IndexPartiallyInUpperRange: |
| return inline_index_partially_in_upper_range(); |
| |
| case vmIntrinsics::_getObjectSize: |
| return inline_getObjectSize(); |
| |
| case vmIntrinsics::_blackhole: |
| return inline_blackhole(); |
| |
| default: |
| // If you get here, it may be that someone has added a new intrinsic |
| // to the list in vmIntrinsics.hpp without implementing it here. |
| #ifndef PRODUCT |
| if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { |
| tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)", |
| vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id())); |
| } |
| #endif |
| return false; |
| } |
| } |
| |
| Node* LibraryCallKit::try_to_predicate(int predicate) { |
| if (!jvms()->has_method()) { |
| // Root JVMState has a null method. |
| assert(map()->memory()->Opcode() == Op_Parm, ""); |
| // Insert the memory aliasing node |
| set_all_memory(reset_memory()); |
| } |
| assert(merged_memory(), ""); |
| |
| switch (intrinsic_id()) { |
| case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: |
| return inline_cipherBlockChaining_AESCrypt_predicate(false); |
| case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: |
| return inline_cipherBlockChaining_AESCrypt_predicate(true); |
| case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: |
| return inline_electronicCodeBook_AESCrypt_predicate(false); |
| case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: |
| return inline_electronicCodeBook_AESCrypt_predicate(true); |
| case vmIntrinsics::_counterMode_AESCrypt: |
| return inline_counterMode_AESCrypt_predicate(); |
| case vmIntrinsics::_digestBase_implCompressMB: |
| return inline_digestBase_implCompressMB_predicate(predicate); |
| case vmIntrinsics::_galoisCounterMode_AESCrypt: |
| return inline_galoisCounterMode_AESCrypt_predicate(); |
| |
| default: |
| // If you get here, it may be that someone has added a new intrinsic |
| // to the list in vmIntrinsics.hpp without implementing it here. |
| #ifndef PRODUCT |
| if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { |
| tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)", |
| vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id())); |
| } |
| #endif |
| Node* slow_ctl = control(); |
| set_control(top()); // No fast path intrinsic |
| return slow_ctl; |
| } |
| } |
| |
| //------------------------------set_result------------------------------- |
| // Helper function for finishing intrinsics. |
| void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) { |
| record_for_igvn(region); |
| set_control(_gvn.transform(region)); |
| set_result( _gvn.transform(value)); |
| assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity"); |
| } |
| |
| //------------------------------generate_guard--------------------------- |
| // Helper function for generating guarded fast-slow graph structures. |
| // The given 'test', if true, guards a slow path. If the test fails |
| // then a fast path can be taken. (We generally hope it fails.) |
| // In all cases, GraphKit::control() is updated to the fast path. |
| // The returned value represents the control for the slow path. |
| // The return value is never 'top'; it is either a valid control |
| // or null if it is obvious that the slow path can never be taken. |
| // Also, if region and the slow control are not null, the slow edge |
| // is appended to the region. |
| Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) { |
| if (stopped()) { |
| // Already short circuited. |
| return nullptr; |
| } |
| |
| // Build an if node and its projections. |
| // If test is true we take the slow path, which we assume is uncommon. |
| if (_gvn.type(test) == TypeInt::ZERO) { |
| // The slow branch is never taken. No need to build this guard. |
| return nullptr; |
| } |
| |
| IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN); |
| |
| Node* if_slow = _gvn.transform(new IfTrueNode(iff)); |
| if (if_slow == top()) { |
| // The slow branch is never taken. No need to build this guard. |
| return nullptr; |
| } |
| |
| if (region != nullptr) |
| region->add_req(if_slow); |
| |
| Node* if_fast = _gvn.transform(new IfFalseNode(iff)); |
| set_control(if_fast); |
| |
| return if_slow; |
| } |
| |
| inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) { |
| return generate_guard(test, region, PROB_UNLIKELY_MAG(3)); |
| } |
| inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) { |
| return generate_guard(test, region, PROB_FAIR); |
| } |
| |
| inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region, |
| Node* *pos_index) { |
| if (stopped()) |
| return nullptr; // already stopped |
| if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint] |
| return nullptr; // index is already adequately typed |
| Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0))); |
| Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); |
| Node* is_neg = generate_guard(bol_lt, region, PROB_MIN); |
| if (is_neg != nullptr && pos_index != nullptr) { |
| // Emulate effect of Parse::adjust_map_after_if. |
| Node* ccast = new CastIINode(index, TypeInt::POS); |
| ccast->set_req(0, control()); |
| (*pos_index) = _gvn.transform(ccast); |
| } |
| return is_neg; |
| } |
| |
| // Make sure that 'position' is a valid limit index, in [0..length]. |
| // There are two equivalent plans for checking this: |
| // A. (offset + copyLength) unsigned<= arrayLength |
| // B. offset <= (arrayLength - copyLength) |
| // We require that all of the values above, except for the sum and |
| // difference, are already known to be non-negative. |
| // Plan A is robust in the face of overflow, if offset and copyLength |
| // are both hugely positive. |
| // |
| // Plan B is less direct and intuitive, but it does not overflow at |
| // all, since the difference of two non-negatives is always |
| // representable. Whenever Java methods must perform the equivalent |
| // check they generally use Plan B instead of Plan A. |
| // For the moment we use Plan A. |
| inline Node* LibraryCallKit::generate_limit_guard(Node* offset, |
| Node* subseq_length, |
| Node* array_length, |
| RegionNode* region) { |
| if (stopped()) |
| return nullptr; // already stopped |
| bool zero_offset = _gvn.type(offset) == TypeInt::ZERO; |
| if (zero_offset && subseq_length->eqv_uncast(array_length)) |
| return nullptr; // common case of whole-array copy |
| Node* last = subseq_length; |
| if (!zero_offset) // last += offset |
| last = _gvn.transform(new AddINode(last, offset)); |
| Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last)); |
| Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); |
| Node* is_over = generate_guard(bol_lt, region, PROB_MIN); |
| return is_over; |
| } |
| |
| // Emit range checks for the given String.value byte array |
| void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) { |
| if (stopped()) { |
| return; // already stopped |
| } |
| RegionNode* bailout = new RegionNode(1); |
| record_for_igvn(bailout); |
| if (char_count) { |
| // Convert char count to byte count |
| count = _gvn.transform(new LShiftINode(count, intcon(1))); |
| } |
| |
| // Offset and count must not be negative |
| generate_negative_guard(offset, bailout); |
| generate_negative_guard(count, bailout); |
| // Offset + count must not exceed length of array |
| generate_limit_guard(offset, count, load_array_length(array), bailout); |
| |
| if (bailout->req() > 1) { |
| PreserveJVMState pjvms(this); |
| set_control(_gvn.transform(bailout)); |
| uncommon_trap(Deoptimization::Reason_intrinsic, |
| Deoptimization::Action_maybe_recompile); |
| } |
| } |
| |
| Node* LibraryCallKit::current_thread_helper(Node*& tls_output, ByteSize handle_offset, |
| bool is_immutable) { |
| ciKlass* thread_klass = env()->Thread_klass(); |
| const Type* thread_type |
| = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull); |
| |
| Node* thread = _gvn.transform(new ThreadLocalNode()); |
| Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(handle_offset)); |
| tls_output = thread; |
| |
| Node* thread_obj_handle |
| = (is_immutable |
| ? LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(), |
| TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered) |
| : make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered)); |
| thread_obj_handle = _gvn.transform(thread_obj_handle); |
| |
| DecoratorSet decorators = IN_NATIVE; |
| if (is_immutable) { |
| decorators |= C2_IMMUTABLE_MEMORY; |
| } |
| return access_load(thread_obj_handle, thread_type, T_OBJECT, decorators); |
| } |
| |
| //--------------------------generate_current_thread-------------------- |
| Node* LibraryCallKit::generate_current_thread(Node* &tls_output) { |
| return current_thread_helper(tls_output, JavaThread::threadObj_offset(), |
| /*is_immutable*/false); |
| } |
| |
| //--------------------------generate_virtual_thread-------------------- |
| Node* LibraryCallKit::generate_virtual_thread(Node* tls_output) { |
| return current_thread_helper(tls_output, JavaThread::vthread_offset(), |
| !C->method()->changes_current_thread()); |
| } |
| |
| //------------------------------make_string_method_node------------------------ |
| // Helper method for String intrinsic functions. This version is called with |
| // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded |
| // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes |
| // containing the lengths of str1 and str2. |
| Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) { |
| Node* result = nullptr; |
| switch (opcode) { |
| case Op_StrIndexOf: |
| result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES), |
| str1_start, cnt1, str2_start, cnt2, ae); |
| break; |
| case Op_StrComp: |
| result = new StrCompNode(control(), memory(TypeAryPtr::BYTES), |
| str1_start, cnt1, str2_start, cnt2, ae); |
| break; |
| case Op_StrEquals: |
| // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals'). |
| // Use the constant length if there is one because optimized match rule may exist. |
| result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES), |
| str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae); |
| break; |
| default: |
| ShouldNotReachHere(); |
| return nullptr; |
| } |
| |
| // All these intrinsics have checks. |
| C->set_has_split_ifs(true); // Has chance for split-if optimization |
| clear_upper_avx(); |
| |
| return _gvn.transform(result); |
| } |
| |
| //------------------------------inline_string_compareTo------------------------ |
| bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) { |
| Node* arg1 = argument(0); |
| Node* arg2 = argument(1); |
| |
| arg1 = must_be_not_null(arg1, true); |
| arg2 = must_be_not_null(arg2, true); |
| |
| // Get start addr and length of first argument |
| Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); |
| Node* arg1_cnt = load_array_length(arg1); |
| |
| // Get start addr and length of second argument |
| Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); |
| Node* arg2_cnt = load_array_length(arg2); |
| |
| Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); |
| set_result(result); |
| return true; |
| } |
| |
| //------------------------------inline_string_equals------------------------ |
| bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) { |
| Node* arg1 = argument(0); |
| Node* arg2 = argument(1); |
| |
| // paths (plus control) merge |
| RegionNode* region = new RegionNode(3); |
| Node* phi = new PhiNode(region, TypeInt::BOOL); |
| |
| if (!stopped()) { |
| |
| arg1 = must_be_not_null(arg1, true); |
| arg2 = must_be_not_null(arg2, true); |
| |
| // Get start addr and length of first argument |
| Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); |
| Node* arg1_cnt = load_array_length(arg1); |
| |
| // Get start addr and length of second argument |
| Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); |
| Node* arg2_cnt = load_array_length(arg2); |
| |
| // Check for arg1_cnt != arg2_cnt |
| Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt)); |
| Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); |
| Node* if_ne = generate_slow_guard(bol, nullptr); |
| if (if_ne != nullptr) { |
| phi->init_req(2, intcon(0)); |
| region->init_req(2, if_ne); |
| } |
| |
| // Check for count == 0 is done by assembler code for StrEquals. |
| |
| if (!stopped()) { |
| Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); |
| phi->init_req(1, equals); |
| region->init_req(1, control()); |
| } |
| } |
| |
| // post merge |
| set_control(_gvn.transform(region)); |
| record_for_igvn(region); |
| |
| set_result(_gvn.transform(phi)); |
| return true; |
| } |
| |
| //------------------------------inline_array_equals---------------------------- |
| bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) { |
| assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types"); |
| Node* arg1 = argument(0); |
| Node* arg2 = argument(1); |
| |
| const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES; |
| set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae))); |
| clear_upper_avx(); |
| |
| return true; |
| } |
| |
| |
| //------------------------------inline_countPositives------------------------------ |
| bool LibraryCallKit::inline_countPositives() { |
| if (too_many_traps(Deoptimization::Reason_intrinsic)) { |
| return false; |
| } |
| |
| assert(callee()->signature()->size() == 3, "countPositives has 3 parameters"); |
| // no receiver since it is static method |
| Node* ba = argument(0); |
| Node* offset = argument(1); |
| Node* len = argument(2); |
| |
| ba = must_be_not_null(ba, true); |
| |
| // Range checks |
| generate_string_range_check(ba, offset, len, false); |
| if (stopped()) { |
| return true; |
| } |
| Node* ba_start = array_element_address(ba, offset, T_BYTE); |
| Node* result = new CountPositivesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len); |
| set_result(_gvn.transform(result)); |
| clear_upper_avx(); |
| return true; |
| } |
| |
| bool LibraryCallKit::inline_preconditions_checkIndex(BasicType bt) { |
| Node* index = argument(0); |
| Node* length = bt == T_INT ? argument(1) : argument(2); |
| if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) { |
| return false; |
| } |
| |
| // check that length is positive |
| Node* len_pos_cmp = _gvn.transform(CmpNode::make(length, integercon(0, bt), bt)); |
| Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge)); |
| |
| { |
| BuildCutout unless(this, len_pos_bol, PROB_MAX); |
| uncommon_trap(Deoptimization::Reason_intrinsic, |
| Deoptimization::Action_make_not_entrant); |
| } |
| |
| if (stopped()) { |
| // Length is known to be always negative during compilation and the IR graph so far constructed is good so return success |
| return true; |
| } |
| |
| // length is now known positive, add a cast node to make this explicit |
| jlong upper_bound = _gvn.type(length)->is_integer(bt)->hi_as_long(); |
| Node* casted_length = ConstraintCastNode::make(control(), length, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), ConstraintCastNode::RegularDependency, bt); |
| casted_length = _gvn.transform(casted_length); |
| replace_in_map(length, casted_length); |
| length = casted_length; |
| |
| // Use an unsigned comparison for the range check itself |
| Node* rc_cmp = _gvn.transform(CmpNode::make(index, length, bt, true)); |
| BoolTest::mask btest = BoolTest::lt; |
| Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest)); |
| RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN); |
| _gvn.set_type(rc, rc->Value(&_gvn)); |
| if (!rc_bool->is_Con()) { |
| record_for_igvn(rc); |
| } |
| set_control(_gvn.transform(new IfTrueNode(rc))); |
| { |
| PreserveJVMState pjvms(this); |
| set_control(_gvn.transform(new IfFalseNode(rc))); |
| uncommon_trap(Deoptimization::Reason_range_check, |
| Deoptimization::Action_make_not_entrant); |
| } |
| |
| if (stopped()) { |
| // Range check is known to always fail during compilation and the IR graph so far constructed is good so return success |
| return true; |
| } |
| |
| // index is now known to be >= 0 and < length, cast it |
| Node* result = ConstraintCastNode::make(control(), index, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), ConstraintCastNode::RegularDependency, bt); |
| result = _gvn.transform(result); |
| set_result(result); |
| replace_in_map(index, result); |
| return true; |
| } |
| |
| //------------------------------inline_string_indexOf------------------------ |
| bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) { |
| if (!Matcher::match_rule_supported(Op_StrIndexOf)) { |
| return false; |
| } |
| Node* src = argument(0); |
| Node* tgt = argument(1); |
| |
| // Make the merge point |
| RegionNode* result_rgn = new RegionNode(4); |
| Node* result_phi = new PhiNode(result_rgn, TypeInt::INT); |
| |
| src = must_be_not_null(src, true); |
| tgt = must_be_not_null(tgt, true); |
| |
| // Get start addr and length of source string |
| Node* src_start = array_element_address(src, intcon(0), T_BYTE); |
| Node* src_count = load_array_length(src); |
| |
| // Get start addr and length of substring |
| Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); |
| Node* tgt_count = load_array_length(tgt); |
| |
| if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) { |
| // Divide src size by 2 if String is UTF16 encoded |
| src_count = _gvn.transform(new RShiftINode(src_count, intcon(1))); |
| } |
| if (ae == StrIntrinsicNode::UU) { |
| // Divide substring size by 2 if String is UTF16 encoded |
| tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1))); |
| } |
| |
| Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, result_rgn, result_phi, ae); |
| if (result != nullptr) { |
| result_phi->init_req(3, result); |
| result_rgn->init_req(3, control()); |
| } |
| set_control(_gvn.transform(result_rgn)); |
| record_for_igvn(result_rgn); |
| set_result(_gvn.transform(result_phi)); |
| |
| return true; |
| } |
| |
| //-----------------------------inline_string_indexOf----------------------- |
| bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) { |
| if (too_many_traps(Deoptimization::Reason_intrinsic)) { |
| return false; |
| } |
| if (!Matcher::match_rule_supported(Op_StrIndexOf)) { |
| return false; |
| } |
| assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments"); |
| Node* src = argument(0); // byte[] |
| Node* src_count = argument(1); // char count |
| Node* tgt = argument(2); // byte[] |
| Node* tgt_count = argument(3); // char count |
| Node* from_index = argument(4); // char index |
| |
| src = must_be_not_null(src, true); |
| tgt = must_be_not_null(tgt, true); |
| |
| // Multiply byte array index by 2 if String is UTF16 encoded |
| Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); |
| src_count = _gvn.transform(new SubINode(src_count, from_index)); |
| Node* src_start = array_element_address(src, src_offset, T_BYTE); |
| Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); |
| |
| // Range checks |
| generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL); |
| generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU); |
| if (stopped()) { |
| return true; |
| } |
| |
| RegionNode* region = new RegionNode(5); |
| Node* phi = new PhiNode(region, TypeInt::INT); |
| |
| Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, region, phi, ae); |
| if (result != nullptr) { |
| // The result is index relative to from_index if substring was found, -1 otherwise. |
| // Generate code which will fold into cmove. |
| Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); |
| Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); |
| |
| Node* if_lt = generate_slow_guard(bol, nullptr); |
| if (if_lt != nullptr) { |
| // result == -1 |
| phi->init_req(3, result); |
| region->init_req(3, if_lt); |
| } |
| if (!stopped()) { |
| result = _gvn.transform(new AddINode(result, from_index)); |
| phi->init_req(4, result); |
| region->init_req(4, control()); |
| } |
| } |
| |
| set_control(_gvn.transform(region)); |
| record_for_igvn(region); |
| set_result(_gvn.transform(phi)); |
| clear_upper_avx(); |
| |
| return true; |
| } |
| |
| // Create StrIndexOfNode with fast path checks |
| Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count, |
| RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) { |
| // Check for substr count > string count |
| Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count)); |
| Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt)); |
| Node* if_gt = generate_slow_guard(bol, nullptr); |
| if (if_gt != nullptr) { |
| phi->init_req(1, intcon(-1)); |
| region->init_req(1, if_gt); |
| } |
| if (!stopped()) { |
| // Check for substr count == 0 |
| cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0))); |
| bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); |
| Node* if_zero = generate_slow_guard(bol, nullptr); |
| if (if_zero != nullptr) { |
| phi->init_req(2, intcon(0)); |
| region->init_req(2, if_zero); |
| } |
| } |
| if (!stopped()) { |
| return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae); |
| } |
| return nullptr; |
| } |
| |
| //-----------------------------inline_string_indexOfChar----------------------- |
| bool LibraryCallKit::inline_string_indexOfChar(StrIntrinsicNode::ArgEnc ae) { |
| if (too_many_traps(Deoptimization::Reason_intrinsic)) { |
| return false; |
| } |
| if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) { |
| return false; |
| } |
| assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments"); |
| Node* src = argument(0); // byte[] |
| Node* int_ch = argument(1); |
| Node* from_index = argument(2); |
| Node* max = argument(3); |
| |
| src = must_be_not_null(src, true); |
| |
| Node* src_offset = ae == StrIntrinsicNode::L ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); |
| Node* src_start = array_element_address(src, src_offset, T_BYTE); |
| Node* src_count = _gvn.transform(new SubINode(max, from_index)); |
| |
| // Range checks |
| generate_string_range_check(src, src_offset, src_count, ae == StrIntrinsicNode::U); |
| |
| // Check for int_ch >= 0 |
| Node* int_ch_cmp = _gvn.transform(new CmpINode(int_ch, intcon(0))); |
| Node* int_ch_bol = _gvn.transform(new BoolNode(int_ch_cmp, BoolTest::ge)); |
| { |
| BuildCutout unless(this, int_ch_bol, PROB_MAX); |
| uncommon_trap(Deoptimization::Reason_intrinsic, |
| Deoptimization::Action_maybe_recompile); |
| } |
| if (stopped()) { |
| return true; |
| } |
| |
| RegionNode* region = new RegionNode(3); |
| Node* phi = new PhiNode(region, TypeInt::INT); |
| |
| Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, int_ch, ae); |
| C->set_has_split_ifs(true); // Has chance for split-if optimization |
| _gvn.transform(result); |
| |
| Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); |
| Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); |
| |
| Node* if_lt = generate_slow_guard(bol, nullptr); |
| if (if_lt != nullptr) { |
| // result == -1 |
| phi->init_req(2, result); |
| region->init_req(2, if_lt); |
| } |
| if (!stopped()) { |
| result = _gvn.transform(new AddINode(result, from_index)); |
| phi->init_req(1, result); |
| region->init_req(1, control()); |
| } |
| set_control(_gvn.transform(region)); |
| record_for_igvn(region); |
| set_result(_gvn.transform(phi)); |
| clear_upper_avx(); |
| |
| return true; |
| } |
| //---------------------------inline_string_copy--------------------- |
| // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[]) |
| // int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) |
| // int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len) |
| // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[]) |
| // void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) |
| // void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len) |
| bool LibraryCallKit::inline_string_copy(bool compress) { |
| if (too_many_traps(Deoptimization::Reason_intrinsic)) { |
| return false; |
| } |
| int nargs = 5; // 2 oops, 3 ints |
| assert(callee()->signature()->size() == nargs, "string copy has 5 arguments"); |
| |
| Node* src = argument(0); |
| Node* src_offset = argument(1); |
| Node* dst = argument(2); |
| Node* dst_offset = argument(3); |
| Node* length = argument(4); |
| |
| // Check for allocation before we add nodes that would confuse |
| // tightly_coupled_allocation() |
| AllocateArrayNode* alloc = tightly_coupled_allocation(dst); |
| |
| // Figure out the size and type of the elements we will be copying. |
| const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); |
| const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr(); |
| if (src_type == nullptr || dst_type == nullptr) { |
| return false; |
| } |
| BasicType src_elem = src_type->elem()->array_element_basic_type(); |
| BasicType dst_elem = dst_type->elem()->array_element_basic_type(); |
| assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) || |
| (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)), |
| "Unsupported array types for inline_string_copy"); |
| |
| src = must_be_not_null(src, true); |
| dst = must_be_not_null(dst, true); |
| |
| // Convert char[] offsets to byte[] offsets |
| bool convert_src = (compress && src_elem == T_BYTE); |
| bool convert_dst = (!compress && dst_elem == T_BYTE); |
| if (convert_src) { |
| src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1))); |
| } else if (convert_dst) { |
| dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1))); |
| } |
| |
| // Range checks |
| generate_string_range_check(src, src_offset, length, convert_src); |
| generate_string_range_check(dst, dst_offset, length, convert_dst); |
| if (stopped()) { |
| return true; |
| } |
| |
| Node* src_start = array_element_address(src, src_offset, src_elem); |
| Node* dst_start = array_element_address(dst, dst_offset, dst_elem); |
| // 'src_start' points to src array + scaled offset |
| // 'dst_start' points to dst array + scaled offset |
| Node* count = nullptr; |
| if (compress) { |
| count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length); |
| } else { |
| inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length); |
| } |
| |
| if (alloc != nullptr) { |
| if (alloc->maybe_set_complete(&_gvn)) { |
| // "You break it, you buy it." |
| InitializeNode* init = alloc->initialization(); |
| assert(init->is_complete(), "we just did this"); |
| init->set_complete_with_arraycopy(); |
| assert(dst->is_CheckCastPP(), "sanity"); |
| assert(dst->in(0)->in(0) == init, "dest pinned"); |
| } |
| // Do not let stores that initialize this object be reordered with |
| // a subsequent store that would make this object accessible by |
| // other threads. |
| // Record what AllocateNode this StoreStore protects so that |
| // escape analysis can go from the MemBarStoreStoreNode to the |
| // AllocateNode and eliminate the MemBarStoreStoreNode if possible |
| // based on the escape status of the AllocateNode. |
| insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); |
| } |
| if (compress) { |
| set_result(_gvn.transform(count)); |
| } |
| clear_upper_avx(); |
| |
| return true; |
| } |
| |
| #ifdef _LP64 |
| #define XTOP ,top() /*additional argument*/ |
| #else //_LP64 |
| #define XTOP /*no additional argument*/ |
| #endif //_LP64 |
| |
| //------------------------inline_string_toBytesU-------------------------- |
| // public static byte[] StringUTF16.toBytes(char[] value, int off, int len) |
| bool LibraryCallKit::inline_string_toBytesU() { |
| if (too_many_traps(Deoptimization::Reason_intrinsic)) { |
| return false; |
| } |
| // Get the arguments. |
| Node* value = argument(0); |
| Node* offset = argument(1); |
| Node* length = argument(2); |
| |
| Node* newcopy = nullptr; |
| |
| // Set the original stack and the reexecute bit for the interpreter to reexecute |
| // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens. |
| { PreserveReexecuteState preexecs(this); |
| jvms()->set_should_reexecute(true); |
| |
| // Check if a null path was taken unconditionally. |
| value = null_check(value); |
| |
| RegionNode* bailout = new RegionNode(1); |
| record_for_igvn(bailout); |
| |
| // Range checks |
| generate_negative_guard(offset, bailout); |
| generate_negative_guard(length, bailout); |
| generate_limit_guard(offset, length, load_array_length(value), bailout); |
| // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE |
| generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout); |
| |
| if (bailout->req() > 1) { |
| PreserveJVMState pjvms(this); |
| set_control(_gvn.transform(bailout)); |
| uncommon_trap(Deoptimization::Reason_intrinsic, |
| Deoptimization::Action_maybe_recompile); |
| } |
| if (stopped()) { |
| return true; |
| } |
| |
| Node* size = _gvn.transform(new LShiftINode(length, intcon(1))); |
| Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE))); |
| newcopy = new_array(klass_node, size, 0); // no arguments to push |
| AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy); |
| guarantee(alloc != nullptr, "created above"); |
| |
| // Calculate starting addresses. |
| Node* src_start = array_element_address(value, offset, T_CHAR); |
| Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE)); |
| |
| // Check if src array address is aligned to HeapWordSize (dst is always aligned) |
| const TypeInt* toffset = gvn().type(offset)->is_int(); |
| bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); |
| |
| // Figure out which arraycopy runtime method to call (disjoint, uninitialized). |
| const char* copyfunc_name = "arraycopy"; |
| address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); |
| Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, |
| OptoRuntime::fast_arraycopy_Type(), |
| copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, |
| src_start, dst_start, ConvI2X(length) XTOP); |
| // Do not let reads from the cloned object float above the arraycopy. |
| if (alloc->maybe_set_complete(&_gvn)) { |
| // "You break it, you buy it." |
| InitializeNode* init = alloc->initialization(); |
| assert(init->is_complete(), "we just did this"); |
| init->set_complete_with_arraycopy(); |
| assert(newcopy->is_CheckCastPP(), "sanity"); |
| assert(newcopy->in(0)->in(0) == init, "dest pinned"); |
| } |
| // Do not let stores that initialize this object be reordered with |
| // a subsequent store that would make this object accessible by |
| // other threads. |
| // Record what AllocateNode this StoreStore protects so that |
| // escape analysis can go from the MemBarStoreStoreNode to the |
| // AllocateNode and eliminate the MemBarStoreStoreNode if possible |
| // based on the escape status of the AllocateNode. |
| insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); |
| } // original reexecute is set back here |
| |
| C->set_has_split_ifs(true); // Has chance for split-if optimization |
| if (!stopped()) { |
| set_result(newcopy); |
| } |
| clear_upper_avx(); |
| |
| return true; |
| } |
| |
| //------------------------inline_string_getCharsU-------------------------- |
| // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin) |
| bool LibraryCallKit::inline_string_getCharsU() { |
| if (too_many_traps(Deoptimization::Reason_intrinsic)) { |
| return false; |
| } |
| |
| // Get the arguments. |
| Node* src = argument(0); |
| Node* src_begin = argument(1); |
| Node* src_end = argument(2); // exclusive offset (i < src_end) |
| Node* dst = argument(3); |
| Node* dst_begin = argument(4); |
| |
| // Check for allocation before we add nodes that would confuse |
| // tightly_coupled_allocation() |
| AllocateArrayNode* alloc = tightly_coupled_allocation(dst); |
| |
| // Check if a null path was taken unconditionally. |
| src = null_check(src); |
| dst = null_check(dst); |
| if (stopped()) { |
| return true; |
| } |
| |
| // Get length and convert char[] offset to byte[] offset |
| Node* length = _gvn.transform(new SubINode(src_end, src_begin)); |
| src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1))); |
| |
| // Range checks |
| generate_string_range_check(src, src_begin, length, true); |
| generate_string_range_check(dst, dst_begin, length, false); |
| if (stopped()) { |
| return true; |
| } |
| |
| if (!stopped()) { |
| // Calculate starting addresses. |
| Node* src_start = array_element_address(src, src_begin, T_BYTE); |
| Node* dst_start = array_element_address(dst, dst_begin, T_CHAR); |
| |
| // Check if array addresses are aligned to HeapWordSize |
| const TypeInt* tsrc = gvn().type(src_begin)->is_int(); |
| const TypeInt* tdst = gvn().type(dst_begin)->is_int(); |
| bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) && |
| tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); |
| |
| // Figure out which arraycopy runtime method to call (disjoint, uninitialized). |
| const char* copyfunc_name = "arraycopy"; |
| address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); |
| Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, |
| OptoRuntime::fast_arraycopy_Type(), |
| copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, |
| src_start, dst_start, ConvI2X(length) XTOP); |
| // Do not let reads from the cloned object float above the arraycopy. |
| if (alloc != nullptr) { |
| if (alloc->maybe_set_complete(&_gvn)) { |
| // "You break it, you buy it." |
| InitializeNode* init = alloc->initialization(); |
| assert(init->is_complete(), "we just did this"); |
| init->set_complete_with_arraycopy(); |
| assert(dst->is_CheckCastPP(), "sanity"); |
| assert(dst->in(0)->in(0) == init, "dest pinned"); |
| } |
| // Do not let stores that initialize this object be reordered with |
| // a subsequent store that would make this object accessible by |
| // other threads. |
| // Record what AllocateNode this StoreStore protects so that |
| // escape analysis can go from the MemBarStoreStoreNode to the |
| // AllocateNode and eliminate the MemBarStoreStoreNode if possible |
| // based on the escape status of the AllocateNode. |
| insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); |
| } else { |
| insert_mem_bar(Op_MemBarCPUOrder); |
| } |
| } |
| |
| C->set_has_split_ifs(true); // Has chance for split-if optimization |
| return true; |
| } |
| |
| //----------------------inline_string_char_access---------------------------- |
| // Store/Load char to/from byte[] array. |
| // static void StringUTF16.putChar(byte[] val, int index, int c) |
| // static char StringUTF16.getChar(byte[] val, int index) |
| bool LibraryCallKit::inline_string_char_access(bool is_store) { |
| Node* value = argument(0); |
| Node* index = argument(1); |
| Node* ch = is_store ? argument(2) : nullptr; |
| |
| // This intrinsic accesses byte[] array as char[] array. Computing the offsets |
| // correctly requires matched array shapes. |
| assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE), |
| "sanity: byte[] and char[] bases agree"); |
| assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2, |
| "sanity: byte[] and char[] scales agree"); |
| |
| // Bail when getChar over constants is requested: constant folding would |
| // reject folding mismatched char access over byte[]. A normal inlining for getChar |
| // Java method would constant fold nicely instead. |
| if (!is_store && value->is_Con() && index->is_Con()) { |
| return false; |
| } |
| |
| // Save state and restore on bailout |
| uint old_sp = sp(); |
| SafePointNode* old_map = clone_map(); |
| |
| value = must_be_not_null(value, true); |
| |
| Node* adr = array_element_address(value, index, T_CHAR); |
| if (adr->is_top()) { |
| set_map(old_map); |
| set_sp(old_sp); |
| return false; |
| } |
| destruct_map_clone(old_map); |
| if (is_store) { |
| access_store_at(value, adr, TypeAryPtr::BYTES, ch, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED); |
| } else { |
| ch = access_load_at(value, adr, TypeAryPtr::BYTES, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD | C2_UNKNOWN_CONTROL_LOAD); |
| set_result(ch); |
| } |
| return true; |
| } |
| |
| //--------------------------round_double_node-------------------------------- |
| // Round a double node if necessary. |
| Node* LibraryCallKit::round_double_node(Node* n) { |
| if (Matcher::strict_fp_requires_explicit_rounding) { |
| #ifdef IA32 |
| if (UseSSE < 2) { |
| n = _gvn.transform(new RoundDoubleNode(nullptr, n)); |
| } |
| #else |
| Unimplemented(); |
| #endif // IA32 |
| } |
| return n; |
| } |
| |
| //------------------------------inline_math----------------------------------- |
| // public static double Math.abs(double) |
| // public static double Math.sqrt(double) |
| // public static double Math.log(double) |
| // public static double Math.log10(double) |
| // public static double Math.round(double) |
| bool LibraryCallKit::inline_double_math(vmIntrinsics::ID id) { |
| Node* arg = round_double_node(argument(0)); |
| Node* n = nullptr; |
| switch (id) { |
| case vmIntrinsics::_dabs: n = new AbsDNode( arg); break; |
| case vmIntrinsics::_dsqrt: |
| case vmIntrinsics::_dsqrt_strict: |
| n = new SqrtDNode(C, control(), arg); break; |
| case vmIntrinsics::_ceil: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_ceil); break; |
| case vmIntrinsics::_floor: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_floor); break; |
| case vmIntrinsics::_rint: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_rint); break; |
| case vmIntrinsics::_roundD: n = new RoundDNode(arg); break; |
| case vmIntrinsics::_dcopySign: n = CopySignDNode::make(_gvn, arg, round_double_node(argument(2))); break; |
| case vmIntrinsics::_dsignum: n = SignumDNode::make(_gvn, arg); break; |
| default: fatal_unexpected_iid(id); break; |
| } |
| set_result(_gvn.transform(n)); |
| return true; |
| } |
| |
| //------------------------------inline_math----------------------------------- |
| // public static float Math.abs(float) |
| // public static int Math.abs(int) |
| // public static long Math.abs(long) |
| bool LibraryCallKit::inline_math(vmIntrinsics::ID id) { |
| Node* arg = argument(0); |
| Node* n = nullptr; |
| switch (id) { |
| case vmIntrinsics::_fabs: n = new AbsFNode( arg); break; |
| case vmIntrinsics::_iabs: n = new AbsINode( arg); break; |
| case vmIntrinsics::_labs: n = new AbsLNode( arg); break; |
| case vmIntrinsics::_fcopySign: n = new CopySignFNode(arg, argument(1)); break; |
| case vmIntrinsics::_fsignum: n = SignumFNode::make(_gvn, arg); break; |
| case vmIntrinsics::_roundF: n = new RoundFNode(arg); break; |
| default: fatal_unexpected_iid(id); break; |
| } |
| set_result(_gvn.transform(n)); |
| return true; |
| } |
| |
| //------------------------------runtime_math----------------------------- |
| bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) { |
| assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(), |
| "must be (DD)D or (D)D type"); |
| |
| // Inputs |
| Node* a = round_double_node(argument(0)); |
| Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : nullptr; |
| |
| const TypePtr* no_memory_effects = nullptr; |
| Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName, |
| no_memory_effects, |
| a, top(), b, b ? top() : nullptr); |
| Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); |
| #ifdef ASSERT |
| Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); |
| assert(value_top == top(), "second value must be top"); |
| #endif |
| |
| set_result(value); |
| return true; |
| } |
| |
| //------------------------------inline_math_pow----------------------------- |
| bool LibraryCallKit::inline_math_pow() { |
| Node* exp = round_double_node(argument(2)); |
| const TypeD* d = _gvn.type(exp)->isa_double_constant(); |
| if (d != nullptr) { |
| if (d->getd() == 2.0) { |
| // Special case: pow(x, 2.0) => x * x |
| Node* base = round_double_node(argument(0)); |
| set_result(_gvn.transform(new MulDNode(base, base))); |
| return true; |
| } else if (d->getd() == 0.5 && Matcher::match_rule_supported(Op_SqrtD)) { |
| // Special case: pow(x, 0.5) => sqrt(x) |
| Node* base = round_double_node(argument(0)); |
| Node* zero = _gvn.zerocon(T_DOUBLE); |
| |
| RegionNode* region = new RegionNode(3); |
| Node* phi = new PhiNode(region, Type::DOUBLE); |
| |
| Node* cmp = _gvn.transform(new CmpDNode(base, zero)); |
| // According to the API specs, pow(-0.0, 0.5) = 0.0 and sqrt(-0.0) = -0.0. |
| // So pow(-0.0, 0.5) shouldn't be replaced with sqrt(-0.0). |
| // -0.0/+0.0 are both excluded since floating-point comparison doesn't distinguish -0.0 from +0.0. |
| Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::le)); |
| |
| Node* if_pow = generate_slow_guard(test, nullptr); |
| Node* value_sqrt = _gvn.transform(new SqrtDNode(C, control(), base)); |
| phi->init_req(1, value_sqrt); |
| region->init_req(1, control()); |
| |
| if (if_pow != nullptr) { |
| set_control(if_pow); |
| address target = StubRoutines::dpow() != nullptr ? StubRoutines::dpow() : |
| CAST_FROM_FN_PTR(address, SharedRuntime::dpow); |
| const TypePtr* no_memory_effects = nullptr; |
| Node* trig = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(), target, "POW", |
| no_memory_effects, base, top(), exp, top()); |
| Node* value_pow = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); |
| #ifdef ASSERT |
| Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); |
| assert(value_top == top(), "second value must be top"); |
| #endif |
| phi->init_req(2, value_pow); |
| region->init_req(2, _gvn.transform(new ProjNode(trig, TypeFunc::Control))); |
| } |
| |
| C->set_has_split_ifs(true); // Has chance for split-if optimization |
| set_control(_gvn.transform(region)); |
| record_for_igvn(region); |
| set_result(_gvn.transform(phi)); |
| |
| return true; |
| } |
| } |
| |
| return StubRoutines::dpow() != nullptr ? |
| runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(), "dpow") : |
| runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW"); |
| } |
| |
| //------------------------------inline_math_native----------------------------- |
| bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) { |
| switch (id) { |
| case vmIntrinsics::_dsin: |
| return StubRoutines::dsin() != nullptr ? |
| runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") : |
| runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN"); |
| case vmIntrinsics::_dcos: |
| return StubRoutines::dcos() != nullptr ? |
| runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") : |
| runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS"); |
| case vmIntrinsics::_dtan: |
| return StubRoutines::dtan() != nullptr ? |
| runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") : |
| runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN"); |
| case vmIntrinsics::_dexp: |
| return StubRoutines::dexp() != nullptr ? |
| runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(), "dexp") : |
| runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP"); |
| case vmIntrinsics::_dlog: |
| return StubRoutines::dlog() != nullptr ? |
| runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") : |
| runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG"); |
| case vmIntrinsics::_dlog10: |
| return StubRoutines::dlog10() != nullptr ? |
| runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") : |
| runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10"); |
| |
| case vmIntrinsics::_roundD: return Matcher::match_rule_supported(Op_RoundD) ? inline_double_math(id) : false; |
| case vmIntrinsics::_ceil: |
| case vmIntrinsics::_floor: |
| case vmIntrinsics::_rint: return Matcher::match_rule_supported(Op_RoundDoubleMode) ? inline_double_math(id) : false; |
| |
| case vmIntrinsics::_dsqrt: |
| case vmIntrinsics::_dsqrt_strict: |
| return Matcher::match_rule_supported(Op_SqrtD) ? inline_double_math(id) : false; |
| case vmIntrinsics::_dabs: return Matcher::has_match_rule(Op_AbsD) ? inline_double_math(id) : false; |
| case vmIntrinsics::_fabs: return Matcher::match_rule_supported(Op_AbsF) ? inline_math(id) : false; |
| case vmIntrinsics::_iabs: return Matcher::match_rule_supported(Op_AbsI) ? inline_math(id) : false; |
| case vmIntrinsics::_labs: return Matcher::match_rule_supported(Op_AbsL) ? inline_math(id) : false; |
| |
| case vmIntrinsics::_dpow: return inline_math_pow(); |
| case vmIntrinsics::_dcopySign: return inline_double_math(id); |
| case vmIntrinsics::_fcopySign: return inline_math(id); |
| case vmIntrinsics::_dsignum: return Matcher::match_rule_supported(Op_SignumD) ? inline_double_math(id) : false; |
| case vmIntrinsics::_fsignum: return Matcher::match_rule_supported(Op_SignumF) ? inline_math(id) : false; |
| case vmIntrinsics::_roundF: return Matcher::match_rule_supported(Op_RoundF) ? inline_math(id) : false; |
| |
| // These intrinsics are not yet correctly implemented |
| case vmIntrinsics::_datan2: |
| return false; |
| |
| default: |
| fatal_unexpected_iid(id); |
| return false; |
| } |
| } |
| |
| //----------------------------inline_notify-----------------------------------* |
| bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) { |
| const TypeFunc* ftype = OptoRuntime::monitor_notify_Type(); |
| address func; |
| if (id == vmIntrinsics::_notify) { |
| func = OptoRuntime::monitor_notify_Java(); |
| } else { |
| func = OptoRuntime::monitor_notifyAll_Java(); |
| } |
| Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, nullptr, TypeRawPtr::BOTTOM, argument(0)); |
| make_slow_call_ex(call, env()->Throwable_klass(), false); |
| return true; |
| } |
| |
| |
| //----------------------------inline_min_max----------------------------------- |
| bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) { |
| set_result(generate_min_max(id, argument(0), argument(1))); |
| return true; |
| } |
| |
| void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) { |
| Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) ); |
| IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN); |
| Node* fast_path = _gvn.transform( new IfFalseNode(check)); |
| Node* slow_path = _gvn.transform( new IfTrueNode(check) ); |
| |
| { |
| PreserveJVMState pjvms(this); |
| PreserveReexecuteState preexecs(this); |
| jvms()->set_should_reexecute(true); |
| |
| set_control(slow_path); |
| set_i_o(i_o()); |
| |
| uncommon_trap(Deoptimization::Reason_intrinsic, |
| Deoptimization::Action_none); |
| } |
| |
| set_control(fast_path); |
| set_result(math); |
| } |
| |
| template <typename OverflowOp> |
| bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) { |
| typedef typename OverflowOp::MathOp MathOp; |
| |
| MathOp* mathOp = new MathOp(arg1, arg2); |
| Node* operation = _gvn.transform( mathOp ); |
| Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) ); |
| inline_math_mathExact(operation, ofcheck); |
| return true; |
| } |
| |
| bool LibraryCallKit::inline_math_addExactI(bool is_increment) { |
| return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1)); |
| } |
| |
| bool LibraryCallKit::inline_math_addExactL(bool is_increment) { |
| return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2)); |
| } |
| |
| bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) { |
| return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1)); |
| } |
| |
| bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) { |
| return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2)); |
| } |
| |
| bool LibraryCallKit::inline_math_negateExactI() { |
| return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0)); |
| } |
| |
| bool LibraryCallKit::inline_math_negateExactL() { |
| return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0)); |
| } |
| |
| bool LibraryCallKit::inline_math_multiplyExactI() { |
| return inline_math_overflow<OverflowMulINode>(argument(0), argument(1)); |
| } |
| |
| bool LibraryCallKit::inline_math_multiplyExactL() { |
| return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2)); |
| } |
| |
| bool LibraryCallKit::inline_math_multiplyHigh() { |
| set_result(_gvn.transform(new MulHiLNode(argument(0), argument(2)))); |
| return true; |
| } |
| |
| bool LibraryCallKit::inline_math_unsignedMultiplyHigh() { |
| set_result(_gvn.transform(new UMulHiLNode(argument(0), argument(2)))); |
| return true; |
| } |
| |
| Node* |
| LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) { |
| Node* result_val = nullptr; |
| switch (id) { |
| case vmIntrinsics::_min: |
| case vmIntrinsics::_min_strict: |
| result_val = _gvn.transform(new MinINode(x0, y0)); |
| break; |
| case vmIntrinsics::_max: |
| case vmIntrinsics::_max_strict: |
| result_val = _gvn.transform(new MaxINode(x0, y0)); |
| break; |
| default: |
| fatal_unexpected_iid(id); |
| break; |
| } |
| return result_val; |
| } |
| |
| inline int |
| LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) { |
| const TypePtr* base_type = TypePtr::NULL_PTR; |
| if (base != nullptr) base_type = _gvn.type(base)->isa_ptr(); |
| if (base_type == nullptr) { |
| // Unknown type. |
| return Type::AnyPtr; |
| } else if (base_type == TypePtr::NULL_PTR) { |
| // Since this is a null+long form, we have to switch to a rawptr. |
| base = _gvn.transform(new CastX2PNode(offset)); |
| offset = MakeConX(0); |
| return Type::RawPtr; |
| } else if (base_type->base() == Type::RawPtr) { |
| return Type::RawPtr; |
| } else if (base_type->isa_oopptr()) { |
| // Base is never null => always a heap address. |
| if (!TypePtr::NULL_PTR->higher_equal(base_type)) { |
| return Type::OopPtr; |
| } |
| // Offset is small => always a heap address. |
| const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t(); |
| if (offset_type != nullptr && |
| base_type->offset() == 0 && // (should always be?) |
| offset_type->_lo >= 0 && |
| !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) { |
| return Type::OopPtr; |
| } else if (type == T_OBJECT) { |
| // off heap access to an oop doesn't make any sense. Has to be on |
| // heap. |
| return Type::OopPtr; |
| } |
| // Otherwise, it might either be oop+off or null+addr. |
| return Type::AnyPtr; |
| } else { |
| // No information: |
| return Type::AnyPtr; |
| } |
| } |
| |
| Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, BasicType type, bool can_cast) { |
| Node* uncasted_base = base; |
| int kind = classify_unsafe_addr(uncasted_base, offset, type); |
| if (kind == Type::RawPtr) { |
| return basic_plus_adr(top(), uncasted_base, offset); |
| } else if (kind == Type::AnyPtr) { |
| assert(base == uncasted_base, "unexpected base change"); |
| if (can_cast) { |
| if (!_gvn.type(base)->speculative_maybe_null() && |
| !too_many_traps(Deoptimization::Reason_speculate_null_check)) { |
| // According to profiling, this access is always on |
| // heap. Casting the base to not null and thus avoiding membars |
| // around the access should allow better optimizations |
| Node* null_ctl = top(); |
| base = null_check_oop(base, &null_ctl, true, true, true); |
| assert(null_ctl->is_top(), "no null control here"); |
| return basic_plus_adr(base, offset); |
| } else if (_gvn.type(base)->speculative_always_null() && |
| !too_many_traps(Deoptimization::Reason_speculate_null_assert)) { |
| // According to profiling, this access is always off |
| // heap. |
| base = null_assert(base); |
| Node* raw_base = _gvn.transform(new CastX2PNode(offset)); |
| offset = MakeConX(0); |
| return basic_plus_adr(top(), raw_base, offset); |
| } |
| } |
| // We don't know if it's an on heap or off heap access. Fall back |
| // to raw memory access. |
| Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM)); |
| return basic_plus_adr(top(), raw, offset); |
| } else { |
| assert(base == uncasted_base, "unexpected base change"); |
| // We know it's an on heap access so base can't be null |
| if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) { |
| base = must_be_not_null(base, true); |
| } |
| return basic_plus_adr(base, offset); |
| } |
| } |
| |
| //--------------------------inline_number_methods----------------------------- |
| // inline int Integer.numberOfLeadingZeros(int) |
| // inline int Long.numberOfLeadingZeros(long) |
| // |
| // inline int Integer.numberOfTrailingZeros(int) |
| // inline int Long.numberOfTrailingZeros(long) |
| // |
| // inline int Integer.bitCount(int) |
| // inline int Long.bitCount(long) |
| // |
| // inline char Character.reverseBytes(char) |
| // inline short Short.reverseBytes(short) |
| // inline int Integer.reverseBytes(int) |
| // inline long Long.reverseBytes(long) |
| bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) { |
| Node* arg = argument(0); |
| Node* n = nullptr; |
| switch (id) { |
| case vmIntrinsics::_numberOfLeadingZeros_i: n = new CountLeadingZerosINode( arg); break; |
| case vmIntrinsics::_numberOfLeadingZeros_l: n = new CountLeadingZerosLNode( arg); break; |
| case vmIntrinsics::_numberOfTrailingZeros_i: n = new CountTrailingZerosINode(arg); break; |
| case vmIntrinsics::_numberOfTrailingZeros_l: n = new CountTrailingZerosLNode(arg); break; |
| case vmIntrinsics::_bitCount_i: n = new PopCountINode( arg); break; |
| case vmIntrinsics::_bitCount_l: n = new PopCountLNode( arg); break; |
| case vmIntrinsics::_reverseBytes_c: n = new ReverseBytesUSNode(0, arg); break; |
| case vmIntrinsics::_reverseBytes_s: n = new ReverseBytesSNode( 0, arg); break; |
| case vmIntrinsics::_reverseBytes_i: n = new ReverseBytesINode( 0, arg); break; |
| case vmIntrinsics::_reverseBytes_l: n = new ReverseBytesLNode( 0, arg); break; |
| case vmIntrinsics::_reverse_i: n = new ReverseINode(0, arg); break; |
| case vmIntrinsics::_reverse_l: n = new ReverseLNode(0, arg); break; |
| default: fatal_unexpected_iid(id); break; |
| } |
| set_result(_gvn.transform(n)); |
| return true; |
| } |
| |
| //--------------------------inline_bitshuffle_methods----------------------------- |
| // inline int Integer.compress(int, int) |
| // inline int Integer.expand(int, int) |
| // inline long Long.compress(long, long) |
| // inline long Long.expand(long, long) |
| bool LibraryCallKit::inline_bitshuffle_methods(vmIntrinsics::ID id) { |
| Node* n = nullptr; |
| switch (id) { |
| case vmIntrinsics::_compress_i: n = new CompressBitsNode(argument(0), argument(1), TypeInt::INT); break; |
| case vmIntrinsics::_expand_i: n = new ExpandBitsNode(argument(0), argument(1), TypeInt::INT); break; |
| case vmIntrinsics::_compress_l: n = new CompressBitsNode(argument(0), argument(2), TypeLong::LONG); break; |
| case vmIntrinsics::_expand_l: n = new ExpandBitsNode(argument(0), argument(2), TypeLong::LONG); break; |
| default: fatal_unexpected_iid(id); break; |
| } |
| set_result(_gvn.transform(n)); |
| return true; |
| } |
| |
| //--------------------------inline_number_methods----------------------------- |
| // inline int Integer.compareUnsigned(int, int) |
| // inline int Long.compareUnsigned(long, long) |
| bool LibraryCallKit::inline_compare_unsigned(vmIntrinsics::ID id) { |
| Node* arg1 = argument(0); |
| Node* arg2 = (id == vmIntrinsics::_compareUnsigned_l) ? argument(2) : argument(1); |
| Node* n = nullptr; |
| switch (id) { |
| case vmIntrinsics::_compareUnsigned_i: n = new CmpU3Node(arg1, arg2); break; |
| case vmIntrinsics::_compareUnsigned_l: n = new CmpUL3Node(arg1, arg2); break; |
| default: fatal_unexpected_iid(id); break; |
| } |
| set_result(_gvn.transform(n)); |
| return true; |
| } |
| |
| //--------------------------inline_unsigned_divmod_methods----------------------------- |
| // inline int Integer.divideUnsigned(int, int) |
| // inline int Integer.remainderUnsigned(int, int) |
| // inline long Long.divideUnsigned(long, long) |
| // inline long Long.remainderUnsigned(long, long) |
| bool LibraryCallKit::inline_divmod_methods(vmIntrinsics::ID id) { |
| Node* n = nullptr; |
| switch (id) { |
| case vmIntrinsics::_divideUnsigned_i: { |
| zero_check_int(argument(1)); |
| // Compile-time detect of null-exception |
| if (stopped()) { |
| return true; // keep the graph constructed so far |
| } |
| n = new UDivINode(control(), argument(0), argument(1)); |
| break; |
| } |
| case vmIntrinsics::_divideUnsigned_l: { |
| zero_check_long(argument(2)); |
| // Compile-time detect of null-exception |
| if (stopped()) { |
| return true; // keep the graph constructed so far |
| } |
| n = new UDivLNode(control(), argument(0), argument(2)); |
| break; |
| } |
| case vmIntrinsics::_remainderUnsigned_i: { |
| zero_check_int(argument(1)); |
| // Compile-time detect of null-exception |
| if (stopped()) { |
| return true; // keep the graph constructed so far |
| } |
| n = new UModINode(control(), argument(0), argument(1)); |
| break; |
| } |
| case vmIntrinsics::_remainderUnsigned_l: { |
| zero_check_long(argument(2)); |
| // Compile-time detect of null-exception |
| if (stopped()) { |
| return true; // keep the graph constructed so far |
| } |
| n = new UModLNode(control(), argument(0), argument(2)); |
| break; |
| } |
| default: fatal_unexpected_iid(id); break; |
| } |
| set_result(_gvn.transform(n)); |
| return true; |
| } |
| |
| //----------------------------inline_unsafe_access---------------------------- |
| |
| const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) { |
| // Attempt to infer a sharper value type from the offset and base type. |
| ciKlass* sharpened_klass = nullptr; |
| |
| // See if it is an instance field, with an object type. |
| if (alias_type->field() != nullptr) { |
| if (alias_type->field()->type()->is_klass()) { |
| sharpened_klass = alias_type->field()->type()->as_klass(); |
| } |
| } |
| |
| const TypeOopPtr* result = nullptr; |
| // See if it is a narrow oop array. |
| if (adr_type->isa_aryptr()) { |
| if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) { |
| const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr(); |
| if (elem_type != nullptr && elem_type->is_loaded()) { |
| // Sharpen the value type. |
| result = elem_type; |
| } |
| } |
| } |
| |
| // The sharpened class might be unloaded if there is no class loader |
| // contraint in place. |
| if (result == nullptr && sharpened_klass != nullptr && sharpened_klass->is_loaded()) { |
| // Sharpen the value type. |
| result = TypeOopPtr::make_from_klass(sharpened_klass); |
| } |
| if (result != nullptr) { |
| #ifndef PRODUCT |
| if (C->print_intrinsics() || C->print_inlining()) { |
| tty->print(" from base type: "); adr_type->dump(); tty->cr(); |
| tty->print(" sharpened value: "); result->dump(); tty->cr(); |
| } |
| #endif |
| } |
| return result; |
| } |
| |
| DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) { |
| switch (kind) { |
| case Relaxed: |
| return MO_UNORDERED; |
| case Opaque: |
| return MO_RELAXED; |
| case Acquire: |
| return MO_ACQUIRE; |
| case Release: |
| return MO_RELEASE; |
| case Volatile: |
| return MO_SEQ_CST; |
| default: |
| ShouldNotReachHere(); |
| return 0; |
| } |
| } |
| |
| bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) { |
| if (callee()->is_static()) return false; // caller must have the capability! |
| DecoratorSet decorators = C2_UNSAFE_ACCESS; |
| guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads"); |
| guarantee( is_store || kind != Release, "Release accesses can be produced only for stores"); |
| assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type"); |
| |
| if (is_reference_type(type)) { |
| decorators |= ON_UNKNOWN_OOP_REF; |
| } |
| |
| if (unaligned) { |
| decorators |= C2_UNALIGNED; |
| } |
| |
| #ifndef PRODUCT |
| { |
| ResourceMark rm; |
| // Check the signatures. |
| ciSignature* sig = callee()->signature(); |
| #ifdef ASSERT |
| if (!is_store) { |
| // Object getReference(Object base, int/long offset), etc. |
| BasicType rtype = sig->return_type()->basic_type(); |
| assert(rtype == type, "getter must return the expected value"); |
| assert(sig->count() == 2, "oop getter has 2 arguments"); |
| assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object"); |
| assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct"); |
| } else { |
| // void putReference(Object base, int/long offset, Object x), etc. |
| assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value"); |
| assert(sig->count() == 3, "oop putter has 3 arguments"); |
| assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object"); |
| assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct"); |
| BasicType vtype = sig->type_at(sig->count()-1)->basic_type(); |
| assert(vtype == type, "putter must accept the expected value"); |
| } |
| #endif // ASSERT |
| } |
| #endif //PRODUCT |
| |
| C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". |
| |
| Node* receiver = argument(0); // type: oop |
| |
| // Build address expression. |
| Node* heap_base_oop = top(); |
| |
| // The base is either a Java object or a value produced by Unsafe.staticFieldBase |
| Node* base = argument(1); // type: oop |
| // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset |
| Node* offset = argument(2); // type: long |
| // We currently rely on the cookies produced by Unsafe.xxxFieldOffset |
| // to be plain byte offsets, which are also the same as those accepted |
| // by oopDesc::field_addr. |
| assert(Unsafe_field_offset_to_byte_offset(11) == 11, |
| "fieldOffset must be byte-scaled"); |
| // 32-bit machines ignore the high half! |
| offset = ConvL2X(offset); |
| |
| // Save state and restore on bailout |
| uint old_sp = sp(); |
| SafePointNode* old_map = clone_map(); |
| |
| Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed); |
| |
| if (_gvn.type(base)->isa_ptr() == TypePtr::NULL_PTR) { |
| if (type != T_OBJECT) { |
| decorators |= IN_NATIVE; // off-heap primitive access |
| } else { |
| set_map(old_map); |
| set_sp(old_sp); |
| return false; // off-heap oop accesses are not supported |
| } |
| } else { |
| heap_base_oop = base; // on-heap or mixed access |
| } |
| |
| // Can base be null? Otherwise, always on-heap access. |
| bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base)); |
| |
| if (!can_access_non_heap) { |
| decorators |= IN_HEAP; |
| } |
| |
| Node* val = is_store ? argument(4) : nullptr; |
| |
| const TypePtr* adr_type = _gvn.type(adr)->isa_ptr(); |
| if (adr_type == TypePtr::NULL_PTR) { |
| set_map(old_map); |
| set_sp(old_sp); |
| return false; // off-heap access with zero address |
| } |
| |
| // Try to categorize the address. |
| Compile::AliasType* alias_type = C->alias_type(adr_type); |
| assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); |
| |
| if (alias_type->adr_type() == TypeInstPtr::KLASS || |
| alias_type->adr_type() == TypeAryPtr::RANGE) { |
| set_map(old_map); |
| set_sp(old_sp); |
| return false; // not supported |
| } |
| |
| bool mismatched = false; |
| BasicType bt = alias_type->basic_type(); |
| if (bt != T_ILLEGAL) { |
| assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access"); |
| if (bt == T_BYTE && adr_type->isa_aryptr()) { |
| // Alias type doesn't differentiate between byte[] and boolean[]). |
| // Use address type to get the element type. |
| bt = adr_type->is_aryptr()->elem()->array_element_basic_type(); |
| } |
| if (is_reference_type(bt, true)) { |
| // accessing an array field with getReference is not a mismatch |
| bt = T_OBJECT; |
| } |
| if ((bt == T_OBJECT) != (type == T_OBJECT)) { |
| // Don't intrinsify mismatched object accesses |
| set_map(old_map); |
| set_sp(old_sp); |
| return false; |
| } |
| mismatched = (bt != type); |
| } else if (alias_type->adr_type()->isa_oopptr()) { |
| mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched |
| } |
| |
| destruct_map_clone(old_map); |
| assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched"); |
| |
| if (mismatched) { |
| decorators |= C2_MISMATCHED; |
| } |
| |
| // First guess at the value type. |
| const Type *value_type = Type::get_const_basic_type(type); |
| |
| // Figure out the memory ordering. |
| decorators |= mo_decorator_for_access_kind(kind); |
| |
| if (!is_store && type == T_OBJECT) { |
| const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); |
| if (tjp != nullptr) { |
| value_type = tjp; |
| } |
| } |
| |
| receiver = null_check(receiver); |
| if (stopped()) { |
| return true; |
| } |
| // Heap pointers get a null-check from the interpreter, |
| // as a courtesy. However, this is not guaranteed by Unsafe, |
| // and it is not possible to fully distinguish unintended nulls |
| // from intended ones in this API. |
| |
| if (!is_store) { |
| Node* p = nullptr; |
| // Try to constant fold a load from a constant field |
| ciField* field = alias_type->field(); |
| if (heap_base_oop != top() && field != nullptr && field->is_constant() && !mismatched) { |
| // final or stable field |
| p = make_constant_from_field(field, heap_base_oop); |
| } |
| |
| if (p == nullptr) { // Could not constant fold the load |
| p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators); |
| // Normalize the value returned by getBoolean in the following cases |
| if (type == T_BOOLEAN && |
| (mismatched || |
| heap_base_oop == top() || // - heap_base_oop is null or |
| (can_access_non_heap && field == nullptr)) // - heap_base_oop is potentially null |
| // and the unsafe access is made to large offset |
| // (i.e., larger than the maximum offset necessary for any |
| // field access) |
| ) { |
| IdealKit ideal = IdealKit(this); |
| #define __ ideal. |
| IdealVariable normalized_result(ideal); |
| __ declarations_done(); |
| __ set(normalized_result, p); |
| __ if_then(p, BoolTest::ne, ideal.ConI(0)); |
| __ set(normalized_result, ideal.ConI(1)); |
| ideal.end_if(); |
| final_sync(ideal); |
| p = __ value(normalized_result); |
| #undef __ |
| } |
| } |
| if (type == T_ADDRESS) { |
| p = gvn().transform(new CastP2XNode(nullptr, p)); |
| p = ConvX2UL(p); |
| } |
| // The load node has the control of the preceding MemBarCPUOrder. All |
| // following nodes will have the control of the MemBarCPUOrder inserted at |
| // the end of this method. So, pushing the load onto the stack at a later |
| // point is fine. |
| set_result(p); |
| } else { |
| if (bt == T_ADDRESS) { |
| // Repackage the long as a pointer. |
| val = ConvL2X(val); |
| val = gvn().transform(new CastX2PNode(val)); |
| } |
| access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators); |
| } |
| |
| return true; |
| } |
| |
| //----------------------------inline_unsafe_load_store---------------------------- |
| // This method serves a couple of different customers (depending on LoadStoreKind): |
| // |
| // LS_cmp_swap: |
| // |
| // boolean compareAndSetReference(Object o, long offset, Object expected, Object x); |
| // boolean compareAndSetInt( Object o, long offset, int expected, int x); |
| // boolean compareAndSetLong( Object o, long offset, long expected, long x); |
| // |
| // LS_cmp_swap_weak: |
| // |
| // boolean weakCompareAndSetReference( Object o, long offset, Object expected, Object x); |
| // boolean weakCompareAndSetReferencePlain( Object o, long offset, Object expected, Object x); |
| // boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x); |
| // boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x); |
| // |
| // boolean weakCompareAndSetInt( Object o, long offset, int expected, int x); |
| // boolean weakCompareAndSetIntPlain( Object o, long offset, int expected, int x); |
| // boolean weakCompareAndSetIntAcquire( Object o, long offset, int expected, int x); |
| // boolean weakCompareAndSetIntRelease( Object o, long offset, int expected, int x); |
| // |
| // boolean weakCompareAndSetLong( Object o, long offset, long expected, long x); |
| // boolean weakCompareAndSetLongPlain( Object o, long offset, long expected, long x); |
| // boolean weakCompareAndSetLongAcquire( Object o, long offset, long expected, long x); |
| // boolean weakCompareAndSetLongRelease( Object o, long offset, long expected, long x); |
| // |
| // LS_cmp_exchange: |
| // |
| // Object compareAndExchangeReferenceVolatile(Object o, long offset, Object expected, Object x); |
| // Object compareAndExchangeReferenceAcquire( Object o, long offset, Object expected, Object x); |
| // Object compareAndExchangeReferenceRelease( Object o, long offset, Object expected, Object x); |
| // |
| // Object compareAndExchangeIntVolatile( Object o, long offset, Object expected, Object x); |
| // Object compareAndExchangeIntAcquire( Object o, long offset, Object expected, Object x); |
| // Object compareAndExchangeIntRelease( Object o, long offset, Object expected, Object x); |
| // |
| // Object compareAndExchangeLongVolatile( Object o, long offset, Object expected, Object x); |
| // Object compareAndExchangeLongAcquire( Object o, long offset, Object expected, Object x); |
| // Object compareAndExchangeLongRelease( Object o, long offset, Object expected, Object x); |
| // |
| // LS_get_add: |
| // |
| // int getAndAddInt( Object o, long offset, int delta) |
| // long getAndAddLong(Object o, long offset, long delta) |
| // |
| // LS_get_set: |
| // |
| // int getAndSet(Object o, long offset, int newValue) |
| // long getAndSet(Object o, long offset, long newValue) |
| // Object getAndSet(Object o, long offset, Object newValue) |
| // |
| bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) { |
| // This basic scheme here is the same as inline_unsafe_access, but |
| // differs in enough details that combining them would make the code |
| // overly confusing. (This is a true fact! I originally combined |
| // them, but even I was confused by it!) As much code/comments as |
| // possible are retained from inline_unsafe_access though to make |
| // the correspondences clearer. - dl |
| |
| if (callee()->is_static()) return false; // caller must have the capability! |
| |
| DecoratorSet decorators = C2_UNSAFE_ACCESS; |
| decorators |= mo_decorator_for_access_kind(access_kind); |
| |
| #ifndef PRODUCT |
| BasicType rtype; |
| { |
| ResourceMark rm; |
| // Check the signatures. |
| ciSignature* sig = callee()->signature(); |
| rtype = sig->return_type()->basic_type(); |
| switch(kind) { |
| case LS_get_add: |
| case LS_get_set: { |
| // Check the signatures. |
| #ifdef ASSERT |
| assert(rtype == type, "get and set must return the expected type"); |
| assert(sig->count() == 3, "get and set has 3 arguments"); |
| assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object"); |
| assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long"); |
| assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta"); |
| assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation"); |
| #endif // ASSERT |
| break; |
| } |
| case LS_cmp_swap: |
| case LS_cmp_swap_weak: { |
| // Check the signatures. |
| #ifdef ASSERT |
| assert(rtype == T_BOOLEAN, "CAS must return boolean"); |
| assert(sig->count() == 4, "CAS has 4 arguments"); |
| assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); |
| assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); |
| #endif // ASSERT |
| break; |
| } |
| case LS_cmp_exchange: { |
| // Check the signatures. |
| #ifdef ASSERT |
| assert(rtype == type, "CAS must return the expected type"); |
| assert(sig->count() == 4, "CAS has 4 arguments"); |
| assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); |
| assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); |
| #endif // ASSERT |
| break; |
| } |
| default: |
| ShouldNotReachHere(); |
| } |
| } |
| #endif //PRODUCT |
| |
| C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". |
| |
| // Get arguments: |
| Node* receiver = nullptr; |
| Node* base = nullptr; |
| Node* offset = nullptr; |
| Node* oldval = nullptr; |
| Node* newval = nullptr; |
| switch(kind) { |
| case LS_cmp_swap: |
| case LS_cmp_swap_weak: |
| case LS_cmp_exchange: { |
| const bool two_slot_type = type2size[type] == 2; |
| receiver = argument(0); // type: oop |
| base = argument(1); // type: oop |
| offset = argument(2); // type: long |
| oldval = argument(4); // type: oop, int, or long |
| newval = argument(two_slot_type ? 6 : 5); // type: oop, int, or long |
| break; |
| } |
| case LS_get_add: |
| case LS_get_set: { |
| receiver = argument(0); // type: oop |
| base = argument(1); // type: oop |
| offset = argument(2); // type: long |
| oldval = nullptr; |
| newval = argument(4); // type: oop, int, or long |
| break; |
| } |
| default: |
| ShouldNotReachHere(); |
| } |
| |
| // Build field offset expression. |
| // We currently rely on the cookies produced by Unsafe.xxxFieldOffset |
| // to be plain byte offsets, which are also the same as those accepted |
| // by oopDesc::field_addr. |
| assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled"); |
| // 32-bit machines ignore the high half of long offsets |
| offset = ConvL2X(offset); |
| // Save state and restore on bailout |
| uint old_sp = sp(); |
| SafePointNode* old_map = clone_map(); |
| Node* adr = make_unsafe_address(base, offset,type, false); |
| const TypePtr *adr_type = _gvn.type(adr)->isa_ptr(); |
| |
| Compile::AliasType* alias_type = C->alias_type(adr_type); |
| BasicType bt = alias_type->basic_type(); |
| if (bt != T_ILLEGAL && |
| (is_reference_type(bt) != (type == T_OBJECT))) { |
| // Don't intrinsify mismatched object accesses. |
| set_map(old_map); |
| set_sp(old_sp); |
| return false; |
| } |
| |
| destruct_map_clone(old_map); |
| |
| // For CAS, unlike inline_unsafe_access, there seems no point in |
| // trying to refine types. Just use the coarse types here. |
| assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); |
| const Type *value_type = Type::get_const_basic_type(type); |
| |
| switch (kind) { |
| case LS_get_set: |
| case LS_cmp_exchange: { |
| if (type == T_OBJECT) { |
| const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); |
| if (tjp != nullptr) { |
| value_type = tjp; |
| } |
| } |
| break; |
| } |
| case LS_cmp_swap: |
| case LS_cmp_swap_weak: |
| case LS_get_add: |
| break; |
| default: |
| ShouldNotReachHere(); |
| } |
| |
| // Null check receiver. |
| receiver = null_check(receiver); |
| if (stopped()) { |
| return true; |
| } |
| |
| int alias_idx = C->get_alias_index(adr_type); |
| |
| if (is_reference_type(type)) { |
| decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF; |
| |
| // Transformation of a value which could be null pointer (CastPP #null) |
| // could be delayed during Parse (for example, in adjust_map_after_if()). |
| // Execute transformation here to avoid barrier generation in such case. |
| if (_gvn.type(newval) == TypePtr::NULL_PTR) |
| newval = _gvn.makecon(TypePtr::NULL_PTR); |
| |
| if (oldval != nullptr && _gvn.type(oldval) == TypePtr::NULL_PTR) { |
| // Refine the value to a null constant, when it is known to be null |
| oldval = _gvn.makecon(TypePtr::NULL_PTR); |
| } |
| } |
| |
| Node* result = nullptr; |
| switch (kind) { |
| case LS_cmp_exchange: { |
| result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx, |
| oldval, newval, value_type, type, decorators); |
| break; |
| } |
| case LS_cmp_swap_weak: |
| decorators |= C2_WEAK_CMPXCHG; |
| case LS_cmp_swap: { |
| result = access_atomic_cmpxchg_bool_at(base, adr, adr_type, alias_idx, |
| oldval, newval, value_type, type, decorators); |
| break; |
| } |
| case LS_get_set: { |
| result = access_atomic_xchg_at(base, adr, adr_type, alias_idx, |
| newval, value_type, type, decorators); |
| break; |
| } |
| case LS_get_add: { |
| result = access_atomic_add_at(base, adr, adr_type, alias_idx, |
| newval, value_type, type, decorators); |
| break; |
| } |
| default: |
| ShouldNotReachHere(); |
| } |
| |
| assert(type2size[result->bottom_type()->basic_type()] == type2size[rtype], "result type should match"); |
| set_result(result); |
| return true; |
| } |
| |
| bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) { |
| // Regardless of form, don't allow previous ld/st to move down, |
| // then issue acquire, release, or volatile mem_bar. |
| insert_mem_bar(Op_MemBarCPUOrder); |
| switch(id) { |
| case vmIntrinsics::_loadFence: |
| insert_mem_bar(Op_LoadFence); |
| return true; |
| case vmIntrinsics::_storeFence: |
| insert_mem_bar(Op_StoreFence); |
| return true; |
| case vmIntrinsics::_storeStoreFence: |
| insert_mem_bar(Op_StoreStoreFence); |
| return true; |
| case vmIntrinsics::_fullFence: |
| insert_mem_bar(Op_MemBarVolatile); |
| return true; |
| default: |
| fatal_unexpected_iid(id); |
| return false; |
| } |
| } |
| |
| bool LibraryCallKit::inline_onspinwait() { |
| insert_mem_bar(Op_OnSpinWait); |
| return true; |
| } |
| |
| bool LibraryCallKit::klass_needs_init_guard(Node* kls) { |
| if (!kls->is_Con()) { |
| return true; |
| } |
| const TypeInstKlassPtr* klsptr = kls->bottom_type()->isa_instklassptr(); |
| if (klsptr == nullptr) { |
| return true; |
| } |
| ciInstanceKlass* ik = klsptr->instance_klass(); |
| // don't need a guard for a klass that is already initialized |
| return !ik->is_initialized(); |
| } |
| |
| //----------------------------inline_unsafe_writeback0------------------------- |
| // public native void Unsafe.writeback0(long address) |
| bool LibraryCallKit::inline_unsafe_writeback0() { |
| if (!Matcher::has_match_rule(Op_CacheWB)) { |
| return false; |
| } |
| #ifndef PRODUCT |
| assert(Matcher::has_match_rule(Op_CacheWBPreSync), "found match rule for CacheWB but not CacheWBPreSync"); |
| assert(Matcher::has_match_rule(Op_CacheWBPostSync), "found match rule for CacheWB but not CacheWBPostSync"); |
| ciSignature* sig = callee()->signature(); |
| assert(sig->type_at(0)->basic_type() == T_LONG, "Unsafe_writeback0 address is long!"); |
| #endif |
| null_check_receiver(); // null-check, then ignore |
| Node *addr = argument(1); |
| addr = new CastX2PNode(addr); |
| addr = _gvn.transform(addr); |
| Node *flush = new CacheWBNode(control(), memory(TypeRawPtr::BOTTOM), addr); |
| flush = _gvn.transform(flush); |
| set_memory(flush, TypeRawPtr::BOTTOM); |
| return true; |
| } |
| |
| //----------------------------inline_unsafe_writeback0------------------------- |
| // public native void Unsafe.writeback0(long address) |
| bool LibraryCallKit::inline_unsafe_writebackSync0(bool is_pre) { |
| if (is_pre && !Matcher::has_match_rule(Op_CacheWBPreSync)) { |
| return false; |
| } |
| if (!is_pre && !Matcher::has_match_rule(Op_CacheWBPostSync)) { |
| return false; |
| } |
| #ifndef PRODUCT |
| assert(Matcher::has_match_rule(Op_CacheWB), |
| (is_pre ? "found match rule for CacheWBPreSync but not CacheWB" |
| : "found match rule for CacheWBPostSync but not CacheWB")); |
| |
| #endif |
| null_check_receiver(); // null-check, then ignore |
| Node *sync; |
| if (is_pre) { |
| sync = new CacheWBPreSyncNode(control(), memory(TypeRawPtr::BOTTOM)); |
| } else { |
| sync = new CacheWBPostSyncNode(control(), memory(TypeRawPtr::BOTTOM)); |
| } |
| sync = _gvn.transform(sync); |
| set_memory(sync, TypeRawPtr::BOTTOM); |
| return true; |
| } |
| |
| //----------------------------inline_unsafe_allocate--------------------------- |
| // public native Object Unsafe.allocateInstance(Class<?> cls); |
| bool LibraryCallKit::inline_unsafe_allocate() { |
| if (callee()->is_static()) return false; // caller must have the capability! |
| |
| null_check_receiver(); // null-check, then ignore |
| Node* cls = null_check(argument(1)); |
| if (stopped()) return true; |
| |
| Node* kls = load_klass_from_mirror(cls, false, nullptr, 0); |
| kls = null_check(kls); |
| if (stopped()) return true; // argument was like int.class |
| |
| Node* test = nullptr; |
| if (LibraryCallKit::klass_needs_init_guard(kls)) { |
| // Note: The argument might still be an illegal value like |
| // Serializable.class or Object[].class. The runtime will handle it. |
| // But we must make an explicit check for initialization. |
| Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset())); |
| // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler |
| // can generate code to load it as unsigned byte. |
| Node* inst = make_load(nullptr, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered); |
| Node* bits = intcon(InstanceKlass::fully_initialized); |
| test = _gvn.transform(new SubINode(inst, bits)); |
| // The 'test' is non-zero if we need to take a slow path. |
| } |
| |
| Node* obj = new_instance(kls, test); |
| set_result(obj); |
| return true; |
| } |
| |
| //------------------------inline_native_time_funcs-------------- |
| // inline code for System.currentTimeMillis() and System.nanoTime() |
| // these have the same type and signature |
| bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) { |
| const TypeFunc* tf = OptoRuntime::void_long_Type(); |
| const TypePtr* no_memory_effects = nullptr; |
| Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects); |
| Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0)); |
| #ifdef ASSERT |
| Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1)); |
| assert(value_top == top(), "second value must be top"); |
| #endif |
| set_result(value); |
| return true; |
| } |
| |
| |
| #if INCLUDE_JVMTI |
| |
| // When notifications are disabled then just update the VTMS transition bit and return. |
| // Otherwise, the bit is updated in the given function call implementing JVMTI notification protocol. |
| bool LibraryCallKit::inline_native_notify_jvmti_funcs(address funcAddr, const char* funcName, bool is_start, bool is_end) { |
| if (!DoJVMTIVirtualThreadTransitions) { |
| return true; |
| } |
| Node* vt_oop = _gvn.transform(must_be_not_null(argument(0), true)); // VirtualThread this argument |
| IdealKit ideal(this); |
| |
| Node* ONE = ideal.ConI(1); |
| Node* hide = is_start ? ideal.ConI(0) : (is_end ? ideal.ConI(1) : _gvn.transform(argument(1))); |
| Node* addr = makecon(TypeRawPtr::make((address)&JvmtiVTMSTransitionDisabler::_VTMS_notify_jvmti_events)); |
| Node* notify_jvmti_enabled = ideal.load(ideal.ctrl(), addr, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw); |
| |
| ideal.if_then(notify_jvmti_enabled, BoolTest::eq, ONE); { |
| sync_kit(ideal); |
| // if notifyJvmti enabled then make a call to the given SharedRuntime function |
| const TypeFunc* tf = OptoRuntime::notify_jvmti_vthread_Type(); |
| make_runtime_call(RC_NO_LEAF, tf, funcAddr, funcName, TypePtr::BOTTOM, vt_oop, hide); |
| ideal.sync_kit(this); |
| } ideal.else_(); { |
| // set hide value to the VTMS transition bit in current JavaThread and VirtualThread object |
| Node* thread = ideal.thread(); |
| Node* jt_addr = basic_plus_adr(thread, in_bytes(JavaThread::is_in_VTMS_transition_offset())); |
| Node* vt_addr = basic_plus_adr(vt_oop, java_lang_Thread::is_in_VTMS_transition_offset()); |
| const TypePtr *addr_type = _gvn.type(addr)->isa_ptr(); |
| |
| sync_kit(ideal); |
| access_store_at(nullptr, jt_addr, addr_type, hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); |
| access_store_at(nullptr, vt_addr, addr_type, hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); |
| |
| ideal.sync_kit(this); |
| } ideal.end_if(); |
| final_sync(ideal); |
| |
| return true; |
| } |
| |
| // Always update the temporary VTMS transition bit. |
| bool LibraryCallKit::inline_native_notify_jvmti_hide() { |
| if (!DoJVMTIVirtualThreadTransitions) { |
| return true; |
| } |
| IdealKit ideal(this); |
| |
| { |
| // unconditionally update the temporary VTMS transition bit in current JavaThread |
| Node* thread = ideal.thread(); |
| Node* hide = _gvn.transform(argument(1)); // hide argument for temporary VTMS transition notification |
| Node* addr = basic_plus_adr(thread, in_bytes(JavaThread::is_in_tmp_VTMS_transition_offset())); |
| const TypePtr *addr_type = _gvn.type(addr)->isa_ptr(); |
| |
| sync_kit(ideal); |
| access_store_at(nullptr, addr, addr_type, hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); |
| ideal.sync_kit(this); |
| } |
| final_sync(ideal); |
| |
| return true; |
| } |
| |
| #endif // INCLUDE_JVMTI |
| |
| #ifdef JFR_HAVE_INTRINSICS |
| |
| /** |
| * if oop->klass != null |
| * // normal class |
| * epoch = _epoch_state ? 2 : 1 |
| * if oop->klass->trace_id & ((epoch << META_SHIFT) | epoch)) != epoch { |
| * ... // enter slow path when the klass is first recorded or the epoch of JFR shifts |
| * } |
| * id = oop->klass->trace_id >> TRACE_ID_SHIFT // normal class path |
| * else |
| * // primitive class |
| * if oop->array_klass != null |
| * id = (oop->array_klass->trace_id >> TRACE_ID_SHIFT) + 1 // primitive class path |
| * else |
| * id = LAST_TYPE_ID + 1 // void class path |
| * if (!signaled) |
| * signaled = true |
| */ |
| bool LibraryCallKit::inline_native_classID() { |
| Node* cls = argument(0); |
| |
| IdealKit ideal(this); |
| #define __ ideal. |
| IdealVariable result(ideal); __ declarations_done(); |
| Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), |
| basic_plus_adr(cls, java_lang_Class::klass_offset()), |
| TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); |
| |
| |
| __ if_then(kls, BoolTest::ne, null()); { |
| Node* kls_trace_id_addr = basic_plus_adr(kls, in_bytes(KLASS_TRACE_ID_OFFSET)); |
| Node* kls_trace_id_raw = ideal.load(ideal.ctrl(), kls_trace_id_addr,TypeLong::LONG, T_LONG, Compile::AliasIdxRaw); |
| |
| Node* epoch_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_address())); |
| Node* epoch = ideal.load(ideal.ctrl(), epoch_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw); |
| epoch = _gvn.transform(new LShiftLNode(longcon(1), epoch)); |
| Node* mask = _gvn.transform(new LShiftLNode(epoch, intcon(META_SHIFT))); |
| mask = _gvn.transform(new OrLNode(mask, epoch)); |
| Node* kls_trace_id_raw_and_mask = _gvn.transform(new AndLNode(kls_trace_id_raw, mask)); |
| |
| float unlikely = PROB_UNLIKELY(0.999); |
| __ if_then(kls_trace_id_raw_and_mask, BoolTest::ne, epoch, unlikely); { |
| sync_kit(ideal); |
| make_runtime_call(RC_LEAF, |
| OptoRuntime::class_id_load_barrier_Type(), |
| CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::load_barrier), |
| "class id load barrier", |
| TypePtr::BOTTOM, |
| kls); |
| ideal.sync_kit(this); |
| } __ end_if(); |
| |
| ideal.set(result, _gvn.transform(new URShiftLNode(kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT)))); |
| } __ else_(); { |
| Node* array_kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), |
| basic_plus_adr(cls, java_lang_Class::array_klass_offset()), |
| TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); |
| __ if_then(array_kls, BoolTest::ne, null()); { |
| Node* array_kls_trace_id_addr = basic_plus_adr(array_kls, in_bytes(KLASS_TRACE_ID_OFFSET)); |
| Node* array_kls_trace_id_raw = ideal.load(ideal.ctrl(), array_kls_trace_id_addr, TypeLong::LONG, T_LONG, Compile::AliasIdxRaw); |
| Node* array_kls_trace_id = _gvn.transform(new URShiftLNode(array_kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT))); |
| ideal.set(result, _gvn.transform(new AddLNode(array_kls_trace_id, longcon(1)))); |
| } __ else_(); { |
| // void class case |
| ideal.set(result, _gvn.transform(longcon(LAST_TYPE_ID + 1))); |
| } __ end_if(); |
| |
| Node* signaled_flag_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::signal_address())); |
| Node* signaled = ideal.load(ideal.ctrl(), signaled_flag_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw, true, MemNode::acquire); |
| __ if_then(signaled, BoolTest::ne, ideal.ConI(1)); { |
| ideal.store(ideal.ctrl(), signaled_flag_address, ideal.ConI(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true); |
| } __ end_if(); |
| } __ end_if(); |
| |
| final_sync(ideal); |
| set_result(ideal.value(result)); |
| #undef __ |
| return true; |
| } |
| |
| //------------------------inline_native_jvm_commit------------------ |
| bool LibraryCallKit::inline_native_jvm_commit() { |
| enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; |
| |
| // Save input memory and i_o state. |
| Node* input_memory_state = reset_memory(); |
| set_all_memory(input_memory_state); |
| Node* input_io_state = i_o(); |
| |
| // TLS. |
| Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); |
| // Jfr java buffer. |
| Node* java_buffer_offset = _gvn.transform(new AddPNode(top(), tls_ptr, _gvn.transform(MakeConX(in_bytes(JAVA_BUFFER_OFFSET_JFR))))); |
| Node* java_buffer = _gvn.transform(new LoadPNode(control(), input_memory_state, java_buffer_offset, TypePtr::BOTTOM, TypeRawPtr::NOTNULL, MemNode::unordered)); |
| Node* java_buffer_pos_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_POS_OFFSET))))); |
| |
| // Load the current value of the notified field in the JfrThreadLocal. |
| Node* notified_offset = basic_plus_adr(top(), tls_ptr, in_bytes(NOTIFY_OFFSET_JFR)); |
| Node* notified = make_load(control(), notified_offset, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered); |
| |
| // Test for notification. |
| Node* notified_cmp = _gvn.transform(new CmpINode(notified, _gvn.intcon(1))); |
| Node* test_notified = _gvn.transform(new BoolNode(notified_cmp, BoolTest::eq)); |
| IfNode* iff_notified = create_and_map_if(control(), test_notified, PROB_MIN, COUNT_UNKNOWN); |
| |
| // True branch, is notified. |
| Node* is_notified = _gvn.transform(new IfTrueNode(iff_notified)); |
| set_control(is_notified); |
| |
| // Reset notified state. |
| Node* notified_reset_memory = store_to_memory(control(), notified_offset, _gvn.intcon(0), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::unordered); |
| |
| // Iff notified, the return address of the commit method is the current position of the backing java buffer. This is used to reset the event writer. |
| Node* current_pos_X = _gvn.transform(new LoadXNode(control(), input_memory_state, java_buffer_pos_offset, TypeRawPtr::NOTNULL, TypeX_X, MemNode::unordered)); |
| // Convert the machine-word to a long. |
| Node* current_pos = _gvn.transform(ConvX2L(current_pos_X)); |
| |
| // False branch, not notified. |
| Node* not_notified = _gvn.transform(new IfFalseNode(iff_notified)); |
| set_control(not_notified); |
| set_all_memory(input_memory_state); |
| |
| // Arg is the next position as a long. |
| Node* arg = argument(0); |
| // Convert long to machine-word. |
| Node* next_pos_X = _gvn.transform(ConvL2X(arg)); |
| |
| // Store the next_position to the underlying jfr java buffer. |
| Node* commit_memory; |
| #ifdef _LP64 |
| commit_memory = store_to_memory(control(), java_buffer_pos_offset, next_pos_X, T_LONG, Compile::AliasIdxRaw, MemNode::release); |
| #else |
| commit_memory = store_to_memory(control(), java_buffer_pos_offset, next_pos_X, T_INT, Compile::AliasIdxRaw, MemNode::release); |
| #endif |
| |
| // Now load the flags from off the java buffer and decide if the buffer is a lease. If so, it needs to be returned post-commit. |
| Node* java_buffer_flags_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_FLAGS_OFFSET))))); |
| Node* flags = make_load(control(), java_buffer_flags_offset, TypeInt::UBYTE, T_BYTE, MemNode::unordered); |
| Node* lease_constant = _gvn.transform(_gvn.intcon(4)); |
| |
| // And flags with lease constant. |
| Node* lease = _gvn.transform(new AndINode(flags, lease_constant)); |
| |
| // Branch on lease to conditionalize returning the leased java buffer. |
| Node* lease_cmp = _gvn.transform(new CmpINode(lease, lease_constant)); |
| Node* test_lease = _gvn.transform(new BoolNode(lease_cmp, BoolTest::eq)); |
| IfNode* iff_lease = create_and_map_if(control(), test_lease, PROB_MIN, COUNT_UNKNOWN); |
| |
| // False branch, not a lease. |
| Node* not_lease = _gvn.transform(new IfFalseNode(iff_lease)); |
| |
| // True branch, is lease. |
| Node* is_lease = _gvn.transform(new IfTrueNode(iff_lease)); |
| set_control(is_lease); |
| |
| // Make a runtime call, which can safepoint, to return the leased buffer. This updates both the JfrThreadLocal and the Java event writer oop. |
| Node* call_return_lease = make_runtime_call(RC_NO_LEAF, |
| OptoRuntime::void_void_Type(), |
| StubRoutines::jfr_return_lease(), |
| "return_lease", TypePtr::BOTTOM); |
| Node* call_return_lease_control = _gvn.transform(new ProjNode(call_return_lease, TypeFunc::Control)); |
| |
| RegionNode* lease_compare_rgn = new RegionNode(PATH_LIMIT); |
| record_for_igvn(lease_compare_rgn); |
| PhiNode* lease_compare_mem = new PhiNode(lease_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); |
| record_for_igvn(lease_compare_mem); |
| PhiNode* lease_compare_io = new PhiNode(lease_compare_rgn, Type::ABIO); |
| record_for_igvn(lease_compare_io); |
| PhiNode* lease_result_value = new PhiNode(lease_compare_rgn, TypeLong::LONG); |
| record_for_igvn(lease_result_value); |
| |
| // Update control and phi nodes. |
| lease_compare_rgn->init_req(_true_path, call_return_lease_control); |
| lease_compare_rgn->init_req(_false_path, not_lease); |
| |
| lease_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); |
| lease_compare_mem->init_req(_false_path, commit_memory); |
| |
| lease_compare_io->init_req(_true_path, i_o()); |
| lease_compare_io->init_req(_false_path, input_io_state); |
| |
| lease_result_value->init_req(_true_path, null()); // if the lease was returned, return 0. |
| lease_result_value->init_req(_false_path, arg); // if not lease, return new updated position. |
| |
| RegionNode* result_rgn = new RegionNode(PATH_LIMIT); |
| PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); |
| PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO); |
| PhiNode* result_value = new PhiNode(result_rgn, TypeLong::LONG); |
| |
| // Update control and phi nodes. |
| result_rgn->init_req(_true_path, is_notified); |
| result_rgn->init_req(_false_path, _gvn.transform(lease_compare_rgn)); |
| |
| result_mem->init_req(_true_path, notified_reset_memory); |
| result_mem->init_req(_false_path, _gvn.transform(lease_compare_mem)); |
| |
| result_io->init_req(_true_path, input_io_state); |
| result_io->init_req(_false_path, _gvn.transform(lease_compare_io)); |
| |
| result_value->init_req(_true_path, current_pos); |
| result_value->init_req(_false_path, _gvn.transform(lease_result_value)); |
| |
| // Set output state. |
| set_control(_gvn.transform(result_rgn)); |
| set_all_memory(_gvn.transform(result_mem)); |
| set_i_o(_gvn.transform(result_io)); |
| set_result(result_rgn, result_value); |
| return true; |
| } |
| |
| /* |
| * The intrinsic is a model of this pseudo-code: |
| * |
| * JfrThreadLocal* const tl = Thread::jfr_thread_local() |
| * jobject h_event_writer = tl->java_event_writer(); |
| * if (h_event_writer == nullptr) { |
| * return nullptr; |
| * } |
| * oop threadObj = Thread::threadObj(); |
| * oop vthread = java_lang_Thread::vthread(threadObj); |
| * traceid tid; |
| * bool excluded; |
| * if (vthread != threadObj) { // i.e. current thread is virtual |
| * tid = java_lang_Thread::tid(vthread); |
| * u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(vthread); |
| * excluded = vthread_epoch_raw & excluded_mask; |
| * if (!excluded) { |
| * traceid current_epoch = JfrTraceIdEpoch::current_generation(); |
| * u2 vthread_epoch = vthread_epoch_raw & epoch_mask; |
| * if (vthread_epoch != current_epoch) { |
| * write_checkpoint(); |
| * } |
| * } |
| * } else { |
| * tid = java_lang_Thread::tid(threadObj); |
| * u2 thread_epoch_raw = java_lang_Thread::jfr_epoch(threadObj); |
| * excluded = thread_epoch_raw & excluded_mask; |
| * } |
| * oop event_writer = JNIHandles::resolve_non_null(h_event_writer); |
| * traceid tid_in_event_writer = getField(event_writer, "threadID"); |
| * if (tid_in_event_writer != tid) { |
| * setField(event_writer, "threadID", tid); |
| * setField(event_writer, "excluded", excluded); |
| * } |
| * return event_writer |
| */ |
| bool LibraryCallKit::inline_native_getEventWriter() { |
| enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; |
| |
| // Save input memory and i_o state. |
| Node* input_memory_state = reset_memory(); |
| set_all_memory(input_memory_state); |
| Node* input_io_state = i_o(); |
| |
| Node* excluded_mask = _gvn.intcon(32768); |
| Node* epoch_mask = _gvn.intcon(32767); |
| |
| // TLS |
| Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); |
| |
| // Load the address of java event writer jobject handle from the jfr_thread_local structure. |
| Node* jobj_ptr = basic_plus_adr(top(), tls_ptr, in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR)); |
| |
| // Load the eventwriter jobject handle. |
| Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered); |
| |
| // Null check the jobject handle. |
| Node* jobj_cmp_null = _gvn.transform(new CmpPNode(jobj, null())); |
| Node* test_jobj_not_equal_null = _gvn.transform(new BoolNode(jobj_cmp_null, BoolTest::ne)); |
| IfNode* iff_jobj_not_equal_null = create_and_map_if(control(), test_jobj_not_equal_null, PROB_MAX, COUNT_UNKNOWN); |
| |
| // False path, jobj is null. |
| Node* jobj_is_null = _gvn.transform(new IfFalseNode(iff_jobj_not_equal_null)); |
| |
| // True path, jobj is not null. |
| Node* jobj_is_not_null = _gvn.transform(new IfTrueNode(iff_jobj_not_equal_null)); |
| |
| set_control(jobj_is_not_null); |
| |
| // Load the threadObj for the CarrierThread. |
| Node* threadObj = generate_current_thread(tls_ptr); |
| |
| // Load the vthread. |
| Node* vthread = generate_virtual_thread(tls_ptr); |
| |
| // If vthread != threadObj, this is a virtual thread. |
| Node* vthread_cmp_threadObj = _gvn.transform(new CmpPNode(vthread, threadObj)); |
| Node* test_vthread_not_equal_threadObj = _gvn.transform(new BoolNode(vthread_cmp_threadObj, BoolTest::ne)); |
| IfNode* iff_vthread_not_equal_threadObj = |
| create_and_map_if(jobj_is_not_null, test_vthread_not_equal_threadObj, PROB_FAIR, COUNT_UNKNOWN); |
| |
| // False branch, fallback to threadObj. |
| Node* vthread_equal_threadObj = _gvn.transform(new IfFalseNode(iff_vthread_not_equal_threadObj)); |
| set_control(vthread_equal_threadObj); |
| |
| // Load the tid field from the vthread object. |
| Node* thread_obj_tid = load_field_from_object(threadObj, "tid", "J"); |
| |
| // Load the raw epoch value from the threadObj. |
| Node* threadObj_epoch_offset = basic_plus_adr(threadObj, java_lang_Thread::jfr_epoch_offset()); |
| Node* threadObj_epoch_raw = access_load_at(threadObj, threadObj_epoch_offset, TypeRawPtr::BOTTOM, TypeInt::CHAR, T_CHAR, |
| IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); |
| |
| // Mask off the excluded information from the epoch. |
| Node * threadObj_is_excluded = _gvn.transform(new AndINode(threadObj_epoch_raw, excluded_mask)); |
| |
| // True branch, this is a virtual thread. |
| Node* vthread_not_equal_threadObj = _gvn.transform(new IfTrueNode(iff_vthread_not_equal_threadObj)); |
| set_control(vthread_not_equal_threadObj); |
| |
| // Load the tid field from the vthread object. |
| Node* vthread_tid = load_field_from_object(vthread, "tid", "J"); |
| |
| // Load the raw epoch value from the vthread. |
| Node* vthread_epoch_offset = basic_plus_adr(vthread, java_lang_Thread::jfr_epoch_offset()); |
| Node* vthread_epoch_raw = access_load_at(vthread, vthread_epoch_offset, TypeRawPtr::BOTTOM, TypeInt::CHAR, T_CHAR, |
| IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); |
| |
| // Mask off the excluded information from the epoch. |
| Node * vthread_is_excluded = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(excluded_mask))); |
| |
| // Branch on excluded to conditionalize updating the epoch for the virtual thread. |
| Node* is_excluded_cmp = _gvn.transform(new CmpINode(vthread_is_excluded, _gvn.transform(excluded_mask))); |
| Node* test_not_excluded = _gvn.transform(new BoolNode(is_excluded_cmp, BoolTest::ne)); |
| IfNode* iff_not_excluded = create_and_map_if(control(), test_not_excluded, PROB_MAX, COUNT_UNKNOWN); |
| |
| // False branch, vthread is excluded, no need to write epoch info. |
| Node* excluded = _gvn.transform(new IfFalseNode(iff_not_excluded)); |
| |
| // True branch, vthread is included, update epoch info. |
| Node* included = _gvn.transform(new IfTrueNode(iff_not_excluded)); |
| set_control(included); |
| |
| // Get epoch value. |
| Node* epoch = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(epoch_mask))); |
| |
| // Load the current epoch generation. The value is unsigned 16-bit, so we type it as T_CHAR. |
| Node* epoch_generation_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_generation_address())); |
| Node* current_epoch_generation = make_load(control(), epoch_generation_address, TypeInt::CHAR, T_CHAR, MemNode::unordered); |
| |
| // Compare the epoch in the vthread to the current epoch generation. |
| Node* const epoch_cmp = _gvn.transform(new CmpUNode(current_epoch_generation, epoch)); |
| Node* test_epoch_not_equal = _gvn.transform(new BoolNode(epoch_cmp, BoolTest::ne)); |
| IfNode* iff_epoch_not_equal = create_and_map_if(control(), test_epoch_not_equal, PROB_FAIR, COUNT_UNKNOWN); |
| |
| // False path, epoch is equal, checkpoint information is valid. |
| Node* epoch_is_equal = _gvn.transform(new IfFalseNode(iff_epoch_not_equal)); |
| |
| // True path, epoch is not equal, write a checkpoint for the vthread. |
| Node* epoch_is_not_equal = _gvn.transform(new IfTrueNode(iff_epoch_not_equal)); |
| |
| set_control(epoch_is_not_equal); |
| |
| // Make a runtime call, which can safepoint, to write a checkpoint for the vthread for this epoch. |
| // The call also updates the native thread local thread id and the vthread with the current epoch. |
| Node* call_write_checkpoint = make_runtime_call(RC_NO_LEAF, |
| OptoRuntime::jfr_write_checkpoint_Type(), |
| StubRoutines::jfr_write_checkpoint(), |
| "write_checkpoint", TypePtr::BOTTOM); |
| Node* call_write_checkpoint_control = _gvn.transform(new ProjNode(call_write_checkpoint, TypeFunc::Control)); |
| |
| // vthread epoch != current epoch |
| RegionNode* epoch_compare_rgn = new RegionNode(PATH_LIMIT); |
| record_for_igvn(epoch_compare_rgn); |
| PhiNode* epoch_compare_mem = new PhiNode(epoch_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); |
| record_for_igvn(epoch_compare_mem); |
| PhiNode* epoch_compare_io = new PhiNode(epoch_compare_rgn, Type::ABIO); |
| record_for_igvn(epoch_compare_io); |
| |
| // Update control and phi nodes. |
| epoch_compare_rgn->init_req(_true_path, call_write_checkpoint_control); |
| epoch_compare_rgn->init_req(_false_path, epoch_is_equal); |
| epoch_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); |
| epoch_compare_mem->init_req(_false_path, input_memory_state); |
| epoch_compare_io->init_req(_true_path, i_o()); |
| epoch_compare_io->init_req(_false_path, input_io_state); |
| |
| // excluded != true |
| RegionNode* exclude_compare_rgn = new RegionNode(PATH_LIMIT); |
| record_for_igvn(exclude_compare_rgn); |
| PhiNode* exclude_compare_mem = new PhiNode(exclude_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); |
| record_for_igvn(exclude_compare_mem); |
| PhiNode* exclude_compare_io = new PhiNode(exclude_compare_rgn, Type::ABIO); |
| record_for_igvn(exclude_compare_io); |
| |
| // Update control and phi nodes. |
| exclude_compare_rgn->init_req(_true_path, _gvn.transform(epoch_compare_rgn)); |
| exclude_compare_rgn->init_req(_false_path, excluded); |
| exclude_compare_mem->init_req(_true_path, _gvn.transform(epoch_compare_mem)); |
| exclude_compare_mem->init_req(_false_path, input_memory_state); |
| exclude_compare_io->init_req(_true_path, _gvn.transform(epoch_compare_io)); |
| exclude_compare_io->init_req(_false_path, input_io_state); |
| |
| // vthread != threadObj |
| RegionNode* vthread_compare_rgn = new RegionNode(PATH_LIMIT); |
| record_for_igvn(vthread_compare_rgn); |
| PhiNode* vthread_compare_mem = new PhiNode(vthread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); |
| PhiNode* vthread_compare_io = new PhiNode(vthread_compare_rgn, Type::ABIO); |
| record_for_igvn(vthread_compare_io); |
| PhiNode* tid = new PhiNode(vthread_compare_rgn, TypeLong::LONG); |
| record_for_igvn(tid); |
| PhiNode* exclusion = new PhiNode(vthread_compare_rgn, TypeInt::BOOL); |
| record_for_igvn(exclusion); |
| |
| // Update control and phi nodes. |
| vthread_compare_rgn->init_req(_true_path, _gvn.transform(exclude_compare_rgn)); |
| vthread_compare_rgn->init_req(_false_path, vthread_equal_threadObj); |
| vthread_compare_mem->init_req(_true_path, _gvn.transform(exclude_compare_mem)); |
| vthread_compare_mem->init_req(_false_path, input_memory_state); |
| vthread_compare_io->init_req(_true_path, _gvn.transform(exclude_compare_io)); |
| vthread_compare_io->init_req(_false_path, input_io_state); |
| tid->init_req(_true_path, _gvn.transform(vthread_tid)); |
| tid->init_req(_false_path, _gvn.transform(thread_obj_tid)); |
| exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded)); |
| exclusion->init_req(_false_path, _gvn.transform(threadObj_is_excluded)); |
| |
| // Update branch state. |
| set_control(_gvn.transform(vthread_compare_rgn)); |
| set_all_memory(_gvn.transform(vthread_compare_mem)); |
| set_i_o(_gvn.transform(vthread_compare_io)); |
| |
| // Load the event writer oop by dereferencing the jobject handle. |
| ciKlass* klass_EventWriter = env()->find_system_klass(ciSymbol::make("jdk/jfr/internal/event/EventWriter")); |
| assert(klass_EventWriter->is_loaded(), "invariant"); |
| ciInstanceKlass* const instklass_EventWriter = klass_EventWriter->as_instance_klass(); |
| const TypeKlassPtr* const aklass = TypeKlassPtr::make(instklass_EventWriter); |
| const TypeOopPtr* const xtype = aklass->as_instance_type(); |
| Node* jobj_untagged = _gvn.transform(new AddPNode(top(), jobj, _gvn.MakeConX(-JNIHandles::TypeTag::global))); |
| Node* event_writer = access_load(jobj_untagged, xtype, T_OBJECT, IN_NATIVE | C2_CONTROL_DEPENDENT_LOAD); |
| |
| // Load the current thread id from the event writer object. |
| Node* const event_writer_tid = load_field_from_object(event_writer, "threadID", "J"); |
| // Get the field offset to, conditionally, store an updated tid value later. |
| Node* const event_writer_tid_field = field_address_from_object(event_writer, "threadID", "J", false); |
| const TypePtr* event_writer_tid_field_type = _gvn.type(event_writer_tid_field)->isa_ptr(); |
| // Get the field offset to, conditionally, store an updated exclusion value later. |
| Node* const event_writer_excluded_field = field_address_from_object(event_writer, "excluded", "Z", false); |
| const TypePtr* event_writer_excluded_field_type = _gvn.type(event_writer_excluded_field)->isa_ptr(); |
| |
| RegionNode* event_writer_tid_compare_rgn = new RegionNode(PATH_LIMIT); |
| record_for_igvn(event_writer_tid_compare_rgn); |
| PhiNode* event_writer_tid_compare_mem = new PhiNode(event_writer_tid_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); |
| record_for_igvn(event_writer_tid_compare_mem); |
| PhiNode* event_writer_tid_compare_io = new PhiNode(event_writer_tid_compare_rgn, Type::ABIO); |
| record_for_igvn(event_writer_tid_compare_io); |
| |
| // Compare the current tid from the thread object to what is currently stored in the event writer object. |
| Node* const tid_cmp = _gvn.transform(new CmpLNode(event_writer_tid, _gvn.transform(tid))); |
| Node* test_tid_not_equal = _gvn.transform(new BoolNode(tid_cmp, BoolTest::ne)); |
| IfNode* iff_tid_not_equal = create_and_map_if(_gvn.transform(vthread_compare_rgn), test_tid_not_equal, PROB_FAIR, COUNT_UNKNOWN); |
| |
| // False path, tids are the same. |
| Node* tid_is_equal = _gvn.transform(new IfFalseNode(iff_tid_not_equal)); |
| |
| // True path, tid is not equal, need to update the tid in the event writer. |
| Node* tid_is_not_equal = _gvn.transform(new IfTrueNode(iff_tid_not_equal)); |
| record_for_igvn(tid_is_not_equal); |
| |
| // Store the exclusion state to the event writer. |
| store_to_memory(tid_is_not_equal, event_writer_excluded_field, _gvn.transform(exclusion), T_BOOLEAN, event_writer_excluded_field_type, MemNode::unordered); |
| |
| // Store the tid to the event writer. |
| store_to_memory(tid_is_not_equal, event_writer_tid_field, tid, T_LONG, event_writer_tid_field_type, MemNode::unordered); |
| |
| // Update control and phi nodes. |
| event_writer_tid_compare_rgn->init_req(_true_path, tid_is_not_equal); |
| event_writer_tid_compare_rgn->init_req(_false_path, tid_is_equal); |
| event_writer_tid_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); |
| event_writer_tid_compare_mem->init_req(_false_path, _gvn.transform(vthread_compare_mem)); |
| event_writer_tid_compare_io->init_req(_true_path, _gvn.transform(i_o())); |
| event_writer_tid_compare_io->init_req(_false_path, _gvn.transform(vthread_compare_io)); |
| |
| // Result of top level CFG, Memory, IO and Value. |
| RegionNode* result_rgn = new RegionNode(PATH_LIMIT); |
| PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); |
| PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO); |
| PhiNode* result_value = new PhiNode(result_rgn, TypeInstPtr::BOTTOM); |
| |
| // Result control. |
| result_rgn->init_req(_true_path, _gvn.transform(event_writer_tid_compare_rgn)); |
| result_rgn->init_req(_false_path, jobj_is_null); |
| |
| // Result memory. |
| result_mem->init_req(_true_path, _gvn.transform(event_writer_tid_compare_mem)); |
| result_mem->init_req(_false_path, _gvn.transform(input_memory_state)); |
| |
| // Result IO. |
| result_io->init_req(_true_path, _gvn.transform(event_writer_tid_compare_io)); |
| result_io->init_req(_false_path, _gvn.transform(input_io_state)); |
| |
| // Result value. |
| result_value->init_req(_true_path, _gvn.transform(event_writer)); // return event writer oop |
| result_value->init_req(_false_path, null()); // return null |
| |
| // Set output state. |
| set_control(_gvn.transform(result_rgn)); |
| set_all_memory(_gvn.transform(result_mem)); |
| set_i_o(_gvn.transform(result_io)); |
| set_result(result_rgn, result_value); |
| return true; |
| } |
| |
| /* |
| * The intrinsic is a model of this pseudo-code: |
| * |
| * JfrThreadLocal* const tl = thread->jfr_thread_local(); |
| * if (carrierThread != thread) { // is virtual thread |
| * const u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(thread); |
| * bool excluded = vthread_epoch_raw & excluded_mask; |
| * Atomic::store(&tl->_contextual_tid, java_lang_Thread::tid(thread)); |
| * Atomic::store(&tl->_contextual_thread_excluded, is_excluded); |
| * if (!excluded) { |
| * const u2 vthread_epoch = vthread_epoch_raw & epoch_mask; |
| * Atomic::store(&tl->_vthread_epoch, vthread_epoch); |
| * } |
| * Atomic::release_store(&tl->_vthread, true); |
| * return; |
| * } |
| * Atomic::release_store(&tl->_vthread, false); |
| */ |
| void LibraryCallKit::extend_setCurrentThread(Node* jt, Node* thread) { |
| enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; |
| |
| Node* input_memory_state = reset_memory(); |
| set_all_memory(input_memory_state); |
| |
| Node* excluded_mask = _gvn.intcon(32768); |
| Node* epoch_mask = _gvn.intcon(32767); |
| |
| Node* const carrierThread = generate_current_thread(jt); |
| // If thread != carrierThread, this is a virtual thread. |
| Node* thread_cmp_carrierThread = _gvn.transform(new CmpPNode(thread, carrierThread)); |
| Node* test_thread_not_equal_carrierThread = _gvn.transform(new BoolNode(thread_cmp_carrierThread, BoolTest::ne)); |
| IfNode* iff_thread_not_equal_carrierThread = |
| create_and_map_if(control(), test_thread_not_equal_carrierThread, PROB_FAIR, COUNT_UNKNOWN); |
| |
| Node* vthread_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_OFFSET_JFR)); |
| |
| // False branch, is carrierThread. |
| Node* thread_equal_carrierThread = _gvn.transform(new IfFalseNode(iff_thread_not_equal_carrierThread)); |
| // Store release |
| Node* vthread_false_memory = store_to_memory(thread_equal_carrierThread, vthread_offset, _gvn.intcon(0), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true); |
| |
| set_all_memory(input_memory_state); |
| |
| // True branch, is virtual thread. |
| Node* thread_not_equal_carrierThread = _gvn.transform(new IfTrueNode(iff_thread_not_equal_carrierThread)); |
| set_control(thread_not_equal_carrierThread); |
| |
| // Load the raw epoch value from the vthread. |
| Node* epoch_offset = basic_plus_adr(thread, java_lang_Thread::jfr_epoch_offset()); |
| Node* epoch_raw = access_load_at(thread, epoch_offset, TypeRawPtr::BOTTOM, TypeInt::CHAR, T_CHAR, |
| IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); |
| |
| // Mask off the excluded information from the epoch. |
| Node * const is_excluded = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(excluded_mask))); |
| |
| // Load the tid field from the thread. |
| Node* tid = load_field_from_object(thread, "tid", "J"); |
| |
| // Store the vthread tid to the jfr thread local. |
| Node* thread_id_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_ID_OFFSET_JFR)); |
| Node* tid_memory = store_to_memory(control(), thread_id_offset, tid, T_LONG, Compile::AliasIdxRaw, MemNode::unordered, true); |
| |
| // Branch is_excluded to conditionalize updating the epoch . |
| Node* excluded_cmp = _gvn.transform(new CmpINode(is_excluded, _gvn.transform(excluded_mask))); |
| Node* test_excluded = _gvn.transform(new BoolNode(excluded_cmp, BoolTest::eq)); |
| IfNode* iff_excluded = create_and_map_if(control(), test_excluded, PROB_MIN, COUNT_UNKNOWN); |
| |
| // True branch, vthread is excluded, no need to write epoch info. |
| Node* excluded = _gvn.transform(new IfTrueNode(iff_excluded)); |
| set_control(excluded); |
| Node* vthread_is_excluded = _gvn.intcon(1); |
| |
| // False branch, vthread is included, update epoch info. |
| Node* included = _gvn.transform(new IfFalseNode(iff_excluded)); |
| set_control(included); |
| Node* vthread_is_included = _gvn.intcon(0); |
| |
| // Get epoch value. |
| Node* epoch = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(epoch_mask))); |
| |
| // Store the vthread epoch to the jfr thread local. |
| Node* vthread_epoch_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EPOCH_OFFSET_JFR)); |
| Node* included_memory = store_to_memory(control(), vthread_epoch_offset, epoch, T_CHAR, Compile::AliasIdxRaw, MemNode::unordered, true); |
| |
| RegionNode* excluded_rgn = new RegionNode(PATH_LIMIT); |
| record_for_igvn(excluded_rgn); |
| PhiNode* excluded_mem = new PhiNode(excluded_rgn, Type::MEMORY, TypePtr::BOTTOM); |
| record_for_igvn(excluded_mem); |
| PhiNode* exclusion = new PhiNode(excluded_rgn, TypeInt::BOOL); |
| record_for_igvn(exclusion); |
| |
| // Merge the excluded control and memory. |
| excluded_rgn->init_req(_true_path, excluded); |
| excluded_rgn->init_req(_false_path, included); |
| excluded_mem->init_req(_true_path, tid_memory); |
| excluded_mem->init_req(_false_path, included_memory); |
| exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded)); |
| exclusion->init_req(_false_path, _gvn.transform(vthread_is_included)); |
| |
| // Set intermediate state. |
| set_control(_gvn.transform(excluded_rgn)); |
| set_all_memory(excluded_mem); |
| |
| // Store the vthread exclusion state to the jfr thread local. |
| Node* thread_local_excluded_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EXCLUDED_OFFSET_JFR)); |
| store_to_memory(control(), thread_local_excluded_offset, _gvn.transform(exclusion), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::unordered, true); |
| |
| // Store release |
| Node * vthread_true_memory = store_to_memory(control(), vthread_offset, _gvn.intcon(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true); |
| |
| RegionNode* thread_compare_rgn = new RegionNode(PATH_LIMIT); |
| record_for_igvn(thread_compare_rgn); |
| PhiNode* thread_compare_mem = new PhiNode(thread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); |
| record_for_igvn(thread_compare_mem); |
| PhiNode* vthread = new PhiNode(thread_compare_rgn, TypeInt::BOOL); |
| record_for_igvn(vthread); |
| |
| // Merge the thread_compare control and memory. |
| thread_compare_rgn->init_req(_true_path, control()); |
| thread_compare_rgn->init_req(_false_path, thread_equal_carrierThread); |
| thread_compare_mem->init_req(_true_path, vthread_true_memory); |
| thread_compare_mem->init_req(_false_path, vthread_false_memory); |
| |
| // Set output state. |
| set_control(_gvn.transform(thread_compare_rgn)); |
| set_all_memory(_gvn.transform(thread_compare_mem)); |
| } |
| |
| #endif // JFR_HAVE_INTRINSICS |
| |
| //------------------------inline_native_currentCarrierThread------------------ |
| bool LibraryCallKit::inline_native_currentCarrierThread() { |
| Node* junk = nullptr; |
| set_result(generate_current_thread(junk)); |
| return true; |
| } |
| |
| //------------------------inline_native_currentThread------------------ |
| bool LibraryCallKit::inline_native_currentThread() { |
| Node* junk = nullptr; |
| set_result(generate_virtual_thread(junk)); |
| return true; |
| } |
| |
| //------------------------inline_native_setVthread------------------ |
| bool LibraryCallKit::inline_native_setCurrentThread() { |
| assert(C->method()->changes_current_thread(), |
| "method changes current Thread but is not annotated ChangesCurrentThread"); |
| Node* arr = argument(1); |
| Node* thread = _gvn.transform(new ThreadLocalNode()); |
| Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset())); |
| Node* thread_obj_handle |
| = make_load(nullptr, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered); |
| thread_obj_handle = _gvn.transform(thread_obj_handle); |
| const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr(); |
| access_store_at(nullptr, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED); |
| JFR_ONLY(extend_setCurrentThread(thread, arr);) |
| return true; |
| } |
| |
| const Type* LibraryCallKit::scopedValueCache_type() { |
| ciKlass* objects_klass = ciObjArrayKlass::make(env()->Object_klass()); |
| const TypeOopPtr* etype = TypeOopPtr::make_from_klass(env()->Object_klass()); |
| const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS); |
| |
| // Because we create the scopedValue cache lazily we have to make the |
| // type of the result BotPTR. |
| bool xk = etype->klass_is_exact(); |
| const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, 0); |
| return objects_type; |
| } |
| |
| Node* LibraryCallKit::scopedValueCache_helper() { |
| Node* thread = _gvn.transform(new ThreadLocalNode()); |
| Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::scopedValueCache_offset())); |
| // We cannot use immutable_memory() because we might flip onto a |
| // different carrier thread, at which point we'll need to use that |
| // carrier thread's cache. |
| // return _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(), |
| // TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered)); |
| return make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered); |
| } |
| |
| //------------------------inline_native_scopedValueCache------------------ |
| bool LibraryCallKit::inline_native_scopedValueCache() { |
| Node* cache_obj_handle = scopedValueCache_helper(); |
| const Type* objects_type = scopedValueCache_type(); |
| set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE)); |
| |
| return true; |
| } |
| |
| //------------------------inline_native_setScopedValueCache------------------ |
| bool LibraryCallKit::inline_native_setScopedValueCache() { |
| Node* arr = argument(0); |
| Node* cache_obj_handle = scopedValueCache_helper(); |
| const Type* objects_type = scopedValueCache_type(); |
| |
| const TypePtr *adr_type = _gvn.type(cache_obj_handle)->isa_ptr(); |
| access_store_at(nullptr, cache_obj_handle, adr_type, arr, objects_type, T_OBJECT, IN_NATIVE | MO_UNORDERED); |
| |
| return true; |
| } |
| |
| //---------------------------load_mirror_from_klass---------------------------- |
| // Given a klass oop, load its java mirror (a java.lang.Class oop). |
| Node* LibraryCallKit::load_mirror_from_klass(Node* klass) { |
| Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset())); |
| Node* load = make_load(nullptr, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered); |
| // mirror = ((OopHandle)mirror)->resolve(); |
| return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE); |
| } |
| |
| //-----------------------load_klass_from_mirror_common------------------------- |
| // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop. |
| // Test the klass oop for null (signifying a primitive Class like Integer.TYPE), |
| // and branch to the given path on the region. |
| // If never_see_null, take an uncommon trap on null, so we can optimistically |
| // compile for the non-null case. |
| // If the region is null, force never_see_null = true. |
| Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror, |
| bool never_see_null, |
| RegionNode* region, |
| int null_path, |
| int offset) { |
| if (region == nullptr) never_see_null = true; |
| Node* p = basic_plus_adr(mirror, offset); |
| const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL; |
| Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type)); |
| Node* null_ctl = top(); |
| kls = null_check_oop(kls, &null_ctl, never_see_null); |
| if (region != nullptr) { |
| // Set region->in(null_path) if the mirror is a primitive (e.g, int.class). |
| region->init_req(null_path, null_ctl); |
| } else { |
| assert(null_ctl == top(), "no loose ends"); |
| } |
| return kls; |
| } |
| |
| //--------------------(inline_native_Class_query helpers)--------------------- |
| // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE_FAST, JVM_ACC_HAS_FINALIZER. |
| // Fall through if (mods & mask) == bits, take the guard otherwise. |
| Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) { |
| // Branch around if the given klass has the given modifier bit set. |
| // Like generate_guard, adds a new path onto the region. |
| Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset())); |
| Node* mods = make_load(nullptr, modp, TypeInt::INT, T_INT, MemNode::unordered); |
| Node* mask = intcon(modifier_mask); |
| Node* bits = intcon(modifier_bits); |
| Node* mbit = _gvn.transform(new AndINode(mods, mask)); |
| Node* cmp = _gvn.transform(new CmpINode(mbit, bits)); |
| Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); |
| return generate_fair_guard(bol, region); |
| } |
| Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) { |
| return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region); |
| } |
| Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) { |
| return generate_access_flags_guard(kls, JVM_ACC_IS_HIDDEN_CLASS, 0, region); |
| } |
| |
| //-------------------------inline_native_Class_query------------------- |
| bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) { |
| const Type* return_type = TypeInt::BOOL; |
| Node* prim_return_value = top(); // what happens if it's a primitive class? |
| bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); |
| bool expect_prim = false; // most of these guys expect to work on refs |
| |
| enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT }; |
| |
| Node* mirror = argument(0); |
| Node* obj = top(); |
| |
| switch (id) { |
| case vmIntrinsics::_isInstance: |
| // nothing is an instance of a primitive type |
| prim_return_value = intcon(0); |
| obj = argument(1); |
| break; |
| case vmIntrinsics::_getModifiers: |
| prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC); |
| assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line"); |
| return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin); |
| break; |
| case vmIntrinsics::_isInterface: |
| prim_return_value = intcon(0); |
| break; |
| case vmIntrinsics::_isArray: |
| prim_return_value = intcon(0); |
| expect_prim = true; // cf. ObjectStreamClass.getClassSignature |
| break; |
| case vmIntrinsics::_isPrimitive: |
| prim_return_value = intcon(1); |
| expect_prim = true; // obviously |
| break; |
| case vmIntrinsics::_isHidden: |
| prim_return_value = intcon(0); |
| break; |
| case vmIntrinsics::_getSuperclass: |
| prim_return_value = null(); |
| return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR); |
| break; |
| case vmIntrinsics::_getClassAccessFlags: |
| prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC); |
| return_type = TypeInt::INT; // not bool! 6297094 |
| break; |
| default: |
| fatal_unexpected_iid(id); |
| break; |
| } |
| |
| const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); |
| if (mirror_con == nullptr) return false; // cannot happen? |
| |
| #ifndef PRODUCT |
| if (C->print_intrinsics() || C->print_inlining()) { |
| ciType* k = mirror_con->java_mirror_type(); |
| if (k) { |
| tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id())); |
| k->print_name(); |
| tty->cr(); |
| } |
| } |
| #endif |
| |
| // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive). |
| RegionNode* region = new RegionNode(PATH_LIMIT); |
| record_for_igvn(region); |
| PhiNode* phi = new PhiNode(region, return_type); |
| |
| // The mirror will never be null of Reflection.getClassAccessFlags, however |
| // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE |
| // if it is. See bug 4774291. |
| |
| // For Reflection.getClassAccessFlags(), the null check occurs in |
| // the wrong place; see inline_unsafe_access(), above, for a similar |
| // situation. |
| mirror = null_check(mirror); |
| // If mirror or obj is dead, only null-path is taken. |
| if (stopped()) return true; |
| |
| if (expect_prim) never_see_null = false; // expect nulls (meaning prims) |
| |
| // Now load the mirror's klass metaobject, and null-check it. |
| // Side-effects region with the control path if the klass is null. |
| Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path); |
| // If kls is null, we have a primitive mirror. |
| phi->init_req(_prim_path, prim_return_value); |
| if (stopped()) { set_result(region, phi); return true; } |
| bool safe_for_replace = (region->in(_prim_path) == top()); |
| |
| Node* p; // handy temp |
| Node* null_ctl; |
| |
| // Now that we have the non-null klass, we can perform the real query. |
| // For constant classes, the query will constant-fold in LoadNode::Value. |
| Node* query_value = top(); |
| switch (id) { |
| case vmIntrinsics::_isInstance: |
| // nothing is an instance of a primitive type |
| query_value = gen_instanceof(obj, kls, safe_for_replace); |
| break; |
| |
| case vmIntrinsics::_getModifiers: |
| p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset())); |
| query_value = make_load(nullptr, p, TypeInt::INT, T_INT, MemNode::unordered); |
| break; |
| |
| case vmIntrinsics::_isInterface: |
| // (To verify this code sequence, check the asserts in JVM_IsInterface.) |
| if (generate_interface_guard(kls, region) != nullptr) |
| // A guard was added. If the guard is taken, it was an interface. |
| phi->add_req(intcon(1)); |
| // If we fall through, it's a plain class. |
| query_value = intcon(0); |
| break; |
| |
| case vmIntrinsics::_isArray: |
| // (To verify this code sequence, check the asserts in JVM_IsArrayClass.) |
| if (generate_array_guard(kls, region) != nullptr) |
| // A guard was added. If the guard is taken, it was an array. |
| phi->add_req(intcon(1)); |
| // If we fall through, it's a plain class. |
| query_value = intcon(0); |
| break; |
| |
| case vmIntrinsics::_isPrimitive: |
| query_value = intcon(0); // "normal" path produces false |
| break; |
| |
| case vmIntrinsics::_isHidden: |
| // (To verify this code sequence, check the asserts in JVM_IsHiddenClass.) |
| if (generate_hidden_class_guard(kls, region) != nullptr) |
| // A guard was added. If the guard is taken, it was an hidden class. |
| phi->add_req(intcon(1)); |
| // If we fall through, it's a plain class. |
| query_value = intcon(0); |
| break; |
| |
| |
| case vmIntrinsics::_getSuperclass: |
| // The rules here are somewhat unfortunate, but we can still do better |
| // with random logic than with a JNI call. |
| // Interfaces store null or Object as _super, but must report null. |
| // Arrays store an intermediate super as _super, but must report Object. |
| // Other types can report the actual _super. |
| // (To verify this code sequence, check the asserts in JVM_IsInterface.) |
| if (generate_interface_guard(kls, region) != nullptr) |
| // A guard was added. If the guard is taken, it was an interface. |
| phi->add_req(null()); |
| if (generate_array_guard(kls, region) != nullptr) |
| // A guard was added. If the guard is taken, it was an array. |
| phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror()))); |
| // If we fall through, it's a plain class. Get its _super. |
| p = basic_plus_adr(kls, in_bytes(Klass::super_offset())); |
| kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); |
| null_ctl = top(); |
| kls = null_check_oop(kls, &null_ctl); |
| if (null_ctl != top()) { |
| // If the guard is taken, Object.superClass is null (both klass and mirror). |
| region->add_req(null_ctl); |
| phi ->add_req(null()); |
| } |
| if (!stopped()) { |
| query_value = load_mirror_from_klass(kls); |
| } |
| break; |
| |
| case vmIntrinsics::_getClassAccessFlags: |
| p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset())); |
| query_value = make_load(nullptr, p, TypeInt::INT, T_INT, MemNode::unordered); |
| break; |
| |
| default: |
| fatal_unexpected_iid(id); |
| break; |
| } |
| |
| // Fall-through is the normal case of a query to a real class. |
| phi->init_req(1, query_value); |
| region->init_req(1, control()); |
| |
| C->set_has_split_ifs(true); // Has chance for split-if optimization |
| set_result(region, phi); |
| return true; |
| } |
| |
| //-------------------------inline_Class_cast------------------- |
| bool LibraryCallKit::inline_Class_cast() { |
| Node* mirror = argument(0); // Class |
| Node* obj = argument(1); |
| const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); |
| if (mirror_con == nullptr) { |
| return false; // dead path (mirror->is_top()). |
| } |
| if (obj == nullptr || obj->is_top()) { |
| return false; // dead path |
| } |
| const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr(); |
| |
| // First, see if Class.cast() can be folded statically. |
| // java_mirror_type() returns non-null for compile-time Class constants. |
| ciType* tm = mirror_con->java_mirror_type(); |
| if (tm != nullptr && tm->is_klass() && |
| tp != nullptr) { |
| if (!tp->is_loaded()) { |
| // Don't use intrinsic when class is not loaded. |
| return false; |
| } else { |
| int static_res = C->static_subtype_check(TypeKlassPtr::make(tm->as_klass(), Type::trust_interfaces), tp->as_klass_type()); |
| if (static_res == Compile::SSC_always_true) { |
| // isInstance() is true - fold the code. |
| set_result(obj); |
| return true; |
| } else if (static_res == Compile::SSC_always_false) { |
| // Don't use intrinsic, have to throw ClassCastException. |
| // If the reference is null, the non-intrinsic bytecode will |
| // be optimized appropriately. |
| return false; |
| } |
| } |
| } |
| |
| // Bailout intrinsic and do normal inlining if exception path is frequent. |
| if (too_many_traps(Deoptimization::Reason_intrinsic)) { |
| return false; |
| } |
| |
| // Generate dynamic checks. |
| // Class.cast() is java implementation of _checkcast bytecode. |
| // Do checkcast (Parse::do_checkcast()) optimizations here. |
| |
| mirror = null_check(mirror); |
| // If mirror is dead, only null-path is taken. |
| if (stopped()) { |
| return true; |
| } |
| |
| // Not-subtype or the mirror's klass ptr is null (in case it is a primitive). |
| enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT }; |
| RegionNode* region = new RegionNode(PATH_LIMIT); |
| record_for_igvn(region); |
| |
| // Now load the mirror's klass metaobject, and null-check it. |
| // If kls is null, we have a primitive mirror and |
| // nothing is an instance of a primitive type. |
| Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path); |
| |
| Node* res = top(); |
| if (!stopped()) { |
| Node* bad_type_ctrl = top(); |
| // Do checkcast optimizations. |
| res = gen_checkcast(obj, kls, &bad_type_ctrl); |
| region->init_req(_bad_type_path, bad_type_ctrl); |
| } |
| if (region->in(_prim_path) != top() || |
| region->in(_bad_type_path) != top()) { |
| // Let Interpreter throw ClassCastException. |
| PreserveJVMState pjvms(this); |
| set_control(_gvn.transform(region)); |
| uncommon_trap(Deoptimization::Reason_intrinsic, |
| Deoptimization::Action_maybe_recompile); |
| } |
| if (!stopped()) { |
| set_result(res); |
| } |
| return true; |
| } |
| |
| |
| //--------------------------inline_native_subtype_check------------------------ |
| // This intrinsic takes the JNI calls out of the heart of |
| // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc. |
| bool LibraryCallKit::inline_native_subtype_check() { |
| // Pull both arguments off the stack. |
| Node* args[2]; // two java.lang.Class mirrors: superc, subc |
| args[0] = argument(0); |
| args[1] = argument(1); |
| Node* klasses[2]; // corresponding Klasses: superk, subk |
| klasses[0] = klasses[1] = top(); |
| |
| enum { |
| // A full decision tree on {superc is prim, subc is prim}: |
| _prim_0_path = 1, // {P,N} => false |
| // {P,P} & superc!=subc => false |
| _prim_same_path, // {P,P} & superc==subc => true |
| _prim_1_path, // {N,P} => false |
| _ref_subtype_path, // {N,N} & subtype check wins => true |
| _both_ref_path, // {N,N} & subtype check loses => false |
| PATH_LIMIT |
| }; |
| |
| RegionNode* region = new RegionNode(PATH_LIMIT); |
| Node* phi = new PhiNode(region, TypeInt::BOOL); |
| record_for_igvn(region); |
| |
| const TypePtr* adr_type = TypeRawPtr::BOTTOM; // memory type of loads |
| const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL; |
| int class_klass_offset = java_lang_Class::klass_offset(); |
| |
| // First null-check both mirrors and load each mirror's klass metaobject. |
| int which_arg; |
| for (which_arg = 0; which_arg <= 1; which_arg++) { |
| Node* arg = args[which_arg]; |
| arg = null_check(arg); |
| if (stopped()) break; |
| args[which_arg] = arg; |
| |
| Node* p = basic_plus_adr(arg, class_klass_offset); |
| Node* kls = LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, adr_type, kls_type); |
| klasses[which_arg] = _gvn.transform(kls); |
| } |
| |
| // Having loaded both klasses, test each for null. |
| bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); |
| for (which_arg = 0; which_arg <= 1; which_arg++) { |
| Node* kls = klasses[which_arg]; |
| Node* null_ctl = top(); |
| kls = null_check_oop(kls, &null_ctl, never_see_null); |
| int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path); |
| region->init_req(prim_path, null_ctl); |
| if (stopped()) break; |
| klasses[which_arg] = kls; |
| } |
| |
| if (!stopped()) { |
| // now we have two reference types, in klasses[0..1] |
| Node* subk = klasses[1]; // the argument to isAssignableFrom |
| Node* superk = klasses[0]; // the receiver |
| region->set_req(_both_ref_path, gen_subtype_check(subk, superk)); |
| // now we have a successful reference subtype check |
| region->set_req(_ref_subtype_path, control()); |
| } |
| |
| // If both operands are primitive (both klasses null), then |
| // we must return true when they are identical primitives. |
| // It is convenient to test this after the first null klass check. |
| set_control(region->in(_prim_0_path)); // go back to first null check |
| if (!stopped()) { |
| // Since superc is primitive, make a guard for the superc==subc case. |
| Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1])); |
| Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq)); |
| generate_guard(bol_eq, region, PROB_FAIR); |
| if (region->req() == PATH_LIMIT+1) { |
| // A guard was added. If the added guard is taken, superc==subc. |
| region->swap_edges(PATH_LIMIT, _prim_same_path); |
| region->del_req(PATH_LIMIT); |
| } |
| region->set_req(_prim_0_path, control()); // Not equal after all. |
| } |
| |
| // these are the only paths that produce 'true': |
| phi->set_req(_prim_same_path, intcon(1)); |
| phi->set_req(_ref_subtype_path, intcon(1)); |
| |
| // pull together the cases: |
| assert(region->req() == PATH_LIMIT, "sane region"); |
| for (uint i = 1; i < region->req(); i++) { |
| Node* ctl = region->in(i); |
| if (ctl == nullptr || ctl == top()) { |
| region->set_req(i, top()); |
| phi ->set_req(i, top()); |
| } else if (phi->in(i) == nullptr) { |
| phi->set_req(i, intcon(0)); // all other paths produce 'false' |
| } |
| } |
| |
| set_control(_gvn.transform(region)); |
| set_result(_gvn.transform(phi)); |
| return true; |
| } |
| |
| //---------------------generate_array_guard_common------------------------ |
| Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region, |
| bool obj_array, bool not_array) { |
| |
| if (stopped()) { |
| return nullptr; |
| } |
| |
| // If obj_array/non_array==false/false: |
| // Branch around if the given klass is in fact an array (either obj or prim). |
| // If obj_array/non_array==false/true: |
| // Branch around if the given klass is not an array klass of any kind. |
| // If obj_array/non_array==true/true: |
| // Branch around if the kls is not an oop array (kls is int[], String, etc.) |
| // If obj_array/non_array==true/false: |
| // Branch around if the kls is an oop array (Object[] or subtype) |
| // |
| // Like generate_guard, adds a new path onto the region. |
| jint layout_con = 0; |
| Node* layout_val = get_layout_helper(kls, layout_con); |
| if (layout_val == nullptr) { |
| bool query = (obj_array |
| ? Klass::layout_helper_is_objArray(layout_con) |
| : Klass::layout_helper_is_array(layout_con)); |
| if (query == not_array) { |
| return nullptr; // never a branch |
| } else { // always a branch |
| Node* always_branch = control(); |
| if (region != nullptr) |
| region->add_req(always_branch); |
| set_control(top()); |
| return always_branch; |
| } |
| } |
| // Now test the correct condition. |
| jint nval = (obj_array |
| ? (jint)(Klass::_lh_array_tag_type_value |
| << Klass::_lh_array_tag_shift) |
| : Klass::_lh_neutral_value); |
| Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval))); |
| BoolTest::mask btest = BoolTest::lt; // correct for testing is_[obj]array |
| // invert the test if we are looking for a non-array |
| if (not_array) btest = BoolTest(btest).negate(); |
| Node* bol = _gvn.transform(new BoolNode(cmp, btest)); |
| return generate_fair_guard(bol, region); |
| } |
| |
| |
| //-----------------------inline_native_newArray-------------------------- |
| // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length); |
| // private native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size); |
| bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) { |
| Node* mirror; |
| Node* count_val; |
| if (uninitialized) { |
| mirror = argument(1); |
| count_val = argument(2); |
| } else { |
| mirror = argument(0); |
| count_val = argument(1); |
| } |
| |
| mirror = null_check(mirror); |
| // If mirror or obj is dead, only null-path is taken. |
| if (stopped()) return true; |
| |
| enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT }; |
| RegionNode* result_reg = new RegionNode(PATH_LIMIT); |
| PhiNode* result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); |
| PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); |
| PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); |
| |
| bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); |
| Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null, |
| result_reg, _slow_path); |
| Node* normal_ctl = control(); |
| Node* no_array_ctl = result_reg->in(_slow_path); |
| |
| // Generate code for the slow case. We make a call to newArray(). |
| set_control(no_array_ctl); |
| if (!stopped()) { |
| // Either the input type is void.class, or else the |
| // array klass has not yet been cached. Either the |
| // ensuing call will throw an exception, or else it |
| // will cache the array klass for next time. |
| PreserveJVMState pjvms(this); |
| CallJavaNode* slow_call = nullptr; |
| if (uninitialized) { |
| // Generate optimized virtual call (holder class 'Unsafe' is final) |
| slow_call = generate_method_call(vmIntrinsics::_allocateUninitializedArray, false, false, true); |
| } else { |
| slow_call = generate_method_call_static(vmIntrinsics::_newArray, true); |
| } |
| Node* slow_result = set_results_for_java_call(slow_call); |
| // this->control() comes from set_results_for_java_call |
| result_reg->set_req(_slow_path, control()); |
| result_val->set_req(_slow_path, slow_result); |
| result_io ->set_req(_slow_path, i_o()); |
| result_mem->set_req(_slow_path, reset_memory()); |
| } |
| |
| set_control(normal_ctl); |
| if (!stopped()) { |
| // Normal case: The array type has been cached in the java.lang.Class. |
| // The following call works fine even if the array type is polymorphic. |
| // It could be a dynamic mix of int[], boolean[], Object[], etc. |
| Node* obj = new_array(klass_node, count_val, 0); // no arguments to push |
| result_reg->init_req(_normal_path, control()); |
| result_val->init_req(_normal_path, obj); |
| result_io ->init_req(_normal_path, i_o()); |
| result_mem->init_req(_normal_path, reset_memory()); |
| |
| if (uninitialized) { |
| // Mark the allocation so that zeroing is skipped |
| AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj, &_gvn); |
| alloc->maybe_set_complete(&_gvn); |
| } |
| } |
| |
| // Return the combined state. |
| set_i_o( _gvn.transform(result_io) ); |
| set_all_memory( _gvn.transform(result_mem)); |
| |
| C->set_has_split_ifs(true); // Has chance for split-if optimization |
| set_result(result_reg, result_val); |
| return true; |
| } |
| |
| //----------------------inline_native_getLength-------------------------- |
| // public static native int java.lang.reflect.Array.getLength(Object array); |
| bool LibraryCallKit::inline_native_getLength() { |
| if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; |
| |
| Node* array = null_check(argument(0)); |
| // If array is dead, only null-path is taken. |
| if (stopped()) return true; |
| |
| // Deoptimize if it is a non-array. |
| Node* non_array = generate_non_array_guard(load_object_klass(array), nullptr); |
| |
| if (non_array != nullptr) { |
| PreserveJVMState pjvms(this); |
| set_control(non_array); |
| uncommon_trap(Deoptimization::Reason_intrinsic, |
| Deoptimization::Action_maybe_recompile); |
| } |
| |
| // If control is dead, only non-array-path is taken. |
| if (stopped()) return true; |
| |
| // The works fine even if the array type is polymorphic. |
| // It could be a dynamic mix of int[], boolean[], Object[], etc. |
| Node* result = load_array_length(array); |
| |
| C->set_has_split_ifs(true); // Has chance for split-if optimization |
| set_result(result); |
| return true; |
| } |
| |
| //------------------------inline_array_copyOf---------------------------- |
| // public static <T,U> T[] java.util.Arrays.copyOf( U[] original, int newLength, Class<? extends T[]> newType); |
| // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from, int to, Class<? extends T[]> newType); |
| bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) { |
| if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; |
| |
| // Get the arguments. |
| Node* original = argument(0); |
| Node* start = is_copyOfRange? argument(1): intcon(0); |
| Node* end = is_copyOfRange? argument(2): argument(1); |
| Node* array_type_mirror = is_copyOfRange? argument(3): argument(2); |
| |
| Node* newcopy = nullptr; |
| |
| // Set the original stack and the reexecute bit for the interpreter to reexecute |
| // the bytecode that invokes Arrays.copyOf if deoptimization happens. |
| { PreserveReexecuteState preexecs(this); |
| jvms()->set_should_reexecute(true); |
| |
| array_type_mirror = null_check(array_type_mirror); |
| original = null_check(original); |
| |
| // Check if a null path was taken unconditionally. |
| if (stopped()) return true; |
| |
| Node* orig_length = load_array_length(original); |
| |
| Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nullptr, 0); |
| klass_node = null_check(klass_node); |
| |
| RegionNode* bailout = new RegionNode(1); |
| record_for_igvn(bailout); |
| |
| // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc. |
| // Bail out if that is so. |
| Node* not_objArray = generate_non_objArray_guard(klass_node, bailout); |
| if (not_objArray != nullptr) { |
| // Improve the klass node's type from the new optimistic assumption: |
| ciKlass* ak = ciArrayKlass::make(env()->Object_klass()); |
| const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/); |
| Node* cast = new CastPPNode(klass_node, akls); |
| cast->init_req(0, control()); |
| klass_node = _gvn.transform(cast); |
| } |
| |
| // Bail out if either start or end is negative. |
| generate_negative_guard(start, bailout, &start); |
| generate_negative_guard(end, bailout, &end); |
| |
| Node* length = end; |
| if (_gvn.type(start) != TypeInt::ZERO) { |
| length = _gvn.transform(new SubINode(end, start)); |
| } |
| |
| // Bail out if length is negative. |
| // Without this the new_array would throw |
| // NegativeArraySizeException but IllegalArgumentException is what |
| // should be thrown |
| generate_negative_guard(length, bailout, &length); |
| |
| if (bailout->req() > 1) { |
| PreserveJVMState pjvms(this); |
| set_control(_gvn.transform(bailout)); |
| uncommon_trap(Deoptimization::Reason_intrinsic, |
| Deoptimization::Action_maybe_recompile); |
| } |
| |
| if (!stopped()) { |
| // How many elements will we copy from the original? |
| // The answer is MinI(orig_length - start, length). |
| Node* orig_tail = _gvn.transform(new SubINode(orig_length, start)); |
| Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length); |
| |
| // Generate a direct call to the right arraycopy function(s). |
| // We know the copy is disjoint but we might not know if the |
| // oop stores need checking. |
| // Extreme case: Arrays.copyOf((Integer[])x, 10, String[].class). |
| // This will fail a store-check if x contains any non-nulls. |
| |
| // ArrayCopyNode:Ideal may transform the ArrayCopyNode to |
| // loads/stores but it is legal only if we're sure the |
| // Arrays.copyOf would succeed. So we need all input arguments |
| // to the copyOf to be validated, including that the copy to the |
| // new array won't trigger an ArrayStoreException. That subtype |
| // check can be optimized if we know something on the type of |
| // the input array from type speculation. |
| if (_gvn.type(klass_node)->singleton()) { |
| const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr(); |
| const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr(); |
| |
| int test = C->static_subtype_check(superk, subk); |
| if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) { |
| const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr(); |
| if (t_original->speculative_type() != nullptr) { |
| original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true); |
| } |
| } |
| } |
| |
| bool validated = false; |
| // Reason_class_check rather than Reason_intrinsic because we |
| // want to intrinsify even if this traps. |
| if (!too_many_traps(Deoptimization::Reason_class_check)) { |
| Node* not_subtype_ctrl = gen_subtype_check(original, klass_node); |
| |
| if (not_subtype_ctrl != top()) { |
| PreserveJVMState pjvms(this); |
| set_control(not_subtype_ctrl); |
| uncommon_trap(Deoptimization::Reason_class_check, |
| Deoptimization::Action_make_not_entrant); |
| assert(stopped(), "Should be stopped"); |
| } |
| validated = true; |
| } |
| |
| if (!stopped()) { |
| newcopy = new_array(klass_node, length, 0); // no arguments to push |
| |
| ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, false, |
| load_object_klass(original), klass_node); |
| if (!is_copyOfRange) { |
| ac->set_copyof(validated); |
| } else { |
| ac->set_copyofrange(validated); |
| } |
| Node* n = _gvn.transform(ac); |
| if (n == ac) { |
| ac->connect_outputs(this); |
| } else { |
| assert(validated, "shouldn't transform if all arguments not validated"); |
| set_all_memory(n); |
| } |
| } |
| } |
| } // original reexecute is set back here |
| |
| C->set_has_split_ifs(true); // Has chance for split-if optimization |
| if (!stopped()) { |
| set_result(newcopy); |
| } |
| return true; |
| } |
| |
| |
| //----------------------generate_virtual_guard--------------------------- |
| // Helper for hashCode and clone. Peeks inside the vtable to avoid a call. |
| Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass, |
| RegionNode* slow_region) { |
| ciMethod* method = callee(); |
| int vtable_index = method->vtable_index(); |
| assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, |
| "bad index %d", vtable_index); |
| // Get the Method* out of the appropriate vtable entry. |
| int entry_offset = in_bytes(Klass::vtable_start_offset()) + |
| vtable_index*vtableEntry::size_in_bytes() + |
| in_bytes(vtableEntry::method_offset()); |
| Node* entry_addr = basic_plus_adr(obj_klass, entry_offset); |
| Node* target_call = make_load(nullptr, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered); |
| |
| // Compare the target method with the expected method (e.g., Object.hashCode). |
| const TypePtr* native_call_addr = TypeMetadataPtr::make(method); |
| |
| Node* native_call = makecon(native_call_addr); |
| Node* chk_native = _gvn.transform(new CmpPNode(target_call, native_call)); |
| Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne)); |
| |
| return generate_slow_guard(test_native, slow_region); |
| } |
| |
| //-----------------------generate_method_call---------------------------- |
| // Use generate_method_call to make a slow-call to the real |
| // method if the fast path fails. An alternative would be to |
| // use a stub like OptoRuntime::slow_arraycopy_Java. |
| // This only works for expanding the current library call, |
| // not another intrinsic. (E.g., don't use this for making an |
| // arraycopy call inside of the copyOf intrinsic.) |
| CallJavaNode* |
| LibraryCallKit::generate_method_call(vmIntrinsicID method_id, bool is_virtual, bool is_static, bool res_not_null) { |
| // When compiling the intrinsic method itself, do not use this technique. |
| guarantee(callee() != C->method(), "cannot make slow-call to self"); |
| |
| ciMethod* method = callee(); |
| // ensure the JVMS we have will be correct for this call |
| guarantee(method_id == method->intrinsic_id(), "must match"); |
| |
| const TypeFunc* tf = TypeFunc::make(method); |
| if (res_not_null) { |
| assert(tf->return_type() == T_OBJECT, ""); |
| const TypeTuple* range = tf->range(); |
| const Type** fields = TypeTuple::fields(range->cnt()); |
| fields[TypeFunc::Parms] = range->field_at(TypeFunc::Parms)->filter_speculative(TypePtr::NOTNULL); |
| const TypeTuple* new_range = TypeTuple::make(range->cnt(), fields); |
| tf = TypeFunc::make(tf->domain(), new_range); |
| } |
| CallJavaNode* slow_call; |
| if (is_static) { |
| assert(!is_virtual, ""); |
| slow_call = new CallStaticJavaNode(C, tf, |
| SharedRuntime::get_resolve_static_call_stub(), method); |
| } else if (is_virtual) { |
| null_check_receiver(); |
| int vtable_index = Method::invalid_vtable_index; |
| if (UseInlineCaches) { |
| // Suppress the vtable call |
| } else { |
| // hashCode and clone are not a miranda methods, |
| // so the vtable index is fixed. |
| // No need to use the linkResolver to get it. |
| vtable_index = method->vtable_index(); |
| assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, |
| "bad index %d", vtable_index); |
| } |
| slow_call = new CallDynamicJavaNode(tf, |
| SharedRuntime::get_resolve_virtual_call_stub(), |
| method, vtable_index); |
| } else { // neither virtual nor static: opt_virtual |
| null_check_receiver(); |
| slow_call = new CallStaticJavaNode(C, tf, |
| SharedRuntime::get_resolve_opt_virtual_call_stub(), method); |
| slow_call->set_optimized_virtual(true); |
| } |
| if (CallGenerator::is_inlined_method_handle_intrinsic(this->method(), bci(), callee())) { |
| // To be able to issue a direct call (optimized virtual or virtual) |
| // and skip a call to MH.linkTo*/invokeBasic adapter, additional information |
| // about the method being invoked should be attached to the call site to |
| // make resolution logic work (see SharedRuntime::resolve_{virtual,opt_virtual}_call_C). |
| slow_call->set_override_symbolic_info(true); |
| } |
| set_arguments_for_java_call(slow_call); |
| set_edges_for_java_call(slow_call); |
| return slow_call; |
| } |
| |
| |
| /** |
| * Build special case code for calls to hashCode on an object. This call may |
| * be virtual (invokevirtual) or bound (invokespecial). For each case we generate |
| * slightly different code. |
| */ |
| bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) { |
| assert(is_static == callee()->is_static(), "correct intrinsic selection"); |
| assert(!(is_virtual && is_static), "either virtual, special, or static"); |
| |
| enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT }; |
| |
| RegionNode* result_reg = new RegionNode(PATH_LIMIT); |
| PhiNode* result_val = new PhiNode(result_reg, TypeInt::INT); |
| PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); |
| PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); |
| Node* obj = nullptr; |
| if (!is_static) { |
| // Check for hashing null object |
| obj = null_check_receiver(); |
| if (stopped()) return true; // unconditionally null |
| result_reg->init_req(_null_path, top()); |
| result_val->init_req(_null_path, top()); |
| } else { |
| // Do a null check, and return zero if null. |
| // System.identityHashCode(null) == 0 |
| obj = argument(0); |
| Node* null_ctl = top(); |
| obj = null_check_oop(obj, &null_ctl); |
| result_reg->init_req(_null_path, null_ctl); |
| result_val->init_req(_null_path, _gvn.intcon(0)); |
| } |
| |
| // Unconditionally null? Then return right away. |
| if (stopped()) { |
| set_control( result_reg->in(_null_path)); |
| if (!stopped()) |
| set_result(result_val->in(_null_path)); |
| return true; |
| } |
| |
| // We only go to the fast case code if we pass a number of guards. The |
| // paths which do not pass are accumulated in the slow_region. |
| RegionNode* slow_region = new RegionNode(1); |
| record_for_igvn(slow_region); |
| |
| // If this is a virtual call, we generate a funny guard. We pull out |
| // the vtable entry corresponding to hashCode() from the target object. |
| // If the target method which we are calling happens to be the native |
| // Object hashCode() method, we pass the guard. We do not need this |
| // guard for non-virtual calls -- the caller is known to be the native |
| // Object hashCode(). |
| if (is_virtual) { |
| // After null check, get the object's klass. |
| Node* obj_klass = load_object_klass(obj); |
| generate_virtual_guard(obj_klass, slow_region); |
| } |
| |
| // Get the header out of the object, use LoadMarkNode when available |
| Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes()); |
| // The control of the load must be null. Otherwise, the load can move before |
| // the null check after castPP removal. |
| Node* no_ctrl = nullptr; |
| Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered); |
| |
| // Test the header to see if it is unlocked. |
| Node *lock_mask = _gvn.MakeConX(markWord::lock_mask_in_place); |
| Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask)); |
| Node *unlocked_val = _gvn.MakeConX(markWord::unlocked_value); |
| Node *chk_unlocked = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val)); |
| Node *test_unlocked = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne)); |
| |
| generate_slow_guard(test_unlocked, slow_region); |
| |
| // Get the hash value and check to see that it has been properly assigned. |
| // We depend on hash_mask being at most 32 bits and avoid the use of |
| // hash_mask_in_place because it could be larger than 32 bits in a 64-bit |
| // vm: see markWord.hpp. |
| Node *hash_mask = _gvn.intcon(markWord::hash_mask); |
| Node *hash_shift = _gvn.intcon(markWord::hash_shift); |
| Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift)); |
| // This hack lets the hash bits live anywhere in the mark object now, as long |
| // as the shift drops the relevant bits into the low 32 bits. Note that |
| // Java spec says that HashCode is an int so there's no point in capturing |
| // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build). |
| hshifted_header = ConvX2I(hshifted_header); |
| Node *hash_val = _gvn.transform(new AndINode(hshifted_header, hash_mask)); |
| |
| Node *no_hash_val = _gvn.intcon(markWord::no_hash); |
| Node *chk_assigned = _gvn.transform(new CmpINode( hash_val, no_hash_val)); |
| Node *test_assigned = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq)); |
| |
| generate_slow_guard(test_assigned, slow_region); |
| |
| Node* init_mem = reset_memory(); |
| // fill in the rest of the null path: |
| result_io ->init_req(_null_path, i_o()); |
| result_mem->init_req(_null_path, init_mem); |
| |
| result_val->init_req(_fast_path, hash_val); |
| result_reg->init_req(_fast_path, control()); |
| result_io ->init_req(_fast_path, i_o()); |
| result_mem->init_req(_fast_path, init_mem); |
| |
| // Generate code for the slow case. We make a call to hashCode(). |
| set_control(_gvn.transform(slow_region)); |
| if (!stopped()) { |
| // No need for PreserveJVMState, because we're using up the present state. |
| set_all_memory(init_mem); |
| vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode; |
| CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static, false); |
| Node* slow_result = set_results_for_java_call(slow_call); |
| // this->control() comes from set_results_for_java_call |
| result_reg->init_req(_slow_path, control()); |
| result_val->init_req(_slow_path, slow_result); |
| result_io ->set_req(_slow_path, i_o()); |
| result_mem ->set_req(_slow_path, reset_memory()); |
| } |
| |
| // Return the combined state. |
| set_i_o( _gvn.transform(result_io) ); |
| set_all_memory( _gvn.transform(result_mem)); |
| |
| set_result(result_reg, result_val); |
| return true; |
| } |
| |
| //---------------------------inline_native_getClass---------------------------- |
| // public final native Class<?> java.lang.Object.getClass(); |
| // |
| // Build special case code for calls to getClass on an object. |
| bool LibraryCallKit::inline_native_getClass() { |
| Node* obj = null_check_receiver(); |
| if (stopped()) return true; |
| set_result(load_mirror_from_klass(load_object_klass(obj))); |
| return true; |
| } |
| |
| //-----------------inline_native_Reflection_getCallerClass--------------------- |
| // public static native Class<?> sun.reflect.Reflection.getCallerClass(); |
| // |
| // In the presence of deep enough inlining, getCallerClass() becomes a no-op. |
| // |
| // NOTE: This code must perform the same logic as JVM_GetCallerClass |
| // in that it must skip particular security frames and checks for |
| // caller sensitive methods. |
| bool LibraryCallKit::inline_native_Reflection_getCallerClass() { |
| #ifndef PRODUCT |
| if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { |
| tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass"); |
| } |
| #endif |
| |
| if (!jvms()->has_method()) { |
| #ifndef PRODUCT |
| if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { |
| tty->print_cr(" Bailing out because intrinsic was inlined at top level"); |
| } |
| #endif |
| return false; |
| } |
| |
| // Walk back up the JVM state to find the caller at the required |
| // depth. |
| JVMState* caller_jvms = jvms(); |
| |
| // Cf. JVM_GetCallerClass |
| // NOTE: Start the loop at depth 1 because the current JVM state does |
| // not include the Reflection.getCallerClass() frame. |
| for (int n = 1; caller_jvms != nullptr; caller_jvms = caller_jvms->caller(), n++) { |
| ciMethod* m = caller_jvms->method(); |
| switch (n) { |
| case 0: |
| fatal("current JVM state does not include the Reflection.getCallerClass frame"); |
| break; |
| case 1: |
| // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass). |
| if (!m->caller_sensitive()) { |
| #ifndef PRODUCT |
| if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { |
| tty->print_cr(" Bailing out: CallerSensitive annotation expected at frame %d", n); |
| } |
| #endif |
| return false; // bail-out; let JVM_GetCallerClass do the work |
| } |
| break; |
| default: |
| if (!m->is_ignored_by_security_stack_walk()) { |
| // We have reached the desired frame; return the holder class. |
| // Acquire method holder as java.lang.Class and push as constant. |
| ciInstanceKlass* caller_klass = caller_jvms->method()->holder(); |
| ciInstance* caller_mirror = caller_klass->java_mirror(); |
| set_result(makecon(TypeInstPtr::make(caller_mirror))); |
| |
| #ifndef PRODUCT |
| if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { |
| tty->print_cr(" Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth()); |
| tty->print_cr(" JVM state at this point:"); |
| for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { |
| ciMethod* m = jvms()->of_depth(i)->method(); |
| tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); |
| } |
| } |
| #endif |
| return true; |
| } |
| break; |
| } |
| } |
| |
| #ifndef PRODUCT |
| if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { |
| tty->print_cr(" Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth()); |
| tty->print_cr(" JVM state at this point:"); |
| for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { |
| ciMethod* m = jvms()->of_depth(i)->method(); |
| tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); |
| } |
| } |
| #endif |
| |
| return false; // bail-out; let JVM_GetCallerClass do the work |
| } |
| |
| bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) { |
| Node* arg = argument(0); |
| Node* result = nullptr; |
| |
| switch (id) { |
| case vmIntrinsics::_floatToRawIntBits: result = new MoveF2INode(arg); break; |
| case vmIntrinsics::_intBitsToFloat: result = new MoveI2FNode(arg); break; |
| case vmIntrinsics::_doubleToRawLongBits: result = new MoveD2LNode(arg); break; |
| case vmIntrinsics::_longBitsToDouble: result = new MoveL2DNode(arg); break; |
| case vmIntrinsics::_floatToFloat16: result = new ConvF2HFNode(arg); break; |
| case vmIntrinsics::_float16ToFloat: result = new ConvHF2FNode(arg); break; |
| |
| case vmIntrinsics::_doubleToLongBits: { |
| // two paths (plus control) merge in a wood |
| RegionNode *r = new RegionNode(3); |
| Node *phi = new PhiNode(r, TypeLong::LONG); |
| |
| Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg)); |
| // Build the boolean node |
| Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); |
| |
| // Branch either way. |
| // NaN case is less traveled, which makes all the difference. |
| IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); |
| Node *opt_isnan = _gvn.transform(ifisnan); |
| assert( opt_isnan->is_If(), "Expect an IfNode"); |
| IfNode *opt_ifisnan = (IfNode*)opt_isnan; |
| Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); |
| |
| set_control(iftrue); |
| |
| static const jlong nan_bits = CONST64(0x7ff8000000000000); |
| Node *slow_result = longcon(nan_bits); // return NaN |
| phi->init_req(1, _gvn.transform( slow_result )); |
| r->init_req(1, iftrue); |
| |
| // Else fall through |
| Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); |
| set_control(iffalse); |
| |
| phi->init_req(2, _gvn.transform(new MoveD2LNode(arg))); |
| r->init_req(2, iffalse); |
| |
| // Post merge |
| set_control(_gvn.transform(r)); |
| record_for_igvn(r); |
| |
| C->set_has_split_ifs(true); // Has chance for split-if optimization |
| result = phi; |
| assert(result->bottom_type()->isa_long(), "must be"); |
| break; |
| } |
| |
| case vmIntrinsics::_floatToIntBits: { |
| // two paths (plus control) merge in a wood |
| RegionNode *r = new RegionNode(3); |
| Node *phi = new PhiNode(r, TypeInt::INT); |
| |
| Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg)); |
| // Build the boolean node |
| Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); |
| |
| // Branch either way. |
| // NaN case is less traveled, which makes all the difference. |
| IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); |
| Node *opt_isnan = _gvn.transform(ifisnan); |
| assert( opt_isnan->is_If(), "Expect an IfNode"); |
| IfNode *opt_ifisnan = (IfNode*)opt_isnan; |
| Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); |
| |
| set_control(iftrue); |
| |
| static const jint nan_bits = 0x7fc00000; |
| Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN |
| phi->init_req(1, _gvn.transform( slow_result )); |
| r->init_req(1, iftrue); |
| |
| // Else fall through |
| Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); |
| set_control(iffalse); |
| |
| phi->init_req(2, _gvn.transform(new MoveF2INode(arg))); |
| r->init_req(2, iffalse); |
| |
| // Post merge |
| set_control(_gvn.transform(r)); |
| record_for_igvn(r); |
| |
| C->set_has_split_ifs(true); // Has chance for split-if optimization |
| result = phi; |
| assert(result->bottom_type()->isa_int(), "must be"); |
| break; |
| } |
| |
| default: |
| fatal_unexpected_iid(id); |
| break; |
| } |
| set_result(_gvn.transform(result)); |
| return true; |
| } |
| |
| bool LibraryCallKit::inline_fp_range_check(vmIntrinsics::ID id) { |
| Node* arg = argument(0); |
| Node* result = nullptr; |
| |
| switch (id) { |
| case vmIntrinsics::_floatIsInfinite: |
| result = new IsInfiniteFNode(arg); |
| break; |
| case vmIntrinsics::_floatIsFinite: |
| result = new IsFiniteFNode(arg); |
| break; |
| case vmIntrinsics::_doubleIsInfinite: |
| result = new IsInfiniteDNode(arg); |
| break; |
| case vmIntrinsics::_doubleIsFinite: |
| result = new IsFiniteDNode(arg); |
| break; |
| default: |
| fatal_unexpected_iid(id); |
| break; |
| } |
| set_result(_gvn.transform(result)); |
| return true; |
| } |
| |
| //----------------------inline_unsafe_copyMemory------------------------- |
| // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes); |
| |
| static bool has_wide_mem(PhaseGVN& gvn, Node* addr, Node* base) { |
| const TypeAryPtr* addr_t = gvn.type(addr)->isa_aryptr(); |
| const Type* base_t = gvn.type(base); |
| |
| bool in_native = (base_t == TypePtr::NULL_PTR); |
| bool in_heap = !TypePtr::NULL_PTR->higher_equal(base_t); |
| bool is_mixed = !in_heap && !in_native; |
| |
| if (is_mixed) { |
| return true; // mixed accesses can touch both on-heap and off-heap memory |
| } |
| if (in_heap) { |
| bool is_prim_array = (addr_t != nullptr) && (addr_t->elem() != Type::BOTTOM); |
| if (!is_prim_array) { |
| // Though Unsafe.copyMemory() ensures at runtime for on-heap accesses that base is a primitive array, |
| // there's not enough type information available to determine proper memory slice for it. |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| bool LibraryCallKit::inline_unsafe_copyMemory() { |
| if (callee()->is_static()) return false; // caller must have the capability! |
| null_check_receiver(); // null-check receiver |
| if (stopped()) return true; |
| |
| C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". |
| |
| Node* src_base = argument(1); // type: oop |
| Node* src_off = ConvL2X(argument(2)); // type: long |
| Node* dst_base = argument(4); // type: oop |
| Node* dst_off = ConvL2X(argument(5)); // type: long |
| Node* size = ConvL2X(argument(7)); // type: long |
| |
| assert(Unsafe_field_offset_to_byte_offset(11) == 11, |
| "fieldOffset must be byte-scaled"); |
| |
| Node* src_addr = make_unsafe_address(src_base, src_off); |
| Node* dst_addr = make_unsafe_address(dst_base, dst_off); |
| |
| Node* thread = _gvn.transform(new ThreadLocalNode()); |
| Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset())); |
| BasicType doing_unsafe_access_bt = T_BYTE; |
| assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented"); |
| |
| // update volatile field |
| store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered); |
| |
| int flags = RC_LEAF | RC_NO_FP; |
| |
| const TypePtr* dst_type = TypePtr::BOTTOM; |
| |
| // Adjust memory effects of the runtime call based on input values. |
| if (!has_wide_mem(_gvn, src_addr, src_base) && |
| !has_wide_mem(_gvn, dst_addr, dst_base)) { |
| dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory |
| |
| const TypePtr* src_type = _gvn.type(src_addr)->is_ptr(); |
| if (C->get_alias_index(src_type) == C->get_alias_index(dst_type)) { |
| flags |= RC_NARROW_MEM; // narrow in memory |
| } |
| } |
| |
| // Call it. Note that the length argument is not scaled. |
| make_runtime_call(flags, |
| OptoRuntime::fast_arraycopy_Type(), |
| StubRoutines::unsafe_arraycopy(), |
| "unsafe_arraycopy", |
| dst_type, |
| src_addr, dst_addr, size XTOP); |
| |
| store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered); |
| |
| return true; |
| } |
| |
| #undef XTOP |
| |
| //------------------------clone_coping----------------------------------- |
| // Helper function for inline_native_clone. |
| void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) { |
| assert(obj_size != nullptr, ""); |
| Node* raw_obj = alloc_obj->in(1); |
| assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), ""); |
| |
| AllocateNode* alloc = nullptr; |
| if (ReduceBulkZeroing) { |
| // We will be completely responsible for initializing this object - |
| // mark Initialize node as complete. |
| alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn); |
| // The object was just allocated - there should be no any stores! |
| guarantee(alloc != nullptr && alloc->maybe_set_complete(&_gvn), ""); |
| // Mark as complete_with_arraycopy so that on AllocateNode |
| // expansion, we know this AllocateNode is initialized by an array |
| // copy and a StoreStore barrier exists after the array copy. |
| alloc->initialization()->set_complete_with_arraycopy(); |
| } |
| |
| Node* size = _gvn.transform(obj_size); |
| access_clone(obj, alloc_obj, size, is_array); |
| |
| // Do not let reads from the cloned object float above the arraycopy. |
| if (alloc != nullptr) { |
| // Do not let stores that initialize this object be reordered with |
| // a subsequent store that would make this object accessible by |
| // other threads. |
| // Record what AllocateNode this StoreStore protects so that |
| // escape analysis can go from the MemBarStoreStoreNode to the |
| // AllocateNode and eliminate the MemBarStoreStoreNode if possible |
| // based on the escape status of the AllocateNode. |
| insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); |
| } else { |
| insert_mem_bar(Op_MemBarCPUOrder); |
| } |
| } |
| |
| //------------------------inline_native_clone---------------------------- |
| // protected native Object java.lang.Object.clone(); |
| // |
| // Here are the simple edge cases: |
| // null receiver => normal trap |
| // virtual and clone was overridden => slow path to out-of-line clone |
| // not cloneable or finalizer => slow path to out-of-line Object.clone |
| // |
| // The general case has two steps, allocation and copying. |
| // Allocation has two cases, and uses GraphKit::new_instance or new_array. |
| // |
| // Copying also has two cases, oop arrays and everything else. |
| // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy). |
| // Everything else uses the tight inline loop supplied by CopyArrayNode. |
| // |
| // These steps fold up nicely if and when the cloned object's klass |
| // can be sharply typed as an object array, a type array, or an instance. |
| // |
| bool LibraryCallKit::inline_native_clone(bool is_virtual) { |
| PhiNode* result_val; |
| |
| // Set the reexecute bit for the interpreter to reexecute |
| // the bytecode that invokes Object.clone if deoptimization happens. |
| { PreserveReexecuteState preexecs(this); |
| jvms()->set_should_reexecute(true); |
| |
| Node* obj = null_check_receiver(); |
| if (stopped()) return true; |
| |
| const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); |
| |
| // If we are going to clone an instance, we need its exact type to |
| // know the number and types of fields to convert the clone to |
| // loads/stores. Maybe a speculative type can help us. |
| if (!obj_type->klass_is_exact() && |
| obj_type->speculative_type() != nullptr && |
| obj_type->speculative_type()->is_instance_klass()) { |
| ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass(); |
| if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem && |
| !spec_ik->has_injected_fields()) { |
| if (!obj_type->isa_instptr() || |
| obj_type->is_instptr()->instance_klass()->has_subklass()) { |
| obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false); |
| } |
| } |
| } |
| |
| // Conservatively insert a memory barrier on all memory slices. |
| // Do not let writes into the original float below the clone. |
| insert_mem_bar(Op_MemBarCPUOrder); |
| |
| // paths into result_reg: |
| enum { |
| _slow_path = 1, // out-of-line call to clone method (virtual or not) |
| _objArray_path, // plain array allocation, plus arrayof_oop_arraycopy |
| _array_path, // plain array allocation, plus arrayof_long_arraycopy |
| _instance_path, // plain instance allocation, plus arrayof_long_arraycopy |
| PATH_LIMIT |
| }; |
| RegionNode* result_reg = new RegionNode(PATH_LIMIT); |
| result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); |
| PhiNode* result_i_o = new PhiNode(result_reg, Type::ABIO); |
| PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); |
| record_for_igvn(result_reg); |
| |
| Node* obj_klass = load_object_klass(obj); |
| Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)nullptr); |
| if (array_ctl != nullptr) { |
| // It's an array. |
| PreserveJVMState pjvms(this); |
| set_control(array_ctl); |
| Node* obj_length = load_array_length(obj); |
| Node* array_size = nullptr; // Size of the array without object alignment padding. |
| Node* alloc_obj = new_array(obj_klass, obj_length, 0, &array_size, /*deoptimize_on_exception=*/true); |
| |
| BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); |
| if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) { |
| // If it is an oop array, it requires very special treatment, |
| // because gc barriers are required when accessing the array. |
| Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)nullptr); |
| if (is_obja != nullptr) { |
| PreserveJVMState pjvms2(this); |
| set_control(is_obja); |
| // Generate a direct call to the right arraycopy function(s). |
| // Clones are always tightly coupled. |
| ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false); |
| ac->set_clone_oop_array(); |
| Node* n = _gvn.transform(ac); |
| assert(n == ac, "cannot disappear"); |
| ac->connect_outputs(this, /*deoptimize_on_exception=*/true); |
| |
| result_reg->init_req(_objArray_path, control()); |
| result_val->init_req(_objArray_path, alloc_obj); |
| result_i_o ->set_req(_objArray_path, i_o()); |
| result_mem ->set_req(_objArray_path, reset_memory()); |
| } |
| } |
| // Otherwise, there are no barriers to worry about. |
| // (We can dispense with card marks if we know the allocation |
| // comes out of eden (TLAB)... In fact, ReduceInitialCardMarks |
| // causes the non-eden paths to take compensating steps to |
| // simulate a fresh allocation, so that no further |
| // card marks are required in compiled code to initialize |
| // the object.) |
| |
| if (!stopped()) { |
| copy_to_clone(obj, alloc_obj, array_size, true); |
| |
| // Present the results of the copy. |
| result_reg->init_req(_array_path, control()); |
| result_val->init_req(_array_path, alloc_obj); |
| result_i_o ->set_req(_array_path, i_o()); |
| result_mem ->set_req(_array_path, reset_memory()); |
| } |
| } |
| |
| // We only go to the instance fast case code if we pass a number of guards. |
| // The paths which do not pass are accumulated in the slow_region. |
| RegionNode* slow_region = new RegionNode(1); |
| record_for_igvn(slow_region); |
| if (!stopped()) { |
| // It's an instance (we did array above). Make the slow-path tests. |
| // If this is a virtual call, we generate a funny guard. We grab |
| // the vtable entry corresponding to clone() from the target object. |
| // If the target method which we are calling happens to be the |
| // Object clone() method, we pass the guard. We do not need this |
| // guard for non-virtual calls; the caller is known to be the native |
| // Object clone(). |
| if (is_virtual) { |
| generate_virtual_guard(obj_klass, slow_region); |
| } |
| |
| // The object must be easily cloneable and must not have a finalizer. |
| // Both of these conditions may be checked in a single test. |
| // We could optimize the test further, but we don't care. |
| generate_access_flags_guard(obj_klass, |
| // Test both conditions: |
| JVM_ACC_IS_CLONEABLE_FAST | JVM_ACC_HAS_FINALIZER, |
| // Must be cloneable but not finalizer: |
| JVM_ACC_IS_CLONEABLE_FAST, |
| slow_region); |
| } |
| |
| if (!stopped()) { |
| // It's an instance, and it passed the slow-path tests. |
| PreserveJVMState pjvms(this); |
| Node* obj_size = nullptr; // Total object size, including object alignment padding. |
| // Need to deoptimize on exception from allocation since Object.clone intrinsic |
| // is reexecuted if deoptimization occurs and there could be problems when merging |
| // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false). |
| Node* alloc_obj = new_instance(obj_klass, nullptr, &obj_size, /*deoptimize_on_exception=*/true); |
| |
| copy_to_clone(obj, alloc_obj, obj_size, false); |
| |
| // Present the results of the slow call. |
| result_reg->init_req(_instance_path, control()); |
| result_val->init_req(_instance_path, alloc_obj); |
| result_i_o ->set_req(_instance_path, i_o()); |
| result_mem ->set_req(_instance_path, reset_memory()); |
| } |
| |
| // Generate code for the slow case. We make a call to clone(). |
| set_control(_gvn.transform(slow_region)); |
| if (!stopped()) { |
| PreserveJVMState pjvms(this); |
| CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual, false, true); |
| // We need to deoptimize on exception (see comment above) |
| Node* slow_result = set_results_for_java_call(slow_call, false, /* deoptimize */ true); |
| // this->control() comes from set_results_for_java_call |
| result_reg->init_req(_slow_path, control()); |
| result_val->init_req(_slow_path, slow_result); |
| result_i_o ->set_req(_slow_path, i_o()); |
| result_mem ->set_req(_slow_path, reset_memory()); |
| } |
| |
| // Return the combined state. |
| set_control( _gvn.transform(result_reg)); |
| set_i_o( _gvn.transform(result_i_o)); |
| set_all_memory( _gvn.transform(result_mem)); |
| } // original reexecute is set back here |
| |
| set_result(_gvn.transform(result_val)); |
| return true; |
| } |
| |
| // If we have a tightly coupled allocation, the arraycopy may take care |
| // of the array initialization. If one of the guards we insert between |
| // the allocation and the arraycopy causes a deoptimization, an |
| // uninitialized array will escape the compiled method. To prevent that |
| // we set the JVM state for uncommon traps between the allocation and |
| // the arraycopy to the state before the allocation so, in case of |
| // deoptimization, we'll reexecute the allocation and the |
| // initialization. |
| JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) { |
| if (alloc != nullptr) { |
| ciMethod* trap_method = alloc->jvms()->method(); |
| int trap_bci = alloc->jvms()->bci(); |
| |
| if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && |
| !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) { |
| // Make sure there's no store between the allocation and the |
| // arraycopy otherwise visible side effects could be rexecuted |
| // in case of deoptimization and cause incorrect execution. |
| bool no_interfering_store = true; |
| Node* mem = alloc->in(TypeFunc::Memory); |
| if (mem->is_MergeMem()) { |
| for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) { |
| Node* n = mms.memory(); |
| if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) { |
| assert(n->is_Store(), "what else?"); |
| no_interfering_store = false; |
| break; |
| } |
| } |
| } else { |
| for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { |
| Node* n = mms.memory(); |
| if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) { |
| assert(n->is_Store(), "what else?"); |
| no_interfering_store = false; |
| break; |
| } |
| } |
| } |
| |
| if (no_interfering_store) { |
| SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc); |
| |
| JVMState* saved_jvms = jvms(); |
| saved_reexecute_sp = _reexecute_sp; |
| |
| set_jvms(sfpt->jvms()); |
| _reexecute_sp = jvms()->sp(); |
| |
| return saved_jvms; |
| } |
| } |
| } |
| return nullptr; |
| } |
| |
| // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack |
| // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter. |
| SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const { |
| JVMState* old_jvms = alloc->jvms()->clone_shallow(C); |
| uint size = alloc->req(); |
| SafePointNode* sfpt = new SafePointNode(size, old_jvms); |
| old_jvms->set_map(sfpt); |
| for (uint i = 0; i < size; i++) { |
| sfpt->init_req(i, alloc->in(i)); |
| } |
| // re-push array length for deoptimization |
| sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength)); |
| old_jvms->set_sp(old_jvms->sp()+1); |
| old_jvms->set_monoff(old_jvms->monoff()+1); |
| old_jvms->set_scloff(old_jvms->scloff()+1); |
| old_jvms->set_endoff(old_jvms->endoff()+1); |
| old_jvms->set_should_reexecute(true); |
| |
| sfpt->set_i_o(map()->i_o()); |
| sfpt->set_memory(map()->memory()); |
| sfpt->set_control(map()->control()); |
| return sfpt; |
| } |
| |
| // In case of a deoptimization, we restart execution at the |
| // allocation, allocating a new array. We would leave an uninitialized |
| // array in the heap that GCs wouldn't expect. Move the allocation |
| // after the traps so we don't allocate the array if we |
| // deoptimize. This is possible because tightly_coupled_allocation() |
| // guarantees there's no observer of the allocated array at this point |
| // and the control flow is simple enough. |
| void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards, |
| int saved_reexecute_sp, uint new_idx) { |
| if (saved_jvms_before_guards != nullptr && !stopped()) { |
| replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards); |
| |
| assert(alloc != nullptr, "only with a tightly coupled allocation"); |
| // restore JVM state to the state at the arraycopy |
| saved_jvms_before_guards->map()->set_control(map()->control()); |
| assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?"); |
| assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?"); |
| // If we've improved the types of some nodes (null check) while |
| // emitting the guards, propagate them to the current state |
| map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx); |
| set_jvms(saved_jvms_before_guards); |
| _reexecute_sp = saved_reexecute_sp; |
| |
| // Remove the allocation from above the guards |
| CallProjections callprojs; |
| alloc->extract_projections(&callprojs, true); |
| InitializeNode* init = alloc->initialization(); |
| Node* alloc_mem = alloc->in(TypeFunc::Memory); |
| C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O)); |
| C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem); |
| |
| // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below |
| // the allocation (i.e. is only valid if the allocation succeeds): |
| // 1) replace CastIINode with AllocateArrayNode's length here |
| // 2) Create CastIINode again once allocation has moved (see below) at the end of this method |
| // |
| // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate |
| // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy) |
| Node* init_control = init->proj_out(TypeFunc::Control); |
| Node* alloc_length = alloc->Ideal_length(); |
| #ifdef ASSERT |
| Node* prev_cast = nullptr; |
| #endif |
| for (uint i = 0; i < init_control->outcnt(); i++) { |
| Node* init_out = init_control->raw_out(i); |
| if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) { |
| #ifdef ASSERT |
| if (prev_cast == nullptr) { |
| prev_cast = init_out; |
| } else { |
| if (prev_cast->cmp(*init_out) == false) { |
| prev_cast->dump(); |
| init_out->dump(); |
| assert(false, "not equal CastIINode"); |
| } |
| } |
| #endif |
| C->gvn_replace_by(init_out, alloc_length); |
| } |
| } |
| C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0)); |
| |
| // move the allocation here (after the guards) |
| _gvn.hash_delete(alloc); |
| alloc->set_req(TypeFunc::Control, control()); |
| alloc->set_req(TypeFunc::I_O, i_o()); |
| Node *mem = reset_memory(); |
| set_all_memory(mem); |
| alloc->set_req(TypeFunc::Memory, mem); |
| set_control(init->proj_out_or_null(TypeFunc::Control)); |
| set_i_o(callprojs.fallthrough_ioproj); |
| |
| // Update memory as done in GraphKit::set_output_for_allocation() |
| const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength)); |
| const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type(); |
| if (ary_type->isa_aryptr() && length_type != nullptr) { |
| ary_type = ary_type->is_aryptr()->cast_to_size(length_type); |
| } |
| const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot); |
| int elemidx = C->get_alias_index(telemref); |
| set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw); |
| set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx); |
| |
| Node* allocx = _gvn.transform(alloc); |
| assert(allocx == alloc, "where has the allocation gone?"); |
| assert(dest->is_CheckCastPP(), "not an allocation result?"); |
| |
| _gvn.hash_delete(dest); |
| dest->set_req(0, control()); |
| Node* destx = _gvn.transform(dest); |
| assert(destx == dest, "where has the allocation result gone?"); |
| |
| array_ideal_length(alloc, ary_type, true); |
| } |
| } |
| |
| // Unrelated UCTs between the array allocation and the array copy, which are considered safe by tightly_coupled_allocation(), |
| // need to be replaced by an UCT with a state before the array allocation (including the array length). This is necessary |
| // because we could hit one of these UCTs (which are executed before the emitted array copy guards and the actual array |
| // allocation which is moved down in arraycopy_move_allocation_here()). When later resuming execution in the interpreter, |
| // we would have wrongly skipped the array allocation. To prevent this, we resume execution at the array allocation in |
| // the interpreter similar to what we are doing for the newly emitted guards for the array copy. |
| void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(AllocateArrayNode* alloc, |
| JVMState* saved_jvms_before_guards) { |
| if (saved_jvms_before_guards->map()->control()->is_IfProj()) { |
| // There is at least one unrelated uncommon trap which needs to be replaced. |
| SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc); |
| |
| JVMState* saved_jvms = jvms(); |
| const int saved_reexecute_sp = _reexecute_sp; |
| set_jvms(sfpt->jvms()); |
| _reexecute_sp = jvms()->sp(); |
| |
| replace_unrelated_uncommon_traps_with_alloc_state(saved_jvms_before_guards); |
| |
| // Restore state |
| set_jvms(saved_jvms); |
| _reexecute_sp = saved_reexecute_sp; |
| } |
| } |
| |
| // Replace the unrelated uncommon traps with new uncommon trap nodes by reusing the action and reason. The new uncommon |
| // traps will have the state of the array allocation. Let the old uncommon trap nodes die. |
| void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(JVMState* saved_jvms_before_guards) { |
| Node* if_proj = saved_jvms_before_guards->map()->control(); // Start the search right before the newly emitted guards |
| while (if_proj->is_IfProj()) { |
| CallStaticJavaNode* uncommon_trap = get_uncommon_trap_from_success_proj(if_proj); |
| if (uncommon_trap != nullptr) { |
| create_new_uncommon_trap(uncommon_trap); |
| } |
| assert(if_proj->in(0)->is_If(), "must be If"); |
| if_proj = if_proj->in(0)->in(0); |
| } |
| assert(if_proj->is_Proj() && if_proj->in(0)->is_Initialize(), |
| "must have reached control projection of init node"); |
| } |
| |
| void LibraryCallKit::create_new_uncommon_trap(CallStaticJavaNode* uncommon_trap_call) { |
| const int trap_request = uncommon_trap_call->uncommon_trap_request(); |
| assert(trap_request != 0, "no valid UCT trap request"); |
| PreserveJVMState pjvms(this); |
| set_control(uncommon_trap_call->in(0)); |
| uncommon_trap(Deoptimization::trap_request_reason(trap_request), |
| Deoptimization::trap_request_action(trap_request)); |
| assert(stopped(), "Should be stopped"); |
| _gvn.hash_delete(uncommon_trap_call); |
| uncommon_trap_call->set_req(0, top()); // not used anymore, kill it |
| } |
| |
| //------------------------------inline_arraycopy----------------------- |
| // public static native void java.lang.System.arraycopy(Object src, int srcPos, |
| // Object dest, int destPos, |
| // int length); |
| bool LibraryCallKit::inline_arraycopy() { |
| // Get the arguments. |
| Node* src = argument(0); // type: oop |
| Node* src_offset = argument(1); // type: int |
| Node* dest = argument(2); // type: oop |
| Node* dest_offset = argument(3); // type: int |
| Node* length = argument(4); // type: int |
| |
| uint new_idx = C->unique(); |
| |
| // Check for allocation before we add nodes that would confuse |
| // tightly_coupled_allocation() |
| AllocateArrayNode* alloc = tightly_coupled_allocation(dest); |
| |
| int saved_reexecute_sp = -1; |
| JVMState* saved_jvms_before_guards = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp); |
| // See arraycopy_restore_alloc_state() comment |
| // if alloc == null we don't have to worry about a tightly coupled allocation so we can emit all needed guards |
| // if saved_jvms_before_guards is not null (then alloc is not null) then we can handle guards and a tightly coupled allocation |
| // if saved_jvms_before_guards is null and alloc is not null, we can't emit any guards |
| bool can_emit_guards = (alloc == nullptr || saved_jvms_before_guards != nullptr); |
| |
| // The following tests must be performed |
| // (1) src and dest are arrays. |
| // (2) src and dest arrays must have elements of the same BasicType |
| // (3) src and dest must not be null. |
| // (4) src_offset must not be negative. |
| // (5) dest_offset must not be negative. |
| // (6) length must not be negative. |
| // (7) src_offset + length must not exceed length of src. |
| // (8) dest_offset + length must not exceed length of dest. |
| // (9) each element of an oop array must be assignable |
| |
| // (3) src and dest must not be null. |
| // always do this here because we need the JVM state for uncommon traps |
| Node* null_ctl = top(); |
| src = saved_jvms_before_guards != nullptr ? null_check_oop(src, &null_ctl, true, true) : null_check(src, T_ARRAY); |
| assert(null_ctl->is_top(), "no null control here"); |
| dest = null_check(dest, T_ARRAY); |
| |
| if (!can_emit_guards) { |
| // if saved_jvms_before_guards is null and alloc is not null, we don't emit any |
| // guards but the arraycopy node could still take advantage of a |
| // tightly allocated allocation. tightly_coupled_allocation() is |
| // called again to make sure it takes the null check above into |
| // account: the null check is mandatory and if it caused an |
| // uncommon trap to be emitted then the allocation can't be |
| // considered tightly coupled in this context. |
| alloc = tightly_coupled_allocation(dest); |
| } |
| |
| bool validated = false; |
| |
| const Type* src_type = _gvn.type(src); |
| const Type* dest_type = _gvn.type(dest); |
| const TypeAryPtr* top_src = src_type->isa_aryptr(); |
| const TypeAryPtr* top_dest = dest_type->isa_aryptr(); |
| |
| // Do we have the type of src? |
| bool has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM); |
| // Do we have the type of dest? |
| bool has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM); |
| // Is the type for src from speculation? |
| bool src_spec = false; |
| // Is the type for dest from speculation? |
| bool dest_spec = false; |
| |
| if ((!has_src || !has_dest) && can_emit_guards) { |
| // We don't have sufficient type information, let's see if |
| // speculative types can help. We need to have types for both src |
| // and dest so that it pays off. |
| |
| // Do we already have or could we have type information for src |
| bool could_have_src = has_src; |
| // Do we already have or could we have type information for dest |
| bool could_have_dest = has_dest; |
| |
| ciKlass* src_k = nullptr; |
| if (!has_src) { |
| src_k = src_type->speculative_type_not_null(); |
| if (src_k != nullptr && src_k->is_array_klass()) { |
| could_have_src = true; |
| } |
| } |
| |
| ciKlass* dest_k = nullptr; |
| if (!has_dest) { |
| dest_k = dest_type->speculative_type_not_null(); |
| if (dest_k != nullptr && dest_k->is_array_klass()) { |
| could_have_dest = true; |
| } |
| } |
| |
| if (could_have_src && could_have_dest) { |
| // This is going to pay off so emit the required guards |
| if (!has_src) { |
| src = maybe_cast_profiled_obj(src, src_k, true); |
| src_type = _gvn.type(src); |
| top_src = src_type->isa_aryptr(); |
| has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM); |
| src_spec = true; |
| } |
| if (!has_dest) { |
| dest = maybe_cast_profiled_obj(dest, dest_k, true); |
| dest_type = _gvn.type(dest); |
| top_dest = dest_type->isa_aryptr(); |
| has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM); |
| dest_spec = true; |
| } |
| } |
| } |
| |
| if (has_src && has_dest && can_emit_guards) { |
| BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type(); |
| BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type(); |
| if (is_reference_type(src_elem, true)) src_elem = T_OBJECT; |
| if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT; |
| |
| if (src_elem == dest_elem && src_elem == T_OBJECT) { |
| // If both arrays are object arrays then having the exact types |
| // for both will remove the need for a subtype check at runtime |
| // before the call and may make it possible to pick a faster copy |
| // routine (without a subtype check on every element) |
| // Do we have the exact type of src? |
| bool could_have_src = src_spec; |
| // Do we have the exact type of dest? |
| bool could_have_dest = dest_spec; |
| ciKlass* src_k = nullptr; |
| ciKlass* dest_k = nullptr; |
| if (!src_spec) { |
| src_k = src_type->speculative_type_not_null(); |
| if (src_k != nullptr && src_k->is_array_klass()) { |
| could_have_src = true; |
| } |
| } |
| if (!dest_spec) { |
| dest_k = dest_type->speculative_type_not_null(); |
| if (dest_k != nullptr && dest_k->is_array_klass()) { |
| could_have_dest = true; |
| } |
| } |
| if (could_have_src && could_have_dest) { |
| // If we can have both exact types, emit the missing guards |
| if (could_have_src && !src_spec) { |
| src = maybe_cast_profiled_obj(src, src_k, true); |
| } |
| if (could_have_dest && !dest_spec) { |
| dest = maybe_cast_profiled_obj(dest, dest_k, true); |
| } |
| } |
| } |
| } |
| |
| ciMethod* trap_method = method(); |
| int trap_bci = bci(); |
| if (saved_jvms_before_guards != nullptr) { |
| trap_method = alloc->jvms()->method(); |
| trap_bci = alloc->jvms()->bci(); |
| } |
| |
| bool negative_length_guard_generated = false; |
| |
| if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && |
| can_emit_guards && |
| !src->is_top() && !dest->is_top()) { |
| // validate arguments: enables transformation the ArrayCopyNode |
| validated = true; |
| |
| RegionNode* slow_region = new RegionNode(1); |
| record_for_igvn(slow_region); |
| |
| // (1) src and dest are arrays. |
| generate_non_array_guard(load_object_klass(src), slow_region); |
| generate_non_array_guard(load_object_klass(dest), slow_region); |
| |
| // (2) src and dest arrays must have elements of the same BasicType |
| // done at macro expansion or at Ideal transformation time |
| |
| // (4) src_offset must not be negative. |
| generate_negative_guard(src_offset, slow_region); |
| |
| // (5) dest_offset must not be negative. |
| generate_negative_guard(dest_offset, slow_region); |
| |
| // (7) src_offset + length must not exceed length of src. |
| generate_limit_guard(src_offset, length, |
| load_array_length(src), |
| slow_region); |
| |
| // (8) dest_offset + length must not exceed length of dest. |
| generate_limit_guard(dest_offset, length, |
| load_array_length(dest), |
| slow_region); |
| |
| // (6) length must not be negative. |
| // This is also checked in generate_arraycopy() during macro expansion, but |
| // we also have to check it here for the case where the ArrayCopyNode will |
| // be eliminated by Escape Analysis. |
| if (EliminateAllocations) { |
| generate_negative_guard(length, slow_region); |
| negative_length_guard_generated = true; |
| } |
| |
| // (9) each element of an oop array must be assignable |
| Node* dest_klass = load_object_klass(dest); |
| if (src != dest) { |
| Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass); |
| |
| if (not_subtype_ctrl != top()) { |
| PreserveJVMState pjvms(this); |
| set_control(not_subtype_ctrl); |
| uncommon_trap(Deoptimization::Reason_intrinsic, |
| Deoptimization::Action_make_not_entrant); |
| assert(stopped(), "Should be stopped"); |
| } |
| } |
| { |
| PreserveJVMState pjvms(this); |
| set_control(_gvn.transform(slow_region)); |
| uncommon_trap(Deoptimization::Reason_intrinsic, |
| Deoptimization::Action_make_not_entrant); |
| assert(stopped(), "Should be stopped"); |
| } |
| |
| const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr(); |
| const Type *toop = dest_klass_t->cast_to_exactness(false)->as_instance_type(); |
| src = _gvn.transform(new CheckCastPPNode(control(), src, toop)); |
| arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx); |
| } |
| |
| if (stopped()) { |
| return true; |
| } |
| |
| ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != nullptr, negative_length_guard_generated, |
| // Create LoadRange and LoadKlass nodes for use during macro expansion here |
| // so the compiler has a chance to eliminate them: during macro expansion, |
| // we have to set their control (CastPP nodes are eliminated). |
| load_object_klass(src), load_object_klass(dest), |
| load_array_length(src), load_array_length(dest)); |
| |
| ac->set_arraycopy(validated); |
| |
| Node* n = _gvn.transform(ac); |
| if (n == ac) { |
| ac->connect_outputs(this); |
| } else { |
| assert(validated, "shouldn't transform if all arguments not validated"); |
| set_all_memory(n); |
| } |
| clear_upper_avx(); |
| |
| |
| return true; |
| } |
| |
| |
| // Helper function which determines if an arraycopy immediately follows |
| // an allocation, with no intervening tests or other escapes for the object. |
| AllocateArrayNode* |
| LibraryCallKit::tightly_coupled_allocation(Node* ptr) { |
| if (stopped()) return nullptr; // no fast path |
| if (!C->do_aliasing()) return nullptr; // no MergeMems around |
| |
| AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn); |
| if (alloc == nullptr) return nullptr; |
| |
| Node* rawmem = memory(Compile::AliasIdxRaw); |
| // Is the allocation's memory state untouched? |
| if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) { |
| // Bail out if there have been raw-memory effects since the allocation. |
| // (Example: There might have been a call or safepoint.) |
| return nullptr; |
| } |
| rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw); |
| if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) { |
| return nullptr; |
| } |
| |
| // There must be no unexpected observers of this allocation. |
| for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) { |
| Node* obs = ptr->fast_out(i); |
| if (obs != this->map()) { |
| return nullptr; |
| } |
| } |
| |
| // This arraycopy must unconditionally follow the allocation of the ptr. |
| Node* alloc_ctl = ptr->in(0); |
| Node* ctl = control(); |
| while (ctl != alloc_ctl) { |
| // There may be guards which feed into the slow_region. |
| // Any other control flow means that we might not get a chance |
| // to finish initializing the allocated object. |
| // Various low-level checks bottom out in uncommon traps. These |
| // are considered safe since we've already checked above that |
| // there is no unexpected observer of this allocation. |
| if (get_uncommon_trap_from_success_proj(ctl) != nullptr) { |
| assert(ctl->in(0)->is_If(), "must be If"); |
| ctl = ctl->in(0)->in(0); |
| } else { |
| return nullptr; |
| } |
| } |
| |
| // If we get this far, we have an allocation which immediately |
| // precedes the arraycopy, and we can take over zeroing the new object. |
| // The arraycopy will finish the initialization, and provide |
| // a new control state to which we will anchor the destination pointer. |
| |
| return alloc; |
| } |
| |
| CallStaticJavaNode* LibraryCallKit::get_uncommon_trap_from_success_proj(Node* node) { |
| if (node->is_IfProj()) { |
| Node* other_proj = node->as_IfProj()->other_if_proj(); |
| for (DUIterator_Fast jmax, j = other_proj->fast_outs(jmax); j < jmax; j++) { |
| Node* obs = other_proj->fast_out(j); |
| if (obs->in(0) == other_proj && obs->is_CallStaticJava() && |
| (obs->as_CallStaticJava()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) { |
| return obs->as_CallStaticJava(); |
| } |
| } |
| } |
| return nullptr; |
| } |
| |
| //-------------inline_encodeISOArray----------------------------------- |
| // encode char[] to byte[] in ISO_8859_1 or ASCII |
| bool LibraryCallKit::inline_encodeISOArray(bool ascii) { |
| assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters"); |
| // no receiver since it is static method |
| Node *src = argument(0); |
| Node *src_offset = argument(1); |
| Node *dst = argument(2); |
| Node *dst_offset = argument(3); |
| Node *length = argument(4); |
| |
| src = must_be_not_null(src, true); |
| dst = must_be_not_null(dst, true); |
| |
| const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); |
| const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr(); |
| if (src_type == nullptr || src_type->elem() == Type::BOTTOM || |
| dst_type == nullptr || dst_type->elem() == Type::BOTTOM) { |
| // failed array check |
| return false; |
| } |
| |
| // Figure out the size and type of the elements we will be copying. |
| BasicType src_elem = src_type->elem()->array_element_basic_type(); |
| BasicType dst_elem = dst_type->elem()->array_element_basic_type(); |
| if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) { |
| return false; |
| } |
| |
| Node* src_start = array_element_address(src, src_offset, T_CHAR); |
| Node* dst_start = array_element_address(dst, dst_offset, dst_elem); |
| // 'src_start' points to src array + scaled offset |
| // 'dst_start' points to dst array + scaled offset |
| |
| const TypeAryPtr* mtype = TypeAryPtr::BYTES; |
| Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length, ascii); |
| enc = _gvn.transform(enc); |
| Node* res_mem = _gvn.transform(new SCMemProjNode(enc)); |
| set_memory(res_mem, mtype); |
| set_result(enc); |
| clear_upper_avx(); |
| |
| return true; |
| } |
| |
| //-------------inline_multiplyToLen----------------------------------- |
| bool LibraryCallKit::inline_multiplyToLen() { |
| assert(UseMultiplyToLenIntrinsic, "not implemented on this platform"); |
| |
| address stubAddr = StubRoutines::multiplyToLen(); |
| if (stubAddr == nullptr) { |
| return false; // Intrinsic's stub is not implemented on this platform |
| } |
| const char* stubName = "multiplyToLen"; |
| |
| assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters"); |
| |
| // no receiver because it is a static method |
| Node* x = argument(0); |
| Node* xlen = argument(1); |
| Node* y = argument(2); |
| Node* ylen = argument(3); |
| Node* z = argument(4); |
| |
| x = must_be_not_null(x, true); |
| y = must_be_not_null(y, true); |
| |
| const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr(); |
| const TypeAryPtr* y_type = y->Value(&_gvn)->isa_aryptr(); |
| if (x_type == nullptr || x_type->elem() == Type::BOTTOM || |
| y_type == nullptr || y_type->elem() == Type::BOTTOM) { |
| // failed array check |
| return false; |
| } |
| |
| BasicType x_elem = x_type->elem()->array_element_basic_type(); |
| BasicType y_elem = y_type->elem()->array_element_basic_type(); |
| if (x_elem != T_INT || y_elem != T_INT) { |
| return false; |
| } |
| |
| // Set the original stack and the reexecute bit for the interpreter to reexecute |
| // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens |
| // on the return from z array allocation in runtime. |
| { PreserveReexecuteState preexecs(this); |
| jvms()->set_should_reexecute(true); |
| |
| Node* x_start = array_element_address(x, intcon(0), x_elem); |
| Node* y_start = array_element_address(y, intcon(0), y_elem); |
| // 'x_start' points to x array + scaled xlen |
| // 'y_start' points to y array + scaled ylen |
| |
| // Allocate the result array |
| Node* zlen = _gvn.transform(new AddINode(xlen, ylen)); |
| ciKlass* klass = ciTypeArrayKlass::make(T_INT); |
| Node* klass_node = makecon(TypeKlassPtr::make(klass)); |
| |
| IdealKit ideal(this); |
| |
| #define __ ideal. |
| Node* one = __ ConI(1); |
| Node* zero = __ ConI(0); |
| IdealVariable need_alloc(ideal), z_alloc(ideal); __ declarations_done(); |
| __ set(need_alloc, zero); |
| __ set(z_alloc, z); |
| __ if_then(z, BoolTest::eq, null()); { |
| __ increment (need_alloc, one); |
| } __ else_(); { |
| // Update graphKit memory and control from IdealKit. |
| sync_kit(ideal); |
| Node *cast = new CastPPNode(z, TypePtr::NOTNULL); |
| cast->init_req(0, control()); |
| _gvn.set_type(cast, cast->bottom_type()); |
| C->record_for_igvn(cast); |
| |
| Node* zlen_arg = load_array_length(cast); |
| // Update IdealKit memory and control from graphKit. |
| __ sync_kit(this); |
| __ if_then(zlen_arg, BoolTest::lt, zlen); { |
| __ increment (need_alloc, one); |
| } __ end_if(); |
| } __ end_if(); |
| |
| __ if_then(__ value(need_alloc), BoolTest::ne, zero); { |
| // Update graphKit memory and control from IdealKit. |
| sync_kit(ideal); |
| Node * narr = new_array(klass_node, zlen, 1); |
| // Update IdealKit memory and control from graphKit. |
| __ sync_kit(this); |
| __ set(z_alloc, narr); |
| } __ end_if(); |
| |
| sync_kit(ideal); |
| z = __ value(z_alloc); |
| // Can't use TypeAryPtr::INTS which uses Bottom offset. |
| _gvn.set_type(z, TypeOopPtr::make_from_klass(klass)); |
| // Final sync IdealKit and GraphKit. |
| final_sync(ideal); |
| #undef __ |
| |
| Node* z_start = array_element_address(z, intcon(0), T_INT); |
| |
| Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, |
| OptoRuntime::multiplyToLen_Type(), |
| stubAddr, stubName, TypePtr::BOTTOM, |
| x_start, xlen, y_start, ylen, z_start, zlen); |
| } // original reexecute is set back here |
| |
| C->set_has_split_ifs(true); // Has chance for split-if optimization |
| set_result(z); |
| return true; |
| } |
| |
| //-------------inline_squareToLen------------------------------------ |
| bool LibraryCallKit::inline_squareToLen() { |
| assert(UseSquareToLenIntrinsic, "not implemented on this platform"); |
| |
| address stubAddr = StubRoutines::squareToLen(); |
| if (stubAddr == nullptr) { |
| return false; // Intrinsic's stub is not implemented on this platform |
| } |
| const char* stubName = "squareToLen"; |
| |
| assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters"); |
| |
| Node* x = argument(0); |
| Node* len = argument(1); |
| Node* z = argument(2); |
| Node* zlen = argument(3); |
| |
| x = must_be_not_null(x, true); |
| z = must_be_not_null(z, true); |
| |
| const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr(); |
| const TypeAryPtr* z_type = z->Value(&_gvn)->isa_aryptr(); |
| if (x_type == nullptr || x_type->elem() == Type::BOTTOM || |
| z_type == nullptr || z_type->elem() == Type::BOTTOM) { |
| // failed array check |
| return false; |
| } |
| |
| BasicType x_elem = x_type->elem()->array_element_basic_type(); |
| BasicType z_elem = z_type->elem()->array_element_basic_type(); |
| if (x_elem != T_INT || z_elem != T_INT) { |
| return false; |
| } |
| |
| |
| Node* x_start = array_element_address(x, intcon(0), x_elem); |
| Node* z_start = array_element_address(z, intcon(0), z_elem); |
| |
| Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, |
| OptoRuntime::squareToLen_Type(), |
| stubAddr, stubName, TypePtr::BOTTOM, |
| x_start, len, z_start, zlen); |
| |
| set_result(z); |
| return true; |
| } |
| |
| //-------------inline_mulAdd------------------------------------------ |
| bool LibraryCallKit::inline_mulAdd() { |
| assert(UseMulAddIntrinsic, "not implemented on this platform"); |
| |
| address stubAddr = StubRoutines::mulAdd(); |
| if (stubAddr == nullptr) { |
| return false; // Intrinsic's stub is not implemented on this platform |
| } |
| const char* stubName = "mulAdd"; |
| |
| assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters"); |
| |
| Node* out = argument(0); |
| Node* in = argument(1); |
| Node* offset = argument(2); |
| Node* len = argument(3); |
| Node* k = argument(4); |
| |
| in = must_be_not_null(in, true); |
| out = must_be_not_null(out, true); |
| |
| const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr(); |
| const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr(); |
| if (out_type == nullptr || out_type->elem() == Type::BOTTOM || |
| in_type == nullptr || in_type->elem() == Type::BOTTOM) { |
| // failed array check |
| return false; |
| } |
| |
| BasicType out_elem = out_type->elem()->array_element_basic_type(); |
| BasicType in_elem = in_type->elem()->array_element_basic_type(); |
| if (out_elem != T_INT || in_elem != T_INT) { |
| return false; |
| } |
| |
| Node* outlen = load_array_length(out); |
| Node* new_offset = _gvn.transform(new SubINode(outlen, offset)); |
| Node* out_start = array_element_address(out, intcon(0), out_elem); |
| Node* in_start = array_element_address(in, intcon(0), in_elem); |
| |
| Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, |
| OptoRuntime::mulAdd_Type(), |
| stubAddr, stubName, TypePtr::BOTTOM, |
| out_start,in_start, new_offset, len, k); |
| Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); |
| set_result(result); |
| return true; |
| } |
| |
| //-------------inline_montgomeryMultiply----------------------------------- |
| bool LibraryCallKit::inline_montgomeryMultiply() { |
| address stubAddr = StubRoutines::montgomeryMultiply(); |
| if (stubAddr == nullptr) { |
| return false; // Intrinsic's stub is not implemented on this platform |
| } |
| |
| assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform"); |
| const char* stubName = "montgomery_multiply"; |
| |
| assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters"); |
| |
| Node* a = argument(0); |
| Node* b = argument(1); |
| Node* n = argument(2); |
| Node* len = argument(3); |
| Node* inv = argument(4); |
| Node* m = argument(6); |
| |
| const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr(); |
| const TypeAryPtr* b_type = b->Value(&_gvn)->isa_aryptr(); |
| const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr(); |
| const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr(); |
| if (a_type == nullptr || a_type->elem() == Type::BOTTOM || |
| b_type == nullptr || b_type->elem() == Type::BOTTOM || |
| n_type == nullptr || n_type->elem() == Type::BOTTOM || |
| m_type == nullptr || m_type->elem() == Type::BOTTOM) { |
| // failed array check |
| return false; |
| } |
| |
| BasicType a_elem = a_type->elem()->array_element_basic_type(); |
| BasicType b_elem = b_type->elem()->array_element_basic_type(); |
| BasicType n_elem = n_type->elem()->array_element_basic_type(); |
| BasicType m_elem = m_type->elem()->array_element_basic_type(); |
| if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { |
| return false; |
| } |
| |
| // Make the call |
| { |
| Node* a_start = array_element_address(a, intcon(0), a_elem); |
| Node* b_start = array_element_address(b, intcon(0), b_elem); |
| Node* n_start = array_element_address(n, intcon(0), n_elem); |
| Node* m_start = array_element_address(m, intcon(0), m_elem); |
| |
| Node* call = make_runtime_call(RC_LEAF, |
| OptoRuntime::montgomeryMultiply_Type(), |
| stubAddr, stubName, TypePtr::BOTTOM, |
| a_start, b_start, n_start, len, inv, top(), |
| m_start); |
| set_result(m); |
| } |
| |
| return true; |
| } |
| |
| bool LibraryCallKit::inline_montgomerySquare() { |
| address stubAddr = StubRoutines::montgomerySquare(); |
| if (stubAddr == nullptr) { |
| return false; // Intrinsic's stub is not implemented on this platform |
| } |
| |
| assert(UseMontgomerySquareIntrinsic, "not implemented on this platform"); |
| const char* stubName = "montgomery_square"; |
| |
| assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters"); |
| |
| Node* a = argument(0); |
| Node* n = argument(1); |
| Node* len = argument(2); |
| Node* inv = argument(3); |
| Node* m = argument(5); |
| |
| const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr(); |
| const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr(); |
| const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr(); |
| if (a_type == nullptr || a_type->elem() == Type::BOTTOM || |
| n_type == nullptr || n_type->elem() == Type::BOTTOM || |
| m_type == nullptr || m_type->elem() == Type::BOTTOM) { |
| // failed array check |
| return false; |
| } |
| |
| BasicType a_elem = a_type->elem()->array_element_basic_type(); |
| BasicType n_elem = n_type->elem()->array_element_basic_type(); |
| BasicType m_elem = m_type->elem()->array_element_basic_type(); |
| if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { |
| return false; |
| } |
| |
| // Make the call |
| { |
| Node* a_start = array_element_address(a, intcon(0), a_elem); |
| Node* n_start = array_element_address(n, intcon(0), n_elem); |
| Node* m_start = array_element_address(m, intcon(0), m_elem); |
| |
| Node* call = make_runtime_call(RC_LEAF, |
| OptoRuntime::montgomerySquare_Type(), |
| stubAddr, stubName, TypePtr::BOTTOM, |
| a_start, n_start, len, inv, top(), |
| m_start); |
| set_result(m); |
| } |
| |
| return true; |
| } |
| |
| bool LibraryCallKit::inline_bigIntegerShift(bool isRightShift) { |
| address stubAddr = nullptr; |
| const char* stubName = nullptr; |
| |
| stubAddr = isRightShift? StubRoutines::bigIntegerRightShift(): StubRoutines::bigIntegerLeftShift(); |
| if (stubAddr == nullptr) { |
| return false; // Intrinsic's stub is not implemented on this platform |
| } |
| |
| stubName = isRightShift? "bigIntegerRightShiftWorker" : "bigIntegerLeftShiftWorker"; |
| |
| assert(callee()->signature()->size() == 5, "expected 5 arguments"); |
| |
| Node* newArr = argument(0); |
| Node* oldArr = argument(1); |
| Node* newIdx = argument(2); |
| Node* shiftCount = argument(3); |
| Node* numIter = argument(4); |
| |
| const TypeAryPtr* newArr_type = newArr->Value(&_gvn)->isa_aryptr(); |
| const TypeAryPtr* oldArr_type = oldArr->Value(&_gvn)->isa_aryptr(); |
| if (newArr_type == nullptr || newArr_type->elem() == Type::BOTTOM || |
| oldArr_type == nullptr || oldArr_type->elem() == Type::BOTTOM) { |
| return false; |
| } |
| |
| BasicType newArr_elem = newArr_type->elem()->array_element_basic_type(); |
| BasicType oldArr_elem = oldArr_type->elem()->array_element_basic_type(); |
| if (newArr_elem != T_INT || oldArr_elem != T_INT) { |
| return false; |
| } |
| |
| // Make the call |
| { |
| Node* newArr_start = array_element_address(newArr, intcon(0), newArr_elem); |
| Node* oldArr_start = array_element_address(oldArr, intcon(0), oldArr_elem); |
| |
| Node* call = make_runtime_call(RC_LEAF, |
| OptoRuntime::bigIntegerShift_Type(), |
| stubAddr, |
| stubName, |
| TypePtr::BOTTOM, |
| newArr_start, |
| oldArr_start, |
| newIdx, |
| shiftCount, |
| numIter); |
| } |
| |
| return true; |
| } |
| |
| //-------------inline_vectorizedMismatch------------------------------ |
| bool LibraryCallKit::inline_vectorizedMismatch() { |
| assert(UseVectorizedMismatchIntrinsic, "not implemented on this platform"); |
| |
| assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters"); |
| Node* obja = argument(0); // Object |
| Node* aoffset = argument(1); // long |
| Node* objb = argument(3); // Object |
| Node* boffset = argument(4); // long |
| Node* length = argument(6); // int |
| Node* scale = argument(7); // int |
| |
| const TypeAryPtr* obja_t = _gvn.type(obja)->isa_aryptr(); |
| const TypeAryPtr* objb_t = _gvn.type(objb)->isa_aryptr(); |
| if (obja_t == nullptr || obja_t->elem() == Type::BOTTOM || |
| objb_t == nullptr || objb_t->elem() == Type::BOTTOM || |
| scale == top()) { |
| return false; // failed input validation |
| } |
| |
| Node* obja_adr = make_unsafe_address(obja, aoffset); |
| Node* objb_adr = make_unsafe_address(objb, boffset); |
| |
| // Partial inlining handling for inputs smaller than ArrayOperationPartialInlineSize bytes in size. |
| // |
| // inline_limit = ArrayOperationPartialInlineSize / element_size; |
| // if (length <= inline_limit) { |
| // inline_path: |
| // vmask = VectorMaskGen length |
| // vload1 = LoadVectorMasked obja, vmask |
| // vload2 = LoadVectorMasked objb, vmask |
| // result1 = VectorCmpMasked vload1, vload2, vmask |
| // } else { |
| // call_stub_path: |
| // result2 = call vectorizedMismatch_stub(obja, objb, length, scale) |
| // } |
| // exit_block: |
| // return Phi(result1, result2); |
| // |
| enum { inline_path = 1, // input is small enough to process it all at once |
| stub_path = 2, // input is too large; call into the VM |
| PATH_LIMIT = 3 |
| }; |
| |
| Node* exit_block = new RegionNode(PATH_LIMIT); |
| Node* result_phi = new PhiNode(exit_block, TypeInt::INT); |
| Node* memory_phi = new PhiNode(exit_block, Type::MEMORY, TypePtr::BOTTOM); |
| |
| Node* call_stub_path = control(); |
| |
| BasicType elem_bt = T_ILLEGAL; |
| |
| const TypeInt* scale_t = _gvn.type(scale)->is_int(); |
| if (scale_t->is_con()) { |
| switch (scale_t->get_con()) { |
| case 0: elem_bt = T_BYTE; break; |
| case 1: elem_bt = T_SHORT; break; |
| case 2: elem_bt = T_INT; break; |
| case 3: elem_bt = T_LONG; break; |
| |
| default: elem_bt = T_ILLEGAL; break; // not supported |
| } |
| } |
| |
| int inline_limit = 0; |
| bool do_partial_inline = false; |
| |
| if (elem_bt != T_ILLEGAL && ArrayOperationPartialInlineSize > 0) { |
| inline_limit = ArrayOperationPartialInlineSize / type2aelembytes(elem_bt); |
| do_partial_inline = inline_limit >= 16; |
| } |
| |
| if (do_partial_inline) { |
| assert(elem_bt != T_ILLEGAL, "sanity"); |
| |
| if (Matcher::match_rule_supported_vector(Op_VectorMaskGen, inline_limit, elem_bt) && |
| Matcher::match_rule_supported_vector(Op_LoadVectorMasked, inline_limit, elem_bt) && |
| Matcher::match_rule_supported_vector(Op_VectorCmpMasked, inline_limit, elem_bt)) { |
| |
| const TypeVect* vt = TypeVect::make(elem_bt, inline_limit); |
| Node* cmp_length = _gvn.transform(new CmpINode(length, intcon(inline_limit))); |
| Node* bol_gt = _gvn.transform(new BoolNode(cmp_length, BoolTest::gt)); |
| |
| call_stub_path = generate_guard(bol_gt, nullptr, PROB_MIN); |
| |
| if (!stopped()) { |
| Node* casted_length = _gvn.transform(new CastIINode(control(), length, TypeInt::make(0, inline_limit, Type::WidenMin))); |
| |
| const TypePtr* obja_adr_t = _gvn.type(obja_adr)->isa_ptr(); |
| const TypePtr* objb_adr_t = _gvn.type(objb_adr)->isa_ptr(); |
| Node* obja_adr_mem = memory(C->get_alias_index(obja_adr_t)); |
| Node* objb_adr_mem = memory(C->get_alias_index(objb_adr_t)); |
| |
| Node* vmask = _gvn.transform(VectorMaskGenNode::make(ConvI2X(casted_length), elem_bt)); |
| Node* vload_obja = _gvn.transform(new LoadVectorMaskedNode(control(), obja_adr_mem, obja_adr, obja_adr_t, vt, vmask)); |
| Node* vload_objb = _gvn.transform(new LoadVectorMaskedNode(control(), objb_adr_mem, objb_adr, objb_adr_t, vt, vmask)); |
| Node* result = _gvn.transform(new VectorCmpMaskedNode(vload_obja, vload_objb, vmask, TypeInt::INT)); |
| |
| exit_block->init_req(inline_path, control()); |
| memory_phi->init_req(inline_path, map()->memory()); |
| result_phi->init_req(inline_path, result); |
| |
| C->set_max_vector_size(MAX2((uint)ArrayOperationPartialInlineSize, C->max_vector_size())); |
| clear_upper_avx(); |
| } |
| } |
| } |
| |
| if (call_stub_path != nullptr) { |
| set_control(call_stub_path); |
| |
| Node* call = make_runtime_call(RC_LEAF, |
| OptoRuntime::vectorizedMismatch_Type(), |
| StubRoutines::vectorizedMismatch(), "vectorizedMismatch", TypePtr::BOTTOM, |
| obja_adr, objb_adr, length, scale); |
| |
| exit_block->init_req(stub_path, control()); |
| memory_phi->init_req(stub_path, map()->memory()); |
| result_phi->init_req(stub_path, _gvn.transform(new ProjNode(call, TypeFunc::Parms))); |
| } |
| |
| exit_block = _gvn.transform(exit_block); |
| memory_phi = _gvn.transform(memory_phi); |
| result_phi = _gvn.transform(result_phi); |
| |
| set_control(exit_block); |
| set_all_memory(memory_phi); |
| set_result(result_phi); |
| |
| return true; |
| } |
| |
| //------------------------------inline_vectorizedHashcode---------------------------- |
| bool LibraryCallKit::inline_vectorizedHashCode() { |
| assert(UseVectorizedHashCodeIntrinsic, "not implemented on this platform"); |
| |
| assert(callee()->signature()->size() == 5, "vectorizedHashCode has 5 parameters"); |
| Node* array = argument(0); |
| Node* offset = argument(1); |
| Node* length = argument(2); |
| Node* initialValue = argument(3); |
| Node* basic_type = argument(4); |
| |
| if (basic_type == top()) { |
| return false; // failed input validation |
| } |
| |
| const TypeInt* basic_type_t = _gvn.type(basic_type)->is_int(); |
| if (!basic_type_t->is_con()) { |
| return false; // Only intrinsify if mode argument is constant |
| } |
| |
| array = must_be_not_null(array, true); |
| |
| BasicType bt = (BasicType)basic_type_t->get_con(); |
| |
| // Resolve address of first element |
| Node* array_start = array_element_address(array, offset, bt); |
| |
| set_result(_gvn.transform(new VectorizedHashCodeNode(control(), memory(TypeAryPtr::get_array_body_type(bt)), |
| array_start, length, initialValue, basic_type))); |
| clear_upper_avx(); |
| |
| return true; |
| } |
| |
| /** |
| * Calculate CRC32 for byte. |
| * int java.util.zip.CRC32.update(int crc, int b) |
| */ |
| bool LibraryCallKit::inline_updateCRC32() { |
| assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); |
| assert(callee()->signature()->size() == 2, "update has 2 parameters"); |
| // no receiver since it is static method |
| Node* crc = argument(0); // type: int |
| Node* b = argument(1); // type: int |
| |
| /* |
| * int c = ~ crc; |
| * b = timesXtoThe32[(b ^ c) & 0xFF]; |
| * b = b ^ (c >>> 8); |
| * crc = ~b; |
| */ |
| |
| Node* M1 = intcon(-1); |
| crc = _gvn.transform(new XorINode(crc, M1)); |
| Node* result = _gvn.transform(new XorINode(crc, b)); |
| result = _gvn.transform(new AndINode(result, intcon(0xFF))); |
| |
| Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr())); |
| Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2))); |
| Node* adr = basic_plus_adr(top(), base, ConvI2X(offset)); |
| result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered); |
| |
| crc = _gvn.transform(new URShiftINode(crc, intcon(8))); |
| result = _gvn.transform(new XorINode(crc, result)); |
| result = _gvn.transform(new XorINode(result, M1)); |
| set_result(result); |
| return true; |
| } |
| |
| /** |
| * Calculate CRC32 for byte[] array. |
| * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len) |
| */ |
| bool LibraryCallKit::inline_updateBytesCRC32() { |
| assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); |
| assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); |
| // no receiver since it is static method |
| Node* crc = argument(0); // type: int |
| Node* src = argument(1); // type: oop |
| Node* offset = argument(2); // type: int |
| Node* length = argument(3); // type: int |
| |
| const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); |
| if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { |
| // failed array check |
| return false; |
| } |
| |
| // Figure out the size and type of the elements we will be copying. |
| BasicType src_elem = src_type->elem()->array_element_basic_type(); |
| if (src_elem != T_BYTE) { |
| return false; |
| } |
| |
| // 'src_start' points to src array + scaled offset |
| src = must_be_not_null(src, true); |
| Node* src_start = array_element_address(src, offset, src_elem); |
| |
| // We assume that range check is done by caller. |
| // TODO: generate range check (offset+length < src.length) in debug VM. |
| |
| // Call the stub. |
| address stubAddr = StubRoutines::updateBytesCRC32(); |
| const char *stubName = "updateBytesCRC32"; |
| |
| Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), |
| stubAddr, stubName, TypePtr::BOTTOM, |
| crc, src_start, length); |
| Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); |
| set_result(result); |
| return true; |
| } |
| |
| /** |
| * Calculate CRC32 for ByteBuffer. |
| * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len) |
| */ |
| bool LibraryCallKit::inline_updateByteBufferCRC32() { |
| assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); |
| assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); |
| // no receiver since it is static method |
| Node* crc = argument(0); // type: int |
| Node* src = argument(1); // type: long |
| Node* offset = argument(3); // type: int |
| Node* length = argument(4); // type: int |
| |
| src = ConvL2X(src); // adjust Java long to machine word |
| Node* base = _gvn.transform(new CastX2PNode(src)); |
| offset = ConvI2X(offset); |
| |
| // 'src_start' points to src array + scaled offset |
| Node* src_start = basic_plus_adr(top(), base, offset); |
| |
| // Call the stub. |
| address stubAddr = StubRoutines::updateBytesCRC32(); |
| const char *stubName = "updateBytesCRC32"; |
| |
| Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), |
| stubAddr, stubName, TypePtr::BOTTOM, |
| crc, src_start, length); |
| Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); |
| set_result(result); |
| return true; |
| } |
| |
| //------------------------------get_table_from_crc32c_class----------------------- |
| Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) { |
| Node* table = load_field_from_object(nullptr, "byteTable", "[I", /*decorators*/ IN_HEAP, /*is_static*/ true, crc32c_class); |
| assert (table != nullptr, "wrong version of java.util.zip.CRC32C"); |
| |
| return table; |
| } |
| |
| //------------------------------inline_updateBytesCRC32C----------------------- |
| // |
| // Calculate CRC32C for byte[] array. |
| // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end) |
| // |
| bool LibraryCallKit::inline_updateBytesCRC32C() { |
| assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); |
| assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); |
| assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); |
| // no receiver since it is a static method |
| Node* crc = argument(0); // type: int |
| Node* src = argument(1); // type: oop |
| Node* offset = argument(2); // type: int |
| Node* end = argument(3); // type: int |
| |
| Node* length = _gvn.transform(new SubINode(end, offset)); |
| |
| const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); |
| if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { |
| // failed array check |
| return false; |
| } |
| |
| // Figure out the size and type of the elements we will be copying. |
| BasicType src_elem = src_type->elem()->array_element_basic_type(); |
| if (src_elem != T_BYTE) { |
| return false; |
| } |
| |
| // 'src_start' points to src array + scaled offset |
| src = must_be_not_null(src, true); |
| Node* src_start = array_element_address(src, offset, src_elem); |
| |
| // static final int[] byteTable in class CRC32C |
| Node* table = get_table_from_crc32c_class(callee()->holder()); |
| table = must_be_not_null(table, true); |
| Node* table_start = array_element_address(table, intcon(0), T_INT); |
| |
| // We assume that range check is done by caller. |
| // TODO: generate range check (offset+length < src.length) in debug VM. |
| |
| // Call the stub. |
| address stubAddr = StubRoutines::updateBytesCRC32C(); |
| const char *stubName = "updateBytesCRC32C"; |
| |
| Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), |
| stubAddr, stubName, TypePtr::BOTTOM, |
| crc, src_start, length, table_start); |
| Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); |
| set_result(result); |
| return true; |
| } |
| |
| //------------------------------inline_updateDirectByteBufferCRC32C----------------------- |
| // |
| // Calculate CRC32C for DirectByteBuffer. |
| // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end) |
| // |
| bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() { |
| assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); |
| assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long"); |
| assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); |
| // no receiver since it is a static method |
| Node* crc = argument(0); // type: int |
| Node* src = argument(1); // type: long |
| Node* offset = argument(3); // type: int |
| Node* end = argument(4); // type: int |
| |
| Node* length = _gvn.transform(new SubINode(end, offset)); |
| |
| src = ConvL2X(src); // adjust Java long to machine word |
| Node* base = _gvn.transform(new CastX2PNode(src)); |
| offset = ConvI2X(offset); |
| |
| // 'src_start' points to src array + scaled offset |
| Node* src_start = basic_plus_adr(top(), base, offset); |
| |
| // static final int[] byteTable in class CRC32C |
| Node* table = get_table_from_crc32c_class(callee()->holder()); |
| table = must_be_not_null(table, true); |
| Node* table_start = array_element_address(table, intcon(0), T_INT); |
| |
| // Call the stub. |
| address stubAddr = StubRoutines::updateBytesCRC32C(); |
| const char *stubName = "updateBytesCRC32C"; |
| |
| Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), |
| stubAddr, stubName, TypePtr::BOTTOM, |
| crc, src_start, length, table_start); |
| Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); |
| set_result(result); |
| return true; |
| } |
| |
| //------------------------------inline_updateBytesAdler32---------------------- |
| // |
| // Calculate Adler32 checksum for byte[] array. |
| // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len) |
| // |
| bool LibraryCallKit::inline_updateBytesAdler32() { |
| assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one |
| assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); |
| assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); |
| // no receiver since it is static method |
| Node* crc = argument(0); // type: int |
| Node* src = argument(1); // type: oop |
| Node* offset = argument(2); // type: int |
| Node* length = argument(3); // type: int |
| |
| const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); |
| if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { |
| // failed array check |
| return false; |
| } |
| |
| // Figure out the size and type of the elements we will be copying. |
| BasicType src_elem = src_type->elem()->array_element_basic_type(); |
| if (src_elem != T_BYTE) { |
| return false; |
| } |
| |
| // 'src_start' points to src array + scaled offset |
| Node* src_start = array_element_address(src, offset, src_elem); |
| |
| // We assume that range check is done by caller. |
| // TODO: generate range check (offset+length < src.length) in debug VM. |
| |
| // Call the stub. |
| address stubAddr = StubRoutines::updateBytesAdler32(); |
| const char *stubName = "updateBytesAdler32"; |
| |
| Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), |
| stubAddr, stubName, TypePtr::BOTTOM, |
| crc, src_start, length); |
| Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); |
| set_result(result); |
| return true; |
| } |
| |
| //------------------------------inline_updateByteBufferAdler32--------------- |
| // |
| // Calculate Adler32 checksum for DirectByteBuffer. |
| // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len) |
| // |
| bool LibraryCallKit::inline_updateByteBufferAdler32() { |
| assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one |
| assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); |
| assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); |
| // no receiver since it is static method |
| Node* crc = argument(0); // type: int |
| Node* src = argument(1); // type: long |
| Node* offset = argument(3); // type: int |
| Node* length = argument(4); // type: int |
| |
| src = ConvL2X(src); // adjust Java long to machine word |
| Node* base = _gvn.transform(new CastX2PNode(src)); |
| offset = ConvI2X(offset); |
| |
| // 'src_start' points to src array + scaled offset |
| Node* src_start = basic_plus_adr(top(), base, offset); |
| |
| // Call the stub. |
| address stubAddr = StubRoutines::updateBytesAdler32(); |
| const char *stubName = "updateBytesAdler32"; |
| |
| Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), |
| stubAddr, stubName, TypePtr::BOTTOM, |
| crc, src_start, length); |
| |
| Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); |
| set_result(result); |
| return true; |
| } |
| |
| //----------------------------inline_reference_get---------------------------- |
| // public T java.lang.ref.Reference.get(); |
| bool LibraryCallKit::inline_reference_get() { |
| const int referent_offset = java_lang_ref_Reference::referent_offset(); |
| |
| // Get the argument: |
| Node* reference_obj = null_check_receiver(); |
| if (stopped()) return true; |
| |
| DecoratorSet decorators = IN_HEAP | ON_WEAK_OOP_REF; |
| Node* result = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;", |
| decorators, /*is_static*/ false, nullptr); |
| if (result == nullptr) return false; |
| |
| // Add memory barrier to prevent commoning reads from this field |
| // across safepoint since GC can change its value. |
| insert_mem_bar(Op_MemBarCPUOrder); |
| |
| set_result(result); |
| return true; |
| } |
| |
| //----------------------------inline_reference_refersTo0---------------------------- |
| // bool java.lang.ref.Reference.refersTo0(); |
| // bool java.lang.ref.PhantomReference.refersTo0(); |
| bool LibraryCallKit::inline_reference_refersTo0(bool is_phantom) { |
| // Get arguments: |
| Node* reference_obj = null_check_receiver(); |
| Node* other_obj = argument(1); |
| if (stopped()) return true; |
| |
| DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE; |
| decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF); |
| Node* referent = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;", |
| decorators, /*is_static*/ false, nullptr); |
| if (referent == nullptr) return false; |
| |
| // Add memory barrier to prevent commoning reads from this field |
| // across safepoint since GC can change its value. |
| insert_mem_bar(Op_MemBarCPUOrder); |
| |
| Node* cmp = _gvn.transform(new CmpPNode(referent, other_obj)); |
| Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); |
| IfNode* if_node = create_and_map_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN); |
| |
| RegionNode* region = new RegionNode(3); |
| PhiNode* phi = new PhiNode(region, TypeInt::BOOL); |
| |
| Node* if_true = _gvn.transform(new IfTrueNode(if_node)); |
| region->init_req(1, if_true); |
| phi->init_req(1, intcon(1)); |
| |
| Node* if_false = _gvn.transform(new IfFalseNode(if_node)); |
| region->init_req(2, if_false); |
| phi->init_req(2, intcon(0)); |
| |
| set_control(_gvn.transform(region)); |
| record_for_igvn(region); |
| set_result(_gvn.transform(phi)); |
| return true; |
| } |
| |
| |
| Node* LibraryCallKit::load_field_from_object(Node* fromObj, const char* fieldName, const char* fieldTypeString, |
| DecoratorSet decorators, bool is_static, |
| ciInstanceKlass* fromKls) { |
| if (fromKls == nullptr) { |
| const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); |
| assert(tinst != nullptr, "obj is null"); |
| assert(tinst->is_loaded(), "obj is not loaded"); |
| fromKls = tinst->instance_klass(); |
| } else { |
| assert(is_static, "only for static field access"); |
| } |
| ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), |
| ciSymbol::make(fieldTypeString), |
| is_static); |
| |
| assert(field != nullptr, "undefined field %s %s %s", fieldTypeString, fromKls->name()->as_utf8(), fieldName); |
| if (field == nullptr) return (Node *) nullptr; |
| |
| if (is_static) { |
| const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); |
| fromObj = makecon(tip); |
| } |
| |
| // Next code copied from Parse::do_get_xxx(): |
| |
| // Compute address and memory type. |
| int offset = field->offset_in_bytes(); |
| bool is_vol = field->is_volatile(); |
| ciType* field_klass = field->type(); |
| assert(field_klass->is_loaded(), "should be loaded"); |
| const TypePtr* adr_type = C->alias_type(field)->adr_type(); |
| Node *adr = basic_plus_adr(fromObj, fromObj, offset); |
| BasicType bt = field->layout_type(); |
| |
| // Build the resultant type of the load |
| const Type *type; |
| if (bt == T_OBJECT) { |
| type = TypeOopPtr::make_from_klass(field_klass->as_klass()); |
| } else { |
| type = Type::get_const_basic_type(bt); |
| } |
| |
| if (is_vol) { |
| decorators |= MO_SEQ_CST; |
| } |
| |
| return access_load_at(fromObj, adr, adr_type, type, bt, decorators); |
| } |
| |
| Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, |
| bool is_exact /* true */, bool is_static /* false */, |
| ciInstanceKlass * fromKls /* nullptr */) { |
| if (fromKls == nullptr) { |
| const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); |
| assert(tinst != nullptr, "obj is null"); |
| assert(tinst->is_loaded(), "obj is not loaded"); |
| assert(!is_exact || tinst->klass_is_exact(), "klass not exact"); |
| fromKls = tinst->instance_klass(); |
| } |
| else { |
| assert(is_static, "only for static field access"); |
| } |
| ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), |
| ciSymbol::make(fieldTypeString), |
| is_static); |
| |
| assert(field != nullptr, "undefined field"); |
| assert(!field->is_volatile(), "not defined for volatile fields"); |
| |
| if (is_static) { |
| const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); |
| fromObj = makecon(tip); |
| } |
| |
| // Next code copied from Parse::do_get_xxx(): |
| |
| // Compute address and memory type. |
| int offset = field->offset_in_bytes(); |
| Node *adr = basic_plus_adr(fromObj, fromObj, offset); |
| |
| return adr; |
| } |
| |
| //------------------------------inline_aescrypt_Block----------------------- |
| bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) { |
| address stubAddr = nullptr; |
| const char *stubName; |
| assert(UseAES, "need AES instruction support"); |
| |
| switch(id) { |
| case vmIntrinsics::_aescrypt_encryptBlock: |
| stubAddr = StubRoutines::aescrypt_encryptBlock(); |
| stubName = "aescrypt_encryptBlock"; |
| break; |
| case vmIntrinsics::_aescrypt_decryptBlock: |
| stubAddr = StubRoutines::aescrypt_decryptBlock(); |
| stubName = "aescrypt_decryptBlock"; |
| break; |
| default: |
| break; |
| } |
| if (stubAddr == nullptr) return false; |
| |
| Node* aescrypt_object = argument(0); |
| Node* src = argument(1); |
| Node* src_offset = argument(2); |
| Node* dest = argument(3); |
| Node* dest_offset = argument(4); |
| |
| src = must_be_not_null(src, true); |
| dest = must_be_not_null(dest, true); |
| |
| // (1) src and dest are arrays. |
| const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); |
| const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); |
| assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && |
| dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); |
| |
| // for the quick and dirty code we will skip all the checks. |
| // we are just trying to get the call to be generated. |
| Node* src_start = src; |
| Node* dest_start = dest; |
| if (src_offset != nullptr || dest_offset != nullptr) { |
| assert(src_offset != nullptr && dest_offset != nullptr, ""); |
| src_start = array_element_address(src, src_offset, T_BYTE); |
| dest_start = array_element_address(dest, dest_offset, T_BYTE); |
| } |
| |
| // now need to get the start of its expanded key array |
| // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java |
| Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); |
| if (k_start == nullptr) return false; |
| |
| // Call the stub. |
| make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(), |
| stubAddr, stubName, TypePtr::BOTTOM, |
| src_start, dest_start, k_start); |
| |
| return true; |
| } |
| |
| //------------------------------inline_cipherBlockChaining_AESCrypt----------------------- |
| bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) { |
| address stubAddr = nullptr; |
| const char *stubName = nullptr; |
| |
| assert(UseAES, "need AES instruction support"); |
| |
| switch(id) { |
| case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: |
| stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt(); |
| stubName = "cipherBlockChaining_encryptAESCrypt"; |
| break; |
| case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: |
| stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt(); |
| stubName = "cipherBlockChaining_decryptAESCrypt"; |
| break; |
| default: |
| break; |
| } |
| if (stubAddr == nullptr) return false; |
| |
| Node* cipherBlockChaining_object = argument(0); |
| Node* src = argument(1); |
| Node* src_offset = argument(2); |
| Node* len = argument(3); |
| Node* dest = argument(4); |
| Node* dest_offset = argument(5); |
| |
| src = must_be_not_null(src, false); |
| dest = must_be_not_null(dest, false); |
| |
| // (1) src and dest are arrays. |
| const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); |
| const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); |
| assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && |
| dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); |
| |
| // checks are the responsibility of the caller |
| Node* src_start = src; |
| Node* dest_start = dest; |
| if (src_offset != nullptr || dest_offset != nullptr) { |
| assert(src_offset != nullptr && dest_offset != nullptr, ""); |
| src_start = array_element_address(src, src_offset, T_BYTE); |
| dest_start = array_element_address(dest, dest_offset, T_BYTE); |
| } |
| |
| // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object |
| // (because of the predicated logic executed earlier). |
| // so we cast it here safely. |
| // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java |
| |
| Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); |
| if (embeddedCipherObj == nullptr) return false; |
| |
| // cast it to what we know it will be at runtime |
| const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr(); |
| assert(tinst != nullptr, "CBC obj is null"); |
| assert(tinst->is_loaded(), "CBC obj is not loaded"); |
| ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); |
| assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); |
| |
| ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); |
| const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); |
| const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); |
| Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); |
| aescrypt_object = _gvn.transform(aescrypt_object); |
| |
| // we need to get the start of the aescrypt_object's expanded key array |
| Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); |
| if (k_start == nullptr) return false; |
| |
| // similarly, get the start address of the r vector |
| Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B"); |
| if (objRvec == nullptr) return false; |
| Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE); |
| |
| // Call the stub, passing src_start, dest_start, k_start, r_start and src_len |
| Node* cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, |
| OptoRuntime::cipherBlockChaining_aescrypt_Type(), |
| stubAddr, stubName, TypePtr::BOTTOM, |
| src_start, dest_start, k_start, r_start, len); |
| |
| // return cipher length (int) |
| Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms)); |
| set_result(retvalue); |
| return true; |
| } |
| |
| //------------------------------inline_electronicCodeBook_AESCrypt----------------------- |
| bool LibraryCallKit::inline_electronicCodeBook_AESCrypt(vmIntrinsics::ID id) { |
| address stubAddr = nullptr; |
| const char *stubName = nullptr; |
| |
| assert(UseAES, "need AES instruction support"); |
| |
| switch (id) { |
| case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: |
| stubAddr = StubRoutines::electronicCodeBook_encryptAESCrypt(); |
| stubName = "electronicCodeBook_encryptAESCrypt"; |
| break; |
| case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: |
| stubAddr = StubRoutines::electronicCodeBook_decryptAESCrypt(); |
| stubName = "electronicCodeBook_decryptAESCrypt"; |
| break; |
| default: |
| break; |
| } |
| |
| if (stubAddr == nullptr) return false; |
| |
| Node* electronicCodeBook_object = argument(0); |
| Node* src = argument(1); |
| Node* src_offset = argument(2); |
| Node* len = argument(3); |
| Node* dest = argument(4); |
| Node* dest_offset = argument(5); |
| |
| // (1) src and dest are arrays. |
| const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); |
| const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); |
| assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && |
| dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); |
| |
| // checks are the responsibility of the caller |
| Node* src_start = src; |
| Node* dest_start = dest; |
| if (src_offset != nullptr || dest_offset != nullptr) { |
| assert(src_offset != nullptr && dest_offset != nullptr, ""); |
| src_start = array_element_address(src, src_offset, T_BYTE); |
| dest_start = array_element_address(dest, dest_offset, T_BYTE); |
| } |
| |
| // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object |
| // (because of the predicated logic executed earlier). |
| // so we cast it here safely. |
| // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java |
| |
| Node* embeddedCipherObj = load_field_from_object(electronicCodeBook_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); |
| if (embeddedCipherObj == nullptr) return false; |
| |
| // cast it to what we know it will be at runtime |
| const TypeInstPtr* tinst = _gvn.type(electronicCodeBook_object)->isa_instptr(); |
| assert(tinst != nullptr, "ECB obj is null"); |
| assert(tinst->is_loaded(), "ECB obj is not loaded"); |
| ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); |
| assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); |
| |
| ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); |
| const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); |
| const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); |
| Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); |
| aescrypt_object = _gvn.transform(aescrypt_object); |
| |
| // we need to get the start of the aescrypt_object's expanded key array |
| Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); |
| if (k_start == nullptr) return false; |
| |
| // Call the stub, passing src_start, dest_start, k_start, r_start and src_len |
| Node* ecbCrypt = make_runtime_call(RC_LEAF | RC_NO_FP, |
| OptoRuntime::electronicCodeBook_aescrypt_Type(), |
| stubAddr, stubName, TypePtr::BOTTOM, |
| src_start, dest_start, k_start, len); |
| |
| // return cipher length (int) |
| Node* retvalue = _gvn.transform(new ProjNode(ecbCrypt, TypeFunc::Parms)); |
| set_result(retvalue); |
| return true; |
| } |
| |
| //------------------------------inline_counterMode_AESCrypt----------------------- |
| bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) { |
| assert(UseAES, "need AES instruction support"); |
| if (!UseAESCTRIntrinsics) return false; |
| |
| address stubAddr = nullptr; |
| const char *stubName = nullptr; |
| if (id == vmIntrinsics::_counterMode_AESCrypt) { |
| stubAddr = StubRoutines::counterMode_AESCrypt(); |
| stubName = "counterMode_AESCrypt"; |
| } |
| if (stubAddr == nullptr) return false; |
| |
| Node* counterMode_object = argument(0); |
| Node* src = argument(1); |
| Node* src_offset = argument(2); |
| Node* len = argument(3); |
| Node* dest = argument(4); |
| Node* dest_offset = argument(5); |
| |
| // (1) src and dest are arrays. |
| const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); |
| const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); |
| assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && |
| dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); |
| |
| // checks are the responsibility of the caller |
| Node* src_start = src; |
| Node* dest_start = dest; |
| if (src_offset != nullptr || dest_offset != nullptr) { |
| assert(src_offset != nullptr && dest_offset != nullptr, ""); |
| src_start = array_element_address(src, src_offset, T_BYTE); |
| dest_start = array_element_address(dest, dest_offset, T_BYTE); |
| } |
| |
| // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object |
| // (because of the predicated logic executed earlier). |
| // so we cast it here safely. |
| // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java |
| Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); |
| if (embeddedCipherObj == nullptr) return false; |
| // cast it to what we know it will be at runtime |
| const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr(); |
| assert(tinst != nullptr, "CTR obj is null"); |
| assert(tinst->is_loaded(), "CTR obj is not loaded"); |
| ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); |
| assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); |
| ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); |
| const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); |
| const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); |
| Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); |
| aescrypt_object = _gvn.transform(aescrypt_object); |
| // we need to get the start of the aescrypt_object's expanded key array |
| Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); |
| if (k_start == nullptr) return false; |
| // similarly, get the start address of the r vector |
| Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B"); |
| if (obj_counter == nullptr) return false; |
| Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE); |
| |
| Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B"); |
| if (saved_encCounter == nullptr) return false; |
| Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE); |
| Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false); |
| |
| // Call the stub, passing src_start, dest_start, k_start, r_start and src_len |
| Node* ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, |
| OptoRuntime::counterMode_aescrypt_Type(), |
| stubAddr, stubName, TypePtr::BOTTOM, |
| src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used); |
| |
| // return cipher length (int) |
| Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms)); |
| set_result(retvalue); |
| return true; |
| } |
| |
| //------------------------------get_key_start_from_aescrypt_object----------------------- |
| Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) { |
| #if defined(PPC64) || defined(S390) |
| // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys. |
| // Intel's extension is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns. |
| // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption. |
| // The ppc64 stubs of encryption and decryption use the same round keys (sessionK[0]). |
| Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I"); |
| assert (objSessionK != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt"); |
| if (objSessionK == nullptr) { |
| return (Node *) nullptr; |
| } |
| Node* objAESCryptKey = load_array_element(objSessionK, intcon(0), TypeAryPtr::OOPS, /* set_ctrl */ true); |
| #else |
| Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I"); |
| #endif // PPC64 |
| assert (objAESCryptKey != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt"); |
| if (objAESCryptKey == nullptr) return (Node *) nullptr; |
| |
| // now have the array, need to get the start address of the K array |
| Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT); |
| return k_start; |
| } |
| |
| //----------------------------inline_cipherBlockChaining_AESCrypt_predicate---------------------------- |
| // Return node representing slow path of predicate check. |
| // the pseudo code we want to emulate with this predicate is: |
| // for encryption: |
| // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath |
| // for decryption: |
| // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath |
| // note cipher==plain is more conservative than the original java code but that's OK |
| // |
| Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) { |
| // The receiver was checked for null already. |
| Node* objCBC = argument(0); |
| |
| Node* src = argument(1); |
| Node* dest = argument(4); |
| |
| // Load embeddedCipher field of CipherBlockChaining object. |
| Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); |
| |
| // get AESCrypt klass for instanceOf check |
| // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point |
| // will have same classloader as CipherBlockChaining object |
| const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr(); |
| assert(tinst != nullptr, "CBCobj is null"); |
| assert(tinst->is_loaded(), "CBCobj is not loaded"); |
| |
| // we want to do an instanceof comparison against the AESCrypt class |
| ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); |
| if (!klass_AESCrypt->is_loaded()) { |
| // if AESCrypt is not even loaded, we never take the intrinsic fast path |
| Node* ctrl = control(); |
| set_control(top()); // no regular fast path |
| return ctrl; |
| } |
| |
| src = must_be_not_null(src, true); |
| dest = must_be_not_null(dest, true); |
| |
| // Resolve oops to stable for CmpP below. |
| ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); |
| |
| Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); |
| Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); |
| Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); |
| |
| Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); |
| |
| // for encryption, we are done |
| if (!decrypting) |
| return instof_false; // even if it is null |
| |
| // for decryption, we need to add a further check to avoid |
| // taking the intrinsic path when cipher and plain are the same |
| // see the original java code for why. |
| RegionNode* region = new RegionNode(3); |
| region->init_req(1, instof_false); |
| |
| Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); |
| Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); |
| Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN); |
| region->init_req(2, src_dest_conjoint); |
| |
| record_for_igvn(region); |
| return _gvn.transform(region); |
| } |
| |
| //----------------------------inline_electronicCodeBook_AESCrypt_predicate---------------------------- |
| // Return node representing slow path of predicate check. |
| // the pseudo code we want to emulate with this predicate is: |
| // for encryption: |
| // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath |
| // for decryption: |
| // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath |
| // note cipher==plain is more conservative than the original java code but that's OK |
| // |
| Node* LibraryCallKit::inline_electronicCodeBook_AESCrypt_predicate(bool decrypting) { |
| // The receiver was checked for null already. |
| Node* objECB = argument(0); |
| |
| // Load embeddedCipher field of ElectronicCodeBook object. |
| Node* embeddedCipherObj = load_field_from_object(objECB, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); |
| |
| // get AESCrypt klass for instanceOf check |
| // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point |
| // will have same classloader as ElectronicCodeBook object |
| const TypeInstPtr* tinst = _gvn.type(objECB)->isa_instptr(); |
| assert(tinst != nullptr, "ECBobj is null"); |
| assert(tinst->is_loaded(), "ECBobj is not loaded"); |
| |
| // we want to do an instanceof comparison against the AESCrypt class |
| ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); |
| if (!klass_AESCrypt->is_loaded()) { |
| // if AESCrypt is not even loaded, we never take the intrinsic fast path |
| Node* ctrl = control(); |
| set_control(top()); // no regular fast path |
| return ctrl; |
| } |
| ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); |
| |
| Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); |
| Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); |
| Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); |
| |
| Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); |
| |
| // for encryption, we are done |
| if (!decrypting) |
| return instof_false; // even if it is null |
| |
| // for decryption, we need to add a further check to avoid |
| // taking the intrinsic path when cipher and plain are the same |
| // see the original java code for why. |
| RegionNode* region = new RegionNode(3); |
| region->init_req(1, instof_false); |
| Node* src = argument(1); |
| Node* dest = argument(4); |
| Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); |
| Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); |
| Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN); |
| region->init_req(2, src_dest_conjoint); |
| |
| record_for_igvn(region); |
| return _gvn.transform(region); |
| } |
| |
| //----------------------------inline_counterMode_AESCrypt_predicate---------------------------- |
| // Return node representing slow path of predicate check. |
| // the pseudo code we want to emulate with this predicate is: |
| // for encryption: |
| // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath |
| // for decryption: |
| // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath |
| // note cipher==plain is more conservative than the original java code but that's OK |
| // |
| |
| Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() { |
| // The receiver was checked for null already. |
| Node* objCTR = argument(0); |
| |
| // Load embeddedCipher field of CipherBlockChaining object. |
| Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); |
| |
| // get AESCrypt klass for instanceOf check |
| // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point |
| // will have same classloader as CipherBlockChaining object |
| const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr(); |
| assert(tinst != nullptr, "CTRobj is null"); |
| assert(tinst->is_loaded(), "CTRobj is not loaded"); |
| |
| // we want to do an instanceof comparison against the AESCrypt class |
| ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); |
| if (!klass_AESCrypt->is_loaded()) { |
| // if AESCrypt is not even loaded, we never take the intrinsic fast path |
| Node* ctrl = control(); |
| set_control(top()); // no regular fast path |
| return ctrl; |
| } |
| |
| ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); |
| Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); |
| Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); |
| Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); |
| Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); |
| |
| return instof_false; // even if it is null |
| } |
| |
| //------------------------------inline_ghash_processBlocks |
| bool LibraryCallKit::inline_ghash_processBlocks() { |
| address stubAddr; |
| const char *stubName; |
| assert(UseGHASHIntrinsics, "need GHASH intrinsics support"); |
| |
| stubAddr = StubRoutines::ghash_processBlocks(); |
| stubName = "ghash_processBlocks"; |
| |
| Node* data = argument(0); |
| Node* offset = argument(1); |
| Node* len = argument(2); |
| Node* state = argument(3); |
| Node* subkeyH = argument(4); |
| |
| state = must_be_not_null(state, true); |
| subkeyH = must_be_not_null(subkeyH, true); |
| data = must_be_not_null(data, true); |
| |
| Node* state_start = array_element_address(state, intcon(0), T_LONG); |
| assert(state_start, "state is null"); |
| Node* subkeyH_start = array_element_address(subkeyH, intcon(0), T_LONG); |
| assert(subkeyH_start, "subkeyH is null"); |
| Node* data_start = array_element_address(data, offset, T_BYTE); |
| assert(data_start, "data is null"); |
| |
| Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP, |
| OptoRuntime::ghash_processBlocks_Type(), |
| stubAddr, stubName, TypePtr::BOTTOM, |
| state_start, subkeyH_start, data_start, len); |
| return true; |
| } |
| |
| //------------------------------inline_chacha20Block |
| bool LibraryCallKit::inline_chacha20Block() { |
| address stubAddr; |
| const char *stubName; |
| assert(UseChaCha20Intrinsics, "need ChaCha20 intrinsics support"); |
| |
| stubAddr = StubRoutines::chacha20Block(); |
| stubName = "chacha20Block"; |
| |
| Node* state = argument(0); |
| Node* result = argument(1); |
| |
| state = must_be_not_null(state, true); |
| result = must_be_not_null(result, true); |
| |
| Node* state_start = array_element_address(state, intcon(0), T_INT); |
| assert(state_start, "state is null"); |
| Node* result_start = array_element_address(result, intcon(0), T_BYTE); |
| assert(result_start, "result is null"); |
| |
| Node* cc20Blk = make_runtime_call(RC_LEAF|RC_NO_FP, |
| OptoRuntime::chacha20Block_Type(), |
| stubAddr, stubName, TypePtr::BOTTOM, |
| state_start, result_start); |
| // return key stream length (int) |
| Node* retvalue = _gvn.transform(new ProjNode(cc20Blk, TypeFunc::Parms)); |
| set_result(retvalue); |
| return true; |
| } |
| |
| bool LibraryCallKit::inline_base64_encodeBlock() { |
| address stubAddr; |
| const char *stubName; |
| assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); |
| assert(callee()->signature()->size() == 6, "base64_encodeBlock has 6 parameters"); |
| stubAddr = StubRoutines::base64_encodeBlock(); |
| stubName = "encodeBlock"; |
| |
| if (!stubAddr) return false; |
| Node* base64obj = argument(0); |
| Node* src = argument(1); |
| Node* offset = argument(2); |
| Node* len = argument(3); |
| Node* dest = argument(4); |
| Node* dp = argument(5); |
| Node* isURL = argument(6); |
| |
| src = must_be_not_null(src, true); |
| dest = must_be_not_null(dest, true); |
| |
| Node* src_start = array_element_address(src, intcon(0), T_BYTE); |
| assert(src_start, "source array is null"); |
| Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); |
| assert(dest_start, "destination array is null"); |
| |
| Node* base64 = make_runtime_call(RC_LEAF, |
| OptoRuntime::base64_encodeBlock_Type(), |
| stubAddr, stubName, TypePtr::BOTTOM, |
| src_start, offset, len, dest_start, dp, isURL); |
| return true; |
| } |
| |
| bool LibraryCallKit::inline_base64_decodeBlock() { |
| address stubAddr; |
| const char *stubName; |
| assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); |
| assert(callee()->signature()->size() == 7, "base64_decodeBlock has 7 parameters"); |
| stubAddr = StubRoutines::base64_decodeBlock(); |
| stubName = "decodeBlock"; |
| |
| if (!stubAddr) return false; |
| Node* base64obj = argument(0); |
| Node* src = argument(1); |
| Node* src_offset = argument(2); |
| Node* len = argument(3); |
| Node* dest = argument(4); |
| Node* dest_offset = argument(5); |
| Node* isURL = argument(6); |
| Node* isMIME = argument(7); |
| |
| src = must_be_not_null(src, true); |
| dest = must_be_not_null(dest, true); |
| |
| Node* src_start = array_element_address(src, intcon(0), T_BYTE); |
| assert(src_start, "source array is null"); |
| Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); |
| assert(dest_start, "destination array is null"); |
| |
| Node* call = make_runtime_call(RC_LEAF, |
| OptoRuntime::base64_decodeBlock_Type(), |
| stubAddr, stubName, TypePtr::BOTTOM, |
| src_start, src_offset, len, dest_start, dest_offset, isURL, isMIME); |
| Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); |
| set_result(result); |
| return true; |
| } |
| |
| bool LibraryCallKit::inline_poly1305_processBlocks() { |
| address stubAddr; |
| const char *stubName; |
| assert(UsePoly1305Intrinsics, "need Poly intrinsics support"); |
| assert(callee()->signature()->size() == 5, "poly1305_processBlocks has %d parameters", callee()->signature()->size()); |
| stubAddr = StubRoutines::poly1305_processBlocks(); |
| stubName = "poly1305_processBlocks"; |
| |
| if (!stubAddr) return false; |
| null_check_receiver(); // null-check receiver |
| if (stopped()) return true; |
| |
| Node* input = argument(1); |
| Node* input_offset = argument(2); |
| Node* len = argument(3); |
| Node* alimbs = argument(4); |
| Node* rlimbs = argument(5); |
| |
| input = must_be_not_null(input, true); |
| alimbs = must_be_not_null(alimbs, true); |
| rlimbs = must_be_not_null(rlimbs, true); |
| |
| Node* input_start = array_element_address(input, input_offset, T_BYTE); |
| assert(input_start, "input array is null"); |
| Node* acc_start = array_element_address(alimbs, intcon(0), T_LONG); |
| assert(acc_start, "acc array is null"); |
| Node* r_start = array_element_address(rlimbs, intcon(0), T_LONG); |
| assert(r_start, "r array is null"); |
| |
| Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, |
| OptoRuntime::poly1305_processBlocks_Type(), |
| stubAddr, stubName, TypePtr::BOTTOM, |
| input_start, len, acc_start, r_start); |
| return true; |
| } |
| |
| //------------------------------inline_digestBase_implCompress----------------------- |
| // |
| // Calculate MD5 for single-block byte[] array. |
| // void com.sun.security.provider.MD5.implCompress(byte[] buf, int ofs) |
| // |
| // Calculate SHA (i.e., SHA-1) for single-block byte[] array. |
| // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs) |
| // |
| // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array. |
| // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs) |
| // |
| // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array. |
| // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs) |
| // |
| // Calculate SHA3 (i.e., SHA3-224 or SHA3-256 or SHA3-384 or SHA3-512) for single-block byte[] array. |
| // void com.sun.security.provider.SHA3.implCompress(byte[] buf, int ofs) |
| // |
| bool LibraryCallKit::inline_digestBase_implCompress(vmIntrinsics::ID id) { |
| assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters"); |
| |
| Node* digestBase_obj = argument(0); |
| Node* src = argument(1); // type oop |
| Node* ofs = argument(2); // type int |
| |
| const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); |
| if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { |
| // failed array check |
| return false; |
| } |
| // Figure out the size and type of the elements we will be copying. |
| BasicType src_elem = src_type->elem()->array_element_basic_type(); |
| if (src_elem != T_BYTE) { |
| return false; |
| } |
| // 'src_start' points to src array + offset |
| src = must_be_not_null(src, true); |
| Node* src_start = array_element_address(src, ofs, src_elem); |
| Node* state = nullptr; |
| Node* block_size = nullptr; |
| address stubAddr; |
| const char *stubName; |
| |
| switch(id) { |
| case vmIntrinsics::_md5_implCompress: |
| assert(UseMD5Intrinsics, "need MD5 instruction support"); |
| state = get_state_from_digest_object(digestBase_obj, T_INT); |
| stubAddr = StubRoutines::md5_implCompress(); |
| stubName = "md5_implCompress"; |
| break; |
| case vmIntrinsics::_sha_implCompress: |
| assert(UseSHA1Intrinsics, "need SHA1 instruction support"); |
| state = get_state_from_digest_object(digestBase_obj, T_INT); |
| stubAddr = StubRoutines::sha1_implCompress(); |
| stubName = "sha1_implCompress"; |
| break; |
| case vmIntrinsics::_sha2_implCompress: |
| assert(UseSHA256Intrinsics, "need SHA256 instruction support"); |
| state = get_state_from_digest_object(digestBase_obj, T_INT); |
| stubAddr = StubRoutines::sha256_implCompress(); |
| stubName = "sha256_implCompress"; |
| break; |
| case vmIntrinsics::_sha5_implCompress: |
| assert(UseSHA512Intrinsics, "need SHA512 instruction support"); |
| state = get_state_from_digest_object(digestBase_obj, T_LONG); |
| stubAddr = StubRoutines::sha512_implCompress(); |
| stubName = "sha512_implCompress"; |
| break; |
| case vmIntrinsics::_sha3_implCompress: |
| assert(UseSHA3Intrinsics, "need SHA3 instruction support"); |
| state = get_state_from_digest_object(digestBase_obj, T_BYTE); |
| stubAddr = StubRoutines::sha3_implCompress(); |
| stubName = "sha3_implCompress"; |
| block_size = get_block_size_from_digest_object(digestBase_obj); |
| if (block_size == nullptr) return false; |
| break; |
| default: |
| fatal_unexpected_iid(id); |
| return false; |
| } |
| if (state == nullptr) return false; |
| |
| assert(stubAddr != nullptr, "Stub %s is not generated", stubName); |
| if (stubAddr == nullptr) return false; |
| |
| // Call the stub. |
| Node* call; |
| if (block_size == nullptr) { |
| call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(false), |
| stubAddr, stubName, TypePtr::BOTTOM, |
| src_start, state); |
| } else { |
| call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(true), |
| stubAddr, stubName, TypePtr::BOTTOM, |
| src_start, state, block_size); |
| } |
| |
| return true; |
| } |
| |
| //------------------------------inline_digestBase_implCompressMB----------------------- |
| // |
| // Calculate MD5/SHA/SHA2/SHA5/SHA3 for multi-block byte[] array. |
| // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) |
| // |
| bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) { |
| assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics, |
| "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support"); |
| assert((uint)predicate < 5, "sanity"); |
| assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters"); |
| |
| Node* digestBase_obj = argument(0); // The receiver was checked for null already. |
| Node* src = argument(1); // byte[] array |
| Node* ofs = argument(2); // type int |
| Node* limit = argument(3); // type int |
| |
| const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); |
| if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { |
| // failed array check |
| return false; |
| } |
| // Figure out the size and type of the elements we will be copying. |
| BasicType src_elem = src_type->elem()->array_element_basic_type(); |
| if (src_elem != T_BYTE) { |
| return false; |
| } |
| // 'src_start' points to src array + offset |
| src = must_be_not_null(src, false); |
| Node* src_start = array_element_address(src, ofs, src_elem); |
| |
| const char* klass_digestBase_name = nullptr; |
| const char* stub_name = nullptr; |
| address stub_addr = nullptr; |
| BasicType elem_type = T_INT; |
| |
| switch (predicate) { |
| case 0: |
| if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_md5_implCompress)) { |
| klass_digestBase_name = "sun/security/provider/MD5"; |
| stub_name = "md5_implCompressMB"; |
| stub_addr = StubRoutines::md5_implCompressMB(); |
| } |
| break; |
| case 1: |
| if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha_implCompress)) { |
| klass_digestBase_name = "sun/security/provider/SHA"; |
| stub_name = "sha1_implCompressMB"; |
| stub_addr = StubRoutines::sha1_implCompressMB(); |
| } |
| break; |
| case 2: |
| if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha2_implCompress)) { |
| klass_digestBase_name = "sun/security/provider/SHA2"; |
| stub_name = "sha256_implCompressMB"; |
| stub_addr = StubRoutines::sha256_implCompressMB(); |
| } |
| break; |
| case 3: |
| if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha5_implCompress)) { |
| klass_digestBase_name = "sun/security/provider/SHA5"; |
| stub_name = "sha512_implCompressMB"; |
| stub_addr = StubRoutines::sha512_implCompressMB(); |
| elem_type = T_LONG; |
| } |
| break; |
| case 4: |
| if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha3_implCompress)) { |
| klass_digestBase_name = "sun/security/provider/SHA3"; |
| stub_name = "sha3_implCompressMB"; |
| stub_addr = StubRoutines::sha3_implCompressMB(); |
| elem_type = T_BYTE; |
| } |
| break; |
| default: |
| fatal("unknown DigestBase intrinsic predicate: %d", predicate); |
| } |
| if (klass_digestBase_name != nullptr) { |
| assert(stub_addr != nullptr, "Stub is generated"); |
| if (stub_addr == nullptr) return false; |
| |
| // get DigestBase klass to lookup for SHA klass |
| const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr(); |
| assert(tinst != nullptr, "digestBase_obj is not instance???"); |
| assert(tinst->is_loaded(), "DigestBase is not loaded"); |
| |
| ciKlass* klass_digestBase = tinst->instance_klass()->find_klass(ciSymbol::make(klass_digestBase_name)); |
| assert(klass_digestBase->is_loaded(), "predicate checks that this class is loaded"); |
| ciInstanceKlass* instklass_digestBase = klass_digestBase->as_instance_klass(); |
| return inline_digestBase_implCompressMB(digestBase_obj, instklass_digestBase, elem_type, stub_addr, stub_name, src_start, ofs, limit); |
| } |
| return false; |
| } |
| |
| //------------------------------inline_digestBase_implCompressMB----------------------- |
| bool LibraryCallKit::inline_digestBase_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_digestBase, |
| BasicType elem_type, address stubAddr, const char *stubName, |
| Node* src_start, Node* ofs, Node* limit) { |
| const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_digestBase); |
| const TypeOopPtr* xtype = aklass->cast_to_exactness(false)->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); |
| Node* digest_obj = new CheckCastPPNode(control(), digestBase_obj, xtype); |
| digest_obj = _gvn.transform(digest_obj); |
| |
| Node* state = get_state_from_digest_object(digest_obj, elem_type); |
| if (state == nullptr) return false; |
| |
| Node* block_size = nullptr; |
| if (strcmp("sha3_implCompressMB", stubName) == 0) { |
| block_size = get_block_size_from_digest_object(digest_obj); |
| if (block_size == nullptr) return false; |
| } |
| |
| // Call the stub. |
| Node* call; |
| if (block_size == nullptr) { |
| call = make_runtime_call(RC_LEAF|RC_NO_FP, |
| OptoRuntime::digestBase_implCompressMB_Type(false), |
| stubAddr, stubName, TypePtr::BOTTOM, |
| src_start, state, ofs, limit); |
| } else { |
| call = make_runtime_call(RC_LEAF|RC_NO_FP, |
| OptoRuntime::digestBase_implCompressMB_Type(true), |
| stubAddr, stubName, TypePtr::BOTTOM, |
| src_start, state, block_size, ofs, limit); |
| } |
| |
| // return ofs (int) |
| Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); |
| set_result(result); |
| |
| return true; |
| } |
| |
| //------------------------------inline_galoisCounterMode_AESCrypt----------------------- |
| bool LibraryCallKit::inline_galoisCounterMode_AESCrypt() { |
| assert(UseAES, "need AES instruction support"); |
| address stubAddr = nullptr; |
| const char *stubName = nullptr; |
| stubAddr = StubRoutines::galoisCounterMode_AESCrypt(); |
| stubName = "galoisCounterMode_AESCrypt"; |
| |
| if (stubAddr == nullptr) return false; |
| |
| Node* in = argument(0); |
| Node* inOfs = argument(1); |
| Node* len = argument(2); |
| Node* ct = argument(3); |
| Node* ctOfs = argument(4); |
| Node* out = argument(5); |
| Node* outOfs = argument(6); |
| Node* gctr_object = argument(7); |
| Node* ghash_object = argument(8); |
| |
| // (1) in, ct and out are arrays. |
| const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr(); |
| const TypeAryPtr* ct_type = ct->Value(&_gvn)->isa_aryptr(); |
| const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr(); |
| assert( in_type != nullptr && in_type->elem() != Type::BOTTOM && |
| ct_type != nullptr && ct_type->elem() != Type::BOTTOM && |
| out_type != nullptr && out_type->elem() != Type::BOTTOM, "args are strange"); |
| |
| // checks are the responsibility of the caller |
| Node* in_start = in; |
| Node* ct_start = ct; |
| Node* out_start = out; |
| if (inOfs != nullptr || ctOfs != nullptr || outOfs != nullptr) { |
| assert(inOfs != nullptr && ctOfs != nullptr && outOfs != nullptr, ""); |
| in_start = array_element_address(in, inOfs, T_BYTE); |
| ct_start = array_element_address(ct, ctOfs, T_BYTE); |
| out_start = array_element_address(out, outOfs, T_BYTE); |
| } |
| |
| // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object |
| // (because of the predicated logic executed earlier). |
| // so we cast it here safely. |
| // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java |
| Node* embeddedCipherObj = load_field_from_object(gctr_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); |
| Node* counter = load_field_from_object(gctr_object, "counter", "[B"); |
| Node* subkeyHtbl = load_field_from_object(ghash_object, "subkeyHtbl", "[J"); |
| Node* state = load_field_from_object(ghash_object, "state", "[J"); |
| |
| if (embeddedCipherObj == nullptr || counter == nullptr || subkeyHtbl == nullptr || state == nullptr) { |
| return false; |
| } |
| // cast it to what we know it will be at runtime |
| const TypeInstPtr* tinst = _gvn.type(gctr_object)->isa_instptr(); |
| assert(tinst != nullptr, "GCTR obj is null"); |
| assert(tinst->is_loaded(), "GCTR obj is not loaded"); |
| ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); |
| assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); |
| ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); |
| const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); |
| const TypeOopPtr* xtype = aklass->as_instance_type(); |
| Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); |
| aescrypt_object = _gvn.transform(aescrypt_object); |
| // we need to get the start of the aescrypt_object's expanded key array |
| Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); |
| if (k_start == nullptr) return false; |
| // similarly, get the start address of the r vector |
| Node* cnt_start = array_element_address(counter, intcon(0), T_BYTE); |
| Node* state_start = array_element_address(state, intcon(0), T_LONG); |
| Node* subkeyHtbl_start = array_element_address(subkeyHtbl, intcon(0), T_LONG); |
| |
| |
| // Call the stub, passing params |
| Node* gcmCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, |
| OptoRuntime::galoisCounterMode_aescrypt_Type(), |
| stubAddr, stubName, TypePtr::BOTTOM, |
| in_start, len, ct_start, out_start, k_start, state_start, subkeyHtbl_start, cnt_start); |
| |
| // return cipher length (int) |
| Node* retvalue = _gvn.transform(new ProjNode(gcmCrypt, TypeFunc::Parms)); |
| set_result(retvalue); |
| |
| return true; |
| } |
| |
| //----------------------------inline_galoisCounterMode_AESCrypt_predicate---------------------------- |
| // Return node representing slow path of predicate check. |
| // the pseudo code we want to emulate with this predicate is: |
| // for encryption: |
| // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath |
| // for decryption: |
| // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath |
| // note cipher==plain is more conservative than the original java code but that's OK |
| // |
| |
| Node* LibraryCallKit::inline_galoisCounterMode_AESCrypt_predicate() { |
| // The receiver was checked for null already. |
| Node* objGCTR = argument(7); |
| // Load embeddedCipher field of GCTR object. |
| Node* embeddedCipherObj = load_field_from_object(objGCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); |
| assert(embeddedCipherObj != nullptr, "embeddedCipherObj is null"); |
| |
| // get AESCrypt klass for instanceOf check |
| // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point |
| // will have same classloader as CipherBlockChaining object |
| const TypeInstPtr* tinst = _gvn.type(objGCTR)->isa_instptr(); |
| assert(tinst != nullptr, "GCTR obj is null"); |
| assert(tinst->is_loaded(), "GCTR obj is not loaded"); |
| |
| // we want to do an instanceof comparison against the AESCrypt class |
| ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); |
| if (!klass_AESCrypt->is_loaded()) { |
| // if AESCrypt is not even loaded, we never take the intrinsic fast path |
| Node* ctrl = control(); |
| set_control(top()); // no regular fast path |
| return ctrl; |
| } |
| |
| ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); |
| Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); |
| Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); |
| Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); |
| Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); |
| |
| return instof_false; // even if it is null |
| } |
| |
| //------------------------------get_state_from_digest_object----------------------- |
| Node * LibraryCallKit::get_state_from_digest_object(Node *digest_object, BasicType elem_type) { |
| const char* state_type; |
| switch (elem_type) { |
| case T_BYTE: state_type = "[B"; break; |
| case T_INT: state_type = "[I"; break; |
| case T_LONG: state_type = "[J"; break; |
| default: ShouldNotReachHere(); |
| } |
| Node* digest_state = load_field_from_object(digest_object, "state", state_type); |
| assert (digest_state != nullptr, "wrong version of sun.security.provider.MD5/SHA/SHA2/SHA5/SHA3"); |
| if (digest_state == nullptr) return (Node *) nullptr; |
| |
| // now have the array, need to get the start address of the state array |
| Node* state = array_element_address(digest_state, intcon(0), elem_type); |
| return state; |
| } |
| |
| //------------------------------get_block_size_from_sha3_object---------------------------------- |
| Node * LibraryCallKit::get_block_size_from_digest_object(Node *digest_object) { |
| Node* block_size = load_field_from_object(digest_object, "blockSize", "I"); |
| assert (block_size != nullptr, "sanity"); |
| return block_size; |
| } |
| |
| //----------------------------inline_digestBase_implCompressMB_predicate---------------------------- |
| // Return node representing slow path of predicate check. |
| // the pseudo code we want to emulate with this predicate is: |
| // if (digestBaseObj instanceof MD5/SHA/SHA2/SHA5/SHA3) do_intrinsic, else do_javapath |
| // |
| Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) { |
| assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics, |
| "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support"); |
| assert((uint)predicate < 5, "sanity"); |
| |
| // The receiver was checked for null already. |
| Node* digestBaseObj = argument(0); |
| |
| // get DigestBase klass for instanceOf check |
| const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr(); |
| assert(tinst != nullptr, "digestBaseObj is null"); |
| assert(tinst->is_loaded(), "DigestBase is not loaded"); |
| |
| const char* klass_name = nullptr; |
| switch (predicate) { |
| case 0: |
| if (UseMD5Intrinsics) { |
| // we want to do an instanceof comparison against the MD5 class |
| klass_name = "sun/security/provider/MD5"; |
| } |
| break; |
| case 1: |
| if (UseSHA1Intrinsics) { |
| // we want to do an instanceof comparison against the SHA class |
| klass_name = "sun/security/provider/SHA"; |
| } |
| break; |
| case 2: |
| if (UseSHA256Intrinsics) { |
| // we want to do an instanceof comparison against the SHA2 class |
| klass_name = "sun/security/provider/SHA2"; |
| } |
| break; |
| case 3: |
| if (UseSHA512Intrinsics) { |
| // we want to do an instanceof comparison against the SHA5 class |
| klass_name = "sun/security/provider/SHA5"; |
| } |
| break; |
| case 4: |
| if (UseSHA3Intrinsics) { |
| // we want to do an instanceof comparison against the SHA3 class |
| klass_name = "sun/security/provider/SHA3"; |
| } |
| break; |
| default: |
| fatal("unknown SHA intrinsic predicate: %d", predicate); |
| } |
| |
| ciKlass* klass = nullptr; |
| if (klass_name != nullptr) { |
| klass = tinst->instance_klass()->find_klass(ciSymbol::make(klass_name)); |
| } |
| if ((klass == nullptr) || !klass->is_loaded()) { |
| // if none of MD5/SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path |
| Node* ctrl = control(); |
| set_control(top()); // no intrinsic path |
| return ctrl; |
| } |
| ciInstanceKlass* instklass = klass->as_instance_klass(); |
| |
| Node* instof = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass))); |
| Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); |
| Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); |
| Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); |
| |
| return instof_false; // even if it is null |
| } |
| |
| //-------------inline_fma----------------------------------- |
| bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) { |
| Node *a = nullptr; |
| Node *b = nullptr; |
| Node *c = nullptr; |
| Node* result = nullptr; |
| switch (id) { |
| case vmIntrinsics::_fmaD: |
| assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each."); |
| // no receiver since it is static method |
| a = round_double_node(argument(0)); |
| b = round_double_node(argument(2)); |
| c = round_double_node(argument(4)); |
| result = _gvn.transform(new FmaDNode(control(), a, b, c)); |
| break; |
| case vmIntrinsics::_fmaF: |
| assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each."); |
| a = argument(0); |
| b = argument(1); |
| c = argument(2); |
| result = _gvn.transform(new FmaFNode(control(), a, b, c)); |
| break; |
| default: |
| fatal_unexpected_iid(id); break; |
| } |
| set_result(result); |
| return true; |
| } |
| |
| bool LibraryCallKit::inline_character_compare(vmIntrinsics::ID id) { |
| // argument(0) is receiver |
| Node* codePoint = argument(1); |
| Node* n = nullptr; |
| |
| switch (id) { |
| case vmIntrinsics::_isDigit : |
| n = new DigitNode(control(), codePoint); |
| break; |
| case vmIntrinsics::_isLowerCase : |
| n = new LowerCaseNode(control(), codePoint); |
| break; |
| case vmIntrinsics::_isUpperCase : |
| n = new UpperCaseNode(control(), codePoint); |
| break; |
| case vmIntrinsics::_isWhitespace : |
| n = new WhitespaceNode(control(), codePoint); |
| break; |
| default: |
| fatal_unexpected_iid(id); |
| } |
| |
| set_result(_gvn.transform(n)); |
| return true; |
| } |
| |
| //------------------------------inline_fp_min_max------------------------------ |
| bool LibraryCallKit::inline_fp_min_max(vmIntrinsics::ID id) { |
| /* DISABLED BECAUSE METHOD DATA ISN'T COLLECTED PER CALL-SITE, SEE JDK-8015416. |
| |
| // The intrinsic should be used only when the API branches aren't predictable, |
| // the last one performing the most important comparison. The following heuristic |
| // uses the branch statistics to eventually bail out if necessary. |
| |
| ciMethodData *md = callee()->method_data(); |
| |
| if ( md != nullptr && md->is_mature() && md->invocation_count() > 0 ) { |
| ciCallProfile cp = caller()->call_profile_at_bci(bci()); |
| |
| if ( ((double)cp.count()) / ((double)md->invocation_count()) < 0.8 ) { |
| // Bail out if the call-site didn't contribute enough to the statistics. |
| return false; |
| } |
| |
| uint taken = 0, not_taken = 0; |
| |
| for (ciProfileData *p = md->first_data(); md->is_valid(p); p = md->next_data(p)) { |
| if (p->is_BranchData()) { |
| taken = ((ciBranchData*)p)->taken(); |
| not_taken = ((ciBranchData*)p)->not_taken(); |
| } |
| } |
| |
| double balance = (((double)taken) - ((double)not_taken)) / ((double)md->invocation_count()); |
| balance = balance < 0 ? -balance : balance; |
| if ( balance > 0.2 ) { |
| // Bail out if the most important branch is predictable enough. |
| return false; |
| } |
| } |
| */ |
| |
| Node *a = nullptr; |
| Node *b = nullptr; |
| Node *n = nullptr; |
| switch (id) { |
| case vmIntrinsics::_maxF: |
| case vmIntrinsics::_minF: |
| case vmIntrinsics::_maxF_strict: |
| case vmIntrinsics::_minF_strict: |
| assert(callee()->signature()->size() == 2, "minF/maxF has 2 parameters of size 1 each."); |
| a = argument(0); |
| b = argument(1); |
| break; |
| case vmIntrinsics::_maxD: |
| case vmIntrinsics::_minD: |
| case vmIntrinsics::_maxD_strict: |
| case vmIntrinsics::_minD_strict: |
| assert(callee()->signature()->size() == 4, "minD/maxD has 2 parameters of size 2 each."); |
| a = round_double_node(argument(0)); |
| b = round_double_node(argument(2)); |
| break; |
| default: |
| fatal_unexpected_iid(id); |
| break; |
| } |
| switch (id) { |
| case vmIntrinsics::_maxF: |
| case vmIntrinsics::_maxF_strict: |
| n = new MaxFNode(a, b); |
| break; |
| case vmIntrinsics::_minF: |
| case vmIntrinsics::_minF_strict: |
| n = new MinFNode(a, b); |
| break; |
| case vmIntrinsics::_maxD: |
| case vmIntrinsics::_maxD_strict: |
| n = new MaxDNode(a, b); |
| break; |
| case vmIntrinsics::_minD: |
| case vmIntrinsics::_minD_strict: |
| n = new MinDNode(a, b); |
| break; |
| default: |
| fatal_unexpected_iid(id); |
| break; |
| } |
| set_result(_gvn.transform(n)); |
| return true; |
| } |
| |
| bool LibraryCallKit::inline_profileBoolean() { |
| Node* counts = argument(1); |
| const TypeAryPtr* ary = nullptr; |
| ciArray* aobj = nullptr; |
| if (counts->is_Con() |
| && (ary = counts->bottom_type()->isa_aryptr()) != nullptr |
| && (aobj = ary->const_oop()->as_array()) != nullptr |
| && (aobj->length() == 2)) { |
| // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively. |
| jint false_cnt = aobj->element_value(0).as_int(); |
| jint true_cnt = aobj->element_value(1).as_int(); |
| |
| if (C->log() != nullptr) { |
| C->log()->elem("observe source='profileBoolean' false='%d' true='%d'", |
| false_cnt, true_cnt); |
| } |
| |
| if (false_cnt + true_cnt == 0) { |
| // According to profile, never executed. |
| uncommon_trap_exact(Deoptimization::Reason_intrinsic, |
| Deoptimization::Action_reinterpret); |
| return true; |
| } |
| |
| // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt) |
| // is a number of each value occurrences. |
| Node* result = argument(0); |
| if (false_cnt == 0 || true_cnt == 0) { |
| // According to profile, one value has been never seen. |
| int expected_val = (false_cnt == 0) ? 1 : 0; |
| |
| Node* cmp = _gvn.transform(new CmpINode(result, intcon(expected_val))); |
| Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); |
| |
| IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN); |
| Node* fast_path = _gvn.transform(new IfTrueNode(check)); |
| Node* slow_path = _gvn.transform(new IfFalseNode(check)); |
| |
| { // Slow path: uncommon trap for never seen value and then reexecute |
| // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows |
| // the value has been seen at least once. |
| PreserveJVMState pjvms(this); |
| PreserveReexecuteState preexecs(this); |
| jvms()->set_should_reexecute(true); |
| |
| set_control(slow_path); |
| set_i_o(i_o()); |
| |
| uncommon_trap_exact(Deoptimization::Reason_intrinsic, |
| Deoptimization::Action_reinterpret); |
| } |
| // The guard for never seen value enables sharpening of the result and |
| // returning a constant. It allows to eliminate branches on the same value |
| // later on. |
| set_control(fast_path); |
| result = intcon(expected_val); |
| } |
| // Stop profiling. |
| // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode. |
| // By replacing method body with profile data (represented as ProfileBooleanNode |
| // on IR level) we effectively disable profiling. |
| // It enables full speed execution once optimized code is generated. |
| Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt)); |
| C->record_for_igvn(profile); |
| set_result(profile); |
| return true; |
| } else { |
| // Continue profiling. |
| // Profile data isn't available at the moment. So, execute method's bytecode version. |
| // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod |
| // is compiled and counters aren't available since corresponding MethodHandle |
| // isn't a compile-time constant. |
| return false; |
| } |
| } |
| |
| bool LibraryCallKit::inline_isCompileConstant() { |
| Node* n = argument(0); |
| set_result(n->is_Con() ? intcon(1) : intcon(0)); |
| return true; |
| } |
| |
| //------------------------------- inline_getObjectSize -------------------------------------- |
| // |
| // Calculate the runtime size of the object/array. |
| // native long sun.instrument.InstrumentationImpl.getObjectSize0(long nativeAgent, Object objectToSize); |
| // |
| bool LibraryCallKit::inline_getObjectSize() { |
| Node* obj = argument(3); |
| Node* klass_node = load_object_klass(obj); |
| |
| jint layout_con = Klass::_lh_neutral_value; |
| Node* layout_val = get_layout_helper(klass_node, layout_con); |
| int layout_is_con = (layout_val == nullptr); |
| |
| if (layout_is_con) { |
| // Layout helper is constant, can figure out things at compile time. |
| |
| if (Klass::layout_helper_is_instance(layout_con)) { |
| // Instance case: layout_con contains the size itself. |
| Node *size = longcon(Klass::layout_helper_size_in_bytes(layout_con)); |
| set_result(size); |
| } else { |
| // Array case: size is round(header + element_size*arraylength). |
| // Since arraylength is different for every array instance, we have to |
| // compute the whole thing at runtime. |
| |
| Node* arr_length = load_array_length(obj); |
| |
| int round_mask = MinObjAlignmentInBytes - 1; |
| int hsize = Klass::layout_helper_header_size(layout_con); |
| int eshift = Klass::layout_helper_log2_element_size(layout_con); |
| |
| if ((round_mask & ~right_n_bits(eshift)) == 0) { |
| round_mask = 0; // strength-reduce it if it goes away completely |
| } |
| assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded"); |
| Node* header_size = intcon(hsize + round_mask); |
| |
| Node* lengthx = ConvI2X(arr_length); |
| Node* headerx = ConvI2X(header_size); |
| |
| Node* abody = lengthx; |
| if (eshift != 0) { |
| abody = _gvn.transform(new LShiftXNode(lengthx, intcon(eshift))); |
| } |
| Node* size = _gvn.transform( new AddXNode(headerx, abody) ); |
| if (round_mask != 0) { |
| size = _gvn.transform( new AndXNode(size, MakeConX(~round_mask)) ); |
| } |
| size = ConvX2L(size); |
| set_result(size); |
| } |
| } else { |
| // Layout helper is not constant, need to test for array-ness at runtime. |
| |
| enum { _instance_path = 1, _array_path, PATH_LIMIT }; |
| RegionNode* result_reg = new RegionNode(PATH_LIMIT); |
| PhiNode* result_val = new PhiNode(result_reg, TypeLong::LONG); |
| record_for_igvn(result_reg); |
| |
| Node* array_ctl = generate_array_guard(klass_node, nullptr); |
| if (array_ctl != nullptr) { |
| // Array case: size is round(header + element_size*arraylength). |
| // Since arraylength is different for every array instance, we have to |
| // compute the whole thing at runtime. |
| |
| PreserveJVMState pjvms(this); |
| set_control(array_ctl); |
| Node* arr_length = load_array_length(obj); |
| |
| int round_mask = MinObjAlignmentInBytes - 1; |
| Node* mask = intcon(round_mask); |
| |
| Node* hss = intcon(Klass::_lh_header_size_shift); |
| Node* hsm = intcon(Klass::_lh_header_size_mask); |
| Node* header_size = _gvn.transform(new URShiftINode(layout_val, hss)); |
| header_size = _gvn.transform(new AndINode(header_size, hsm)); |
| header_size = _gvn.transform(new AddINode(header_size, mask)); |
| |
| // There is no need to mask or shift this value. |
| // The semantics of LShiftINode include an implicit mask to 0x1F. |
| assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); |
| Node* elem_shift = layout_val; |
| |
| Node* lengthx = ConvI2X(arr_length); |
| Node* headerx = ConvI2X(header_size); |
| |
| Node* abody = _gvn.transform(new LShiftXNode(lengthx, elem_shift)); |
| Node* size = _gvn.transform(new AddXNode(headerx, abody)); |
| if (round_mask != 0) { |
| size = _gvn.transform(new AndXNode(size, MakeConX(~round_mask))); |
| } |
| size = ConvX2L(size); |
| |
| result_reg->init_req(_array_path, control()); |
| result_val->init_req(_array_path, size); |
| } |
| |
| if (!stopped()) { |
| // Instance case: the layout helper gives us instance size almost directly, |
| // but we need to mask out the _lh_instance_slow_path_bit. |
| Node* size = ConvI2X(layout_val); |
| assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); |
| Node* mask = MakeConX(~(intptr_t) right_n_bits(LogBytesPerLong)); |
| size = _gvn.transform(new AndXNode(size, mask)); |
| size = ConvX2L(size); |
| |
| result_reg->init_req(_instance_path, control()); |
| result_val->init_req(_instance_path, size); |
| } |
| |
| set_result(result_reg, result_val); |
| } |
| |
| return true; |
| } |
| |
| //------------------------------- inline_blackhole -------------------------------------- |
| // |
| // Make sure all arguments to this node are alive. |
| // This matches methods that were requested to be blackholed through compile commands. |
| // |
| bool LibraryCallKit::inline_blackhole() { |
| assert(callee()->is_static(), "Should have been checked before: only static methods here"); |
| assert(callee()->is_empty(), "Should have been checked before: only empty methods here"); |
| assert(callee()->holder()->is_loaded(), "Should have been checked before: only methods for loaded classes here"); |
| |
| // Blackhole node pinches only the control, not memory. This allows |
| // the blackhole to be pinned in the loop that computes blackholed |
| // values, but have no other side effects, like breaking the optimizations |
| // across the blackhole. |
| |
| Node* bh = _gvn.transform(new BlackholeNode(control())); |
| set_control(_gvn.transform(new ProjNode(bh, TypeFunc::Control))); |
| |
| // Bind call arguments as blackhole arguments to keep them alive |
| uint nargs = callee()->arg_size(); |
| for (uint i = 0; i < nargs; i++) { |
| bh->add_req(argument(i)); |
| } |
| |
| return true; |
| } |