blob: 179a53ba851a6bcdb14e6e01653a01f4514492d2 [file] [log] [blame]
/*
* Copyright (c) 2003, 2023, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "memory/allocation.inline.hpp"
#include "prims/jvmtiRawMonitor.hpp"
#include "runtime/atomic.hpp"
#include "runtime/interfaceSupport.inline.hpp"
#include "runtime/javaThread.hpp"
#include "runtime/orderAccess.hpp"
#include "runtime/threads.hpp"
JvmtiRawMonitor::QNode::QNode(Thread* thread) : _next(nullptr), _prev(nullptr),
_event(thread->_ParkEvent),
_notified(0), _t_state(TS_RUN) {
}
GrowableArray<JvmtiRawMonitor*>* JvmtiPendingMonitors::_monitors =
new (mtServiceability) GrowableArray<JvmtiRawMonitor*>(1, mtServiceability);
void JvmtiPendingMonitors::transition_raw_monitors() {
assert((Threads::number_of_threads()==1),
"Java thread has not been created yet or more than one java thread "
"is running. Raw monitor transition will not work");
JavaThread* current_java_thread = JavaThread::current();
{
ThreadToNativeFromVM ttnfvm(current_java_thread);
for (int i = 0; i < count(); i++) {
JvmtiRawMonitor* rmonitor = monitors()->at(i);
rmonitor->raw_enter(current_java_thread);
}
}
// pending monitors are converted to real monitor so delete them all.
dispose();
}
//
// class JvmtiRawMonitor
//
JvmtiRawMonitor::JvmtiRawMonitor(const char* name) : _owner(nullptr),
_recursions(0),
_entry_list(nullptr),
_wait_set(nullptr),
_magic(JVMTI_RM_MAGIC),
_name(nullptr) {
#ifdef ASSERT
_name = strcpy(NEW_C_HEAP_ARRAY(char, strlen(name) + 1, mtInternal), name);
#endif
}
JvmtiRawMonitor::~JvmtiRawMonitor() {
#ifdef ASSERT
FreeHeap(_name);
#endif
_magic = 0;
}
bool
JvmtiRawMonitor::is_valid() {
int value = 0;
// This object might not be a JvmtiRawMonitor so we can't assume
// the _magic field is properly aligned. Get the value in a safe
// way and then check against JVMTI_RM_MAGIC.
switch (sizeof(_magic)) {
case 2:
value = Bytes::get_native_u2((address)&_magic);
break;
case 4:
value = Bytes::get_native_u4((address)&_magic);
break;
case 8:
value = Bytes::get_native_u8((address)&_magic);
break;
default:
guarantee(false, "_magic field is an unexpected size");
}
return value == JVMTI_RM_MAGIC;
}
// -------------------------------------------------------------------------
// The JVMTI raw monitor subsystem is entirely distinct from normal
// java-synchronization or jni-synchronization. JVMTI raw monitors are not
// associated with objects. They can be implemented in any manner
// that makes sense. The original implementors decided to piggy-back
// the raw-monitor implementation on the existing Java ObjectMonitor mechanism.
// Now we just use a simplified form of that ObjectMonitor code.
//
// Note that we use the single RawMonitor_lock to protect queue operations for
// _all_ raw monitors. This is a scalability impediment, but since raw monitor usage
// is fairly rare, this is not of concern. The RawMonitor_lock can not
// be held indefinitely. The critical sections must be short and bounded.
//
// -------------------------------------------------------------------------
void JvmtiRawMonitor::simple_enter(Thread* self) {
for (;;) {
if (Atomic::replace_if_null(&_owner, self)) {
if (self->is_Java_thread()) {
Continuation::pin(JavaThread::cast(self));
}
return;
}
QNode node(self);
self->_ParkEvent->reset(); // strictly optional
node._t_state = QNode::TS_ENTER;
RawMonitor_lock->lock_without_safepoint_check();
node._next = _entry_list;
_entry_list = &node;
OrderAccess::fence();
if (_owner == nullptr && Atomic::replace_if_null(&_owner, self)) {
_entry_list = node._next;
RawMonitor_lock->unlock();
if (self->is_Java_thread()) {
Continuation::pin(JavaThread::cast(self));
}
return;
}
RawMonitor_lock->unlock();
while (node._t_state == QNode::TS_ENTER) {
self->_ParkEvent->park();
}
}
}
void JvmtiRawMonitor::simple_exit(Thread* self) {
guarantee(_owner == self, "invariant");
Atomic::release_store(&_owner, (Thread*)nullptr);
OrderAccess::fence();
if (self->is_Java_thread()) {
Continuation::unpin(JavaThread::cast(self));
}
if (_entry_list == nullptr) {
return;
}
RawMonitor_lock->lock_without_safepoint_check();
QNode* w = _entry_list;
if (w != nullptr) {
_entry_list = w->_next;
}
RawMonitor_lock->unlock();
if (w != nullptr) {
guarantee(w ->_t_state == QNode::TS_ENTER, "invariant");
// Once we set _t_state to TS_RUN the waiting thread can complete
// simple_enter and 'w' is pointing into random stack space. So we have
// to ensure we extract the ParkEvent (which is in type-stable memory)
// before we set the state, and then don't access 'w'.
ParkEvent* ev = w->_event;
OrderAccess::loadstore();
w->_t_state = QNode::TS_RUN;
OrderAccess::fence();
ev->unpark();
}
return;
}
inline void JvmtiRawMonitor::enqueue_waiter(QNode& node) {
node._notified = 0;
node._t_state = QNode::TS_WAIT;
RawMonitor_lock->lock_without_safepoint_check();
node._next = _wait_set;
_wait_set = &node;
RawMonitor_lock->unlock();
}
inline void JvmtiRawMonitor::dequeue_waiter(QNode& node) {
// If thread still resides on the waitset then unlink it.
// Double-checked locking -- the usage is safe in this context
// as _t_state is volatile and the lock-unlock operators are
// serializing (barrier-equivalent).
if (node._t_state == QNode::TS_WAIT) {
RawMonitor_lock->lock_without_safepoint_check();
if (node._t_state == QNode::TS_WAIT) {
// Simple O(n) unlink, but performance isn't critical here.
QNode* p;
QNode* q = nullptr;
for (p = _wait_set; p != &node; p = p->_next) {
q = p;
}
guarantee(p == &node, "invariant");
if (q == nullptr) {
guarantee (p == _wait_set, "invariant");
_wait_set = p->_next;
} else {
guarantee(p == q->_next, "invariant");
q->_next = p->_next;
}
node._t_state = QNode::TS_RUN;
}
RawMonitor_lock->unlock();
}
guarantee(node._t_state == QNode::TS_RUN, "invariant");
}
// simple_wait is not quite so simple as we have to deal with the interaction
// with the Thread interrupt state, which resides in the java.lang.Thread object.
// That state must only be accessed while _thread_in_vm and requires proper thread-state
// transitions.
// Returns M_OK usually, but M_INTERRUPTED if the thread is a JavaThread and was
// interrupted.
// Note:
// - simple_wait never reenters the monitor.
// - A JavaThread must be in native.
int JvmtiRawMonitor::simple_wait(Thread* self, jlong millis) {
guarantee(_owner == self , "invariant");
guarantee(_recursions == 0, "invariant");
QNode node(self);
enqueue_waiter(node);
simple_exit(self);
guarantee(_owner != self, "invariant");
int ret = M_OK;
if (self->is_Java_thread()) {
JavaThread* jt = JavaThread::cast(self);
guarantee(jt->thread_state() == _thread_in_native, "invariant");
{
// This transition must be after we exited the monitor.
ThreadInVMfromNative tivmfn(jt);
if (jt->is_interrupted(true)) {
ret = M_INTERRUPTED;
} else {
ThreadBlockInVM tbivm(jt);
if (millis <= 0) {
self->_ParkEvent->park();
} else {
self->_ParkEvent->park(millis);
}
// Return to VM before post-check of interrupt state
}
if (jt->is_interrupted(true)) {
ret = M_INTERRUPTED;
}
}
} else {
if (millis <= 0) {
self->_ParkEvent->park();
} else {
self->_ParkEvent->park(millis);
}
}
dequeue_waiter(node);
return ret;
}
void JvmtiRawMonitor::simple_notify(Thread* self, bool all) {
guarantee(_owner == self, "invariant");
if (_wait_set == nullptr) {
return;
}
// We have two options:
// A. Transfer the threads from the _wait_set to the _entry_list
// B. Remove the thread from the _wait_set and unpark() it.
//
// We use (B), which is crude and results in lots of futile
// context switching. In particular (B) induces lots of contention.
ParkEvent* ev = nullptr; // consider using a small auto array ...
RawMonitor_lock->lock_without_safepoint_check();
for (;;) {
QNode* w = _wait_set;
if (w == nullptr) break;
_wait_set = w->_next;
if (ev != nullptr) {
ev->unpark();
ev = nullptr;
}
ev = w->_event;
OrderAccess::loadstore();
w->_t_state = QNode::TS_RUN;
OrderAccess::storeload();
if (!all) {
break;
}
}
RawMonitor_lock->unlock();
if (ev != nullptr) {
ev->unpark();
}
return;
}
void JvmtiRawMonitor::ExitOnSuspend::operator()(JavaThread* current) {
// We must exit the monitor in case of a safepoint.
_rm->simple_exit(current);
_rm_exited = true;
}
// JavaThreads will enter here with state _thread_in_native.
void JvmtiRawMonitor::raw_enter(Thread* self) {
// TODO Atomic::load on _owner field
if (_owner == self) {
_recursions++;
return;
}
self->set_current_pending_raw_monitor(this);
if (!self->is_Java_thread()) {
simple_enter(self);
} else {
JavaThread* jt = JavaThread::cast(self);
guarantee(jt->thread_state() == _thread_in_native, "invariant");
ThreadInVMfromNative tivmfn(jt);
for (;;) {
ExitOnSuspend eos(this);
{
ThreadBlockInVMPreprocess<ExitOnSuspend> tbivmp(jt, eos, true /* allow_suspend */);
simple_enter(jt);
}
if (!eos.monitor_exited()) {
break;
}
}
}
self->set_current_pending_raw_monitor(nullptr);
guarantee(_owner == self, "invariant");
guarantee(_recursions == 0, "invariant");
}
int JvmtiRawMonitor::raw_exit(Thread* self) {
if (self != _owner) {
return M_ILLEGAL_MONITOR_STATE;
}
if (_recursions > 0) {
_recursions--;
} else {
simple_exit(self);
}
return M_OK;
}
int JvmtiRawMonitor::raw_wait(jlong millis, Thread* self) {
if (self != _owner) {
return M_ILLEGAL_MONITOR_STATE;
}
int ret = M_OK;
// To avoid spurious wakeups we reset the parkevent. This is strictly optional.
// The caller must be able to tolerate spurious returns from raw_wait().
self->_ParkEvent->reset();
OrderAccess::fence();
intptr_t save = _recursions;
_recursions = 0;
ret = simple_wait(self, millis);
// Now we need to re-enter the monitor. For JavaThreads
// we need to manage suspend requests.
if (self->is_Java_thread()) { // JavaThread re-enter
JavaThread* jt = JavaThread::cast(self);
ThreadInVMfromNative tivmfn(jt);
for (;;) {
ExitOnSuspend eos(this);
{
ThreadBlockInVMPreprocess<ExitOnSuspend> tbivmp(jt, eos, true /* allow_suspend */);
simple_enter(jt);
}
if (!eos.monitor_exited()) {
break;
}
}
if (jt->is_interrupted(true)) {
ret = M_INTERRUPTED;
}
} else { // Non-JavaThread re-enter
assert(ret != M_INTERRUPTED, "Only JavaThreads can be interrupted");
simple_enter(self);
}
_recursions = save;
guarantee(self == _owner, "invariant");
return ret;
}
int JvmtiRawMonitor::raw_notify(Thread* self) {
if (self != _owner) {
return M_ILLEGAL_MONITOR_STATE;
}
simple_notify(self, false);
return M_OK;
}
int JvmtiRawMonitor::raw_notifyAll(Thread* self) {
if (self != _owner) {
return M_ILLEGAL_MONITOR_STATE;
}
simple_notify(self, true);
return M_OK;
}