| /* |
| * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved. |
| * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| * |
| * This code is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License version 2 only, as |
| * published by the Free Software Foundation. |
| * |
| * This code is distributed in the hope that it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| * version 2 for more details (a copy is included in the LICENSE file that |
| * accompanied this code). |
| * |
| * You should have received a copy of the GNU General Public License version |
| * 2 along with this work; if not, write to the Free Software Foundation, |
| * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| * |
| * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| * or visit www.oracle.com if you need additional information or have any |
| * questions. |
| * |
| */ |
| |
| #include "precompiled.hpp" |
| #include "classfile/javaClasses.hpp" |
| #include "classfile/moduleEntry.hpp" |
| #include "classfile/systemDictionary.hpp" |
| #include "classfile/vmClasses.hpp" |
| #include "classfile/vmSymbols.hpp" |
| #include "code/codeCache.hpp" |
| #include "code/icBuffer.hpp" |
| #include "code/vtableStubs.hpp" |
| #include "gc/shared/gcVMOperations.hpp" |
| #include "interpreter/interpreter.hpp" |
| #include "jvm.h" |
| #include "logging/log.hpp" |
| #include "logging/logStream.hpp" |
| #include "memory/allocation.inline.hpp" |
| #include "memory/resourceArea.hpp" |
| #include "memory/universe.hpp" |
| #include "oops/compressedOops.inline.hpp" |
| #include "oops/oop.inline.hpp" |
| #include "prims/jvmtiAgent.hpp" |
| #include "prims/jvm_misc.hpp" |
| #include "runtime/arguments.hpp" |
| #include "runtime/atomic.hpp" |
| #include "runtime/frame.inline.hpp" |
| #include "runtime/handles.inline.hpp" |
| #include "runtime/interfaceSupport.inline.hpp" |
| #include "runtime/java.hpp" |
| #include "runtime/javaCalls.hpp" |
| #include "runtime/javaThread.hpp" |
| #include "runtime/jniHandles.hpp" |
| #include "runtime/mutexLocker.hpp" |
| #include "runtime/os.inline.hpp" |
| #include "runtime/osThread.hpp" |
| #include "runtime/safefetch.hpp" |
| #include "runtime/sharedRuntime.hpp" |
| #include "runtime/threadCrashProtection.hpp" |
| #include "runtime/threadSMR.hpp" |
| #include "runtime/vmOperations.hpp" |
| #include "runtime/vm_version.hpp" |
| #include "sanitizers/address.hpp" |
| #include "services/attachListener.hpp" |
| #include "services/mallocTracker.hpp" |
| #include "services/mallocHeader.inline.hpp" |
| #include "services/memTracker.inline.hpp" |
| #include "services/nmtPreInit.hpp" |
| #include "services/nmtCommon.hpp" |
| #include "services/threadService.hpp" |
| #include "utilities/align.hpp" |
| #include "utilities/count_trailing_zeros.hpp" |
| #include "utilities/defaultStream.hpp" |
| #include "utilities/events.hpp" |
| #include "utilities/macros.hpp" |
| #include "utilities/powerOfTwo.hpp" |
| |
| #ifndef _WINDOWS |
| # include <poll.h> |
| #endif |
| |
| # include <signal.h> |
| # include <errno.h> |
| |
| OSThread* os::_starting_thread = nullptr; |
| volatile unsigned int os::_rand_seed = 1234567; |
| int os::_processor_count = 0; |
| int os::_initial_active_processor_count = 0; |
| os::PageSizes os::_page_sizes; |
| |
| DEBUG_ONLY(bool os::_mutex_init_done = false;) |
| |
| int os::snprintf(char* buf, size_t len, const char* fmt, ...) { |
| va_list args; |
| va_start(args, fmt); |
| int result = os::vsnprintf(buf, len, fmt, args); |
| va_end(args); |
| return result; |
| } |
| |
| int os::snprintf_checked(char* buf, size_t len, const char* fmt, ...) { |
| va_list args; |
| va_start(args, fmt); |
| int result = os::vsnprintf(buf, len, fmt, args); |
| va_end(args); |
| assert(result >= 0, "os::snprintf error"); |
| assert(static_cast<size_t>(result) < len, "os::snprintf truncated"); |
| return result; |
| } |
| |
| // Fill in buffer with current local time as an ISO-8601 string. |
| // E.g., YYYY-MM-DDThh:mm:ss.mmm+zzzz. |
| // Returns buffer, or null if it failed. |
| char* os::iso8601_time(char* buffer, size_t buffer_length, bool utc) { |
| const jlong now = javaTimeMillis(); |
| return os::iso8601_time(now, buffer, buffer_length, utc); |
| } |
| |
| // Fill in buffer with an ISO-8601 string corresponding to the given javaTimeMillis value |
| // E.g., yyyy-mm-ddThh:mm:ss-zzzz. |
| // Returns buffer, or null if it failed. |
| // This would mostly be a call to |
| // strftime(...., "%Y-%m-%d" "T" "%H:%M:%S" "%z", ....) |
| // except that on Windows the %z behaves badly, so we do it ourselves. |
| // Also, people wanted milliseconds on there, |
| // and strftime doesn't do milliseconds. |
| char* os::iso8601_time(jlong milliseconds_since_19700101, char* buffer, size_t buffer_length, bool utc) { |
| // Output will be of the form "YYYY-MM-DDThh:mm:ss.mmm+zzzz\0" |
| |
| // Sanity check the arguments |
| if (buffer == nullptr) { |
| assert(false, "null buffer"); |
| return nullptr; |
| } |
| if (buffer_length < os::iso8601_timestamp_size) { |
| assert(false, "buffer_length too small"); |
| return nullptr; |
| } |
| const int milliseconds_per_microsecond = 1000; |
| const time_t seconds_since_19700101 = |
| milliseconds_since_19700101 / milliseconds_per_microsecond; |
| const int milliseconds_after_second = |
| milliseconds_since_19700101 % milliseconds_per_microsecond; |
| // Convert the time value to a tm and timezone variable |
| struct tm time_struct; |
| if (utc) { |
| if (gmtime_pd(&seconds_since_19700101, &time_struct) == nullptr) { |
| assert(false, "Failed gmtime_pd"); |
| return nullptr; |
| } |
| } else { |
| if (localtime_pd(&seconds_since_19700101, &time_struct) == nullptr) { |
| assert(false, "Failed localtime_pd"); |
| return nullptr; |
| } |
| } |
| |
| const time_t seconds_per_minute = 60; |
| const time_t minutes_per_hour = 60; |
| const time_t seconds_per_hour = seconds_per_minute * minutes_per_hour; |
| |
| // No offset when dealing with UTC |
| time_t UTC_to_local = 0; |
| if (!utc) { |
| #if (defined(_ALLBSD_SOURCE) || defined(_GNU_SOURCE)) && !defined(AIX) |
| UTC_to_local = -(time_struct.tm_gmtoff); |
| #elif defined(_WINDOWS) |
| long zone; |
| _get_timezone(&zone); |
| UTC_to_local = static_cast<time_t>(zone); |
| #else |
| UTC_to_local = timezone; |
| #endif |
| |
| // tm_gmtoff already includes adjustment for daylight saving |
| #if !defined(_ALLBSD_SOURCE) && !defined(_GNU_SOURCE) |
| // If daylight savings time is in effect, |
| // we are 1 hour East of our time zone |
| if (time_struct.tm_isdst > 0) { |
| UTC_to_local = UTC_to_local - seconds_per_hour; |
| } |
| #endif |
| } |
| |
| // Compute the time zone offset. |
| // localtime_pd() sets timezone to the difference (in seconds) |
| // between UTC and local time. |
| // ISO 8601 says we need the difference between local time and UTC, |
| // we change the sign of the localtime_pd() result. |
| const time_t local_to_UTC = -(UTC_to_local); |
| // Then we have to figure out if if we are ahead (+) or behind (-) UTC. |
| char sign_local_to_UTC = '+'; |
| time_t abs_local_to_UTC = local_to_UTC; |
| if (local_to_UTC < 0) { |
| sign_local_to_UTC = '-'; |
| abs_local_to_UTC = -(abs_local_to_UTC); |
| } |
| // Convert time zone offset seconds to hours and minutes. |
| const time_t zone_hours = (abs_local_to_UTC / seconds_per_hour); |
| const time_t zone_min = |
| ((abs_local_to_UTC % seconds_per_hour) / seconds_per_minute); |
| |
| // Print an ISO 8601 date and time stamp into the buffer |
| const int year = 1900 + time_struct.tm_year; |
| const int month = 1 + time_struct.tm_mon; |
| const int printed = jio_snprintf(buffer, buffer_length, |
| "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d", |
| year, |
| month, |
| time_struct.tm_mday, |
| time_struct.tm_hour, |
| time_struct.tm_min, |
| time_struct.tm_sec, |
| milliseconds_after_second, |
| sign_local_to_UTC, |
| zone_hours, |
| zone_min); |
| if (printed == 0) { |
| assert(false, "Failed jio_printf"); |
| return nullptr; |
| } |
| return buffer; |
| } |
| |
| OSReturn os::set_priority(Thread* thread, ThreadPriority p) { |
| debug_only(Thread::check_for_dangling_thread_pointer(thread);) |
| |
| if ((p >= MinPriority && p <= MaxPriority) || |
| (p == CriticalPriority && thread->is_ConcurrentGC_thread())) { |
| int priority = java_to_os_priority[p]; |
| return set_native_priority(thread, priority); |
| } else { |
| assert(false, "Should not happen"); |
| return OS_ERR; |
| } |
| } |
| |
| // The mapping from OS priority back to Java priority may be inexact because |
| // Java priorities can map M:1 with native priorities. If you want the definite |
| // Java priority then use JavaThread::java_priority() |
| OSReturn os::get_priority(const Thread* const thread, ThreadPriority& priority) { |
| int p; |
| int os_prio; |
| OSReturn ret = get_native_priority(thread, &os_prio); |
| if (ret != OS_OK) return ret; |
| |
| if (java_to_os_priority[MaxPriority] > java_to_os_priority[MinPriority]) { |
| for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] > os_prio; p--) ; |
| } else { |
| // niceness values are in reverse order |
| for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] < os_prio; p--) ; |
| } |
| priority = (ThreadPriority)p; |
| return OS_OK; |
| } |
| |
| bool os::dll_build_name(char* buffer, size_t size, const char* fname) { |
| int n = jio_snprintf(buffer, size, "%s%s%s", JNI_LIB_PREFIX, fname, JNI_LIB_SUFFIX); |
| return (n != -1); |
| } |
| |
| #if !defined(LINUX) && !defined(_WINDOWS) |
| bool os::committed_in_range(address start, size_t size, address& committed_start, size_t& committed_size) { |
| committed_start = start; |
| committed_size = size; |
| return true; |
| } |
| #endif |
| |
| // Helper for dll_locate_lib. |
| // Pass buffer and printbuffer as we already printed the path to buffer |
| // when we called get_current_directory. This way we avoid another buffer |
| // of size MAX_PATH. |
| static bool conc_path_file_and_check(char *buffer, char *printbuffer, size_t printbuflen, |
| const char* pname, char lastchar, const char* fname) { |
| |
| // Concatenate path and file name, but don't print double path separators. |
| const char *filesep = (WINDOWS_ONLY(lastchar == ':' ||) lastchar == os::file_separator()[0]) ? |
| "" : os::file_separator(); |
| int ret = jio_snprintf(printbuffer, printbuflen, "%s%s%s", pname, filesep, fname); |
| // Check whether file exists. |
| if (ret != -1) { |
| struct stat statbuf; |
| return os::stat(buffer, &statbuf) == 0; |
| } |
| return false; |
| } |
| |
| // Frees all memory allocated on the heap for the |
| // supplied array of arrays of chars (a), where n |
| // is the number of elements in the array. |
| static void free_array_of_char_arrays(char** a, size_t n) { |
| while (n > 0) { |
| n--; |
| if (a[n] != nullptr) { |
| FREE_C_HEAP_ARRAY(char, a[n]); |
| } |
| } |
| FREE_C_HEAP_ARRAY(char*, a); |
| } |
| |
| bool os::dll_locate_lib(char *buffer, size_t buflen, |
| const char* pname, const char* fname) { |
| bool retval = false; |
| |
| size_t fullfnamelen = strlen(JNI_LIB_PREFIX) + strlen(fname) + strlen(JNI_LIB_SUFFIX); |
| char* fullfname = NEW_C_HEAP_ARRAY(char, fullfnamelen + 1, mtInternal); |
| if (dll_build_name(fullfname, fullfnamelen + 1, fname)) { |
| const size_t pnamelen = pname ? strlen(pname) : 0; |
| |
| if (pnamelen == 0) { |
| // If no path given, use current working directory. |
| const char* p = get_current_directory(buffer, buflen); |
| if (p != nullptr) { |
| const size_t plen = strlen(buffer); |
| const char lastchar = buffer[plen - 1]; |
| retval = conc_path_file_and_check(buffer, &buffer[plen], buflen - plen, |
| "", lastchar, fullfname); |
| } |
| } else if (strchr(pname, *os::path_separator()) != nullptr) { |
| // A list of paths. Search for the path that contains the library. |
| size_t n; |
| char** pelements = split_path(pname, &n, fullfnamelen); |
| if (pelements != nullptr) { |
| for (size_t i = 0; i < n; i++) { |
| char* path = pelements[i]; |
| // Really shouldn't be null, but check can't hurt. |
| size_t plen = (path == nullptr) ? 0 : strlen(path); |
| if (plen == 0) { |
| continue; // Skip the empty path values. |
| } |
| const char lastchar = path[plen - 1]; |
| retval = conc_path_file_and_check(buffer, buffer, buflen, path, lastchar, fullfname); |
| if (retval) break; |
| } |
| // Release the storage allocated by split_path. |
| free_array_of_char_arrays(pelements, n); |
| } |
| } else { |
| // A definite path. |
| const char lastchar = pname[pnamelen-1]; |
| retval = conc_path_file_and_check(buffer, buffer, buflen, pname, lastchar, fullfname); |
| } |
| } |
| |
| FREE_C_HEAP_ARRAY(char*, fullfname); |
| return retval; |
| } |
| |
| // --------------------- sun.misc.Signal (optional) --------------------- |
| |
| |
| // SIGBREAK is sent by the keyboard to query the VM state |
| #ifndef SIGBREAK |
| #define SIGBREAK SIGQUIT |
| #endif |
| |
| // sigexitnum_pd is a platform-specific special signal used for terminating the Signal thread. |
| |
| |
| static void signal_thread_entry(JavaThread* thread, TRAPS) { |
| os::set_priority(thread, NearMaxPriority); |
| while (true) { |
| int sig; |
| { |
| // FIXME : Currently we have not decided what should be the status |
| // for this java thread blocked here. Once we decide about |
| // that we should fix this. |
| sig = os::signal_wait(); |
| } |
| if (sig == os::sigexitnum_pd()) { |
| // Terminate the signal thread |
| return; |
| } |
| |
| switch (sig) { |
| case SIGBREAK: { |
| #if INCLUDE_SERVICES |
| // Check if the signal is a trigger to start the Attach Listener - in that |
| // case don't print stack traces. |
| if (!DisableAttachMechanism) { |
| // Attempt to transit state to AL_INITIALIZING. |
| AttachListenerState cur_state = AttachListener::transit_state(AL_INITIALIZING, AL_NOT_INITIALIZED); |
| if (cur_state == AL_INITIALIZING) { |
| // Attach Listener has been started to initialize. Ignore this signal. |
| continue; |
| } else if (cur_state == AL_NOT_INITIALIZED) { |
| // Start to initialize. |
| if (AttachListener::is_init_trigger()) { |
| // Attach Listener has been initialized. |
| // Accept subsequent request. |
| continue; |
| } else { |
| // Attach Listener could not be started. |
| // So we need to transit the state to AL_NOT_INITIALIZED. |
| AttachListener::set_state(AL_NOT_INITIALIZED); |
| } |
| } else if (AttachListener::check_socket_file()) { |
| // Attach Listener has been started, but unix domain socket file |
| // does not exist. So restart Attach Listener. |
| continue; |
| } |
| } |
| #endif |
| // Print stack traces |
| // Any SIGBREAK operations added here should make sure to flush |
| // the output stream (e.g. tty->flush()) after output. See 4803766. |
| // Each module also prints an extra carriage return after its output. |
| VM_PrintThreads op(tty, PrintConcurrentLocks, false /* no extended info */, true /* print JNI handle info */); |
| VMThread::execute(&op); |
| VM_FindDeadlocks op1(tty); |
| VMThread::execute(&op1); |
| Universe::print_heap_at_SIGBREAK(); |
| if (PrintClassHistogram) { |
| VM_GC_HeapInspection op1(tty, true /* force full GC before heap inspection */); |
| VMThread::execute(&op1); |
| } |
| if (JvmtiExport::should_post_data_dump()) { |
| JvmtiExport::post_data_dump(); |
| } |
| break; |
| } |
| default: { |
| // Dispatch the signal to java |
| HandleMark hm(THREAD); |
| Klass* klass = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_misc_Signal(), THREAD); |
| if (klass != nullptr) { |
| JavaValue result(T_VOID); |
| JavaCallArguments args; |
| args.push_int(sig); |
| JavaCalls::call_static( |
| &result, |
| klass, |
| vmSymbols::dispatch_name(), |
| vmSymbols::int_void_signature(), |
| &args, |
| THREAD |
| ); |
| } |
| if (HAS_PENDING_EXCEPTION) { |
| // tty is initialized early so we don't expect it to be null, but |
| // if it is we can't risk doing an initialization that might |
| // trigger additional out-of-memory conditions |
| if (tty != nullptr) { |
| char klass_name[256]; |
| char tmp_sig_name[16]; |
| const char* sig_name = "UNKNOWN"; |
| InstanceKlass::cast(PENDING_EXCEPTION->klass())-> |
| name()->as_klass_external_name(klass_name, 256); |
| if (os::exception_name(sig, tmp_sig_name, 16) != nullptr) |
| sig_name = tmp_sig_name; |
| warning("Exception %s occurred dispatching signal %s to handler" |
| "- the VM may need to be forcibly terminated", |
| klass_name, sig_name ); |
| } |
| CLEAR_PENDING_EXCEPTION; |
| } |
| } |
| } |
| } |
| } |
| |
| void os::init_before_ergo() { |
| initialize_initial_active_processor_count(); |
| // We need to initialize large page support here because ergonomics takes some |
| // decisions depending on large page support and the calculated large page size. |
| large_page_init(); |
| |
| StackOverflow::initialize_stack_zone_sizes(); |
| |
| // VM version initialization identifies some characteristics of the |
| // platform that are used during ergonomic decisions. |
| VM_Version::init_before_ergo(); |
| } |
| |
| void os::initialize_jdk_signal_support(TRAPS) { |
| if (!ReduceSignalUsage) { |
| // Setup JavaThread for processing signals |
| const char* name = "Signal Dispatcher"; |
| Handle thread_oop = JavaThread::create_system_thread_object(name, CHECK); |
| |
| JavaThread* thread = new JavaThread(&signal_thread_entry); |
| JavaThread::vm_exit_on_osthread_failure(thread); |
| |
| JavaThread::start_internal_daemon(THREAD, thread, thread_oop, NearMaxPriority); |
| } |
| } |
| |
| |
| void os::terminate_signal_thread() { |
| if (!ReduceSignalUsage) |
| signal_notify(sigexitnum_pd()); |
| } |
| |
| |
| // --------------------- loading libraries --------------------- |
| |
| typedef jint (JNICALL *JNI_OnLoad_t)(JavaVM *, void *); |
| extern struct JavaVM_ main_vm; |
| |
| static void* _native_java_library = nullptr; |
| |
| void* os::native_java_library() { |
| if (_native_java_library == nullptr) { |
| char buffer[JVM_MAXPATHLEN]; |
| char ebuf[1024]; |
| |
| // Load java dll |
| if (dll_locate_lib(buffer, sizeof(buffer), Arguments::get_dll_dir(), |
| "java")) { |
| _native_java_library = dll_load(buffer, ebuf, sizeof(ebuf)); |
| } |
| if (_native_java_library == nullptr) { |
| vm_exit_during_initialization("Unable to load native library", ebuf); |
| } |
| |
| #if defined(__OpenBSD__) |
| // Work-around OpenBSD's lack of $ORIGIN support by pre-loading libnet.so |
| // ignore errors |
| if (dll_locate_lib(buffer, sizeof(buffer), Arguments::get_dll_dir(), |
| "net")) { |
| dll_load(buffer, ebuf, sizeof(ebuf)); |
| } |
| #endif |
| } |
| return _native_java_library; |
| } |
| |
| /* |
| * Support for finding Agent_On(Un)Load/Attach<_lib_name> if it exists. |
| * If check_lib == true then we are looking for an |
| * Agent_OnLoad_lib_name or Agent_OnAttach_lib_name function to determine if |
| * this library is statically linked into the image. |
| * If check_lib == false then we will look for the appropriate symbol in the |
| * executable if agent_lib->is_static_lib() == true or in the shared library |
| * referenced by 'handle'. |
| */ |
| void* os::find_agent_function(JvmtiAgent *agent_lib, bool check_lib, |
| const char *syms[], size_t syms_len) { |
| assert(agent_lib != nullptr, "sanity check"); |
| const char *lib_name; |
| void *handle = agent_lib->os_lib(); |
| void *entryName = nullptr; |
| char *agent_function_name; |
| size_t i; |
| |
| // If checking then use the agent name otherwise test is_static_lib() to |
| // see how to process this lookup |
| lib_name = ((check_lib || agent_lib->is_static_lib()) ? agent_lib->name() : nullptr); |
| for (i = 0; i < syms_len; i++) { |
| agent_function_name = build_agent_function_name(syms[i], lib_name, agent_lib->is_absolute_path()); |
| if (agent_function_name == nullptr) { |
| break; |
| } |
| entryName = dll_lookup(handle, agent_function_name); |
| FREE_C_HEAP_ARRAY(char, agent_function_name); |
| if (entryName != nullptr) { |
| break; |
| } |
| } |
| return entryName; |
| } |
| |
| // See if the passed in agent is statically linked into the VM image. |
| bool os::find_builtin_agent(JvmtiAgent* agent, const char *syms[], |
| size_t syms_len) { |
| void *ret; |
| void *proc_handle; |
| void *save_handle; |
| |
| assert(agent != nullptr, "sanity check"); |
| if (agent->name() == nullptr) { |
| return false; |
| } |
| proc_handle = get_default_process_handle(); |
| // Check for Agent_OnLoad/Attach_lib_name function |
| save_handle = agent->os_lib(); |
| // We want to look in this process' symbol table. |
| agent->set_os_lib(proc_handle); |
| ret = find_agent_function(agent, true, syms, syms_len); |
| if (ret != nullptr) { |
| // Found an entry point like Agent_OnLoad_lib_name so we have a static agent |
| agent->set_static_lib(); |
| agent->set_loaded(); |
| return true; |
| } |
| agent->set_os_lib(save_handle); |
| return false; |
| } |
| |
| // --------------------- heap allocation utilities --------------------- |
| |
| char *os::strdup(const char *str, MEMFLAGS flags) { |
| size_t size = strlen(str); |
| char *dup_str = (char *)malloc(size + 1, flags); |
| if (dup_str == nullptr) return nullptr; |
| strcpy(dup_str, str); |
| return dup_str; |
| } |
| |
| char* os::strdup_check_oom(const char* str, MEMFLAGS flags) { |
| char* p = os::strdup(str, flags); |
| if (p == nullptr) { |
| vm_exit_out_of_memory(strlen(str) + 1, OOM_MALLOC_ERROR, "os::strdup_check_oom"); |
| } |
| return p; |
| } |
| |
| #ifdef ASSERT |
| static void check_crash_protection() { |
| assert(!ThreadCrashProtection::is_crash_protected(Thread::current_or_null()), |
| "not allowed when crash protection is set"); |
| } |
| static void break_if_ptr_caught(void* ptr) { |
| if (p2i(ptr) == (intptr_t)MallocCatchPtr) { |
| log_warning(malloc, free)("ptr caught: " PTR_FORMAT, p2i(ptr)); |
| breakpoint(); |
| } |
| } |
| #endif // ASSERT |
| |
| void* os::malloc(size_t size, MEMFLAGS flags) { |
| return os::malloc(size, flags, CALLER_PC); |
| } |
| |
| void* os::malloc(size_t size, MEMFLAGS memflags, const NativeCallStack& stack) { |
| |
| // Special handling for NMT preinit phase before arguments are parsed |
| void* rc = nullptr; |
| if (NMTPreInit::handle_malloc(&rc, size)) { |
| // No need to fill with 0 because DumpSharedSpaces doesn't use these |
| // early allocations. |
| return rc; |
| } |
| |
| DEBUG_ONLY(check_crash_protection()); |
| |
| // On malloc(0), implementations of malloc(3) have the choice to return either |
| // null or a unique non-null pointer. To unify libc behavior across our platforms |
| // we chose the latter. |
| size = MAX2((size_t)1, size); |
| |
| // Observe MallocLimit |
| if (MemTracker::check_exceeds_limit(size, memflags)) { |
| return nullptr; |
| } |
| |
| const size_t outer_size = size + MemTracker::overhead_per_malloc(); |
| |
| // Check for overflow. |
| if (outer_size < size) { |
| return nullptr; |
| } |
| |
| ALLOW_C_FUNCTION(::malloc, void* const outer_ptr = ::malloc(outer_size);) |
| if (outer_ptr == nullptr) { |
| return nullptr; |
| } |
| |
| void* const inner_ptr = MemTracker::record_malloc((address)outer_ptr, size, memflags, stack); |
| |
| if (DumpSharedSpaces) { |
| // Need to deterministically fill all the alignment gaps in C++ structures. |
| ::memset(inner_ptr, 0, size); |
| } else { |
| DEBUG_ONLY(::memset(inner_ptr, uninitBlockPad, size);) |
| } |
| DEBUG_ONLY(break_if_ptr_caught(inner_ptr);) |
| return inner_ptr; |
| } |
| |
| void* os::realloc(void *memblock, size_t size, MEMFLAGS flags) { |
| return os::realloc(memblock, size, flags, CALLER_PC); |
| } |
| |
| void* os::realloc(void *memblock, size_t size, MEMFLAGS memflags, const NativeCallStack& stack) { |
| |
| // Special handling for NMT preinit phase before arguments are parsed |
| void* rc = nullptr; |
| if (NMTPreInit::handle_realloc(&rc, memblock, size, memflags)) { |
| return rc; |
| } |
| |
| if (memblock == nullptr) { |
| return os::malloc(size, memflags, stack); |
| } |
| |
| DEBUG_ONLY(check_crash_protection()); |
| |
| // On realloc(p, 0), implementers of realloc(3) have the choice to return either |
| // null or a unique non-null pointer. To unify libc behavior across our platforms |
| // we chose the latter. |
| size = MAX2((size_t)1, size); |
| |
| if (MemTracker::enabled()) { |
| // NMT realloc handling |
| |
| const size_t new_outer_size = size + MemTracker::overhead_per_malloc(); |
| |
| // Handle size overflow. |
| if (new_outer_size < size) { |
| return nullptr; |
| } |
| |
| const size_t old_size = MallocTracker::malloc_header(memblock)->size(); |
| |
| // Observe MallocLimit |
| if ((size > old_size) && MemTracker::check_exceeds_limit(size - old_size, memflags)) { |
| return nullptr; |
| } |
| |
| // Perform integrity checks on and mark the old block as dead *before* calling the real realloc(3) since it |
| // may invalidate the old block, including its header. |
| MallocHeader* header = MallocHeader::resolve_checked(memblock); |
| assert(memflags == header->flags(), "weird NMT flags mismatch (new:\"%s\" != old:\"%s\")\n", |
| NMTUtil::flag_to_name(memflags), NMTUtil::flag_to_name(header->flags())); |
| const MallocHeader::FreeInfo free_info = header->free_info(); |
| |
| header->mark_block_as_dead(); |
| |
| // the real realloc |
| ALLOW_C_FUNCTION(::realloc, void* const new_outer_ptr = ::realloc(header, new_outer_size);) |
| |
| if (new_outer_ptr == nullptr) { |
| // realloc(3) failed and the block still exists. |
| // We have however marked it as dead, revert this change. |
| header->revive(); |
| return nullptr; |
| } |
| // realloc(3) succeeded, variable header now points to invalid memory and we need to deaccount the old block. |
| MemTracker::deaccount(free_info); |
| |
| // After a successful realloc(3), we account the resized block with its new size |
| // to NMT. |
| void* const new_inner_ptr = MemTracker::record_malloc(new_outer_ptr, size, memflags, stack); |
| |
| #ifdef ASSERT |
| assert(old_size == free_info.size, "Sanity"); |
| if (old_size < size) { |
| // We also zap the newly extended region. |
| ::memset((char*)new_inner_ptr + old_size, uninitBlockPad, size - old_size); |
| } |
| #endif |
| |
| rc = new_inner_ptr; |
| |
| } else { |
| |
| // NMT disabled. |
| ALLOW_C_FUNCTION(::realloc, rc = ::realloc(memblock, size);) |
| if (rc == nullptr) { |
| return nullptr; |
| } |
| |
| } |
| |
| DEBUG_ONLY(break_if_ptr_caught(rc);) |
| |
| return rc; |
| } |
| |
| void os::free(void *memblock) { |
| |
| // Special handling for NMT preinit phase before arguments are parsed |
| if (NMTPreInit::handle_free(memblock)) { |
| return; |
| } |
| |
| if (memblock == nullptr) { |
| return; |
| } |
| |
| DEBUG_ONLY(break_if_ptr_caught(memblock);) |
| |
| // When NMT is enabled this checks for heap overwrites, then deaccounts the old block. |
| void* const old_outer_ptr = MemTracker::record_free(memblock); |
| |
| ALLOW_C_FUNCTION(::free, ::free(old_outer_ptr);) |
| } |
| |
| void os::init_random(unsigned int initval) { |
| _rand_seed = initval; |
| } |
| |
| |
| int os::next_random(unsigned int rand_seed) { |
| /* standard, well-known linear congruential random generator with |
| * next_rand = (16807*seed) mod (2**31-1) |
| * see |
| * (1) "Random Number Generators: Good Ones Are Hard to Find", |
| * S.K. Park and K.W. Miller, Communications of the ACM 31:10 (Oct 1988), |
| * (2) "Two Fast Implementations of the 'Minimal Standard' Random |
| * Number Generator", David G. Carta, Comm. ACM 33, 1 (Jan 1990), pp. 87-88. |
| */ |
| const unsigned int a = 16807; |
| const unsigned int m = 2147483647; |
| const int q = m / a; assert(q == 127773, "weird math"); |
| const int r = m % a; assert(r == 2836, "weird math"); |
| |
| // compute az=2^31p+q |
| unsigned int lo = a * (rand_seed & 0xFFFF); |
| unsigned int hi = a * (rand_seed >> 16); |
| lo += (hi & 0x7FFF) << 16; |
| |
| // if q overflowed, ignore the overflow and increment q |
| if (lo > m) { |
| lo &= m; |
| ++lo; |
| } |
| lo += hi >> 15; |
| |
| // if (p+q) overflowed, ignore the overflow and increment (p+q) |
| if (lo > m) { |
| lo &= m; |
| ++lo; |
| } |
| return lo; |
| } |
| |
| int os::random() { |
| // Make updating the random seed thread safe. |
| while (true) { |
| unsigned int seed = _rand_seed; |
| unsigned int rand = next_random(seed); |
| if (Atomic::cmpxchg(&_rand_seed, seed, rand, memory_order_relaxed) == seed) { |
| return static_cast<int>(rand); |
| } |
| } |
| } |
| |
| // The INITIALIZED state is distinguished from the SUSPENDED state because the |
| // conditions in which a thread is first started are different from those in which |
| // a suspension is resumed. These differences make it hard for us to apply the |
| // tougher checks when starting threads that we want to do when resuming them. |
| // However, when start_thread is called as a result of Thread.start, on a Java |
| // thread, the operation is synchronized on the Java Thread object. So there |
| // cannot be a race to start the thread and hence for the thread to exit while |
| // we are working on it. Non-Java threads that start Java threads either have |
| // to do so in a context in which races are impossible, or should do appropriate |
| // locking. |
| |
| void os::start_thread(Thread* thread) { |
| OSThread* osthread = thread->osthread(); |
| osthread->set_state(RUNNABLE); |
| pd_start_thread(thread); |
| } |
| |
| void os::abort(bool dump_core) { |
| abort(dump_core && CreateCoredumpOnCrash, nullptr, nullptr); |
| } |
| |
| //--------------------------------------------------------------------------- |
| // Helper functions for fatal error handler |
| |
| bool os::print_function_and_library_name(outputStream* st, |
| address addr, |
| char* buf, int buflen, |
| bool shorten_paths, |
| bool demangle, |
| bool strip_arguments) { |
| // If no scratch buffer given, allocate one here on stack. |
| // (used during error handling; its a coin toss, really, if on-stack allocation |
| // is worse than (raw) C-heap allocation in that case). |
| char* p = buf; |
| if (p == nullptr) { |
| p = (char*)::alloca(O_BUFLEN); |
| buflen = O_BUFLEN; |
| } |
| int offset = 0; |
| bool have_function_name = dll_address_to_function_name(addr, p, buflen, |
| &offset, demangle); |
| bool is_function_descriptor = false; |
| #ifdef HAVE_FUNCTION_DESCRIPTORS |
| // When we deal with a function descriptor instead of a real code pointer, try to |
| // resolve it. There is a small chance that a random pointer given to this function |
| // may just happen to look like a valid descriptor, but this is rare and worth the |
| // risk to see resolved function names. But we will print a little suffix to mark |
| // this as a function descriptor for the reader (see below). |
| if (!have_function_name && os::is_readable_pointer(addr)) { |
| address addr2 = (address)os::resolve_function_descriptor(addr); |
| if ((have_function_name = is_function_descriptor = |
| dll_address_to_function_name(addr2, p, buflen, &offset, demangle))) { |
| addr = addr2; |
| } |
| } |
| #endif // HAVE_FUNCTION_DESCRIPTORS |
| |
| if (have_function_name) { |
| // Print function name, optionally demangled |
| if (demangle && strip_arguments) { |
| char* args_start = strchr(p, '('); |
| if (args_start != nullptr) { |
| *args_start = '\0'; |
| } |
| } |
| // Print offset. Omit printing if offset is zero, which makes the output |
| // more readable if we print function pointers. |
| if (offset == 0) { |
| st->print("%s", p); |
| } else { |
| st->print("%s+%d", p, offset); |
| } |
| } else { |
| st->print(PTR_FORMAT, p2i(addr)); |
| } |
| offset = 0; |
| |
| const bool have_library_name = dll_address_to_library_name(addr, p, buflen, &offset); |
| if (have_library_name) { |
| // Cut path parts |
| if (shorten_paths) { |
| char* p2 = strrchr(p, os::file_separator()[0]); |
| if (p2 != nullptr) { |
| p = p2 + 1; |
| } |
| } |
| st->print(" in %s", p); |
| if (!have_function_name) { // Omit offset if we already printed the function offset |
| st->print("+%d", offset); |
| } |
| } |
| |
| // Write a trailing marker if this was a function descriptor |
| if (have_function_name && is_function_descriptor) { |
| st->print_raw(" (FD)"); |
| } |
| |
| return have_function_name || have_library_name; |
| } |
| |
| ATTRIBUTE_NO_ASAN static void print_hex_readable_pointer(outputStream* st, address p, |
| int unitsize) { |
| switch (unitsize) { |
| case 1: st->print("%02x", *(u1*)p); break; |
| case 2: st->print("%04x", *(u2*)p); break; |
| case 4: st->print("%08x", *(u4*)p); break; |
| case 8: st->print("%016" FORMAT64_MODIFIER "x", *(u8*)p); break; |
| } |
| } |
| |
| void os::print_hex_dump(outputStream* st, address start, address end, int unitsize, |
| int bytes_per_line, address logical_start) { |
| assert(unitsize == 1 || unitsize == 2 || unitsize == 4 || unitsize == 8, "just checking"); |
| |
| start = align_down(start, unitsize); |
| logical_start = align_down(logical_start, unitsize); |
| bytes_per_line = align_up(bytes_per_line, 8); |
| |
| int cols = 0; |
| int cols_per_line = bytes_per_line / unitsize; |
| |
| address p = start; |
| address logical_p = logical_start; |
| |
| // Print out the addresses as if we were starting from logical_start. |
| st->print(PTR_FORMAT ": ", p2i(logical_p)); |
| while (p < end) { |
| if (is_readable_pointer(p)) { |
| print_hex_readable_pointer(st, p, unitsize); |
| } else { |
| st->print("%*.*s", 2*unitsize, 2*unitsize, "????????????????"); |
| } |
| p += unitsize; |
| logical_p += unitsize; |
| cols++; |
| if (cols >= cols_per_line && p < end) { |
| cols = 0; |
| st->cr(); |
| st->print(PTR_FORMAT ": ", p2i(logical_p)); |
| } else { |
| st->print(" "); |
| } |
| } |
| st->cr(); |
| } |
| |
| void os::print_dhm(outputStream* st, const char* startStr, long sec) { |
| long days = sec/86400; |
| long hours = (sec/3600) - (days * 24); |
| long minutes = (sec/60) - (days * 1440) - (hours * 60); |
| if (startStr == nullptr) startStr = ""; |
| st->print_cr("%s %ld days %ld:%02ld hours", startStr, days, hours, minutes); |
| } |
| |
| void os::print_tos(outputStream* st, address sp) { |
| st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", p2i(sp)); |
| print_hex_dump(st, sp, sp + 512, sizeof(intptr_t)); |
| } |
| |
| void os::print_instructions(outputStream* st, address pc, int unitsize) { |
| st->print_cr("Instructions: (pc=" PTR_FORMAT ")", p2i(pc)); |
| print_hex_dump(st, pc - 256, pc + 256, unitsize); |
| } |
| |
| void os::print_environment_variables(outputStream* st, const char** env_list) { |
| if (env_list) { |
| st->print_cr("Environment Variables:"); |
| |
| for (int i = 0; env_list[i] != nullptr; i++) { |
| char *envvar = ::getenv(env_list[i]); |
| if (envvar != nullptr) { |
| st->print("%s", env_list[i]); |
| st->print("="); |
| st->print("%s", envvar); |
| // Use separate cr() printing to avoid unnecessary buffer operations that might cause truncation. |
| st->cr(); |
| } |
| } |
| } |
| } |
| |
| void os::print_register_info(outputStream* st, const void* context) { |
| int continuation = 0; |
| print_register_info(st, context, continuation); |
| } |
| |
| void os::print_cpu_info(outputStream* st, char* buf, size_t buflen) { |
| // cpu |
| st->print("CPU:"); |
| #if defined(__APPLE__) && !defined(ZERO) |
| if (VM_Version::is_cpu_emulated()) { |
| st->print(" (EMULATED)"); |
| } |
| #endif |
| st->print(" total %d", os::processor_count()); |
| // It's not safe to query number of active processors after crash |
| // st->print("(active %d)", os::active_processor_count()); but we can |
| // print the initial number of active processors. |
| // We access the raw value here because the assert in the accessor will |
| // fail if the crash occurs before initialization of this value. |
| st->print(" (initial active %d)", _initial_active_processor_count); |
| st->print(" %s", VM_Version::features_string()); |
| st->cr(); |
| pd_print_cpu_info(st, buf, buflen); |
| } |
| |
| // Print a one line string summarizing the cpu, number of cores, memory, and operating system version |
| void os::print_summary_info(outputStream* st, char* buf, size_t buflen) { |
| st->print("Host: "); |
| #ifndef PRODUCT |
| if (get_host_name(buf, buflen)) { |
| st->print("%s, ", buf); |
| } |
| #endif // PRODUCT |
| get_summary_cpu_info(buf, buflen); |
| st->print("%s, ", buf); |
| size_t mem = physical_memory()/G; |
| if (mem == 0) { // for low memory systems |
| mem = physical_memory()/M; |
| st->print("%d cores, " SIZE_FORMAT "M, ", processor_count(), mem); |
| } else { |
| st->print("%d cores, " SIZE_FORMAT "G, ", processor_count(), mem); |
| } |
| get_summary_os_info(buf, buflen); |
| st->print_raw(buf); |
| st->cr(); |
| } |
| |
| void os::print_date_and_time(outputStream *st, char* buf, size_t buflen) { |
| const int secs_per_day = 86400; |
| const int secs_per_hour = 3600; |
| const int secs_per_min = 60; |
| |
| time_t tloc; |
| (void)time(&tloc); |
| char* timestring = ctime(&tloc); // ctime adds newline. |
| // edit out the newline |
| char* nl = strchr(timestring, '\n'); |
| if (nl != nullptr) { |
| *nl = '\0'; |
| } |
| |
| struct tm tz; |
| if (localtime_pd(&tloc, &tz) != nullptr) { |
| wchar_t w_buf[80]; |
| size_t n = ::wcsftime(w_buf, 80, L"%Z", &tz); |
| if (n > 0) { |
| ::wcstombs(buf, w_buf, buflen); |
| st->print("Time: %s %s", timestring, buf); |
| } else { |
| st->print("Time: %s", timestring); |
| } |
| } else { |
| st->print("Time: %s", timestring); |
| } |
| |
| double t = os::elapsedTime(); |
| // NOTE: a crash using printf("%f",...) on Linux was historically noted here. |
| int eltime = (int)t; // elapsed time in seconds |
| int eltimeFraction = (int) ((t - eltime) * 1000000); |
| |
| // print elapsed time in a human-readable format: |
| int eldays = eltime / secs_per_day; |
| int day_secs = eldays * secs_per_day; |
| int elhours = (eltime - day_secs) / secs_per_hour; |
| int hour_secs = elhours * secs_per_hour; |
| int elmins = (eltime - day_secs - hour_secs) / secs_per_min; |
| int minute_secs = elmins * secs_per_min; |
| int elsecs = (eltime - day_secs - hour_secs - minute_secs); |
| st->print_cr(" elapsed time: %d.%06d seconds (%dd %dh %dm %ds)", eltime, eltimeFraction, eldays, elhours, elmins, elsecs); |
| } |
| |
| |
| // Check if pointer can be read from (4-byte read access). |
| // Helps to prove validity of a non-null pointer. |
| // Returns true in very early stages of VM life when stub is not yet generated. |
| bool os::is_readable_pointer(const void* p) { |
| int* const aligned = (int*) align_down((intptr_t)p, 4); |
| int cafebabe = 0xcafebabe; // tester value 1 |
| int deadbeef = 0xdeadbeef; // tester value 2 |
| return (SafeFetch32(aligned, cafebabe) != cafebabe) || (SafeFetch32(aligned, deadbeef) != deadbeef); |
| } |
| |
| bool os::is_readable_range(const void* from, const void* to) { |
| if ((uintptr_t)from >= (uintptr_t)to) return false; |
| for (uintptr_t p = align_down((uintptr_t)from, min_page_size()); p < (uintptr_t)to; p += min_page_size()) { |
| if (!is_readable_pointer((const void*)p)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| |
| // moved from debug.cpp (used to be find()) but still called from there |
| // The verbose parameter is only set by the debug code in one case |
| void os::print_location(outputStream* st, intptr_t x, bool verbose) { |
| address addr = (address)x; |
| // Handle null first, so later checks don't need to protect against it. |
| if (addr == nullptr) { |
| st->print_cr("0x0 is null"); |
| return; |
| } |
| |
| // Check if addr points into a code blob. |
| CodeBlob* b = CodeCache::find_blob(addr); |
| if (b != nullptr) { |
| b->dump_for_addr(addr, st, verbose); |
| return; |
| } |
| |
| // Check if addr points into Java heap. |
| if (Universe::heap()->print_location(st, addr)) { |
| return; |
| } |
| |
| #if !INCLUDE_ASAN |
| |
| bool accessible = is_readable_pointer(addr); |
| |
| // Check if addr is a JNI handle. |
| if (align_down((intptr_t)addr, sizeof(intptr_t)) != 0 && accessible) { |
| if (JNIHandles::is_global_handle((jobject) addr)) { |
| st->print_cr(INTPTR_FORMAT " is a global jni handle", p2i(addr)); |
| return; |
| } |
| if (JNIHandles::is_weak_global_handle((jobject) addr)) { |
| st->print_cr(INTPTR_FORMAT " is a weak global jni handle", p2i(addr)); |
| return; |
| } |
| } |
| |
| // Check if addr belongs to a Java thread. |
| for (JavaThreadIteratorWithHandle jtiwh; JavaThread *thread = jtiwh.next(); ) { |
| // If the addr is a java thread print information about that. |
| if (addr == (address)thread) { |
| if (verbose) { |
| thread->print_on(st); |
| } else { |
| st->print_cr(INTPTR_FORMAT " is a thread", p2i(addr)); |
| } |
| return; |
| } |
| // If the addr is in the stack region for this thread then report that |
| // and print thread info |
| if (thread->is_in_full_stack(addr)) { |
| st->print_cr(INTPTR_FORMAT " is pointing into the stack for thread: " |
| INTPTR_FORMAT, p2i(addr), p2i(thread)); |
| if (verbose) thread->print_on(st); |
| return; |
| } |
| } |
| |
| // Check if in metaspace and print types that have vptrs |
| if (Metaspace::contains(addr)) { |
| if (Klass::is_valid((Klass*)addr)) { |
| st->print_cr(INTPTR_FORMAT " is a pointer to class: ", p2i(addr)); |
| ((Klass*)addr)->print_on(st); |
| } else if (Method::is_valid_method((const Method*)addr)) { |
| ((Method*)addr)->print_value_on(st); |
| st->cr(); |
| } else { |
| // Use addr->print() from the debugger instead (not here) |
| st->print_cr(INTPTR_FORMAT " is pointing into metadata", p2i(addr)); |
| } |
| return; |
| } |
| |
| // Compressed klass needs to be decoded first. |
| #ifdef _LP64 |
| if (UseCompressedClassPointers && ((uintptr_t)addr &~ (uintptr_t)max_juint) == 0) { |
| narrowKlass narrow_klass = (narrowKlass)(uintptr_t)addr; |
| Klass* k = CompressedKlassPointers::decode_raw(narrow_klass); |
| |
| if (Klass::is_valid(k)) { |
| st->print_cr(UINT32_FORMAT " is a compressed pointer to class: " INTPTR_FORMAT, narrow_klass, p2i((HeapWord*)k)); |
| k->print_on(st); |
| return; |
| } |
| } |
| #endif |
| |
| // Still nothing? If NMT is enabled, we can ask what it thinks... |
| if (MemTracker::print_containing_region(addr, st)) { |
| return; |
| } |
| |
| // Try an OS specific find |
| if (os::find(addr, st)) { |
| return; |
| } |
| |
| if (accessible) { |
| st->print(INTPTR_FORMAT " points into unknown readable memory:", p2i(addr)); |
| if (is_aligned(addr, sizeof(intptr_t))) { |
| st->print(" " PTR_FORMAT " |", *(intptr_t*)addr); |
| } |
| for (address p = addr; p < align_up(addr + 1, sizeof(intptr_t)); ++p) { |
| st->print(" %02x", *(u1*)p); |
| } |
| st->cr(); |
| return; |
| } |
| |
| #endif // !INCLUDE_ASAN |
| |
| st->print_cr(INTPTR_FORMAT " is an unknown value", p2i(addr)); |
| |
| } |
| |
| bool is_pointer_bad(intptr_t* ptr) { |
| return !is_aligned(ptr, sizeof(uintptr_t)) || !os::is_readable_pointer(ptr); |
| } |
| |
| // Looks like all platforms can use the same function to check if C |
| // stack is walkable beyond current frame. |
| // Returns true if this is not the case, i.e. the frame is possibly |
| // the first C frame on the stack. |
| bool os::is_first_C_frame(frame* fr) { |
| |
| #ifdef _WINDOWS |
| return true; // native stack isn't walkable on windows this way. |
| #endif |
| // Load up sp, fp, sender sp and sender fp, check for reasonable values. |
| // Check usp first, because if that's bad the other accessors may fault |
| // on some architectures. Ditto ufp second, etc. |
| |
| if (is_pointer_bad(fr->sp())) return true; |
| |
| uintptr_t ufp = (uintptr_t)fr->fp(); |
| if (is_pointer_bad(fr->fp())) return true; |
| |
| uintptr_t old_sp = (uintptr_t)fr->sender_sp(); |
| if ((uintptr_t)fr->sender_sp() == (uintptr_t)-1 || is_pointer_bad(fr->sender_sp())) return true; |
| |
| uintptr_t old_fp = (uintptr_t)fr->link_or_null(); |
| if (old_fp == 0 || old_fp == (uintptr_t)-1 || old_fp == ufp || |
| is_pointer_bad(fr->link_or_null())) return true; |
| |
| // stack grows downwards; if old_fp is below current fp or if the stack |
| // frame is too large, either the stack is corrupted or fp is not saved |
| // on stack (i.e. on x86, ebp may be used as general register). The stack |
| // is not walkable beyond current frame. |
| if (old_fp < ufp) return true; |
| if (old_fp - ufp > 64 * K) return true; |
| |
| return false; |
| } |
| |
| // Set up the boot classpath. |
| |
| char* os::format_boot_path(const char* format_string, |
| const char* home, |
| int home_len, |
| char fileSep, |
| char pathSep) { |
| assert((fileSep == '/' && pathSep == ':') || |
| (fileSep == '\\' && pathSep == ';'), "unexpected separator chars"); |
| |
| // Scan the format string to determine the length of the actual |
| // boot classpath, and handle platform dependencies as well. |
| int formatted_path_len = 0; |
| const char* p; |
| for (p = format_string; *p != 0; ++p) { |
| if (*p == '%') formatted_path_len += home_len - 1; |
| ++formatted_path_len; |
| } |
| |
| char* formatted_path = NEW_C_HEAP_ARRAY(char, formatted_path_len + 1, mtInternal); |
| |
| // Create boot classpath from format, substituting separator chars and |
| // java home directory. |
| char* q = formatted_path; |
| for (p = format_string; *p != 0; ++p) { |
| switch (*p) { |
| case '%': |
| strcpy(q, home); |
| q += home_len; |
| break; |
| case '/': |
| *q++ = fileSep; |
| break; |
| case ':': |
| *q++ = pathSep; |
| break; |
| default: |
| *q++ = *p; |
| } |
| } |
| *q = '\0'; |
| |
| assert((q - formatted_path) == formatted_path_len, "formatted_path size botched"); |
| return formatted_path; |
| } |
| |
| // This function is a proxy to fopen, it tries to add a non standard flag ('e' or 'N') |
| // that ensures automatic closing of the file on exec. If it can not find support in |
| // the underlying c library, it will make an extra system call (fcntl) to ensure automatic |
| // closing of the file on exec. |
| FILE* os::fopen(const char* path, const char* mode) { |
| char modified_mode[20]; |
| assert(strlen(mode) + 1 < sizeof(modified_mode), "mode chars plus one extra must fit in buffer"); |
| os::snprintf_checked(modified_mode, sizeof(modified_mode), "%s" LINUX_ONLY("e") BSD_ONLY("e") WINDOWS_ONLY("N"), mode); |
| FILE* file = ::fopen(path, modified_mode); |
| |
| #if !(defined LINUX || defined BSD || defined _WINDOWS) |
| // assume fcntl FD_CLOEXEC support as a backup solution when 'e' or 'N' |
| // is not supported as mode in fopen |
| if (file != nullptr) { |
| int fd = fileno(file); |
| if (fd != -1) { |
| int fd_flags = fcntl(fd, F_GETFD); |
| if (fd_flags != -1) { |
| fcntl(fd, F_SETFD, fd_flags | FD_CLOEXEC); |
| } |
| } |
| } |
| #endif |
| |
| return file; |
| } |
| |
| bool os::set_boot_path(char fileSep, char pathSep) { |
| const char* home = Arguments::get_java_home(); |
| int home_len = (int)strlen(home); |
| |
| struct stat st; |
| |
| // modular image if "modules" jimage exists |
| char* jimage = format_boot_path("%/lib/" MODULES_IMAGE_NAME, home, home_len, fileSep, pathSep); |
| if (jimage == nullptr) return false; |
| bool has_jimage = (os::stat(jimage, &st) == 0); |
| if (has_jimage) { |
| Arguments::set_boot_class_path(jimage, true); |
| FREE_C_HEAP_ARRAY(char, jimage); |
| return true; |
| } |
| FREE_C_HEAP_ARRAY(char, jimage); |
| |
| // check if developer build with exploded modules |
| char* base_classes = format_boot_path("%/modules/" JAVA_BASE_NAME, home, home_len, fileSep, pathSep); |
| if (base_classes == nullptr) return false; |
| if (os::stat(base_classes, &st) == 0) { |
| Arguments::set_boot_class_path(base_classes, false); |
| FREE_C_HEAP_ARRAY(char, base_classes); |
| return true; |
| } |
| FREE_C_HEAP_ARRAY(char, base_classes); |
| |
| return false; |
| } |
| |
| bool os::file_exists(const char* filename) { |
| struct stat statbuf; |
| if (filename == nullptr || strlen(filename) == 0) { |
| return false; |
| } |
| return os::stat(filename, &statbuf) == 0; |
| } |
| |
| bool os::write(int fd, const void *buf, size_t nBytes) { |
| ssize_t res; |
| |
| while (nBytes > 0) { |
| res = pd_write(fd, buf, nBytes); |
| if (res == OS_ERR) { |
| return false; |
| } |
| buf = (void *)((char *)buf + res); |
| nBytes -= res; |
| } |
| |
| return true; |
| } |
| |
| |
| // Splits a path, based on its separator, the number of |
| // elements is returned back in "elements". |
| // file_name_length is used as a modifier for each path's |
| // length when compared to JVM_MAXPATHLEN. So if you know |
| // each returned path will have something appended when |
| // in use, you can pass the length of that in |
| // file_name_length, to ensure we detect if any path |
| // exceeds the maximum path length once prepended onto |
| // the sub-path/file name. |
| // It is the callers responsibility to: |
| // a> check the value of "elements", which may be 0. |
| // b> ignore any empty path elements |
| // c> free up the data. |
| char** os::split_path(const char* path, size_t* elements, size_t file_name_length) { |
| *elements = (size_t)0; |
| if (path == nullptr || strlen(path) == 0 || file_name_length == (size_t)nullptr) { |
| return nullptr; |
| } |
| const char psepchar = *os::path_separator(); |
| char* inpath = NEW_C_HEAP_ARRAY(char, strlen(path) + 1, mtInternal); |
| strcpy(inpath, path); |
| size_t count = 1; |
| char* p = strchr(inpath, psepchar); |
| // Get a count of elements to allocate memory |
| while (p != nullptr) { |
| count++; |
| p++; |
| p = strchr(p, psepchar); |
| } |
| |
| char** opath = NEW_C_HEAP_ARRAY(char*, count, mtInternal); |
| |
| // do the actual splitting |
| p = inpath; |
| for (size_t i = 0 ; i < count ; i++) { |
| size_t len = strcspn(p, os::path_separator()); |
| if (len + file_name_length > JVM_MAXPATHLEN) { |
| // release allocated storage before exiting the vm |
| free_array_of_char_arrays(opath, i++); |
| vm_exit_during_initialization("The VM tried to use a path that exceeds the maximum path length for " |
| "this system. Review path-containing parameters and properties, such as " |
| "sun.boot.library.path, to identify potential sources for this path."); |
| } |
| // allocate the string and add terminator storage |
| char* s = NEW_C_HEAP_ARRAY(char, len + 1, mtInternal); |
| strncpy(s, p, len); |
| s[len] = '\0'; |
| opath[i] = s; |
| p += len + 1; |
| } |
| FREE_C_HEAP_ARRAY(char, inpath); |
| *elements = count; |
| return opath; |
| } |
| |
| // Returns true if the current stack pointer is above the stack shadow |
| // pages, false otherwise. |
| bool os::stack_shadow_pages_available(Thread *thread, const methodHandle& method, address sp) { |
| if (!thread->is_Java_thread()) return false; |
| // Check if we have StackShadowPages above the guard zone. This parameter |
| // is dependent on the depth of the maximum VM call stack possible from |
| // the handler for stack overflow. 'instanceof' in the stack overflow |
| // handler or a println uses at least 8k stack of VM and native code |
| // respectively. |
| const int framesize_in_bytes = |
| Interpreter::size_top_interpreter_activation(method()) * wordSize; |
| |
| address limit = JavaThread::cast(thread)->stack_overflow_state()->shadow_zone_safe_limit(); |
| return sp > (limit + framesize_in_bytes); |
| } |
| |
| size_t os::page_size_for_region(size_t region_size, size_t min_pages, bool must_be_aligned) { |
| assert(min_pages > 0, "sanity"); |
| if (UseLargePages) { |
| const size_t max_page_size = region_size / min_pages; |
| |
| for (size_t page_size = page_sizes().largest(); page_size != 0; |
| page_size = page_sizes().next_smaller(page_size)) { |
| if (page_size <= max_page_size) { |
| if (!must_be_aligned || is_aligned(region_size, page_size)) { |
| return page_size; |
| } |
| } |
| } |
| } |
| |
| return vm_page_size(); |
| } |
| |
| size_t os::page_size_for_region_aligned(size_t region_size, size_t min_pages) { |
| return page_size_for_region(region_size, min_pages, true); |
| } |
| |
| size_t os::page_size_for_region_unaligned(size_t region_size, size_t min_pages) { |
| return page_size_for_region(region_size, min_pages, false); |
| } |
| |
| #ifndef MAX_PATH |
| #define MAX_PATH (2 * K) |
| #endif |
| |
| void os::pause() { |
| char filename[MAX_PATH]; |
| if (PauseAtStartupFile && PauseAtStartupFile[0]) { |
| jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile); |
| } else { |
| jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id()); |
| } |
| |
| int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666); |
| if (fd != -1) { |
| struct stat buf; |
| ::close(fd); |
| while (::stat(filename, &buf) == 0) { |
| #if defined(_WINDOWS) |
| Sleep(100); |
| #else |
| (void)::poll(nullptr, 0, 100); |
| #endif |
| } |
| } else { |
| jio_fprintf(stderr, |
| "Could not open pause file '%s', continuing immediately.\n", filename); |
| } |
| } |
| |
| static const char* errno_to_string (int e, bool short_text) { |
| #define ALL_SHARED_ENUMS(X) \ |
| X(E2BIG, "Argument list too long") \ |
| X(EACCES, "Permission denied") \ |
| X(EADDRINUSE, "Address in use") \ |
| X(EADDRNOTAVAIL, "Address not available") \ |
| X(EAFNOSUPPORT, "Address family not supported") \ |
| X(EAGAIN, "Resource unavailable, try again") \ |
| X(EALREADY, "Connection already in progress") \ |
| X(EBADF, "Bad file descriptor") \ |
| X(EBADMSG, "Bad message") \ |
| X(EBUSY, "Device or resource busy") \ |
| X(ECANCELED, "Operation canceled") \ |
| X(ECHILD, "No child processes") \ |
| X(ECONNABORTED, "Connection aborted") \ |
| X(ECONNREFUSED, "Connection refused") \ |
| X(ECONNRESET, "Connection reset") \ |
| X(EDEADLK, "Resource deadlock would occur") \ |
| X(EDESTADDRREQ, "Destination address required") \ |
| X(EDOM, "Mathematics argument out of domain of function") \ |
| X(EEXIST, "File exists") \ |
| X(EFAULT, "Bad address") \ |
| X(EFBIG, "File too large") \ |
| X(EHOSTUNREACH, "Host is unreachable") \ |
| X(EIDRM, "Identifier removed") \ |
| X(EILSEQ, "Illegal byte sequence") \ |
| X(EINPROGRESS, "Operation in progress") \ |
| X(EINTR, "Interrupted function") \ |
| X(EINVAL, "Invalid argument") \ |
| X(EIO, "I/O error") \ |
| X(EISCONN, "Socket is connected") \ |
| X(EISDIR, "Is a directory") \ |
| X(ELOOP, "Too many levels of symbolic links") \ |
| X(EMFILE, "Too many open files") \ |
| X(EMLINK, "Too many links") \ |
| X(EMSGSIZE, "Message too large") \ |
| X(ENAMETOOLONG, "Filename too long") \ |
| X(ENETDOWN, "Network is down") \ |
| X(ENETRESET, "Connection aborted by network") \ |
| X(ENETUNREACH, "Network unreachable") \ |
| X(ENFILE, "Too many files open in system") \ |
| X(ENOBUFS, "No buffer space available") \ |
| X(ENODATA, "No message is available on the STREAM head read queue") \ |
| X(ENODEV, "No such device") \ |
| X(ENOENT, "No such file or directory") \ |
| X(ENOEXEC, "Executable file format error") \ |
| X(ENOLCK, "No locks available") \ |
| X(ENOLINK, "Reserved") \ |
| X(ENOMEM, "Not enough space") \ |
| X(ENOMSG, "No message of the desired type") \ |
| X(ENOPROTOOPT, "Protocol not available") \ |
| X(ENOSPC, "No space left on device") \ |
| X(ENOSR, "No STREAM resources") \ |
| X(ENOSTR, "Not a STREAM") \ |
| X(ENOSYS, "Function not supported") \ |
| X(ENOTCONN, "The socket is not connected") \ |
| X(ENOTDIR, "Not a directory") \ |
| X(ENOTEMPTY, "Directory not empty") \ |
| X(ENOTSOCK, "Not a socket") \ |
| X(ENOTSUP, "Not supported") \ |
| X(ENOTTY, "Inappropriate I/O control operation") \ |
| X(ENXIO, "No such device or address") \ |
| X(EOPNOTSUPP, "Operation not supported on socket") \ |
| X(EOVERFLOW, "Value too large to be stored in data type") \ |
| X(EPERM, "Operation not permitted") \ |
| X(EPIPE, "Broken pipe") \ |
| X(EPROTO, "Protocol error") \ |
| X(EPROTONOSUPPORT, "Protocol not supported") \ |
| X(EPROTOTYPE, "Protocol wrong type for socket") \ |
| X(ERANGE, "Result too large") \ |
| X(EROFS, "Read-only file system") \ |
| X(ESPIPE, "Invalid seek") \ |
| X(ESRCH, "No such process") \ |
| X(ETIME, "Stream ioctl() timeout") \ |
| X(ETIMEDOUT, "Connection timed out") \ |
| X(ETXTBSY, "Text file busy") \ |
| X(EWOULDBLOCK, "Operation would block") \ |
| X(EXDEV, "Cross-device link") |
| |
| #define DEFINE_ENTRY(e, text) { e, #e, text }, |
| |
| static const struct { |
| int v; |
| const char* short_text; |
| const char* long_text; |
| } table [] = { |
| |
| ALL_SHARED_ENUMS(DEFINE_ENTRY) |
| |
| // The following enums are not defined on all platforms. |
| #ifdef ESTALE |
| DEFINE_ENTRY(ESTALE, "Reserved") |
| #endif |
| #ifdef EDQUOT |
| DEFINE_ENTRY(EDQUOT, "Reserved") |
| #endif |
| #ifdef EMULTIHOP |
| DEFINE_ENTRY(EMULTIHOP, "Reserved") |
| #endif |
| |
| // End marker. |
| { -1, "Unknown errno", "Unknown error" } |
| |
| }; |
| |
| #undef DEFINE_ENTRY |
| #undef ALL_FLAGS |
| |
| int i = 0; |
| while (table[i].v != -1 && table[i].v != e) { |
| i ++; |
| } |
| |
| return short_text ? table[i].short_text : table[i].long_text; |
| |
| } |
| |
| const char* os::strerror(int e) { |
| return errno_to_string(e, false); |
| } |
| |
| const char* os::errno_name(int e) { |
| return errno_to_string(e, true); |
| } |
| |
| #define trace_page_size_params(size) byte_size_in_exact_unit(size), exact_unit_for_byte_size(size) |
| |
| void os::trace_page_sizes(const char* str, |
| const size_t region_min_size, |
| const size_t region_max_size, |
| const size_t page_size, |
| const char* base, |
| const size_t size) { |
| |
| log_info(pagesize)("%s: " |
| " min=" SIZE_FORMAT "%s" |
| " max=" SIZE_FORMAT "%s" |
| " base=" PTR_FORMAT |
| " page_size=" SIZE_FORMAT "%s" |
| " size=" SIZE_FORMAT "%s", |
| str, |
| trace_page_size_params(region_min_size), |
| trace_page_size_params(region_max_size), |
| p2i(base), |
| trace_page_size_params(page_size), |
| trace_page_size_params(size)); |
| } |
| |
| void os::trace_page_sizes_for_requested_size(const char* str, |
| const size_t requested_size, |
| const size_t page_size, |
| const size_t alignment, |
| const char* base, |
| const size_t size) { |
| |
| log_info(pagesize)("%s:" |
| " req_size=" SIZE_FORMAT "%s" |
| " base=" PTR_FORMAT |
| " page_size=" SIZE_FORMAT "%s" |
| " alignment=" SIZE_FORMAT "%s" |
| " size=" SIZE_FORMAT "%s", |
| str, |
| trace_page_size_params(requested_size), |
| p2i(base), |
| trace_page_size_params(page_size), |
| trace_page_size_params(alignment), |
| trace_page_size_params(size)); |
| } |
| |
| |
| // This is the working definition of a server class machine: |
| // >= 2 physical CPU's and >=2GB of memory, with some fuzz |
| // because the graphics memory (?) sometimes masks physical memory. |
| // If you want to change the definition of a server class machine |
| // on some OS or platform, e.g., >=4GB on Windows platforms, |
| // then you'll have to parameterize this method based on that state, |
| // as was done for logical processors here, or replicate and |
| // specialize this method for each platform. (Or fix os to have |
| // some inheritance structure and use subclassing. Sigh.) |
| // If you want some platform to always or never behave as a server |
| // class machine, change the setting of AlwaysActAsServerClassMachine |
| // and NeverActAsServerClassMachine in globals*.hpp. |
| bool os::is_server_class_machine() { |
| // First check for the early returns |
| if (NeverActAsServerClassMachine) { |
| return false; |
| } |
| if (AlwaysActAsServerClassMachine) { |
| return true; |
| } |
| // Then actually look at the machine |
| bool result = false; |
| const unsigned int server_processors = 2; |
| const julong server_memory = 2UL * G; |
| // We seem not to get our full complement of memory. |
| // We allow some part (1/8?) of the memory to be "missing", |
| // based on the sizes of DIMMs, and maybe graphics cards. |
| const julong missing_memory = 256UL * M; |
| |
| /* Is this a server class machine? */ |
| if ((os::active_processor_count() >= (int)server_processors) && |
| (os::physical_memory() >= (server_memory - missing_memory))) { |
| const unsigned int logical_processors = |
| VM_Version::logical_processors_per_package(); |
| if (logical_processors > 1) { |
| const unsigned int physical_packages = |
| os::active_processor_count() / logical_processors; |
| if (physical_packages >= server_processors) { |
| result = true; |
| } |
| } else { |
| result = true; |
| } |
| } |
| return result; |
| } |
| |
| void os::initialize_initial_active_processor_count() { |
| assert(_initial_active_processor_count == 0, "Initial active processor count already set."); |
| _initial_active_processor_count = active_processor_count(); |
| log_debug(os)("Initial active processor count set to %d" , _initial_active_processor_count); |
| } |
| |
| bool os::create_stack_guard_pages(char* addr, size_t bytes) { |
| return os::pd_create_stack_guard_pages(addr, bytes); |
| } |
| |
| char* os::reserve_memory(size_t bytes, bool executable, MEMFLAGS flags) { |
| char* result = pd_reserve_memory(bytes, executable); |
| if (result != nullptr) { |
| MemTracker::record_virtual_memory_reserve(result, bytes, CALLER_PC, flags); |
| } |
| return result; |
| } |
| |
| char* os::attempt_reserve_memory_at(char* addr, size_t bytes, bool executable) { |
| char* result = pd_attempt_reserve_memory_at(addr, bytes, executable); |
| if (result != nullptr) { |
| MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC); |
| } else { |
| log_debug(os)("Attempt to reserve memory at " INTPTR_FORMAT " for " |
| SIZE_FORMAT " bytes failed, errno %d", p2i(addr), bytes, get_last_error()); |
| } |
| return result; |
| } |
| |
| static void assert_nonempty_range(const char* addr, size_t bytes) { |
| assert(addr != nullptr && bytes > 0, "invalid range [" PTR_FORMAT ", " PTR_FORMAT ")", |
| p2i(addr), p2i(addr) + bytes); |
| } |
| |
| bool os::commit_memory(char* addr, size_t bytes, bool executable) { |
| assert_nonempty_range(addr, bytes); |
| bool res = pd_commit_memory(addr, bytes, executable); |
| if (res) { |
| MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC); |
| } |
| return res; |
| } |
| |
| bool os::commit_memory(char* addr, size_t size, size_t alignment_hint, |
| bool executable) { |
| assert_nonempty_range(addr, size); |
| bool res = os::pd_commit_memory(addr, size, alignment_hint, executable); |
| if (res) { |
| MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC); |
| } |
| return res; |
| } |
| |
| void os::commit_memory_or_exit(char* addr, size_t bytes, bool executable, |
| const char* mesg) { |
| assert_nonempty_range(addr, bytes); |
| pd_commit_memory_or_exit(addr, bytes, executable, mesg); |
| MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC); |
| } |
| |
| void os::commit_memory_or_exit(char* addr, size_t size, size_t alignment_hint, |
| bool executable, const char* mesg) { |
| assert_nonempty_range(addr, size); |
| os::pd_commit_memory_or_exit(addr, size, alignment_hint, executable, mesg); |
| MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC); |
| } |
| |
| bool os::uncommit_memory(char* addr, size_t bytes, bool executable) { |
| assert_nonempty_range(addr, bytes); |
| bool res; |
| if (MemTracker::enabled()) { |
| Tracker tkr(Tracker::uncommit); |
| res = pd_uncommit_memory(addr, bytes, executable); |
| if (res) { |
| tkr.record((address)addr, bytes); |
| } |
| } else { |
| res = pd_uncommit_memory(addr, bytes, executable); |
| } |
| return res; |
| } |
| |
| bool os::release_memory(char* addr, size_t bytes) { |
| assert_nonempty_range(addr, bytes); |
| bool res; |
| if (MemTracker::enabled()) { |
| // Note: Tracker contains a ThreadCritical. |
| Tracker tkr(Tracker::release); |
| res = pd_release_memory(addr, bytes); |
| if (res) { |
| tkr.record((address)addr, bytes); |
| } |
| } else { |
| res = pd_release_memory(addr, bytes); |
| } |
| if (!res) { |
| log_info(os)("os::release_memory failed (" PTR_FORMAT ", " SIZE_FORMAT ")", p2i(addr), bytes); |
| } |
| return res; |
| } |
| |
| // Prints all mappings |
| void os::print_memory_mappings(outputStream* st) { |
| os::print_memory_mappings(nullptr, SIZE_MAX, st); |
| } |
| |
| // Pretouching must use a store, not just a load. On many OSes loads from |
| // fresh memory would be satisfied from a single mapped page containing all |
| // zeros. We need to store something to each page to get them backed by |
| // their own memory, which is the effect we want here. An atomic add of |
| // zero is used instead of a simple store, allowing the memory to be used |
| // while pretouch is in progress, rather than requiring users of the memory |
| // to wait until the entire range has been touched. This is technically |
| // a UB data race, but doesn't cause any problems for us. |
| void os::pretouch_memory(void* start, void* end, size_t page_size) { |
| assert(start <= end, "invalid range: " PTR_FORMAT " -> " PTR_FORMAT, p2i(start), p2i(end)); |
| assert(is_power_of_2(page_size), "page size misaligned: %zu", page_size); |
| assert(page_size >= sizeof(int), "page size too small: %zu", page_size); |
| if (start < end) { |
| // We're doing concurrent-safe touch and memory state has page |
| // granularity, so we can touch anywhere in a page. Touch at the |
| // beginning of each page to simplify iteration. |
| char* cur = static_cast<char*>(align_down(start, page_size)); |
| void* last = align_down(static_cast<char*>(end) - 1, page_size); |
| assert(cur <= last, "invariant"); |
| // Iterate from first page through last (inclusive), being careful to |
| // avoid overflow if the last page abuts the end of the address range. |
| for ( ; true; cur += page_size) { |
| Atomic::add(reinterpret_cast<int*>(cur), 0, memory_order_relaxed); |
| if (cur >= last) break; |
| } |
| } |
| } |
| |
| char* os::map_memory_to_file(size_t bytes, int file_desc) { |
| // Could have called pd_reserve_memory() followed by replace_existing_mapping_with_file_mapping(), |
| // but AIX may use SHM in which case its more trouble to detach the segment and remap memory to the file. |
| // On all current implementations null is interpreted as any available address. |
| char* result = os::map_memory_to_file(nullptr /* addr */, bytes, file_desc); |
| if (result != nullptr) { |
| MemTracker::record_virtual_memory_reserve_and_commit(result, bytes, CALLER_PC); |
| } |
| return result; |
| } |
| |
| char* os::attempt_map_memory_to_file_at(char* addr, size_t bytes, int file_desc) { |
| char* result = pd_attempt_map_memory_to_file_at(addr, bytes, file_desc); |
| if (result != nullptr) { |
| MemTracker::record_virtual_memory_reserve_and_commit((address)result, bytes, CALLER_PC); |
| } |
| return result; |
| } |
| |
| char* os::map_memory(int fd, const char* file_name, size_t file_offset, |
| char *addr, size_t bytes, bool read_only, |
| bool allow_exec, MEMFLAGS flags) { |
| char* result = pd_map_memory(fd, file_name, file_offset, addr, bytes, read_only, allow_exec); |
| if (result != nullptr) { |
| MemTracker::record_virtual_memory_reserve_and_commit((address)result, bytes, CALLER_PC, flags); |
| } |
| return result; |
| } |
| |
| char* os::remap_memory(int fd, const char* file_name, size_t file_offset, |
| char *addr, size_t bytes, bool read_only, |
| bool allow_exec) { |
| return pd_remap_memory(fd, file_name, file_offset, addr, bytes, |
| read_only, allow_exec); |
| } |
| |
| bool os::unmap_memory(char *addr, size_t bytes) { |
| bool result; |
| if (MemTracker::enabled()) { |
| Tracker tkr(Tracker::release); |
| result = pd_unmap_memory(addr, bytes); |
| if (result) { |
| tkr.record((address)addr, bytes); |
| } |
| } else { |
| result = pd_unmap_memory(addr, bytes); |
| } |
| return result; |
| } |
| |
| void os::free_memory(char *addr, size_t bytes, size_t alignment_hint) { |
| pd_free_memory(addr, bytes, alignment_hint); |
| } |
| |
| void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { |
| pd_realign_memory(addr, bytes, alignment_hint); |
| } |
| |
| char* os::reserve_memory_special(size_t size, size_t alignment, size_t page_size, |
| char* addr, bool executable) { |
| |
| assert(is_aligned(addr, alignment), "Unaligned request address"); |
| |
| char* result = pd_reserve_memory_special(size, alignment, page_size, addr, executable); |
| if (result != nullptr) { |
| // The memory is committed |
| MemTracker::record_virtual_memory_reserve_and_commit((address)result, size, CALLER_PC); |
| } |
| |
| return result; |
| } |
| |
| bool os::release_memory_special(char* addr, size_t bytes) { |
| bool res; |
| if (MemTracker::enabled()) { |
| // Note: Tracker contains a ThreadCritical. |
| Tracker tkr(Tracker::release); |
| res = pd_release_memory_special(addr, bytes); |
| if (res) { |
| tkr.record((address)addr, bytes); |
| } |
| } else { |
| res = pd_release_memory_special(addr, bytes); |
| } |
| return res; |
| } |
| |
| // Convenience wrapper around naked_short_sleep to allow for longer sleep |
| // times. Only for use by non-JavaThreads. |
| void os::naked_sleep(jlong millis) { |
| assert(!Thread::current()->is_Java_thread(), "not for use by JavaThreads"); |
| const jlong limit = 999; |
| while (millis > limit) { |
| naked_short_sleep(limit); |
| millis -= limit; |
| } |
| naked_short_sleep(millis); |
| } |
| |
| |
| ////// Implementation of PageSizes |
| |
| void os::PageSizes::add(size_t page_size) { |
| assert(is_power_of_2(page_size), "page_size must be a power of 2: " SIZE_FORMAT_X, page_size); |
| _v |= page_size; |
| } |
| |
| bool os::PageSizes::contains(size_t page_size) const { |
| assert(is_power_of_2(page_size), "page_size must be a power of 2: " SIZE_FORMAT_X, page_size); |
| return (_v & page_size) != 0; |
| } |
| |
| size_t os::PageSizes::next_smaller(size_t page_size) const { |
| assert(is_power_of_2(page_size), "page_size must be a power of 2: " SIZE_FORMAT_X, page_size); |
| size_t v2 = _v & (page_size - 1); |
| if (v2 == 0) { |
| return 0; |
| } |
| return round_down_power_of_2(v2); |
| } |
| |
| size_t os::PageSizes::next_larger(size_t page_size) const { |
| assert(is_power_of_2(page_size), "page_size must be a power of 2: " SIZE_FORMAT_X, page_size); |
| if (page_size == max_power_of_2<size_t>()) { // Shift by 32/64 would be UB |
| return 0; |
| } |
| // Remove current and smaller page sizes |
| size_t v2 = _v & ~(page_size + (page_size - 1)); |
| if (v2 == 0) { |
| return 0; |
| } |
| return (size_t)1 << count_trailing_zeros(v2); |
| } |
| |
| size_t os::PageSizes::largest() const { |
| const size_t max = max_power_of_2<size_t>(); |
| if (contains(max)) { |
| return max; |
| } |
| return next_smaller(max); |
| } |
| |
| size_t os::PageSizes::smallest() const { |
| // Strictly speaking the set should not contain sizes < os::vm_page_size(). |
| // But this is not enforced. |
| return next_larger(1); |
| } |
| |
| void os::PageSizes::print_on(outputStream* st) const { |
| bool first = true; |
| for (size_t sz = smallest(); sz != 0; sz = next_larger(sz)) { |
| if (first) { |
| first = false; |
| } else { |
| st->print_raw(", "); |
| } |
| if (sz < M) { |
| st->print(SIZE_FORMAT "k", sz / K); |
| } else if (sz < G) { |
| st->print(SIZE_FORMAT "M", sz / M); |
| } else { |
| st->print(SIZE_FORMAT "G", sz / G); |
| } |
| } |
| if (first) { |
| st->print("empty"); |
| } |
| } |
| |
| // Check minimum allowable stack sizes for thread creation and to initialize |
| // the java system classes, including StackOverflowError - depends on page |
| // size. |
| // The space needed for frames during startup is platform dependent. It |
| // depends on word size, platform calling conventions, C frame layout and |
| // interpreter/C1/C2 design decisions. Therefore this is given in a |
| // platform (os/cpu) dependent constant. |
| // To this, space for guard mechanisms is added, which depends on the |
| // page size which again depends on the concrete system the VM is running |
| // on. Space for libc guard pages is not included in this size. |
| jint os::set_minimum_stack_sizes() { |
| |
| _java_thread_min_stack_allowed = _java_thread_min_stack_allowed + |
| StackOverflow::stack_guard_zone_size() + |
| StackOverflow::stack_shadow_zone_size(); |
| |
| _java_thread_min_stack_allowed = align_up(_java_thread_min_stack_allowed, vm_page_size()); |
| _java_thread_min_stack_allowed = MAX2(_java_thread_min_stack_allowed, _os_min_stack_allowed); |
| |
| size_t stack_size_in_bytes = ThreadStackSize * K; |
| if (stack_size_in_bytes != 0 && |
| stack_size_in_bytes < _java_thread_min_stack_allowed) { |
| // The '-Xss' and '-XX:ThreadStackSize=N' options both set |
| // ThreadStackSize so we go with "Java thread stack size" instead |
| // of "ThreadStackSize" to be more friendly. |
| tty->print_cr("\nThe Java thread stack size specified is too small. " |
| "Specify at least " SIZE_FORMAT "k", |
| _java_thread_min_stack_allowed / K); |
| return JNI_ERR; |
| } |
| |
| // Make the stack size a multiple of the page size so that |
| // the yellow/red zones can be guarded. |
| JavaThread::set_stack_size_at_create(align_up(stack_size_in_bytes, vm_page_size())); |
| |
| // Reminder: a compiler thread is a Java thread. |
| _compiler_thread_min_stack_allowed = _compiler_thread_min_stack_allowed + |
| StackOverflow::stack_guard_zone_size() + |
| StackOverflow::stack_shadow_zone_size(); |
| |
| _compiler_thread_min_stack_allowed = align_up(_compiler_thread_min_stack_allowed, vm_page_size()); |
| _compiler_thread_min_stack_allowed = MAX2(_compiler_thread_min_stack_allowed, _os_min_stack_allowed); |
| |
| stack_size_in_bytes = CompilerThreadStackSize * K; |
| if (stack_size_in_bytes != 0 && |
| stack_size_in_bytes < _compiler_thread_min_stack_allowed) { |
| tty->print_cr("\nThe CompilerThreadStackSize specified is too small. " |
| "Specify at least " SIZE_FORMAT "k", |
| _compiler_thread_min_stack_allowed / K); |
| return JNI_ERR; |
| } |
| |
| _vm_internal_thread_min_stack_allowed = align_up(_vm_internal_thread_min_stack_allowed, vm_page_size()); |
| _vm_internal_thread_min_stack_allowed = MAX2(_vm_internal_thread_min_stack_allowed, _os_min_stack_allowed); |
| |
| stack_size_in_bytes = VMThreadStackSize * K; |
| if (stack_size_in_bytes != 0 && |
| stack_size_in_bytes < _vm_internal_thread_min_stack_allowed) { |
| tty->print_cr("\nThe VMThreadStackSize specified is too small. " |
| "Specify at least " SIZE_FORMAT "k", |
| _vm_internal_thread_min_stack_allowed / K); |
| return JNI_ERR; |
| } |
| return JNI_OK; |
| } |