| /* |
| * Copyright (c) 1998, 2023, Oracle and/or its affiliates. All rights reserved. |
| * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| * |
| * This code is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License version 2 only, as |
| * published by the Free Software Foundation. |
| * |
| * This code is distributed in the hope that it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| * version 2 for more details (a copy is included in the LICENSE file that |
| * accompanied this code). |
| * |
| * You should have received a copy of the GNU General Public License version |
| * 2 along with this work; if not, write to the Free Software Foundation, |
| * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| * |
| * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| * or visit www.oracle.com if you need additional information or have any |
| * questions. |
| * |
| */ |
| |
| #include "precompiled.hpp" |
| #include "ci/ciMethodData.hpp" |
| #include "compiler/compileLog.hpp" |
| #include "gc/shared/barrierSet.hpp" |
| #include "gc/shared/c2/barrierSetC2.hpp" |
| #include "libadt/vectset.hpp" |
| #include "memory/allocation.inline.hpp" |
| #include "memory/resourceArea.hpp" |
| #include "opto/addnode.hpp" |
| #include "opto/arraycopynode.hpp" |
| #include "opto/callnode.hpp" |
| #include "opto/castnode.hpp" |
| #include "opto/connode.hpp" |
| #include "opto/convertnode.hpp" |
| #include "opto/divnode.hpp" |
| #include "opto/idealGraphPrinter.hpp" |
| #include "opto/loopnode.hpp" |
| #include "opto/movenode.hpp" |
| #include "opto/mulnode.hpp" |
| #include "opto/opaquenode.hpp" |
| #include "opto/rootnode.hpp" |
| #include "opto/runtime.hpp" |
| #include "opto/superword.hpp" |
| #include "runtime/sharedRuntime.hpp" |
| #include "utilities/powerOfTwo.hpp" |
| |
| //============================================================================= |
| //--------------------------is_cloop_ind_var----------------------------------- |
| // Determine if a node is a counted loop induction variable. |
| // NOTE: The method is declared in "node.hpp". |
| bool Node::is_cloop_ind_var() const { |
| return (is_Phi() && |
| as_Phi()->region()->is_CountedLoop() && |
| as_Phi()->region()->as_CountedLoop()->phi() == this); |
| } |
| |
| //============================================================================= |
| //------------------------------dump_spec-------------------------------------- |
| // Dump special per-node info |
| #ifndef PRODUCT |
| void LoopNode::dump_spec(outputStream *st) const { |
| RegionNode::dump_spec(st); |
| if (is_inner_loop()) st->print( "inner " ); |
| if (is_partial_peel_loop()) st->print( "partial_peel " ); |
| if (partial_peel_has_failed()) st->print( "partial_peel_failed " ); |
| } |
| #endif |
| |
| //------------------------------is_valid_counted_loop------------------------- |
| bool LoopNode::is_valid_counted_loop(BasicType bt) const { |
| if (is_BaseCountedLoop() && as_BaseCountedLoop()->bt() == bt) { |
| BaseCountedLoopNode* l = as_BaseCountedLoop(); |
| BaseCountedLoopEndNode* le = l->loopexit_or_null(); |
| if (le != nullptr && |
| le->proj_out_or_null(1 /* true */) == l->in(LoopNode::LoopBackControl)) { |
| Node* phi = l->phi(); |
| Node* exit = le->proj_out_or_null(0 /* false */); |
| if (exit != nullptr && exit->Opcode() == Op_IfFalse && |
| phi != nullptr && phi->is_Phi() && |
| phi->in(LoopNode::LoopBackControl) == l->incr() && |
| le->loopnode() == l && le->stride_is_con()) { |
| return true; |
| } |
| } |
| } |
| return false; |
| } |
| |
| //------------------------------get_early_ctrl--------------------------------- |
| // Compute earliest legal control |
| Node *PhaseIdealLoop::get_early_ctrl( Node *n ) { |
| assert( !n->is_Phi() && !n->is_CFG(), "this code only handles data nodes" ); |
| uint i; |
| Node *early; |
| if (n->in(0) && !n->is_expensive()) { |
| early = n->in(0); |
| if (!early->is_CFG()) // Might be a non-CFG multi-def |
| early = get_ctrl(early); // So treat input as a straight data input |
| i = 1; |
| } else { |
| early = get_ctrl(n->in(1)); |
| i = 2; |
| } |
| uint e_d = dom_depth(early); |
| assert( early, "" ); |
| for (; i < n->req(); i++) { |
| Node *cin = get_ctrl(n->in(i)); |
| assert( cin, "" ); |
| // Keep deepest dominator depth |
| uint c_d = dom_depth(cin); |
| if (c_d > e_d) { // Deeper guy? |
| early = cin; // Keep deepest found so far |
| e_d = c_d; |
| } else if (c_d == e_d && // Same depth? |
| early != cin) { // If not equal, must use slower algorithm |
| // If same depth but not equal, one _must_ dominate the other |
| // and we want the deeper (i.e., dominated) guy. |
| Node *n1 = early; |
| Node *n2 = cin; |
| while (1) { |
| n1 = idom(n1); // Walk up until break cycle |
| n2 = idom(n2); |
| if (n1 == cin || // Walked early up to cin |
| dom_depth(n2) < c_d) |
| break; // early is deeper; keep him |
| if (n2 == early || // Walked cin up to early |
| dom_depth(n1) < c_d) { |
| early = cin; // cin is deeper; keep him |
| break; |
| } |
| } |
| e_d = dom_depth(early); // Reset depth register cache |
| } |
| } |
| |
| // Return earliest legal location |
| assert(early == find_non_split_ctrl(early), "unexpected early control"); |
| |
| if (n->is_expensive() && !_verify_only && !_verify_me) { |
| assert(n->in(0), "should have control input"); |
| early = get_early_ctrl_for_expensive(n, early); |
| } |
| |
| return early; |
| } |
| |
| //------------------------------get_early_ctrl_for_expensive--------------------------------- |
| // Move node up the dominator tree as high as legal while still beneficial |
| Node *PhaseIdealLoop::get_early_ctrl_for_expensive(Node *n, Node* earliest) { |
| assert(n->in(0) && n->is_expensive(), "expensive node with control input here"); |
| assert(OptimizeExpensiveOps, "optimization off?"); |
| |
| Node* ctl = n->in(0); |
| assert(ctl->is_CFG(), "expensive input 0 must be cfg"); |
| uint min_dom_depth = dom_depth(earliest); |
| #ifdef ASSERT |
| if (!is_dominator(ctl, earliest) && !is_dominator(earliest, ctl)) { |
| dump_bad_graph("Bad graph detected in get_early_ctrl_for_expensive", n, earliest, ctl); |
| assert(false, "Bad graph detected in get_early_ctrl_for_expensive"); |
| } |
| #endif |
| if (dom_depth(ctl) < min_dom_depth) { |
| return earliest; |
| } |
| |
| while (1) { |
| Node *next = ctl; |
| // Moving the node out of a loop on the projection of a If |
| // confuses loop predication. So once we hit a Loop in a If branch |
| // that doesn't branch to an UNC, we stop. The code that process |
| // expensive nodes will notice the loop and skip over it to try to |
| // move the node further up. |
| if (ctl->is_CountedLoop() && ctl->in(1) != nullptr && ctl->in(1)->in(0) != nullptr && ctl->in(1)->in(0)->is_If()) { |
| if (!ctl->in(1)->as_Proj()->is_uncommon_trap_if_pattern(Deoptimization::Reason_none)) { |
| break; |
| } |
| next = idom(ctl->in(1)->in(0)); |
| } else if (ctl->is_Proj()) { |
| // We only move it up along a projection if the projection is |
| // the single control projection for its parent: same code path, |
| // if it's a If with UNC or fallthrough of a call. |
| Node* parent_ctl = ctl->in(0); |
| if (parent_ctl == nullptr) { |
| break; |
| } else if (parent_ctl->is_CountedLoopEnd() && parent_ctl->as_CountedLoopEnd()->loopnode() != nullptr) { |
| next = parent_ctl->as_CountedLoopEnd()->loopnode()->init_control(); |
| } else if (parent_ctl->is_If()) { |
| if (!ctl->as_Proj()->is_uncommon_trap_if_pattern(Deoptimization::Reason_none)) { |
| break; |
| } |
| assert(idom(ctl) == parent_ctl, "strange"); |
| next = idom(parent_ctl); |
| } else if (ctl->is_CatchProj()) { |
| if (ctl->as_Proj()->_con != CatchProjNode::fall_through_index) { |
| break; |
| } |
| assert(parent_ctl->in(0)->in(0)->is_Call(), "strange graph"); |
| next = parent_ctl->in(0)->in(0)->in(0); |
| } else { |
| // Check if parent control has a single projection (this |
| // control is the only possible successor of the parent |
| // control). If so, we can try to move the node above the |
| // parent control. |
| int nb_ctl_proj = 0; |
| for (DUIterator_Fast imax, i = parent_ctl->fast_outs(imax); i < imax; i++) { |
| Node *p = parent_ctl->fast_out(i); |
| if (p->is_Proj() && p->is_CFG()) { |
| nb_ctl_proj++; |
| if (nb_ctl_proj > 1) { |
| break; |
| } |
| } |
| } |
| |
| if (nb_ctl_proj > 1) { |
| break; |
| } |
| assert(parent_ctl->is_Start() || parent_ctl->is_MemBar() || parent_ctl->is_Call() || |
| BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(parent_ctl), "unexpected node"); |
| assert(idom(ctl) == parent_ctl, "strange"); |
| next = idom(parent_ctl); |
| } |
| } else { |
| next = idom(ctl); |
| } |
| if (next->is_Root() || next->is_Start() || dom_depth(next) < min_dom_depth) { |
| break; |
| } |
| ctl = next; |
| } |
| |
| if (ctl != n->in(0)) { |
| _igvn.replace_input_of(n, 0, ctl); |
| _igvn.hash_insert(n); |
| } |
| |
| return ctl; |
| } |
| |
| |
| //------------------------------set_early_ctrl--------------------------------- |
| // Set earliest legal control |
| void PhaseIdealLoop::set_early_ctrl(Node* n, bool update_body) { |
| Node *early = get_early_ctrl(n); |
| |
| // Record earliest legal location |
| set_ctrl(n, early); |
| IdealLoopTree *loop = get_loop(early); |
| if (update_body && loop->_child == nullptr) { |
| loop->_body.push(n); |
| } |
| } |
| |
| //------------------------------set_subtree_ctrl------------------------------- |
| // set missing _ctrl entries on new nodes |
| void PhaseIdealLoop::set_subtree_ctrl(Node* n, bool update_body) { |
| // Already set? Get out. |
| if (_loop_or_ctrl[n->_idx]) return; |
| // Recursively set _loop_or_ctrl array to indicate where the Node goes |
| uint i; |
| for (i = 0; i < n->req(); ++i) { |
| Node *m = n->in(i); |
| if (m && m != C->root()) { |
| set_subtree_ctrl(m, update_body); |
| } |
| } |
| |
| // Fixup self |
| set_early_ctrl(n, update_body); |
| } |
| |
| IdealLoopTree* PhaseIdealLoop::insert_outer_loop(IdealLoopTree* loop, LoopNode* outer_l, Node* outer_ift) { |
| IdealLoopTree* outer_ilt = new IdealLoopTree(this, outer_l, outer_ift); |
| IdealLoopTree* parent = loop->_parent; |
| IdealLoopTree* sibling = parent->_child; |
| if (sibling == loop) { |
| parent->_child = outer_ilt; |
| } else { |
| while (sibling->_next != loop) { |
| sibling = sibling->_next; |
| } |
| sibling->_next = outer_ilt; |
| } |
| outer_ilt->_next = loop->_next; |
| outer_ilt->_parent = parent; |
| outer_ilt->_child = loop; |
| outer_ilt->_nest = loop->_nest; |
| loop->_parent = outer_ilt; |
| loop->_next = nullptr; |
| loop->_nest++; |
| assert(loop->_nest <= SHRT_MAX, "sanity"); |
| return outer_ilt; |
| } |
| |
| // Create a skeleton strip mined outer loop: a Loop head before the |
| // inner strip mined loop, a safepoint and an exit condition guarded |
| // by an opaque node after the inner strip mined loop with a backedge |
| // to the loop head. The inner strip mined loop is left as it is. Only |
| // once loop optimizations are over, do we adjust the inner loop exit |
| // condition to limit its number of iterations, set the outer loop |
| // exit condition and add Phis to the outer loop head. Some loop |
| // optimizations that operate on the inner strip mined loop need to be |
| // aware of the outer strip mined loop: loop unswitching needs to |
| // clone the outer loop as well as the inner, unrolling needs to only |
| // clone the inner loop etc. No optimizations need to change the outer |
| // strip mined loop as it is only a skeleton. |
| IdealLoopTree* PhaseIdealLoop::create_outer_strip_mined_loop(BoolNode *test, Node *cmp, Node *init_control, |
| IdealLoopTree* loop, float cl_prob, float le_fcnt, |
| Node*& entry_control, Node*& iffalse) { |
| Node* outer_test = _igvn.intcon(0); |
| set_ctrl(outer_test, C->root()); |
| Node *orig = iffalse; |
| iffalse = iffalse->clone(); |
| _igvn.register_new_node_with_optimizer(iffalse); |
| set_idom(iffalse, idom(orig), dom_depth(orig)); |
| |
| IfNode *outer_le = new OuterStripMinedLoopEndNode(iffalse, outer_test, cl_prob, le_fcnt); |
| Node *outer_ift = new IfTrueNode (outer_le); |
| Node* outer_iff = orig; |
| _igvn.replace_input_of(outer_iff, 0, outer_le); |
| |
| LoopNode *outer_l = new OuterStripMinedLoopNode(C, init_control, outer_ift); |
| entry_control = outer_l; |
| |
| IdealLoopTree* outer_ilt = insert_outer_loop(loop, outer_l, outer_ift); |
| |
| set_loop(iffalse, outer_ilt); |
| // When this code runs, loop bodies have not yet been populated. |
| const bool body_populated = false; |
| register_control(outer_le, outer_ilt, iffalse, body_populated); |
| register_control(outer_ift, outer_ilt, outer_le, body_populated); |
| set_idom(outer_iff, outer_le, dom_depth(outer_le)); |
| _igvn.register_new_node_with_optimizer(outer_l); |
| set_loop(outer_l, outer_ilt); |
| set_idom(outer_l, init_control, dom_depth(init_control)+1); |
| |
| return outer_ilt; |
| } |
| |
| void PhaseIdealLoop::insert_loop_limit_check_predicate(ParsePredicateSuccessProj* loop_limit_check_parse_proj, |
| Node* cmp_limit, Node* bol) { |
| Node* new_predicate_proj = create_new_if_for_predicate(loop_limit_check_parse_proj, nullptr, |
| Deoptimization::Reason_loop_limit_check, |
| Op_If); |
| Node* iff = new_predicate_proj->in(0); |
| assert(iff->Opcode() == Op_If, "bad graph shape"); |
| Node* conv = iff->in(1); |
| assert(conv->Opcode() == Op_Conv2B, "bad graph shape"); |
| Node* opaq = conv->in(1); |
| assert(opaq->Opcode() == Op_Opaque1, "bad graph shape"); |
| cmp_limit = _igvn.register_new_node_with_optimizer(cmp_limit); |
| bol = _igvn.register_new_node_with_optimizer(bol); |
| set_subtree_ctrl(bol, false); |
| _igvn.replace_input_of(iff, 1, bol); |
| |
| #ifndef PRODUCT |
| // report that the loop predication has been actually performed |
| // for this loop |
| if (TraceLoopLimitCheck) { |
| tty->print_cr("Counted Loop Limit Check generated:"); |
| debug_only( bol->dump(2); ) |
| } |
| #endif |
| } |
| |
| Node* PhaseIdealLoop::loop_exit_control(Node* x, IdealLoopTree* loop) { |
| // Counted loop head must be a good RegionNode with only 3 not null |
| // control input edges: Self, Entry, LoopBack. |
| if (x->in(LoopNode::Self) == nullptr || x->req() != 3 || loop->_irreducible) { |
| return nullptr; |
| } |
| Node *init_control = x->in(LoopNode::EntryControl); |
| Node *back_control = x->in(LoopNode::LoopBackControl); |
| if (init_control == nullptr || back_control == nullptr) { // Partially dead |
| return nullptr; |
| } |
| // Must also check for TOP when looking for a dead loop |
| if (init_control->is_top() || back_control->is_top()) { |
| return nullptr; |
| } |
| |
| // Allow funny placement of Safepoint |
| if (back_control->Opcode() == Op_SafePoint) { |
| back_control = back_control->in(TypeFunc::Control); |
| } |
| |
| // Controlling test for loop |
| Node *iftrue = back_control; |
| uint iftrue_op = iftrue->Opcode(); |
| if (iftrue_op != Op_IfTrue && |
| iftrue_op != Op_IfFalse) { |
| // I have a weird back-control. Probably the loop-exit test is in |
| // the middle of the loop and I am looking at some trailing control-flow |
| // merge point. To fix this I would have to partially peel the loop. |
| return nullptr; // Obscure back-control |
| } |
| |
| // Get boolean guarding loop-back test |
| Node *iff = iftrue->in(0); |
| if (get_loop(iff) != loop || !iff->in(1)->is_Bool()) { |
| return nullptr; |
| } |
| return iftrue; |
| } |
| |
| Node* PhaseIdealLoop::loop_exit_test(Node* back_control, IdealLoopTree* loop, Node*& incr, Node*& limit, BoolTest::mask& bt, float& cl_prob) { |
| Node* iftrue = back_control; |
| uint iftrue_op = iftrue->Opcode(); |
| Node* iff = iftrue->in(0); |
| BoolNode* test = iff->in(1)->as_Bool(); |
| bt = test->_test._test; |
| cl_prob = iff->as_If()->_prob; |
| if (iftrue_op == Op_IfFalse) { |
| bt = BoolTest(bt).negate(); |
| cl_prob = 1.0 - cl_prob; |
| } |
| // Get backedge compare |
| Node* cmp = test->in(1); |
| if (!cmp->is_Cmp()) { |
| return nullptr; |
| } |
| |
| // Find the trip-counter increment & limit. Limit must be loop invariant. |
| incr = cmp->in(1); |
| limit = cmp->in(2); |
| |
| // --------- |
| // need 'loop()' test to tell if limit is loop invariant |
| // --------- |
| |
| if (!is_member(loop, get_ctrl(incr))) { // Swapped trip counter and limit? |
| Node* tmp = incr; // Then reverse order into the CmpI |
| incr = limit; |
| limit = tmp; |
| bt = BoolTest(bt).commute(); // And commute the exit test |
| } |
| if (is_member(loop, get_ctrl(limit))) { // Limit must be loop-invariant |
| return nullptr; |
| } |
| if (!is_member(loop, get_ctrl(incr))) { // Trip counter must be loop-variant |
| return nullptr; |
| } |
| return cmp; |
| } |
| |
| Node* PhaseIdealLoop::loop_iv_incr(Node* incr, Node* x, IdealLoopTree* loop, Node*& phi_incr) { |
| if (incr->is_Phi()) { |
| if (incr->as_Phi()->region() != x || incr->req() != 3) { |
| return nullptr; // Not simple trip counter expression |
| } |
| phi_incr = incr; |
| incr = phi_incr->in(LoopNode::LoopBackControl); // Assume incr is on backedge of Phi |
| if (!is_member(loop, get_ctrl(incr))) { // Trip counter must be loop-variant |
| return nullptr; |
| } |
| } |
| return incr; |
| } |
| |
| Node* PhaseIdealLoop::loop_iv_stride(Node* incr, IdealLoopTree* loop, Node*& xphi) { |
| assert(incr->Opcode() == Op_AddI || incr->Opcode() == Op_AddL, "caller resp."); |
| // Get merge point |
| xphi = incr->in(1); |
| Node *stride = incr->in(2); |
| if (!stride->is_Con()) { // Oops, swap these |
| if (!xphi->is_Con()) { // Is the other guy a constant? |
| return nullptr; // Nope, unknown stride, bail out |
| } |
| Node *tmp = xphi; // 'incr' is commutative, so ok to swap |
| xphi = stride; |
| stride = tmp; |
| } |
| return stride; |
| } |
| |
| PhiNode* PhaseIdealLoop::loop_iv_phi(Node* xphi, Node* phi_incr, Node* x, IdealLoopTree* loop) { |
| if (!xphi->is_Phi()) { |
| return nullptr; // Too much math on the trip counter |
| } |
| if (phi_incr != nullptr && phi_incr != xphi) { |
| return nullptr; |
| } |
| PhiNode *phi = xphi->as_Phi(); |
| |
| // Phi must be of loop header; backedge must wrap to increment |
| if (phi->region() != x) { |
| return nullptr; |
| } |
| return phi; |
| } |
| |
| static int check_stride_overflow(jlong final_correction, const TypeInteger* limit_t, BasicType bt) { |
| if (final_correction > 0) { |
| if (limit_t->lo_as_long() > (max_signed_integer(bt) - final_correction)) { |
| return -1; |
| } |
| if (limit_t->hi_as_long() > (max_signed_integer(bt) - final_correction)) { |
| return 1; |
| } |
| } else { |
| if (limit_t->hi_as_long() < (min_signed_integer(bt) - final_correction)) { |
| return -1; |
| } |
| if (limit_t->lo_as_long() < (min_signed_integer(bt) - final_correction)) { |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| static bool condition_stride_ok(BoolTest::mask bt, jlong stride_con) { |
| // If the condition is inverted and we will be rolling |
| // through MININT to MAXINT, then bail out. |
| if (bt == BoolTest::eq || // Bail out, but this loop trips at most twice! |
| // Odd stride |
| (bt == BoolTest::ne && stride_con != 1 && stride_con != -1) || |
| // Count down loop rolls through MAXINT |
| ((bt == BoolTest::le || bt == BoolTest::lt) && stride_con < 0) || |
| // Count up loop rolls through MININT |
| ((bt == BoolTest::ge || bt == BoolTest::gt) && stride_con > 0)) { |
| return false; // Bail out |
| } |
| return true; |
| } |
| |
| Node* PhaseIdealLoop::loop_nest_replace_iv(Node* iv_to_replace, Node* inner_iv, Node* outer_phi, Node* inner_head, |
| BasicType bt) { |
| Node* iv_as_long; |
| if (bt == T_LONG) { |
| iv_as_long = new ConvI2LNode(inner_iv, TypeLong::INT); |
| register_new_node(iv_as_long, inner_head); |
| } else { |
| iv_as_long = inner_iv; |
| } |
| Node* iv_replacement = AddNode::make(outer_phi, iv_as_long, bt); |
| register_new_node(iv_replacement, inner_head); |
| for (DUIterator_Last imin, i = iv_to_replace->last_outs(imin); i >= imin;) { |
| Node* u = iv_to_replace->last_out(i); |
| #ifdef ASSERT |
| if (!is_dominator(inner_head, ctrl_or_self(u))) { |
| assert(u->is_Phi(), "should be a Phi"); |
| for (uint j = 1; j < u->req(); j++) { |
| if (u->in(j) == iv_to_replace) { |
| assert(is_dominator(inner_head, u->in(0)->in(j)), "iv use above loop?"); |
| } |
| } |
| } |
| #endif |
| _igvn.rehash_node_delayed(u); |
| int nb = u->replace_edge(iv_to_replace, iv_replacement, &_igvn); |
| i -= nb; |
| } |
| return iv_replacement; |
| } |
| |
| // Add a Parse Predicate with an uncommon trap on the failing/false path. Normal control will continue on the true path. |
| void PhaseIdealLoop::add_parse_predicate(Deoptimization::DeoptReason reason, Node* inner_head, IdealLoopTree* loop, |
| SafePointNode* sfpt) { |
| if (!C->too_many_traps(reason)) { |
| Node* cont = _igvn.intcon(1); |
| Node* opaq = new Opaque1Node(C, cont); |
| _igvn.register_new_node_with_optimizer(opaq); |
| Node* bol = new Conv2BNode(opaq); |
| _igvn.register_new_node_with_optimizer(bol); |
| set_subtree_ctrl(bol, false); |
| ParsePredicateNode* iff = new ParsePredicateNode(inner_head->in(LoopNode::EntryControl), bol, reason); |
| register_control(iff, loop, inner_head->in(LoopNode::EntryControl)); |
| Node* if_false = new IfFalseNode(iff); |
| register_control(if_false, _ltree_root, iff); |
| Node* if_true = new IfTrueNode(iff); |
| register_control(if_true, loop, iff); |
| C->add_parse_predicate_opaq(opaq); |
| |
| int trap_request = Deoptimization::make_trap_request(reason, Deoptimization::Action_maybe_recompile); |
| address call_addr = SharedRuntime::uncommon_trap_blob()->entry_point(); |
| const TypePtr* no_memory_effects = nullptr; |
| JVMState* jvms = sfpt->jvms(); |
| CallNode* unc = new CallStaticJavaNode(OptoRuntime::uncommon_trap_Type(), call_addr, "uncommon_trap", |
| no_memory_effects); |
| |
| Node* mem = nullptr; |
| Node* i_o = nullptr; |
| if (sfpt->is_Call()) { |
| mem = sfpt->proj_out(TypeFunc::Memory); |
| i_o = sfpt->proj_out(TypeFunc::I_O); |
| } else { |
| mem = sfpt->memory(); |
| i_o = sfpt->i_o(); |
| } |
| |
| Node *frame = new ParmNode(C->start(), TypeFunc::FramePtr); |
| register_new_node(frame, C->start()); |
| Node *ret = new ParmNode(C->start(), TypeFunc::ReturnAdr); |
| register_new_node(ret, C->start()); |
| |
| unc->init_req(TypeFunc::Control, if_false); |
| unc->init_req(TypeFunc::I_O, i_o); |
| unc->init_req(TypeFunc::Memory, mem); // may gc ptrs |
| unc->init_req(TypeFunc::FramePtr, frame); |
| unc->init_req(TypeFunc::ReturnAdr, ret); |
| unc->init_req(TypeFunc::Parms+0, _igvn.intcon(trap_request)); |
| unc->set_cnt(PROB_UNLIKELY_MAG(4)); |
| unc->copy_call_debug_info(&_igvn, sfpt); |
| |
| for (uint i = TypeFunc::Parms; i < unc->req(); i++) { |
| set_subtree_ctrl(unc->in(i), false); |
| } |
| register_control(unc, _ltree_root, if_false); |
| |
| Node* ctrl = new ProjNode(unc, TypeFunc::Control); |
| register_control(ctrl, _ltree_root, unc); |
| Node* halt = new HaltNode(ctrl, frame, "uncommon trap returned which should never happen" PRODUCT_ONLY(COMMA /*reachable*/false)); |
| register_control(halt, _ltree_root, ctrl); |
| _igvn.add_input_to(C->root(), halt); |
| |
| _igvn.replace_input_of(inner_head, LoopNode::EntryControl, if_true); |
| set_idom(inner_head, if_true, dom_depth(inner_head)); |
| } |
| } |
| |
| // Find a safepoint node that dominates the back edge. We need a |
| // SafePointNode so we can use its jvm state to create empty |
| // predicates. |
| static bool no_side_effect_since_safepoint(Compile* C, Node* x, Node* mem, MergeMemNode* mm, PhaseIdealLoop* phase) { |
| SafePointNode* safepoint = nullptr; |
| for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) { |
| Node* u = x->fast_out(i); |
| if (u->is_Phi() && u->bottom_type() == Type::MEMORY) { |
| Node* m = u->in(LoopNode::LoopBackControl); |
| if (u->adr_type() == TypePtr::BOTTOM) { |
| if (m->is_MergeMem() && mem->is_MergeMem()) { |
| if (m != mem DEBUG_ONLY(|| true)) { |
| // MergeMemStream can modify m, for example to adjust the length to mem. |
| // This is unfortunate, and probably unnecessary. But as it is, we need |
| // to add m to the igvn worklist, else we may have a modified node that |
| // is not on the igvn worklist. |
| phase->igvn()._worklist.push(m); |
| for (MergeMemStream mms(m->as_MergeMem(), mem->as_MergeMem()); mms.next_non_empty2(); ) { |
| if (!mms.is_empty()) { |
| if (mms.memory() != mms.memory2()) { |
| return false; |
| } |
| #ifdef ASSERT |
| if (mms.alias_idx() != Compile::AliasIdxBot) { |
| mm->set_memory_at(mms.alias_idx(), mem->as_MergeMem()->base_memory()); |
| } |
| #endif |
| } |
| } |
| } |
| } else if (mem->is_MergeMem()) { |
| if (m != mem->as_MergeMem()->base_memory()) { |
| return false; |
| } |
| } else { |
| return false; |
| } |
| } else { |
| if (mem->is_MergeMem()) { |
| if (m != mem->as_MergeMem()->memory_at(C->get_alias_index(u->adr_type()))) { |
| return false; |
| } |
| #ifdef ASSERT |
| mm->set_memory_at(C->get_alias_index(u->adr_type()), mem->as_MergeMem()->base_memory()); |
| #endif |
| } else { |
| if (m != mem) { |
| return false; |
| } |
| } |
| } |
| } |
| } |
| return true; |
| } |
| |
| SafePointNode* PhaseIdealLoop::find_safepoint(Node* back_control, Node* x, IdealLoopTree* loop) { |
| IfNode* exit_test = back_control->in(0)->as_If(); |
| SafePointNode* safepoint = nullptr; |
| if (exit_test->in(0)->is_SafePoint() && exit_test->in(0)->outcnt() == 1) { |
| safepoint = exit_test->in(0)->as_SafePoint(); |
| } else { |
| Node* c = back_control; |
| while (c != x && c->Opcode() != Op_SafePoint) { |
| c = idom(c); |
| } |
| |
| if (c->Opcode() == Op_SafePoint) { |
| safepoint = c->as_SafePoint(); |
| } |
| |
| if (safepoint == nullptr) { |
| return nullptr; |
| } |
| |
| Node* mem = safepoint->in(TypeFunc::Memory); |
| |
| // We can only use that safepoint if there's no side effect between the backedge and the safepoint. |
| |
| // mm is used for book keeping |
| MergeMemNode* mm = nullptr; |
| #ifdef ASSERT |
| if (mem->is_MergeMem()) { |
| mm = mem->clone()->as_MergeMem(); |
| _igvn._worklist.push(mm); |
| for (MergeMemStream mms(mem->as_MergeMem()); mms.next_non_empty(); ) { |
| if (mms.alias_idx() != Compile::AliasIdxBot && loop != get_loop(ctrl_or_self(mms.memory()))) { |
| mm->set_memory_at(mms.alias_idx(), mem->as_MergeMem()->base_memory()); |
| } |
| } |
| } |
| #endif |
| if (!no_side_effect_since_safepoint(C, x, mem, mm, this)) { |
| safepoint = nullptr; |
| } else { |
| assert(mm == nullptr|| _igvn.transform(mm) == mem->as_MergeMem()->base_memory(), "all memory state should have been processed"); |
| } |
| #ifdef ASSERT |
| if (mm != nullptr) { |
| _igvn.remove_dead_node(mm); |
| } |
| #endif |
| } |
| return safepoint; |
| } |
| |
| // If the loop has the shape of a counted loop but with a long |
| // induction variable, transform the loop in a loop nest: an inner |
| // loop that iterates for at most max int iterations with an integer |
| // induction variable and an outer loop that iterates over the full |
| // range of long values from the initial loop in (at most) max int |
| // steps. That is: |
| // |
| // x: for (long phi = init; phi < limit; phi += stride) { |
| // // phi := Phi(L, init, incr) |
| // // incr := AddL(phi, longcon(stride)) |
| // long incr = phi + stride; |
| // ... use phi and incr ... |
| // } |
| // |
| // OR: |
| // |
| // x: for (long phi = init; (phi += stride) < limit; ) { |
| // // phi := Phi(L, AddL(init, stride), incr) |
| // // incr := AddL(phi, longcon(stride)) |
| // long incr = phi + stride; |
| // ... use phi and (phi + stride) ... |
| // } |
| // |
| // ==transform=> |
| // |
| // const ulong inner_iters_limit = INT_MAX - stride - 1; //near 0x7FFFFFF0 |
| // assert(stride <= inner_iters_limit); // else abort transform |
| // assert((extralong)limit + stride <= LONG_MAX); // else deopt |
| // outer_head: for (long outer_phi = init;;) { |
| // // outer_phi := Phi(outer_head, init, AddL(outer_phi, I2L(inner_phi))) |
| // ulong inner_iters_max = (ulong) MAX(0, ((extralong)limit + stride - outer_phi)); |
| // long inner_iters_actual = MIN(inner_iters_limit, inner_iters_max); |
| // assert(inner_iters_actual == (int)inner_iters_actual); |
| // int inner_phi, inner_incr; |
| // x: for (inner_phi = 0;; inner_phi = inner_incr) { |
| // // inner_phi := Phi(x, intcon(0), inner_incr) |
| // // inner_incr := AddI(inner_phi, intcon(stride)) |
| // inner_incr = inner_phi + stride; |
| // if (inner_incr < inner_iters_actual) { |
| // ... use phi=>(outer_phi+inner_phi) ... |
| // continue; |
| // } |
| // else break; |
| // } |
| // if ((outer_phi+inner_phi) < limit) //OR (outer_phi+inner_incr) < limit |
| // continue; |
| // else break; |
| // } |
| // |
| // The same logic is used to transform an int counted loop that contains long range checks into a loop nest of 2 int |
| // loops with long range checks transformed to int range checks in the inner loop. |
| bool PhaseIdealLoop::create_loop_nest(IdealLoopTree* loop, Node_List &old_new) { |
| Node* x = loop->_head; |
| // Only for inner loops |
| if (loop->_child != nullptr || !x->is_BaseCountedLoop() || x->as_Loop()->is_loop_nest_outer_loop()) { |
| return false; |
| } |
| |
| if (x->is_CountedLoop() && !x->as_CountedLoop()->is_main_loop() && !x->as_CountedLoop()->is_normal_loop()) { |
| return false; |
| } |
| |
| BaseCountedLoopNode* head = x->as_BaseCountedLoop(); |
| BasicType bt = x->as_BaseCountedLoop()->bt(); |
| |
| check_counted_loop_shape(loop, x, bt); |
| |
| #ifndef PRODUCT |
| if (bt == T_LONG) { |
| Atomic::inc(&_long_loop_candidates); |
| } |
| #endif |
| |
| jlong stride_con_long = head->stride_con(); |
| assert(stride_con_long != 0, "missed some peephole opt"); |
| // We can't iterate for more than max int at a time. |
| if (stride_con_long != (jint)stride_con_long || stride_con_long == min_jint) { |
| assert(bt == T_LONG, "only for long loops"); |
| return false; |
| } |
| jint stride_con = checked_cast<jint>(stride_con_long); |
| // The number of iterations for the integer count loop: guarantee no |
| // overflow: max_jint - stride_con max. -1 so there's no need for a |
| // loop limit check if the exit test is <= or >=. |
| int iters_limit = max_jint - ABS(stride_con) - 1; |
| #ifdef ASSERT |
| if (bt == T_LONG && StressLongCountedLoop > 0) { |
| iters_limit = iters_limit / StressLongCountedLoop; |
| } |
| #endif |
| // At least 2 iterations so counted loop construction doesn't fail |
| if (iters_limit/ABS(stride_con) < 2) { |
| return false; |
| } |
| |
| PhiNode* phi = head->phi()->as_Phi(); |
| Node* incr = head->incr(); |
| |
| Node* back_control = head->in(LoopNode::LoopBackControl); |
| |
| // data nodes on back branch not supported |
| if (back_control->outcnt() > 1) { |
| return false; |
| } |
| |
| Node* limit = head->limit(); |
| // We'll need to use the loop limit before the inner loop is entered |
| if (!is_dominator(get_ctrl(limit), x)) { |
| return false; |
| } |
| |
| IfNode* exit_test = head->loopexit(); |
| |
| assert(back_control->Opcode() == Op_IfTrue, "wrong projection for back edge"); |
| |
| Node_List range_checks; |
| iters_limit = extract_long_range_checks(loop, stride_con, iters_limit, phi, range_checks); |
| |
| if (bt == T_INT) { |
| // The only purpose of creating a loop nest is to handle long range checks. If there are none, do not proceed further. |
| if (range_checks.size() == 0) { |
| return false; |
| } |
| } |
| |
| // Take what we know about the number of iterations of the long counted loop into account when computing the limit of |
| // the inner loop. |
| const Node* init = head->init_trip(); |
| const TypeInteger* lo = _igvn.type(init)->is_integer(bt); |
| const TypeInteger* hi = _igvn.type(limit)->is_integer(bt); |
| if (stride_con < 0) { |
| swap(lo, hi); |
| } |
| if (hi->hi_as_long() <= lo->lo_as_long()) { |
| // not a loop after all |
| return false; |
| } |
| julong orig_iters = (julong)hi->hi_as_long() - lo->lo_as_long(); |
| iters_limit = checked_cast<int>(MIN2((julong)iters_limit, orig_iters)); |
| |
| // We need a safepoint to insert Parse Predicates for the inner loop. |
| SafePointNode* safepoint; |
| if (bt == T_INT && head->as_CountedLoop()->is_strip_mined()) { |
| // Loop is strip mined: use the safepoint of the outer strip mined loop |
| OuterStripMinedLoopNode* outer_loop = head->as_CountedLoop()->outer_loop(); |
| assert(outer_loop != nullptr, "no outer loop"); |
| safepoint = outer_loop->outer_safepoint(); |
| outer_loop->transform_to_counted_loop(&_igvn, this); |
| exit_test = head->loopexit(); |
| } else { |
| safepoint = find_safepoint(back_control, x, loop); |
| } |
| |
| Node* exit_branch = exit_test->proj_out(false); |
| Node* entry_control = head->in(LoopNode::EntryControl); |
| |
| // Clone the control flow of the loop to build an outer loop |
| Node* outer_back_branch = back_control->clone(); |
| Node* outer_exit_test = new IfNode(exit_test->in(0), exit_test->in(1), exit_test->_prob, exit_test->_fcnt); |
| Node* inner_exit_branch = exit_branch->clone(); |
| |
| LoopNode* outer_head = new LoopNode(entry_control, outer_back_branch); |
| IdealLoopTree* outer_ilt = insert_outer_loop(loop, outer_head, outer_back_branch); |
| |
| const bool body_populated = true; |
| register_control(outer_head, outer_ilt, entry_control, body_populated); |
| |
| _igvn.register_new_node_with_optimizer(inner_exit_branch); |
| set_loop(inner_exit_branch, outer_ilt); |
| set_idom(inner_exit_branch, exit_test, dom_depth(exit_branch)); |
| |
| outer_exit_test->set_req(0, inner_exit_branch); |
| register_control(outer_exit_test, outer_ilt, inner_exit_branch, body_populated); |
| |
| _igvn.replace_input_of(exit_branch, 0, outer_exit_test); |
| set_idom(exit_branch, outer_exit_test, dom_depth(exit_branch)); |
| |
| outer_back_branch->set_req(0, outer_exit_test); |
| register_control(outer_back_branch, outer_ilt, outer_exit_test, body_populated); |
| |
| _igvn.replace_input_of(x, LoopNode::EntryControl, outer_head); |
| set_idom(x, outer_head, dom_depth(x)); |
| |
| // add an iv phi to the outer loop and use it to compute the inner |
| // loop iteration limit |
| Node* outer_phi = phi->clone(); |
| outer_phi->set_req(0, outer_head); |
| register_new_node(outer_phi, outer_head); |
| |
| Node* inner_iters_max = nullptr; |
| if (stride_con > 0) { |
| inner_iters_max = MaxNode::max_diff_with_zero(limit, outer_phi, TypeInteger::bottom(bt), _igvn); |
| } else { |
| inner_iters_max = MaxNode::max_diff_with_zero(outer_phi, limit, TypeInteger::bottom(bt), _igvn); |
| } |
| |
| Node* inner_iters_limit = _igvn.integercon(iters_limit, bt); |
| // inner_iters_max may not fit in a signed integer (iterating from |
| // Long.MIN_VALUE to Long.MAX_VALUE for instance). Use an unsigned |
| // min. |
| Node* inner_iters_actual = MaxNode::unsigned_min(inner_iters_max, inner_iters_limit, TypeInteger::make(0, iters_limit, Type::WidenMin, bt), _igvn); |
| |
| Node* inner_iters_actual_int; |
| if (bt == T_LONG) { |
| inner_iters_actual_int = new ConvL2INode(inner_iters_actual); |
| _igvn.register_new_node_with_optimizer(inner_iters_actual_int); |
| } else { |
| inner_iters_actual_int = inner_iters_actual; |
| } |
| |
| Node* int_zero = _igvn.intcon(0); |
| set_ctrl(int_zero, C->root()); |
| if (stride_con < 0) { |
| inner_iters_actual_int = new SubINode(int_zero, inner_iters_actual_int); |
| _igvn.register_new_node_with_optimizer(inner_iters_actual_int); |
| } |
| |
| // Clone the iv data nodes as an integer iv |
| Node* int_stride = _igvn.intcon(stride_con); |
| set_ctrl(int_stride, C->root()); |
| Node* inner_phi = new PhiNode(x->in(0), TypeInt::INT); |
| Node* inner_incr = new AddINode(inner_phi, int_stride); |
| Node* inner_cmp = nullptr; |
| inner_cmp = new CmpINode(inner_incr, inner_iters_actual_int); |
| Node* inner_bol = new BoolNode(inner_cmp, exit_test->in(1)->as_Bool()->_test._test); |
| inner_phi->set_req(LoopNode::EntryControl, int_zero); |
| inner_phi->set_req(LoopNode::LoopBackControl, inner_incr); |
| register_new_node(inner_phi, x); |
| register_new_node(inner_incr, x); |
| register_new_node(inner_cmp, x); |
| register_new_node(inner_bol, x); |
| |
| _igvn.replace_input_of(exit_test, 1, inner_bol); |
| |
| // Clone inner loop phis to outer loop |
| for (uint i = 0; i < head->outcnt(); i++) { |
| Node* u = head->raw_out(i); |
| if (u->is_Phi() && u != inner_phi && u != phi) { |
| assert(u->in(0) == head, "inconsistent"); |
| Node* clone = u->clone(); |
| clone->set_req(0, outer_head); |
| register_new_node(clone, outer_head); |
| _igvn.replace_input_of(u, LoopNode::EntryControl, clone); |
| } |
| } |
| |
| // Replace inner loop long iv phi as inner loop int iv phi + outer |
| // loop iv phi |
| Node* iv_add = loop_nest_replace_iv(phi, inner_phi, outer_phi, head, bt); |
| |
| set_subtree_ctrl(inner_iters_actual_int, body_populated); |
| |
| LoopNode* inner_head = create_inner_head(loop, head, exit_test); |
| |
| // Summary of steps from initial loop to loop nest: |
| // |
| // == old IR nodes => |
| // |
| // entry_control: {...} |
| // x: |
| // for (long phi = init;;) { |
| // // phi := Phi(x, init, incr) |
| // // incr := AddL(phi, longcon(stride)) |
| // exit_test: |
| // if (phi < limit) |
| // back_control: fallthrough; |
| // else |
| // exit_branch: break; |
| // long incr = phi + stride; |
| // ... use phi and incr ... |
| // phi = incr; |
| // } |
| // |
| // == new IR nodes (just before final peel) => |
| // |
| // entry_control: {...} |
| // long adjusted_limit = limit + stride; //because phi_incr != nullptr |
| // assert(!limit_check_required || (extralong)limit + stride == adjusted_limit); // else deopt |
| // ulong inner_iters_limit = max_jint - ABS(stride) - 1; //near 0x7FFFFFF0 |
| // outer_head: |
| // for (long outer_phi = init;;) { |
| // // outer_phi := phi->clone(), in(0):=outer_head, => Phi(outer_head, init, incr) |
| // // REPLACE phi => AddL(outer_phi, I2L(inner_phi)) |
| // // REPLACE incr => AddL(outer_phi, I2L(inner_incr)) |
| // // SO THAT outer_phi := Phi(outer_head, init, AddL(outer_phi, I2L(inner_incr))) |
| // ulong inner_iters_max = (ulong) MAX(0, ((extralong)adjusted_limit - outer_phi) * SGN(stride)); |
| // int inner_iters_actual_int = (int) MIN(inner_iters_limit, inner_iters_max) * SGN(stride); |
| // inner_head: x: //in(1) := outer_head |
| // int inner_phi; |
| // for (inner_phi = 0;;) { |
| // // inner_phi := Phi(x, intcon(0), inner_phi + stride) |
| // int inner_incr = inner_phi + stride; |
| // bool inner_bol = (inner_incr < inner_iters_actual_int); |
| // exit_test: //exit_test->in(1) := inner_bol; |
| // if (inner_bol) // WAS (phi < limit) |
| // back_control: fallthrough; |
| // else |
| // inner_exit_branch: break; //exit_branch->clone() |
| // ... use phi=>(outer_phi+inner_phi) ... |
| // inner_phi = inner_phi + stride; // inner_incr |
| // } |
| // outer_exit_test: //exit_test->clone(), in(0):=inner_exit_branch |
| // if ((outer_phi+inner_phi) < limit) // WAS (phi < limit) |
| // outer_back_branch: fallthrough; //back_control->clone(), in(0):=outer_exit_test |
| // else |
| // exit_branch: break; //in(0) := outer_exit_test |
| // } |
| |
| if (bt == T_INT) { |
| outer_phi = new ConvI2LNode(outer_phi); |
| register_new_node(outer_phi, outer_head); |
| } |
| |
| transform_long_range_checks(stride_con, range_checks, outer_phi, inner_iters_actual_int, |
| inner_phi, iv_add, inner_head); |
| // Peel one iteration of the loop and use the safepoint at the end |
| // of the peeled iteration to insert Parse Predicates. If no well |
| // positioned safepoint peel to guarantee a safepoint in the outer |
| // loop. |
| if (safepoint != nullptr || !loop->_has_call) { |
| old_new.clear(); |
| do_peeling(loop, old_new); |
| } else { |
| C->set_major_progress(); |
| } |
| |
| if (safepoint != nullptr) { |
| SafePointNode* cloned_sfpt = old_new[safepoint->_idx]->as_SafePoint(); |
| |
| if (UseLoopPredicate) { |
| add_parse_predicate(Deoptimization::Reason_predicate, inner_head, outer_ilt, cloned_sfpt); |
| } |
| if (UseProfiledLoopPredicate) { |
| add_parse_predicate(Deoptimization::Reason_profile_predicate, inner_head, outer_ilt, cloned_sfpt); |
| } |
| add_parse_predicate(Deoptimization::Reason_loop_limit_check, inner_head, outer_ilt, cloned_sfpt); |
| } |
| |
| #ifndef PRODUCT |
| if (bt == T_LONG) { |
| Atomic::inc(&_long_loop_nests); |
| } |
| #endif |
| |
| inner_head->mark_loop_nest_inner_loop(); |
| outer_head->mark_loop_nest_outer_loop(); |
| |
| return true; |
| } |
| |
| int PhaseIdealLoop::extract_long_range_checks(const IdealLoopTree* loop, jint stride_con, int iters_limit, PhiNode* phi, |
| Node_List& range_checks) { |
| const jlong min_iters = 2; |
| jlong reduced_iters_limit = iters_limit; |
| jlong original_iters_limit = iters_limit; |
| for (uint i = 0; i < loop->_body.size(); i++) { |
| Node* c = loop->_body.at(i); |
| if (c->is_IfProj() && c->in(0)->is_RangeCheck()) { |
| IfProjNode* if_proj = c->as_IfProj(); |
| CallStaticJavaNode* call = if_proj->is_uncommon_trap_if_pattern(Deoptimization::Reason_none); |
| if (call != nullptr) { |
| Node* range = nullptr; |
| Node* offset = nullptr; |
| jlong scale = 0; |
| if (loop->is_range_check_if(if_proj, this, T_LONG, phi, range, offset, scale) && |
| loop->is_invariant(range) && loop->is_invariant(offset) && |
| scale != min_jlong && |
| original_iters_limit / ABS(scale) >= min_iters * ABS(stride_con)) { |
| assert(scale == (jint)scale, "scale should be an int"); |
| reduced_iters_limit = MIN2(reduced_iters_limit, original_iters_limit/ABS(scale)); |
| range_checks.push(c); |
| } |
| } |
| } |
| } |
| |
| return checked_cast<int>(reduced_iters_limit); |
| } |
| |
| // One execution of the inner loop covers a sub-range of the entire iteration range of the loop: [A,Z), aka [A=init, |
| // Z=limit). If the loop has at least one trip (which is the case here), the iteration variable i always takes A as its |
| // first value, followed by A+S (S is the stride), next A+2S, etc. The limit is exclusive, so that the final value B of |
| // i is never Z. It will be B=Z-1 if S=1, or B=Z+1 if S=-1. |
| |
| // If |S|>1 the formula for the last value B would require a floor operation, specifically B=floor((Z-sgn(S)-A)/S)*S+A, |
| // which is B=Z-sgn(S)U for some U in [1,|S|]. So when S>0, i ranges as i:[A,Z) or i:[A,B=Z-U], or else (in reverse) |
| // as i:(Z,A] or i:[B=Z+U,A]. It will become important to reason about this inclusive range [A,B] or [B,A]. |
| |
| // Within the loop there may be many range checks. Each such range check (R.C.) is of the form 0 <= i*K+L < R, where K |
| // is a scale factor applied to the loop iteration variable i, and L is some offset; K, L, and R are loop-invariant. |
| // Because R is never negative (see below), this check can always be simplified to an unsigned check i*K+L <u R. |
| |
| // When a long loop over a 64-bit variable i (outer_iv) is decomposed into a series of shorter sub-loops over a 32-bit |
| // variable j (inner_iv), j ranges over a shorter interval j:[0,B_2] or [0,Z_2) (assuming S > 0), where the limit is |
| // chosen to prevent various cases of 32-bit overflow (including multiplications j*K below). In the sub-loop the |
| // logical value i is offset from j by a 64-bit constant C, so i ranges in i:C+[0,Z_2). |
| |
| // For S<0, j ranges (in reverse!) through j:[-|B_2|,0] or (-|Z_2|,0]. For either sign of S, we can say i=j+C and j |
| // ranges through 32-bit ranges [A_2,B_2] or [B_2,A_2] (A_2=0 of course). |
| |
| // The disjoint union of all the C+[A_2,B_2] ranges from the sub-loops must be identical to the whole range [A,B]. |
| // Assuming S>0, the first C must be A itself, and the next C value is the previous C+B_2, plus S. If |S|=1, the next |
| // C value is also the previous C+Z_2. In each sub-loop, j counts from j=A_2=0 and i counts from C+0 and exits at |
| // j=B_2 (i=C+B_2), just before it gets to i=C+Z_2. Both i and j count up (from C and 0) if S>0; otherwise they count |
| // down (from C and 0 again). |
| |
| // Returning to range checks, we see that each i*K+L <u R expands to (C+j)*K+L <u R, or j*K+Q <u R, where Q=(C*K+L). |
| // (Recall that K and L and R are loop-invariant scale, offset and range values for a particular R.C.) This is still a |
| // 64-bit comparison, so the range check elimination logic will not apply to it. (The R.C.E. transforms operate only on |
| // 32-bit indexes and comparisons, because they use 64-bit temporary values to avoid overflow; see |
| // PhaseIdealLoop::add_constraint.) |
| |
| // We must transform this comparison so that it gets the same answer, but by means of a 32-bit R.C. (using j not i) of |
| // the form j*K+L_2 <u32 R_2. Note that L_2 and R_2 must be loop-invariant, but only with respect to the sub-loop. Thus, the |
| // problem reduces to computing values for L_2 and R_2 (for each R.C. in the loop) in the loop header for the sub-loop. |
| // Then the standard R.C.E. transforms can take those as inputs and further compute the necessary minimum and maximum |
| // values for the 32-bit counter j within which the range checks can be eliminated. |
| |
| // So, given j*K+Q <u R, we need to find some j*K+L_2 <u32 R_2, where L_2 and R_2 fit in 32 bits, and the 32-bit operations do |
| // not overflow. We also need to cover the cases where i*K+L (= j*K+Q) overflows to a 64-bit negative, since that is |
| // allowed as an input to the R.C., as long as the R.C. as a whole fails. |
| |
| // If 32-bit multiplication j*K might overflow, we adjust the sub-loop limit Z_2 closer to zero to reduce j's range. |
| |
| // For each R.C. j*K+Q <u32 R, the range of mathematical values of j*K+Q in the sub-loop is [Q_min, Q_max], where |
| // Q_min=Q and Q_max=B_2*K+Q (if S>0 and K>0), Q_min=A_2*K+Q and Q_max=Q (if S<0 and K>0), |
| // Q_min=B_2*K+Q and Q_max=Q if (S>0 and K<0), Q_min=Q and Q_max=A_2*K+Q (if S<0 and K<0) |
| |
| // Note that the first R.C. value is always Q=(S*K>0 ? Q_min : Q_max). Also Q_{min,max} = Q + {min,max}(A_2*K,B_2*K). |
| // If S*K>0 then, as the loop iterations progress, each R.C. value i*K+L = j*K+Q goes up from Q=Q_min towards Q_max. |
| // If S*K<0 then j*K+Q starts at Q=Q_max and goes down towards Q_min. |
| |
| // Case A: Some Negatives (but no overflow). |
| // Number line: |
| // |s64_min . . . 0 . . . s64_max| |
| // | . Q_min..Q_max . 0 . . . . | s64 negative |
| // | . . . . R=0 R< R< R< R< | (against R values) |
| // | . . . Q_min..0..Q_max . . . | small mixed |
| // | . . . . R R R< R< R< | (against R values) |
| // |
| // R values which are out of range (>Q_max+1) are reduced to max(0,Q_max+1). They are marked on the number line as R<. |
| // |
| // So, if Q_min <s64 0, then use this test: |
| // j*K + s32_trunc(Q_min) <u32 clamp(R, 0, Q_max+1) if S*K>0 (R.C.E. steps upward) |
| // j*K + s32_trunc(Q_max) <u32 clamp(R, 0, Q_max+1) if S*K<0 (R.C.E. steps downward) |
| // Both formulas reduce to adding j*K to the 32-bit truncated value of the first R.C. expression value, Q: |
| // j*K + s32_trunc(Q) <u32 clamp(R, 0, Q_max+1) for all S,K |
| |
| // If the 32-bit truncation loses information, no harm is done, since certainly the clamp also will return R_2=zero. |
| |
| // Case B: No Negatives. |
| // Number line: |
| // |s64_min . . . 0 . . . s64_max| |
| // | . . . . 0 Q_min..Q_max . . | small positive |
| // | . . . . R> R R R< R< | (against R values) |
| // | . . . . 0 . Q_min..Q_max . | s64 positive |
| // | . . . . R> R> R R R< | (against R values) |
| // |
| // R values which are out of range (<Q_min or >Q_max+1) are reduced as marked: R> up to Q_min, R< down to Q_max+1. |
| // Then the whole comparison is shifted left by Q_min, so it can take place at zero, which is a nice 32-bit value. |
| // |
| // So, if both Q_min, Q_max+1 >=s64 0, then use this test: |
| // j*K + 0 <u32 clamp(R, Q_min, Q_max+1) - Q_min if S*K>0 |
| // More generally: |
| // j*K + Q - Q_min <u32 clamp(R, Q_min, Q_max+1) - Q_min for all S,K |
| |
| // Case C: Overflow in the 64-bit domain |
| // Number line: |
| // |..Q_max-2^64 . . 0 . . . Q_min..| s64 overflow |
| // | . . . . R> R> R> R> R | (against R values) |
| // |
| // In this case, Q_min >s64 Q_max+1, even though the mathematical values of Q_min and Q_max+1 are correctly ordered. |
| // The formulas from the previous case can be used, except that the bad upper bound Q_max is replaced by max_jlong. |
| // (In fact, we could use any replacement bound from R to max_jlong inclusive, as the input to the clamp function.) |
| // |
| // So if Q_min >=s64 0 but Q_max+1 <s64 0, use this test: |
| // j*K + 0 <u32 clamp(R, Q_min, max_jlong) - Q_min if S*K>0 |
| // More generally: |
| // j*K + Q - Q_min <u32 clamp(R, Q_min, max_jlong) - Q_min for all S,K |
| // |
| // Dropping the bad bound means only Q_min is used to reduce the range of R: |
| // j*K + Q - Q_min <u32 max(Q_min, R) - Q_min for all S,K |
| // |
| // Here the clamp function is a 64-bit min/max that reduces the dynamic range of its R operand to the required [L,H]: |
| // clamp(X, L, H) := max(L, min(X, H)) |
| // When degenerately L > H, it returns L not H. |
| // |
| // All of the formulas above can be merged into a single one: |
| // L_clamp = Q_min < 0 ? 0 : Q_min --whether and how far to left-shift |
| // H_clamp = Q_max+1 < Q_min ? max_jlong : Q_max+1 |
| // = Q_max+1 < 0 && Q_min >= 0 ? max_jlong : Q_max+1 |
| // Q_first = Q = (S*K>0 ? Q_min : Q_max) = (C*K+L) |
| // R_clamp = clamp(R, L_clamp, H_clamp) --reduced dynamic range |
| // replacement R.C.: |
| // j*K + Q_first - L_clamp <u32 R_clamp - L_clamp |
| // or equivalently: |
| // j*K + L_2 <u32 R_2 |
| // where |
| // L_2 = Q_first - L_clamp |
| // R_2 = R_clamp - L_clamp |
| // |
| // Note on why R is never negative: |
| // |
| // Various details of this transformation would break badly if R could be negative, so this transformation only |
| // operates after obtaining hard evidence that R<0 is impossible. For example, if R comes from a LoadRange node, we |
| // know R cannot be negative. For explicit checks (of both int and long) a proof is constructed in |
| // inline_preconditions_checkIndex, which triggers an uncommon trap if R<0, then wraps R in a ConstraintCastNode with a |
| // non-negative type. Later on, when IdealLoopTree::is_range_check_if looks for an optimizable R.C., it checks that |
| // the type of that R node is non-negative. Any "wild" R node that could be negative is not treated as an optimizable |
| // R.C., but R values from a.length and inside checkIndex are good to go. |
| // |
| void PhaseIdealLoop::transform_long_range_checks(int stride_con, const Node_List &range_checks, Node* outer_phi, |
| Node* inner_iters_actual_int, Node* inner_phi, |
| Node* iv_add, LoopNode* inner_head) { |
| Node* long_zero = _igvn.longcon(0); |
| set_ctrl(long_zero, C->root()); |
| Node* int_zero = _igvn.intcon(0); |
| set_ctrl(int_zero, this->C->root()); |
| Node* long_one = _igvn.longcon(1); |
| set_ctrl(long_one, this->C->root()); |
| Node* int_stride = _igvn.intcon(checked_cast<int>(stride_con)); |
| set_ctrl(int_stride, this->C->root()); |
| |
| for (uint i = 0; i < range_checks.size(); i++) { |
| ProjNode* proj = range_checks.at(i)->as_Proj(); |
| ProjNode* unc_proj = proj->other_if_proj(); |
| RangeCheckNode* rc = proj->in(0)->as_RangeCheck(); |
| jlong scale = 0; |
| Node* offset = nullptr; |
| Node* rc_bol = rc->in(1); |
| Node* rc_cmp = rc_bol->in(1); |
| if (rc_cmp->Opcode() == Op_CmpU) { |
| // could be shared and have already been taken care of |
| continue; |
| } |
| bool short_scale = false; |
| bool ok = is_scaled_iv_plus_offset(rc_cmp->in(1), iv_add, T_LONG, &scale, &offset, &short_scale); |
| assert(ok, "inconsistent: was tested before"); |
| Node* range = rc_cmp->in(2); |
| Node* c = rc->in(0); |
| Node* entry_control = inner_head->in(LoopNode::EntryControl); |
| |
| Node* R = range; |
| Node* K = _igvn.longcon(scale); |
| set_ctrl(K, this->C->root()); |
| |
| Node* L = offset; |
| |
| if (short_scale) { |
| // This converts: |
| // (int)i*K + L <u64 R |
| // with K an int into: |
| // i*(long)K + L <u64 unsigned_min((long)max_jint + L + 1, R) |
| // to protect against an overflow of (int)i*K |
| // |
| // Because if (int)i*K overflows, there are K,L where: |
| // (int)i*K + L <u64 R is false because (int)i*K+L overflows to a negative which becomes a huge u64 value. |
| // But if i*(long)K + L is >u64 (long)max_jint and still is <u64 R, then |
| // i*(long)K + L <u64 R is true. |
| // |
| // As a consequence simply converting i*K + L <u64 R to i*(long)K + L <u64 R could cause incorrect execution. |
| // |
| // It's always true that: |
| // (int)i*K <u64 (long)max_jint + 1 |
| // which implies (int)i*K + L <u64 (long)max_jint + 1 + L |
| // As a consequence: |
| // i*(long)K + L <u64 unsigned_min((long)max_jint + L + 1, R) |
| // is always false in case of overflow of i*K |
| // |
| // Note, there are also K,L where i*K overflows and |
| // i*K + L <u64 R is true, but |
| // i*(long)K + L <u64 unsigned_min((long)max_jint + L + 1, R) is false |
| // So this transformation could cause spurious deoptimizations and failed range check elimination |
| // (but not incorrect execution) for unlikely corner cases with overflow. |
| // If this causes problems in practice, we could maybe direct execution to a post-loop, instead of deoptimizing. |
| Node* max_jint_plus_one_long = _igvn.longcon((jlong)max_jint + 1); |
| set_ctrl(max_jint_plus_one_long, C->root()); |
| Node* max_range = new AddLNode(max_jint_plus_one_long, L); |
| register_new_node(max_range, entry_control); |
| R = MaxNode::unsigned_min(R, max_range, TypeLong::POS, _igvn); |
| set_subtree_ctrl(R, true); |
| } |
| |
| Node* C = outer_phi; |
| |
| // Start with 64-bit values: |
| // i*K + L <u64 R |
| // (C+j)*K + L <u64 R |
| // j*K + Q <u64 R where Q = Q_first = C*K+L |
| Node* Q_first = new MulLNode(C, K); |
| register_new_node(Q_first, entry_control); |
| Q_first = new AddLNode(Q_first, L); |
| register_new_node(Q_first, entry_control); |
| |
| // Compute endpoints of the range of values j*K + Q. |
| // Q_min = (j=0)*K + Q; Q_max = (j=B_2)*K + Q |
| Node* Q_min = Q_first; |
| |
| // Compute the exact ending value B_2 (which is really A_2 if S < 0) |
| Node* B_2 = new LoopLimitNode(this->C, int_zero, inner_iters_actual_int, int_stride); |
| register_new_node(B_2, entry_control); |
| B_2 = new SubINode(B_2, int_stride); |
| register_new_node(B_2, entry_control); |
| B_2 = new ConvI2LNode(B_2); |
| register_new_node(B_2, entry_control); |
| |
| Node* Q_max = new MulLNode(B_2, K); |
| register_new_node(Q_max, entry_control); |
| Q_max = new AddLNode(Q_max, Q_first); |
| register_new_node(Q_max, entry_control); |
| |
| if (scale * stride_con < 0) { |
| swap(Q_min, Q_max); |
| } |
| // Now, mathematically, Q_max > Q_min, and they are close enough so that (Q_max-Q_min) fits in 32 bits. |
| |
| // L_clamp = Q_min < 0 ? 0 : Q_min |
| Node* Q_min_cmp = new CmpLNode(Q_min, long_zero); |
| register_new_node(Q_min_cmp, entry_control); |
| Node* Q_min_bool = new BoolNode(Q_min_cmp, BoolTest::lt); |
| register_new_node(Q_min_bool, entry_control); |
| Node* L_clamp = new CMoveLNode(Q_min_bool, Q_min, long_zero, TypeLong::LONG); |
| register_new_node(L_clamp, entry_control); |
| // (This could also be coded bitwise as L_clamp = Q_min & ~(Q_min>>63).) |
| |
| Node* Q_max_plus_one = new AddLNode(Q_max, long_one); |
| register_new_node(Q_max_plus_one, entry_control); |
| |
| // H_clamp = Q_max+1 < Q_min ? max_jlong : Q_max+1 |
| // (Because Q_min and Q_max are close, the overflow check could also be encoded as Q_max+1 < 0 & Q_min >= 0.) |
| Node* max_jlong_long = _igvn.longcon(max_jlong); |
| set_ctrl(max_jlong_long, this->C->root()); |
| Node* Q_max_cmp = new CmpLNode(Q_max_plus_one, Q_min); |
| register_new_node(Q_max_cmp, entry_control); |
| Node* Q_max_bool = new BoolNode(Q_max_cmp, BoolTest::lt); |
| register_new_node(Q_max_bool, entry_control); |
| Node* H_clamp = new CMoveLNode(Q_max_bool, Q_max_plus_one, max_jlong_long, TypeLong::LONG); |
| register_new_node(H_clamp, entry_control); |
| // (This could also be coded bitwise as H_clamp = ((Q_max+1)<<1 | M)>>>1 where M = (Q_max+1)>>63 & ~Q_min>>63.) |
| |
| // R_2 = clamp(R, L_clamp, H_clamp) - L_clamp |
| // that is: R_2 = clamp(R, L_clamp=0, H_clamp=Q_max) if Q_min < 0 |
| // or else: R_2 = clamp(R, L_clamp, H_clamp) - Q_min if Q_min >= 0 |
| // and also: R_2 = clamp(R, L_clamp, Q_max+1) - L_clamp if Q_min < Q_max+1 (no overflow) |
| // or else: R_2 = clamp(R, L_clamp, *no limit*)- L_clamp if Q_max+1 < Q_min (overflow) |
| Node* R_2 = clamp(R, L_clamp, H_clamp); |
| R_2 = new SubLNode(R_2, L_clamp); |
| register_new_node(R_2, entry_control); |
| R_2 = new ConvL2INode(R_2, TypeInt::POS); |
| register_new_node(R_2, entry_control); |
| |
| // L_2 = Q_first - L_clamp |
| // We are subtracting L_clamp from both sides of the <u32 comparison. |
| // If S*K>0, then Q_first == 0 and the R.C. expression at -L_clamp and steps upward to Q_max-L_clamp. |
| // If S*K<0, then Q_first != 0 and the R.C. expression starts high and steps downward to Q_min-L_clamp. |
| Node* L_2 = new SubLNode(Q_first, L_clamp); |
| register_new_node(L_2, entry_control); |
| L_2 = new ConvL2INode(L_2, TypeInt::INT); |
| register_new_node(L_2, entry_control); |
| |
| // Transform the range check using the computed values L_2/R_2 |
| // from: i*K + L <u64 R |
| // to: j*K + L_2 <u32 R_2 |
| // that is: |
| // (j*K + Q_first) - L_clamp <u32 clamp(R, L_clamp, H_clamp) - L_clamp |
| K = _igvn.intcon(checked_cast<int>(scale)); |
| set_ctrl(K, this->C->root()); |
| Node* scaled_iv = new MulINode(inner_phi, K); |
| register_new_node(scaled_iv, c); |
| Node* scaled_iv_plus_offset = new AddINode(scaled_iv, L_2); |
| register_new_node(scaled_iv_plus_offset, c); |
| |
| Node* new_rc_cmp = new CmpUNode(scaled_iv_plus_offset, R_2); |
| register_new_node(new_rc_cmp, c); |
| |
| _igvn.replace_input_of(rc_bol, 1, new_rc_cmp); |
| } |
| } |
| |
| Node* PhaseIdealLoop::clamp(Node* R, Node* L, Node* H) { |
| Node* min = MaxNode::signed_min(R, H, TypeLong::LONG, _igvn); |
| set_subtree_ctrl(min, true); |
| Node* max = MaxNode::signed_max(L, min, TypeLong::LONG, _igvn); |
| set_subtree_ctrl(max, true); |
| return max; |
| } |
| |
| LoopNode* PhaseIdealLoop::create_inner_head(IdealLoopTree* loop, BaseCountedLoopNode* head, |
| IfNode* exit_test) { |
| LoopNode* new_inner_head = new LoopNode(head->in(1), head->in(2)); |
| IfNode* new_inner_exit = new IfNode(exit_test->in(0), exit_test->in(1), exit_test->_prob, exit_test->_fcnt); |
| _igvn.register_new_node_with_optimizer(new_inner_head); |
| _igvn.register_new_node_with_optimizer(new_inner_exit); |
| loop->_body.push(new_inner_head); |
| loop->_body.push(new_inner_exit); |
| loop->_body.yank(head); |
| loop->_body.yank(exit_test); |
| set_loop(new_inner_head, loop); |
| set_loop(new_inner_exit, loop); |
| set_idom(new_inner_head, idom(head), dom_depth(head)); |
| set_idom(new_inner_exit, idom(exit_test), dom_depth(exit_test)); |
| lazy_replace(head, new_inner_head); |
| lazy_replace(exit_test, new_inner_exit); |
| loop->_head = new_inner_head; |
| return new_inner_head; |
| } |
| |
| #ifdef ASSERT |
| void PhaseIdealLoop::check_counted_loop_shape(IdealLoopTree* loop, Node* x, BasicType bt) { |
| Node* back_control = loop_exit_control(x, loop); |
| assert(back_control != nullptr, "no back control"); |
| |
| BoolTest::mask mask = BoolTest::illegal; |
| float cl_prob = 0; |
| Node* incr = nullptr; |
| Node* limit = nullptr; |
| |
| Node* cmp = loop_exit_test(back_control, loop, incr, limit, mask, cl_prob); |
| assert(cmp != nullptr && cmp->Opcode() == Op_Cmp(bt), "no exit test"); |
| |
| Node* phi_incr = nullptr; |
| incr = loop_iv_incr(incr, x, loop, phi_incr); |
| assert(incr != nullptr && incr->Opcode() == Op_Add(bt), "no incr"); |
| |
| Node* xphi = nullptr; |
| Node* stride = loop_iv_stride(incr, loop, xphi); |
| |
| assert(stride != nullptr, "no stride"); |
| |
| PhiNode* phi = loop_iv_phi(xphi, phi_incr, x, loop); |
| |
| assert(phi != nullptr && phi->in(LoopNode::LoopBackControl) == incr, "No phi"); |
| |
| jlong stride_con = stride->get_integer_as_long(bt); |
| |
| assert(condition_stride_ok(mask, stride_con), "illegal condition"); |
| |
| assert(mask != BoolTest::ne, "unexpected condition"); |
| assert(phi_incr == nullptr, "bad loop shape"); |
| assert(cmp->in(1) == incr, "bad exit test shape"); |
| |
| // Safepoint on backedge not supported |
| assert(x->in(LoopNode::LoopBackControl)->Opcode() != Op_SafePoint, "no safepoint on backedge"); |
| } |
| #endif |
| |
| #ifdef ASSERT |
| // convert an int counted loop to a long counted to stress handling of |
| // long counted loops |
| bool PhaseIdealLoop::convert_to_long_loop(Node* cmp, Node* phi, IdealLoopTree* loop) { |
| Unique_Node_List iv_nodes; |
| Node_List old_new; |
| iv_nodes.push(cmp); |
| bool failed = false; |
| |
| for (uint i = 0; i < iv_nodes.size() && !failed; i++) { |
| Node* n = iv_nodes.at(i); |
| switch(n->Opcode()) { |
| case Op_Phi: { |
| Node* clone = new PhiNode(n->in(0), TypeLong::LONG); |
| old_new.map(n->_idx, clone); |
| break; |
| } |
| case Op_CmpI: { |
| Node* clone = new CmpLNode(nullptr, nullptr); |
| old_new.map(n->_idx, clone); |
| break; |
| } |
| case Op_AddI: { |
| Node* clone = new AddLNode(nullptr, nullptr); |
| old_new.map(n->_idx, clone); |
| break; |
| } |
| case Op_CastII: { |
| failed = true; |
| break; |
| } |
| default: |
| DEBUG_ONLY(n->dump()); |
| fatal("unexpected"); |
| } |
| |
| for (uint i = 1; i < n->req(); i++) { |
| Node* in = n->in(i); |
| if (in == nullptr) { |
| continue; |
| } |
| if (loop->is_member(get_loop(get_ctrl(in)))) { |
| iv_nodes.push(in); |
| } |
| } |
| } |
| |
| if (failed) { |
| for (uint i = 0; i < iv_nodes.size(); i++) { |
| Node* n = iv_nodes.at(i); |
| Node* clone = old_new[n->_idx]; |
| if (clone != nullptr) { |
| _igvn.remove_dead_node(clone); |
| } |
| } |
| return false; |
| } |
| |
| for (uint i = 0; i < iv_nodes.size(); i++) { |
| Node* n = iv_nodes.at(i); |
| Node* clone = old_new[n->_idx]; |
| for (uint i = 1; i < n->req(); i++) { |
| Node* in = n->in(i); |
| if (in == nullptr) { |
| continue; |
| } |
| Node* in_clone = old_new[in->_idx]; |
| if (in_clone == nullptr) { |
| assert(_igvn.type(in)->isa_int(), ""); |
| in_clone = new ConvI2LNode(in); |
| _igvn.register_new_node_with_optimizer(in_clone); |
| set_subtree_ctrl(in_clone, false); |
| } |
| if (in_clone->in(0) == nullptr) { |
| in_clone->set_req(0, C->top()); |
| clone->set_req(i, in_clone); |
| in_clone->set_req(0, nullptr); |
| } else { |
| clone->set_req(i, in_clone); |
| } |
| } |
| _igvn.register_new_node_with_optimizer(clone); |
| } |
| set_ctrl(old_new[phi->_idx], phi->in(0)); |
| |
| for (uint i = 0; i < iv_nodes.size(); i++) { |
| Node* n = iv_nodes.at(i); |
| Node* clone = old_new[n->_idx]; |
| set_subtree_ctrl(clone, false); |
| Node* m = n->Opcode() == Op_CmpI ? clone : nullptr; |
| for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { |
| Node* u = n->fast_out(i); |
| if (iv_nodes.member(u)) { |
| continue; |
| } |
| if (m == nullptr) { |
| m = new ConvL2INode(clone); |
| _igvn.register_new_node_with_optimizer(m); |
| set_subtree_ctrl(m, false); |
| } |
| _igvn.rehash_node_delayed(u); |
| int nb = u->replace_edge(n, m, &_igvn); |
| --i, imax -= nb; |
| } |
| } |
| return true; |
| } |
| #endif |
| |
| //------------------------------is_counted_loop-------------------------------- |
| bool PhaseIdealLoop::is_counted_loop(Node* x, IdealLoopTree*&loop, BasicType iv_bt) { |
| PhaseGVN *gvn = &_igvn; |
| |
| Node* back_control = loop_exit_control(x, loop); |
| if (back_control == nullptr) { |
| return false; |
| } |
| |
| BoolTest::mask bt = BoolTest::illegal; |
| float cl_prob = 0; |
| Node* incr = nullptr; |
| Node* limit = nullptr; |
| Node* cmp = loop_exit_test(back_control, loop, incr, limit, bt, cl_prob); |
| if (cmp == nullptr || cmp->Opcode() != Op_Cmp(iv_bt)) { |
| return false; // Avoid pointer & float & 64-bit compares |
| } |
| |
| // Trip-counter increment must be commutative & associative. |
| if (incr->Opcode() == Op_Cast(iv_bt)) { |
| incr = incr->in(1); |
| } |
| |
| Node* phi_incr = nullptr; |
| incr = loop_iv_incr(incr, x, loop, phi_incr); |
| if (incr == nullptr) { |
| return false; |
| } |
| |
| Node* trunc1 = nullptr; |
| Node* trunc2 = nullptr; |
| const TypeInteger* iv_trunc_t = nullptr; |
| Node* orig_incr = incr; |
| if (!(incr = CountedLoopNode::match_incr_with_optional_truncation(incr, &trunc1, &trunc2, &iv_trunc_t, iv_bt))) { |
| return false; // Funny increment opcode |
| } |
| assert(incr->Opcode() == Op_Add(iv_bt), "wrong increment code"); |
| |
| Node* xphi = nullptr; |
| Node* stride = loop_iv_stride(incr, loop, xphi); |
| |
| if (stride == nullptr) { |
| return false; |
| } |
| |
| if (xphi->Opcode() == Op_Cast(iv_bt)) { |
| xphi = xphi->in(1); |
| } |
| |
| // Stride must be constant |
| jlong stride_con = stride->get_integer_as_long(iv_bt); |
| assert(stride_con != 0, "missed some peephole opt"); |
| |
| PhiNode* phi = loop_iv_phi(xphi, phi_incr, x, loop); |
| |
| if (phi == nullptr || |
| (trunc1 == nullptr && phi->in(LoopNode::LoopBackControl) != incr) || |
| (trunc1 != nullptr && phi->in(LoopNode::LoopBackControl) != trunc1)) { |
| return false; |
| } |
| |
| Node* iftrue = back_control; |
| uint iftrue_op = iftrue->Opcode(); |
| Node* iff = iftrue->in(0); |
| BoolNode* test = iff->in(1)->as_Bool(); |
| |
| const TypeInteger* limit_t = gvn->type(limit)->is_integer(iv_bt); |
| if (trunc1 != nullptr) { |
| // When there is a truncation, we must be sure that after the truncation |
| // the trip counter will end up higher than the limit, otherwise we are looking |
| // at an endless loop. Can happen with range checks. |
| |
| // Example: |
| // int i = 0; |
| // while (true) |
| // sum + = array[i]; |
| // i++; |
| // i = i && 0x7fff; |
| // } |
| // |
| // If the array is shorter than 0x8000 this exits through a AIOOB |
| // - Counted loop transformation is ok |
| // If the array is longer then this is an endless loop |
| // - No transformation can be done. |
| |
| const TypeInteger* incr_t = gvn->type(orig_incr)->is_integer(iv_bt); |
| if (limit_t->hi_as_long() > incr_t->hi_as_long()) { |
| // if the limit can have a higher value than the increment (before the phi) |
| return false; |
| } |
| } |
| |
| Node *init_trip = phi->in(LoopNode::EntryControl); |
| |
| // If iv trunc type is smaller than int, check for possible wrap. |
| if (!TypeInteger::bottom(iv_bt)->higher_equal(iv_trunc_t)) { |
| assert(trunc1 != nullptr, "must have found some truncation"); |
| |
| // Get a better type for the phi (filtered thru if's) |
| const TypeInteger* phi_ft = filtered_type(phi); |
| |
| // Can iv take on a value that will wrap? |
| // |
| // Ensure iv's limit is not within "stride" of the wrap value. |
| // |
| // Example for "short" type |
| // Truncation ensures value is in the range -32768..32767 (iv_trunc_t) |
| // If the stride is +10, then the last value of the induction |
| // variable before the increment (phi_ft->_hi) must be |
| // <= 32767 - 10 and (phi_ft->_lo) must be >= -32768 to |
| // ensure no truncation occurs after the increment. |
| |
| if (stride_con > 0) { |
| if (iv_trunc_t->hi_as_long() - phi_ft->hi_as_long() < stride_con || |
| iv_trunc_t->lo_as_long() > phi_ft->lo_as_long()) { |
| return false; // truncation may occur |
| } |
| } else if (stride_con < 0) { |
| if (iv_trunc_t->lo_as_long() - phi_ft->lo_as_long() > stride_con || |
| iv_trunc_t->hi_as_long() < phi_ft->hi_as_long()) { |
| return false; // truncation may occur |
| } |
| } |
| // No possibility of wrap so truncation can be discarded |
| // Promote iv type to Int |
| } else { |
| assert(trunc1 == nullptr && trunc2 == nullptr, "no truncation for int"); |
| } |
| |
| if (!condition_stride_ok(bt, stride_con)) { |
| return false; |
| } |
| |
| const TypeInteger* init_t = gvn->type(init_trip)->is_integer(iv_bt); |
| |
| if (stride_con > 0) { |
| if (init_t->lo_as_long() > max_signed_integer(iv_bt) - stride_con) { |
| return false; // cyclic loop |
| } |
| } else { |
| if (init_t->hi_as_long() < min_signed_integer(iv_bt) - stride_con) { |
| return false; // cyclic loop |
| } |
| } |
| |
| if (phi_incr != nullptr && bt != BoolTest::ne) { |
| // check if there is a possibility of IV overflowing after the first increment |
| if (stride_con > 0) { |
| if (init_t->hi_as_long() > max_signed_integer(iv_bt) - stride_con) { |
| return false; |
| } |
| } else { |
| if (init_t->lo_as_long() < min_signed_integer(iv_bt) - stride_con) { |
| return false; |
| } |
| } |
| } |
| |
| // ================================================= |
| // ---- SUCCESS! Found A Trip-Counted Loop! ----- |
| // |
| assert(x->Opcode() == Op_Loop || x->Opcode() == Op_LongCountedLoop, "regular loops only"); |
| C->print_method(PHASE_BEFORE_CLOOPS, 3); |
| |
| // =================================================== |
| // We can only convert this loop to a counted loop if we can guarantee that the iv phi will never overflow at runtime. |
| // This is an implicit assumption taken by some loop optimizations. We therefore must ensure this property at all cost. |
| // At this point, we've already excluded some trivial cases where an overflow could have been proven statically. |
| // But even though we cannot prove that an overflow will *not* happen, we still want to speculatively convert this loop |
| // to a counted loop. This can be achieved by adding additional iv phi overflow checks before the loop. If they fail, |
| // we trap and resume execution before the loop without having executed any iteration of the loop, yet. |
| // |
| // These additional iv phi overflow checks can be inserted as Loop Limit Check Predicates above the Loop Limit Check |
| // Parse Predicate which captures a JVM state just before the entry of the loop. If there is no such Parse Predicate, |
| // we cannot generate a Loop Limit Check Predicate and thus cannot speculatively convert the loop to a counted loop. |
| // |
| // In the following, we only focus on int loops with stride > 0 to keep things simple. The argumentation and proof |
| // for stride < 0 is analogously. For long loops, we would replace max_int with max_long. |
| // |
| // |
| // The loop to be converted does not always need to have the often used shape: |
| // |
| // i = init |
| // i = init loop: |
| // do { ... |
| // // ... equivalent i+=stride |
| // i+=stride <==> if (i < limit) |
| // } while (i < limit); goto loop |
| // exit: |
| // ... |
| // |
| // where the loop exit check uses the post-incremented iv phi and a '<'-operator. |
| // |
| // We could also have '<='-operator (or '>='-operator for negative strides) or use the pre-incremented iv phi value |
| // in the loop exit check: |
| // |
| // i = init |
| // loop: |
| // ... |
| // if (i <= limit) |
| // i+=stride |
| // goto loop |
| // exit: |
| // ... |
| // |
| // Let's define the following terms: |
| // - iv_pre_i: The pre-incremented iv phi before the i-th iteration. |
| // - iv_post_i: The post-incremented iv phi after the i-th iteration. |
| // |
| // The iv_pre_i and iv_post_i have the following relation: |
| // iv_pre_i + stride = iv_post_i |
| // |
| // When converting a loop to a counted loop, we want to have a canonicalized loop exit check of the form: |
| // iv_post_i < adjusted_limit |
| // |
| // If that is not the case, we need to canonicalize the loop exit check by using different values for adjusted_limit: |
| // (LE1) iv_post_i < limit: Already canonicalized. We can directly use limit as adjusted_limit. |
| // -> adjusted_limit = limit. |
| // (LE2) iv_post_i <= limit: |
| // iv_post_i < limit + 1 |
| // -> adjusted limit = limit + 1 |
| // (LE3) iv_pre_i < limit: |
| // iv_pre_i + stride < limit + stride |
| // iv_post_i < limit + stride |
| // -> adjusted_limit = limit + stride |
| // (LE4) iv_pre_i <= limit: |
| // iv_pre_i < limit + 1 |
| // iv_pre_i + stride < limit + stride + 1 |
| // iv_post_i < limit + stride + 1 |
| // -> adjusted_limit = limit + stride + 1 |
| // |
| // Note that: |
| // (AL) limit <= adjusted_limit. |
| // |
| // The following loop invariant has to hold for counted loops with n iterations (i.e. loop exit check true after n-th |
| // loop iteration) and a canonicalized loop exit check to guarantee that no iv_post_i over- or underflows: |
| // (INV) For i = 1..n, min_int <= iv_post_i <= max_int |
| // |
| // To prove (INV), we require the following two conditions/assumptions: |
| // (i): adjusted_limit - 1 + stride <= max_int |
| // (ii): init < limit |
| // |
| // If we can prove (INV), we know that there can be no over- or underflow of any iv phi value. We prove (INV) by |
| // induction by assuming (i) and (ii). |
| // |
| // Proof by Induction |
| // ------------------ |
| // > Base case (i = 1): We show that (INV) holds after the first iteration: |
| // min_int <= iv_post_1 = init + stride <= max_int |
| // Proof: |
| // First, we note that (ii) implies |
| // (iii) init <= limit - 1 |
| // max_int >= adjusted_limit - 1 + stride [using (i)] |
| // >= limit - 1 + stride [using (AL)] |
| // >= init + stride [using (iii)] |
| // >= min_int [using stride > 0, no underflow] |
| // Thus, no overflow happens after the first iteration and (INV) holds for i = 1. |
| // |
| // Note that to prove the base case we need (i) and (ii). |
| // |
| // > Induction Hypothesis (i = j, j > 1): Assume that (INV) holds after the j-th iteration: |
| // min_int <= iv_post_j <= max_int |
| // > Step case (i = j + 1): We show that (INV) also holds after the j+1-th iteration: |
| // min_int <= iv_post_{j+1} = iv_post_j + stride <= max_int |
| // Proof: |
| // If iv_post_j >= adjusted_limit: |
| // We exit the loop after the j-th iteration, and we don't execute the j+1-th iteration anymore. Thus, there is |
| // also no iv_{j+1}. Since (INV) holds for iv_j, there is nothing left to prove. |
| // If iv_post_j < adjusted_limit: |
| // First, we note that: |
| // (iv) iv_post_j <= adjusted_limit - 1 |
| // max_int >= adjusted_limit - 1 + stride [using (i)] |
| // >= iv_post_j + stride [using (iv)] |
| // >= min_int [using stride > 0, no underflow] |
| // |
| // Note that to prove the step case we only need (i). |
| // |
| // Thus, by assuming (i) and (ii), we proved (INV). |
| // |
| // |
| // It is therefore enough to add the following two Loop Limit Check Predicates to check assumptions (i) and (ii): |
| // |
| // (1) Loop Limit Check Predicate for (i): |
| // Using (i): adjusted_limit - 1 + stride <= max_int |
| // |
| // This condition is now restated to use limit instead of adjusted_limit: |
| // |
| // To prevent an overflow of adjusted_limit -1 + stride itself, we rewrite this check to |
| // max_int - stride + 1 >= adjusted_limit |
| // We can merge the two constants into |
| // canonicalized_correction = stride - 1 |
| // which gives us |
| // max_int - canonicalized_correction >= adjusted_limit |
| // |
| // To directly use limit instead of adjusted_limit in the predicate condition, we split adjusted_limit into: |
| // adjusted_limit = limit + limit_correction |
| // Since stride > 0 and limit_correction <= stride + 1, we can restate this with no over- or underflow into: |
| // max_int - canonicalized_correction - limit_correction >= limit |
| // Since canonicalized_correction and limit_correction are both constants, we can replace them with a new constant: |
| // final_correction = canonicalized_correction + limit_correction |
| // which gives us: |
| // |
| // Final predicate condition: |
| // max_int - final_correction >= limit |
| // |
| // (2) Loop Limit Check Predicate for (ii): |
| // Using (ii): init < limit |
| // |
| // This Loop Limit Check Predicate is not required if we can prove at compile time that either: |
| // (2.1) type(init) < type(limit) |
| // In this case, we know: |
| // all possible values of init < all possible values of limit |
| // and we can skip the predicate. |
| // |
| // (2.2) init < limit is already checked before (i.e. found as a dominating check) |
| // In this case, we do not need to re-check the condition and can skip the predicate. |
| // This is often found for while- and for-loops which have the following shape: |
| // |
| // if (init < limit) { // Dominating test. Do not need the Loop Limit Check Predicate below. |
| // i = init; |
| // if (init >= limit) { trap(); } // Here we would insert the Loop Limit Check Predicate |
| // do { |
| // i += stride; |
| // } while (i < limit); |
| // } |
| // |
| // (2.3) init + stride <= max_int |
| // In this case, there is no overflow of the iv phi after the first loop iteration. |
| // In the proof of the base case above we showed that init + stride <= max_int by using assumption (ii): |
| // init < limit |
| // In the proof of the step case above, we did not need (ii) anymore. Therefore, if we already know at |
| // compile time that init + stride <= max_int then we have trivially proven the base case and that |
| // there is no overflow of the iv phi after the first iteration. In this case, we don't need to check (ii) |
| // again and can skip the predicate. |
| |
| |
| // Accounting for (LE3) and (LE4) where we use pre-incremented phis in the loop exit check. |
| const jlong limit_correction_for_pre_iv_exit_check = (phi_incr != nullptr) ? stride_con : 0; |
| |
| // Accounting for (LE2) and (LE4) where we use <= or >= in the loop exit check. |
| const bool includes_limit = (bt == BoolTest::le || bt == BoolTest::ge); |
| const jlong limit_correction_for_le_ge_exit_check = (includes_limit ? (stride_con > 0 ? 1 : -1) : 0); |
| |
| const jlong limit_correction = limit_correction_for_pre_iv_exit_check + limit_correction_for_le_ge_exit_check; |
| const jlong canonicalized_correction = stride_con + (stride_con > 0 ? -1 : 1); |
| const jlong final_correction = canonicalized_correction + limit_correction; |
| |
| int sov = check_stride_overflow(final_correction, limit_t, iv_bt); |
| Node* init_control = x->in(LoopNode::EntryControl); |
| |
| // If sov==0, limit's type always satisfies the condition, for |
| // example, when it is an array length. |
| if (sov != 0) { |
| if (sov < 0) { |
| return false; // Bailout: integer overflow is certain. |
| } |
| // (1) Loop Limit Check Predicate is required because we could not statically prove that |
| // limit + final_correction = adjusted_limit - 1 + stride <= max_int |
| assert(!x->as_Loop()->is_loop_nest_inner_loop(), "loop was transformed"); |
| if (!ParsePredicates::is_loop_limit_check_predicate_proj(init_control)) { |
| // The Loop Limit Check Parse Predicate is not generated if this method trapped here before. |
| #ifdef ASSERT |
| if (TraceLoopLimitCheck) { |
| tty->print("Missing Loop Limit Check Parse Predicate:"); |
| loop->dump_head(); |
| x->dump(1); |
| } |
| #endif |
| return false; |
| } |
| |
| ParsePredicateSuccessProj* loop_limit_check_parse_predicate_proj = init_control->as_IfTrue(); |
| ParsePredicateNode* parse_predicate = loop_limit_check_parse_predicate_proj->in(0)->as_ParsePredicate(); |
| |
| if (!is_dominator(get_ctrl(limit), parse_predicate->in(0))) { |
| return false; |
| } |
| |
| Node* cmp_limit; |
| Node* bol; |
| |
| if (stride_con > 0) { |
| cmp_limit = CmpNode::make(limit, _igvn.integercon(max_signed_integer(iv_bt) - final_correction, iv_bt), iv_bt); |
| bol = new BoolNode(cmp_limit, BoolTest::le); |
| } else { |
| cmp_limit = CmpNode::make(limit, _igvn.integercon(min_signed_integer(iv_bt) - final_correction, iv_bt), iv_bt); |
| bol = new BoolNode(cmp_limit, BoolTest::ge); |
| } |
| |
| insert_loop_limit_check_predicate(loop_limit_check_parse_predicate_proj, cmp_limit, bol); |
| } |
| |
| // (2.3) |
| const bool init_plus_stride_could_overflow = |
| (stride_con > 0 && init_t->hi_as_long() > max_signed_integer(iv_bt) - stride_con) || |
| (stride_con < 0 && init_t->lo_as_long() < min_signed_integer(iv_bt) - stride_con); |
| // (2.1) |
| const bool init_gte_limit = (stride_con > 0 && init_t->hi_as_long() >= limit_t->lo_as_long()) || |
| (stride_con < 0 && init_t->lo_as_long() <= limit_t->hi_as_long()); |
| |
| if (init_gte_limit && // (2.1) |
| ((bt == BoolTest::ne || init_plus_stride_could_overflow) && // (2.3) |
| !has_dominating_loop_limit_check(init_trip, limit, stride_con, iv_bt, init_control))) { // (2.2) |
| // (2) Iteration Loop Limit Check Predicate is required because neither (2.1), (2.2), nor (2.3) holds. |
| // We use the following condition: |
| // - stride > 0: init < limit |
| // - stride < 0: init > limit |
| // |
| // This predicate is always required if we have a non-equal-operator in the loop exit check (where stride = 1 is |
| // a requirement). We transform the loop exit check by using a less-than-operator. By doing so, we must always |
| // check that init < limit. Otherwise, we could have a different number of iterations at runtime. |
| |
| if (!ParsePredicates::is_loop_limit_check_predicate_proj(init_control)) { |
| // The Loop Limit Check Parse Predicate is not generated if this method trapped here before. |
| #ifdef ASSERT |
| if (TraceLoopLimitCheck) { |
| tty->print("Missing Loop Limit Check Parse Predicate:"); |
| loop->dump_head(); |
| x->dump(1); |
| } |
| #endif |
| return false; |
| } |
| ParsePredicateSuccessProj* loop_limit_check_parse_predicate_proj = init_control->as_IfTrue(); |
| ParsePredicateNode* parse_predicate = init_control->in(0)->as_ParsePredicate(); |
| |
| if (!is_dominator(get_ctrl(limit), parse_predicate->in(0)) || |
| !is_dominator(get_ctrl(init_trip), parse_predicate->in(0))) { |
| return false; |
| } |
| |
| Node* cmp_limit; |
| Node* bol; |
| |
| if (stride_con > 0) { |
| cmp_limit = CmpNode::make(init_trip, limit, iv_bt); |
| bol = new BoolNode(cmp_limit, BoolTest::lt); |
| } else { |
| cmp_limit = CmpNode::make(init_trip, limit, iv_bt); |
| bol = new BoolNode(cmp_limit, BoolTest::gt); |
| } |
| |
| insert_loop_limit_check_predicate(loop_limit_check_parse_predicate_proj, cmp_limit, bol); |
| } |
| |
| if (bt == BoolTest::ne) { |
| // Now we need to canonicalize the loop condition if it is 'ne'. |
| assert(stride_con == 1 || stride_con == -1, "simple increment only - checked before"); |
| if (stride_con > 0) { |
| // 'ne' can be replaced with 'lt' only when init < limit. This is ensured by the inserted predicate above. |
| bt = BoolTest::lt; |
| } else { |
| assert(stride_con < 0, "must be"); |
| // 'ne' can be replaced with 'gt' only when init > limit. This is ensured by the inserted predicate above. |
| bt = BoolTest::gt; |
| } |
| } |
| |
| Node* sfpt = nullptr; |
| if (loop->_child == nullptr) { |
| sfpt = find_safepoint(back_control, x, loop); |
| } else { |
| sfpt = iff->in(0); |
| if (sfpt->Opcode() != Op_SafePoint) { |
| sfpt = nullptr; |
| } |
| } |
| |
| if (x->in(LoopNode::LoopBackControl)->Opcode() == Op_SafePoint) { |
| Node* backedge_sfpt = x->in(LoopNode::LoopBackControl); |
| if (((iv_bt == T_INT && LoopStripMiningIter != 0) || |
| iv_bt == T_LONG) && |
| sfpt == nullptr) { |
| // Leaving the safepoint on the backedge and creating a |
| // CountedLoop will confuse optimizations. We can't move the |
| // safepoint around because its jvm state wouldn't match a new |
| // location. Give up on that loop. |
| return false; |
| } |
| if (is_deleteable_safept(backedge_sfpt)) { |
| lazy_replace(backedge_sfpt, iftrue); |
| if (loop->_safepts != nullptr) { |
| loop->_safepts->yank(backedge_sfpt); |
| } |
| loop->_tail = iftrue; |
| } |
| } |
| |
| |
| #ifdef ASSERT |
| if (iv_bt == T_INT && |
| !x->as_Loop()->is_loop_nest_inner_loop() && |
| StressLongCountedLoop > 0 && |
| trunc1 == nullptr && |
| convert_to_long_loop(cmp, phi, loop)) { |
| return false; |
| } |
| #endif |
| |
| Node* adjusted_limit = limit; |
| if (phi_incr != nullptr) { |
| // If compare points directly to the phi we need to adjust |
| // the compare so that it points to the incr. Limit have |
| // to be adjusted to keep trip count the same and we |
| // should avoid int overflow. |
| // |
| // i = init; do {} while(i++ < limit); |
| // is converted to |
| // i = init; do {} while(++i < limit+1); |
| // |
| adjusted_limit = gvn->transform(AddNode::make(limit, stride, iv_bt)); |
| } |
| |
| if (includes_limit) { |
| // The limit check guaranties that 'limit <= (max_jint - stride)' so |
| // we can convert 'i <= limit' to 'i < limit+1' since stride != 0. |
| // |
| Node* one = (stride_con > 0) ? gvn->integercon( 1, iv_bt) : gvn->integercon(-1, iv_bt); |
| adjusted_limit = gvn->transform(AddNode::make(adjusted_limit, one, iv_bt)); |
| if (bt == BoolTest::le) |
| bt = BoolTest::lt; |
| else if (bt == BoolTest::ge) |
| bt = BoolTest::gt; |
| else |
| ShouldNotReachHere(); |
| } |
| set_subtree_ctrl(adjusted_limit, false); |
| |
| // Build a canonical trip test. |
| // Clone code, as old values may be in use. |
| incr = incr->clone(); |
| incr->set_req(1,phi); |
| incr->set_req(2,stride); |
| incr = _igvn.register_new_node_with_optimizer(incr); |
| set_early_ctrl(incr, false); |
| _igvn.rehash_node_delayed(phi); |
| phi->set_req_X( LoopNode::LoopBackControl, incr, &_igvn ); |
| |
| // If phi type is more restrictive than Int, raise to |
| // Int to prevent (almost) infinite recursion in igvn |
| // which can only handle integer types for constants or minint..maxint. |
| if (!TypeInteger::bottom(iv_bt)->higher_equal(phi->bottom_type())) { |
| Node* nphi = PhiNode::make(phi->in(0), phi->in(LoopNode::EntryControl), TypeInteger::bottom(iv_bt)); |
| nphi->set_req(LoopNode::LoopBackControl, phi->in(LoopNode::LoopBackControl)); |
| nphi = _igvn.register_new_node_with_optimizer(nphi); |
| set_ctrl(nphi, get_ctrl(phi)); |
| _igvn.replace_node(phi, nphi); |
| phi = nphi->as_Phi(); |
| } |
| cmp = cmp->clone(); |
| cmp->set_req(1,incr); |
| cmp->set_req(2, adjusted_limit); |
| cmp = _igvn.register_new_node_with_optimizer(cmp); |
| set_ctrl(cmp, iff->in(0)); |
| |
| test = test->clone()->as_Bool(); |
| (*(BoolTest*)&test->_test)._test = bt; |
| test->set_req(1,cmp); |
| _igvn.register_new_node_with_optimizer(test); |
| set_ctrl(test, iff->in(0)); |
| |
| // Replace the old IfNode with a new LoopEndNode |
| Node *lex = _igvn.register_new_node_with_optimizer(BaseCountedLoopEndNode::make(iff->in(0), test, cl_prob, iff->as_If()->_fcnt, iv_bt)); |
| IfNode *le = lex->as_If(); |
| uint dd = dom_depth(iff); |
| set_idom(le, le->in(0), dd); // Update dominance for loop exit |
| set_loop(le, loop); |
| |
| // Get the loop-exit control |
| Node *iffalse = iff->as_If()->proj_out(!(iftrue_op == Op_IfTrue)); |
| |
| // Need to swap loop-exit and loop-back control? |
| if (iftrue_op == Op_IfFalse) { |
| Node *ift2=_igvn.register_new_node_with_optimizer(new IfTrueNode (le)); |
| Node *iff2=_igvn.register_new_node_with_optimizer(new IfFalseNode(le)); |
| |
| loop->_tail = back_control = ift2; |
| set_loop(ift2, loop); |
| set_loop(iff2, get_loop(iffalse)); |
| |
| // Lazy update of 'get_ctrl' mechanism. |
| lazy_replace(iffalse, iff2); |
| lazy_replace(iftrue, ift2); |
| |
| // Swap names |
| iffalse = iff2; |
| iftrue = ift2; |
| } else { |
| _igvn.rehash_node_delayed(iffalse); |
| _igvn.rehash_node_delayed(iftrue); |
| iffalse->set_req_X( 0, le, &_igvn ); |
| iftrue ->set_req_X( 0, le, &_igvn ); |
| } |
| |
| set_idom(iftrue, le, dd+1); |
| set_idom(iffalse, le, dd+1); |
| assert(iff->outcnt() == 0, "should be dead now"); |
| lazy_replace( iff, le ); // fix 'get_ctrl' |
| |
| Node* entry_control = init_control; |
| bool strip_mine_loop = iv_bt == T_INT && |
| loop->_child == nullptr && |
| sfpt != nullptr && |
| !loop->_has_call && |
| is_deleteable_safept(sfpt); |
| IdealLoopTree* outer_ilt = nullptr; |
| if (strip_mine_loop) { |
| outer_ilt = create_outer_strip_mined_loop(test, cmp, init_control, loop, |
| cl_prob, le->_fcnt, entry_control, |
| iffalse); |
| } |
| |
| // Now setup a new CountedLoopNode to replace the existing LoopNode |
| BaseCountedLoopNode *l = BaseCountedLoopNode::make(entry_control, back_control, iv_bt); |
| l->set_unswitch_count(x->as_Loop()->unswitch_count()); // Preserve |
| // The following assert is approximately true, and defines the intention |
| // of can_be_counted_loop. It fails, however, because phase->type |
| // is not yet initialized for this loop and its parts. |
| //assert(l->can_be_counted_loop(this), "sanity"); |
| _igvn.register_new_node_with_optimizer(l); |
| set_loop(l, loop); |
| loop->_head = l; |
| // Fix all data nodes placed at the old loop head. |
| // Uses the lazy-update mechanism of 'get_ctrl'. |
| lazy_replace( x, l ); |
| set_idom(l, entry_control, dom_depth(entry_control) + 1); |
| |
| if (iv_bt == T_INT && (LoopStripMiningIter == 0 || strip_mine_loop)) { |
| // Check for immediately preceding SafePoint and remove |
| if (sfpt != nullptr && (strip_mine_loop || is_deleteable_safept(sfpt))) { |
| if (strip_mine_loop) { |
| Node* outer_le = outer_ilt->_tail->in(0); |
| Node* sfpt_clone = sfpt->clone(); |
| sfpt_clone->set_req(0, iffalse); |
| outer_le->set_req(0, sfpt_clone); |
| |
| Node* polladdr = sfpt_clone->in(TypeFunc::Parms); |
| if (polladdr != nullptr && polladdr->is_Load()) { |
| // Polling load should be pinned outside inner loop. |
| Node* new_polladdr = polladdr->clone(); |
| new_polladdr->set_req(0, iffalse); |
| _igvn.register_new_node_with_optimizer(new_polladdr, polladdr); |
| set_ctrl(new_polladdr, iffalse); |
| sfpt_clone->set_req(TypeFunc::Parms, new_polladdr); |
| } |
| // When this code runs, loop bodies have not yet been populated. |
| const bool body_populated = false; |
| register_control(sfpt_clone, outer_ilt, iffalse, body_populated); |
| set_idom(outer_le, sfpt_clone, dom_depth(sfpt_clone)); |
| } |
| lazy_replace(sfpt, sfpt->in(TypeFunc::Control)); |
| if (loop->_safepts != nullptr) { |
| loop->_safepts->yank(sfpt); |
| } |
| } |
| } |
| |
| #ifdef ASSERT |
| assert(l->is_valid_counted_loop(iv_bt), "counted loop shape is messed up"); |
| assert(l == loop->_head && l->phi() == phi && l->loopexit_or_null() == lex, "" ); |
| #endif |
| #ifndef PRODUCT |
| if (TraceLoopOpts) { |
| tty->print("Counted "); |
| loop->dump_head(); |
| } |
| #endif |
| |
| C->print_method(PHASE_AFTER_CLOOPS, 3); |
| |
| // Capture bounds of the loop in the induction variable Phi before |
| // subsequent transformation (iteration splitting) obscures the |
| // bounds |
| l->phi()->as_Phi()->set_type(l->phi()->Value(&_igvn)); |
| |
| if (strip_mine_loop) { |
| l->mark_strip_mined(); |
| l->verify_strip_mined(1); |
| outer_ilt->_head->as_Loop()->verify_strip_mined(1); |
| loop = outer_ilt; |
| } |
| |
| #ifndef PRODUCT |
| if (x->as_Loop()->is_loop_nest_inner_loop() && iv_bt == T_LONG) { |
| Atomic::inc(&_long_loop_counted_loops); |
| } |
| #endif |
| if (iv_bt == T_LONG && x->as_Loop()->is_loop_nest_outer_loop()) { |
| l->mark_loop_nest_outer_loop(); |
| } |
| |
| return true; |
| } |
| |
| // Check if there is a dominating loop limit check of the form 'init < limit' starting at the loop entry. |
| // If there is one, then we do not need to create an additional Loop Limit Check Predicate. |
| bool PhaseIdealLoop::has_dominating_loop_limit_check(Node* init_trip, Node* limit, const jlong stride_con, |
| const BasicType iv_bt, Node* loop_entry) { |
| // Eagerly call transform() on the Cmp and Bool node to common them up if possible. This is required in order to |
| // successfully find a dominated test with the If node below. |
| Node* cmp_limit; |
| Node* bol; |
| if (stride_con > 0) { |
| cmp_limit = _igvn.transform(CmpNode::make(init_trip, limit, iv_bt)); |
| bol = _igvn.transform(new BoolNode(cmp_limit, BoolTest::lt)); |
| } else { |
| cmp_limit = _igvn.transform(CmpNode::make(init_trip, limit, iv_bt)); |
| bol = _igvn.transform(new BoolNode(cmp_limit, BoolTest::gt)); |
| } |
| |
| // Check if there is already a dominating init < limit check. If so, we do not need a Loop Limit Check Predicate. |
| IfNode* iff = new IfNode(loop_entry, bol, PROB_MIN, COUNT_UNKNOWN); |
| // Also add fake IfProj nodes in order to call transform() on the newly created IfNode. |
| IfFalseNode* if_false = new IfFalseNode(iff); |
| IfTrueNode* if_true = new IfTrueNode(iff); |
| Node* dominated_iff = _igvn.transform(iff); |
| // ConI node? Found dominating test (IfNode::dominated_by() returns a ConI node). |
| const bool found_dominating_test = dominated_iff != nullptr && dominated_iff->is_ConI(); |
| |
| // Kill the If with its projections again in the next IGVN round by cutting it off from the graph. |
| _igvn.replace_input_of(iff, 0, C->top()); |
| _igvn.replace_input_of(iff, 1, C->top()); |
| return found_dominating_test; |
| } |
| |
| //----------------------exact_limit------------------------------------------- |
| Node* PhaseIdealLoop::exact_limit( IdealLoopTree *loop ) { |
| assert(loop->_head->is_CountedLoop(), ""); |
| CountedLoopNode *cl = loop->_head->as_CountedLoop(); |
| assert(cl->is_valid_counted_loop(T_INT), ""); |
| |
| if (ABS(cl->stride_con()) == 1 || |
| cl->limit()->Opcode() == Op_LoopLimit) { |
| // Old code has exact limit (it could be incorrect in case of int overflow). |
| // Loop limit is exact with stride == 1. And loop may already have exact limit. |
| return cl->limit(); |
| } |
| Node *limit = nullptr; |
| #ifdef ASSERT |
| BoolTest::mask bt = cl->loopexit()->test_trip(); |
| assert(bt == BoolTest::lt || bt == BoolTest::gt, "canonical test is expected"); |
| #endif |
| if (cl->has_exact_trip_count()) { |
| // Simple case: loop has constant boundaries. |
| // Use jlongs to avoid integer overflow. |
| int stride_con = cl->stride_con(); |
| jlong init_con = cl->init_trip()->get_int(); |
| jlong limit_con = cl->limit()->get_int(); |
| julong trip_cnt = cl->trip_count(); |
| jlong final_con = init_con + trip_cnt*stride_con; |
| int final_int = (int)final_con; |
| // The final value should be in integer range since the loop |
| // is counted and the limit was checked for overflow. |
| assert(final_con == (jlong)final_int, "final value should be integer"); |
| limit = _igvn.intcon(final_int); |
| } else { |
| // Create new LoopLimit node to get exact limit (final iv value). |
| limit = new LoopLimitNode(C, cl->init_trip(), cl->limit(), cl->stride()); |
| register_new_node(limit, cl->in(LoopNode::EntryControl)); |
| } |
| assert(limit != nullptr, "sanity"); |
| return limit; |
| } |
| |
| //------------------------------Ideal------------------------------------------ |
| // Return a node which is more "ideal" than the current node. |
| // Attempt to convert into a counted-loop. |
| Node *LoopNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
| if (!can_be_counted_loop(phase) && !is_OuterStripMinedLoop()) { |
| phase->C->set_major_progress(); |
| } |
| return RegionNode::Ideal(phase, can_reshape); |
| } |
| |
| #ifdef ASSERT |
| void LoopNode::verify_strip_mined(int expect_skeleton) const { |
| const OuterStripMinedLoopNode* outer = nullptr; |
| const CountedLoopNode* inner = nullptr; |
| if (is_strip_mined()) { |
| if (!is_valid_counted_loop(T_INT)) { |
| return; // Skip malformed counted loop |
| } |
| assert(is_CountedLoop(), "no Loop should be marked strip mined"); |
| inner = as_CountedLoop(); |
| outer = inner->in(LoopNode::EntryControl)->as_OuterStripMinedLoop(); |
| } else if (is_OuterStripMinedLoop()) { |
| outer = this->as_OuterStripMinedLoop(); |
| inner = outer->unique_ctrl_out()->as_CountedLoop(); |
| assert(inner->is_valid_counted_loop(T_INT) && inner->is_strip_mined(), "OuterStripMinedLoop should have been removed"); |
| assert(!is_strip_mined(), "outer loop shouldn't be marked strip mined"); |
| } |
| if (inner != nullptr || outer != nullptr) { |
| assert(inner != nullptr && outer != nullptr, "missing loop in strip mined nest"); |
| Node* outer_tail = outer->in(LoopNode::LoopBackControl); |
| Node* outer_le = outer_tail->in(0); |
| assert(outer_le->Opcode() == Op_OuterStripMinedLoopEnd, "tail of outer loop should be an If"); |
| Node* sfpt = outer_le->in(0); |
| assert(sfpt->Opcode() == Op_SafePoint, "where's the safepoint?"); |
| Node* inner_out = sfpt->in(0); |
| CountedLoopEndNode* cle = inner_out->in(0)->as_CountedLoopEnd(); |
| assert(cle == inner->loopexit_or_null(), "mismatch"); |
| bool has_skeleton = outer_le->in(1)->bottom_type()->singleton() && outer_le->in(1)->bottom_type()->is_int()->get_con() == 0; |
| if (has_skeleton) { |
| assert(expect_skeleton == 1 || expect_skeleton == -1, "unexpected skeleton node"); |
| assert(outer->outcnt() == 2, "only control nodes"); |
| } else { |
| assert(expect_skeleton == 0 || expect_skeleton == -1, "no skeleton node?"); |
| uint phis = 0; |
| uint be_loads = 0; |
| Node* be = inner->in(LoopNode::LoopBackControl); |
| for (DUIterator_Fast imax, i = inner->fast_outs(imax); i < imax; i++) { |
| Node* u = inner->fast_out(i); |
| if (u->is_Phi()) { |
| phis++; |
| for (DUIterator_Fast jmax, j = be->fast_outs(jmax); j < jmax; j++) { |
| Node* n = be->fast_out(j); |
| if (n->is_Load()) { |
| assert(n->in(0) == be || n->find_prec_edge(be) > 0, "should be on the backedge"); |
| do { |
| n = n->raw_out(0); |
| } while (!n->is_Phi()); |
| if (n == u) { |
| be_loads++; |
| break; |
| } |
| } |
| } |
| } |
| } |
| assert(be_loads <= phis, "wrong number phis that depends on a pinned load"); |
| for (DUIterator_Fast imax, i = outer->fast_outs(imax); i < imax; i++) { |
| Node* u = outer->fast_out(i); |
| assert(u == outer || u == inner || u->is_Phi(), "nothing between inner and outer loop"); |
| } |
| uint stores = 0; |
| for (DUIterator_Fast imax, i = inner_out->fast_outs(imax); i < imax; i++) { |
| Node* u = inner_out->fast_out(i); |
| if (u->is_Store()) { |
| stores++; |
| } |
| } |
| // Late optimization of loads on backedge can cause Phi of outer loop to be eliminated but Phi of inner loop is |
| // not guaranteed to be optimized out. |
| assert(outer->outcnt() >= phis + 2 - be_loads && outer->outcnt() <= phis + 2 + stores + 1, "only phis"); |
| } |
| assert(sfpt->outcnt() == 1, "no data node"); |
| assert(outer_tail->outcnt() == 1 || !has_skeleton, "no data node"); |
| } |
| } |
| #endif |
| |
| //============================================================================= |
| //------------------------------Ideal------------------------------------------ |
| // Return a node which is more "ideal" than the current node. |
| // Attempt to convert into a counted-loop. |
| Node *CountedLoopNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
| return RegionNode::Ideal(phase, can_reshape); |
| } |
| |
| //------------------------------dump_spec-------------------------------------- |
| // Dump special per-node info |
| #ifndef PRODUCT |
| void CountedLoopNode::dump_spec(outputStream *st) const { |
| LoopNode::dump_spec(st); |
| if (stride_is_con()) { |
| st->print("stride: %d ",stride_con()); |
| } |
| if (is_pre_loop ()) st->print("pre of N%d" , _main_idx); |
| if (is_main_loop()) st->print("main of N%d", _idx); |
| if (is_post_loop()) st->print("post of N%d", _main_idx); |
| if (is_strip_mined()) st->print(" strip mined"); |
| } |
| #endif |
| |
| //============================================================================= |
| jlong BaseCountedLoopEndNode::stride_con() const { |
| return stride()->bottom_type()->is_integer(bt())->get_con_as_long(bt()); |
| } |
| |
| |
| BaseCountedLoopEndNode* BaseCountedLoopEndNode::make(Node* control, Node* test, float prob, float cnt, BasicType bt) { |
| if (bt == T_INT) { |
| return new CountedLoopEndNode(control, test, prob, cnt); |
| } |
| assert(bt == T_LONG, "unsupported"); |
| return new LongCountedLoopEndNode(control, test, prob, cnt); |
| } |
| |
| //============================================================================= |
| //------------------------------Value----------------------------------------- |
| const Type* LoopLimitNode::Value(PhaseGVN* phase) const { |
| const Type* init_t = phase->type(in(Init)); |
| const Type* limit_t = phase->type(in(Limit)); |
| const Type* stride_t = phase->type(in(Stride)); |
| // Either input is TOP ==> the result is TOP |
| if (init_t == Type::TOP) return Type::TOP; |
| if (limit_t == Type::TOP) return Type::TOP; |
| if (stride_t == Type::TOP) return Type::TOP; |
| |
| int stride_con = stride_t->is_int()->get_con(); |
| if (stride_con == 1) |
| return bottom_type(); // Identity |
| |
| if (init_t->is_int()->is_con() && limit_t->is_int()->is_con()) { |
| // Use jlongs to avoid integer overflow. |
| jlong init_con = init_t->is_int()->get_con(); |
| jlong limit_con = limit_t->is_int()->get_con(); |
| int stride_m = stride_con - (stride_con > 0 ? 1 : -1); |
| jlong trip_count = (limit_con - init_con + stride_m)/stride_con; |
| jlong final_con = init_con + stride_con*trip_count; |
| int final_int = (int)final_con; |
| // The final value should be in integer range since the loop |
| // is counted and the limit was checked for overflow. |
| // Assert checks for overflow only if all input nodes are ConINodes, as during CCP |
| // there might be a temporary overflow from PhiNodes see JDK-8309266 |
| assert((in(Init)->is_ConI() && in(Limit)->is_ConI() && in(Stride)->is_ConI()) ? final_con == (jlong)final_int : true, "final value should be integer"); |
| if (final_con == (jlong)final_int) { |
| return TypeInt::make(final_int); |
| } else { |
| return bottom_type(); |
| } |
| } |
| |
| return bottom_type(); // TypeInt::INT |
| } |
| |
| //------------------------------Ideal------------------------------------------ |
| // Return a node which is more "ideal" than the current node. |
| Node *LoopLimitNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
| if (phase->type(in(Init)) == Type::TOP || |
| phase->type(in(Limit)) == Type::TOP || |
| phase->type(in(Stride)) == Type::TOP) |
| return nullptr; // Dead |
| |
| int stride_con = phase->type(in(Stride))->is_int()->get_con(); |
| if (stride_con == 1) |
| return nullptr; // Identity |
| |
| if (in(Init)->is_Con() && in(Limit)->is_Con()) |
| return nullptr; // Value |
| |
| // Delay following optimizations until all loop optimizations |
| // done to keep Ideal graph simple. |
| if (!can_reshape || !phase->C->post_loop_opts_phase()) { |
| return nullptr; |
| } |
| |
| const TypeInt* init_t = phase->type(in(Init) )->is_int(); |
| const TypeInt* limit_t = phase->type(in(Limit))->is_int(); |
| int stride_p; |
| jlong lim, ini; |
| julong max; |
| if (stride_con > 0) { |
| stride_p = stride_con; |
| lim = limit_t->_hi; |
| ini = init_t->_lo; |
| max = (julong)max_jint; |
| } else { |
| stride_p = -stride_con; |
| lim = init_t->_hi; |
| ini = limit_t->_lo; |
| max = (julong)min_jint; |
| } |
| julong range = lim - ini + stride_p; |
| if (range <= max) { |
| // Convert to integer expression if it is not overflow. |
| Node* stride_m = phase->intcon(stride_con - (stride_con > 0 ? 1 : -1)); |
| Node *range = phase->transform(new SubINode(in(Limit), in(Init))); |
| Node *bias = phase->transform(new AddINode(range, stride_m)); |
| Node *trip = phase->transform(new DivINode(0, bias, in(Stride))); |
| Node *span = phase->transform(new MulINode(trip, in(Stride))); |
| return new AddINode(span, in(Init)); // exact limit |
| } |
| |
| if (is_power_of_2(stride_p) || // divisor is 2^n |
| !Matcher::has_match_rule(Op_LoopLimit)) { // or no specialized Mach node? |
| // Convert to long expression to avoid integer overflow |
| // and let igvn optimizer convert this division. |
| // |
| Node* init = phase->transform( new ConvI2LNode(in(Init))); |
| Node* limit = phase->transform( new ConvI2LNode(in(Limit))); |
| Node* stride = phase->longcon(stride_con); |
| Node* stride_m = phase->longcon(stride_con - (stride_con > 0 ? 1 : -1)); |
| |
| Node *range = phase->transform(new SubLNode(limit, init)); |
| Node *bias = phase->transform(new AddLNode(range, stride_m)); |
| Node *span; |
| if (stride_con > 0 && is_power_of_2(stride_p)) { |
| // bias >= 0 if stride >0, so if stride is 2^n we can use &(-stride) |
| // and avoid generating rounding for division. Zero trip guard should |
| // guarantee that init < limit but sometimes the guard is missing and |
| // we can get situation when init > limit. Note, for the empty loop |
| // optimization zero trip guard is generated explicitly which leaves |
| // only RCE predicate where exact limit is used and the predicate |
| // will simply fail forcing recompilation. |
| Node* neg_stride = phase->longcon(-stride_con); |
| span = phase->transform(new AndLNode(bias, neg_stride)); |
| } else { |
| Node *trip = phase->transform(new DivLNode(0, bias, stride)); |
| span = phase->transform(new MulLNode(trip, stride)); |
| } |
| // Convert back to int |
| Node *span_int = phase->transform(new ConvL2INode(span)); |
| return new AddINode(span_int, in(Init)); // exact limit |
| } |
| |
| return nullptr; // No progress |
| } |
| |
| //------------------------------Identity--------------------------------------- |
| // If stride == 1 return limit node. |
| Node* LoopLimitNode::Identity(PhaseGVN* phase) { |
| int stride_con = phase->type(in(Stride))->is_int()->get_con(); |
| if (stride_con == 1 || stride_con == -1) |
| return in(Limit); |
| return this; |
| } |
| |
| //============================================================================= |
| //----------------------match_incr_with_optional_truncation-------------------- |
| // Match increment with optional truncation: |
| // CHAR: (i+1)&0x7fff, BYTE: ((i+1)<<8)>>8, or SHORT: ((i+1)<<16)>>16 |
| // Return null for failure. Success returns the increment node. |
| Node* CountedLoopNode::match_incr_with_optional_truncation(Node* expr, Node** trunc1, Node** trunc2, |
| const TypeInteger** trunc_type, |
| BasicType bt) { |
| // Quick cutouts: |
| if (expr == nullptr || expr->req() != 3) return nullptr; |
| |
| Node *t1 = nullptr; |
| Node *t2 = nullptr; |
| Node* n1 = expr; |
| int n1op = n1->Opcode(); |
| const TypeInteger* trunc_t = TypeInteger::bottom(bt); |
| |
| if (bt == T_INT) { |
| // Try to strip (n1 & M) or (n1 << N >> N) from n1. |
| if (n1op == Op_AndI && |
| n1->in(2)->is_Con() && |
| n1->in(2)->bottom_type()->is_int()->get_con() == 0x7fff) { |
| // %%% This check should match any mask of 2**K-1. |
| t1 = n1; |
| n1 = t1->in(1); |
| n1op = n1->Opcode(); |
| trunc_t = TypeInt::CHAR; |
| } else if (n1op == Op_RShiftI && |
| n1->in(1) != nullptr && |
| n1->in(1)->Opcode() == Op_LShiftI && |
| n1->in(2) == n1->in(1)->in(2) && |
| n1->in(2)->is_Con()) { |
| jint shift = n1->in(2)->bottom_type()->is_int()->get_con(); |
| // %%% This check should match any shift in [1..31]. |
| if (shift == 16 || shift == 8) { |
| t1 = n1; |
| t2 = t1->in(1); |
| n1 = t2->in(1); |
| n1op = n1->Opcode(); |
| if (shift == 16) { |
| trunc_t = TypeInt::SHORT; |
| } else if (shift == 8) { |
| trunc_t = TypeInt::BYTE; |
| } |
| } |
| } |
| } |
| |
| // If (maybe after stripping) it is an AddI, we won: |
| if (n1op == Op_Add(bt)) { |
| *trunc1 = t1; |
| *trunc2 = t2; |
| *trunc_type = trunc_t; |
| return n1; |
| } |
| |
| // failed |
| return nullptr; |
| } |
| |
| LoopNode* CountedLoopNode::skip_strip_mined(int expect_skeleton) { |
| if (is_strip_mined() && in(EntryControl) != nullptr && in(EntryControl)->is_OuterStripMinedLoop()) { |
| verify_strip_mined(expect_skeleton); |
| return in(EntryControl)->as_Loop(); |
| } |
| return this; |
| } |
| |
| OuterStripMinedLoopNode* CountedLoopNode::outer_loop() const { |
| assert(is_strip_mined(), "not a strip mined loop"); |
| Node* c = in(EntryControl); |
| if (c == nullptr || c->is_top() || !c->is_OuterStripMinedLoop()) { |
| return nullptr; |
| } |
| return c->as_OuterStripMinedLoop(); |
| } |
| |
| IfTrueNode* OuterStripMinedLoopNode::outer_loop_tail() const { |
| Node* c = in(LoopBackControl); |
| if (c == nullptr || c->is_top()) { |
| return nullptr; |
| } |
| return c->as_IfTrue(); |
| } |
| |
| IfTrueNode* CountedLoopNode::outer_loop_tail() const { |
| LoopNode* l = outer_loop(); |
| if (l == nullptr) { |
| return nullptr; |
| } |
| return l->outer_loop_tail(); |
| } |
| |
| OuterStripMinedLoopEndNode* OuterStripMinedLoopNode::outer_loop_end() const { |
| IfTrueNode* proj = outer_loop_tail(); |
| if (proj == nullptr) { |
| return nullptr; |
| } |
| Node* c = proj->in(0); |
| if (c == nullptr || c->is_top() || c->outcnt() != 2) { |
| return nullptr; |
| } |
| return c->as_OuterStripMinedLoopEnd(); |
| } |
| |
| OuterStripMinedLoopEndNode* CountedLoopNode::outer_loop_end() const { |
| LoopNode* l = outer_loop(); |
| if (l == nullptr) { |
| return nullptr; |
| } |
| return l->outer_loop_end(); |
| } |
| |
| IfFalseNode* OuterStripMinedLoopNode::outer_loop_exit() const { |
| IfNode* le = outer_loop_end(); |
| if (le == nullptr) { |
| return nullptr; |
| } |
| Node* c = le->proj_out_or_null(false); |
| if (c == nullptr) { |
| return nullptr; |
| } |
| return c->as_IfFalse(); |
| } |
| |
| IfFalseNode* CountedLoopNode::outer_loop_exit() const { |
| LoopNode* l = outer_loop(); |
| if (l == nullptr) { |
| return nullptr; |
| } |
| return l->outer_loop_exit(); |
| } |
| |
| SafePointNode* OuterStripMinedLoopNode::outer_safepoint() const { |
| IfNode* le = outer_loop_end(); |
| if (le == nullptr) { |
| return nullptr; |
| } |
| Node* c = le->in(0); |
| if (c == nullptr || c->is_top()) { |
| return nullptr; |
| } |
| assert(c->Opcode() == Op_SafePoint, "broken outer loop"); |
| return c->as_SafePoint(); |
| } |
| |
| SafePointNode* CountedLoopNode::outer_safepoint() const { |
| LoopNode* l = outer_loop(); |
| if (l == nullptr) { |
| return nullptr; |
| } |
| return l->outer_safepoint(); |
| } |
| |
| Node* CountedLoopNode::skip_predicates_from_entry(Node* ctrl) { |
| while (ctrl != nullptr && ctrl->is_Proj() && ctrl->in(0) != nullptr && ctrl->in(0)->is_If() && |
| !is_zero_trip_guard_if(ctrl->in(0)->as_If()) && |
| (ctrl->in(0)->as_If()->proj_out_or_null(1-ctrl->as_Proj()->_con) == nullptr || |
| (ctrl->in(0)->as_If()->proj_out(1-ctrl->as_Proj()->_con)->outcnt() == 1 && |
| ctrl->in(0)->as_If()->proj_out(1-ctrl->as_Proj()->_con)->unique_out()->Opcode() == Op_Halt))) { |
| ctrl = ctrl->in(0)->in(0); |
| } |
| |
| return ctrl; |
| } |
| |
| bool CountedLoopNode::is_zero_trip_guard_if(const IfNode* iff) { |
| if (iff->in(1) == nullptr || !iff->in(1)->is_Bool()) { |
| return false; |
| } |
| if (iff->in(1)->in(1) == nullptr || iff->in(1)->in(1)->Opcode() != Op_CmpI) { |
| return false; |
| } |
| if (iff->in(1)->in(1)->in(1) != nullptr && iff->in(1)->in(1)->in(1)->Opcode() == Op_OpaqueZeroTripGuard) { |
| return true; |
| } |
| if (iff->in(1)->in(1)->in(2) != nullptr && iff->in(1)->in(1)->in(2)->Opcode() == Op_OpaqueZeroTripGuard) { |
| return true; |
| } |
| return false; |
| } |
| |
| Node* CountedLoopNode::skip_predicates() { |
| Node* ctrl = in(LoopNode::EntryControl); |
| if (is_main_loop()) { |
| ctrl = skip_strip_mined()->in(LoopNode::EntryControl); |
| } |
| if (is_main_loop() || is_post_loop()) { |
| return skip_predicates_from_entry(ctrl); |
| } |
| return ctrl; |
| } |
| |
| |
| int CountedLoopNode::stride_con() const { |
| CountedLoopEndNode* cle = loopexit_or_null(); |
| return cle != nullptr ? cle->stride_con() : 0; |
| } |
| |
| BaseCountedLoopNode* BaseCountedLoopNode::make(Node* entry, Node* backedge, BasicType bt) { |
| if (bt == T_INT) { |
| return new CountedLoopNode(entry, backedge); |
| } |
| assert(bt == T_LONG, "unsupported"); |
| return new LongCountedLoopNode(entry, backedge); |
| } |
| |
| void OuterStripMinedLoopNode::fix_sunk_stores(CountedLoopEndNode* inner_cle, LoopNode* inner_cl, PhaseIterGVN* igvn, |
| PhaseIdealLoop* iloop) { |
| Node* cle_out = inner_cle->proj_out(false); |
| Node* cle_tail = inner_cle->proj_out(true); |
| if (cle_out->outcnt() > 1) { |
| // Look for chains of stores that were sunk |
| // out of the inner loop and are in the outer loop |
| for (DUIterator_Fast imax, i = cle_out->fast_outs(imax); i < imax; i++) { |
| Node* u = cle_out->fast_out(i); |
| if (u->is_Store()) { |
| int alias_idx = igvn->C->get_alias_index(u->adr_type()); |
| Node* first = u; |
| for (;;) { |
| Node* next = first->in(MemNode::Memory); |
| if (!next->is_Store() || next->in(0) != cle_out) { |
| break; |
| } |
| assert(igvn->C->get_alias_index(next->adr_type()) == alias_idx, ""); |
| first = next; |
| } |
| Node* last = u; |
| for (;;) { |
| Node* next = nullptr; |
| for (DUIterator_Fast jmax, j = last->fast_outs(jmax); j < jmax; j++) { |
| Node* uu = last->fast_out(j); |
| if (uu->is_Store() && uu->in(0) == cle_out) { |
| assert(next == nullptr, "only one in the outer loop"); |
| next = uu; |
| assert(igvn->C->get_alias_index(next->adr_type()) == alias_idx, ""); |
| } |
| } |
| if (next == nullptr) { |
| break; |
| } |
| last = next; |
| } |
| Node* phi = nullptr; |
| for (DUIterator_Fast jmax, j = inner_cl->fast_outs(jmax); j < jmax; j++) { |
| Node* uu = inner_cl->fast_out(j); |
| if (uu->is_Phi()) { |
| Node* be = uu->in(LoopNode::LoopBackControl); |
| if (be->is_Store() && be->in(0) == inner_cl->in(LoopNode::LoopBackControl)) { |
| assert(igvn->C->get_alias_index(uu->adr_type()) != alias_idx && igvn->C->get_alias_index(uu->adr_type()) != Compile::AliasIdxBot, "unexpected store"); |
| } |
| if (be == last || be == first->in(MemNode::Memory)) { |
| assert(igvn->C->get_alias_index(uu->adr_type()) == alias_idx || igvn->C->get_alias_index(uu->adr_type()) == Compile::AliasIdxBot, "unexpected alias"); |
| assert(phi == nullptr, "only one phi"); |
| phi = uu; |
| } |
| } |
| } |
| #ifdef ASSERT |
| for (DUIterator_Fast jmax, j = inner_cl->fast_outs(jmax); j < jmax; j++) { |
| Node* uu = inner_cl->fast_out(j); |
| if (uu->is_Phi() && uu->bottom_type() == Type::MEMORY) { |
| if (uu->adr_type() == igvn->C->get_adr_type(igvn->C->get_alias_index(u->adr_type()))) { |
| assert(phi == uu, "what's that phi?"); |
| } else if (uu->adr_type() == TypePtr::BOTTOM) { |
| Node* n = uu->in(LoopNode::LoopBackControl); |
| uint limit = igvn->C->live_nodes(); |
| uint i = 0; |
| while (n != uu) { |
| i++; |
| assert(i < limit, "infinite loop"); |
| if (n->is_Proj()) { |
| n = n->in(0); |
| } else if (n->is_SafePoint() || n->is_MemBar()) { |
| n = n->in(TypeFunc::Memory); |
| } else if (n->is_Phi()) { |
| n = n->in(1); |
| } else if (n->is_MergeMem()) { |
| n = n->as_MergeMem()->memory_at(igvn->C->get_alias_index(u->adr_type())); |
| } else if (n->is_Store() || n->is_LoadStore() || n->is_ClearArray()) { |
| n = n->in(MemNode::Memory); |
| } else { |
| n->dump(); |
| ShouldNotReachHere(); |
| } |
| } |
| } |
| } |
| } |
| #endif |
| if (phi == nullptr) { |
| // If an entire chains was sunk, the |
| // inner loop has no phi for that memory |
| // slice, create one for the outer loop |
| phi = PhiNode::make(inner_cl, first->in(MemNode::Memory), Type::MEMORY, |
| igvn->C->get_adr_type(igvn->C->get_alias_index(u->adr_type()))); |
| phi->set_req(LoopNode::LoopBackControl, last); |
| phi = register_new_node(phi, inner_cl, igvn, iloop); |
| igvn->replace_input_of(first, MemNode::Memory, phi); |
| } else { |
| // Or fix the outer loop fix to include |
| // that chain of stores. |
| Node* be = phi->in(LoopNode::LoopBackControl); |
| assert(!(be->is_Store() && be->in(0) == inner_cl->in(LoopNode::LoopBackControl)), "store on the backedge + sunk stores: unsupported"); |
| if (be == first->in(MemNode::Memory)) { |
| if (be == phi->in(LoopNode::LoopBackControl)) { |
| igvn->replace_input_of(phi, LoopNode::LoopBackControl, last); |
| } else { |
| igvn->replace_input_of(be, MemNode::Memory, last); |
| } |
| } else { |
| #ifdef ASSERT |
| if (be == phi->in(LoopNode::LoopBackControl)) { |
| assert(phi->in(LoopNode::LoopBackControl) == last, ""); |
| } else { |
| assert(be->in(MemNode::Memory) == last, ""); |
| } |
| #endif |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| void OuterStripMinedLoopNode::adjust_strip_mined_loop(PhaseIterGVN* igvn) { |
| // Look for the outer & inner strip mined loop, reduce number of |
| // iterations of the inner loop, set exit condition of outer loop, |
| // construct required phi nodes for outer loop. |
| CountedLoopNode* inner_cl = unique_ctrl_out()->as_CountedLoop(); |
| assert(inner_cl->is_strip_mined(), "inner loop should be strip mined"); |
| if (LoopStripMiningIter == 0) { |
| remove_outer_loop_and_safepoint(igvn); |
| return; |
| } |
| if (LoopStripMiningIter == 1) { |
| transform_to_counted_loop(igvn, nullptr); |
| return; |
| } |
| Node* inner_iv_phi = inner_cl->phi(); |
| if (inner_iv_phi == nullptr) { |
| IfNode* outer_le = outer_loop_end(); |
| Node* iff = igvn->transform(new IfNode(outer_le->in(0), outer_le->in(1), outer_le->_prob, outer_le->_fcnt)); |
| igvn->replace_node(outer_le, iff); |
| inner_cl->clear_strip_mined(); |
| return; |
| } |
| CountedLoopEndNode* inner_cle = inner_cl->loopexit(); |
| |
| int stride = inner_cl->stride_con(); |
| jlong scaled_iters_long = ((jlong)LoopStripMiningIter) * ABS(stride); |
| int scaled_iters = (int)scaled_iters_long; |
| int short_scaled_iters = LoopStripMiningIterShortLoop* ABS(stride); |
| const TypeInt* inner_iv_t = igvn->type(inner_iv_phi)->is_int(); |
| jlong iter_estimate = (jlong)inner_iv_t->_hi - (jlong)inner_iv_t->_lo; |
| assert(iter_estimate > 0, "broken"); |
| if ((jlong)scaled_iters != scaled_iters_long || iter_estimate <= short_scaled_iters) { |
| // Remove outer loop and safepoint (too few iterations) |
| remove_outer_loop_and_safepoint(igvn); |
| return; |
| } |
| if (iter_estimate <= scaled_iters_long) { |
| // We would only go through one iteration of |
| // the outer loop: drop the outer loop but |
| // keep the safepoint so we don't run for |
| // too long without a safepoint |
| IfNode* outer_le = outer_loop_end(); |
| Node* iff = igvn->transform(new IfNode(outer_le->in(0), outer_le->in(1), outer_le->_prob, outer_le->_fcnt)); |
| igvn->replace_node(outer_le, iff); |
| inner_cl->clear_strip_mined(); |
| return; |
| } |
| |
| Node* cle_tail = inner_cle->proj_out(true); |
| ResourceMark rm; |
| Node_List old_new; |
| if (cle_tail->outcnt() > 1) { |
| // Look for nodes on backedge of inner loop and clone them |
| Unique_Node_List backedge_nodes; |
| for (DUIterator_Fast imax, i = cle_tail->fast_outs(imax); i < imax; i++) { |
| Node* u = cle_tail->fast_out(i); |
| if (u != inner_cl) { |
| assert(!u->is_CFG(), "control flow on the backedge?"); |
| backedge_nodes.push(u); |
| } |
| } |
| uint last = igvn->C->unique(); |
| for (uint next = 0; next < backedge_nodes.size(); next++) { |
| Node* n = backedge_nodes.at(next); |
| old_new.map(n->_idx, n->clone()); |
| for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { |
| Node* u = n->fast_out(i); |
| assert(!u->is_CFG(), "broken"); |
| if (u->_idx >= last) { |
| continue; |
| } |
| if (!u->is_Phi()) { |
| backedge_nodes.push(u); |
| } else { |
| assert(u->in(0) == inner_cl, "strange phi on the backedge"); |
| } |
| } |
| } |
| // Put the clones on the outer loop backedge |
| Node* le_tail = outer_loop_tail(); |
| for (uint next = 0; next < backedge_nodes.size(); next++) { |
| Node *n = old_new[backedge_nodes.at(next)->_idx]; |
| for (uint i = 1; i < n->req(); i++) { |
| if (n->in(i) != nullptr && old_new[n->in(i)->_idx] != nullptr) { |
| n->set_req(i, old_new[n->in(i)->_idx]); |
| } |
| } |
| if (n->in(0) != nullptr && n->in(0) == cle_tail) { |
| n->set_req(0, le_tail); |
| } |
| igvn->register_new_node_with_optimizer(n); |
| } |
| } |
| |
| Node* iv_phi = nullptr; |
| // Make a clone of each phi in the inner loop |
| // for the outer loop |
| for (uint i = 0; i < inner_cl->outcnt(); i++) { |
| Node* u = inner_cl->raw_out(i); |
| if (u->is_Phi()) { |
| assert(u->in(0) == inner_cl, "inconsistent"); |
| Node* phi = u->clone(); |
| phi->set_req(0, this); |
| Node* be = old_new[phi->in(LoopNode::LoopBackControl)->_idx]; |
| if (be != nullptr) { |
| phi->set_req(LoopNode::LoopBackControl, be); |
| } |
| phi = igvn->transform(phi); |
| igvn->replace_input_of(u, LoopNode::EntryControl, phi); |
| if (u == inner_iv_phi) { |
| iv_phi = phi; |
| } |
| } |
| } |
| |
| if (iv_phi != nullptr) { |
| // Now adjust the inner loop's exit condition |
| Node* limit = inner_cl->limit(); |
| // If limit < init for stride > 0 (or limit > init for stride < 0), |
| // the loop body is run only once. Given limit - init (init - limit resp.) |
| // would be negative, the unsigned comparison below would cause |
| // the loop body to be run for LoopStripMiningIter. |
| Node* max = nullptr; |
| if (stride > 0) { |
| max = MaxNode::max_diff_with_zero(limit, iv_phi, TypeInt::INT, *igvn); |
| } else { |
| max = MaxNode::max_diff_with_zero(iv_phi, limit, TypeInt::INT, *igvn); |
| } |
| // sub is positive and can be larger than the max signed int |
| // value. Use an unsigned min. |
| Node* const_iters = igvn->intcon(scaled_iters); |
| Node* min = MaxNode::unsigned_min(max, const_iters, TypeInt::make(0, scaled_iters, Type::WidenMin), *igvn); |
| // min is the number of iterations for the next inner loop execution: |
| // unsigned_min(max(limit - iv_phi, 0), scaled_iters) if stride > 0 |
| // unsigned_min(max(iv_phi - limit, 0), scaled_iters) if stride < 0 |
| |
| Node* new_limit = nullptr; |
| if (stride > 0) { |
| new_limit = igvn->transform(new AddINode(min, iv_phi)); |
| } else { |
| new_limit = igvn->transform(new SubINode(iv_phi, min)); |
| } |
| Node* inner_cmp = inner_cle->cmp_node(); |
| Node* inner_bol = inner_cle->in(CountedLoopEndNode::TestValue); |
| Node* outer_bol = inner_bol; |
| // cmp node for inner loop may be shared |
| inner_cmp = inner_cmp->clone(); |
| inner_cmp->set_req(2, new_limit); |
| inner_bol = inner_bol->clone(); |
| inner_bol->set_req(1, igvn->transform(inner_cmp)); |
| igvn->replace_input_of(inner_cle, CountedLoopEndNode::TestValue, igvn->transform(inner_bol)); |
| // Set the outer loop's exit condition too |
| igvn->replace_input_of(outer_loop_end(), 1, outer_bol); |
| } else { |
| assert(false, "should be able to adjust outer loop"); |
| IfNode* outer_le = outer_loop_end(); |
| Node* iff = igvn->transform(new IfNode(outer_le->in(0), outer_le->in(1), outer_le->_prob, outer_le->_fcnt)); |
| igvn->replace_node(outer_le, iff); |
| inner_cl->clear_strip_mined(); |
| } |
| } |
| |
| void OuterStripMinedLoopNode::transform_to_counted_loop(PhaseIterGVN* igvn, PhaseIdealLoop* iloop) { |
| CountedLoopNode* inner_cl = unique_ctrl_out()->as_CountedLoop(); |
| CountedLoopEndNode* cle = inner_cl->loopexit(); |
| Node* inner_test = cle->in(1); |
| IfNode* outer_le = outer_loop_end(); |
| CountedLoopEndNode* inner_cle = inner_cl->loopexit(); |
| Node* safepoint = outer_safepoint(); |
| |
| fix_sunk_stores(inner_cle, inner_cl, igvn, iloop); |
| |
| // make counted loop exit test always fail |
| ConINode* zero = igvn->intcon(0); |
| if (iloop != nullptr) { |
| iloop->set_ctrl(zero, igvn->C->root()); |
| } |
| igvn->replace_input_of(cle, 1, zero); |
| // replace outer loop end with CountedLoopEndNode with formers' CLE's exit test |
| Node* new_end = new CountedLoopEndNode(outer_le->in(0), inner_test, cle->_prob, cle->_fcnt); |
| register_control(new_end, inner_cl, outer_le->in(0), igvn, iloop); |
| if (iloop == nullptr) { |
| igvn->replace_node(outer_le, new_end); |
| } else { |
| iloop->lazy_replace(outer_le, new_end); |
| } |
| // the backedge of the inner loop must be rewired to the new loop end |
| Node* backedge = cle->proj_out(true); |
| igvn->replace_input_of(backedge, 0, new_end); |
| if (iloop != nullptr) { |
| iloop->set_idom(backedge, new_end, iloop->dom_depth(new_end) + 1); |
| } |
| // make the outer loop go away |
| igvn->replace_input_of(in(LoopBackControl), 0, igvn->C->top()); |
| igvn->replace_input_of(this, LoopBackControl, igvn->C->top()); |
| inner_cl->clear_strip_mined(); |
| if (iloop != nullptr) { |
| Unique_Node_List wq; |
| wq.push(safepoint); |
| |
| IdealLoopTree* outer_loop_ilt = iloop->get_loop(this); |
| IdealLoopTree* loop = iloop->get_loop(inner_cl); |
| |
| for (uint i = 0; i < wq.size(); i++) { |
| Node* n = wq.at(i); |
| for (uint j = 0; j < n->req(); ++j) { |
| Node* in = n->in(j); |
| if (in == nullptr || in->is_CFG()) { |
| continue; |
| } |
| if (iloop->get_loop(iloop->get_ctrl(in)) != outer_loop_ilt) { |
| continue; |
| } |
| assert(!loop->_body.contains(in), ""); |
| loop->_body.push(in); |
| wq.push(in); |
| } |
| } |
| iloop->set_loop(safepoint, loop); |
| loop->_body.push(safepoint); |
| iloop->set_loop(safepoint->in(0), loop); |
| loop->_body.push(safepoint->in(0)); |
| outer_loop_ilt->_tail = igvn->C->top(); |
| } |
| } |
| |
| void OuterStripMinedLoopNode::remove_outer_loop_and_safepoint(PhaseIterGVN* igvn) const { |
| CountedLoopNode* inner_cl = unique_ctrl_out()->as_CountedLoop(); |
| Node* outer_sfpt = outer_safepoint(); |
| Node* outer_out = outer_loop_exit(); |
| igvn->replace_node(outer_out, outer_sfpt->in(0)); |
| igvn->replace_input_of(outer_sfpt, 0, igvn->C->top()); |
| inner_cl->clear_strip_mined(); |
| } |
| |
| Node* OuterStripMinedLoopNode::register_new_node(Node* node, LoopNode* ctrl, PhaseIterGVN* igvn, PhaseIdealLoop* iloop) { |
| if (iloop == nullptr) { |
| return igvn->transform(node); |
| } |
| iloop->register_new_node(node, ctrl); |
| return node; |
| } |
| |
| Node* OuterStripMinedLoopNode::register_control(Node* node, Node* loop, Node* idom, PhaseIterGVN* igvn, |
| PhaseIdealLoop* iloop) { |
| if (iloop == nullptr) { |
| return igvn->transform(node); |
| } |
| iloop->register_control(node, iloop->get_loop(loop), idom); |
| return node; |
| } |
| |
| const Type* OuterStripMinedLoopEndNode::Value(PhaseGVN* phase) const { |
| if (!in(0)) return Type::TOP; |
| if (phase->type(in(0)) == Type::TOP) |
| return Type::TOP; |
| |
| // Until expansion, the loop end condition is not set so this should not constant fold. |
| if (is_expanded(phase)) { |
| return IfNode::Value(phase); |
| } |
| |
| return TypeTuple::IFBOTH; |
| } |
| |
| bool OuterStripMinedLoopEndNode::is_expanded(PhaseGVN *phase) const { |
| // The outer strip mined loop head only has Phi uses after expansion |
| if (phase->is_IterGVN()) { |
| Node* backedge = proj_out_or_null(true); |
| if (backedge != nullptr) { |
| Node* head = backedge->unique_ctrl_out_or_null(); |
| if (head != nullptr && head->is_OuterStripMinedLoop()) { |
| if (head->find_out_with(Op_Phi) != nullptr) { |
| return true; |
| } |
| } |
| } |
| } |
| return false; |
| } |
| |
| Node *OuterStripMinedLoopEndNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
| if (remove_dead_region(phase, can_reshape)) return this; |
| |
| return nullptr; |
| } |
| |
| //------------------------------filtered_type-------------------------------- |
| // Return a type based on condition control flow |
| // A successful return will be a type that is restricted due |
| // to a series of dominating if-tests, such as: |
| // if (i < 10) { |
| // if (i > 0) { |
| // here: "i" type is [1..10) |
| // } |
| // } |
| // or a control flow merge |
| // if (i < 10) { |
| // do { |
| // phi( , ) -- at top of loop type is [min_int..10) |
| // i = ? |
| // } while ( i < 10) |
| // |
| const TypeInt* PhaseIdealLoop::filtered_type( Node *n, Node* n_ctrl) { |
| assert(n && n->bottom_type()->is_int(), "must be int"); |
| const TypeInt* filtered_t = nullptr; |
| if (!n->is_Phi()) { |
| assert(n_ctrl != nullptr || n_ctrl == C->top(), "valid control"); |
| filtered_t = filtered_type_from_dominators(n, n_ctrl); |
| |
| } else { |
| Node* phi = n->as_Phi(); |
| Node* region = phi->in(0); |
| assert(n_ctrl == nullptr || n_ctrl == region, "ctrl parameter must be region"); |
| if (region && region != C->top()) { |
| for (uint i = 1; i < phi->req(); i++) { |
| Node* val = phi->in(i); |
| Node* use_c = region->in(i); |
| const TypeInt* val_t = filtered_type_from_dominators(val, use_c); |
| if (val_t != nullptr) { |
| if (filtered_t == nullptr) { |
| filtered_t = val_t; |
| } else { |
| filtered_t = filtered_t->meet(val_t)->is_int(); |
| } |
| } |
| } |
| } |
| } |
| const TypeInt* n_t = _igvn.type(n)->is_int(); |
| if (filtered_t != nullptr) { |
| n_t = n_t->join(filtered_t)->is_int(); |
| } |
| return n_t; |
| } |
| |
| |
| //------------------------------filtered_type_from_dominators-------------------------------- |
| // Return a possibly more restrictive type for val based on condition control flow of dominators |
| const TypeInt* PhaseIdealLoop::filtered_type_from_dominators( Node* val, Node *use_ctrl) { |
| if (val->is_Con()) { |
| return val->bottom_type()->is_int(); |
| } |
| uint if_limit = 10; // Max number of dominating if's visited |
| const TypeInt* rtn_t = nullptr; |
| |
| if (use_ctrl && use_ctrl != C->top()) { |
| Node* val_ctrl = get_ctrl(val); |
| uint val_dom_depth = dom_depth(val_ctrl); |
| Node* pred = use_ctrl; |
| uint if_cnt = 0; |
| while (if_cnt < if_limit) { |
| if ((pred->Opcode() == Op_IfTrue || pred->Opcode() == Op_IfFalse)) { |
| if_cnt++; |
| const TypeInt* if_t = IfNode::filtered_int_type(&_igvn, val, pred); |
| if (if_t != nullptr) { |
| if (rtn_t == nullptr) { |
| rtn_t = if_t; |
| } else { |
| rtn_t = rtn_t->join(if_t)->is_int(); |
| } |
| } |
| } |
| pred = idom(pred); |
| if (pred == nullptr || pred == C->top()) { |
| break; |
| } |
| // Stop if going beyond definition block of val |
| if (dom_depth(pred) < val_dom_depth) { |
| break; |
| } |
| } |
| } |
| return rtn_t; |
| } |
| |
| |
| //------------------------------dump_spec-------------------------------------- |
| // Dump special per-node info |
| #ifndef PRODUCT |
| void CountedLoopEndNode::dump_spec(outputStream *st) const { |
| if( in(TestValue) != nullptr && in(TestValue)->is_Bool() ) { |
| BoolTest bt( test_trip()); // Added this for g++. |
| |
| st->print("["); |
| bt.dump_on(st); |
| st->print("]"); |
| } |
| st->print(" "); |
| IfNode::dump_spec(st); |
| } |
| #endif |
| |
| //============================================================================= |
| //------------------------------is_member-------------------------------------- |
| // Is 'l' a member of 'this'? |
| bool IdealLoopTree::is_member(const IdealLoopTree *l) const { |
| while( l->_nest > _nest ) l = l->_parent; |
| return l == this; |
| } |
| |
| //------------------------------set_nest--------------------------------------- |
| // Set loop tree nesting depth. Accumulate _has_call bits. |
| int IdealLoopTree::set_nest( uint depth ) { |
| assert(depth <= SHRT_MAX, "sanity"); |
| _nest = depth; |
| int bits = _has_call; |
| if( _child ) bits |= _child->set_nest(depth+1); |
| if( bits ) _has_call = 1; |
| if( _next ) bits |= _next ->set_nest(depth ); |
| return bits; |
| } |
| |
| //------------------------------split_fall_in---------------------------------- |
| // Split out multiple fall-in edges from the loop header. Move them to a |
| // private RegionNode before the loop. This becomes the loop landing pad. |
| void IdealLoopTree::split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt ) { |
| PhaseIterGVN &igvn = phase->_igvn; |
| uint i; |
| |
| // Make a new RegionNode to be the landing pad. |
| RegionNode* landing_pad = new RegionNode(fall_in_cnt + 1); |
| phase->set_loop(landing_pad,_parent); |
| // If _head was irreducible loop entry, landing_pad may now be too |
| landing_pad->set_loop_status(_head->as_Region()->loop_status()); |
| // Gather all the fall-in control paths into the landing pad |
| uint icnt = fall_in_cnt; |
| uint oreq = _head->req(); |
| for( i = oreq-1; i>0; i-- ) |
| if( !phase->is_member( this, _head->in(i) ) ) |
| landing_pad->set_req(icnt--,_head->in(i)); |
| |
| // Peel off PhiNode edges as well |
| for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) { |
| Node *oj = _head->fast_out(j); |
| if( oj->is_Phi() ) { |
| PhiNode* old_phi = oj->as_Phi(); |
| assert( old_phi->region() == _head, "" ); |
| igvn.hash_delete(old_phi); // Yank from hash before hacking edges |
| Node *p = PhiNode::make_blank(landing_pad, old_phi); |
| uint icnt = fall_in_cnt; |
| for( i = oreq-1; i>0; i-- ) { |
| if( !phase->is_member( this, _head->in(i) ) ) { |
| p->init_req(icnt--, old_phi->in(i)); |
| // Go ahead and clean out old edges from old phi |
| old_phi->del_req(i); |
| } |
| } |
| // Search for CSE's here, because ZKM.jar does a lot of |
| // loop hackery and we need to be a little incremental |
| // with the CSE to avoid O(N^2) node blow-up. |
| Node *p2 = igvn.hash_find_insert(p); // Look for a CSE |
| if( p2 ) { // Found CSE |
| p->destruct(&igvn); // Recover useless new node |
| p = p2; // Use old node |
| } else { |
| igvn.register_new_node_with_optimizer(p, old_phi); |
| } |
| // Make old Phi refer to new Phi. |
| old_phi->add_req(p); |
| // Check for the special case of making the old phi useless and |
| // disappear it. In JavaGrande I have a case where this useless |
| // Phi is the loop limit and prevents recognizing a CountedLoop |
| // which in turn prevents removing an empty loop. |
| Node *id_old_phi = old_phi->Identity(&igvn); |
| if( id_old_phi != old_phi ) { // Found a simple identity? |
| // Note that I cannot call 'replace_node' here, because |
| // that will yank the edge from old_phi to the Region and |
| // I'm mid-iteration over the Region's uses. |
| for (DUIterator_Last imin, i = old_phi->last_outs(imin); i >= imin; ) { |
| Node* use = old_phi->last_out(i); |
| igvn.rehash_node_delayed(use); |
| uint uses_found = 0; |
| for (uint j = 0; j < use->len(); j++) { |
| if (use->in(j) == old_phi) { |
| if (j < use->req()) use->set_req (j, id_old_phi); |
| else use->set_prec(j, id_old_phi); |
| uses_found++; |
| } |
| } |
| i -= uses_found; // we deleted 1 or more copies of this edge |
| } |
| } |
| igvn._worklist.push(old_phi); |
| } |
| } |
| // Finally clean out the fall-in edges from the RegionNode |
| for( i = oreq-1; i>0; i-- ) { |
| if( !phase->is_member( this, _head->in(i) ) ) { |
| _head->del_req(i); |
| } |
| } |
| igvn.rehash_node_delayed(_head); |
| // Transform landing pad |
| igvn.register_new_node_with_optimizer(landing_pad, _head); |
| // Insert landing pad into the header |
| _head->add_req(landing_pad); |
| } |
| |
| //------------------------------split_outer_loop------------------------------- |
| // Split out the outermost loop from this shared header. |
| void IdealLoopTree::split_outer_loop( PhaseIdealLoop *phase ) { |
| PhaseIterGVN &igvn = phase->_igvn; |
| |
| // Find index of outermost loop; it should also be my tail. |
| uint outer_idx = 1; |
| while( _head->in(outer_idx) != _tail ) outer_idx++; |
| |
| // Make a LoopNode for the outermost loop. |
| Node *ctl = _head->in(LoopNode::EntryControl); |
| Node *outer = new LoopNode( ctl, _head->in(outer_idx) ); |
| outer = igvn.register_new_node_with_optimizer(outer, _head); |
| phase->set_created_loop_node(); |
| |
| // Outermost loop falls into '_head' loop |
| _head->set_req(LoopNode::EntryControl, outer); |
| _head->del_req(outer_idx); |
| // Split all the Phis up between '_head' loop and 'outer' loop. |
| for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) { |
| Node *out = _head->fast_out(j); |
| if( out->is_Phi() ) { |
| PhiNode *old_phi = out->as_Phi(); |
| assert( old_phi->region() == _head, "" ); |
| Node *phi = PhiNode::make_blank(outer, old_phi); |
| phi->init_req(LoopNode::EntryControl, old_phi->in(LoopNode::EntryControl)); |
| phi->init_req(LoopNode::LoopBackControl, old_phi->in(outer_idx)); |
| phi = igvn.register_new_node_with_optimizer(phi, old_phi); |
| // Make old Phi point to new Phi on the fall-in path |
| igvn.replace_input_of(old_phi, LoopNode::EntryControl, phi); |
| old_phi->del_req(outer_idx); |
| } |
| } |
| |
| // Use the new loop head instead of the old shared one |
| _head = outer; |
| phase->set_loop(_head, this); |
| } |
| |
| //------------------------------fix_parent------------------------------------- |
| static void fix_parent( IdealLoopTree *loop, IdealLoopTree *parent ) { |
| loop->_parent = parent; |
| if( loop->_child ) fix_parent( loop->_child, loop ); |
| if( loop->_next ) fix_parent( loop->_next , parent ); |
| } |
| |
| //------------------------------estimate_path_freq----------------------------- |
| static float estimate_path_freq( Node *n ) { |
| // Try to extract some path frequency info |
| IfNode *iff; |
| for( int i = 0; i < 50; i++ ) { // Skip through a bunch of uncommon tests |
| uint nop = n->Opcode(); |
| if( nop == Op_SafePoint ) { // Skip any safepoint |
| n = n->in(0); |
| continue; |
| } |
| if( nop == Op_CatchProj ) { // Get count from a prior call |
| // Assume call does not always throw exceptions: means the call-site |
| // count is also the frequency of the fall-through path. |
| assert( n->is_CatchProj(), "" ); |
| if( ((CatchProjNode*)n)->_con != CatchProjNode::fall_through_index ) |
| return 0.0f; // Assume call exception path is rare |
| Node *call = n->in(0)->in(0)->in(0); |
| assert( call->is_Call(), "expect a call here" ); |
| const JVMState *jvms = ((CallNode*)call)->jvms(); |
| ciMethodData* methodData = jvms->method()->method_data(); |
| if (!methodData->is_mature()) return 0.0f; // No call-site data |
| ciProfileData* data = methodData->bci_to_data(jvms->bci()); |
| if ((data == nullptr) || !data->is_CounterData()) { |
| // no call profile available, try call's control input |
| n = n->in(0); |
| continue; |
| } |
| return data->as_CounterData()->count()/FreqCountInvocations; |
| } |
| // See if there's a gating IF test |
| Node *n_c = n->in(0); |
| if( !n_c->is_If() ) break; // No estimate available |
| iff = n_c->as_If(); |
| if( iff->_fcnt != COUNT_UNKNOWN ) // Have a valid count? |
| // Compute how much count comes on this path |
| return ((nop == Op_IfTrue) ? iff->_prob : 1.0f - iff->_prob) * iff->_fcnt; |
| // Have no count info. Skip dull uncommon-trap like branches. |
| if( (nop == Op_IfTrue && iff->_prob < PROB_LIKELY_MAG(5)) || |
| (nop == Op_IfFalse && iff->_prob > PROB_UNLIKELY_MAG(5)) ) |
| break; |
| // Skip through never-taken branch; look for a real loop exit. |
| n = iff->in(0); |
| } |
| return 0.0f; // No estimate available |
| } |
| |
| //------------------------------merge_many_backedges--------------------------- |
| // Merge all the backedges from the shared header into a private Region. |
| // Feed that region as the one backedge to this loop. |
| void IdealLoopTree::merge_many_backedges( PhaseIdealLoop *phase ) { |
| uint i; |
| |
| // Scan for the top 2 hottest backedges |
| float hotcnt = 0.0f; |
| float warmcnt = 0.0f; |
| uint hot_idx = 0; |
| // Loop starts at 2 because slot 1 is the fall-in path |
| for( i = 2; i < _head->req(); i++ ) { |
| float cnt = estimate_path_freq(_head->in(i)); |
| if( cnt > hotcnt ) { // Grab hottest path |
| warmcnt = hotcnt; |
| hotcnt = cnt; |
| hot_idx = i; |
| } else if( cnt > warmcnt ) { // And 2nd hottest path |
| warmcnt = cnt; |
| } |
| } |
| |
| // See if the hottest backedge is worthy of being an inner loop |
| // by being much hotter than the next hottest backedge. |
| if( hotcnt <= 0.0001 || |
| hotcnt < 2.0*warmcnt ) hot_idx = 0;// No hot backedge |
| |
| // Peel out the backedges into a private merge point; peel |
| // them all except optionally hot_idx. |
| PhaseIterGVN &igvn = phase->_igvn; |
| |
| Node *hot_tail = nullptr; |
| // Make a Region for the merge point |
| Node *r = new RegionNode(1); |
| for( i = 2; i < _head->req(); i++ ) { |
| if( i != hot_idx ) |
| r->add_req( _head->in(i) ); |
| else hot_tail = _head->in(i); |
| } |
| igvn.register_new_node_with_optimizer(r, _head); |
| // Plug region into end of loop _head, followed by hot_tail |
| while( _head->req() > 3 ) _head->del_req( _head->req()-1 ); |
| igvn.replace_input_of(_head, 2, r); |
| if( hot_idx ) _head->add_req(hot_tail); |
| |
| // Split all the Phis up between '_head' loop and the Region 'r' |
| for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) { |
| Node *out = _head->fast_out(j); |
| if( out->is_Phi() ) { |
| PhiNode* n = out->as_Phi(); |
| igvn.hash_delete(n); // Delete from hash before hacking edges |
| Node *hot_phi = nullptr; |
| Node *phi = new PhiNode(r, n->type(), n->adr_type()); |
| // Check all inputs for the ones to peel out |
| uint j = 1; |
| for( uint i = 2; i < n->req(); i++ ) { |
| if( i != hot_idx ) |
| phi->set_req( j++, n->in(i) ); |
| else hot_phi = n->in(i); |
| } |
| // Register the phi but do not transform until whole place transforms |
| igvn.register_new_node_with_optimizer(phi, n); |
| // Add the merge phi to the old Phi |
| while( n->req() > 3 ) n->del_req( n->req()-1 ); |
| igvn.replace_input_of(n, 2, phi); |
| if( hot_idx ) n->add_req(hot_phi); |
| } |
| } |
| |
| |
| // Insert a new IdealLoopTree inserted below me. Turn it into a clone |
| // of self loop tree. Turn self into a loop headed by _head and with |
| // tail being the new merge point. |
| IdealLoopTree *ilt = new IdealLoopTree( phase, _head, _tail ); |
| phase->set_loop(_tail,ilt); // Adjust tail |
| _tail = r; // Self's tail is new merge point |
| phase->set_loop(r,this); |
| ilt->_child = _child; // New guy has my children |
| _child = ilt; // Self has new guy as only child |
| ilt->_parent = this; // new guy has self for parent |
| ilt->_nest = _nest; // Same nesting depth (for now) |
| |
| // Starting with 'ilt', look for child loop trees using the same shared |
| // header. Flatten these out; they will no longer be loops in the end. |
| IdealLoopTree **pilt = &_child; |
| while( ilt ) { |
| if( ilt->_head == _head ) { |
| uint i; |
| for( i = 2; i < _head->req(); i++ ) |
| if( _head->in(i) == ilt->_tail ) |
| break; // Still a loop |
| if( i == _head->req() ) { // No longer a loop |
| // Flatten ilt. Hang ilt's "_next" list from the end of |
| // ilt's '_child' list. Move the ilt's _child up to replace ilt. |
| IdealLoopTree **cp = &ilt->_child; |
| while( *cp ) cp = &(*cp)->_next; // Find end of child list |
| *cp = ilt->_next; // Hang next list at end of child list |
| *pilt = ilt->_child; // Move child up to replace ilt |
| ilt->_head = nullptr; // Flag as a loop UNIONED into parent |
| ilt = ilt->_child; // Repeat using new ilt |
| continue; // do not advance over ilt->_child |
| } |
| assert( ilt->_tail == hot_tail, "expected to only find the hot inner loop here" ); |
| phase->set_loop(_head,ilt); |
| } |
| pilt = &ilt->_child; // Advance to next |
| ilt = *pilt; |
| } |
| |
| if( _child ) fix_parent( _child, this ); |
| } |
| |
| //------------------------------beautify_loops--------------------------------- |
| // Split shared headers and insert loop landing pads. |
| // Insert a LoopNode to replace the RegionNode. |
| // Return TRUE if loop tree is structurally changed. |
| bool IdealLoopTree::beautify_loops( PhaseIdealLoop *phase ) { |
| bool result = false; |
| // Cache parts in locals for easy |
| PhaseIterGVN &igvn = phase->_igvn; |
| |
| igvn.hash_delete(_head); // Yank from hash before hacking edges |
| |
| // Check for multiple fall-in paths. Peel off a landing pad if need be. |
| int fall_in_cnt = 0; |
| for( uint i = 1; i < _head->req(); i++ ) |
| if( !phase->is_member( this, _head->in(i) ) ) |
| fall_in_cnt++; |
| assert( fall_in_cnt, "at least 1 fall-in path" ); |
| if( fall_in_cnt > 1 ) // Need a loop landing pad to merge fall-ins |
| split_fall_in( phase, fall_in_cnt ); |
| |
| // Swap inputs to the _head and all Phis to move the fall-in edge to |
| // the left. |
| fall_in_cnt = 1; |
| while( phase->is_member( this, _head->in(fall_in_cnt) ) ) |
| fall_in_cnt++; |
| if( fall_in_cnt > 1 ) { |
| // Since I am just swapping inputs I do not need to update def-use info |
| Node *tmp = _head->in(1); |
| igvn.rehash_node_delayed(_head); |
| _head->set_req( 1, _head->in(fall_in_cnt) ); |
| _head->set_req( fall_in_cnt, tmp ); |
| // Swap also all Phis |
| for (DUIterator_Fast imax, i = _head->fast_outs(imax); i < imax; i++) { |
| Node* phi = _head->fast_out(i); |
| if( phi->is_Phi() ) { |
| igvn.rehash_node_delayed(phi); // Yank from hash before hacking edges |
| tmp = phi->in(1); |
| phi->set_req( 1, phi->in(fall_in_cnt) ); |
| phi->set_req( fall_in_cnt, tmp ); |
| } |
| } |
| } |
| assert( !phase->is_member( this, _head->in(1) ), "left edge is fall-in" ); |
| assert( phase->is_member( this, _head->in(2) ), "right edge is loop" ); |
| |
| // If I am a shared header (multiple backedges), peel off the many |
| // backedges into a private merge point and use the merge point as |
| // the one true backedge. |
| if (_head->req() > 3) { |
| // Merge the many backedges into a single backedge but leave |
| // the hottest backedge as separate edge for the following peel. |
| if (!_irreducible) { |
| merge_many_backedges( phase ); |
| } |
| |
| // When recursively beautify my children, split_fall_in can change |
| // loop tree structure when I am an irreducible loop. Then the head |
| // of my children has a req() not bigger than 3. Here we need to set |
| // result to true to catch that case in order to tell the caller to |
| // rebuild loop tree. See issue JDK-8244407 for details. |
| result = true; |
| } |
| |
| // If I have one hot backedge, peel off myself loop. |
| // I better be the outermost loop. |
| if (_head->req() > 3 && !_irreducible) { |
| split_outer_loop( phase ); |
| result = true; |
| |
| } else if (!_head->is_Loop() && !_irreducible) { |
| // Make a new LoopNode to replace the old loop head |
| Node *l = new LoopNode( _head->in(1), _head->in(2) ); |
| l = igvn.register_new_node_with_optimizer(l, _head); |
| phase->set_created_loop_node(); |
| // Go ahead and replace _head |
| phase->_igvn.replace_node( _head, l ); |
| _head = l; |
| phase->set_loop(_head, this); |
| } |
| |
| // Now recursively beautify nested loops |
| if( _child ) result |= _child->beautify_loops( phase ); |
| if( _next ) result |= _next ->beautify_loops( phase ); |
| return result; |
| } |
| |
| //------------------------------allpaths_check_safepts---------------------------- |
| // Allpaths backwards scan from loop tail, terminating each path at first safepoint |
| // encountered. Helper for check_safepts. |
| void IdealLoopTree::allpaths_check_safepts(VectorSet &visited, Node_List &stack) { |
| assert(stack.size() == 0, "empty stack"); |
| stack.push(_tail); |
| visited.clear(); |
| visited.set(_tail->_idx); |
| while (stack.size() > 0) { |
| Node* n = stack.pop(); |
| if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) { |
| // Terminate this path |
| } else if (n->Opcode() == Op_SafePoint) { |
| if (_phase->get_loop(n) != this) { |
| if (_required_safept == nullptr) _required_safept = new Node_List(); |
| _required_safept->push(n); // save the one closest to the tail |
| } |
| // Terminate this path |
| } else { |
| uint start = n->is_Region() ? 1 : 0; |
| uint end = n->is_Region() && !n->is_Loop() ? n->req() : start + 1; |
| for (uint i = start; i < end; i++) { |
| Node* in = n->in(i); |
| assert(in->is_CFG(), "must be"); |
| if (!visited.test_set(in->_idx) && is_member(_phase->get_loop(in))) { |
| stack.push(in); |
| } |
| } |
| } |
| } |
| } |
| |
| //------------------------------check_safepts---------------------------- |
| // Given dominators, try to find loops with calls that must always be |
| // executed (call dominates loop tail). These loops do not need non-call |
| // safepoints (ncsfpt). |
| // |
| // A complication is that a safepoint in a inner loop may be needed |
| // by an outer loop. In the following, the inner loop sees it has a |
| // call (block 3) on every path from the head (block 2) to the |
| // backedge (arc 3->2). So it deletes the ncsfpt (non-call safepoint) |
| // in block 2, _but_ this leaves the outer loop without a safepoint. |
| // |
| // entry 0 |
| // | |
| // v |
| // outer 1,2 +->1 |
| // | | |
| // | v |
| // | 2<---+ ncsfpt in 2 |
| // |_/|\ | |
| // | v | |
| // inner 2,3 / 3 | call in 3 |
| // / | | |
| // v +--+ |
| // exit 4 |
| // |
| // |
| // This method creates a list (_required_safept) of ncsfpt nodes that must |
| // be protected is created for each loop. When a ncsfpt maybe deleted, it |
| // is first looked for in the lists for the outer loops of the current loop. |
| // |
| // The insights into the problem: |
| // A) counted loops are okay |
| // B) innermost loops are okay (only an inner loop can delete |
| // a ncsfpt needed by an outer loop) |
| // C) a loop is immune from an inner loop deleting a safepoint |
| // if the loop has a call on the idom-path |
| // D) a loop is also immune if it has a ncsfpt (non-call safepoint) on the |
| // idom-path that is not in a nested loop |
| // E) otherwise, an ncsfpt on the idom-path that is nested in an inner |
| // loop needs to be prevented from deletion by an inner loop |
| // |
| // There are two analyses: |
| // 1) The first, and cheaper one, scans the loop body from |
| // tail to head following the idom (immediate dominator) |
| // chain, looking for the cases (C,D,E) above. |
| // Since inner loops are scanned before outer loops, there is summary |
| // information about inner loops. Inner loops can be skipped over |
| // when the tail of an inner loop is encountered. |
| // |
| // 2) The second, invoked if the first fails to find a call or ncsfpt on |
| // the idom path (which is rare), scans all predecessor control paths |
| // from the tail to the head, terminating a path when a call or sfpt |
| // is encountered, to find the ncsfpt's that are closest to the tail. |
| // |
| void IdealLoopTree::check_safepts(VectorSet &visited, Node_List &stack) { |
| // Bottom up traversal |
| IdealLoopTree* ch = _child; |
| if (_child) _child->check_safepts(visited, stack); |
| if (_next) _next ->check_safepts(visited, stack); |
| |
| if (!_head->is_CountedLoop() && !_has_sfpt && _parent != nullptr && !_irreducible) { |
| bool has_call = false; // call on dom-path |
| bool has_local_ncsfpt = false; // ncsfpt on dom-path at this loop depth |
| Node* nonlocal_ncsfpt = nullptr; // ncsfpt on dom-path at a deeper depth |
| // Scan the dom-path nodes from tail to head |
| for (Node* n = tail(); n != _head; n = _phase->idom(n)) { |
| if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) { |
| has_call = true; |
| _has_sfpt = 1; // Then no need for a safept! |
| break; |
| } else if (n->Opcode() == Op_SafePoint) { |
| if (_phase->get_loop(n) == this) { |
| has_local_ncsfpt = true; |
| break; |
| } |
| if (nonlocal_ncsfpt == nullptr) { |
| nonlocal_ncsfpt = n; // save the one closest to the tail |
| } |
| } else { |
| IdealLoopTree* nlpt = _phase->get_loop(n); |
| if (this != nlpt) { |
| // If at an inner loop tail, see if the inner loop has already |
| // recorded seeing a call on the dom-path (and stop.) If not, |
| // jump to the head of the inner loop. |
| assert(is_member(nlpt), "nested loop"); |
| Node* tail = nlpt->_tail; |
| if (tail->in(0)->is_If()) tail = tail->in(0); |
| if (n == tail) { |
| // If inner loop has call on dom-path, so does outer loop |
| if (nlpt->_has_sfpt) { |
| has_call = true; |
| _has_sfpt = 1; |
| break; |
| } |
| // Skip to head of inner loop |
| assert(_phase->is_dominator(_head, nlpt->_head), "inner head dominated by outer head"); |
| n = nlpt->_head; |
| if (_head == n) { |
| // this and nlpt (inner loop) have the same loop head. This should not happen because |
| // during beautify_loops we call merge_many_backedges. However, infinite loops may not |
| // have been attached to the loop-tree during build_loop_tree before beautify_loops, |
| // but then attached in the build_loop_tree afterwards, and so still have unmerged |
| // backedges. Check if we are indeed in an infinite subgraph, and terminate the scan, |
| // since we have reached the loop head of this. |
| assert(_head->as_Region()->is_in_infinite_subgraph(), |
| "only expect unmerged backedges in infinite loops"); |
| break; |
| } |
| } |
| } |
| } |
| } |
| // Record safept's that this loop needs preserved when an |
| // inner loop attempts to delete it's safepoints. |
| if (_child != nullptr && !has_call && !has_local_ncsfpt) { |
| if (nonlocal_ncsfpt != nullptr) { |
| if (_required_safept == nullptr) _required_safept = new Node_List(); |
| _required_safept->push(nonlocal_ncsfpt); |
| } else { |
| // Failed to find a suitable safept on the dom-path. Now use |
| // an all paths walk from tail to head, looking for safepoints to preserve. |
| allpaths_check_safepts(visited, stack); |
| } |
| } |
| } |
| } |
| |
| //---------------------------is_deleteable_safept---------------------------- |
| // Is safept not required by an outer loop? |
| bool PhaseIdealLoop::is_deleteable_safept(Node* sfpt) { |
| assert(sfpt->Opcode() == Op_SafePoint, ""); |
| IdealLoopTree* lp = get_loop(sfpt)->_parent; |
| while (lp != nullptr) { |
| Node_List* sfpts = lp->_required_safept; |
| if (sfpts != nullptr) { |
| for (uint i = 0; i < sfpts->size(); i++) { |
| if (sfpt == sfpts->at(i)) |
| return false; |
| } |
| } |
| lp = lp->_parent; |
| } |
| return true; |
| } |
| |
| //---------------------------replace_parallel_iv------------------------------- |
| // Replace parallel induction variable (parallel to trip counter) |
| void PhaseIdealLoop::replace_parallel_iv(IdealLoopTree *loop) { |
| assert(loop->_head->is_CountedLoop(), ""); |
| CountedLoopNode *cl = loop->_head->as_CountedLoop(); |
| if (!cl->is_valid_counted_loop(T_INT)) { |
| return; // skip malformed counted loop |
| } |
| Node *incr = cl->incr(); |
| if (incr == nullptr) { |
| return; // Dead loop? |
| } |
| Node *init = cl->init_trip(); |
| Node *phi = cl->phi(); |
| int stride_con = cl->stride_con(); |
| |
| // Visit all children, looking for Phis |
| for (DUIterator i = cl->outs(); cl->has_out(i); i++) { |
| Node *out = cl->out(i); |
| // Look for other phis (secondary IVs). Skip dead ones |
| if (!out->is_Phi() || out == phi || !has_node(out)) { |
| continue; |
| } |
| |
| PhiNode* phi2 = out->as_Phi(); |
| Node* incr2 = phi2->in(LoopNode::LoopBackControl); |
| // Look for induction variables of the form: X += constant |
| if (phi2->region() != loop->_head || |
| incr2->req() != 3 || |
| incr2->in(1)->uncast() != phi2 || |
| incr2 == incr || |
| incr2->Opcode() != Op_AddI || |
| !incr2->in(2)->is_Con()) { |
| continue; |
| } |
| |
| if (incr2->in(1)->is_ConstraintCast() && |
| !(incr2->in(1)->in(0)->is_IfProj() && incr2->in(1)->in(0)->in(0)->is_RangeCheck())) { |
| // Skip AddI->CastII->Phi case if CastII is not controlled by local RangeCheck |
| continue; |
| } |
| // Check for parallel induction variable (parallel to trip counter) |
| // via an affine function. In particular, count-down loops with |
| // count-up array indices are common. We only RCE references off |
| // the trip-counter, so we need to convert all these to trip-counter |
| // expressions. |
| Node* init2 = phi2->in(LoopNode::EntryControl); |
| int stride_con2 = incr2->in(2)->get_int(); |
| |
| // The ratio of the two strides cannot be represented as an int |
| // if stride_con2 is min_int and stride_con is -1. |
| if (stride_con2 == min_jint && stride_con == -1) { |
| continue; |
| } |
| |
| // The general case here gets a little tricky. We want to find the |
| // GCD of all possible parallel IV's and make a new IV using this |
| // GCD for the loop. Then all possible IVs are simple multiples of |
| // the GCD. In practice, this will cover very few extra loops. |
| // Instead we require 'stride_con2' to be a multiple of 'stride_con', |
| // where +/-1 is the common case, but other integer multiples are |
| // also easy to handle. |
| int ratio_con = stride_con2/stride_con; |
| |
| if ((ratio_con * stride_con) == stride_con2) { // Check for exact |
| #ifndef PRODUCT |
| if (TraceLoopOpts) { |
| tty->print("Parallel IV: %d ", phi2->_idx); |
| loop->dump_head(); |
| } |
| #endif |
| // Convert to using the trip counter. The parallel induction |
| // variable differs from the trip counter by a loop-invariant |
| // amount, the difference between their respective initial values. |
| // It is scaled by the 'ratio_con'. |
| Node* ratio = _igvn.intcon(ratio_con); |
| set_ctrl(ratio, C->root()); |
| Node* ratio_init = new MulINode(init, ratio); |
| _igvn.register_new_node_with_optimizer(ratio_init, init); |
| set_early_ctrl(ratio_init, false); |
| Node* diff = new SubINode(init2, ratio_init); |
| _igvn.register_new_node_with_optimizer(diff, init2); |
| set_early_ctrl(diff, false); |
| Node* ratio_idx = new MulINode(phi, ratio); |
| _igvn.register_new_node_with_optimizer(ratio_idx, phi); |
| set_ctrl(ratio_idx, cl); |
| Node* add = new AddINode(ratio_idx, diff); |
| _igvn.register_new_node_with_optimizer(add); |
| set_ctrl(add, cl); |
| _igvn.replace_node( phi2, add ); |
| // Sometimes an induction variable is unused |
| if (add->outcnt() == 0) { |
| _igvn.remove_dead_node(add); |
| } |
| --i; // deleted this phi; rescan starting with next position |
| continue; |
| } |
| } |
| } |
| |
| void IdealLoopTree::remove_safepoints(PhaseIdealLoop* phase, bool keep_one) { |
| Node* keep = nullptr; |
| if (keep_one) { |
| // Look for a safepoint on the idom-path. |
| for (Node* i = tail(); i != _head; i = phase->idom(i)) { |
| if (i->Opcode() == Op_SafePoint && phase->get_loop(i) == this) { |
| keep = i; |
| break; // Found one |
| } |
| } |
| } |
| |
| // Don't remove any safepoints if it is requested to keep a single safepoint and |
| // no safepoint was found on idom-path. It is not safe to remove any safepoint |
| // in this case since there's no safepoint dominating all paths in the loop body. |
| bool prune = !keep_one || keep != nullptr; |
| |
| // Delete other safepoints in this loop. |
| Node_List* sfpts = _safepts; |
| if (prune && sfpts != nullptr) { |
| assert(keep == nullptr || keep->Opcode() == Op_SafePoint, "not safepoint"); |
| for (uint i = 0; i < sfpts->size(); i++) { |
| Node* n = sfpts->at(i); |
| assert(phase->get_loop(n) == this, ""); |
| if (n != keep && phase->is_deleteable_safept(n)) { |
| phase->lazy_replace(n, n->in(TypeFunc::Control)); |
| } |
| } |
| } |
| } |
| |
| //------------------------------counted_loop----------------------------------- |
| // Convert to counted loops where possible |
| void IdealLoopTree::counted_loop( PhaseIdealLoop *phase ) { |
| |
| // For grins, set the inner-loop flag here |
| if (!_child) { |
| if (_head->is_Loop()) _head->as_Loop()->set_inner_loop(); |
| } |
| |
| IdealLoopTree* loop = this; |
| if (_head->is_CountedLoop() || |
| phase->is_counted_loop(_head, loop, T_INT)) { |
| |
| if (LoopStripMiningIter == 0 || _head->as_CountedLoop()->is_strip_mined()) { |
| // Indicate we do not need a safepoint here |
| _has_sfpt = 1; |
| } |
| |
| // Remove safepoints |
| bool keep_one_sfpt = !(_has_call || _has_sfpt); |
| remove_safepoints(phase, keep_one_sfpt); |
| |
| // Look for induction variables |
| phase->replace_parallel_iv(this); |
| } else if (_head->is_LongCountedLoop() || |
| phase->is_counted_loop(_head, loop, T_LONG)) { |
| remove_safepoints(phase, true); |
| } else { |
| assert(!_head->is_Loop() || !_head->as_Loop()->is_loop_nest_inner_loop(), "transformation to counted loop should not fail"); |
| if (_parent != nullptr && !_irreducible) { |
| // Not a counted loop. Keep one safepoint. |
| bool keep_one_sfpt = true; |
| remove_safepoints(phase, keep_one_sfpt); |
| } |
| } |
| |
| // Recursively |
| assert(loop->_child != this || (loop->_head->as_Loop()->is_OuterStripMinedLoop() && _head->as_CountedLoop()->is_strip_mined()), "what kind of loop was added?"); |
| assert(loop->_child != this || (loop->_child->_child == nullptr && loop->_child->_next == nullptr), "would miss some loops"); |
| if (loop->_child && loop->_child != this) loop->_child->counted_loop(phase); |
| if (loop->_next) loop->_next ->counted_loop(phase); |
| } |
| |
| |
| // The Estimated Loop Clone Size: |
| // CloneFactor * (~112% * BodySize + BC) + CC + FanOutTerm, |
| // where BC and CC are totally ad-hoc/magic "body" and "clone" constants, |
| // respectively, used to ensure that the node usage estimates made are on the |
| // safe side, for the most part. The FanOutTerm is an attempt to estimate the |
| // possible additional/excessive nodes generated due to data and control flow |
| // merging, for edges reaching outside the loop. |
| uint IdealLoopTree::est_loop_clone_sz(uint factor) const { |
| |
| precond(0 < factor && factor < 16); |
| |
| uint const bc = 13; |
| uint const cc = 17; |
| uint const sz = _body.size() + (_body.size() + 7) / 2; |
| uint estimate = factor * (sz + bc) + cc; |
| |
| assert((estimate - cc) / factor == sz + bc, "overflow"); |
| |
| return estimate + est_loop_flow_merge_sz(); |
| } |
| |
| // The Estimated Loop (full-) Unroll Size: |
| // UnrollFactor * (~106% * BodySize) + CC + FanOutTerm, |
| // where CC is a (totally) ad-hoc/magic "clone" constant, used to ensure that |
| // node usage estimates made are on the safe side, for the most part. This is |
| // a "light" version of the loop clone size calculation (above), based on the |
| // assumption that most of the loop-construct overhead will be unraveled when |
| // (fully) unrolled. Defined for unroll factors larger or equal to one (>=1), |
| // including an overflow check and returning UINT_MAX in case of an overflow. |
| uint IdealLoopTree::est_loop_unroll_sz(uint factor) const { |
| |
| precond(factor > 0); |
| |
| // Take into account that after unroll conjoined heads and tails will fold. |
| uint const b0 = _body.size() - EMPTY_LOOP_SIZE; |
| uint const cc = 7; |
| uint const sz = b0 + (b0 + 15) / 16; |
| uint estimate = factor * sz + cc; |
| |
| if ((estimate - cc) / factor != sz) { |
| return UINT_MAX; |
| } |
| |
| return estimate + est_loop_flow_merge_sz(); |
| } |
| |
| // Estimate the growth effect (in nodes) of merging control and data flow when |
| // cloning a loop body, based on the amount of control and data flow reaching |
| // outside of the (current) loop body. |
| uint IdealLoopTree::est_loop_flow_merge_sz() const { |
| |
| uint ctrl_edge_out_cnt = 0; |
| uint data_edge_out_cnt = 0; |
| |
| for (uint i = 0; i < _body.size(); i++) { |
| Node* node = _body.at(i); |
| uint outcnt = node->outcnt(); |
| |
| for (uint k = 0; k < outcnt; k++) { |
| Node* out = node->raw_out(k); |
| if (out == nullptr) continue; |
| if (out->is_CFG()) { |
| if (!is_member(_phase->get_loop(out))) { |
| ctrl_edge_out_cnt++; |
| } |
| } else if (_phase->has_ctrl(out)) { |
| Node* ctrl = _phase->get_ctrl(out); |
| assert(ctrl != nullptr, "must be"); |
| assert(ctrl->is_CFG(), "must be"); |
| if (!is_member(_phase->get_loop(ctrl))) { |
| data_edge_out_cnt++; |
| } |
| } |
| } |
| } |
| // Use data and control count (x2.0) in estimate iff both are > 0. This is |
| // a rather pessimistic estimate for the most part, in particular for some |
| // complex loops, but still not enough to capture all loops. |
| if (ctrl_edge_out_cnt > 0 && data_edge_out_cnt > 0) { |
| return 2 * (ctrl_edge_out_cnt + data_edge_out_cnt); |
| } |
| return 0; |
| } |
| |
| #ifndef PRODUCT |
| //------------------------------dump_head-------------------------------------- |
| // Dump 1 liner for loop header info |
| void IdealLoopTree::dump_head() { |
| tty->sp(2 * _nest); |
| tty->print("Loop: N%d/N%d ", _head->_idx, _tail->_idx); |
| if (_irreducible) tty->print(" IRREDUCIBLE"); |
| Node* entry = _head->is_Loop() ? _head->as_Loop()->skip_strip_mined(-1)->in(LoopNode::EntryControl) |
| : _head->in(LoopNode::EntryControl); |
| ParsePredicates parse_predicates(entry); |
| if (parse_predicates.loop_limit_check_predicate_proj() != nullptr) { |
| tty->print(" limit_check"); |
| } |
| if (UseProfiledLoopPredicate && parse_predicates.profiled_loop_predicate_proj() != nullptr) { |
| tty->print(" profile_predicated"); |
| } |
| if (UseLoopPredicate && parse_predicates.loop_predicate_proj() != nullptr) { |
| tty->print(" predicated"); |
| } |
| if (_head->is_CountedLoop()) { |
| CountedLoopNode *cl = _head->as_CountedLoop(); |
| tty->print(" counted"); |
| |
| Node* init_n = cl->init_trip(); |
| if (init_n != nullptr && init_n->is_Con()) |
| tty->print(" [%d,", cl->init_trip()->get_int()); |
| else |
| tty->print(" [int,"); |
| Node* limit_n = cl->limit(); |
| if (limit_n != nullptr && limit_n->is_Con()) |
| tty->print("%d),", cl->limit()->get_int()); |
| else |
| tty->print("int),"); |
| int stride_con = cl->stride_con(); |
| if (stride_con > 0) tty->print("+"); |
| tty->print("%d", stride_con); |
| |
| tty->print(" (%0.f iters) ", cl->profile_trip_cnt()); |
| |
| if (cl->is_pre_loop ()) tty->print(" pre" ); |
| if (cl->is_main_loop()) tty->print(" main"); |
| if (cl->is_post_loop()) tty->print(" post"); |
| if (cl->is_vectorized_loop()) tty->print(" vector"); |
| if (range_checks_present()) tty->print(" rc "); |
| if (cl->is_multiversioned()) tty->print(" multi "); |
| } |
| if (_has_call) tty->print(" has_call"); |
| if (_has_sfpt) tty->print(" has_sfpt"); |
| if (_rce_candidate) tty->print(" rce"); |
| if (_safepts != nullptr && _safepts->size() > 0) { |
| tty->print(" sfpts={"); _safepts->dump_simple(); tty->print(" }"); |
| } |
| if (_required_safept != nullptr && _required_safept->size() > 0) { |
| tty->print(" req={"); _required_safept->dump_simple(); tty->print(" }"); |
| } |
| if (Verbose) { |
| tty->print(" body={"); _body.dump_simple(); tty->print(" }"); |
| } |
| if (_head->is_Loop() && _head->as_Loop()->is_strip_mined()) { |
| tty->print(" strip_mined"); |
| } |
| tty->cr(); |
| } |
| |
| //------------------------------dump------------------------------------------- |
| // Dump loops by loop tree |
| void IdealLoopTree::dump() { |
| dump_head(); |
| if (_child) _child->dump(); |
| if (_next) _next ->dump(); |
| } |
| |
| #endif |
| |
| static void log_loop_tree_helper(IdealLoopTree* root, IdealLoopTree* loop, CompileLog* log) { |
| if (loop == root) { |
| if (loop->_child != nullptr) { |
| log->begin_head("loop_tree"); |
| log->end_head(); |
| log_loop_tree_helper(root, loop->_child, log); |
| log->tail("loop_tree"); |
| assert(loop->_next == nullptr, "what?"); |
| } |
| } else if (loop != nullptr) { |
| Node* head = loop->_head; |
| log->begin_head("loop"); |
| log->print(" idx='%d' ", head->_idx); |
| if (loop->_irreducible) log->print("irreducible='1' "); |
| if (head->is_Loop()) { |
| if (head->as_Loop()->is_inner_loop()) log->print("inner_loop='1' "); |
| if (head->as_Loop()->is_partial_peel_loop()) log->print("partial_peel_loop='1' "); |
| } else if (head->is_CountedLoop()) { |
| CountedLoopNode* cl = head->as_CountedLoop(); |
| if (cl->is_pre_loop()) log->print("pre_loop='%d' ", cl->main_idx()); |
| if (cl->is_main_loop()) log->print("main_loop='%d' ", cl->_idx); |
| if (cl->is_post_loop()) log->print("post_loop='%d' ", cl->main_idx()); |
| } |
| log->end_head(); |
| log_loop_tree_helper(root, loop->_child, log); |
| log->tail("loop"); |
| log_loop_tree_helper(root, loop->_next, log); |
| } |
| } |
| |
| void PhaseIdealLoop::log_loop_tree() { |
| if (C->log() != nullptr) { |
| log_loop_tree_helper(_ltree_root, _ltree_root, C->log()); |
| } |
| } |
| |
| //---------------------collect_potentially_useful_predicates----------------------- |
| // Helper function to collect potentially useful predicates to prevent them from |
| // being eliminated by PhaseIdealLoop::eliminate_useless_predicates |
| void PhaseIdealLoop::collect_potentially_useful_predicates(IdealLoopTree* loop, Unique_Node_List &useful_predicates) { |
| if (loop->_child) { // child |
| collect_potentially_useful_predicates(loop->_child, useful_predicates); |
| } |
| |
| // self (only loops that we can apply loop predication may use their predicates) |
| if (loop->_head->is_Loop() && |
| !loop->_irreducible && |
| !loop->tail()->is_top()) { |
| LoopNode* lpn = loop->_head->as_Loop(); |
| Node* entry = lpn->in(LoopNode::EntryControl); |
| ParsePredicates parse_predicates(entry); |
| ProjNode* predicate_proj = parse_predicates.loop_limit_check_predicate_proj(); |
| if (predicate_proj != nullptr) { // right pattern that can be used by loop predication |
| assert(predicate_proj->in(0)->in(1)->in(1)->Opcode() == Op_Opaque1, "must be"); |
| useful_predicates.push(predicate_proj->in(0)->in(1)->in(1)); // good one |
| } |
| if (UseProfiledLoopPredicate) { |
| predicate_proj = parse_predicates.profiled_loop_predicate_proj(); |
| if (predicate_proj != nullptr) { // right pattern that can be used by loop predication |
| useful_predicates.push(predicate_proj->in(0)->in(1)->in(1)); // good one |
| get_assertion_predicates(predicate_proj, useful_predicates, true); |
| } |
| } |
| |
| if (UseLoopPredicate) { |
| predicate_proj = parse_predicates.loop_predicate_proj(); |
| if (predicate_proj != nullptr) { // right pattern that can be used by loop predication |
| useful_predicates.push(predicate_proj->in(0)->in(1)->in(1)); // good one |
| get_assertion_predicates(predicate_proj, useful_predicates, true); |
| } |
| } |
| } |
| |
| if (loop->_next) { // sibling |
| collect_potentially_useful_predicates(loop->_next, useful_predicates); |
| } |
| } |
| |
| //------------------------eliminate_useless_predicates----------------------------- |
| // Eliminate all inserted predicates if they could not be used by loop predication. |
| // Note: it will also eliminates loop limits check predicate since it also uses |
| // Opaque1 node (see Parse::add_predicate()). |
| void PhaseIdealLoop::eliminate_useless_predicates() { |
| if (C->parse_predicate_count() == 0 && C->template_assertion_predicate_count() == 0) { |
| return; // no predicate left |
| } |
| |
| Unique_Node_List useful_predicates; // to store useful predicates |
| if (C->has_loops()) { |
| collect_potentially_useful_predicates(_ltree_root->_child, useful_predicates); |
| } |
| |
| for (int i = C->parse_predicate_count(); i > 0; i--) { |
| Node* n = C->parse_predicate_opaque1_node(i - 1); |
| assert(n->Opcode() == Op_Opaque1, "must be"); |
| if (!useful_predicates.member(n)) { // not in the useful list |
| _igvn.replace_node(n, n->in(1)); |
| } |
| } |
| |
| for (int i = C->template_assertion_predicate_count(); i > 0; i--) { |
| Node* n = C->template_assertion_predicate_opaq_node(i - 1); |
| assert(n->Opcode() == Op_Opaque4, "must be"); |
| if (!useful_predicates.member(n)) { // not in the useful list |
| _igvn.replace_node(n, n->in(2)); |
| } |
| } |
| } |
| |
| // If a post or main loop is removed due to an assert predicate, the opaque that guards the loop is not needed anymore |
| void PhaseIdealLoop::eliminate_useless_zero_trip_guard() { |
| if (_zero_trip_guard_opaque_nodes.size() == 0) { |
| return; |
| } |
| Unique_Node_List useful_zero_trip_guard_opaques_nodes; |
| for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) { |
| IdealLoopTree* lpt = iter.current(); |
| if (lpt->_child == nullptr && lpt->is_counted()) { |
| CountedLoopNode* head = lpt->_head->as_CountedLoop(); |
| Node* opaque = head->is_canonical_loop_entry(); |
| if (opaque != nullptr) { |
| useful_zero_trip_guard_opaques_nodes.push(opaque); |
| } |
| } |
| } |
| for (uint i = 0; i < _zero_trip_guard_opaque_nodes.size(); ++i) { |
| OpaqueZeroTripGuardNode* opaque = ((OpaqueZeroTripGuardNode*)_zero_trip_guard_opaque_nodes.at(i)); |
| DEBUG_ONLY(CountedLoopNode* guarded_loop = opaque->guarded_loop()); |
| if (!useful_zero_trip_guard_opaques_nodes.member(opaque)) { |
| IfNode* iff = opaque->if_node(); |
| IdealLoopTree* loop = get_loop(iff); |
| while (loop != _ltree_root && loop != nullptr) { |
| loop = loop->_parent; |
| } |
| if (loop == nullptr) { |
| // unreachable from _ltree_root: zero trip guard is in a newly discovered infinite loop. |
| // We can't tell if the opaque node is useful or not |
| assert(guarded_loop == nullptr || guarded_loop->is_in_infinite_subgraph(), ""); |
| } else { |
| assert(guarded_loop == nullptr, ""); |
| this->_igvn.replace_node(opaque, opaque->in(1)); |
| } |
| } else { |
| assert(guarded_loop != nullptr, ""); |
| } |
| } |
| } |
| |
| //------------------------process_expensive_nodes----------------------------- |
| // Expensive nodes have their control input set to prevent the GVN |
| // from commoning them and as a result forcing the resulting node to |
| // be in a more frequent path. Use CFG information here, to change the |
| // control inputs so that some expensive nodes can be commoned while |
| // not executed more frequently. |
| bool PhaseIdealLoop::process_expensive_nodes() { |
| assert(OptimizeExpensiveOps, "optimization off?"); |
| |
| // Sort nodes to bring similar nodes together |
| C->sort_expensive_nodes(); |
| |
| bool progress = false; |
| |
| for (int i = 0; i < C->expensive_count(); ) { |
| Node* n = C->expensive_node(i); |
| int start = i; |
| // Find nodes similar to n |
| i++; |
| for (; i < C->expensive_count() && Compile::cmp_expensive_nodes(n, C->expensive_node(i)) == 0; i++); |
| int end = i; |
| // And compare them two by two |
| for (int j = start; j < end; j++) { |
| Node* n1 = C->expensive_node(j); |
| if (is_node_unreachable(n1)) { |
| continue; |
| } |
| for (int k = j+1; k < end; k++) { |
| Node* n2 = C->expensive_node(k); |
| if (is_node_unreachable(n2)) { |
| continue; |
| } |
| |
| assert(n1 != n2, "should be pair of nodes"); |
| |
| Node* c1 = n1->in(0); |
| Node* c2 = n2->in(0); |
| |
| Node* parent_c1 = c1; |
| Node* parent_c2 = c2; |
| |
| // The call to get_early_ctrl_for_expensive() moves the |
| // expensive nodes up but stops at loops that are in a if |
| // branch. See whether we can exit the loop and move above the |
| // If. |
| if (c1->is_Loop()) { |
| parent_c1 = c1->in(1); |
| } |
| if (c2->is_Loop()) { |
| parent_c2 = c2->in(1); |
| } |
| |
| if (parent_c1 == parent_c2) { |
| _igvn._worklist.push(n1); |
| _igvn._worklist.push(n2); |
| continue; |
| } |
| |
| // Look for identical expensive node up the dominator chain. |
| if (is_dominator(c1, c2)) { |
| c2 = c1; |
| } else if (is_dominator(c2, c1)) { |
| c1 = c2; |
| } else if (parent_c1->is_Proj() && parent_c1->in(0)->is_If() && |
| parent_c2->is_Proj() && parent_c1->in(0) == parent_c2->in(0)) { |
| // Both branches have the same expensive node so move it up |
| // before the if. |
| c1 = c2 = idom(parent_c1->in(0)); |
| } |
| // Do the actual moves |
| if (n1->in(0) != c1) { |
| _igvn.replace_input_of(n1, 0, c1); |
| progress = true; |
| } |
| if (n2->in(0) != c2) { |
| _igvn.replace_input_of(n2, 0, c2); |
| progress = true; |
| } |
| } |
| } |
| } |
| |
| return progress; |
| } |
| |
| #ifdef ASSERT |
| // Goes over all children of the root of the loop tree. Check if any of them have a path |
| // down to Root, that does not go via a NeverBranch exit. |
| bool PhaseIdealLoop::only_has_infinite_loops() { |
| ResourceMark rm; |
| Unique_Node_List worklist; |
| // start traversal at all loop heads of first-level loops |
| for (IdealLoopTree* l = _ltree_root->_child; l != nullptr; l = l->_next) { |
| Node* head = l->_head; |
| assert(head->is_Region(), ""); |
| worklist.push(head); |
| } |
| return RegionNode::are_all_nodes_in_infinite_subgraph(worklist); |
| } |
| #endif |
| |
| |
| //============================================================================= |
| //----------------------------build_and_optimize------------------------------- |
| // Create a PhaseLoop. Build the ideal Loop tree. Map each Ideal Node to |
| // its corresponding LoopNode. If 'optimize' is true, do some loop cleanups. |
| void PhaseIdealLoop::build_and_optimize() { |
| assert(!C->post_loop_opts_phase(), "no loop opts allowed"); |
| |
| bool do_split_ifs = (_mode == LoopOptsDefault); |
| bool skip_loop_opts = (_mode == LoopOptsNone); |
| bool do_max_unroll = (_mode == LoopOptsMaxUnroll); |
| |
| |
| int old_progress = C->major_progress(); |
| uint orig_worklist_size = _igvn._worklist.size(); |
| |
| // Reset major-progress flag for the driver's heuristics |
| C->clear_major_progress(); |
| |
| #ifndef PRODUCT |
| // Capture for later assert |
| uint unique = C->unique(); |
| _loop_invokes++; |
| _loop_work += unique; |
| #endif |
| |
| // True if the method has at least 1 irreducible loop |
| _has_irreducible_loops = false; |
| |
| _created_loop_node = false; |
| |
| VectorSet visited; |
| // Pre-grow the mapping from Nodes to IdealLoopTrees. |
| _loop_or_ctrl.map(C->unique(), nullptr); |
| memset(_loop_or_ctrl.adr(), 0, wordSize * C->unique()); |
| |
| // Pre-build the top-level outermost loop tree entry |
| _ltree_root = new IdealLoopTree( this, C->root(), C->root() ); |
| // Do not need a safepoint at the top level |
| _ltree_root->_has_sfpt = 1; |
| |
| // Initialize Dominators. |
| // Checked in clone_loop_predicate() during beautify_loops(). |
| _idom_size = 0; |
| _idom = nullptr; |
| _dom_depth = nullptr; |
| _dom_stk = nullptr; |
| |
| // Empty pre-order array |
| allocate_preorders(); |
| |
| // Build a loop tree on the fly. Build a mapping from CFG nodes to |
| // IdealLoopTree entries. Data nodes are NOT walked. |
| build_loop_tree(); |
| // Check for bailout, and return |
| if (C->failing()) { |
| return; |
| } |
| |
| // Verify that the has_loops() flag set at parse time is consistent |
| // with the just built loop tree. With infinite loops, it could be |
| // that one pass of loop opts only finds infinite loops, clears the |
| // has_loops() flag but adds NeverBranch nodes so the next loop opts |
| // verification pass finds a non empty loop tree. When the back edge |
| // is an exception edge, parsing doesn't set has_loops(). |
| assert(_ltree_root->_child == nullptr || C->has_loops() || only_has_infinite_loops() || C->has_exception_backedge(), "parsing found no loops but there are some"); |
| // No loops after all |
| if( !_ltree_root->_child && !_verify_only ) C->set_has_loops(false); |
| |
| // There should always be an outer loop containing the Root and Return nodes. |
| // If not, we have a degenerate empty program. Bail out in this case. |
| if (!has_node(C->root())) { |
| if (!_verify_only) { |
| C->clear_major_progress(); |
| assert(false, "empty program detected during loop optimization"); |
| C->record_method_not_compilable("empty program detected during loop optimization"); |
| } |
| return; |
| } |
| |
| BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); |
| // Nothing to do, so get out |
| bool stop_early = !C->has_loops() && !skip_loop_opts && !do_split_ifs && !do_max_unroll && !_verify_me && |
| !_verify_only && !bs->is_gc_specific_loop_opts_pass(_mode); |
| bool do_expensive_nodes = C->should_optimize_expensive_nodes(_igvn); |
| bool strip_mined_loops_expanded = bs->strip_mined_loops_expanded(_mode); |
| if (stop_early && !do_expensive_nodes) { |
| return; |
| } |
| |
| // Set loop nesting depth |
| _ltree_root->set_nest( 0 ); |
| |
| // Split shared headers and insert loop landing pads. |
| // Do not bother doing this on the Root loop of course. |
| if( !_verify_me && !_verify_only && _ltree_root->_child ) { |
| C->print_method(PHASE_BEFORE_BEAUTIFY_LOOPS, 3); |
| if( _ltree_root->_child->beautify_loops( this ) ) { |
| // Re-build loop tree! |
| _ltree_root->_child = nullptr; |
| _loop_or_ctrl.clear(); |
| reallocate_preorders(); |
| build_loop_tree(); |
| // Check for bailout, and return |
| if (C->failing()) { |
| return; |
| } |
| // Reset loop nesting depth |
| _ltree_root->set_nest( 0 ); |
| |
| C->print_method(PHASE_AFTER_BEAUTIFY_LOOPS, 3); |
| } |
| } |
| |
| // Build Dominators for elision of null checks & loop finding. |
| // Since nodes do not have a slot for immediate dominator, make |
| // a persistent side array for that info indexed on node->_idx. |
| _idom_size = C->unique(); |
| _idom = NEW_RESOURCE_ARRAY( Node*, _idom_size ); |
| _dom_depth = NEW_RESOURCE_ARRAY( uint, _idom_size ); |
| _dom_stk = nullptr; // Allocated on demand in recompute_dom_depth |
| memset( _dom_depth, 0, _idom_size * sizeof(uint) ); |
| |
| Dominators(); |
| |
| if (!_verify_only) { |
| // As a side effect, Dominators removed any unreachable CFG paths |
| // into RegionNodes. It doesn't do this test against Root, so |
| // we do it here. |
| for( uint i = 1; i < C->root()->req(); i++ ) { |
| if (!_loop_or_ctrl[C->root()->in(i)->_idx]) { // Dead path into Root? |
| _igvn.delete_input_of(C->root(), i); |
| i--; // Rerun same iteration on compressed edges |
| } |
| } |
| |
| // Given dominators, try to find inner loops with calls that must |
| // always be executed (call dominates loop tail). These loops do |
| // not need a separate safepoint. |
| Node_List cisstack; |
| _ltree_root->check_safepts(visited, cisstack); |
| } |
| |
| // Walk the DATA nodes and place into loops. Find earliest control |
| // node. For CFG nodes, the _loop_or_ctrl array starts out and remains |
| // holding the associated IdealLoopTree pointer. For DATA nodes, the |
| // _loop_or_ctrl array holds the earliest legal controlling CFG node. |
| |
| // Allocate stack with enough space to avoid frequent realloc |
| int stack_size = (C->live_nodes() >> 1) + 16; // (live_nodes>>1)+16 from Java2D stats |
| Node_Stack nstack(stack_size); |
| |
| visited.clear(); |
| Node_List worklist; |
| // Don't need C->root() on worklist since |
| // it will be processed among C->top() inputs |
| worklist.push(C->top()); |
| visited.set(C->top()->_idx); // Set C->top() as visited now |
| build_loop_early( visited, worklist, nstack ); |
| |
| // Given early legal placement, try finding counted loops. This placement |
| // is good enough to discover most loop invariants. |
| if (!_verify_me && !_verify_only && !strip_mined_loops_expanded) { |
| _ltree_root->counted_loop( this ); |
| } |
| |
| // Find latest loop placement. Find ideal loop placement. |
| visited.clear(); |
| init_dom_lca_tags(); |
| // Need C->root() on worklist when processing outs |
| worklist.push(C->root()); |
| NOT_PRODUCT( C->verify_graph_edges(); ) |
| worklist.push(C->top()); |
| build_loop_late( visited, worklist, nstack ); |
| if (C->failing()) { return; } |
| |
| if (_verify_only) { |
| C->restore_major_progress(old_progress); |
| assert(C->unique() == unique, "verification _mode made Nodes? ? ?"); |
| assert(_igvn._worklist.size() == orig_worklist_size, "shouldn't push anything"); |
| return; |
| } |
| |
| // clear out the dead code after build_loop_late |
| while (_deadlist.size()) { |
| _igvn.remove_globally_dead_node(_deadlist.pop()); |
| } |
| |
| eliminate_useless_zero_trip_guard(); |
| |
| if (stop_early) { |
| assert(do_expensive_nodes, "why are we here?"); |
| if (process_expensive_nodes()) { |
| // If we made some progress when processing expensive nodes then |
| // the IGVN may modify the graph in a way that will allow us to |
| // make some more progress: we need to try processing expensive |
| // nodes again. |
| C->set_major_progress(); |
| } |
| return; |
| } |
| |
| // Some parser-inserted loop predicates could never be used by loop |
| // predication or they were moved away from loop during some optimizations. |
| // For example, peeling. Eliminate them before next loop optimizations. |
| eliminate_useless_predicates(); |
| |
| #ifndef PRODUCT |
| C->verify_graph_edges(); |
| if (_verify_me) { // Nested verify pass? |
| // Check to see if the verify _mode is broken |
| assert(C->unique() == unique, "non-optimize _mode made Nodes? ? ?"); |
| return; |
| } |
| DEBUG_ONLY( if (VerifyLoopOptimizations) { verify(); } ); |
| if (TraceLoopOpts && C->has_loops()) { |
| _ltree_root->dump(); |
| } |
| #endif |
| |
| if (skip_loop_opts) { |
| C->restore_major_progress(old_progress); |
| return; |
| } |
| |
| if (do_max_unroll) { |
| for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) { |
| IdealLoopTree* lpt = iter.current(); |
| if (lpt->is_innermost() && lpt->_allow_optimizations && !lpt->_has_call && lpt->is_counted()) { |
| lpt->compute_trip_count(this); |
| if (!lpt->do_one_iteration_loop(this) && |
| !lpt->do_remove_empty_loop(this)) { |
| AutoNodeBudget node_budget(this); |
| if (lpt->_head->as_CountedLoop()->is_normal_loop() && |
| lpt->policy_maximally_unroll(this)) { |
| memset( worklist.adr(), 0, worklist.max()*sizeof(Node*) ); |
| do_maximally_unroll(lpt, worklist); |
| } |
| } |
| } |
| } |
| |
| C->restore_major_progress(old_progress); |
| return; |
| } |
| |
| if (bs->optimize_loops(this, _mode, visited, nstack, worklist)) { |
| return; |
| } |
| |
| if (ReassociateInvariants && !C->major_progress()) { |
| // Reassociate invariants and prep for split_thru_phi |
| for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) { |
| IdealLoopTree* lpt = iter.current(); |
| if (!lpt->is_loop()) { |
| continue; |
| } |
| Node* head = lpt->_head; |
| if (!head->is_BaseCountedLoop() || !lpt->is_innermost()) continue; |
| |
| // check for vectorized loops, any reassociation of invariants was already done |
| if (head->is_CountedLoop()) { |
| if (head->as_CountedLoop()->is_unroll_only()) { |
| continue; |
| } else { |
| AutoNodeBudget node_budget(this); |
| lpt->reassociate_invariants(this); |
| } |
| } |
| // Because RCE opportunities can be masked by split_thru_phi, |
| // look for RCE candidates and inhibit split_thru_phi |
| // on just their loop-phi's for this pass of loop opts |
| if (SplitIfBlocks && do_split_ifs && |
| head->as_BaseCountedLoop()->is_valid_counted_loop(head->as_BaseCountedLoop()->bt()) && |
| (lpt->policy_range_check(this, true, T_LONG) || |
| (head->is_CountedLoop() && lpt->policy_range_check(this, true, T_INT)))) { |
| lpt->_rce_candidate = 1; // = true |
| } |
| } |
| } |
| |
| // Check for aggressive application of split-if and other transforms |
| // that require basic-block info (like cloning through Phi's) |
| if (!C->major_progress() && SplitIfBlocks && do_split_ifs) { |
| visited.clear(); |
| split_if_with_blocks( visited, nstack); |
| DEBUG_ONLY( if (VerifyLoopOptimizations) { verify(); } ); |
| } |
| |
| if (!C->major_progress() && do_expensive_nodes && process_expensive_nodes()) { |
| C->set_major_progress(); |
| } |
| |
| // Perform loop predication before iteration splitting |
| if (C->has_loops() && !C->major_progress() && (C->parse_predicate_count() > 0)) { |
| _ltree_root->_child->loop_predication(this); |
| } |
| |
| if (OptimizeFill && UseLoopPredicate && C->has_loops() && !C->major_progress()) { |
| if (do_intrinsify_fill()) { |
| C->set_major_progress(); |
| } |
| } |
| |
| // Perform iteration-splitting on inner loops. Split iterations to avoid |
| // range checks or one-shot null checks. |
| |
| // If split-if's didn't hack the graph too bad (no CFG changes) |
| // then do loop opts. |
| if (C->has_loops() && !C->major_progress()) { |
| memset( worklist.adr(), 0, worklist.max()*sizeof(Node*) ); |
| _ltree_root->_child->iteration_split( this, worklist ); |
| // No verify after peeling! GCM has hoisted code out of the loop. |
| // After peeling, the hoisted code could sink inside the peeled area. |
| // The peeling code does not try to recompute the best location for |
| // all the code before the peeled area, so the verify pass will always |
| // complain about it. |
| } |
| |
| // Check for bailout, and return |
| if (C->failing()) { |
| return; |
| } |
| |
| // Do verify graph edges in any case |
| NOT_PRODUCT( C->verify_graph_edges(); ); |
| |
| if (!do_split_ifs) { |
| // We saw major progress in Split-If to get here. We forced a |
| // pass with unrolling and not split-if, however more split-if's |
| // might make progress. If the unrolling didn't make progress |
| // then the major-progress flag got cleared and we won't try |
| // another round of Split-If. In particular the ever-common |
| // instance-of/check-cast pattern requires at least 2 rounds of |
| // Split-If to clear out. |
| C->set_major_progress(); |
| } |
| |
| // Repeat loop optimizations if new loops were seen |
| if (created_loop_node()) { |
| C->set_major_progress(); |
| } |
| |
| // Keep loop predicates and perform optimizations with them |
| // until no more loop optimizations could be done. |
| // After that switch predicates off and do more loop optimizations. |
| if (!C->major_progress() && (C->parse_predicate_count() > 0)) { |
| C->cleanup_parse_predicates(_igvn); |
| if (TraceLoopOpts) { |
| tty->print_cr("PredicatesOff"); |
| } |
| C->set_major_progress(); |
| } |
| |
| // Convert scalar to superword operations at the end of all loop opts. |
| if (UseSuperWord && C->has_loops() && !C->major_progress()) { |
| // SuperWord transform |
| SuperWord sw(this); |
| for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) { |
| IdealLoopTree* lpt = iter.current(); |
| if (lpt->is_counted()) { |
| CountedLoopNode *cl = lpt->_head->as_CountedLoop(); |
| |
| if (cl->is_rce_post_loop() && !cl->is_vectorized_loop()) { |
| assert(PostLoopMultiversioning, "multiversioning must be enabled"); |
| // Check that the rce'd post loop is encountered first, multiversion after all |
| // major main loop optimization are concluded |
| if (!C->major_progress()) { |
| IdealLoopTree *lpt_next = lpt->_next; |
| if (lpt_next && lpt_next->is_counted()) { |
| CountedLoopNode *cl = lpt_next->_head->as_CountedLoop(); |
| if (cl->is_post_loop() && lpt_next->range_checks_present()) { |
| if (!cl->is_multiversioned()) { |
| if (multi_version_post_loops(lpt, lpt_next) == false) { |
| // Cause the rce loop to be optimized away if we fail |
| cl->mark_is_multiversioned(); |
| cl->set_slp_max_unroll(0); |
| poison_rce_post_loop(lpt); |
| } |
| } |
| } |
| } |
| sw.transform_loop(lpt, true); |
| } |
| } else if (cl->is_main_loop()) { |
| if (!sw.transform_loop(lpt, true)) { |
| // Instigate more unrolling for optimization when vectorization fails. |
| if (cl->has_passed_slp()) { |
| C->set_major_progress(); |
| cl->set_notpassed_slp(); |
| cl->mark_do_unroll_only(); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| // Move UnorderedReduction out of counted loop. Can be introduced by SuperWord. |
| if (C->has_loops() && !C->major_progress()) { |
| for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) { |
| IdealLoopTree* lpt = iter.current(); |
| if (lpt->is_counted() && lpt->is_innermost()) { |
| move_unordered_reduction_out_of_loop(lpt); |
| } |
| } |
| } |
| } |
| |
| #ifndef PRODUCT |
| //------------------------------print_statistics------------------------------- |
| int PhaseIdealLoop::_loop_invokes=0;// Count of PhaseIdealLoop invokes |
| int PhaseIdealLoop::_loop_work=0; // Sum of PhaseIdealLoop x unique |
| volatile int PhaseIdealLoop::_long_loop_candidates=0; // Number of long loops seen |
| volatile int PhaseIdealLoop::_long_loop_nests=0; // Number of long loops successfully transformed to a nest |
| volatile int PhaseIdealLoop::_long_loop_counted_loops=0; // Number of long loops successfully transformed to a counted loop |
| void PhaseIdealLoop::print_statistics() { |
| tty->print_cr("PhaseIdealLoop=%d, sum _unique=%d, long loops=%d/%d/%d", _loop_invokes, _loop_work, _long_loop_counted_loops, _long_loop_nests, _long_loop_candidates); |
| } |
| #endif |
| |
| #ifdef ASSERT |
| // Build a verify-only PhaseIdealLoop, and see that it agrees with "this". |
| void PhaseIdealLoop::verify() const { |
| ResourceMark rm; |
| int old_progress = C->major_progress(); |
| bool success = true; |
| |
| PhaseIdealLoop phase_verify(_igvn, this); |
| if (C->failing()) return; |
| |
| // Verify ctrl and idom of every node. |
| success &= verify_idom_and_nodes(C->root(), &phase_verify); |
| |
| // Verify loop-tree. |
| success &= _ltree_root->verify_tree(phase_verify._ltree_root); |
| |
| assert(success, "VerifyLoopOptimizations failed"); |
| |
| // Major progress was cleared by creating a verify version of PhaseIdealLoop. |
| C->restore_major_progress(old_progress); |
| } |
| |
| // Perform a BFS starting at n, through all inputs. |
| // Call verify_idom and verify_node on all nodes of BFS traversal. |
| bool PhaseIdealLoop::verify_idom_and_nodes(Node* root, const PhaseIdealLoop* phase_verify) const { |
| Unique_Node_List worklist; |
| worklist.push(root); |
| bool success = true; |
| for (uint i = 0; i < worklist.size(); i++) { |
| Node* n = worklist.at(i); |
| // process node |
| success &= verify_idom(n, phase_verify); |
| success &= verify_loop_ctrl(n, phase_verify); |
| // visit inputs |
| for (uint j = 0; j < n->req(); j++) { |
| if (n->in(j) != nullptr) { |
| worklist.push(n->in(j)); |
| } |
| } |
| } |
| return success; |
| } |
| |
| // Verify dominator structure (IDOM). |
| bool PhaseIdealLoop::verify_idom(Node* n, const PhaseIdealLoop* phase_verify) const { |
| // Verify IDOM for all CFG nodes (except root). |
| if (!n->is_CFG() || n->is_Root()) { |
| return true; // pass |
| } |
| |
| if (n->_idx >= _idom_size) { |
| tty->print("CFG Node with no idom: "); |
| n->dump(); |
| return false; // fail |
| } |
| |
| Node* id = idom_no_update(n); |
| Node* id_verify = phase_verify->idom_no_update(n); |
| if (id != id_verify) { |
| tty->print("Mismatching idom for node: "); |
| n->dump(); |
| tty->print(" We have idom: "); |
| id->dump(); |
| tty->print(" Verify has idom: "); |
| id_verify->dump(); |
| tty->cr(); |
| return false; // fail |
| } |
| return true; // pass |
| } |
| |
| // Verify "_loop_or_ctrl": control and loop membership. |
| // (0) _loop_or_ctrl[i] == nullptr -> node not reachable. |
| // (1) has_ctrl -> check lowest bit. 1 -> data node. 0 -> ctrl node. |
| // (2) has_ctrl true: get_ctrl_no_update returns ctrl of data node. |
| // (3) has_ctrl false: get_loop_idx returns IdealLoopTree for ctrl node. |
| bool PhaseIdealLoop::verify_loop_ctrl(Node* n, const PhaseIdealLoop* phase_verify) const { |
| const uint i = n->_idx; |
| // The loop-tree was built from def to use (top-down). |
| // The verification happens from use to def (bottom-up). |
| // We may thus find nodes during verification that are not in the loop-tree. |
| if (_loop_or_ctrl[i] == nullptr || phase_verify->_loop_or_ctrl[i] == nullptr) { |
| if (_loop_or_ctrl[i] != nullptr || phase_verify->_loop_or_ctrl[i] != nullptr) { |
| tty->print_cr("Was reachable in only one. this %d, verify %d.", |
| _loop_or_ctrl[i] != nullptr, phase_verify->_loop_or_ctrl[i] != nullptr); |
| n->dump(); |
| return false; // fail |
| } |
| // Not reachable for both. |
| return true; // pass |
| } |
| |
| if (n->is_CFG() == has_ctrl(n)) { |
| tty->print_cr("Exactly one should be true: %d for is_CFG, %d for has_ctrl.", n->is_CFG(), has_ctrl(n)); |
| n->dump(); |
| return false; // fail |
| } |
| |
| if (has_ctrl(n) != phase_verify->has_ctrl(n)) { |
| tty->print_cr("Mismatch has_ctrl: %d for this, %d for verify.", has_ctrl(n), phase_verify->has_ctrl(n)); |
| n->dump(); |
| return false; // fail |
| } else if (has_ctrl(n)) { |
| assert(phase_verify->has_ctrl(n), "sanity"); |
| // n is a data node. |
| // Verify that its ctrl is the same. |
| |
| // Broken part of VerifyLoopOptimizations (A) |
| // Reason: |
| // BUG, wrong control set for example in |
| // PhaseIdealLoop::split_if_with_blocks |
| // at "set_ctrl(x, new_ctrl);" |
| /* |
| if( _loop_or_ctrl[i] != loop_verify->_loop_or_ctrl[i] && |
| get_ctrl_no_update(n) != loop_verify->get_ctrl_no_update(n) ) { |
| tty->print("Mismatched control setting for: "); |
| n->dump(); |
| if( fail++ > 10 ) return; |
| Node *c = get_ctrl_no_update(n); |
| tty->print("We have it as: "); |
| if( c->in(0) ) c->dump(); |
| else tty->print_cr("N%d",c->_idx); |
| tty->print("Verify thinks: "); |
| if( loop_verify->has_ctrl(n) ) |
| loop_verify->get_ctrl_no_update(n)->dump(); |
| else |
| loop_verify->get_loop_idx(n)->dump(); |
| tty->cr(); |
| } |
| */ |
| return true; // pass |
| } else { |
| assert(!phase_verify->has_ctrl(n), "sanity"); |
| // n is a ctrl node. |
| // Verify that not has_ctrl, and that get_loop_idx is the same. |
| |
| // Broken part of VerifyLoopOptimizations (B) |
| // Reason: |
| // NeverBranch node for example is added to loop outside its scope. |
| // Once we run build_loop_tree again, it is added to the correct loop. |
| /* |
| if (!C->major_progress()) { |
| // Loop selection can be messed up if we did a major progress |
| // operation, like split-if. Do not verify in that case. |
| IdealLoopTree *us = get_loop_idx(n); |
| IdealLoopTree *them = loop_verify->get_loop_idx(n); |
| if( us->_head != them->_head || us->_tail != them->_tail ) { |
| tty->print("Unequals loops for: "); |
| n->dump(); |
| if( fail++ > 10 ) return; |
| tty->print("We have it as: "); |
| us->dump(); |
| tty->print("Verify thinks: "); |
| them->dump(); |
| tty->cr(); |
| } |
| } |
| */ |
| return true; // pass |
| } |
| } |
| |
| int compare_tree(IdealLoopTree* const& a, IdealLoopTree* const& b) { |
| assert(a != nullptr && b != nullptr, "must be"); |
| return a->_head->_idx - b->_head->_idx; |
| } |
| |
| GrowableArray<IdealLoopTree*> IdealLoopTree::collect_sorted_children() const { |
| GrowableArray<IdealLoopTree*> children; |
| IdealLoopTree* child = _child; |
| while (child != nullptr) { |
| assert(child->_parent == this, "all must be children of this"); |
| children.insert_sorted<compare_tree>(child); |
| child = child->_next; |
| } |
| return children; |
| } |
| |
| // Verify that tree structures match. Because the CFG can change, siblings |
| // within the loop tree can be reordered. We attempt to deal with that by |
| // reordering the verify's loop tree if possible. |
| bool IdealLoopTree::verify_tree(IdealLoopTree* loop_verify) const { |
| assert(_head == loop_verify->_head, "mismatched loop head"); |
| assert(this->_parent != nullptr || this->_next == nullptr, "is_root_loop implies has_no_sibling"); |
| |
| // Collect the children |
| GrowableArray<IdealLoopTree*> children = collect_sorted_children(); |
| GrowableArray<IdealLoopTree*> children_verify = loop_verify->collect_sorted_children(); |
| |
| bool success = true; |
| |
| // Compare the two children lists |
| for (int i = 0, j = 0; i < children.length() || j < children_verify.length(); ) { |
| IdealLoopTree* child = nullptr; |
| IdealLoopTree* child_verify = nullptr; |
| // Read from both lists, if possible. |
| if (i < children.length()) { |
| child = children.at(i); |
| } |
| if (j < children_verify.length()) { |
| child_verify = children_verify.at(j); |
| } |
| assert(child != nullptr || child_verify != nullptr, "must find at least one"); |
| if (child != nullptr && child_verify != nullptr && child->_head != child_verify->_head) { |
| // We found two non-equal children. Select the smaller one. |
| if (child->_head->_idx < child_verify->_head->_idx) { |
| child_verify = nullptr; |
| } else { |
| child = nullptr; |
| } |
| } |
| // Process the two children, or potentially log the failure if we only found one. |
| if (child_verify == nullptr) { |
| if (child->_irreducible && Compile::current()->major_progress()) { |
| // Irreducible loops can pick a different header (one of its entries). |
| } else { |
| tty->print_cr("We have a loop that verify does not have"); |
| child->dump(); |
| success = false; |
| } |
| i++; // step for this |
| } else if (child == nullptr) { |
| if (child_verify->_irreducible && Compile::current()->major_progress()) { |
| // Irreducible loops can pick a different header (one of its entries). |
| } else if (child_verify->_head->as_Region()->is_in_infinite_subgraph()) { |
| // Infinite loops do not get attached to the loop-tree on their first visit. |
| // "this" runs before "loop_verify". It is thus possible that we find the |
| // infinite loop only for "child_verify". Only finding it with "child" would |
| // mean that we lost it, which is not ok. |
| } else { |
| tty->print_cr("Verify has a loop that we do not have"); |
| child_verify->dump(); |
| success = false; |
| } |
| j++; // step for verify |
| } else { |
| assert(child->_head == child_verify->_head, "We have both and they are equal"); |
| success &= child->verify_tree(child_verify); // Recursion |
| i++; // step for this |
| j++; // step for verify |
| } |
| } |
| |
| // Broken part of VerifyLoopOptimizations (D) |
| // Reason: |
| // split_if has to update the _tail, if it is modified. But that is done by |
| // checking to what loop the iff belongs to. That info can be wrong, and then |
| // we do not update the _tail correctly. |
| /* |
| Node *tail = _tail; // Inline a non-updating version of |
| while( !tail->in(0) ) // the 'tail()' call. |
| tail = tail->in(1); |
| assert( tail == loop->_tail, "mismatched loop tail" ); |
| */ |
| |
| if (_head->is_CountedLoop()) { |
| CountedLoopNode *cl = _head->as_CountedLoop(); |
| |
| Node* ctrl = cl->init_control(); |
| Node* back = cl->back_control(); |
| assert(ctrl != nullptr && ctrl->is_CFG(), "sane loop in-ctrl"); |
| assert(back != nullptr && back->is_CFG(), "sane loop backedge"); |
| cl->loopexit(); // assert implied |
| } |
| |
| // Broken part of VerifyLoopOptimizations (E) |
| // Reason: |
| // PhaseIdealLoop::split_thru_region creates new nodes for loop that are not added |
| // to the loop body. Or maybe they are not added to the correct loop. |
| // at "Node* x = n->clone();" |
| /* |
| // Innermost loops need to verify loop bodies, |
| // but only if no 'major_progress' |
| int fail = 0; |
| if (!Compile::current()->major_progress() && _child == nullptr) { |
| for( uint i = 0; i < _body.size(); i++ ) { |
| Node *n = _body.at(i); |
| if (n->outcnt() == 0) continue; // Ignore dead |
| uint j; |
| for( j = 0; j < loop->_body.size(); j++ ) |
| if( loop->_body.at(j) == n ) |
| break; |
| if( j == loop->_body.size() ) { // Not found in loop body |
| // Last ditch effort to avoid assertion: Its possible that we |
| // have some users (so outcnt not zero) but are still dead. |
| // Try to find from root. |
| if (Compile::current()->root()->find(n->_idx)) { |
| fail++; |
| tty->print("We have that verify does not: "); |
| n->dump(); |
| } |
| } |
| } |
| for( uint i2 = 0; i2 < loop->_body.size(); i2++ ) { |
| Node *n = loop->_body.at(i2); |
| if (n->outcnt() == 0) continue; // Ignore dead |
| uint j; |
| for( j = 0; j < _body.size(); j++ ) |
| if( _body.at(j) == n ) |
| break; |
| if( j == _body.size() ) { // Not found in loop body |
| // Last ditch effort to avoid assertion: Its possible that we |
| // have some users (so outcnt not zero) but are still dead. |
| // Try to find from root. |
| if (Compile::current()->root()->find(n->_idx)) { |
| fail++; |
| tty->print("Verify has that we do not: "); |
| n->dump(); |
| } |
| } |
| } |
| assert( !fail, "loop body mismatch" ); |
| } |
| */ |
| return success; |
| } |
| #endif |
| |
| //------------------------------set_idom--------------------------------------- |
| void PhaseIdealLoop::set_idom(Node* d, Node* n, uint dom_depth) { |
| uint idx = d->_idx; |
| if (idx >= _idom_size) { |
| uint newsize = next_power_of_2(idx); |
| _idom = REALLOC_RESOURCE_ARRAY( Node*, _idom,_idom_size,newsize); |
| _dom_depth = REALLOC_RESOURCE_ARRAY( uint, _dom_depth,_idom_size,newsize); |
| memset( _dom_depth + _idom_size, 0, (newsize - _idom_size) * sizeof(uint) ); |
| _idom_size = newsize; |
| } |
| _idom[idx] = n; |
| _dom_depth[idx] = dom_depth; |
| } |
| |
| //------------------------------recompute_dom_depth--------------------------------------- |
| // The dominator tree is constructed with only parent pointers. |
| // This recomputes the depth in the tree by first tagging all |
| // nodes as "no depth yet" marker. The next pass then runs up |
| // the dom tree from each node marked "no depth yet", and computes |
| // the depth on the way back down. |
| void PhaseIdealLoop::recompute_dom_depth() { |
| uint no_depth_marker = C->unique(); |
| uint i; |
| // Initialize depth to "no depth yet" and realize all lazy updates |
| for (i = 0; i < _idom_size; i++) { |
| // Only indices with a _dom_depth has a Node* or null (otherwise uninitialized). |
| if (_dom_depth[i] > 0 && _idom[i] != nullptr) { |
| _dom_depth[i] = no_depth_marker; |
| |
| // heal _idom if it has a fwd mapping in _loop_or_ctrl |
| if (_idom[i]->in(0) == nullptr) { |
| idom(i); |
| } |
| } |
| } |
| if (_dom_stk == nullptr) { |
| uint init_size = C->live_nodes() / 100; // Guess that 1/100 is a reasonable initial size. |
| if (init_size < 10) init_size = 10; |
| _dom_stk = new GrowableArray<uint>(init_size); |
| } |
| // Compute new depth for each node. |
| for (i = 0; i < _idom_size; i++) { |
| uint j = i; |
| // Run up the dom tree to find a node with a depth |
| while (_dom_depth[j] == no_depth_marker) { |
| _dom_stk->push(j); |
| j = _idom[j]->_idx; |
| } |
| // Compute the depth on the way back down this tree branch |
| uint dd = _dom_depth[j] + 1; |
| while (_dom_stk->length() > 0) { |
| uint j = _dom_stk->pop(); |
| _dom_depth[j] = dd; |
| dd++; |
| } |
| } |
| } |
| |
| //------------------------------sort------------------------------------------- |
| // Insert 'loop' into the existing loop tree. 'innermost' is a leaf of the |
| // loop tree, not the root. |
| IdealLoopTree *PhaseIdealLoop::sort( IdealLoopTree *loop, IdealLoopTree *innermost ) { |
| if( !innermost ) return loop; // New innermost loop |
| |
| int loop_preorder = get_preorder(loop->_head); // Cache pre-order number |
| assert( loop_preorder, "not yet post-walked loop" ); |
| IdealLoopTree **pp = &innermost; // Pointer to previous next-pointer |
| IdealLoopTree *l = *pp; // Do I go before or after 'l'? |
| |
| // Insert at start of list |
| while( l ) { // Insertion sort based on pre-order |
| if( l == loop ) return innermost; // Already on list! |
| int l_preorder = get_preorder(l->_head); // Cache pre-order number |
| assert( l_preorder, "not yet post-walked l" ); |
| // Check header pre-order number to figure proper nesting |
| if( loop_preorder > l_preorder ) |
| break; // End of insertion |
| // If headers tie (e.g., shared headers) check tail pre-order numbers. |
| // Since I split shared headers, you'd think this could not happen. |
| // BUT: I must first do the preorder numbering before I can discover I |
| // have shared headers, so the split headers all get the same preorder |
| // number as the RegionNode they split from. |
| if( loop_preorder == l_preorder && |
| get_preorder(loop->_tail) < get_preorder(l->_tail) ) |
| break; // Also check for shared headers (same pre#) |
| pp = &l->_parent; // Chain up list |
| l = *pp; |
| } |
| // Link into list |
| // Point predecessor to me |
| *pp = loop; |
| // Point me to successor |
| IdealLoopTree *p = loop->_parent; |
| loop->_parent = l; // Point me to successor |
| if( p ) sort( p, innermost ); // Insert my parents into list as well |
| return innermost; |
| } |
| |
| //------------------------------build_loop_tree-------------------------------- |
| // I use a modified Vick/Tarjan algorithm. I need pre- and a post- visit |
| // bits. The _loop_or_ctrl[] array is mapped by Node index and holds a null for |
| // not-yet-pre-walked, pre-order # for pre-but-not-post-walked and holds the |
| // tightest enclosing IdealLoopTree for post-walked. |
| // |
| // During my forward walk I do a short 1-layer lookahead to see if I can find |
| // a loop backedge with that doesn't have any work on the backedge. This |
| // helps me construct nested loops with shared headers better. |
| // |
| // Once I've done the forward recursion, I do the post-work. For each child |
| // I check to see if there is a backedge. Backedges define a loop! I |
| // insert an IdealLoopTree at the target of the backedge. |
| // |
| // During the post-work I also check to see if I have several children |
| // belonging to different loops. If so, then this Node is a decision point |
| // where control flow can choose to change loop nests. It is at this |
| // decision point where I can figure out how loops are nested. At this |
| // time I can properly order the different loop nests from my children. |
| // Note that there may not be any backedges at the decision point! |
| // |
| // Since the decision point can be far removed from the backedges, I can't |
| // order my loops at the time I discover them. Thus at the decision point |
| // I need to inspect loop header pre-order numbers to properly nest my |
| // loops. This means I need to sort my childrens' loops by pre-order. |
| // The sort is of size number-of-control-children, which generally limits |
| // it to size 2 (i.e., I just choose between my 2 target loops). |
| void PhaseIdealLoop::build_loop_tree() { |
| // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc |
| GrowableArray <Node *> bltstack(C->live_nodes() >> 1); |
| Node *n = C->root(); |
| bltstack.push(n); |
| int pre_order = 1; |
| int stack_size; |
| |
| while ( ( stack_size = bltstack.length() ) != 0 ) { |
| n = bltstack.top(); // Leave node on stack |
| if ( !is_visited(n) ) { |
| // ---- Pre-pass Work ---- |
| // Pre-walked but not post-walked nodes need a pre_order number. |
| |
| set_preorder_visited( n, pre_order ); // set as visited |
| |
| // ---- Scan over children ---- |
| // Scan first over control projections that lead to loop headers. |
| // This helps us find inner-to-outer loops with shared headers better. |
| |
| // Scan children's children for loop headers. |
| for ( int i = n->outcnt() - 1; i >= 0; --i ) { |
| Node* m = n->raw_out(i); // Child |
| if( m->is_CFG() && !is_visited(m) ) { // Only for CFG children |
| // Scan over children's children to find loop |
| for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) { |
| Node* l = m->fast_out(j); |
| if( is_visited(l) && // Been visited? |
| !is_postvisited(l) && // But not post-visited |
| get_preorder(l) < pre_order ) { // And smaller pre-order |
| // Found! Scan the DFS down this path before doing other paths |
| bltstack.push(m); |
| break; |
| } |
| } |
| } |
| } |
| pre_order++; |
| } |
| else if ( !is_postvisited(n) ) { |
| // Note: build_loop_tree_impl() adds out edges on rare occasions, |
| // such as com.sun.rsasign.am::a. |
| // For non-recursive version, first, process current children. |
| // On next iteration, check if additional children were added. |
| for ( int k = n->outcnt() - 1; k >= 0; --k ) { |
| Node* u = n->raw_out(k); |
| if ( u->is_CFG() && !is_visited(u) ) { |
| bltstack.push(u); |
| } |
| } |
| if ( bltstack.length() == stack_size ) { |
| // There were no additional children, post visit node now |
| (void)bltstack.pop(); // Remove node from stack |
| pre_order = build_loop_tree_impl( n, pre_order ); |
| // Check for bailout |
| if (C->failing()) { |
| return; |
| } |
| // Check to grow _preorders[] array for the case when |
| // build_loop_tree_impl() adds new nodes. |
| check_grow_preorders(); |
| } |
| } |
| else { |
| (void)bltstack.pop(); // Remove post-visited node from stack |
| } |
| } |
| DEBUG_ONLY(verify_regions_in_irreducible_loops();) |
| } |
| |
| //------------------------------build_loop_tree_impl--------------------------- |
| int PhaseIdealLoop::build_loop_tree_impl( Node *n, int pre_order ) { |
| // ---- Post-pass Work ---- |
| // Pre-walked but not post-walked nodes need a pre_order number. |
| |
| // Tightest enclosing loop for this Node |
| IdealLoopTree *innermost = nullptr; |
| |
| // For all children, see if any edge is a backedge. If so, make a loop |
| // for it. Then find the tightest enclosing loop for the self Node. |
| for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { |
| Node* m = n->fast_out(i); // Child |
| if( n == m ) continue; // Ignore control self-cycles |
| if( !m->is_CFG() ) continue;// Ignore non-CFG edges |
| |
| IdealLoopTree *l; // Child's loop |
| if( !is_postvisited(m) ) { // Child visited but not post-visited? |
| // Found a backedge |
| assert( get_preorder(m) < pre_order, "should be backedge" ); |
| // Check for the RootNode, which is already a LoopNode and is allowed |
| // to have multiple "backedges". |
| if( m == C->root()) { // Found the root? |
| l = _ltree_root; // Root is the outermost LoopNode |
| } else { // Else found a nested loop |
| // Insert a LoopNode to mark this loop. |
| l = new IdealLoopTree(this, m, n); |
| } // End of Else found a nested loop |
| if( !has_loop(m) ) // If 'm' does not already have a loop set |
| set_loop(m, l); // Set loop header to loop now |
| |
| } else { // Else not a nested loop |
| if (!_loop_or_ctrl[m->_idx]) continue; // Dead code has no loop |
| l = get_loop(m); // Get previously determined loop |
| // If successor is header of a loop (nest), move up-loop till it |
| // is a member of some outer enclosing loop. Since there are no |
| // shared headers (I've split them already) I only need to go up |
| // at most 1 level. |
| while( l && l->_head == m ) // Successor heads loop? |
| l = l->_parent; // Move up 1 for me |
| // If this loop is not properly parented, then this loop |
| // has no exit path out, i.e. its an infinite loop. |
| if( !l ) { |
| // Make loop "reachable" from root so the CFG is reachable. Basically |
| // insert a bogus loop exit that is never taken. 'm', the loop head, |
| // points to 'n', one (of possibly many) fall-in paths. There may be |
| // many backedges as well. |
| |
| // Here I set the loop to be the root loop. I could have, after |
| // inserting a bogus loop exit, restarted the recursion and found my |
| // new loop exit. This would make the infinite loop a first-class |
| // loop and it would then get properly optimized. What's the use of |
| // optimizing an infinite loop? |
| l = _ltree_root; // Oops, found infinite loop |
| |
| if (!_verify_only) { |
| // Insert the NeverBranch between 'm' and it's control user. |
| NeverBranchNode *iff = new NeverBranchNode( m ); |
| _igvn.register_new_node_with_optimizer(iff); |
| set_loop(iff, l); |
| Node *if_t = new CProjNode( iff, 0 ); |
| _igvn.register_new_node_with_optimizer(if_t); |
| set_loop(if_t, l); |
| |
| Node* cfg = nullptr; // Find the One True Control User of m |
| for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) { |
| Node* x = m->fast_out(j); |
| if (x->is_CFG() && x != m && x != iff) |
| { cfg = x; break; } |
| } |
| assert(cfg != nullptr, "must find the control user of m"); |
| uint k = 0; // Probably cfg->in(0) |
| while( cfg->in(k) != m ) k++; // But check in case cfg is a Region |
| _igvn.replace_input_of(cfg, k, if_t); // Now point to NeverBranch |
| |
| // Now create the never-taken loop exit |
| Node *if_f = new CProjNode( iff, 1 ); |
| _igvn.register_new_node_with_optimizer(if_f); |
| set_loop(if_f, l); |
| // Find frame ptr for Halt. Relies on the optimizer |
| // V-N'ing. Easier and quicker than searching through |
| // the program structure. |
| Node *frame = new ParmNode( C->start(), TypeFunc::FramePtr ); |
| _igvn.register_new_node_with_optimizer(frame); |
| // Halt & Catch Fire |
| Node* halt = new HaltNode(if_f, frame, "never-taken loop exit reached"); |
| _igvn.register_new_node_with_optimizer(halt); |
| set_loop(halt, l); |
| _igvn.add_input_to(C->root(), halt); |
| } |
| set_loop(C->root(), _ltree_root); |
| } |
| } |
| if (is_postvisited(l->_head)) { |
| // We are currently visiting l, but its head has already been post-visited. |
| // l is irreducible: we just found a second entry m. |
| _has_irreducible_loops = true; |
| RegionNode* secondary_entry = m->as_Region(); |
| DEBUG_ONLY(secondary_entry->verify_can_be_irreducible_entry();) |
| |
| // Walk up the loop-tree, mark all loops that are already post-visited as irreducible |
| // Since m is a secondary entry to them all. |
| while( is_postvisited(l->_head) ) { |
| l->_irreducible = 1; // = true |
| RegionNode* head = l->_head->as_Region(); |
| DEBUG_ONLY(head->verify_can_be_irreducible_entry();) |
| l = l->_parent; |
| // Check for bad CFG here to prevent crash, and bailout of compile |
| if (l == nullptr) { |
| #ifndef PRODUCT |
| if (TraceLoopOpts) { |
| tty->print_cr("bailout: unhandled CFG: infinite irreducible loop"); |
| m->dump(); |
| } |
| #endif |
| // This is a rare case that we do not want to handle in C2. |
| C->record_method_not_compilable("unhandled CFG detected during loop optimization"); |
| return pre_order; |
| } |
| } |
| } |
| if (!_verify_only) { |
| C->set_has_irreducible_loop(_has_irreducible_loops); |
| } |
| |
| // This Node might be a decision point for loops. It is only if |
| // it's children belong to several different loops. The sort call |
| // does a trivial amount of work if there is only 1 child or all |
| // children belong to the same loop. If however, the children |
| // belong to different loops, the sort call will properly set the |
| // _parent pointers to show how the loops nest. |
| // |
| // In any case, it returns the tightest enclosing loop. |
| innermost = sort( l, innermost ); |
| } |
| |
| // Def-use info will have some dead stuff; dead stuff will have no |
| // loop decided on. |
| |
| // Am I a loop header? If so fix up my parent's child and next ptrs. |
| if( innermost && innermost->_head == n ) { |
| assert( get_loop(n) == innermost, "" ); |
| IdealLoopTree *p = innermost->_parent; |
| IdealLoopTree *l = innermost; |
| while( p && l->_head == n ) { |
| l->_next = p->_child; // Put self on parents 'next child' |
| p->_child = l; // Make self as first child of parent |
| l = p; // Now walk up the parent chain |
| p = l->_parent; |
| } |
| } else { |
| // Note that it is possible for a LoopNode to reach here, if the |
| // backedge has been made unreachable (hence the LoopNode no longer |
| // denotes a Loop, and will eventually be removed). |
| |
| // Record tightest enclosing loop for self. Mark as post-visited. |
| set_loop(n, innermost); |
| // Also record has_call flag early on |
| if( innermost ) { |
| if( n->is_Call() && !n->is_CallLeaf() && !n->is_macro() ) { |
| // Do not count uncommon calls |
| if( !n->is_CallStaticJava() || !n->as_CallStaticJava()->_name ) { |
| Node *iff = n->in(0)->in(0); |
| // No any calls for vectorized loops. |
| if( UseSuperWord || !iff->is_If() || |
| (n->in(0)->Opcode() == Op_IfFalse && |
| (1.0 - iff->as_If()->_prob) >= 0.01) || |
| (iff->as_If()->_prob >= 0.01) ) |
| innermost->_has_call = 1; |
| } |
| } else if( n->is_Allocate() && n->as_Allocate()->_is_scalar_replaceable ) { |
| // Disable loop optimizations if the loop has a scalar replaceable |
| // allocation. This disabling may cause a potential performance lost |
| // if the allocation is not eliminated for some reason. |
| innermost->_allow_optimizations = false; |
| innermost->_has_call = 1; // = true |
| } else if (n->Opcode() == Op_SafePoint) { |
| // Record all safepoints in this loop. |
| if (innermost->_safepts == nullptr) innermost->_safepts = new Node_List(); |
| innermost->_safepts->push(n); |
| } |
| } |
| } |
| |
| // Flag as post-visited now |
| set_postvisited(n); |
| return pre_order; |
| } |
| |
| #ifdef ASSERT |
| //--------------------------verify_regions_in_irreducible_loops---------------- |
| // Iterate down from Root through CFG, verify for every region: |
| // if it is in an irreducible loop it must be marked as such |
| void PhaseIdealLoop::verify_regions_in_irreducible_loops() { |
| ResourceMark rm; |
| if (!_has_irreducible_loops) { |
| // last build_loop_tree has not found any irreducible loops |
| // hence no region has to be marked is_in_irreduible_loop |
| return; |
| } |
| |
| RootNode* root = C->root(); |
| Unique_Node_List worklist; // visit all nodes once |
| worklist.push(root); |
| bool failure = false; |
| for (uint i = 0; i < worklist.size(); i++) { |
| Node* n = worklist.at(i); |
| if (n->is_Region()) { |
| RegionNode* region = n->as_Region(); |
| if (is_in_irreducible_loop(region) && |
| region->loop_status() == RegionNode::LoopStatus::Reducible) { |
| failure = true; |
| tty->print("irreducible! "); |
| region->dump(); |
| } |
| } |
| for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) { |
| Node* use = n->fast_out(j); |
| if (use->is_CFG()) { |
| worklist.push(use); // push if was not pushed before |
| } |
| } |
| } |
| assert(!failure, "region in irreducible loop was marked as reducible"); |
| } |
| |
| //---------------------------is_in_irreducible_loop------------------------- |
| // Analogous to ciTypeFlow::Block::is_in_irreducible_loop |
| bool PhaseIdealLoop::is_in_irreducible_loop(RegionNode* region) { |
| if (!_has_irreducible_loops) { |
| return false; // no irreducible loop in graph |
| } |
| IdealLoopTree* l = get_loop(region); // l: innermost loop that contains region |
| do { |
| if (l->_irreducible) { |
| return true; // found it |
| } |
| if (l == _ltree_root) { |
| return false; // reached root, terimnate |
| } |
| l = l->_parent; |
| } while (l != nullptr); |
| assert(region->is_in_infinite_subgraph(), "must be in infinite subgraph"); |
| // We have "l->_parent == nullptr", which happens only for infinite loops, |
| // where no parent is attached to the loop. We did not find any irreducible |
| // loop from this block out to lp. Thus lp only has one entry, and no exit |
| // (it is infinite and reducible). We can always rewrite an infinite loop |
| // that is nested inside other loops: |
| // while(condition) { infinite_loop; } |
| // with an equivalent program where the infinite loop is an outermost loop |
| // that is not nested in any loop: |
| // while(condition) { break; } infinite_loop; |
| // Thus, we can understand lp as an outermost loop, and can terminate and |
| // conclude: this block is in no irreducible loop. |
| return false; |
| } |
| #endif |
| |
| //------------------------------build_loop_early------------------------------- |
| // Put Data nodes into some loop nest, by setting the _loop_or_ctrl[]->loop mapping. |
| // First pass computes the earliest controlling node possible. This is the |
| // controlling input with the deepest dominating depth. |
| void PhaseIdealLoop::build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) { |
| while (worklist.size() != 0) { |
| // Use local variables nstack_top_n & nstack_top_i to cache values |
| // on nstack's top. |
| Node *nstack_top_n = worklist.pop(); |
| uint nstack_top_i = 0; |
| //while_nstack_nonempty: |
| while (true) { |
| // Get parent node and next input's index from stack's top. |
| Node *n = nstack_top_n; |
| uint i = nstack_top_i; |
| uint cnt = n->req(); // Count of inputs |
| if (i == 0) { // Pre-process the node. |
| if( has_node(n) && // Have either loop or control already? |
| !has_ctrl(n) ) { // Have loop picked out already? |
| // During "merge_many_backedges" we fold up several nested loops |
| // into a single loop. This makes the members of the original |
| // loop bodies pointing to dead loops; they need to move up |
| // to the new UNION'd larger loop. I set the _head field of these |
| // dead loops to null and the _parent field points to the owning |
| // loop. Shades of UNION-FIND algorithm. |
| IdealLoopTree *ilt; |
| while( !(ilt = get_loop(n))->_head ) { |
| // Normally I would use a set_loop here. But in this one special |
| // case, it is legal (and expected) to change what loop a Node |
| // belongs to. |
| _loop_or_ctrl.map(n->_idx, (Node*)(ilt->_parent)); |
| } |
| // Remove safepoints ONLY if I've already seen I don't need one. |
| // (the old code here would yank a 2nd safepoint after seeing a |
| // first one, even though the 1st did not dominate in the loop body |
| // and thus could be avoided indefinitely) |
| if( !_verify_only && !_verify_me && ilt->_has_sfpt && n->Opcode() == Op_SafePoint && |
| is_deleteable_safept(n)) { |
| Node *in = n->in(TypeFunc::Control); |
| lazy_replace(n,in); // Pull safepoint now |
| if (ilt->_safepts != nullptr) { |
| ilt->_safepts->yank(n); |
| } |
| // Carry on with the recursion "as if" we are walking |
| // only the control input |
| if( !visited.test_set( in->_idx ) ) { |
| worklist.push(in); // Visit this guy later, using worklist |
| } |
| // Get next node from nstack: |
| // - skip n's inputs processing by setting i > cnt; |
| // - we also will not call set_early_ctrl(n) since |
| // has_node(n) == true (see the condition above). |
| i = cnt + 1; |
| } |
| } |
| } // if (i == 0) |
| |
| // Visit all inputs |
| bool done = true; // Assume all n's inputs will be processed |
| while (i < cnt) { |
| Node *in = n->in(i); |
| ++i; |
| if (in == nullptr) continue; |
| if (in->pinned() && !in->is_CFG()) |
| set_ctrl(in, in->in(0)); |
| int is_visited = visited.test_set( in->_idx ); |
| if (!has_node(in)) { // No controlling input yet? |
| assert( !in->is_CFG(), "CFG Node with no controlling input?" ); |
| assert( !is_visited, "visit only once" ); |
| nstack.push(n, i); // Save parent node and next input's index. |
| nstack_top_n = in; // Process current input now. |
| nstack_top_i = 0; |
| done = false; // Not all n's inputs processed. |
| break; // continue while_nstack_nonempty; |
| } else if (!is_visited) { |
| // This guy has a location picked out for him, but has not yet |
| // been visited. Happens to all CFG nodes, for instance. |
| // Visit him using the worklist instead of recursion, to break |
| // cycles. Since he has a location already we do not need to |
| // find his location before proceeding with the current Node. |
| worklist.push(in); // Visit this guy later, using worklist |
| } |
| } |
| if (done) { |
| // All of n's inputs have been processed, complete post-processing. |
| |
| // Compute earliest point this Node can go. |
| // CFG, Phi, pinned nodes already know their controlling input. |
| if (!has_node(n)) { |
| // Record earliest legal location |
| set_early_ctrl(n, false); |
| } |
| if (nstack.is_empty()) { |
| // Finished all nodes on stack. |
| // Process next node on the worklist. |
| break; |
| } |
| // Get saved parent node and next input's index. |
| nstack_top_n = nstack.node(); |
| nstack_top_i = nstack.index(); |
| nstack.pop(); |
| } |
| } // while (true) |
| } |
| } |
| |
| //------------------------------dom_lca_internal-------------------------------- |
| // Pair-wise LCA |
| Node *PhaseIdealLoop::dom_lca_internal( Node *n1, Node *n2 ) const { |
| if( !n1 ) return n2; // Handle null original LCA |
| assert( n1->is_CFG(), "" ); |
| assert( n2->is_CFG(), "" ); |
| // find LCA of all uses |
| uint d1 = dom_depth(n1); |
| uint d2 = dom_depth(n2); |
| while (n1 != n2) { |
| if (d1 > d2) { |
| n1 = idom(n1); |
| d1 = dom_depth(n1); |
| } else if (d1 < d2) { |
| n2 = idom(n2); |
| d2 = dom_depth(n2); |
| } else { |
| // Here d1 == d2. Due to edits of the dominator-tree, sections |
| // of the tree might have the same depth. These sections have |
| // to be searched more carefully. |
| |
| // Scan up all the n1's with equal depth, looking for n2. |
| Node *t1 = idom(n1); |
| while (dom_depth(t1) == d1) { |
| if (t1 == n2) return n2; |
| t1 = idom(t1); |
| } |
| // Scan up all the n2's with equal depth, looking for n1. |
| Node *t2 = idom(n2); |
| while (dom_depth(t2) == d2) { |
| if (t2 == n1) return n1; |
| t2 = idom(t2); |
| } |
| // Move up to a new dominator-depth value as well as up the dom-tree. |
| n1 = t1; |
| n2 = t2; |
| d1 = dom_depth(n1); |
| d2 = dom_depth(n2); |
| } |
| } |
| return n1; |
| } |
| |
| //------------------------------compute_idom----------------------------------- |
| // Locally compute IDOM using dom_lca call. Correct only if the incoming |
| // IDOMs are correct. |
| Node *PhaseIdealLoop::compute_idom( Node *region ) const { |
| assert( region->is_Region(), "" ); |
| Node *LCA = nullptr; |
| for( uint i = 1; i < region->req(); i++ ) { |
| if( region->in(i) != C->top() ) |
| LCA = dom_lca( LCA, region->in(i) ); |
| } |
| return LCA; |
| } |
| |
| bool PhaseIdealLoop::verify_dominance(Node* n, Node* use, Node* LCA, Node* early) { |
| bool had_error = false; |
| #ifdef ASSERT |
| if (early != C->root()) { |
| // Make sure that there's a dominance path from LCA to early |
| Node* d = LCA; |
| while (d != early) { |
| if (d == C->root()) { |
| dump_bad_graph("Bad graph detected in compute_lca_of_uses", n, early, LCA); |
| tty->print_cr("*** Use %d isn't dominated by def %d ***", use->_idx, n->_idx); |
| had_error = true; |
| break; |
| } |
| d = idom(d); |
| } |
| } |
| #endif |
| return had_error; |
| } |
| |
| |
| Node* PhaseIdealLoop::compute_lca_of_uses(Node* n, Node* early, bool verify) { |
| // Compute LCA over list of uses |
| bool had_error = false; |
| Node *LCA = nullptr; |
| for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && LCA != early; i++) { |
| Node* c = n->fast_out(i); |
| if (_loop_or_ctrl[c->_idx] == nullptr) |
| continue; // Skip the occasional dead node |
| if( c->is_Phi() ) { // For Phis, we must land above on the path |
| for( uint j=1; j<c->req(); j++ ) {// For all inputs |
| if( c->in(j) == n ) { // Found matching input? |
| Node *use = c->in(0)->in(j); |
| if (_verify_only && use->is_top()) continue; |
| LCA = dom_lca_for_get_late_ctrl( LCA, use, n ); |
| if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error; |
| } |
| } |
| } else { |
| // For CFG data-users, use is in the block just prior |
| Node *use = has_ctrl(c) ? get_ctrl(c) : c->in(0); |
| LCA = dom_lca_for_get_late_ctrl( LCA, use, n ); |
| if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error; |
| } |
| } |
| assert(!had_error, "bad dominance"); |
| return LCA; |
| } |
| |
| // Check the shape of the graph at the loop entry. In some cases, |
| // the shape of the graph does not match the shape outlined below. |
| // That is caused by the Opaque1 node "protecting" the shape of |
| // the graph being removed by, for example, the IGVN performed |
| // in PhaseIdealLoop::build_and_optimize(). |
| // |
| // After the Opaque1 node has been removed, optimizations (e.g., split-if, |
| // loop unswitching, and IGVN, or a combination of them) can freely change |
| // the graph's shape. As a result, the graph shape outlined below cannot |
| // be guaranteed anymore. |
| Node* CountedLoopNode::is_canonical_loop_entry() { |
| if (!is_main_loop() && !is_post_loop()) { |
| return nullptr; |
| } |
| Node* ctrl = skip_predicates(); |
| |
| if (ctrl == nullptr || (!ctrl->is_IfTrue() && !ctrl->is_IfFalse())) { |
| return nullptr; |
| } |
| Node* iffm = ctrl->in(0); |
| if (iffm == nullptr || iffm->Opcode() != Op_If) { |
| return nullptr; |
| } |
| Node* bolzm = iffm->in(1); |
| if (bolzm == nullptr || !bolzm->is_Bool()) { |
| return nullptr; |
| } |
| Node* cmpzm = bolzm->in(1); |
| if (cmpzm == nullptr || !cmpzm->is_Cmp()) { |
| return nullptr; |
| } |
| |
| uint input = is_main_loop() ? 2 : 1; |
| if (input >= cmpzm->req() || cmpzm->in(input) == nullptr) { |
| return nullptr; |
| } |
| bool res = cmpzm->in(input)->Opcode() == Op_OpaqueZeroTripGuard; |
| #ifdef ASSERT |
| bool found_opaque = false; |
| for (uint i = 1; i < cmpzm->req(); i++) { |
| Node* opnd = cmpzm->in(i); |
| if (opnd && opnd->is_Opaque1()) { |
| found_opaque = true; |
| break; |
| } |
| } |
| assert(found_opaque == res, "wrong pattern"); |
| #endif |
| return res ? cmpzm->in(input) : nullptr; |
| } |
| |
| //------------------------------get_late_ctrl---------------------------------- |
| // Compute latest legal control. |
| Node *PhaseIdealLoop::get_late_ctrl( Node *n, Node *early ) { |
| assert(early != nullptr, "early control should not be null"); |
| |
| Node* LCA = compute_lca_of_uses(n, early); |
| #ifdef ASSERT |
| if (LCA == C->root() && LCA != early) { |
| // def doesn't dominate uses so print some useful debugging output |
| compute_lca_of_uses(n, early, true); |
| } |
| #endif |
| |
| if (n->is_Load() && LCA != early) { |
| LCA = get_late_ctrl_with_anti_dep(n->as_Load(), early, LCA); |
| } |
| |
| assert(LCA == find_non_split_ctrl(LCA), "unexpected late control"); |
| return LCA; |
| } |
| |
| // if this is a load, check for anti-dependent stores |
| // We use a conservative algorithm to identify potential interfering |
| // instructions and for rescheduling the load. The users of the memory |
| // input of this load are examined. Any use which is not a load and is |
| // dominated by early is considered a potentially interfering store. |
| // This can produce false positives. |
| Node* PhaseIdealLoop::get_late_ctrl_with_anti_dep(LoadNode* n, Node* early, Node* LCA) { |
| int load_alias_idx = C->get_alias_index(n->adr_type()); |
| if (C->alias_type(load_alias_idx)->is_rewritable()) { |
| Unique_Node_List worklist; |
| |
| Node* mem = n->in(MemNode::Memory); |
| for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) { |
| Node* s = mem->fast_out(i); |
| worklist.push(s); |
| } |
| for (uint i = 0; i < worklist.size() && LCA != early; i++) { |
| Node* s = worklist.at(i); |
| if (s->is_Load() || s->Opcode() == Op_SafePoint || |
| (s->is_CallStaticJava() && s->as_CallStaticJava()->uncommon_trap_request() != 0) || |
| s->is_Phi()) { |
| continue; |
| } else if (s->is_MergeMem()) { |
| for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) { |
| Node* s1 = s->fast_out(i); |
| worklist.push(s1); |
| } |
| } else { |
| Node* sctrl = has_ctrl(s) ? get_ctrl(s) : s->in(0); |
| assert(sctrl != nullptr || !s->is_reachable_from_root(), "must have control"); |
| if (sctrl != nullptr && !sctrl->is_top() && is_dominator(early, sctrl)) { |
| const TypePtr* adr_type = s->adr_type(); |
| if (s->is_ArrayCopy()) { |
| // Copy to known instance needs destination type to test for aliasing |
| const TypePtr* dest_type = s->as_ArrayCopy()->_dest_type; |
| if (dest_type != TypeOopPtr::BOTTOM) { |
| adr_type = dest_type; |
| } |
| } |
| if (C->can_alias(adr_type, load_alias_idx)) { |
| LCA = dom_lca_for_get_late_ctrl(LCA, sctrl, n); |
| } else if (s->is_CFG() && s->is_Multi()) { |
| // Look for the memory use of s (that is the use of its memory projection) |
| for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) { |
| Node* s1 = s->fast_out(i); |
| assert(s1->is_Proj(), "projection expected"); |
| if (_igvn.type(s1) == Type::MEMORY) { |
| for (DUIterator_Fast jmax, j = s1->fast_outs(jmax); j < jmax; j++) { |
| Node* s2 = s1->fast_out(j); |
| worklist.push(s2); |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| // For Phis only consider Region's inputs that were reached by following the memory edges |
| if (LCA != early) { |
| for (uint i = 0; i < worklist.size(); i++) { |
| Node* s = worklist.at(i); |
| if (s->is_Phi() && C->can_alias(s->adr_type(), load_alias_idx)) { |
| Node* r = s->in(0); |
| for (uint j = 1; j < s->req(); j++) { |
| Node* in = s->in(j); |
| Node* r_in = r->in(j); |
| // We can't reach any node from a Phi because we don't enqueue Phi's uses above |
| if (((worklist.member(in) && !in->is_Phi()) || in == mem) && is_dominator(early, r_in)) { |
| LCA = dom_lca_for_get_late_ctrl(LCA, r_in, n); |
| } |
| } |
| } |
| } |
| } |
| } |
| return LCA; |
| } |
| |
| // true if CFG node d dominates CFG node n |
| bool PhaseIdealLoop::is_dominator(Node *d, Node *n) { |
| if (d == n) |
| return true; |
| assert(d->is_CFG() && n->is_CFG(), "must have CFG nodes"); |
| uint dd = dom_depth(d); |
| while (dom_depth(n) >= dd) { |
| if (n == d) |
| return true; |
| n = idom(n); |
| } |
| return false; |
| } |
| |
| //------------------------------dom_lca_for_get_late_ctrl_internal------------- |
| // Pair-wise LCA with tags. |
| // Tag each index with the node 'tag' currently being processed |
| // before advancing up the dominator chain using idom(). |
| // Later calls that find a match to 'tag' know that this path has already |
| // been considered in the current LCA (which is input 'n1' by convention). |
| // Since get_late_ctrl() is only called once for each node, the tag array |
| // does not need to be cleared between calls to get_late_ctrl(). |
| // Algorithm trades a larger constant factor for better asymptotic behavior |
| // |
| Node *PhaseIdealLoop::dom_lca_for_get_late_ctrl_internal(Node *n1, Node *n2, Node *tag_node) { |
| uint d1 = dom_depth(n1); |
| uint d2 = dom_depth(n2); |
| jlong tag = tag_node->_idx | (((jlong)_dom_lca_tags_round) << 32); |
| |
| do { |
| if (d1 > d2) { |
| // current lca is deeper than n2 |
| _dom_lca_tags.at_put_grow(n1->_idx, tag); |
| n1 = idom(n1); |
| d1 = dom_depth(n1); |
| } else if (d1 < d2) { |
| // n2 is deeper than current lca |
| jlong memo = _dom_lca_tags.at_grow(n2->_idx, 0); |
| if (memo == tag) { |
| return n1; // Return the current LCA |
| } |
| _dom_lca_tags.at_put_grow(n2->_idx, tag); |
| n2 = idom(n2); |
| d2 = dom_depth(n2); |
| } else { |
| // Here d1 == d2. Due to edits of the dominator-tree, sections |
| // of the tree might have the same depth. These sections have |
| // to be searched more carefully. |
| |
| // Scan up all the n1's with equal depth, looking for n2. |
| _dom_lca_tags.at_put_grow(n1->_idx, tag); |
| Node *t1 = idom(n1); |
| while (dom_depth(t1) == d1) { |
| if (t1 == n2) return n2; |
| _dom_lca_tags.at_put_grow(t1->_idx, tag); |
| t1 = idom(t1); |
| } |
| // Scan up all the n2's with equal depth, looking for n1. |
| _dom_lca_tags.at_put_grow(n2->_idx, tag); |
| Node *t2 = idom(n2); |
| while (dom_depth(t2) == d2) { |
| if (t2 == n1) return n1; |
| _dom_lca_tags.at_put_grow(t2->_idx, tag); |
| t2 = idom(t2); |
| } |
| // Move up to a new dominator-depth value as well as up the dom-tree. |
| n1 = t1; |
| n2 = t2; |
| d1 = dom_depth(n1); |
| d2 = dom_depth(n2); |
| } |
| } while (n1 != n2); |
| return n1; |
| } |
| |
| //------------------------------init_dom_lca_tags------------------------------ |
| // Tag could be a node's integer index, 32bits instead of 64bits in some cases |
| // Intended use does not involve any growth for the array, so it could |
| // be of fixed size. |
| void PhaseIdealLoop::init_dom_lca_tags() { |
| uint limit = C->unique() + 1; |
| _dom_lca_tags.at_grow(limit, 0); |
| _dom_lca_tags_round = 0; |
| #ifdef ASSERT |
| for (uint i = 0; i < limit; ++i) { |
| assert(_dom_lca_tags.at(i) == 0, "Must be distinct from each node pointer"); |
| } |
| #endif // ASSERT |
| } |
| |
| //------------------------------build_loop_late-------------------------------- |
| // Put Data nodes into some loop nest, by setting the _loop_or_ctrl[]->loop mapping. |
| // Second pass finds latest legal placement, and ideal loop placement. |
| void PhaseIdealLoop::build_loop_late( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) { |
| while (worklist.size() != 0) { |
| Node *n = worklist.pop(); |
| // Only visit once |
| if (visited.test_set(n->_idx)) continue; |
| uint cnt = n->outcnt(); |
| uint i = 0; |
| while (true) { |
| assert(_loop_or_ctrl[n->_idx], "no dead nodes"); |
| // Visit all children |
| if (i < cnt) { |
| Node* use = n->raw_out(i); |
| ++i; |
| // Check for dead uses. Aggressively prune such junk. It might be |
| // dead in the global sense, but still have local uses so I cannot |
| // easily call 'remove_dead_node'. |
| if (_loop_or_ctrl[use->_idx] != nullptr || use->is_top()) { // Not dead? |
| // Due to cycles, we might not hit the same fixed point in the verify |
| // pass as we do in the regular pass. Instead, visit such phis as |
| // simple uses of the loop head. |
| if( use->in(0) && (use->is_CFG() || use->is_Phi()) ) { |
| if( !visited.test(use->_idx) ) |
| worklist.push(use); |
| } else if( !visited.test_set(use->_idx) ) { |
| nstack.push(n, i); // Save parent and next use's index. |
| n = use; // Process all children of current use. |
| cnt = use->outcnt(); |
| i = 0; |
| } |
| } else { |
| // Do not visit around the backedge of loops via data edges. |
| // push dead code onto a worklist |
| _deadlist.push(use); |
| } |
| } else { |
| // All of n's children have been processed, complete post-processing. |
| build_loop_late_post(n); |
| if (C->failing()) { return; } |
| if (nstack.is_empty()) { |
| // Finished all nodes on stack. |
| // Process next node on the worklist. |
| break; |
| } |
| // Get saved parent node and next use's index. Visit the rest of uses. |
| n = nstack.node(); |
| cnt = n->outcnt(); |
| i = nstack.index(); |
| nstack.pop(); |
| } |
| } |
| } |
| } |
| |
| // Verify that no data node is scheduled in the outer loop of a strip |
| // mined loop. |
| void PhaseIdealLoop::verify_strip_mined_scheduling(Node *n, Node* least) { |
| #ifdef ASSERT |
| if (get_loop(least)->_nest == 0) { |
| return; |
| } |
| IdealLoopTree* loop = get_loop(least); |
| Node* head = loop->_head; |
| if (head->is_OuterStripMinedLoop() && |
| // Verification can't be applied to fully built strip mined loops |
| head->as_Loop()->outer_loop_end()->in(1)->find_int_con(-1) == 0) { |
| Node* sfpt = head->as_Loop()->outer_safepoint(); |
| ResourceMark rm; |
| Unique_Node_List wq; |
| wq.push(sfpt); |
| for (uint i = 0; i < wq.size(); i++) { |
| Node *m = wq.at(i); |
| for (uint i = 1; i < m->req(); i++) { |
| Node* nn = m->in(i); |
| if (nn == n) { |
| return; |
| } |
| if (nn != nullptr && has_ctrl(nn) && get_loop(get_ctrl(nn)) == loop) { |
| wq.push(nn); |
| } |
| } |
| } |
| ShouldNotReachHere(); |
| } |
| #endif |
| } |
| |
| |
| //------------------------------build_loop_late_post--------------------------- |
| // Put Data nodes into some loop nest, by setting the _loop_or_ctrl[]->loop mapping. |
| // Second pass finds latest legal placement, and ideal loop placement. |
| void PhaseIdealLoop::build_loop_late_post(Node *n) { |
| build_loop_late_post_work(n, true); |
| } |
| |
| void PhaseIdealLoop::build_loop_late_post_work(Node *n, bool pinned) { |
| |
| if (n->req() == 2 && (n->Opcode() == Op_ConvI2L || n->Opcode() == Op_CastII) && !C->major_progress() && !_verify_only) { |
| _igvn._worklist.push(n); // Maybe we'll normalize it, if no more loops. |
| } |
| |
| #ifdef ASSERT |
| if (_verify_only && !n->is_CFG()) { |
| // Check def-use domination. |
| compute_lca_of_uses(n, get_ctrl(n), true /* verify */); |
| } |
| #endif |
| |
| // CFG and pinned nodes already handled |
| if( n->in(0) ) { |
| if( n->in(0)->is_top() ) return; // Dead? |
| |
| // We'd like +VerifyLoopOptimizations to not believe that Mod's/Loads |
| // _must_ be pinned (they have to observe their control edge of course). |
| // Unlike Stores (which modify an unallocable resource, the memory |
| // state), Mods/Loads can float around. So free them up. |
| switch( n->Opcode() ) { |
| case Op_DivI: |
| case Op_DivF: |
| case Op_DivD: |
| case Op_ModI: |
| case Op_ModF: |
| case Op_ModD: |
| case Op_LoadB: // Same with Loads; they can sink |
| case Op_LoadUB: // during loop optimizations. |
| case Op_LoadUS: |
| case Op_LoadD: |
| case Op_LoadF: |
| case Op_LoadI: |
| case Op_LoadKlass: |
| case Op_LoadNKlass: |
| case Op_LoadL: |
| case Op_LoadS: |
| case Op_LoadP: |
| case Op_LoadN: |
| case Op_LoadRange: |
| case Op_LoadD_unaligned: |
| case Op_LoadL_unaligned: |
| case Op_StrComp: // Does a bunch of load-like effects |
| case Op_StrEquals: |
| case Op_StrIndexOf: |
| case Op_StrIndexOfChar: |
| case Op_AryEq: |
| case Op_VectorizedHashCode: |
| case Op_CountPositives: |
| pinned = false; |
| } |
| if (n->is_CMove() || n->is_ConstraintCast()) { |
| pinned = false; |
| } |
| if( pinned ) { |
| IdealLoopTree *chosen_loop = get_loop(n->is_CFG() ? n : get_ctrl(n)); |
| if( !chosen_loop->_child ) // Inner loop? |
| chosen_loop->_body.push(n); // Collect inner loops |
| return; |
| } |
| } else { // No slot zero |
| if( n->is_CFG() ) { // CFG with no slot 0 is dead |
| _loop_or_ctrl.map(n->_idx,0); // No block setting, it's globally dead |
| return; |
| } |
| assert(!n->is_CFG() || n->outcnt() == 0, ""); |
| } |
| |
| // Do I have a "safe range" I can select over? |
| Node *early = get_ctrl(n);// Early location already computed |
| |
| // Compute latest point this Node can go |
| Node *LCA = get_late_ctrl( n, early ); |
| // LCA is null due to uses being dead |
| if( LCA == nullptr ) { |
| #ifdef ASSERT |
| for (DUIterator i1 = n->outs(); n->has_out(i1); i1++) { |
| assert(_loop_or_ctrl[n->out(i1)->_idx] == nullptr, "all uses must also be dead"); |
| } |
| #endif |
| _loop_or_ctrl.map(n->_idx, 0); // This node is useless |
| _deadlist.push(n); |
| return; |
| } |
| assert(LCA != nullptr && !LCA->is_top(), "no dead nodes"); |
| |
| Node *legal = LCA; // Walk 'legal' up the IDOM chain |
| Node *least = legal; // Best legal position so far |
| while( early != legal ) { // While not at earliest legal |
| if (legal->is_Start() && !early->is_Root()) { |
| #ifdef ASSERT |
| // Bad graph. Print idom path and fail. |
| dump_bad_graph("Bad graph detected in build_loop_late", n, early, LCA); |
| assert(false, "Bad graph detected in build_loop_late"); |
| #endif |
| C->record_method_not_compilable("Bad graph detected in build_loop_late"); |
| return; |
| } |
| // Find least loop nesting depth |
| legal = idom(legal); // Bump up the IDOM tree |
| // Check for lower nesting depth |
| if( get_loop(legal)->_nest < get_loop(least)->_nest ) |
| least = legal; |
| } |
| assert(early == legal || legal != C->root(), "bad dominance of inputs"); |
| |
| if (least != early) { |
| // Move the node above predicates as far up as possible so a |
| // following pass of loop predication doesn't hoist a predicate |
| // that depends on it above that node. |
| Node* new_ctrl = least; |
| for (;;) { |
| if (!new_ctrl->is_Proj()) { |
| break; |
| } |
| CallStaticJavaNode* call = new_ctrl->as_Proj()->is_uncommon_trap_if_pattern(Deoptimization::Reason_none); |
| if (call == nullptr) { |
| break; |
| } |
| int req = call->uncommon_trap_request(); |
| Deoptimization::DeoptReason trap_reason = Deoptimization::trap_request_reason(req); |
| if (trap_reason != Deoptimization::Reason_loop_limit_check && |
| trap_reason != Deoptimization::Reason_predicate && |
| trap_reason != Deoptimization::Reason_profile_predicate) { |
| break; |
| } |
| Node* c = new_ctrl->in(0)->in(0); |
| if (is_dominator(c, early) && c != early) { |
| break; |
| } |
| new_ctrl = c; |
| } |
| least = new_ctrl; |
| } |
| // Try not to place code on a loop entry projection |
| // which can inhibit range check elimination. |
| if (least != early && !BarrierSet::barrier_set()->barrier_set_c2()->is_gc_specific_loop_opts_pass(_mode)) { |
| Node* ctrl_out = least->unique_ctrl_out_or_null(); |
| if (ctrl_out != nullptr && ctrl_out->is_Loop() && |
| least == ctrl_out->in(LoopNode::EntryControl) && |
| (ctrl_out->is_CountedLoop() || ctrl_out->is_OuterStripMinedLoop())) { |
| Node* least_dom = idom(least); |
| if (get_loop(least_dom)->is_member(get_loop(least))) { |
| least = least_dom; |
| } |
| } |
| } |
| // Don't extend live ranges of raw oops |
| if (least != early && n->is_ConstraintCast() && n->in(1)->bottom_type()->isa_rawptr() && |
| !n->bottom_type()->isa_rawptr()) { |
| least = early; |
| } |
| |
| #ifdef ASSERT |
| // Broken part of VerifyLoopOptimizations (F) |
| // Reason: |
| // _verify_me->get_ctrl_no_update(n) seems to return wrong result |
| /* |
| // If verifying, verify that 'verify_me' has a legal location |
| // and choose it as our location. |
| if( _verify_me ) { |
| Node *v_ctrl = _verify_me->get_ctrl_no_update(n); |
| Node *legal = LCA; |
| while( early != legal ) { // While not at earliest legal |
| if( legal == v_ctrl ) break; // Check for prior good location |
| legal = idom(legal) ;// Bump up the IDOM tree |
| } |
| // Check for prior good location |
| if( legal == v_ctrl ) least = legal; // Keep prior if found |
| } |
| */ |
| #endif |
| |
| // Assign discovered "here or above" point |
| least = find_non_split_ctrl(least); |
| verify_strip_mined_scheduling(n, least); |
| set_ctrl(n, least); |
| |
| // Collect inner loop bodies |
| IdealLoopTree *chosen_loop = get_loop(least); |
| if( !chosen_loop->_child ) // Inner loop? |
| chosen_loop->_body.push(n);// Collect inner loops |
| |
| if (!_verify_only && n->Opcode() == Op_OpaqueZeroTripGuard) { |
| _zero_trip_guard_opaque_nodes.push(n); |
| } |
| |
| } |
| |
| #ifdef ASSERT |
| void PhaseIdealLoop::dump_bad_graph(const char* msg, Node* n, Node* early, Node* LCA) { |
| tty->print_cr("%s", msg); |
| tty->print("n: "); n->dump(); |
| tty->print("early(n): "); early->dump(); |
| if (n->in(0) != nullptr && !n->in(0)->is_top() && |
| n->in(0) != early && !n->in(0)->is_Root()) { |
| tty->print("n->in(0): "); n->in(0)->dump(); |
| } |
| for (uint i = 1; i < n->req(); i++) { |
| Node* in1 = n->in(i); |
| if (in1 != nullptr && in1 != n && !in1->is_top()) { |
| tty->print("n->in(%d): ", i); in1->dump(); |
| Node* in1_early = get_ctrl(in1); |
| tty->print("early(n->in(%d)): ", i); in1_early->dump(); |
| if (in1->in(0) != nullptr && !in1->in(0)->is_top() && |
| in1->in(0) != in1_early && !in1->in(0)->is_Root()) { |
| tty->print("n->in(%d)->in(0): ", i); in1->in(0)->dump(); |
| } |
| for (uint j = 1; j < in1->req(); j++) { |
| Node* in2 = in1->in(j); |
| if (in2 != nullptr && in2 != n && in2 != in1 && !in2->is_top()) { |
| tty->print("n->in(%d)->in(%d): ", i, j); in2->dump(); |
| Node* in2_early = get_ctrl(in2); |
| tty->print("early(n->in(%d)->in(%d)): ", i, j); in2_early->dump(); |
| if (in2->in(0) != nullptr && !in2->in(0)->is_top() && |
| in2->in(0) != in2_early && !in2->in(0)->is_Root()) { |
| tty->print("n->in(%d)->in(%d)->in(0): ", i, j); in2->in(0)->dump(); |
| } |
| } |
| } |
| } |
| } |
| tty->cr(); |
| tty->print("LCA(n): "); LCA->dump(); |
| for (uint i = 0; i < n->outcnt(); i++) { |
| Node* u1 = n->raw_out(i); |
| if (u1 == n) |
| continue; |
| tty->print("n->out(%d): ", i); u1->dump(); |
| if (u1->is_CFG()) { |
| for (uint j = 0; j < u1->outcnt(); j++) { |
| Node* u2 = u1->raw_out(j); |
| if (u2 != u1 && u2 != n && u2->is_CFG()) { |
| tty->print("n->out(%d)->out(%d): ", i, j); u2->dump(); |
| } |
| } |
| } else { |
| Node* u1_later = get_ctrl(u1); |
| tty->print("later(n->out(%d)): ", i); u1_later->dump(); |
| if (u1->in(0) != nullptr && !u1->in(0)->is_top() && |
| u1->in(0) != u1_later && !u1->in(0)->is_Root()) { |
| tty->print("n->out(%d)->in(0): ", i); u1->in(0)->dump(); |
| } |
| for (uint j = 0; j < u1->outcnt(); j++) { |
| Node* u2 = u1->raw_out(j); |
| if (u2 == n || u2 == u1) |
| continue; |
| tty->print("n->out(%d)->out(%d): ", i, j); u2->dump(); |
| if (!u2->is_CFG()) { |
| Node* u2_later = get_ctrl(u2); |
| tty->print("later(n->out(%d)->out(%d)): ", i, j); u2_later->dump(); |
| if (u2->in(0) != nullptr && !u2->in(0)->is_top() && |
| u2->in(0) != u2_later && !u2->in(0)->is_Root()) { |
| tty->print("n->out(%d)->in(0): ", i); u2->in(0)->dump(); |
| } |
| } |
| } |
| } |
| } |
| dump_idoms(early, LCA); |
| tty->cr(); |
| } |
| |
| // Class to compute the real LCA given an early node and a wrong LCA in a bad graph. |
| class RealLCA { |
| const PhaseIdealLoop* _phase; |
| Node* _early; |
| Node* _wrong_lca; |
| uint _early_index; |
| int _wrong_lca_index; |
| |
| // Given idom chains of early and wrong LCA: Walk through idoms starting at StartNode and find the first node which |
| // is different: Return the previously visited node which must be the real LCA. |
| // The node lists also contain _early and _wrong_lca, respectively. |
| Node* find_real_lca(Unique_Node_List& early_with_idoms, Unique_Node_List& wrong_lca_with_idoms) { |
| int early_index = early_with_idoms.size() - 1; |
| int wrong_lca_index = wrong_lca_with_idoms.size() - 1; |
| bool found_difference = false; |
| do { |
| if (early_with_idoms[early_index] != wrong_lca_with_idoms[wrong_lca_index]) { |
| // First time early and wrong LCA idoms differ. Real LCA must be at the previous index. |
| found_difference = true; |
| break; |
| } |
| early_index--; |
| wrong_lca_index--; |
| } while (wrong_lca_index >= 0); |
| |
| assert(early_index >= 0, "must always find an LCA - cannot be early"); |
| _early_index = early_index; |
| _wrong_lca_index = wrong_lca_index; |
| Node* real_lca = early_with_idoms[_early_index + 1]; // Plus one to skip _early. |
| assert(found_difference || real_lca == _wrong_lca, "wrong LCA dominates early and is therefore the real LCA"); |
| return real_lca; |
| } |
| |
| void dump(Node* real_lca) { |
| tty->cr(); |
| tty->print_cr("idoms of early \"%d %s\":", _early->_idx, _early->Name()); |
| _phase->dump_idom(_early, _early_index + 1); |
| |
| tty->cr(); |
| tty->print_cr("idoms of (wrong) LCA \"%d %s\":", _wrong_lca->_idx, _wrong_lca->Name()); |
| _phase->dump_idom(_wrong_lca, _wrong_lca_index + 1); |
| |
| tty->cr(); |
| tty->print("Real LCA of early \"%d %s\" (idom[%d]) and wrong LCA \"%d %s\"", |
| _early->_idx, _early->Name(), _early_index, _wrong_lca->_idx, _wrong_lca->Name()); |
| if (_wrong_lca_index >= 0) { |
| tty->print(" (idom[%d])", _wrong_lca_index); |
| } |
| tty->print_cr(":"); |
| real_lca->dump(); |
| } |
| |
| public: |
| RealLCA(const PhaseIdealLoop* phase, Node* early, Node* wrong_lca) |
| : _phase(phase), _early(early), _wrong_lca(wrong_lca), _early_index(0), _wrong_lca_index(0) { |
| assert(!wrong_lca->is_Start(), "StartNode is always a common dominator"); |
| } |
| |
| void compute_and_dump() { |
| ResourceMark rm; |
| Unique_Node_List early_with_idoms; |
| Unique_Node_List wrong_lca_with_idoms; |
| early_with_idoms.push(_early); |
| wrong_lca_with_idoms.push(_wrong_lca); |
| _phase->get_idoms(_early, 10000, early_with_idoms); |
| _phase->get_idoms(_wrong_lca, 10000, wrong_lca_with_idoms); |
| Node* real_lca = find_real_lca(early_with_idoms, wrong_lca_with_idoms); |
| dump(real_lca); |
| } |
| }; |
| |
| // Dump the idom chain of early, of the wrong LCA and dump the real LCA of early and wrong LCA. |
| void PhaseIdealLoop::dump_idoms(Node* early, Node* wrong_lca) { |
| assert(!is_dominator(early, wrong_lca), "sanity check that early does not dominate wrong lca"); |
| assert(!has_ctrl(early) && !has_ctrl(wrong_lca), "sanity check, no data nodes"); |
| |
| RealLCA real_lca(this, early, wrong_lca); |
| real_lca.compute_and_dump(); |
| } |
| #endif // ASSERT |
| |
| #ifndef PRODUCT |
| //------------------------------dump------------------------------------------- |
| void PhaseIdealLoop::dump() const { |
| ResourceMark rm; |
| Node_Stack stack(C->live_nodes() >> 2); |
| Node_List rpo_list; |
| VectorSet visited; |
| visited.set(C->top()->_idx); |
| rpo(C->root(), stack, visited, rpo_list); |
| // Dump root loop indexed by last element in PO order |
| dump(_ltree_root, rpo_list.size(), rpo_list); |
| } |
| |
| void PhaseIdealLoop::dump(IdealLoopTree* loop, uint idx, Node_List &rpo_list) const { |
| loop->dump_head(); |
| |
| // Now scan for CFG nodes in the same loop |
| for (uint j = idx; j > 0; j--) { |
| Node* n = rpo_list[j-1]; |
| if (!_loop_or_ctrl[n->_idx]) // Skip dead nodes |
| continue; |
| |
| if (get_loop(n) != loop) { // Wrong loop nest |
| if (get_loop(n)->_head == n && // Found nested loop? |
| get_loop(n)->_parent == loop) |
| dump(get_loop(n), rpo_list.size(), rpo_list); // Print it nested-ly |
| continue; |
| } |
| |
| // Dump controlling node |
| tty->sp(2 * loop->_nest); |
| tty->print("C"); |
| if (n == C->root()) { |
| n->dump(); |
| } else { |
| Node* cached_idom = idom_no_update(n); |
| Node* computed_idom = n->in(0); |
| if (n->is_Region()) { |
| computed_idom = compute_idom(n); |
| // computed_idom() will return n->in(0) when idom(n) is an IfNode (or |
| // any MultiBranch ctrl node), so apply a similar transform to |
| // the cached idom returned from idom_no_update. |
| cached_idom = find_non_split_ctrl(cached_idom); |
| } |
| tty->print(" ID:%d", computed_idom->_idx); |
| n->dump(); |
| if (cached_idom != computed_idom) { |
| tty->print_cr("*** BROKEN IDOM! Computed as: %d, cached as: %d", |
| computed_idom->_idx, cached_idom->_idx); |
| } |
| } |
| // Dump nodes it controls |
| for (uint k = 0; k < _loop_or_ctrl.max(); k++) { |
| // (k < C->unique() && get_ctrl(find(k)) == n) |
| if (k < C->unique() && _loop_or_ctrl[k] == (Node*)((intptr_t)n + 1)) { |
| Node* m = C->root()->find(k); |
| if (m && m->outcnt() > 0) { |
| if (!(has_ctrl(m) && get_ctrl_no_update(m) == n)) { |
| tty->print_cr("*** BROKEN CTRL ACCESSOR! _loop_or_ctrl[k] is %p, ctrl is %p", |
| _loop_or_ctrl[k], has_ctrl(m) ? get_ctrl_no_update(m) : nullptr); |
| } |
| tty->sp(2 * loop->_nest + 1); |
| m->dump(); |
| } |
| } |
| } |
| } |
| } |
| |
| void PhaseIdealLoop::dump_idom(Node* n, const uint count) const { |
| if (has_ctrl(n)) { |
| tty->print_cr("No idom for data nodes"); |
| } else { |
| ResourceMark rm; |
| Unique_Node_List idoms; |
| get_idoms(n, count, idoms); |
| dump_idoms_in_reverse(n, idoms); |
| } |
| } |
| |
| void PhaseIdealLoop::get_idoms(Node* n, const uint count, Unique_Node_List& idoms) const { |
| Node* next = n; |
| for (uint i = 0; !next->is_Start() && i < count; i++) { |
| next = idom(next); |
| assert(!idoms.member(next), "duplicated idom is not possible"); |
| idoms.push(next); |
| } |
| } |
| |
| void PhaseIdealLoop::dump_idoms_in_reverse(const Node* n, const Node_List& idom_list) const { |
| Node* next; |
| uint padding = 3; |
| uint node_index_padding_width = static_cast<int>(log10(static_cast<double>(C->unique()))) + 1; |
| for (int i = idom_list.size() - 1; i >= 0; i--) { |
| if (i == 9 || i == 99) { |
| padding++; |
| } |
| next = idom_list[i]; |
| tty->print_cr("idom[%d]:%*c%*d %s", i, padding, ' ', node_index_padding_width, next->_idx, next->Name()); |
| } |
| tty->print_cr("n: %*c%*d %s", padding, ' ', node_index_padding_width, n->_idx, n->Name()); |
| } |
| #endif // NOT PRODUCT |
| |
| // Collect a R-P-O for the whole CFG. |
| // Result list is in post-order (scan backwards for RPO) |
| void PhaseIdealLoop::rpo(Node* start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list) const { |
| stk.push(start, 0); |
| visited.set(start->_idx); |
| |
| while (stk.is_nonempty()) { |
| Node* m = stk.node(); |
| uint idx = stk.index(); |
| if (idx < m->outcnt()) { |
| stk.set_index(idx + 1); |
| Node* n = m->raw_out(idx); |
| if (n->is_CFG() && !visited.test_set(n->_idx)) { |
| stk.push(n, 0); |
| } |
| } else { |
| rpo_list.push(m); |
| stk.pop(); |
| } |
| } |
| } |
| |
| |
| //============================================================================= |
| //------------------------------LoopTreeIterator------------------------------- |
| |
| // Advance to next loop tree using a preorder, left-to-right traversal. |
| void LoopTreeIterator::next() { |
| assert(!done(), "must not be done."); |
| if (_curnt->_child != nullptr) { |
| _curnt = _curnt->_child; |
| } else if (_curnt->_next != nullptr) { |
| _curnt = _curnt->_next; |
| } else { |
| while (_curnt != _root && _curnt->_next == nullptr) { |
| _curnt = _curnt->_parent; |
| } |
| if (_curnt == _root) { |
| _curnt = nullptr; |
| assert(done(), "must be done."); |
| } else { |
| assert(_curnt->_next != nullptr, "must be more to do"); |
| _curnt = _curnt->_next; |
| } |
| } |
| } |