| /* |
| * Copyright (c) 2020, 2023, Oracle and/or its affiliates. All rights reserved. |
| * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| * |
| * This code is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License version 2 only, as |
| * published by the Free Software Foundation. |
| * |
| * This code is distributed in the hope that it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| * version 2 for more details (a copy is included in the LICENSE file that |
| * accompanied this code). |
| * |
| * You should have received a copy of the GNU General Public License version |
| * 2 along with this work; if not, write to the Free Software Foundation, |
| * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| * |
| * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| * or visit www.oracle.com if you need additional information or have any |
| * questions. |
| * |
| */ |
| |
| #include "precompiled.hpp" |
| #include "ci/ciSymbols.hpp" |
| #include "classfile/vmSymbols.hpp" |
| #include "opto/library_call.hpp" |
| #include "opto/runtime.hpp" |
| #include "opto/vectornode.hpp" |
| #include "prims/vectorSupport.hpp" |
| #include "runtime/stubRoutines.hpp" |
| |
| #ifdef ASSERT |
| static bool is_vector(ciKlass* klass) { |
| return klass->is_subclass_of(ciEnv::current()->vector_VectorPayload_klass()); |
| } |
| |
| static bool check_vbox(const TypeInstPtr* vbox_type) { |
| assert(vbox_type->klass_is_exact(), ""); |
| |
| ciInstanceKlass* ik = vbox_type->instance_klass(); |
| assert(is_vector(ik), "not a vector"); |
| |
| ciField* fd1 = ik->get_field_by_name(ciSymbols::ETYPE_name(), ciSymbols::class_signature(), /* is_static */ true); |
| assert(fd1 != nullptr, "element type info is missing"); |
| |
| ciConstant val1 = fd1->constant_value(); |
| BasicType elem_bt = val1.as_object()->as_instance()->java_mirror_type()->basic_type(); |
| assert(is_java_primitive(elem_bt), "element type info is missing"); |
| |
| ciField* fd2 = ik->get_field_by_name(ciSymbols::VLENGTH_name(), ciSymbols::int_signature(), /* is_static */ true); |
| assert(fd2 != nullptr, "vector length info is missing"); |
| |
| ciConstant val2 = fd2->constant_value(); |
| assert(val2.as_int() > 0, "vector length info is missing"); |
| |
| return true; |
| } |
| #endif |
| |
| static bool is_vector_mask(ciKlass* klass) { |
| return klass->is_subclass_of(ciEnv::current()->vector_VectorMask_klass()); |
| } |
| |
| static bool is_vector_shuffle(ciKlass* klass) { |
| return klass->is_subclass_of(ciEnv::current()->vector_VectorShuffle_klass()); |
| } |
| |
| bool LibraryCallKit::arch_supports_vector_rotate(int opc, int num_elem, BasicType elem_bt, |
| VectorMaskUseType mask_use_type, bool has_scalar_args) { |
| bool is_supported = true; |
| |
| // has_scalar_args flag is true only for non-constant scalar shift count, |
| // since in this case shift needs to be broadcasted. |
| if (!Matcher::match_rule_supported_vector(opc, num_elem, elem_bt) || |
| (has_scalar_args && |
| !arch_supports_vector(VectorNode::replicate_opcode(elem_bt), num_elem, elem_bt, VecMaskNotUsed))) { |
| is_supported = false; |
| } |
| |
| if (is_supported) { |
| // Check if mask unboxing is supported, this is a two step process which first loads the contents |
| // of boolean array into vector followed by either lane expansion to match the lane size of masked |
| // vector operation or populate the predicate register. |
| if ((mask_use_type & VecMaskUseLoad) != 0) { |
| if (!Matcher::match_rule_supported_vector(Op_VectorLoadMask, num_elem, elem_bt) || |
| !Matcher::match_rule_supported_vector(Op_LoadVector, num_elem, T_BOOLEAN)) { |
| #ifndef PRODUCT |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** Rejected vector mask loading (%s,%s,%d) because architecture does not support it", |
| NodeClassNames[Op_VectorLoadMask], type2name(elem_bt), num_elem); |
| } |
| #endif |
| return false; |
| } |
| } |
| |
| if ((mask_use_type & VecMaskUsePred) != 0) { |
| if (!Matcher::has_predicated_vectors() || |
| !Matcher::match_rule_supported_vector_masked(opc, num_elem, elem_bt)) { |
| #ifndef PRODUCT |
| if (C->print_intrinsics()) { |
| tty->print_cr("Rejected vector mask predicate using (%s,%s,%d) because architecture does not support it", |
| NodeClassNames[opc], type2name(elem_bt), num_elem); |
| } |
| #endif |
| return false; |
| } |
| } |
| } |
| |
| int lshiftopc, rshiftopc; |
| switch(elem_bt) { |
| case T_BYTE: |
| lshiftopc = Op_LShiftI; |
| rshiftopc = Op_URShiftB; |
| break; |
| case T_SHORT: |
| lshiftopc = Op_LShiftI; |
| rshiftopc = Op_URShiftS; |
| break; |
| case T_INT: |
| lshiftopc = Op_LShiftI; |
| rshiftopc = Op_URShiftI; |
| break; |
| case T_LONG: |
| lshiftopc = Op_LShiftL; |
| rshiftopc = Op_URShiftL; |
| break; |
| default: fatal("Unexpected type: %s", type2name(elem_bt)); |
| } |
| int lshiftvopc = VectorNode::opcode(lshiftopc, elem_bt); |
| int rshiftvopc = VectorNode::opcode(rshiftopc, elem_bt); |
| if (!is_supported && |
| arch_supports_vector(lshiftvopc, num_elem, elem_bt, VecMaskNotUsed, has_scalar_args) && |
| arch_supports_vector(rshiftvopc, num_elem, elem_bt, VecMaskNotUsed, has_scalar_args) && |
| arch_supports_vector(Op_OrV, num_elem, elem_bt, VecMaskNotUsed)) { |
| is_supported = true; |
| } |
| return is_supported; |
| } |
| |
| Node* GraphKit::box_vector(Node* vector, const TypeInstPtr* vbox_type, BasicType elem_bt, int num_elem, bool deoptimize_on_exception) { |
| assert(EnableVectorSupport, ""); |
| |
| PreserveReexecuteState preexecs(this); |
| jvms()->set_should_reexecute(true); |
| |
| VectorBoxAllocateNode* alloc = new VectorBoxAllocateNode(C, vbox_type); |
| set_edges_for_java_call(alloc, /*must_throw=*/false, /*separate_io_proj=*/true); |
| make_slow_call_ex(alloc, env()->Throwable_klass(), /*separate_io_proj=*/true, deoptimize_on_exception); |
| set_i_o(gvn().transform( new ProjNode(alloc, TypeFunc::I_O) )); |
| set_all_memory(gvn().transform( new ProjNode(alloc, TypeFunc::Memory) )); |
| Node* ret = gvn().transform(new ProjNode(alloc, TypeFunc::Parms)); |
| |
| assert(check_vbox(vbox_type), ""); |
| const TypeVect* vt = TypeVect::make(elem_bt, num_elem, is_vector_mask(vbox_type->instance_klass())); |
| VectorBoxNode* vbox = new VectorBoxNode(C, ret, vector, vbox_type, vt); |
| return gvn().transform(vbox); |
| } |
| |
| Node* GraphKit::unbox_vector(Node* v, const TypeInstPtr* vbox_type, BasicType elem_bt, int num_elem, bool shuffle_to_vector) { |
| assert(EnableVectorSupport, ""); |
| const TypeInstPtr* vbox_type_v = gvn().type(v)->is_instptr(); |
| if (vbox_type->instance_klass() != vbox_type_v->instance_klass()) { |
| return nullptr; // arguments don't agree on vector shapes |
| } |
| if (vbox_type_v->maybe_null()) { |
| return nullptr; // no nulls are allowed |
| } |
| assert(check_vbox(vbox_type), ""); |
| const TypeVect* vt = TypeVect::make(elem_bt, num_elem, is_vector_mask(vbox_type->instance_klass())); |
| Node* unbox = gvn().transform(new VectorUnboxNode(C, vt, v, merged_memory(), shuffle_to_vector)); |
| return unbox; |
| } |
| |
| Node* GraphKit::vector_shift_count(Node* cnt, int shift_op, BasicType bt, int num_elem) { |
| assert(bt == T_INT || bt == T_LONG || bt == T_SHORT || bt == T_BYTE, "byte, short, long and int are supported"); |
| juint mask = (type2aelembytes(bt) * BitsPerByte - 1); |
| Node* nmask = gvn().transform(ConNode::make(TypeInt::make(mask))); |
| Node* mcnt = gvn().transform(new AndINode(cnt, nmask)); |
| return gvn().transform(VectorNode::shift_count(shift_op, mcnt, num_elem, bt)); |
| } |
| |
| bool LibraryCallKit::arch_supports_vector(int sopc, int num_elem, BasicType type, VectorMaskUseType mask_use_type, bool has_scalar_args) { |
| // Check that the operation is valid. |
| if (sopc <= 0) { |
| #ifndef PRODUCT |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** Rejected intrinsification because no valid vector op could be extracted"); |
| } |
| #endif |
| return false; |
| } |
| |
| if (VectorNode::is_vector_rotate(sopc)) { |
| if(!arch_supports_vector_rotate(sopc, num_elem, type, mask_use_type, has_scalar_args)) { |
| #ifndef PRODUCT |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** Rejected vector op (%s,%s,%d) because architecture does not support variable vector shifts", |
| NodeClassNames[sopc], type2name(type), num_elem); |
| } |
| #endif |
| return false; |
| } |
| } else if (VectorNode::is_vector_integral_negate(sopc)) { |
| if (!VectorNode::is_vector_integral_negate_supported(sopc, num_elem, type, false)) { |
| #ifndef PRODUCT |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** Rejected vector op (%s,%s,%d) because architecture does not support integral vector negate", |
| NodeClassNames[sopc], type2name(type), num_elem); |
| } |
| #endif |
| return false; |
| } |
| } else { |
| // Check that architecture supports this op-size-type combination. |
| if (!Matcher::match_rule_supported_vector(sopc, num_elem, type)) { |
| #ifndef PRODUCT |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** Rejected vector op (%s,%s,%d) because architecture does not support it", |
| NodeClassNames[sopc], type2name(type), num_elem); |
| } |
| #endif |
| return false; |
| } else { |
| assert(Matcher::match_rule_supported(sopc), "must be supported"); |
| } |
| } |
| |
| if (num_elem == 1) { |
| if (mask_use_type != VecMaskNotUsed) { |
| #ifndef PRODUCT |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** Rejected vector mask op (%s,%s,%d) because architecture does not support it", |
| NodeClassNames[sopc], type2name(type), num_elem); |
| } |
| #endif |
| return false; |
| } |
| |
| if (sopc != 0) { |
| if (sopc != Op_LoadVector && sopc != Op_StoreVector) { |
| #ifndef PRODUCT |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** Not a svml call or load/store vector op (%s,%s,%d)", |
| NodeClassNames[sopc], type2name(type), num_elem); |
| } |
| #endif |
| return false; |
| } |
| } |
| } |
| |
| if (!has_scalar_args && VectorNode::is_vector_shift(sopc) && |
| Matcher::supports_vector_variable_shifts() == false) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** Rejected vector op (%s,%s,%d) because architecture does not support variable vector shifts", |
| NodeClassNames[sopc], type2name(type), num_elem); |
| } |
| return false; |
| } |
| |
| // Check if mask unboxing is supported, this is a two step process which first loads the contents |
| // of boolean array into vector followed by either lane expansion to match the lane size of masked |
| // vector operation or populate the predicate register. |
| if ((mask_use_type & VecMaskUseLoad) != 0) { |
| if (!Matcher::match_rule_supported_vector(Op_VectorLoadMask, num_elem, type) || |
| !Matcher::match_rule_supported_vector(Op_LoadVector, num_elem, T_BOOLEAN)) { |
| #ifndef PRODUCT |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** Rejected vector mask loading (%s,%s,%d) because architecture does not support it", |
| NodeClassNames[Op_VectorLoadMask], type2name(type), num_elem); |
| } |
| #endif |
| return false; |
| } |
| } |
| |
| // Check if mask boxing is supported, this is a two step process which first stores the contents |
| // of mask vector / predicate register into a boolean vector followed by vector store operation to |
| // transfer the contents to underlined storage of mask boxes which is a boolean array. |
| if ((mask_use_type & VecMaskUseStore) != 0) { |
| if (!Matcher::match_rule_supported_vector(Op_VectorStoreMask, num_elem, type) || |
| !Matcher::match_rule_supported_vector(Op_StoreVector, num_elem, T_BOOLEAN)) { |
| #ifndef PRODUCT |
| if (C->print_intrinsics()) { |
| tty->print_cr("Rejected vector mask storing (%s,%s,%d) because architecture does not support it", |
| NodeClassNames[Op_VectorStoreMask], type2name(type), num_elem); |
| } |
| #endif |
| return false; |
| } |
| } |
| |
| if ((mask_use_type & VecMaskUsePred) != 0) { |
| bool is_supported = false; |
| if (Matcher::has_predicated_vectors()) { |
| if (VectorNode::is_vector_integral_negate(sopc)) { |
| is_supported = VectorNode::is_vector_integral_negate_supported(sopc, num_elem, type, true); |
| } else { |
| is_supported = Matcher::match_rule_supported_vector_masked(sopc, num_elem, type); |
| } |
| } |
| |
| if (!is_supported) { |
| #ifndef PRODUCT |
| if (C->print_intrinsics()) { |
| tty->print_cr("Rejected vector mask predicate using (%s,%s,%d) because architecture does not support it", |
| NodeClassNames[sopc], type2name(type), num_elem); |
| } |
| #endif |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| static bool is_klass_initialized(const TypeInstPtr* vec_klass) { |
| if (vec_klass->const_oop() == nullptr) { |
| return false; // uninitialized or some kind of unsafe access |
| } |
| assert(vec_klass->const_oop()->as_instance()->java_lang_Class_klass() != nullptr, "klass instance expected"); |
| ciInstanceKlass* klass = vec_klass->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass(); |
| return klass->is_initialized(); |
| } |
| |
| // public static |
| // <V extends Vector<E>, |
| // M extends VectorMask<E>, |
| // E> |
| // V unaryOp(int oprId, Class<? extends V> vmClass, Class<? extends M> maskClass, Class<E> elementType, |
| // int length, V v, M m, |
| // UnaryOperation<V, M> defaultImpl) |
| // |
| // public static |
| // <V, |
| // M extends VectorMask<E>, |
| // E> |
| // V binaryOp(int oprId, Class<? extends V> vmClass, Class<? extends M> maskClass, Class<E> elementType, |
| // int length, V v1, V v2, M m, |
| // BinaryOperation<V, M> defaultImpl) |
| // |
| // public static |
| // <V extends Vector<E>, |
| // M extends VectorMask<E>, |
| // E> |
| // V ternaryOp(int oprId, Class<? extends V> vmClass, Class<? extends M> maskClass, Class<E> elementType, |
| // int length, V v1, V v2, V v3, M m, |
| // TernaryOperation<V, M> defaultImpl) |
| // |
| bool LibraryCallKit::inline_vector_nary_operation(int n) { |
| const TypeInt* opr = gvn().type(argument(0))->isa_int(); |
| const TypeInstPtr* vector_klass = gvn().type(argument(1))->isa_instptr(); |
| const TypeInstPtr* mask_klass = gvn().type(argument(2))->isa_instptr(); |
| const TypeInstPtr* elem_klass = gvn().type(argument(3))->isa_instptr(); |
| const TypeInt* vlen = gvn().type(argument(4))->isa_int(); |
| |
| if (opr == nullptr || vector_klass == nullptr || elem_klass == nullptr || vlen == nullptr || |
| !opr->is_con() || vector_klass->const_oop() == nullptr || elem_klass->const_oop() == nullptr || !vlen->is_con()) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** missing constant: opr=%s vclass=%s etype=%s vlen=%s", |
| NodeClassNames[argument(0)->Opcode()], |
| NodeClassNames[argument(1)->Opcode()], |
| NodeClassNames[argument(3)->Opcode()], |
| NodeClassNames[argument(4)->Opcode()]); |
| } |
| return false; // not enough info for intrinsification |
| } |
| |
| ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type(); |
| if (!elem_type->is_primitive_type()) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** not a primitive bt=%d", elem_type->basic_type()); |
| } |
| return false; // should be primitive type |
| } |
| if (!is_klass_initialized(vector_klass)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** klass argument not initialized"); |
| } |
| return false; |
| } |
| |
| // "argument(n + 5)" should be the mask object. We assume it is "null" when no mask |
| // is used to control this operation. |
| const Type* vmask_type = gvn().type(argument(n + 5)); |
| bool is_masked_op = vmask_type != TypePtr::NULL_PTR; |
| if (is_masked_op) { |
| if (mask_klass == nullptr || mask_klass->const_oop() == nullptr) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** missing constant: maskclass=%s", NodeClassNames[argument(2)->Opcode()]); |
| } |
| return false; // not enough info for intrinsification |
| } |
| |
| if (!is_klass_initialized(mask_klass)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** mask klass argument not initialized"); |
| } |
| return false; |
| } |
| |
| if (vmask_type->maybe_null()) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** null mask values are not allowed for masked op"); |
| } |
| return false; |
| } |
| } |
| |
| BasicType elem_bt = elem_type->basic_type(); |
| int num_elem = vlen->get_con(); |
| int opc = VectorSupport::vop2ideal(opr->get_con(), elem_bt); |
| int sopc = VectorNode::opcode(opc, elem_bt); |
| if ((opc != Op_CallLeafVector) && (sopc == 0)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** operation not supported: opc=%s bt=%s", NodeClassNames[opc], type2name(elem_bt)); |
| } |
| return false; // operation not supported |
| } |
| if (num_elem == 1) { |
| if (opc != Op_CallLeafVector || elem_bt != T_DOUBLE) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** not a svml call: arity=%d opc=%d vlen=%d etype=%s", |
| n, opc, num_elem, type2name(elem_bt)); |
| } |
| return false; |
| } |
| } |
| ciKlass* vbox_klass = vector_klass->const_oop()->as_instance()->java_lang_Class_klass(); |
| const TypeInstPtr* vbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass); |
| |
| if (is_vector_mask(vbox_klass)) { |
| assert(!is_masked_op, "mask operations do not need mask to control"); |
| } |
| |
| if (opc == Op_CallLeafVector) { |
| if (!UseVectorStubs) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** vector stubs support is disabled"); |
| } |
| return false; |
| } |
| if (!Matcher::supports_vector_calling_convention()) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** no vector calling conventions supported"); |
| } |
| return false; |
| } |
| if (!Matcher::vector_size_supported(elem_bt, num_elem)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** vector size (vlen=%d, etype=%s) is not supported", |
| num_elem, type2name(elem_bt)); |
| } |
| return false; |
| } |
| } |
| |
| // When using mask, mask use type needs to be VecMaskUseLoad. |
| VectorMaskUseType mask_use_type = is_vector_mask(vbox_klass) ? VecMaskUseAll |
| : is_masked_op ? VecMaskUseLoad : VecMaskNotUsed; |
| if ((sopc != 0) && !arch_supports_vector(sopc, num_elem, elem_bt, mask_use_type)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** not supported: arity=%d opc=%d vlen=%d etype=%s ismask=%d is_masked_op=%d", |
| n, sopc, num_elem, type2name(elem_bt), |
| is_vector_mask(vbox_klass) ? 1 : 0, is_masked_op ? 1 : 0); |
| } |
| return false; // not supported |
| } |
| |
| // Return true if current platform has implemented the masked operation with predicate feature. |
| bool use_predicate = is_masked_op && sopc != 0 && arch_supports_vector(sopc, num_elem, elem_bt, VecMaskUsePred); |
| if (is_masked_op && !use_predicate && !arch_supports_vector(Op_VectorBlend, num_elem, elem_bt, VecMaskUseLoad)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** not supported: arity=%d opc=%d vlen=%d etype=%s ismask=0 is_masked_op=1", |
| n, sopc, num_elem, type2name(elem_bt)); |
| } |
| return false; |
| } |
| |
| Node* opd1 = nullptr; Node* opd2 = nullptr; Node* opd3 = nullptr; |
| switch (n) { |
| case 3: { |
| opd3 = unbox_vector(argument(7), vbox_type, elem_bt, num_elem); |
| if (opd3 == nullptr) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** unbox failed v3=%s", |
| NodeClassNames[argument(7)->Opcode()]); |
| } |
| return false; |
| } |
| // fall-through |
| } |
| case 2: { |
| opd2 = unbox_vector(argument(6), vbox_type, elem_bt, num_elem); |
| if (opd2 == nullptr) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** unbox failed v2=%s", |
| NodeClassNames[argument(6)->Opcode()]); |
| } |
| return false; |
| } |
| // fall-through |
| } |
| case 1: { |
| opd1 = unbox_vector(argument(5), vbox_type, elem_bt, num_elem); |
| if (opd1 == nullptr) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** unbox failed v1=%s", |
| NodeClassNames[argument(5)->Opcode()]); |
| } |
| return false; |
| } |
| break; |
| } |
| default: fatal("unsupported arity: %d", n); |
| } |
| |
| Node* mask = nullptr; |
| if (is_masked_op) { |
| ciKlass* mbox_klass = mask_klass->const_oop()->as_instance()->java_lang_Class_klass(); |
| assert(is_vector_mask(mbox_klass), "argument(2) should be a mask class"); |
| const TypeInstPtr* mbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, mbox_klass); |
| mask = unbox_vector(argument(n + 5), mbox_type, elem_bt, num_elem); |
| if (mask == nullptr) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** unbox failed mask=%s", |
| NodeClassNames[argument(n + 5)->Opcode()]); |
| } |
| return false; |
| } |
| } |
| |
| Node* operation = nullptr; |
| if (opc == Op_CallLeafVector) { |
| assert(UseVectorStubs, "sanity"); |
| operation = gen_call_to_svml(opr->get_con(), elem_bt, num_elem, opd1, opd2); |
| if (operation == nullptr) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** svml call failed for %s_%s_%d", |
| (elem_bt == T_FLOAT)?"float":"double", |
| VectorSupport::svmlname[opr->get_con() - VectorSupport::VECTOR_OP_SVML_START], |
| num_elem * type2aelembytes(elem_bt)); |
| } |
| return false; |
| } |
| } else { |
| const TypeVect* vt = TypeVect::make(elem_bt, num_elem, is_vector_mask(vbox_klass)); |
| switch (n) { |
| case 1: |
| case 2: { |
| operation = VectorNode::make(sopc, opd1, opd2, vt, is_vector_mask(vbox_klass), VectorNode::is_shift_opcode(opc)); |
| break; |
| } |
| case 3: { |
| operation = VectorNode::make(sopc, opd1, opd2, opd3, vt); |
| break; |
| } |
| default: fatal("unsupported arity: %d", n); |
| } |
| } |
| |
| if (is_masked_op && mask != nullptr) { |
| if (use_predicate) { |
| operation->add_req(mask); |
| operation->add_flag(Node::Flag_is_predicated_vector); |
| } else { |
| operation->add_flag(Node::Flag_is_predicated_using_blend); |
| operation = gvn().transform(operation); |
| operation = new VectorBlendNode(opd1, operation, mask); |
| } |
| } |
| operation = gvn().transform(operation); |
| |
| // Wrap it up in VectorBox to keep object type information. |
| Node* vbox = box_vector(operation, vbox_type, elem_bt, num_elem); |
| set_result(vbox); |
| C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt)))); |
| return true; |
| } |
| |
| // <Sh extends VectorShuffle<E>, E> |
| // Sh ShuffleIota(Class<?> E, Class<?> shuffleClass, Vector.Species<E> s, int length, |
| // int start, int step, int wrap, ShuffleIotaOperation<Sh, E> defaultImpl) |
| bool LibraryCallKit::inline_vector_shuffle_iota() { |
| const TypeInstPtr* shuffle_klass = gvn().type(argument(1))->isa_instptr(); |
| const TypeInt* vlen = gvn().type(argument(3))->isa_int(); |
| const TypeInt* start_val = gvn().type(argument(4))->isa_int(); |
| const TypeInt* step_val = gvn().type(argument(5))->isa_int(); |
| const TypeInt* wrap = gvn().type(argument(6))->isa_int(); |
| |
| if (shuffle_klass == nullptr || shuffle_klass->const_oop() == nullptr || |
| vlen == nullptr || !vlen->is_con() || start_val == nullptr || step_val == nullptr || |
| wrap == nullptr || !wrap->is_con()) { |
| return false; // not enough info for intrinsification |
| } |
| |
| if (!is_klass_initialized(shuffle_klass)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** klass argument not initialized"); |
| } |
| return false; |
| } |
| |
| int do_wrap = wrap->get_con(); |
| int num_elem = vlen->get_con(); |
| BasicType elem_bt = T_BYTE; |
| |
| bool effective_indices_in_range = false; |
| if (start_val->is_con() && step_val->is_con()) { |
| int effective_min_index = start_val->get_con(); |
| int effective_max_index = start_val->get_con() + step_val->get_con() * (num_elem - 1); |
| effective_indices_in_range = effective_max_index >= effective_min_index && effective_min_index >= -128 && effective_max_index <= 127; |
| } |
| |
| if (!do_wrap && !effective_indices_in_range) { |
| // Disable instrinsification for unwrapped shuffle iota if start/step |
| // values are non-constant OR if intermediate result overflows byte value range. |
| return false; |
| } |
| |
| if (!arch_supports_vector(Op_AddVB, num_elem, elem_bt, VecMaskNotUsed) || |
| !arch_supports_vector(Op_AndV, num_elem, elem_bt, VecMaskNotUsed) || |
| !arch_supports_vector(Op_VectorLoadConst, num_elem, elem_bt, VecMaskNotUsed) || |
| !arch_supports_vector(VectorNode::replicate_opcode(elem_bt), num_elem, elem_bt, VecMaskNotUsed)) { |
| return false; |
| } |
| |
| if (!do_wrap && |
| (!arch_supports_vector(Op_SubVB, num_elem, elem_bt, VecMaskNotUsed) || |
| !arch_supports_vector(Op_VectorBlend, num_elem, elem_bt, VecMaskNotUsed) || |
| !arch_supports_vector(Op_VectorMaskCmp, num_elem, elem_bt, VecMaskNotUsed))) { |
| return false; |
| } |
| |
| bool step_multiply = !step_val->is_con() || !is_power_of_2(step_val->get_con()); |
| if ((step_multiply && !arch_supports_vector(Op_MulVB, num_elem, elem_bt, VecMaskNotUsed)) || |
| (!step_multiply && !arch_supports_vector(Op_LShiftVB, num_elem, elem_bt, VecMaskNotUsed))) { |
| return false; |
| } |
| |
| const Type * type_bt = Type::get_const_basic_type(elem_bt); |
| const TypeVect * vt = TypeVect::make(type_bt, num_elem); |
| |
| Node* res = gvn().transform(new VectorLoadConstNode(gvn().makecon(TypeInt::ZERO), vt)); |
| |
| Node* start = argument(4); |
| Node* step = argument(5); |
| |
| if (step_multiply) { |
| Node* bcast_step = gvn().transform(VectorNode::scalar2vector(step, num_elem, type_bt)); |
| res = gvn().transform(VectorNode::make(Op_MulVB, res, bcast_step, vt)); |
| } else if (step_val->get_con() > 1) { |
| Node* cnt = gvn().makecon(TypeInt::make(log2i_exact(step_val->get_con()))); |
| Node* shift_cnt = vector_shift_count(cnt, Op_LShiftI, elem_bt, num_elem); |
| res = gvn().transform(VectorNode::make(Op_LShiftVB, res, shift_cnt, vt)); |
| } |
| |
| if (!start_val->is_con() || start_val->get_con() != 0) { |
| Node* bcast_start = gvn().transform(VectorNode::scalar2vector(start, num_elem, type_bt)); |
| res = gvn().transform(VectorNode::make(Op_AddVB, res, bcast_start, vt)); |
| } |
| |
| Node * mod_val = gvn().makecon(TypeInt::make(num_elem-1)); |
| Node * bcast_mod = gvn().transform(VectorNode::scalar2vector(mod_val, num_elem, type_bt)); |
| |
| if (do_wrap) { |
| // Wrap the indices greater than lane count. |
| res = gvn().transform(VectorNode::make(Op_AndV, res, bcast_mod, vt)); |
| } else { |
| ConINode* pred_node = (ConINode*)gvn().makecon(TypeInt::make(BoolTest::ugt)); |
| Node * lane_cnt = gvn().makecon(TypeInt::make(num_elem)); |
| Node * bcast_lane_cnt = gvn().transform(VectorNode::scalar2vector(lane_cnt, num_elem, type_bt)); |
| const TypeVect* vmask_type = TypeVect::makemask(elem_bt, num_elem); |
| Node* mask = gvn().transform(new VectorMaskCmpNode(BoolTest::ugt, bcast_lane_cnt, res, pred_node, vmask_type)); |
| |
| // Make the indices greater than lane count as -ve values to match the java side implementation. |
| res = gvn().transform(VectorNode::make(Op_AndV, res, bcast_mod, vt)); |
| Node * biased_val = gvn().transform(VectorNode::make(Op_SubVB, res, bcast_lane_cnt, vt)); |
| res = gvn().transform(new VectorBlendNode(biased_val, res, mask)); |
| } |
| |
| ciKlass* sbox_klass = shuffle_klass->const_oop()->as_instance()->java_lang_Class_klass(); |
| const TypeInstPtr* shuffle_box_type = TypeInstPtr::make_exact(TypePtr::NotNull, sbox_klass); |
| |
| // Wrap it up in VectorBox to keep object type information. |
| res = box_vector(res, shuffle_box_type, elem_bt, num_elem); |
| set_result(res); |
| C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt)))); |
| return true; |
| } |
| |
| // <E, M> |
| // long maskReductionCoerced(int oper, Class<? extends M> maskClass, Class<?> elemClass, |
| // int length, M m, VectorMaskOp<M> defaultImpl) |
| bool LibraryCallKit::inline_vector_mask_operation() { |
| const TypeInt* oper = gvn().type(argument(0))->isa_int(); |
| const TypeInstPtr* mask_klass = gvn().type(argument(1))->isa_instptr(); |
| const TypeInstPtr* elem_klass = gvn().type(argument(2))->isa_instptr(); |
| const TypeInt* vlen = gvn().type(argument(3))->isa_int(); |
| Node* mask = argument(4); |
| |
| if (mask_klass == nullptr || elem_klass == nullptr || mask->is_top() || vlen == nullptr) { |
| return false; // dead code |
| } |
| |
| if (!is_klass_initialized(mask_klass)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** klass argument not initialized"); |
| } |
| return false; |
| } |
| |
| int num_elem = vlen->get_con(); |
| ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type(); |
| BasicType elem_bt = elem_type->basic_type(); |
| |
| int mopc = VectorSupport::vop2ideal(oper->get_con(), elem_bt); |
| if (!arch_supports_vector(mopc, num_elem, elem_bt, VecMaskUseLoad)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** not supported: arity=1 op=cast#%d/3 vlen2=%d etype2=%s", |
| mopc, num_elem, type2name(elem_bt)); |
| } |
| return false; // not supported |
| } |
| |
| const Type* elem_ty = Type::get_const_basic_type(elem_bt); |
| ciKlass* mbox_klass = mask_klass->const_oop()->as_instance()->java_lang_Class_klass(); |
| const TypeInstPtr* mask_box_type = TypeInstPtr::make_exact(TypePtr::NotNull, mbox_klass); |
| Node* mask_vec = unbox_vector(mask, mask_box_type, elem_bt, num_elem, true); |
| if (mask_vec == nullptr) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** unbox failed mask=%s", |
| NodeClassNames[argument(4)->Opcode()]); |
| } |
| return false; |
| } |
| |
| if (mask_vec->bottom_type()->isa_vectmask() == nullptr) { |
| mask_vec = gvn().transform(VectorStoreMaskNode::make(gvn(), mask_vec, elem_bt, num_elem)); |
| } |
| const Type* maskoper_ty = mopc == Op_VectorMaskToLong ? (const Type*)TypeLong::LONG : (const Type*)TypeInt::INT; |
| Node* maskoper = gvn().transform(VectorMaskOpNode::make(mask_vec, maskoper_ty, mopc)); |
| if (mopc != Op_VectorMaskToLong) { |
| maskoper = ConvI2L(maskoper); |
| } |
| set_result(maskoper); |
| |
| C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt)))); |
| return true; |
| } |
| |
| // public static |
| // <V, |
| // Sh extends VectorShuffle<E>, |
| // E> |
| // V shuffleToVector(Class<? extends Vector<E>> vclass, Class<E> elementType, |
| // Class<? extends Sh> shuffleClass, Sh s, int length, |
| // ShuffleToVectorOperation<V, Sh, E> defaultImpl) |
| bool LibraryCallKit::inline_vector_shuffle_to_vector() { |
| const TypeInstPtr* vector_klass = gvn().type(argument(0))->isa_instptr(); |
| const TypeInstPtr* elem_klass = gvn().type(argument(1))->isa_instptr(); |
| const TypeInstPtr* shuffle_klass = gvn().type(argument(2))->isa_instptr(); |
| Node* shuffle = argument(3); |
| const TypeInt* vlen = gvn().type(argument(4))->isa_int(); |
| |
| if (vector_klass == nullptr || elem_klass == nullptr || shuffle_klass == nullptr || shuffle->is_top() || vlen == nullptr) { |
| return false; // dead code |
| } |
| if (!vlen->is_con() || vector_klass->const_oop() == nullptr || shuffle_klass->const_oop() == nullptr) { |
| return false; // not enough info for intrinsification |
| } |
| if (!is_klass_initialized(shuffle_klass) || !is_klass_initialized(vector_klass) ) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** klass argument not initialized"); |
| } |
| return false; |
| } |
| |
| int num_elem = vlen->get_con(); |
| ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type(); |
| BasicType elem_bt = elem_type->basic_type(); |
| |
| if (num_elem < 4) { |
| return false; |
| } |
| |
| int cast_vopc = VectorCastNode::opcode(-1, T_BYTE); // from shuffle of type T_BYTE |
| // Make sure that cast is implemented to particular type/size combination. |
| if (!arch_supports_vector(cast_vopc, num_elem, elem_bt, VecMaskNotUsed)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** not supported: arity=1 op=cast#%d/3 vlen2=%d etype2=%s", |
| cast_vopc, num_elem, type2name(elem_bt)); |
| } |
| return false; |
| } |
| |
| ciKlass* sbox_klass = shuffle_klass->const_oop()->as_instance()->java_lang_Class_klass(); |
| const TypeInstPtr* shuffle_box_type = TypeInstPtr::make_exact(TypePtr::NotNull, sbox_klass); |
| |
| // Unbox shuffle with true flag to indicate its load shuffle to vector |
| // shuffle is a byte array |
| Node* shuffle_vec = unbox_vector(shuffle, shuffle_box_type, T_BYTE, num_elem, true); |
| |
| // cast byte to target element type |
| shuffle_vec = gvn().transform(VectorCastNode::make(cast_vopc, shuffle_vec, elem_bt, num_elem)); |
| |
| ciKlass* vbox_klass = vector_klass->const_oop()->as_instance()->java_lang_Class_klass(); |
| const TypeInstPtr* vec_box_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass); |
| |
| // Box vector |
| Node* res = box_vector(shuffle_vec, vec_box_type, elem_bt, num_elem); |
| set_result(res); |
| C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt)))); |
| return true; |
| } |
| |
| // public static |
| // <M, |
| // S extends VectorSpecies<E>, |
| // E> |
| // M fromBitsCoerced(Class<? extends M> vmClass, Class<E> elementType, int length, |
| // long bits, int mode, S s, |
| // BroadcastOperation<M, E, S> defaultImpl) |
| bool LibraryCallKit::inline_vector_frombits_coerced() { |
| const TypeInstPtr* vector_klass = gvn().type(argument(0))->isa_instptr(); |
| const TypeInstPtr* elem_klass = gvn().type(argument(1))->isa_instptr(); |
| const TypeInt* vlen = gvn().type(argument(2))->isa_int(); |
| const TypeLong* bits_type = gvn().type(argument(3))->isa_long(); |
| // Mode argument determines the mode of operation it can take following values:- |
| // MODE_BROADCAST for vector Vector.broadcast and VectorMask.maskAll operations. |
| // MODE_BITS_COERCED_LONG_TO_MASK for VectorMask.fromLong operation. |
| const TypeInt* mode = gvn().type(argument(5))->isa_int(); |
| |
| if (vector_klass == nullptr || elem_klass == nullptr || vlen == nullptr || mode == nullptr || |
| bits_type == nullptr || vector_klass->const_oop() == nullptr || elem_klass->const_oop() == nullptr || |
| !vlen->is_con() || !mode->is_con()) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** missing constant: vclass=%s etype=%s vlen=%s bitwise=%s", |
| NodeClassNames[argument(0)->Opcode()], |
| NodeClassNames[argument(1)->Opcode()], |
| NodeClassNames[argument(2)->Opcode()], |
| NodeClassNames[argument(5)->Opcode()]); |
| } |
| return false; // not enough info for intrinsification |
| } |
| |
| if (!is_klass_initialized(vector_klass)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** klass argument not initialized"); |
| } |
| return false; |
| } |
| ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type(); |
| if (!elem_type->is_primitive_type()) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** not a primitive bt=%d", elem_type->basic_type()); |
| } |
| return false; // should be primitive type |
| } |
| BasicType elem_bt = elem_type->basic_type(); |
| int num_elem = vlen->get_con(); |
| ciKlass* vbox_klass = vector_klass->const_oop()->as_instance()->java_lang_Class_klass(); |
| const TypeInstPtr* vbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass); |
| |
| bool is_mask = is_vector_mask(vbox_klass); |
| int bcast_mode = mode->get_con(); |
| VectorMaskUseType checkFlags = (VectorMaskUseType)(is_mask ? VecMaskUseAll : VecMaskNotUsed); |
| int opc = bcast_mode == VectorSupport::MODE_BITS_COERCED_LONG_TO_MASK ? Op_VectorLongToMask : VectorNode::replicate_opcode(elem_bt); |
| |
| if (!arch_supports_vector(opc, num_elem, elem_bt, checkFlags, true /*has_scalar_args*/)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** not supported: arity=0 op=broadcast vlen=%d etype=%s ismask=%d bcast_mode=%d", |
| num_elem, type2name(elem_bt), |
| is_mask ? 1 : 0, |
| bcast_mode); |
| } |
| return false; // not supported |
| } |
| |
| Node* broadcast = nullptr; |
| Node* bits = argument(3); |
| Node* elem = bits; |
| |
| if (opc == Op_VectorLongToMask) { |
| const TypeVect* vt = TypeVect::makemask(elem_bt, num_elem); |
| if (vt->isa_vectmask()) { |
| broadcast = gvn().transform(new VectorLongToMaskNode(elem, vt)); |
| } else { |
| const TypeVect* mvt = TypeVect::make(T_BOOLEAN, num_elem); |
| broadcast = gvn().transform(new VectorLongToMaskNode(elem, mvt)); |
| broadcast = gvn().transform(new VectorLoadMaskNode(broadcast, vt)); |
| } |
| } else { |
| switch (elem_bt) { |
| case T_BOOLEAN: // fall-through |
| case T_BYTE: // fall-through |
| case T_SHORT: // fall-through |
| case T_CHAR: // fall-through |
| case T_INT: { |
| elem = gvn().transform(new ConvL2INode(bits)); |
| break; |
| } |
| case T_DOUBLE: { |
| elem = gvn().transform(new MoveL2DNode(bits)); |
| break; |
| } |
| case T_FLOAT: { |
| bits = gvn().transform(new ConvL2INode(bits)); |
| elem = gvn().transform(new MoveI2FNode(bits)); |
| break; |
| } |
| case T_LONG: { |
| // no conversion needed |
| break; |
| } |
| default: fatal("%s", type2name(elem_bt)); |
| } |
| broadcast = VectorNode::scalar2vector(elem, num_elem, Type::get_const_basic_type(elem_bt), is_mask); |
| broadcast = gvn().transform(broadcast); |
| } |
| |
| Node* box = box_vector(broadcast, vbox_type, elem_bt, num_elem); |
| set_result(box); |
| C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt)))); |
| return true; |
| } |
| |
| static bool elem_consistent_with_arr(BasicType elem_bt, const TypeAryPtr* arr_type) { |
| assert(arr_type != nullptr, "unexpected"); |
| BasicType arr_elem_bt = arr_type->elem()->array_element_basic_type(); |
| if (elem_bt == arr_elem_bt) { |
| return true; |
| } else if (elem_bt == T_SHORT && arr_elem_bt == T_CHAR) { |
| // Load/store of short vector from/to char[] is supported |
| return true; |
| } else if (elem_bt == T_BYTE && arr_elem_bt == T_BOOLEAN) { |
| // Load/store of byte vector from/to boolean[] is supported |
| return true; |
| } else { |
| return false; |
| } |
| } |
| |
| // public static |
| // <C, |
| // VM, |
| // E, |
| // S extends VectorSpecies<E>> |
| // VM load(Class<? extends VM> vmClass, Class<E> elementType, int length, |
| // Object base, long offset, // Unsafe addressing |
| // C container, long index, S s, // Arguments for default implementation |
| // LoadOperation<C, VM, E, S> defaultImpl) |
| // |
| // public static |
| // <C, |
| // V extends Vector<?>> |
| // void store(Class<?> vectorClass, Class<?> elementType, int length, |
| // Object base, long offset, // Unsafe addressing |
| // V v, |
| // C container, long index, // Arguments for default implementation |
| // StoreVectorOperation<C, V> defaultImpl) |
| |
| bool LibraryCallKit::inline_vector_mem_operation(bool is_store) { |
| const TypeInstPtr* vector_klass = gvn().type(argument(0))->isa_instptr(); |
| const TypeInstPtr* elem_klass = gvn().type(argument(1))->isa_instptr(); |
| const TypeInt* vlen = gvn().type(argument(2))->isa_int(); |
| |
| if (vector_klass == nullptr || elem_klass == nullptr || vlen == nullptr || |
| vector_klass->const_oop() == nullptr || elem_klass->const_oop() == nullptr || !vlen->is_con()) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** missing constant: vclass=%s etype=%s vlen=%s", |
| NodeClassNames[argument(0)->Opcode()], |
| NodeClassNames[argument(1)->Opcode()], |
| NodeClassNames[argument(2)->Opcode()]); |
| } |
| return false; // not enough info for intrinsification |
| } |
| if (!is_klass_initialized(vector_klass)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** klass argument not initialized"); |
| } |
| return false; |
| } |
| |
| ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type(); |
| if (!elem_type->is_primitive_type()) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** not a primitive bt=%d", elem_type->basic_type()); |
| } |
| return false; // should be primitive type |
| } |
| BasicType elem_bt = elem_type->basic_type(); |
| int num_elem = vlen->get_con(); |
| |
| // TODO When mask usage is supported, VecMaskNotUsed needs to be VecMaskUseLoad. |
| if (!arch_supports_vector(is_store ? Op_StoreVector : Op_LoadVector, num_elem, elem_bt, VecMaskNotUsed)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** not supported: arity=%d op=%s vlen=%d etype=%s ismask=no", |
| is_store, is_store ? "store" : "load", |
| num_elem, type2name(elem_bt)); |
| } |
| return false; // not supported |
| } |
| |
| ciKlass* vbox_klass = vector_klass->const_oop()->as_instance()->java_lang_Class_klass(); |
| bool is_mask = is_vector_mask(vbox_klass); |
| |
| Node* base = argument(3); |
| Node* offset = ConvL2X(argument(4)); |
| |
| // Save state and restore on bailout |
| uint old_sp = sp(); |
| SafePointNode* old_map = clone_map(); |
| |
| Node* addr = make_unsafe_address(base, offset, (is_mask ? T_BOOLEAN : elem_bt), true); |
| |
| // The memory barrier checks are based on ones for unsafe access. |
| // This is not 1-1 implementation. |
| const Type *const base_type = gvn().type(base); |
| |
| const TypePtr *addr_type = gvn().type(addr)->isa_ptr(); |
| const TypeAryPtr* arr_type = addr_type->isa_aryptr(); |
| |
| const bool in_native = TypePtr::NULL_PTR == base_type; // base always null |
| const bool in_heap = !TypePtr::NULL_PTR->higher_equal(base_type); // base never null |
| |
| const bool is_mixed_access = !in_heap && !in_native; |
| |
| const bool is_mismatched_access = in_heap && (addr_type->isa_aryptr() == nullptr); |
| |
| const bool needs_cpu_membar = is_mixed_access || is_mismatched_access; |
| |
| // Now handle special case where load/store happens from/to byte array but element type is not byte. |
| bool using_byte_array = arr_type != nullptr && arr_type->elem()->array_element_basic_type() == T_BYTE && elem_bt != T_BYTE; |
| // Handle loading masks. |
| // If there is no consistency between array and vector element types, it must be special byte array case or loading masks |
| if (arr_type != nullptr && !using_byte_array && !is_mask && !elem_consistent_with_arr(elem_bt, arr_type)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** not supported: arity=%d op=%s vlen=%d etype=%s atype=%s ismask=no", |
| is_store, is_store ? "store" : "load", |
| num_elem, type2name(elem_bt), type2name(arr_type->elem()->array_element_basic_type())); |
| } |
| set_map(old_map); |
| set_sp(old_sp); |
| return false; |
| } |
| // Since we are using byte array, we need to double check that the byte operations are supported by backend. |
| if (using_byte_array) { |
| int byte_num_elem = num_elem * type2aelembytes(elem_bt); |
| if (!arch_supports_vector(is_store ? Op_StoreVector : Op_LoadVector, byte_num_elem, T_BYTE, VecMaskNotUsed) |
| || !arch_supports_vector(Op_VectorReinterpret, byte_num_elem, T_BYTE, VecMaskNotUsed)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** not supported: arity=%d op=%s vlen=%d*8 etype=%s/8 ismask=no", |
| is_store, is_store ? "store" : "load", |
| byte_num_elem, type2name(elem_bt)); |
| } |
| set_map(old_map); |
| set_sp(old_sp); |
| return false; // not supported |
| } |
| } |
| if (is_mask) { |
| if (!is_store) { |
| if (!arch_supports_vector(Op_LoadVector, num_elem, elem_bt, VecMaskUseLoad)) { |
| set_map(old_map); |
| set_sp(old_sp); |
| return false; // not supported |
| } |
| } else { |
| if (!arch_supports_vector(Op_StoreVector, num_elem, elem_bt, VecMaskUseStore)) { |
| set_map(old_map); |
| set_sp(old_sp); |
| return false; // not supported |
| } |
| } |
| } |
| |
| const TypeInstPtr* vbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass); |
| |
| if (needs_cpu_membar) { |
| insert_mem_bar(Op_MemBarCPUOrder); |
| } |
| |
| if (is_store) { |
| Node* val = unbox_vector(argument(6), vbox_type, elem_bt, num_elem); |
| if (val == nullptr) { |
| set_map(old_map); |
| set_sp(old_sp); |
| return false; // operand unboxing failed |
| } |
| set_all_memory(reset_memory()); |
| |
| // In case the store needs to happen to byte array, reinterpret the incoming vector to byte vector. |
| int store_num_elem = num_elem; |
| if (using_byte_array) { |
| store_num_elem = num_elem * type2aelembytes(elem_bt); |
| const TypeVect* to_vect_type = TypeVect::make(T_BYTE, store_num_elem); |
| val = gvn().transform(new VectorReinterpretNode(val, val->bottom_type()->is_vect(), to_vect_type)); |
| } |
| if (is_mask) { |
| val = gvn().transform(VectorStoreMaskNode::make(gvn(), val, elem_bt, num_elem)); |
| } |
| Node* vstore = gvn().transform(StoreVectorNode::make(0, control(), memory(addr), addr, addr_type, val, store_num_elem)); |
| set_memory(vstore, addr_type); |
| } else { |
| // When using byte array, we need to load as byte then reinterpret the value. Otherwise, do a simple vector load. |
| Node* vload = nullptr; |
| if (using_byte_array) { |
| int load_num_elem = num_elem * type2aelembytes(elem_bt); |
| vload = gvn().transform(LoadVectorNode::make(0, control(), memory(addr), addr, addr_type, load_num_elem, T_BYTE)); |
| const TypeVect* to_vect_type = TypeVect::make(elem_bt, num_elem); |
| vload = gvn().transform(new VectorReinterpretNode(vload, vload->bottom_type()->is_vect(), to_vect_type)); |
| } else { |
| // Special handle for masks |
| if (is_mask) { |
| vload = gvn().transform(LoadVectorNode::make(0, control(), memory(addr), addr, addr_type, num_elem, T_BOOLEAN)); |
| vload = gvn().transform(new VectorLoadMaskNode(vload, TypeVect::makemask(elem_bt, num_elem))); |
| } else { |
| vload = gvn().transform(LoadVectorNode::make(0, control(), memory(addr), addr, addr_type, num_elem, elem_bt)); |
| } |
| } |
| Node* box = box_vector(vload, vbox_type, elem_bt, num_elem); |
| set_result(box); |
| } |
| |
| destruct_map_clone(old_map); |
| |
| if (needs_cpu_membar) { |
| insert_mem_bar(Op_MemBarCPUOrder); |
| } |
| |
| C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt)))); |
| return true; |
| } |
| |
| // public static |
| // <C, |
| // V extends Vector<?>, |
| // E, |
| // S extends VectorSpecies<E>, |
| // M extends VectorMask<E>> |
| // V loadMasked(Class<? extends V> vectorClass, Class<M> maskClass, Class<E> elementType, |
| // int length, Object base, long offset, M m, int offsetInRange, |
| // C container, long index, S s, // Arguments for default implementation |
| // LoadVectorMaskedOperation<C, V, S, M> defaultImpl) { |
| // |
| // public static |
| // <C, |
| // V extends Vector<E>, |
| // M extends VectorMask<E>, |
| // E> |
| // void storeMasked(Class<? extends V> vectorClass, Class<M> maskClass, Class<E> elementType, |
| // int length, Object base, long offset, |
| // V v, M m, |
| // C container, long index, // Arguments for default implementation |
| // StoreVectorMaskedOperation<C, V, M, E> defaultImpl) { |
| // |
| bool LibraryCallKit::inline_vector_mem_masked_operation(bool is_store) { |
| const TypeInstPtr* vector_klass = gvn().type(argument(0))->isa_instptr(); |
| const TypeInstPtr* mask_klass = gvn().type(argument(1))->isa_instptr(); |
| const TypeInstPtr* elem_klass = gvn().type(argument(2))->isa_instptr(); |
| const TypeInt* vlen = gvn().type(argument(3))->isa_int(); |
| |
| if (vector_klass == nullptr || mask_klass == nullptr || elem_klass == nullptr || vlen == nullptr || |
| vector_klass->const_oop() == nullptr || mask_klass->const_oop() == nullptr || |
| elem_klass->const_oop() == nullptr || !vlen->is_con()) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** missing constant: vclass=%s mclass=%s etype=%s vlen=%s", |
| NodeClassNames[argument(0)->Opcode()], |
| NodeClassNames[argument(1)->Opcode()], |
| NodeClassNames[argument(2)->Opcode()], |
| NodeClassNames[argument(3)->Opcode()]); |
| } |
| return false; // not enough info for intrinsification |
| } |
| if (!is_klass_initialized(vector_klass)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** klass argument not initialized"); |
| } |
| return false; |
| } |
| |
| if (!is_klass_initialized(mask_klass)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** mask klass argument not initialized"); |
| } |
| return false; |
| } |
| |
| ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type(); |
| if (!elem_type->is_primitive_type()) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** not a primitive bt=%d", elem_type->basic_type()); |
| } |
| return false; // should be primitive type |
| } |
| |
| BasicType elem_bt = elem_type->basic_type(); |
| int num_elem = vlen->get_con(); |
| |
| Node* base = argument(4); |
| Node* offset = ConvL2X(argument(5)); |
| |
| // Save state and restore on bailout |
| uint old_sp = sp(); |
| SafePointNode* old_map = clone_map(); |
| |
| Node* addr = make_unsafe_address(base, offset, elem_bt, true); |
| const TypePtr *addr_type = gvn().type(addr)->isa_ptr(); |
| const TypeAryPtr* arr_type = addr_type->isa_aryptr(); |
| |
| // Now handle special case where load/store happens from/to byte array but element type is not byte. |
| bool using_byte_array = arr_type != nullptr && arr_type->elem()->array_element_basic_type() == T_BYTE && elem_bt != T_BYTE; |
| // If there is no consistency between array and vector element types, it must be special byte array case |
| if (arr_type != nullptr && !using_byte_array && !elem_consistent_with_arr(elem_bt, arr_type)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** not supported: arity=%d op=%s vlen=%d etype=%s atype=%s", |
| is_store, is_store ? "storeMasked" : "loadMasked", |
| num_elem, type2name(elem_bt), type2name(arr_type->elem()->array_element_basic_type())); |
| } |
| set_map(old_map); |
| set_sp(old_sp); |
| return false; |
| } |
| |
| int mem_num_elem = using_byte_array ? num_elem * type2aelembytes(elem_bt) : num_elem; |
| BasicType mem_elem_bt = using_byte_array ? T_BYTE : elem_bt; |
| bool supports_predicate = arch_supports_vector(is_store ? Op_StoreVectorMasked : Op_LoadVectorMasked, |
| mem_num_elem, mem_elem_bt, VecMaskUseLoad); |
| |
| // If current arch does not support the predicated operations, we have to bail |
| // out when current case uses the predicate feature. |
| if (!supports_predicate) { |
| bool needs_predicate = false; |
| if (is_store) { |
| // Masked vector store always uses the predicated store. |
| needs_predicate = true; |
| } else { |
| // Masked vector load with IOOBE always uses the predicated load. |
| const TypeInt* offset_in_range = gvn().type(argument(8))->isa_int(); |
| if (!offset_in_range->is_con()) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** missing constant: offsetInRange=%s", |
| NodeClassNames[argument(8)->Opcode()]); |
| } |
| set_map(old_map); |
| set_sp(old_sp); |
| return false; |
| } |
| needs_predicate = (offset_in_range->get_con() == 0); |
| } |
| |
| if (needs_predicate) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** not supported: op=%s vlen=%d etype=%s using_byte_array=%d", |
| is_store ? "storeMasked" : "loadMasked", |
| num_elem, type2name(elem_bt), using_byte_array ? 1 : 0); |
| } |
| set_map(old_map); |
| set_sp(old_sp); |
| return false; |
| } |
| } |
| |
| // This only happens for masked vector load. If predicate is not supported, then check whether |
| // the normal vector load and blend operations are supported by backend. |
| if (!supports_predicate && (!arch_supports_vector(Op_LoadVector, mem_num_elem, mem_elem_bt, VecMaskNotUsed) || |
| !arch_supports_vector(Op_VectorBlend, mem_num_elem, mem_elem_bt, VecMaskUseLoad))) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** not supported: op=loadMasked vlen=%d etype=%s using_byte_array=%d", |
| num_elem, type2name(elem_bt), using_byte_array ? 1 : 0); |
| } |
| set_map(old_map); |
| set_sp(old_sp); |
| return false; |
| } |
| |
| // Since we are using byte array, we need to double check that the vector reinterpret operation |
| // with byte type is supported by backend. |
| if (using_byte_array) { |
| if (!arch_supports_vector(Op_VectorReinterpret, mem_num_elem, T_BYTE, VecMaskNotUsed)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** not supported: arity=%d op=%s vlen=%d etype=%s using_byte_array=1", |
| is_store, is_store ? "storeMasked" : "loadMasked", |
| num_elem, type2name(elem_bt)); |
| } |
| set_map(old_map); |
| set_sp(old_sp); |
| return false; |
| } |
| } |
| |
| // Since it needs to unbox the mask, we need to double check that the related load operations |
| // for mask are supported by backend. |
| if (!arch_supports_vector(Op_LoadVector, num_elem, elem_bt, VecMaskUseLoad)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** not supported: arity=%d op=%s vlen=%d etype=%s", |
| is_store, is_store ? "storeMasked" : "loadMasked", |
| num_elem, type2name(elem_bt)); |
| } |
| set_map(old_map); |
| set_sp(old_sp); |
| return false; |
| } |
| |
| // Can base be null? Otherwise, always on-heap access. |
| bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(gvn().type(base)); |
| if (can_access_non_heap) { |
| insert_mem_bar(Op_MemBarCPUOrder); |
| } |
| |
| ciKlass* vbox_klass = vector_klass->const_oop()->as_instance()->java_lang_Class_klass(); |
| ciKlass* mbox_klass = mask_klass->const_oop()->as_instance()->java_lang_Class_klass(); |
| assert(!is_vector_mask(vbox_klass) && is_vector_mask(mbox_klass), "Invalid class type"); |
| const TypeInstPtr* vbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass); |
| const TypeInstPtr* mbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, mbox_klass); |
| |
| Node* mask = unbox_vector(is_store ? argument(8) : argument(7), mbox_type, elem_bt, num_elem); |
| if (mask == nullptr) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** unbox failed mask=%s", |
| is_store ? NodeClassNames[argument(8)->Opcode()] |
| : NodeClassNames[argument(7)->Opcode()]); |
| } |
| set_map(old_map); |
| set_sp(old_sp); |
| return false; |
| } |
| |
| if (is_store) { |
| Node* val = unbox_vector(argument(7), vbox_type, elem_bt, num_elem); |
| if (val == nullptr) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** unbox failed vector=%s", |
| NodeClassNames[argument(7)->Opcode()]); |
| } |
| set_map(old_map); |
| set_sp(old_sp); |
| return false; // operand unboxing failed |
| } |
| set_all_memory(reset_memory()); |
| |
| if (using_byte_array) { |
| // Reinterpret the incoming vector to byte vector. |
| const TypeVect* to_vect_type = TypeVect::make(mem_elem_bt, mem_num_elem); |
| val = gvn().transform(new VectorReinterpretNode(val, val->bottom_type()->is_vect(), to_vect_type)); |
| // Reinterpret the vector mask to byte type. |
| const TypeVect* from_mask_type = TypeVect::makemask(elem_bt, num_elem); |
| const TypeVect* to_mask_type = TypeVect::makemask(mem_elem_bt, mem_num_elem); |
| mask = gvn().transform(new VectorReinterpretNode(mask, from_mask_type, to_mask_type)); |
| } |
| Node* vstore = gvn().transform(new StoreVectorMaskedNode(control(), memory(addr), addr, val, addr_type, mask)); |
| set_memory(vstore, addr_type); |
| } else { |
| Node* vload = nullptr; |
| |
| if (using_byte_array) { |
| // Reinterpret the vector mask to byte type. |
| const TypeVect* from_mask_type = TypeVect::makemask(elem_bt, num_elem); |
| const TypeVect* to_mask_type = TypeVect::makemask(mem_elem_bt, mem_num_elem); |
| mask = gvn().transform(new VectorReinterpretNode(mask, from_mask_type, to_mask_type)); |
| } |
| |
| if (supports_predicate) { |
| // Generate masked load vector node if predicate feature is supported. |
| const TypeVect* vt = TypeVect::make(mem_elem_bt, mem_num_elem); |
| vload = gvn().transform(new LoadVectorMaskedNode(control(), memory(addr), addr, addr_type, vt, mask)); |
| } else { |
| // Use the vector blend to implement the masked load vector. The biased elements are zeros. |
| Node* zero = gvn().transform(gvn().zerocon(mem_elem_bt)); |
| zero = gvn().transform(VectorNode::scalar2vector(zero, mem_num_elem, Type::get_const_basic_type(mem_elem_bt))); |
| vload = gvn().transform(LoadVectorNode::make(0, control(), memory(addr), addr, addr_type, mem_num_elem, mem_elem_bt)); |
| vload = gvn().transform(new VectorBlendNode(zero, vload, mask)); |
| } |
| |
| if (using_byte_array) { |
| const TypeVect* to_vect_type = TypeVect::make(elem_bt, num_elem); |
| vload = gvn().transform(new VectorReinterpretNode(vload, vload->bottom_type()->is_vect(), to_vect_type)); |
| } |
| |
| Node* box = box_vector(vload, vbox_type, elem_bt, num_elem); |
| set_result(box); |
| } |
| |
| destruct_map_clone(old_map); |
| |
| if (can_access_non_heap) { |
| insert_mem_bar(Op_MemBarCPUOrder); |
| } |
| |
| C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt)))); |
| return true; |
| } |
| |
| // <C, |
| // V extends Vector<?>, |
| // W extends Vector<Integer>, |
| // S extends VectorSpecies<E>, |
| // M extends VectorMask<E>, |
| // E> |
| // V loadWithMap(Class<? extends V> vectorClass, Class<M> maskClass, Class<E> elementType, int length, |
| // Class<? extends Vector<Integer>> vectorIndexClass, |
| // Object base, long offset, // Unsafe addressing |
| // W index_vector, M m, |
| // C container, int index, int[] indexMap, int indexM, S s, // Arguments for default implementation |
| // LoadVectorOperationWithMap<C, V, E, S, M> defaultImpl) |
| // |
| // <C, |
| // V extends Vector<E>, |
| // W extends Vector<Integer>, |
| // M extends VectorMask<E>, |
| // E> |
| // void storeWithMap(Class<? extends V> vectorClass, Class<M> maskClass, Class<E> elementType, |
| // int length, Class<? extends Vector<Integer>> vectorIndexClass, Object base, long offset, // Unsafe addressing |
| // W index_vector, V v, M m, |
| // C container, int index, int[] indexMap, int indexM, // Arguments for default implementation |
| // StoreVectorOperationWithMap<C, V, M, E> defaultImpl) |
| // |
| bool LibraryCallKit::inline_vector_gather_scatter(bool is_scatter) { |
| const TypeInstPtr* vector_klass = gvn().type(argument(0))->isa_instptr(); |
| const TypeInstPtr* mask_klass = gvn().type(argument(1))->isa_instptr(); |
| const TypeInstPtr* elem_klass = gvn().type(argument(2))->isa_instptr(); |
| const TypeInt* vlen = gvn().type(argument(3))->isa_int(); |
| const TypeInstPtr* vector_idx_klass = gvn().type(argument(4))->isa_instptr(); |
| |
| if (vector_klass == nullptr || elem_klass == nullptr || vector_idx_klass == nullptr || vlen == nullptr || |
| vector_klass->const_oop() == nullptr || elem_klass->const_oop() == nullptr || vector_idx_klass->const_oop() == nullptr || !vlen->is_con()) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** missing constant: vclass=%s etype=%s vlen=%s viclass=%s", |
| NodeClassNames[argument(0)->Opcode()], |
| NodeClassNames[argument(2)->Opcode()], |
| NodeClassNames[argument(3)->Opcode()], |
| NodeClassNames[argument(4)->Opcode()]); |
| } |
| return false; // not enough info for intrinsification |
| } |
| |
| if (!is_klass_initialized(vector_klass) || !is_klass_initialized(vector_idx_klass)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** klass argument not initialized"); |
| } |
| return false; |
| } |
| |
| ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type(); |
| if (!elem_type->is_primitive_type()) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** not a primitive bt=%d", elem_type->basic_type()); |
| } |
| return false; // should be primitive type |
| } |
| |
| BasicType elem_bt = elem_type->basic_type(); |
| int num_elem = vlen->get_con(); |
| |
| const Type* vmask_type = gvn().type(is_scatter ? argument(10) : argument(9)); |
| bool is_masked_op = vmask_type != TypePtr::NULL_PTR; |
| if (is_masked_op) { |
| if (mask_klass == nullptr || mask_klass->const_oop() == nullptr) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** missing constant: maskclass=%s", NodeClassNames[argument(1)->Opcode()]); |
| } |
| return false; // not enough info for intrinsification |
| } |
| |
| if (!is_klass_initialized(mask_klass)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** mask klass argument not initialized"); |
| } |
| return false; |
| } |
| |
| if (vmask_type->maybe_null()) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** null mask values are not allowed for masked op"); |
| } |
| return false; |
| } |
| |
| // Check whether the predicated gather/scatter node is supported by architecture. |
| if (!arch_supports_vector(is_scatter ? Op_StoreVectorScatterMasked : Op_LoadVectorGatherMasked, num_elem, elem_bt, |
| (VectorMaskUseType) (VecMaskUseLoad | VecMaskUsePred))) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** not supported: arity=%d op=%s vlen=%d etype=%s is_masked_op=1", |
| is_scatter, is_scatter ? "scatterMasked" : "gatherMasked", |
| num_elem, type2name(elem_bt)); |
| } |
| return false; // not supported |
| } |
| } else { |
| // Check whether the normal gather/scatter node is supported for non-masked operation. |
| if (!arch_supports_vector(is_scatter ? Op_StoreVectorScatter : Op_LoadVectorGather, num_elem, elem_bt, VecMaskNotUsed)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** not supported: arity=%d op=%s vlen=%d etype=%s is_masked_op=0", |
| is_scatter, is_scatter ? "scatter" : "gather", |
| num_elem, type2name(elem_bt)); |
| } |
| return false; // not supported |
| } |
| } |
| |
| // Check that the vector holding indices is supported by architecture |
| if (!arch_supports_vector(Op_LoadVector, num_elem, T_INT, VecMaskNotUsed)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** not supported: arity=%d op=%s/loadindex vlen=%d etype=int is_masked_op=%d", |
| is_scatter, is_scatter ? "scatter" : "gather", |
| num_elem, is_masked_op ? 1 : 0); |
| } |
| return false; // not supported |
| } |
| |
| Node* base = argument(5); |
| Node* offset = ConvL2X(argument(6)); |
| |
| // Save state and restore on bailout |
| uint old_sp = sp(); |
| SafePointNode* old_map = clone_map(); |
| |
| Node* addr = make_unsafe_address(base, offset, elem_bt, true); |
| |
| const TypePtr *addr_type = gvn().type(addr)->isa_ptr(); |
| const TypeAryPtr* arr_type = addr_type->isa_aryptr(); |
| |
| // The array must be consistent with vector type |
| if (arr_type == nullptr || (arr_type != nullptr && !elem_consistent_with_arr(elem_bt, arr_type))) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** not supported: arity=%d op=%s vlen=%d etype=%s atype=%s ismask=no", |
| is_scatter, is_scatter ? "scatter" : "gather", |
| num_elem, type2name(elem_bt), type2name(arr_type->elem()->array_element_basic_type())); |
| } |
| set_map(old_map); |
| set_sp(old_sp); |
| return false; |
| } |
| |
| ciKlass* vbox_klass = vector_klass->const_oop()->as_instance()->java_lang_Class_klass(); |
| const TypeInstPtr* vbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass); |
| ciKlass* vbox_idx_klass = vector_idx_klass->const_oop()->as_instance()->java_lang_Class_klass(); |
| if (vbox_idx_klass == nullptr) { |
| set_map(old_map); |
| set_sp(old_sp); |
| return false; |
| } |
| |
| const TypeInstPtr* vbox_idx_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_idx_klass); |
| Node* index_vect = unbox_vector(argument(8), vbox_idx_type, T_INT, num_elem); |
| if (index_vect == nullptr) { |
| set_map(old_map); |
| set_sp(old_sp); |
| return false; |
| } |
| |
| Node* mask = nullptr; |
| if (is_masked_op) { |
| ciKlass* mbox_klass = mask_klass->const_oop()->as_instance()->java_lang_Class_klass(); |
| const TypeInstPtr* mbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, mbox_klass); |
| mask = unbox_vector(is_scatter ? argument(10) : argument(9), mbox_type, elem_bt, num_elem); |
| if (mask == nullptr) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** unbox failed mask=%s", |
| is_scatter ? NodeClassNames[argument(10)->Opcode()] |
| : NodeClassNames[argument(9)->Opcode()]); |
| } |
| set_map(old_map); |
| set_sp(old_sp); |
| return false; |
| } |
| } |
| |
| const TypeVect* vector_type = TypeVect::make(elem_bt, num_elem); |
| if (is_scatter) { |
| Node* val = unbox_vector(argument(9), vbox_type, elem_bt, num_elem); |
| if (val == nullptr) { |
| set_map(old_map); |
| set_sp(old_sp); |
| return false; // operand unboxing failed |
| } |
| set_all_memory(reset_memory()); |
| |
| Node* vstore = nullptr; |
| if (mask != nullptr) { |
| vstore = gvn().transform(new StoreVectorScatterMaskedNode(control(), memory(addr), addr, addr_type, val, index_vect, mask)); |
| } else { |
| vstore = gvn().transform(new StoreVectorScatterNode(control(), memory(addr), addr, addr_type, val, index_vect)); |
| } |
| set_memory(vstore, addr_type); |
| } else { |
| Node* vload = nullptr; |
| if (mask != nullptr) { |
| vload = gvn().transform(new LoadVectorGatherMaskedNode(control(), memory(addr), addr, addr_type, vector_type, index_vect, mask)); |
| } else { |
| vload = gvn().transform(new LoadVectorGatherNode(control(), memory(addr), addr, addr_type, vector_type, index_vect)); |
| } |
| Node* box = box_vector(vload, vbox_type, elem_bt, num_elem); |
| set_result(box); |
| } |
| |
| destruct_map_clone(old_map); |
| |
| C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt)))); |
| return true; |
| } |
| |
| // public static |
| // <V extends Vector<E>, |
| // M extends VectorMask<E>, |
| // E> |
| // long reductionCoerced(int oprId, Class<? extends V> vectorClass, Class<? extends M> maskClass, |
| // Class<E> elementType, int length, V v, M m, |
| // ReductionOperation<V, M> defaultImpl) |
| bool LibraryCallKit::inline_vector_reduction() { |
| const TypeInt* opr = gvn().type(argument(0))->isa_int(); |
| const TypeInstPtr* vector_klass = gvn().type(argument(1))->isa_instptr(); |
| const TypeInstPtr* mask_klass = gvn().type(argument(2))->isa_instptr(); |
| const TypeInstPtr* elem_klass = gvn().type(argument(3))->isa_instptr(); |
| const TypeInt* vlen = gvn().type(argument(4))->isa_int(); |
| |
| if (opr == nullptr || vector_klass == nullptr || elem_klass == nullptr || vlen == nullptr || |
| !opr->is_con() || vector_klass->const_oop() == nullptr || elem_klass->const_oop() == nullptr || !vlen->is_con()) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** missing constant: opr=%s vclass=%s etype=%s vlen=%s", |
| NodeClassNames[argument(0)->Opcode()], |
| NodeClassNames[argument(1)->Opcode()], |
| NodeClassNames[argument(3)->Opcode()], |
| NodeClassNames[argument(4)->Opcode()]); |
| } |
| return false; // not enough info for intrinsification |
| } |
| if (!is_klass_initialized(vector_klass)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** klass argument not initialized"); |
| } |
| return false; |
| } |
| ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type(); |
| if (!elem_type->is_primitive_type()) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** not a primitive bt=%d", elem_type->basic_type()); |
| } |
| return false; // should be primitive type |
| } |
| |
| const Type* vmask_type = gvn().type(argument(6)); |
| bool is_masked_op = vmask_type != TypePtr::NULL_PTR; |
| if (is_masked_op) { |
| if (mask_klass == nullptr || mask_klass->const_oop() == nullptr) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** missing constant: maskclass=%s", NodeClassNames[argument(2)->Opcode()]); |
| } |
| return false; // not enough info for intrinsification |
| } |
| |
| if (!is_klass_initialized(mask_klass)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** mask klass argument not initialized"); |
| } |
| return false; |
| } |
| |
| if (vmask_type->maybe_null()) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** null mask values are not allowed for masked op"); |
| } |
| return false; |
| } |
| } |
| |
| BasicType elem_bt = elem_type->basic_type(); |
| int num_elem = vlen->get_con(); |
| int opc = VectorSupport::vop2ideal(opr->get_con(), elem_bt); |
| int sopc = ReductionNode::opcode(opc, elem_bt); |
| |
| // When using mask, mask use type needs to be VecMaskUseLoad. |
| if (!arch_supports_vector(sopc, num_elem, elem_bt, is_masked_op ? VecMaskUseLoad : VecMaskNotUsed)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** not supported: arity=1 op=%d/reduce vlen=%d etype=%s is_masked_op=%d", |
| sopc, num_elem, type2name(elem_bt), is_masked_op ? 1 : 0); |
| } |
| return false; |
| } |
| |
| // Return true if current platform has implemented the masked operation with predicate feature. |
| bool use_predicate = is_masked_op && arch_supports_vector(sopc, num_elem, elem_bt, VecMaskUsePred); |
| if (is_masked_op && !use_predicate && !arch_supports_vector(Op_VectorBlend, num_elem, elem_bt, VecMaskUseLoad)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** not supported: arity=1 op=%d/reduce vlen=%d etype=%s is_masked_op=1", |
| sopc, num_elem, type2name(elem_bt)); |
| } |
| return false; |
| } |
| |
| ciKlass* vbox_klass = vector_klass->const_oop()->as_instance()->java_lang_Class_klass(); |
| const TypeInstPtr* vbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass); |
| |
| Node* opd = unbox_vector(argument(5), vbox_type, elem_bt, num_elem); |
| if (opd == nullptr) { |
| return false; // operand unboxing failed |
| } |
| |
| Node* mask = nullptr; |
| if (is_masked_op) { |
| ciKlass* mbox_klass = mask_klass->const_oop()->as_instance()->java_lang_Class_klass(); |
| assert(is_vector_mask(mbox_klass), "argument(2) should be a mask class"); |
| const TypeInstPtr* mbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, mbox_klass); |
| mask = unbox_vector(argument(6), mbox_type, elem_bt, num_elem); |
| if (mask == nullptr) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** unbox failed mask=%s", |
| NodeClassNames[argument(6)->Opcode()]); |
| } |
| return false; |
| } |
| } |
| |
| Node* init = ReductionNode::make_identity_con_scalar(gvn(), opc, elem_bt); |
| Node* value = nullptr; |
| if (mask == nullptr) { |
| assert(!is_masked_op, "Masked op needs the mask value never null"); |
| value = ReductionNode::make(opc, nullptr, init, opd, elem_bt); |
| } else { |
| if (use_predicate) { |
| value = ReductionNode::make(opc, nullptr, init, opd, elem_bt); |
| value->add_req(mask); |
| value->add_flag(Node::Flag_is_predicated_vector); |
| } else { |
| Node* reduce_identity = gvn().transform(VectorNode::scalar2vector(init, num_elem, Type::get_const_basic_type(elem_bt))); |
| value = gvn().transform(new VectorBlendNode(reduce_identity, opd, mask)); |
| value = ReductionNode::make(opc, nullptr, init, value, elem_bt); |
| } |
| } |
| value = gvn().transform(value); |
| |
| Node* bits = nullptr; |
| switch (elem_bt) { |
| case T_BYTE: |
| case T_SHORT: |
| case T_INT: { |
| bits = gvn().transform(new ConvI2LNode(value)); |
| break; |
| } |
| case T_FLOAT: { |
| value = gvn().transform(new MoveF2INode(value)); |
| bits = gvn().transform(new ConvI2LNode(value)); |
| break; |
| } |
| case T_DOUBLE: { |
| bits = gvn().transform(new MoveD2LNode(value)); |
| break; |
| } |
| case T_LONG: { |
| bits = value; // no conversion needed |
| break; |
| } |
| default: fatal("%s", type2name(elem_bt)); |
| } |
| set_result(bits); |
| C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt)))); |
| return true; |
| } |
| |
| // public static <V> boolean test(int cond, Class<?> vectorClass, Class<?> elementType, int vlen, |
| // V v1, V v2, |
| // BiFunction<V, V, Boolean> defaultImpl) |
| // |
| bool LibraryCallKit::inline_vector_test() { |
| const TypeInt* cond = gvn().type(argument(0))->isa_int(); |
| const TypeInstPtr* vector_klass = gvn().type(argument(1))->isa_instptr(); |
| const TypeInstPtr* elem_klass = gvn().type(argument(2))->isa_instptr(); |
| const TypeInt* vlen = gvn().type(argument(3))->isa_int(); |
| |
| if (cond == nullptr || vector_klass == nullptr || elem_klass == nullptr || vlen == nullptr || |
| !cond->is_con() || vector_klass->const_oop() == nullptr || elem_klass->const_oop() == nullptr || !vlen->is_con()) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** missing constant: cond=%s vclass=%s etype=%s vlen=%s", |
| NodeClassNames[argument(0)->Opcode()], |
| NodeClassNames[argument(1)->Opcode()], |
| NodeClassNames[argument(2)->Opcode()], |
| NodeClassNames[argument(3)->Opcode()]); |
| } |
| return false; // not enough info for intrinsification |
| } |
| if (!is_klass_initialized(vector_klass)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** klass argument not initialized"); |
| } |
| return false; |
| } |
| ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type(); |
| if (!elem_type->is_primitive_type()) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** not a primitive bt=%d", elem_type->basic_type()); |
| } |
| return false; // should be primitive type |
| } |
| BasicType elem_bt = elem_type->basic_type(); |
| int num_elem = vlen->get_con(); |
| BoolTest::mask booltest = (BoolTest::mask)cond->get_con(); |
| ciKlass* vbox_klass = vector_klass->const_oop()->as_instance()->java_lang_Class_klass(); |
| const TypeInstPtr* vbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass); |
| |
| if (!arch_supports_vector(Op_VectorTest, num_elem, elem_bt, is_vector_mask(vbox_klass) ? VecMaskUseLoad : VecMaskNotUsed)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** not supported: arity=2 op=test/%d vlen=%d etype=%s ismask=%d", |
| cond->get_con(), num_elem, type2name(elem_bt), |
| is_vector_mask(vbox_klass)); |
| } |
| return false; |
| } |
| |
| Node* opd1 = unbox_vector(argument(4), vbox_type, elem_bt, num_elem); |
| Node* opd2; |
| if (Matcher::vectortest_needs_second_argument(booltest == BoolTest::overflow, |
| opd1->bottom_type()->isa_vectmask())) { |
| opd2 = unbox_vector(argument(5), vbox_type, elem_bt, num_elem); |
| } else { |
| opd2 = opd1; |
| } |
| if (opd1 == nullptr || opd2 == nullptr) { |
| return false; // operand unboxing failed |
| } |
| |
| Node* cmp = gvn().transform(new VectorTestNode(opd1, opd2, booltest)); |
| BoolTest::mask test = Matcher::vectortest_mask(booltest == BoolTest::overflow, |
| opd1->bottom_type()->isa_vectmask(), num_elem); |
| Node* bol = gvn().transform(new BoolNode(cmp, test)); |
| Node* res = gvn().transform(new CMoveINode(bol, gvn().intcon(0), gvn().intcon(1), TypeInt::BOOL)); |
| |
| set_result(res); |
| C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt)))); |
| return true; |
| } |
| |
| // public static |
| // <V extends Vector<E>, |
| // M extends VectorMask<E>, |
| // E> |
| // V blend(Class<? extends V> vectorClass, Class<M> maskClass, Class<E> elementType, int vlen, |
| // V v1, V v2, M m, |
| // VectorBlendOp<V, M, E> defaultImpl) |
| bool LibraryCallKit::inline_vector_blend() { |
| const TypeInstPtr* vector_klass = gvn().type(argument(0))->isa_instptr(); |
| const TypeInstPtr* mask_klass = gvn().type(argument(1))->isa_instptr(); |
| const TypeInstPtr* elem_klass = gvn().type(argument(2))->isa_instptr(); |
| const TypeInt* vlen = gvn().type(argument(3))->isa_int(); |
| |
| if (mask_klass == nullptr || vector_klass == nullptr || elem_klass == nullptr || vlen == nullptr) { |
| return false; // dead code |
| } |
| if (mask_klass->const_oop() == nullptr || vector_klass->const_oop() == nullptr || |
| elem_klass->const_oop() == nullptr || !vlen->is_con()) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** missing constant: vclass=%s mclass=%s etype=%s vlen=%s", |
| NodeClassNames[argument(0)->Opcode()], |
| NodeClassNames[argument(1)->Opcode()], |
| NodeClassNames[argument(2)->Opcode()], |
| NodeClassNames[argument(3)->Opcode()]); |
| } |
| return false; // not enough info for intrinsification |
| } |
| if (!is_klass_initialized(vector_klass) || !is_klass_initialized(mask_klass)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** klass argument not initialized"); |
| } |
| return false; |
| } |
| ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type(); |
| if (!elem_type->is_primitive_type()) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** not a primitive bt=%d", elem_type->basic_type()); |
| } |
| return false; // should be primitive type |
| } |
| BasicType elem_bt = elem_type->basic_type(); |
| BasicType mask_bt = elem_bt; |
| int num_elem = vlen->get_con(); |
| |
| if (!arch_supports_vector(Op_VectorBlend, num_elem, elem_bt, VecMaskUseLoad)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** not supported: arity=2 op=blend vlen=%d etype=%s ismask=useload", |
| num_elem, type2name(elem_bt)); |
| } |
| return false; // not supported |
| } |
| ciKlass* vbox_klass = vector_klass->const_oop()->as_instance()->java_lang_Class_klass(); |
| const TypeInstPtr* vbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass); |
| |
| ciKlass* mbox_klass = mask_klass->const_oop()->as_instance()->java_lang_Class_klass(); |
| const TypeInstPtr* mbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, mbox_klass); |
| |
| Node* v1 = unbox_vector(argument(4), vbox_type, elem_bt, num_elem); |
| Node* v2 = unbox_vector(argument(5), vbox_type, elem_bt, num_elem); |
| Node* mask = unbox_vector(argument(6), mbox_type, mask_bt, num_elem); |
| |
| if (v1 == nullptr || v2 == nullptr || mask == nullptr) { |
| return false; // operand unboxing failed |
| } |
| |
| Node* blend = gvn().transform(new VectorBlendNode(v1, v2, mask)); |
| |
| Node* box = box_vector(blend, vbox_type, elem_bt, num_elem); |
| set_result(box); |
| C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt)))); |
| return true; |
| } |
| |
| // public static |
| // <V extends Vector<E>, |
| // M extends VectorMask<E>, |
| // E> |
| // M compare(int cond, Class<? extends V> vectorClass, Class<M> maskClass, Class<E> elementType, int vlen, |
| // V v1, V v2, M m, |
| // VectorCompareOp<V,M> defaultImpl) |
| bool LibraryCallKit::inline_vector_compare() { |
| const TypeInt* cond = gvn().type(argument(0))->isa_int(); |
| const TypeInstPtr* vector_klass = gvn().type(argument(1))->isa_instptr(); |
| const TypeInstPtr* mask_klass = gvn().type(argument(2))->isa_instptr(); |
| const TypeInstPtr* elem_klass = gvn().type(argument(3))->isa_instptr(); |
| const TypeInt* vlen = gvn().type(argument(4))->isa_int(); |
| |
| if (cond == nullptr || vector_klass == nullptr || mask_klass == nullptr || elem_klass == nullptr || vlen == nullptr) { |
| return false; // dead code |
| } |
| if (!cond->is_con() || vector_klass->const_oop() == nullptr || mask_klass->const_oop() == nullptr || |
| elem_klass->const_oop() == nullptr || !vlen->is_con()) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** missing constant: cond=%s vclass=%s mclass=%s etype=%s vlen=%s", |
| NodeClassNames[argument(0)->Opcode()], |
| NodeClassNames[argument(1)->Opcode()], |
| NodeClassNames[argument(2)->Opcode()], |
| NodeClassNames[argument(3)->Opcode()], |
| NodeClassNames[argument(4)->Opcode()]); |
| } |
| return false; // not enough info for intrinsification |
| } |
| if (!is_klass_initialized(vector_klass) || !is_klass_initialized(mask_klass)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** klass argument not initialized"); |
| } |
| return false; |
| } |
| ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type(); |
| if (!elem_type->is_primitive_type()) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** not a primitive bt=%d", elem_type->basic_type()); |
| } |
| return false; // should be primitive type |
| } |
| |
| int num_elem = vlen->get_con(); |
| BasicType elem_bt = elem_type->basic_type(); |
| BasicType mask_bt = elem_bt; |
| |
| if ((cond->get_con() & BoolTest::unsigned_compare) != 0) { |
| if (!Matcher::supports_vector_comparison_unsigned(num_elem, elem_bt)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** not supported: unsigned comparison op=comp/%d vlen=%d etype=%s ismask=usestore", |
| cond->get_con() & (BoolTest::unsigned_compare - 1), num_elem, type2name(elem_bt)); |
| } |
| return false; |
| } |
| } |
| |
| if (!arch_supports_vector(Op_VectorMaskCmp, num_elem, elem_bt, VecMaskUseStore)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** not supported: arity=2 op=comp/%d vlen=%d etype=%s ismask=usestore", |
| cond->get_con(), num_elem, type2name(elem_bt)); |
| } |
| return false; |
| } |
| |
| ciKlass* vbox_klass = vector_klass->const_oop()->as_instance()->java_lang_Class_klass(); |
| const TypeInstPtr* vbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass); |
| |
| ciKlass* mbox_klass = mask_klass->const_oop()->as_instance()->java_lang_Class_klass(); |
| const TypeInstPtr* mbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, mbox_klass); |
| |
| Node* v1 = unbox_vector(argument(5), vbox_type, elem_bt, num_elem); |
| Node* v2 = unbox_vector(argument(6), vbox_type, elem_bt, num_elem); |
| |
| bool is_masked_op = argument(7)->bottom_type() != TypePtr::NULL_PTR; |
| Node* mask = is_masked_op ? unbox_vector(argument(7), mbox_type, elem_bt, num_elem) : nullptr; |
| if (is_masked_op && mask == nullptr) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** not supported: mask = null arity=2 op=comp/%d vlen=%d etype=%s ismask=usestore is_masked_op=1", |
| cond->get_con(), num_elem, type2name(elem_bt)); |
| } |
| return false; |
| } |
| |
| bool use_predicate = is_masked_op && arch_supports_vector(Op_VectorMaskCmp, num_elem, elem_bt, VecMaskUsePred); |
| if (is_masked_op && !use_predicate && !arch_supports_vector(Op_AndV, num_elem, elem_bt, VecMaskUseLoad)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** not supported: arity=2 op=comp/%d vlen=%d etype=%s ismask=usestore is_masked_op=1", |
| cond->get_con(), num_elem, type2name(elem_bt)); |
| } |
| return false; |
| } |
| |
| if (v1 == nullptr || v2 == nullptr) { |
| return false; // operand unboxing failed |
| } |
| BoolTest::mask pred = (BoolTest::mask)cond->get_con(); |
| ConINode* pred_node = (ConINode*)gvn().makecon(cond); |
| |
| const TypeVect* vmask_type = TypeVect::makemask(mask_bt, num_elem); |
| Node* operation = new VectorMaskCmpNode(pred, v1, v2, pred_node, vmask_type); |
| |
| if (is_masked_op) { |
| if (use_predicate) { |
| operation->add_req(mask); |
| operation->add_flag(Node::Flag_is_predicated_vector); |
| } else { |
| operation = gvn().transform(operation); |
| operation = VectorNode::make(Op_AndV, operation, mask, vmask_type); |
| } |
| } |
| |
| operation = gvn().transform(operation); |
| |
| Node* box = box_vector(operation, mbox_type, mask_bt, num_elem); |
| set_result(box); |
| C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt)))); |
| return true; |
| } |
| |
| // public static |
| // <V extends Vector<E>, |
| // Sh extends VectorShuffle<E>, |
| // M extends VectorMask<E>, |
| // E> |
| // V rearrangeOp(Class<? extends V> vectorClass, Class<Sh> shuffleClass, Class<M> maskClass, Class<E> elementType, int vlen, |
| // V v1, Sh sh, M m, |
| // VectorRearrangeOp<V, Sh, M, E> defaultImpl) |
| bool LibraryCallKit::inline_vector_rearrange() { |
| const TypeInstPtr* vector_klass = gvn().type(argument(0))->isa_instptr(); |
| const TypeInstPtr* shuffle_klass = gvn().type(argument(1))->isa_instptr(); |
| const TypeInstPtr* mask_klass = gvn().type(argument(2))->isa_instptr(); |
| const TypeInstPtr* elem_klass = gvn().type(argument(3))->isa_instptr(); |
| const TypeInt* vlen = gvn().type(argument(4))->isa_int(); |
| |
| if (vector_klass == nullptr || shuffle_klass == nullptr || elem_klass == nullptr || vlen == nullptr) { |
| return false; // dead code |
| } |
| if (shuffle_klass->const_oop() == nullptr || |
| vector_klass->const_oop() == nullptr || |
| elem_klass->const_oop() == nullptr || |
| !vlen->is_con()) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** missing constant: vclass=%s sclass=%s etype=%s vlen=%s", |
| NodeClassNames[argument(0)->Opcode()], |
| NodeClassNames[argument(1)->Opcode()], |
| NodeClassNames[argument(3)->Opcode()], |
| NodeClassNames[argument(4)->Opcode()]); |
| } |
| return false; // not enough info for intrinsification |
| } |
| if (!is_klass_initialized(vector_klass) || |
| !is_klass_initialized(shuffle_klass)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** klass argument not initialized"); |
| } |
| return false; |
| } |
| ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type(); |
| if (!elem_type->is_primitive_type()) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** not a primitive bt=%d", elem_type->basic_type()); |
| } |
| return false; // should be primitive type |
| } |
| BasicType elem_bt = elem_type->basic_type(); |
| BasicType shuffle_bt = elem_bt; |
| int num_elem = vlen->get_con(); |
| |
| if (!arch_supports_vector(Op_VectorLoadShuffle, num_elem, elem_bt, VecMaskNotUsed)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** not supported: arity=0 op=load/shuffle vlen=%d etype=%s ismask=no", |
| num_elem, type2name(elem_bt)); |
| } |
| return false; // not supported |
| } |
| |
| bool is_masked_op = argument(7)->bottom_type() != TypePtr::NULL_PTR; |
| bool use_predicate = is_masked_op; |
| if (is_masked_op && |
| (mask_klass == nullptr || |
| mask_klass->const_oop() == nullptr || |
| !is_klass_initialized(mask_klass))) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** mask_klass argument not initialized"); |
| } |
| } |
| VectorMaskUseType checkFlags = (VectorMaskUseType)(is_masked_op ? (VecMaskUseLoad | VecMaskUsePred) : VecMaskNotUsed); |
| if (!arch_supports_vector(Op_VectorRearrange, num_elem, elem_bt, checkFlags)) { |
| use_predicate = false; |
| if(!is_masked_op || |
| (!arch_supports_vector(Op_VectorRearrange, num_elem, elem_bt, VecMaskNotUsed) || |
| !arch_supports_vector(Op_VectorBlend, num_elem, elem_bt, VecMaskUseLoad) || |
| !arch_supports_vector(VectorNode::replicate_opcode(elem_bt), num_elem, elem_bt, VecMaskNotUsed))) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** not supported: arity=2 op=shuffle/rearrange vlen=%d etype=%s ismask=no", |
| num_elem, type2name(elem_bt)); |
| } |
| return false; // not supported |
| } |
| } |
| ciKlass* vbox_klass = vector_klass->const_oop()->as_instance()->java_lang_Class_klass(); |
| const TypeInstPtr* vbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass); |
| |
| ciKlass* shbox_klass = shuffle_klass->const_oop()->as_instance()->java_lang_Class_klass(); |
| const TypeInstPtr* shbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, shbox_klass); |
| |
| Node* v1 = unbox_vector(argument(5), vbox_type, elem_bt, num_elem); |
| Node* shuffle = unbox_vector(argument(6), shbox_type, shuffle_bt, num_elem); |
| |
| if (v1 == nullptr || shuffle == nullptr) { |
| return false; // operand unboxing failed |
| } |
| |
| Node* mask = nullptr; |
| if (is_masked_op) { |
| ciKlass* mbox_klass = mask_klass->const_oop()->as_instance()->java_lang_Class_klass(); |
| const TypeInstPtr* mbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, mbox_klass); |
| mask = unbox_vector(argument(7), mbox_type, elem_bt, num_elem); |
| if (mask == nullptr) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** not supported: arity=3 op=shuffle/rearrange vlen=%d etype=%s ismask=useload is_masked_op=1", |
| num_elem, type2name(elem_bt)); |
| } |
| return false; |
| } |
| } |
| |
| Node* rearrange = new VectorRearrangeNode(v1, shuffle); |
| if (is_masked_op) { |
| if (use_predicate) { |
| rearrange->add_req(mask); |
| rearrange->add_flag(Node::Flag_is_predicated_vector); |
| } else { |
| const TypeVect* vt = v1->bottom_type()->is_vect(); |
| rearrange = gvn().transform(rearrange); |
| Node* zero = gvn().makecon(Type::get_zero_type(elem_bt)); |
| Node* zerovec = gvn().transform(VectorNode::scalar2vector(zero, num_elem, Type::get_const_basic_type(elem_bt))); |
| rearrange = new VectorBlendNode(zerovec, rearrange, mask); |
| } |
| } |
| rearrange = gvn().transform(rearrange); |
| |
| Node* box = box_vector(rearrange, vbox_type, elem_bt, num_elem); |
| set_result(box); |
| C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt)))); |
| return true; |
| } |
| |
| static address get_svml_address(int vop, int bits, BasicType bt, char* name_ptr, int name_len) { |
| address addr = nullptr; |
| assert(UseVectorStubs, "sanity"); |
| assert(name_ptr != nullptr, "unexpected"); |
| assert((vop >= VectorSupport::VECTOR_OP_SVML_START) && (vop <= VectorSupport::VECTOR_OP_SVML_END), "unexpected"); |
| int op = vop - VectorSupport::VECTOR_OP_SVML_START; |
| |
| switch(bits) { |
| case 64: //fallthough |
| case 128: //fallthough |
| case 256: //fallthough |
| case 512: |
| if (bt == T_FLOAT) { |
| snprintf(name_ptr, name_len, "vector_%s_float%d", VectorSupport::svmlname[op], bits); |
| addr = StubRoutines::_vector_f_math[exact_log2(bits/64)][op]; |
| } else { |
| assert(bt == T_DOUBLE, "must be FP type only"); |
| snprintf(name_ptr, name_len, "vector_%s_double%d", VectorSupport::svmlname[op], bits); |
| addr = StubRoutines::_vector_d_math[exact_log2(bits/64)][op]; |
| } |
| break; |
| default: |
| snprintf(name_ptr, name_len, "invalid"); |
| addr = nullptr; |
| Unimplemented(); |
| break; |
| } |
| |
| return addr; |
| } |
| |
| Node* LibraryCallKit::gen_call_to_svml(int vector_api_op_id, BasicType bt, int num_elem, Node* opd1, Node* opd2) { |
| assert(UseVectorStubs, "sanity"); |
| assert(vector_api_op_id >= VectorSupport::VECTOR_OP_SVML_START && vector_api_op_id <= VectorSupport::VECTOR_OP_SVML_END, "need valid op id"); |
| assert(opd1 != nullptr, "must not be null"); |
| const TypeVect* vt = TypeVect::make(bt, num_elem); |
| const TypeFunc* call_type = OptoRuntime::Math_Vector_Vector_Type(opd2 != nullptr ? 2 : 1, vt, vt); |
| char name[100] = ""; |
| |
| // Get address for svml method. |
| address addr = get_svml_address(vector_api_op_id, vt->length_in_bytes() * BitsPerByte, bt, name, 100); |
| |
| if (addr == nullptr) { |
| return nullptr; |
| } |
| |
| assert(name[0] != '\0', "name must not be null"); |
| Node* operation = make_runtime_call(RC_VECTOR, |
| call_type, |
| addr, |
| name, |
| TypePtr::BOTTOM, |
| opd1, |
| opd2); |
| return gvn().transform(new ProjNode(gvn().transform(operation), TypeFunc::Parms)); |
| } |
| |
| // public static |
| // <V extends Vector<E>, |
| // M extends VectorMask<E>, |
| // E> |
| // V broadcastInt(int opr, Class<? extends V> vectorClass, Class<? extends M> maskClass, |
| // Class<E> elementType, int length, |
| // V v, int n, M m, |
| // VectorBroadcastIntOp<V, M> defaultImpl) |
| bool LibraryCallKit::inline_vector_broadcast_int() { |
| const TypeInt* opr = gvn().type(argument(0))->isa_int(); |
| const TypeInstPtr* vector_klass = gvn().type(argument(1))->isa_instptr(); |
| const TypeInstPtr* mask_klass = gvn().type(argument(2))->isa_instptr(); |
| const TypeInstPtr* elem_klass = gvn().type(argument(3))->isa_instptr(); |
| const TypeInt* vlen = gvn().type(argument(4))->isa_int(); |
| |
| if (opr == nullptr || vector_klass == nullptr || elem_klass == nullptr || vlen == nullptr) { |
| return false; // dead code |
| } |
| if (!opr->is_con() || vector_klass->const_oop() == nullptr || elem_klass->const_oop() == nullptr || !vlen->is_con()) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** missing constant: opr=%s vclass=%s etype=%s vlen=%s", |
| NodeClassNames[argument(0)->Opcode()], |
| NodeClassNames[argument(1)->Opcode()], |
| NodeClassNames[argument(3)->Opcode()], |
| NodeClassNames[argument(4)->Opcode()]); |
| } |
| return false; // not enough info for intrinsification |
| } |
| if (!is_klass_initialized(vector_klass)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** klass argument not initialized"); |
| } |
| return false; |
| } |
| |
| const Type* vmask_type = gvn().type(argument(7)); |
| bool is_masked_op = vmask_type != TypePtr::NULL_PTR; |
| if (is_masked_op) { |
| if (mask_klass == nullptr || mask_klass->const_oop() == nullptr) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** missing constant: maskclass=%s", NodeClassNames[argument(2)->Opcode()]); |
| } |
| return false; // not enough info for intrinsification |
| } |
| |
| if (!is_klass_initialized(mask_klass)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** mask klass argument not initialized"); |
| } |
| return false; |
| } |
| |
| if (vmask_type->maybe_null()) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** null mask values are not allowed for masked op"); |
| } |
| return false; |
| } |
| } |
| |
| ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type(); |
| if (!elem_type->is_primitive_type()) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** not a primitive bt=%d", elem_type->basic_type()); |
| } |
| return false; // should be primitive type |
| } |
| |
| int num_elem = vlen->get_con(); |
| BasicType elem_bt = elem_type->basic_type(); |
| int opc = VectorSupport::vop2ideal(opr->get_con(), elem_bt); |
| |
| bool is_shift = VectorNode::is_shift_opcode(opc); |
| bool is_rotate = VectorNode::is_rotate_opcode(opc); |
| |
| if (opc == 0 || (!is_shift && !is_rotate)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** operation not supported: op=%d bt=%s", opr->get_con(), type2name(elem_bt)); |
| } |
| return false; // operation not supported |
| } |
| |
| int sopc = VectorNode::opcode(opc, elem_bt); |
| if (sopc == 0) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** operation not supported: opc=%s bt=%s", NodeClassNames[opc], type2name(elem_bt)); |
| } |
| return false; // operation not supported |
| } |
| |
| Node* cnt = argument(6); |
| ciKlass* vbox_klass = vector_klass->const_oop()->as_instance()->java_lang_Class_klass(); |
| const TypeInstPtr* vbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass); |
| const TypeInt* cnt_type = cnt->bottom_type()->isa_int(); |
| |
| // If CPU supports vector constant rotate instructions pass it directly |
| bool is_const_rotate = is_rotate && cnt_type && cnt_type->is_con() && |
| Matcher::supports_vector_constant_rotates(cnt_type->get_con()); |
| bool has_scalar_args = is_rotate ? !is_const_rotate : true; |
| |
| VectorMaskUseType checkFlags = (VectorMaskUseType)(is_masked_op ? (VecMaskUseLoad | VecMaskUsePred) : VecMaskNotUsed); |
| bool use_predicate = is_masked_op; |
| |
| if (!arch_supports_vector(sopc, num_elem, elem_bt, checkFlags, has_scalar_args)) { |
| use_predicate = false; |
| if (!is_masked_op || |
| (!arch_supports_vector(sopc, num_elem, elem_bt, VecMaskNotUsed, has_scalar_args) || |
| !arch_supports_vector(Op_VectorBlend, num_elem, elem_bt, VecMaskUseLoad))) { |
| |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** not supported: arity=0 op=int/%d vlen=%d etype=%s is_masked_op=%d", |
| sopc, num_elem, type2name(elem_bt), is_masked_op ? 1 : 0); |
| } |
| return false; // not supported |
| } |
| } |
| |
| Node* opd1 = unbox_vector(argument(5), vbox_type, elem_bt, num_elem); |
| Node* opd2 = nullptr; |
| if (is_shift) { |
| opd2 = vector_shift_count(cnt, opc, elem_bt, num_elem); |
| } else { |
| assert(is_rotate, "unexpected operation"); |
| if (!is_const_rotate) { |
| const Type * type_bt = Type::get_const_basic_type(elem_bt); |
| cnt = elem_bt == T_LONG ? gvn().transform(new ConvI2LNode(cnt)) : cnt; |
| opd2 = gvn().transform(VectorNode::scalar2vector(cnt, num_elem, type_bt)); |
| } else { |
| // Constant shift value. |
| opd2 = cnt; |
| } |
| } |
| |
| if (opd1 == nullptr || opd2 == nullptr) { |
| return false; |
| } |
| |
| Node* mask = nullptr; |
| if (is_masked_op) { |
| ciKlass* mbox_klass = mask_klass->const_oop()->as_instance()->java_lang_Class_klass(); |
| const TypeInstPtr* mbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, mbox_klass); |
| mask = unbox_vector(argument(7), mbox_type, elem_bt, num_elem); |
| if (mask == nullptr) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** unbox failed mask=%s", NodeClassNames[argument(7)->Opcode()]); |
| } |
| return false; |
| } |
| } |
| |
| Node* operation = VectorNode::make(opc, opd1, opd2, num_elem, elem_bt); |
| if (is_masked_op && mask != nullptr) { |
| if (use_predicate) { |
| operation->add_req(mask); |
| operation->add_flag(Node::Flag_is_predicated_vector); |
| } else { |
| operation = gvn().transform(operation); |
| operation = new VectorBlendNode(opd1, operation, mask); |
| } |
| } |
| operation = gvn().transform(operation); |
| Node* vbox = box_vector(operation, vbox_type, elem_bt, num_elem); |
| set_result(vbox); |
| C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt)))); |
| return true; |
| } |
| |
| // public static <VOUT extends VectorPayload, |
| // VIN extends VectorPayload, |
| // S extends VectorSpecies> |
| // VOUT convert(int oprId, |
| // Class<?> fromVectorClass, Class<?> fromElementType, int fromVLen, |
| // Class<?> toVectorClass, Class<?> toElementType, int toVLen, |
| // VIN v, S s, |
| // VectorConvertOp<VOUT, VIN, S> defaultImpl) |
| // |
| bool LibraryCallKit::inline_vector_convert() { |
| const TypeInt* opr = gvn().type(argument(0))->isa_int(); |
| |
| const TypeInstPtr* vector_klass_from = gvn().type(argument(1))->isa_instptr(); |
| const TypeInstPtr* elem_klass_from = gvn().type(argument(2))->isa_instptr(); |
| const TypeInt* vlen_from = gvn().type(argument(3))->isa_int(); |
| |
| const TypeInstPtr* vector_klass_to = gvn().type(argument(4))->isa_instptr(); |
| const TypeInstPtr* elem_klass_to = gvn().type(argument(5))->isa_instptr(); |
| const TypeInt* vlen_to = gvn().type(argument(6))->isa_int(); |
| |
| if (opr == nullptr || |
| vector_klass_from == nullptr || elem_klass_from == nullptr || vlen_from == nullptr || |
| vector_klass_to == nullptr || elem_klass_to == nullptr || vlen_to == nullptr) { |
| return false; // dead code |
| } |
| if (!opr->is_con() || |
| vector_klass_from->const_oop() == nullptr || elem_klass_from->const_oop() == nullptr || !vlen_from->is_con() || |
| vector_klass_to->const_oop() == nullptr || elem_klass_to->const_oop() == nullptr || !vlen_to->is_con()) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** missing constant: opr=%s vclass_from=%s etype_from=%s vlen_from=%s vclass_to=%s etype_to=%s vlen_to=%s", |
| NodeClassNames[argument(0)->Opcode()], |
| NodeClassNames[argument(1)->Opcode()], |
| NodeClassNames[argument(2)->Opcode()], |
| NodeClassNames[argument(3)->Opcode()], |
| NodeClassNames[argument(4)->Opcode()], |
| NodeClassNames[argument(5)->Opcode()], |
| NodeClassNames[argument(6)->Opcode()]); |
| } |
| return false; // not enough info for intrinsification |
| } |
| if (!is_klass_initialized(vector_klass_from) || !is_klass_initialized(vector_klass_to)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** klass argument not initialized"); |
| } |
| return false; |
| } |
| |
| assert(opr->get_con() == VectorSupport::VECTOR_OP_CAST || |
| opr->get_con() == VectorSupport::VECTOR_OP_UCAST || |
| opr->get_con() == VectorSupport::VECTOR_OP_REINTERPRET, "wrong opcode"); |
| bool is_cast = (opr->get_con() == VectorSupport::VECTOR_OP_CAST || opr->get_con() == VectorSupport::VECTOR_OP_UCAST); |
| bool is_ucast = (opr->get_con() == VectorSupport::VECTOR_OP_UCAST); |
| |
| ciKlass* vbox_klass_from = vector_klass_from->const_oop()->as_instance()->java_lang_Class_klass(); |
| ciKlass* vbox_klass_to = vector_klass_to->const_oop()->as_instance()->java_lang_Class_klass(); |
| if (is_vector_shuffle(vbox_klass_from)) { |
| return false; // vector shuffles aren't supported |
| } |
| bool is_mask = is_vector_mask(vbox_klass_from); |
| |
| ciType* elem_type_from = elem_klass_from->const_oop()->as_instance()->java_mirror_type(); |
| if (!elem_type_from->is_primitive_type()) { |
| return false; // should be primitive type |
| } |
| BasicType elem_bt_from = elem_type_from->basic_type(); |
| ciType* elem_type_to = elem_klass_to->const_oop()->as_instance()->java_mirror_type(); |
| if (!elem_type_to->is_primitive_type()) { |
| return false; // should be primitive type |
| } |
| BasicType elem_bt_to = elem_type_to->basic_type(); |
| |
| int num_elem_from = vlen_from->get_con(); |
| int num_elem_to = vlen_to->get_con(); |
| |
| // Check whether we can unbox to appropriate size. Even with casting, checking for reinterpret is needed |
| // since we may need to change size. |
| if (!arch_supports_vector(Op_VectorReinterpret, |
| num_elem_from, |
| elem_bt_from, |
| is_mask ? VecMaskUseAll : VecMaskNotUsed)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** not supported: arity=1 op=%s/1 vlen1=%d etype1=%s ismask=%d", |
| is_cast ? "cast" : "reinterpret", |
| num_elem_from, type2name(elem_bt_from), is_mask); |
| } |
| return false; |
| } |
| |
| // Check whether we can support resizing/reinterpreting to the new size. |
| if (!arch_supports_vector(Op_VectorReinterpret, |
| num_elem_to, |
| elem_bt_to, |
| is_mask ? VecMaskUseAll : VecMaskNotUsed)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** not supported: arity=1 op=%s/2 vlen2=%d etype2=%s ismask=%d", |
| is_cast ? "cast" : "reinterpret", |
| num_elem_to, type2name(elem_bt_to), is_mask); |
| } |
| return false; |
| } |
| |
| // At this point, we know that both input and output vector registers are supported |
| // by the architecture. Next check if the casted type is simply to same type - which means |
| // that it is actually a resize and not a cast. |
| if (is_cast && elem_bt_from == elem_bt_to) { |
| is_cast = false; |
| } |
| |
| const TypeInstPtr* vbox_type_from = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass_from); |
| |
| Node* opd1 = unbox_vector(argument(7), vbox_type_from, elem_bt_from, num_elem_from); |
| if (opd1 == nullptr) { |
| return false; |
| } |
| |
| const TypeVect* src_type = TypeVect::make(elem_bt_from, num_elem_from, is_mask); |
| const TypeVect* dst_type = TypeVect::make(elem_bt_to, num_elem_to, is_mask); |
| |
| // Safety check to prevent casting if source mask is of type vector |
| // and destination mask of type predicate vector and vice-versa. |
| // From X86 standpoint, this case will only arise over KNL target, |
| // where certain masks (depending on the species) are either propagated |
| // through a vector or predicate register. |
| if (is_mask && |
| ((src_type->isa_vectmask() == nullptr && dst_type->isa_vectmask()) || |
| (dst_type->isa_vectmask() == nullptr && src_type->isa_vectmask()))) { |
| return false; |
| } |
| |
| Node* op = opd1; |
| if (is_cast) { |
| assert(!is_mask || num_elem_from == num_elem_to, "vector mask cast needs the same elem num"); |
| int cast_vopc = VectorCastNode::opcode(-1, elem_bt_from, !is_ucast); |
| |
| // Make sure that vector cast is implemented to particular type/size combination if it is |
| // not a mask casting. |
| if (!is_mask && !arch_supports_vector(cast_vopc, num_elem_to, elem_bt_to, VecMaskNotUsed)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** not supported: arity=1 op=cast#%d/3 vlen2=%d etype2=%s ismask=%d", |
| cast_vopc, num_elem_to, type2name(elem_bt_to), is_mask); |
| } |
| return false; |
| } |
| |
| if (num_elem_from < num_elem_to) { |
| // Since input and output number of elements are not consistent, we need to make sure we |
| // properly size. Thus, first make a cast that retains the number of elements from source. |
| int num_elem_for_cast = num_elem_from; |
| |
| // It is possible that arch does not support this intermediate vector size |
| // TODO More complex logic required here to handle this corner case for the sizes. |
| if (!arch_supports_vector(cast_vopc, num_elem_for_cast, elem_bt_to, VecMaskNotUsed)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** not supported: arity=1 op=cast#%d/4 vlen1=%d etype2=%s ismask=%d", |
| cast_vopc, |
| num_elem_for_cast, type2name(elem_bt_to), is_mask); |
| } |
| return false; |
| } |
| |
| op = gvn().transform(VectorCastNode::make(cast_vopc, op, elem_bt_to, num_elem_for_cast)); |
| // Now ensure that the destination gets properly resized to needed size. |
| op = gvn().transform(new VectorReinterpretNode(op, op->bottom_type()->is_vect(), dst_type)); |
| } else if (num_elem_from > num_elem_to) { |
| // Since number of elements from input is larger than output, simply reduce size of input |
| // (we are supposed to drop top elements anyway). |
| int num_elem_for_resize = num_elem_to; |
| |
| // It is possible that arch does not support this intermediate vector size |
| // TODO More complex logic required here to handle this corner case for the sizes. |
| if (!arch_supports_vector(Op_VectorReinterpret, |
| num_elem_for_resize, |
| elem_bt_from, |
| VecMaskNotUsed)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** not supported: arity=1 op=cast/5 vlen2=%d etype1=%s ismask=%d", |
| num_elem_for_resize, type2name(elem_bt_from), is_mask); |
| } |
| return false; |
| } |
| |
| const TypeVect* resize_type = TypeVect::make(elem_bt_from, num_elem_for_resize); |
| op = gvn().transform(new VectorReinterpretNode(op, src_type, resize_type)); |
| op = gvn().transform(VectorCastNode::make(cast_vopc, op, elem_bt_to, num_elem_to)); |
| } else { // num_elem_from == num_elem_to |
| if (is_mask) { |
| // Make sure that cast for vector mask is implemented to particular type/size combination. |
| if (!arch_supports_vector(Op_VectorMaskCast, num_elem_to, elem_bt_to, VecMaskNotUsed)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** not supported: arity=1 op=maskcast vlen2=%d etype2=%s ismask=%d", |
| num_elem_to, type2name(elem_bt_to), is_mask); |
| } |
| return false; |
| } |
| op = gvn().transform(new VectorMaskCastNode(op, dst_type)); |
| } else { |
| // Since input and output number of elements match, and since we know this vector size is |
| // supported, simply do a cast with no resize needed. |
| op = gvn().transform(VectorCastNode::make(cast_vopc, op, elem_bt_to, num_elem_to)); |
| } |
| } |
| } else if (Type::cmp(src_type, dst_type) != 0) { |
| assert(!is_cast, "must be reinterpret"); |
| op = gvn().transform(new VectorReinterpretNode(op, src_type, dst_type)); |
| } |
| |
| const TypeInstPtr* vbox_type_to = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass_to); |
| Node* vbox = box_vector(op, vbox_type_to, elem_bt_to, num_elem_to); |
| set_result(vbox); |
| C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem_to * type2aelembytes(elem_bt_to)))); |
| return true; |
| } |
| |
| // public static |
| // <V extends Vector<E>, |
| // E> |
| // V insert(Class<? extends V> vectorClass, Class<E> elementType, int vlen, |
| // V vec, int ix, long val, |
| // VecInsertOp<V> defaultImpl) |
| bool LibraryCallKit::inline_vector_insert() { |
| const TypeInstPtr* vector_klass = gvn().type(argument(0))->isa_instptr(); |
| const TypeInstPtr* elem_klass = gvn().type(argument(1))->isa_instptr(); |
| const TypeInt* vlen = gvn().type(argument(2))->isa_int(); |
| const TypeInt* idx = gvn().type(argument(4))->isa_int(); |
| |
| if (vector_klass == nullptr || elem_klass == nullptr || vlen == nullptr || idx == nullptr) { |
| return false; // dead code |
| } |
| if (vector_klass->const_oop() == nullptr || elem_klass->const_oop() == nullptr || !vlen->is_con() || !idx->is_con()) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** missing constant: vclass=%s etype=%s vlen=%s idx=%s", |
| NodeClassNames[argument(0)->Opcode()], |
| NodeClassNames[argument(1)->Opcode()], |
| NodeClassNames[argument(2)->Opcode()], |
| NodeClassNames[argument(4)->Opcode()]); |
| } |
| return false; // not enough info for intrinsification |
| } |
| if (!is_klass_initialized(vector_klass)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** klass argument not initialized"); |
| } |
| return false; |
| } |
| ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type(); |
| if (!elem_type->is_primitive_type()) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** not a primitive bt=%d", elem_type->basic_type()); |
| } |
| return false; // should be primitive type |
| } |
| BasicType elem_bt = elem_type->basic_type(); |
| int num_elem = vlen->get_con(); |
| if (!arch_supports_vector(Op_VectorInsert, num_elem, elem_bt, VecMaskNotUsed)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** not supported: arity=1 op=insert vlen=%d etype=%s ismask=no", |
| num_elem, type2name(elem_bt)); |
| } |
| return false; // not supported |
| } |
| |
| ciKlass* vbox_klass = vector_klass->const_oop()->as_instance()->java_lang_Class_klass(); |
| const TypeInstPtr* vbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass); |
| |
| Node* opd = unbox_vector(argument(3), vbox_type, elem_bt, num_elem); |
| if (opd == nullptr) { |
| return false; |
| } |
| |
| Node* insert_val = argument(5); |
| assert(gvn().type(insert_val)->isa_long() != nullptr, "expected to be long"); |
| |
| // Convert insert value back to its appropriate type. |
| switch (elem_bt) { |
| case T_BYTE: |
| insert_val = gvn().transform(new ConvL2INode(insert_val)); |
| insert_val = gvn().transform(new CastIINode(insert_val, TypeInt::BYTE)); |
| break; |
| case T_SHORT: |
| insert_val = gvn().transform(new ConvL2INode(insert_val)); |
| insert_val = gvn().transform(new CastIINode(insert_val, TypeInt::SHORT)); |
| break; |
| case T_INT: |
| insert_val = gvn().transform(new ConvL2INode(insert_val)); |
| break; |
| case T_FLOAT: |
| insert_val = gvn().transform(new ConvL2INode(insert_val)); |
| insert_val = gvn().transform(new MoveI2FNode(insert_val)); |
| break; |
| case T_DOUBLE: |
| insert_val = gvn().transform(new MoveL2DNode(insert_val)); |
| break; |
| case T_LONG: |
| // no conversion needed |
| break; |
| default: fatal("%s", type2name(elem_bt)); break; |
| } |
| |
| Node* operation = gvn().transform(VectorInsertNode::make(opd, insert_val, idx->get_con())); |
| |
| Node* vbox = box_vector(operation, vbox_type, elem_bt, num_elem); |
| set_result(vbox); |
| C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt)))); |
| return true; |
| } |
| |
| // public static |
| // <V extends Vector<E>, |
| // E> |
| // long extract(Class<? extends V> vectorClass, Class<E> elementType, int vlen, |
| // V vec, int ix, |
| // VecExtractOp<V> defaultImpl) |
| bool LibraryCallKit::inline_vector_extract() { |
| const TypeInstPtr* vector_klass = gvn().type(argument(0))->isa_instptr(); |
| const TypeInstPtr* elem_klass = gvn().type(argument(1))->isa_instptr(); |
| const TypeInt* vlen = gvn().type(argument(2))->isa_int(); |
| const TypeInt* idx = gvn().type(argument(4))->isa_int(); |
| |
| if (vector_klass == nullptr || elem_klass == nullptr || vlen == nullptr || idx == nullptr) { |
| return false; // dead code |
| } |
| if (vector_klass->const_oop() == nullptr || elem_klass->const_oop() == nullptr || !vlen->is_con() || !idx->is_con()) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** missing constant: vclass=%s etype=%s vlen=%s idx=%s", |
| NodeClassNames[argument(0)->Opcode()], |
| NodeClassNames[argument(1)->Opcode()], |
| NodeClassNames[argument(2)->Opcode()], |
| NodeClassNames[argument(4)->Opcode()]); |
| } |
| return false; // not enough info for intrinsification |
| } |
| if (!is_klass_initialized(vector_klass)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** klass argument not initialized"); |
| } |
| return false; |
| } |
| ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type(); |
| if (!elem_type->is_primitive_type()) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** not a primitive bt=%d", elem_type->basic_type()); |
| } |
| return false; // should be primitive type |
| } |
| BasicType elem_bt = elem_type->basic_type(); |
| int num_elem = vlen->get_con(); |
| int vopc = ExtractNode::opcode(elem_bt); |
| if (!arch_supports_vector(vopc, num_elem, elem_bt, VecMaskNotUsed)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** not supported: arity=1 op=extract vlen=%d etype=%s ismask=no", |
| num_elem, type2name(elem_bt)); |
| } |
| return false; // not supported |
| } |
| |
| ciKlass* vbox_klass = vector_klass->const_oop()->as_instance()->java_lang_Class_klass(); |
| const TypeInstPtr* vbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass); |
| |
| Node* opd = unbox_vector(argument(3), vbox_type, elem_bt, num_elem); |
| if (opd == nullptr) { |
| return false; |
| } |
| |
| ConINode* idx_con = gvn().intcon(idx->get_con())->as_ConI(); |
| Node* operation = gvn().transform(ExtractNode::make(opd, idx_con, elem_bt)); |
| |
| Node* bits = nullptr; |
| switch (elem_bt) { |
| case T_BYTE: |
| case T_SHORT: |
| case T_INT: { |
| bits = gvn().transform(new ConvI2LNode(operation)); |
| break; |
| } |
| case T_FLOAT: { |
| bits = gvn().transform(new MoveF2INode(operation)); |
| bits = gvn().transform(new ConvI2LNode(bits)); |
| break; |
| } |
| case T_DOUBLE: { |
| bits = gvn().transform(new MoveD2LNode(operation)); |
| break; |
| } |
| case T_LONG: { |
| bits = operation; // no conversion needed |
| break; |
| } |
| default: fatal("%s", type2name(elem_bt)); |
| } |
| |
| set_result(bits); |
| return true; |
| } |
| |
| // public static |
| // <V extends Vector<E>, |
| // M extends VectorMask<E>, |
| // E> |
| // V compressExpandOp(int opr, |
| // Class<? extends V> vClass, Class<? extends M> mClass, Class<E> eClass, |
| // int length, V v, M m, |
| // CompressExpandOperation<V, M> defaultImpl) |
| bool LibraryCallKit::inline_vector_compress_expand() { |
| const TypeInt* opr = gvn().type(argument(0))->isa_int(); |
| const TypeInstPtr* vector_klass = gvn().type(argument(1))->isa_instptr(); |
| const TypeInstPtr* mask_klass = gvn().type(argument(2))->isa_instptr(); |
| const TypeInstPtr* elem_klass = gvn().type(argument(3))->isa_instptr(); |
| const TypeInt* vlen = gvn().type(argument(4))->isa_int(); |
| |
| if (vector_klass == nullptr || elem_klass == nullptr || mask_klass == nullptr || vlen == nullptr || |
| vector_klass->const_oop() == nullptr || mask_klass->const_oop() == nullptr || |
| elem_klass->const_oop() == nullptr || !vlen->is_con() || !opr->is_con()) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** missing constant: opr=%s vclass=%s mclass=%s etype=%s vlen=%s", |
| NodeClassNames[argument(0)->Opcode()], |
| NodeClassNames[argument(1)->Opcode()], |
| NodeClassNames[argument(2)->Opcode()], |
| NodeClassNames[argument(3)->Opcode()], |
| NodeClassNames[argument(4)->Opcode()]); |
| } |
| return false; // not enough info for intrinsification |
| } |
| |
| if (!is_klass_initialized(vector_klass) || !is_klass_initialized(mask_klass)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** klass argument not initialized"); |
| } |
| return false; |
| } |
| |
| ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type(); |
| if (!elem_type->is_primitive_type()) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** not a primitive bt=%d", elem_type->basic_type()); |
| } |
| return false; // should be primitive type |
| } |
| |
| int num_elem = vlen->get_con(); |
| BasicType elem_bt = elem_type->basic_type(); |
| int opc = VectorSupport::vop2ideal(opr->get_con(), elem_bt); |
| |
| if (!arch_supports_vector(opc, num_elem, elem_bt, VecMaskUseLoad)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** not supported: opc=%d vlen=%d etype=%s ismask=useload", |
| opc, num_elem, type2name(elem_bt)); |
| } |
| return false; // not supported |
| } |
| |
| Node* opd1 = nullptr; |
| const TypeInstPtr* vbox_type = nullptr; |
| if (opc != Op_CompressM) { |
| ciKlass* vbox_klass = vector_klass->const_oop()->as_instance()->java_lang_Class_klass(); |
| vbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass); |
| opd1 = unbox_vector(argument(5), vbox_type, elem_bt, num_elem); |
| if (opd1 == nullptr) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** unbox failed vector=%s", |
| NodeClassNames[argument(5)->Opcode()]); |
| } |
| return false; |
| } |
| } |
| |
| ciKlass* mbox_klass = mask_klass->const_oop()->as_instance()->java_lang_Class_klass(); |
| assert(is_vector_mask(mbox_klass), "argument(6) should be a mask class"); |
| const TypeInstPtr* mbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, mbox_klass); |
| |
| Node* mask = unbox_vector(argument(6), mbox_type, elem_bt, num_elem); |
| if (mask == nullptr) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** unbox failed mask=%s", |
| NodeClassNames[argument(6)->Opcode()]); |
| } |
| return false; |
| } |
| |
| const TypeVect* vt = TypeVect::make(elem_bt, num_elem, opc == Op_CompressM); |
| Node* operation = gvn().transform(VectorNode::make(opc, opd1, mask, vt)); |
| |
| // Wrap it up in VectorBox to keep object type information. |
| const TypeInstPtr* box_type = opc == Op_CompressM ? mbox_type : vbox_type; |
| Node* vbox = box_vector(operation, box_type, elem_bt, num_elem); |
| set_result(vbox); |
| C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt)))); |
| return true; |
| } |
| |
| // public static |
| // <V extends Vector<E>, |
| // E, |
| // S extends VectorSpecies<E>> |
| // V indexVector(Class<? extends V> vClass, Class<E> eClass, |
| // int length, |
| // V v, int step, S s, |
| // IndexOperation<V, S> defaultImpl) |
| bool LibraryCallKit::inline_index_vector() { |
| const TypeInstPtr* vector_klass = gvn().type(argument(0))->isa_instptr(); |
| const TypeInstPtr* elem_klass = gvn().type(argument(1))->isa_instptr(); |
| const TypeInt* vlen = gvn().type(argument(2))->isa_int(); |
| |
| if (vector_klass == nullptr || elem_klass == nullptr || vlen == nullptr || |
| vector_klass->const_oop() == nullptr || !vlen->is_con() || |
| elem_klass->const_oop() == nullptr) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** missing constant: vclass=%s etype=%s vlen=%s", |
| NodeClassNames[argument(0)->Opcode()], |
| NodeClassNames[argument(1)->Opcode()], |
| NodeClassNames[argument(2)->Opcode()]); |
| } |
| return false; // not enough info for intrinsification |
| } |
| |
| if (!is_klass_initialized(vector_klass)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** klass argument not initialized"); |
| } |
| return false; |
| } |
| |
| ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type(); |
| if (!elem_type->is_primitive_type()) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** not a primitive bt=%d", elem_type->basic_type()); |
| } |
| return false; // should be primitive type |
| } |
| |
| int num_elem = vlen->get_con(); |
| BasicType elem_bt = elem_type->basic_type(); |
| |
| // Check whether the iota index generation op is supported by the current hardware |
| if (!arch_supports_vector(Op_VectorLoadConst, num_elem, elem_bt, VecMaskNotUsed)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** not supported: vlen=%d etype=%s", num_elem, type2name(elem_bt)); |
| } |
| return false; // not supported |
| } |
| |
| int mul_op = VectorSupport::vop2ideal(VectorSupport::VECTOR_OP_MUL, elem_bt); |
| int vmul_op = VectorNode::opcode(mul_op, elem_bt); |
| bool needs_mul = true; |
| Node* scale = argument(4); |
| const TypeInt* scale_type = gvn().type(scale)->isa_int(); |
| // Multiply is not needed if the scale is a constant "1". |
| if (scale_type && scale_type->is_con() && scale_type->get_con() == 1) { |
| needs_mul = false; |
| } else { |
| // Check whether the vector multiply op is supported by the current hardware |
| if (!arch_supports_vector(vmul_op, num_elem, elem_bt, VecMaskNotUsed)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** not supported: vlen=%d etype=%s", num_elem, type2name(elem_bt)); |
| } |
| return false; // not supported |
| } |
| |
| // Check whether the scalar cast op is supported by the current hardware |
| if (is_floating_point_type(elem_bt) || elem_bt == T_LONG) { |
| int cast_op = elem_bt == T_LONG ? Op_ConvI2L : |
| elem_bt == T_FLOAT? Op_ConvI2F : Op_ConvI2D; |
| if (!Matcher::match_rule_supported(cast_op)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** Rejected op (%s) because architecture does not support it", |
| NodeClassNames[cast_op]); |
| } |
| return false; // not supported |
| } |
| } |
| } |
| |
| ciKlass* vbox_klass = vector_klass->const_oop()->as_instance()->java_lang_Class_klass(); |
| const TypeInstPtr* vbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass); |
| Node* opd = unbox_vector(argument(3), vbox_type, elem_bt, num_elem); |
| if (opd == nullptr) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** unbox failed vector=%s", |
| NodeClassNames[argument(3)->Opcode()]); |
| } |
| return false; |
| } |
| |
| int add_op = VectorSupport::vop2ideal(VectorSupport::VECTOR_OP_ADD, elem_bt); |
| int vadd_op = VectorNode::opcode(add_op, elem_bt); |
| bool needs_add = true; |
| // The addition is not needed if all the element values of "opd" are zero |
| if (VectorNode::is_all_zeros_vector(opd)) { |
| needs_add = false; |
| } else { |
| // Check whether the vector addition op is supported by the current hardware |
| if (!arch_supports_vector(vadd_op, num_elem, elem_bt, VecMaskNotUsed)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** not supported: vlen=%d etype=%s", num_elem, type2name(elem_bt)); |
| } |
| return false; // not supported |
| } |
| } |
| |
| // Compute the iota indice vector |
| const TypeVect* vt = TypeVect::make(elem_bt, num_elem); |
| Node* index = gvn().transform(new VectorLoadConstNode(gvn().makecon(TypeInt::ZERO), vt)); |
| |
| // Broadcast the "scale" to a vector, and multiply the "scale" with iota indice vector. |
| if (needs_mul) { |
| switch (elem_bt) { |
| case T_BOOLEAN: // fall-through |
| case T_BYTE: // fall-through |
| case T_SHORT: // fall-through |
| case T_CHAR: // fall-through |
| case T_INT: { |
| // no conversion needed |
| break; |
| } |
| case T_LONG: { |
| scale = gvn().transform(new ConvI2LNode(scale)); |
| break; |
| } |
| case T_FLOAT: { |
| scale = gvn().transform(new ConvI2FNode(scale)); |
| break; |
| } |
| case T_DOUBLE: { |
| scale = gvn().transform(new ConvI2DNode(scale)); |
| break; |
| } |
| default: fatal("%s", type2name(elem_bt)); |
| } |
| scale = gvn().transform(VectorNode::scalar2vector(scale, num_elem, Type::get_const_basic_type(elem_bt))); |
| index = gvn().transform(VectorNode::make(vmul_op, index, scale, vt)); |
| } |
| |
| // Add "opd" if addition is needed. |
| if (needs_add) { |
| index = gvn().transform(VectorNode::make(vadd_op, opd, index, vt)); |
| } |
| Node* vbox = box_vector(index, vbox_type, elem_bt, num_elem); |
| set_result(vbox); |
| C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt)))); |
| return true; |
| } |
| |
| // public static |
| // <E, |
| // M extends VectorMask<E>> |
| // M indexPartiallyInUpperRange(Class<? extends M> mClass, Class<E> eClass, int length, |
| // long offset, long limit, |
| // IndexPartiallyInUpperRangeOperation<E, M> defaultImpl) |
| bool LibraryCallKit::inline_index_partially_in_upper_range() { |
| const TypeInstPtr* mask_klass = gvn().type(argument(0))->isa_instptr(); |
| const TypeInstPtr* elem_klass = gvn().type(argument(1))->isa_instptr(); |
| const TypeInt* vlen = gvn().type(argument(2))->isa_int(); |
| |
| if (mask_klass == nullptr || elem_klass == nullptr || vlen == nullptr || |
| mask_klass->const_oop() == nullptr || elem_klass->const_oop() == nullptr || !vlen->is_con()) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** missing constant: mclass=%s etype=%s vlen=%s", |
| NodeClassNames[argument(0)->Opcode()], |
| NodeClassNames[argument(1)->Opcode()], |
| NodeClassNames[argument(2)->Opcode()]); |
| } |
| return false; // not enough info for intrinsification |
| } |
| |
| if (!is_klass_initialized(mask_klass)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** klass argument not initialized"); |
| } |
| return false; |
| } |
| |
| ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type(); |
| if (!elem_type->is_primitive_type()) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** not a primitive bt=%d", elem_type->basic_type()); |
| } |
| return false; // should be primitive type |
| } |
| |
| int num_elem = vlen->get_con(); |
| BasicType elem_bt = elem_type->basic_type(); |
| |
| // Check whether the necessary ops are supported by current hardware. |
| bool supports_mask_gen = arch_supports_vector(Op_VectorMaskGen, num_elem, elem_bt, VecMaskUseStore); |
| if (!supports_mask_gen) { |
| if (!arch_supports_vector(Op_VectorLoadConst, num_elem, elem_bt, VecMaskNotUsed) || |
| !arch_supports_vector(VectorNode::replicate_opcode(elem_bt), num_elem, elem_bt, VecMaskNotUsed) || |
| !arch_supports_vector(Op_VectorMaskCmp, num_elem, elem_bt, VecMaskUseStore)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** not supported: vlen=%d etype=%s", num_elem, type2name(elem_bt)); |
| } |
| return false; // not supported |
| } |
| |
| // Check whether the scalar cast operation is supported by current hardware. |
| if (elem_bt != T_LONG) { |
| int cast_op = is_integral_type(elem_bt) ? Op_ConvL2I |
| : (elem_bt == T_FLOAT ? Op_ConvL2F : Op_ConvL2D); |
| if (!Matcher::match_rule_supported(cast_op)) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** Rejected op (%s) because architecture does not support it", |
| NodeClassNames[cast_op]); |
| } |
| return false; // not supported |
| } |
| } |
| } |
| |
| Node* offset = argument(3); |
| Node* limit = argument(5); |
| if (offset == nullptr || limit == nullptr) { |
| if (C->print_intrinsics()) { |
| tty->print_cr(" ** offset or limit argument is null"); |
| } |
| return false; // not supported |
| } |
| |
| ciKlass* box_klass = mask_klass->const_oop()->as_instance()->java_lang_Class_klass(); |
| assert(is_vector_mask(box_klass), "argument(0) should be a mask class"); |
| const TypeInstPtr* box_type = TypeInstPtr::make_exact(TypePtr::NotNull, box_klass); |
| |
| // We assume "offset > 0 && limit >= offset && limit - offset < num_elem". |
| // So directly get indexLimit with "indexLimit = limit - offset". |
| Node* indexLimit = gvn().transform(new SubLNode(limit, offset)); |
| Node* mask = nullptr; |
| if (supports_mask_gen) { |
| mask = gvn().transform(VectorMaskGenNode::make(indexLimit, elem_bt, num_elem)); |
| } else { |
| // Generate the vector mask based on "mask = iota < indexLimit". |
| // Broadcast "indexLimit" to a vector. |
| switch (elem_bt) { |
| case T_BOOLEAN: // fall-through |
| case T_BYTE: // fall-through |
| case T_SHORT: // fall-through |
| case T_CHAR: // fall-through |
| case T_INT: { |
| indexLimit = gvn().transform(new ConvL2INode(indexLimit)); |
| break; |
| } |
| case T_DOUBLE: { |
| indexLimit = gvn().transform(new ConvL2DNode(indexLimit)); |
| break; |
| } |
| case T_FLOAT: { |
| indexLimit = gvn().transform(new ConvL2FNode(indexLimit)); |
| break; |
| } |
| case T_LONG: { |
| // no conversion needed |
| break; |
| } |
| default: fatal("%s", type2name(elem_bt)); |
| } |
| indexLimit = gvn().transform(VectorNode::scalar2vector(indexLimit, num_elem, Type::get_const_basic_type(elem_bt))); |
| |
| // Load the "iota" vector. |
| const TypeVect* vt = TypeVect::make(elem_bt, num_elem); |
| Node* iota = gvn().transform(new VectorLoadConstNode(gvn().makecon(TypeInt::ZERO), vt)); |
| |
| // Compute the vector mask with "mask = iota < indexLimit". |
| ConINode* pred_node = (ConINode*)gvn().makecon(TypeInt::make(BoolTest::lt)); |
| const TypeVect* vmask_type = TypeVect::makemask(elem_bt, num_elem); |
| mask = gvn().transform(new VectorMaskCmpNode(BoolTest::lt, iota, indexLimit, pred_node, vmask_type)); |
| } |
| Node* vbox = box_vector(mask, box_type, elem_bt, num_elem); |
| set_result(vbox); |
| C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt)))); |
| return true; |
| } |