blob: d03b25d0cc4469858df895bb1d9ef81fff7d6d4b [file] [log] [blame]
/*
* Copyright (c) 2005, 2023, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_UTILITIES_BITMAP_INLINE_HPP
#define SHARE_UTILITIES_BITMAP_INLINE_HPP
#include "utilities/bitMap.hpp"
#include "runtime/atomic.hpp"
#include "utilities/align.hpp"
#include "utilities/count_trailing_zeros.hpp"
#include "utilities/powerOfTwo.hpp"
inline void BitMap::set_bit(idx_t bit) {
verify_index(bit);
*word_addr(bit) |= bit_mask(bit);
}
inline void BitMap::clear_bit(idx_t bit) {
verify_index(bit);
*word_addr(bit) &= ~bit_mask(bit);
}
inline const BitMap::bm_word_t BitMap::load_word_ordered(const volatile bm_word_t* const addr, atomic_memory_order memory_order) {
if (memory_order == memory_order_relaxed || memory_order == memory_order_release) {
return Atomic::load(addr);
} else {
assert(memory_order == memory_order_acq_rel ||
memory_order == memory_order_acquire ||
memory_order == memory_order_conservative,
"unexpected memory ordering");
return Atomic::load_acquire(addr);
}
}
inline bool BitMap::par_at(idx_t bit, atomic_memory_order memory_order) const {
verify_index(bit);
assert(memory_order == memory_order_acquire ||
memory_order == memory_order_relaxed,
"unexpected memory ordering");
const volatile bm_word_t* const addr = word_addr(bit);
return (load_word_ordered(addr, memory_order) & bit_mask(bit)) != 0;
}
inline bool BitMap::par_set_bit(idx_t bit, atomic_memory_order memory_order) {
verify_index(bit);
volatile bm_word_t* const addr = word_addr(bit);
const bm_word_t mask = bit_mask(bit);
bm_word_t old_val = load_word_ordered(addr, memory_order);
do {
const bm_word_t new_val = old_val | mask;
if (new_val == old_val) {
return false; // Someone else beat us to it.
}
const bm_word_t cur_val = Atomic::cmpxchg(addr, old_val, new_val, memory_order);
if (cur_val == old_val) {
return true; // Success.
}
old_val = cur_val; // The value changed, try again.
} while (true);
}
inline bool BitMap::par_clear_bit(idx_t bit, atomic_memory_order memory_order) {
verify_index(bit);
volatile bm_word_t* const addr = word_addr(bit);
const bm_word_t mask = ~bit_mask(bit);
bm_word_t old_val = load_word_ordered(addr, memory_order);
do {
const bm_word_t new_val = old_val & mask;
if (new_val == old_val) {
return false; // Someone else beat us to it.
}
const bm_word_t cur_val = Atomic::cmpxchg(addr, old_val, new_val, memory_order);
if (cur_val == old_val) {
return true; // Success.
}
old_val = cur_val; // The value changed, try again.
} while (true);
}
inline void BitMap::set_range(idx_t beg, idx_t end, RangeSizeHint hint) {
if (hint == small_range && end - beg == 1) {
set_bit(beg);
} else {
if (hint == large_range) {
set_large_range(beg, end);
} else {
set_range(beg, end);
}
}
}
inline void BitMap::clear_range(idx_t beg, idx_t end, RangeSizeHint hint) {
if (end - beg == 1) {
clear_bit(beg);
} else {
if (hint == large_range) {
clear_large_range(beg, end);
} else {
clear_range(beg, end);
}
}
}
inline void BitMap::par_set_range(idx_t beg, idx_t end, RangeSizeHint hint) {
if (hint == small_range && end - beg == 1) {
par_at_put(beg, true);
} else {
if (hint == large_range) {
par_at_put_large_range(beg, end, true);
} else {
par_at_put_range(beg, end, true);
}
}
}
inline void BitMap::set_range_of_words(idx_t beg, idx_t end) {
bm_word_t* map = _map;
for (idx_t i = beg; i < end; ++i) map[i] = ~(bm_word_t)0;
}
inline void BitMap::clear_range_of_words(bm_word_t* map, idx_t beg, idx_t end) {
for (idx_t i = beg; i < end; ++i) map[i] = 0;
}
inline void BitMap::clear_range_of_words(idx_t beg, idx_t end) {
clear_range_of_words(_map, beg, end);
}
inline void BitMap::clear() {
clear_range_of_words(0, size_in_words());
}
inline void BitMap::par_clear_range(idx_t beg, idx_t end, RangeSizeHint hint) {
if (hint == small_range && end - beg == 1) {
par_at_put(beg, false);
} else {
if (hint == large_range) {
par_at_put_large_range(beg, end, false);
} else {
par_at_put_range(beg, end, false);
}
}
}
// General notes regarding find_{first,last}_bit_impl.
//
// The first (last) word often contains an interesting bit, either due to
// density or because of features of the calling algorithm. So it's important
// to examine that word with a minimum of fuss, minimizing setup time for
// additional words that will be wasted if the that word is indeed
// interesting.
//
// The first (last) bit is similarly often interesting. When it matters
// (density or features of the calling algorithm make it likely that bit is
// set), going straight to counting bits compares poorly to examining that bit
// first; the counting operations can be relatively expensive, plus there is
// the additional range check (unless aligned). But when that bit isn't set,
// the cost of having tested for it is relatively small compared to the rest
// of the search.
//
// The benefit from aligned_right being true is relatively small. It saves an
// operation in the setup of the word search loop. It also eliminates the
// range check on the final result. However, callers often have a comparison
// with end, and inlining may allow the two comparisons to be combined. It is
// important when !aligned_right that return paths either return end or a
// value dominated by a comparison with end. aligned_right is still helpful
// when the caller doesn't have a range check because features of the calling
// algorithm guarantee an interesting bit will be present.
//
// The benefit from aligned_left is even smaller, as there is no savings in
// the setup of the word search loop.
template<BitMap::bm_word_t flip, bool aligned_right>
inline BitMap::idx_t BitMap::find_first_bit_impl(idx_t beg, idx_t end) const {
STATIC_ASSERT(flip == find_ones_flip || flip == find_zeros_flip);
verify_range(beg, end);
assert(!aligned_right || is_aligned(end, BitsPerWord), "end not aligned");
if (beg < end) {
// Get the word containing beg, and shift out low bits.
idx_t word_index = to_words_align_down(beg);
bm_word_t cword = flipped_word(word_index, flip) >> bit_in_word(beg);
if ((cword & 1) != 0) { // Test the beg bit.
return beg;
}
// Position of bit0 of cword in the bitmap. Initially for shifted first word.
idx_t cword_pos = beg;
if (cword == 0) { // Test other bits in the first word.
// First word had no interesting bits. Word search through
// aligned up end for a non-zero flipped word.
idx_t word_limit = aligned_right
? to_words_align_down(end) // Minuscule savings when aligned.
: to_words_align_up(end);
while (++word_index < word_limit) {
cword = flipped_word(word_index, flip);
if (cword != 0) {
// Update for found non-zero word, and join common tail to compute
// result from cword_pos and non-zero cword.
cword_pos = bit_index(word_index);
break;
}
}
}
// For all paths reaching here, (cword != 0) is already known, so we
// expect the compiler to not generate any code for it. Either first word
// was non-zero, or found a non-zero word in range, or fully scanned range
// (so cword is zero).
if (cword != 0) {
idx_t result = cword_pos + count_trailing_zeros(cword);
if (aligned_right || (result < end)) return result;
// Result is beyond range bound; return end.
}
}
return end;
}
template<BitMap::bm_word_t flip, bool aligned_left>
inline BitMap::idx_t BitMap::find_last_bit_impl(idx_t beg, idx_t end) const {
STATIC_ASSERT(flip == find_ones_flip || flip == find_zeros_flip);
verify_range(beg, end);
assert(!aligned_left || is_aligned(beg, BitsPerWord), "beg not aligned");
if (beg < end) {
// Get the last partial and flipped word in the range.
idx_t last_bit_index = end - 1;
idx_t word_index = to_words_align_down(last_bit_index);
bm_word_t cword = flipped_word(word_index, flip);
// Mask for extracting and testing bits of last word.
bm_word_t last_bit_mask = bm_word_t(1) << bit_in_word(last_bit_index);
if ((cword & last_bit_mask) != 0) { // Test last bit.
return last_bit_index;
}
// Extract prior bits, clearing those above last_bit_index.
cword &= (last_bit_mask - 1);
if (cword == 0) { // Test other bits in the last word.
// Last word had no interesting bits. Word search through
// aligned down beg for a non-zero flipped word.
idx_t word_limit = to_words_align_down(beg);
while (word_index-- > word_limit) {
cword = flipped_word(word_index, flip);
if (cword != 0) break;
}
}
// For all paths reaching here, (cword != 0) is already known, so we
// expect the compiler to not generate any code for it. Either last word
// was non-zero, or found a non-zero word in range, or fully scanned range
// (so cword is zero).
if (cword != 0) {
idx_t result = bit_index(word_index) + log2i(cword);
if (aligned_left || (result >= beg)) return result;
// Result is below range bound; return end.
}
}
return end;
}
inline BitMap::idx_t
BitMap::find_first_set_bit(idx_t beg, idx_t end) const {
return find_first_bit_impl<find_ones_flip, false>(beg, end);
}
inline BitMap::idx_t
BitMap::find_first_clear_bit(idx_t beg, idx_t end) const {
return find_first_bit_impl<find_zeros_flip, false>(beg, end);
}
inline BitMap::idx_t
BitMap::find_first_set_bit_aligned_right(idx_t beg, idx_t end) const {
return find_first_bit_impl<find_ones_flip, true>(beg, end);
}
inline BitMap::idx_t
BitMap::find_last_set_bit(idx_t beg, idx_t end) const {
return find_last_bit_impl<find_ones_flip, false>(beg, end);
}
inline BitMap::idx_t
BitMap::find_last_clear_bit(idx_t beg, idx_t end) const {
return find_last_bit_impl<find_zeros_flip, false>(beg, end);
}
inline BitMap::idx_t
BitMap::find_last_set_bit_aligned_left(idx_t beg, idx_t end) const {
return find_last_bit_impl<find_ones_flip, true>(beg, end);
}
// IterateInvoker supports conditionally stopping iteration early. The
// invoker is called with the function to apply to each set index, along with
// the current index. If the function returns void then the invoker always
// returns true, so no early stopping. Otherwise, the result of the function
// is returned by the invoker. Iteration stops early if conversion of that
// result to bool is false.
template<typename ReturnType>
struct BitMap::IterateInvoker {
template<typename Function>
bool operator()(Function function, idx_t index) const {
return function(index); // Stop early if converting to bool is false.
}
};
template<>
struct BitMap::IterateInvoker<void> {
template<typename Function>
bool operator()(Function function, idx_t index) const {
function(index); // Result is void.
return true; // Never stop early.
}
};
template <typename Function>
inline bool BitMap::iterate(Function function, idx_t beg, idx_t end) const {
auto invoke = IterateInvoker<decltype(function(beg))>();
for (idx_t index = beg; true; ++index) {
index = find_first_set_bit(index, end);
if (index >= end) {
return true;
} else if (!invoke(function, index)) {
return false;
}
}
}
template <typename BitMapClosureType>
inline bool BitMap::iterate(BitMapClosureType* cl, idx_t beg, idx_t end) const {
auto function = [&](idx_t index) { return cl->do_bit(index); };
return iterate(function, beg, end);
}
template <typename Function>
inline bool BitMap::reverse_iterate(Function function, idx_t beg, idx_t end) const {
auto invoke = IterateInvoker<decltype(function(beg))>();
for (idx_t index; true; end = index) {
index = find_last_set_bit(beg, end);
if (index >= end) {
return true;
} else if (!invoke(function, index)) {
return false;
}
}
}
template <typename BitMapClosureType>
inline bool BitMap::reverse_iterate(BitMapClosureType* cl, idx_t beg, idx_t end) const {
auto function = [&](idx_t index) { return cl->do_bit(index); };
return reverse_iterate(function, beg, end);
}
/// BitMap::IteratorImpl
inline BitMap::IteratorImpl::IteratorImpl()
: _map(nullptr), _cur_beg(0), _cur_end(0)
{}
inline BitMap::IteratorImpl::IteratorImpl(const BitMap* map, idx_t beg, idx_t end)
: _map(map), _cur_beg(beg), _cur_end(end)
{}
inline bool BitMap::IteratorImpl::is_empty() const {
return _cur_beg == _cur_end;
}
inline BitMap::idx_t BitMap::IteratorImpl::first() const {
assert_not_empty();
return _cur_beg;
}
inline BitMap::idx_t BitMap::IteratorImpl::last() const {
assert_not_empty();
return _cur_end - 1;
}
inline void BitMap::IteratorImpl::step_first() {
assert_not_empty();
_cur_beg = _map->find_first_set_bit(_cur_beg + 1, _cur_end);
}
inline void BitMap::IteratorImpl::step_last() {
assert_not_empty();
idx_t lastpos = last();
idx_t pos = _map->find_last_set_bit(_cur_beg, lastpos);
_cur_end = (pos < lastpos) ? (pos + 1) : _cur_beg;
}
/// BitMap::Iterator
inline BitMap::Iterator::Iterator() : _impl() {}
inline BitMap::Iterator::Iterator(const BitMap& map)
: Iterator(map, 0, map.size())
{}
inline BitMap::Iterator::Iterator(const BitMap& map, idx_t beg, idx_t end)
: _impl(&map, map.find_first_set_bit(beg, end), end)
{}
inline bool BitMap::Iterator::is_empty() const {
return _impl.is_empty();
}
inline BitMap::idx_t BitMap::Iterator::index() const {
return _impl.first();
}
inline void BitMap::Iterator::step() {
_impl.step_first();
}
inline BitMap::RBFIterator BitMap::Iterator::begin() const {
return RBFIterator(_impl._map, _impl._cur_beg, _impl._cur_end);
}
inline BitMap::RBFIterator BitMap::Iterator::end() const {
return RBFIterator(_impl._map, _impl._cur_end, _impl._cur_end);
}
/// BitMap::ReverseIterator
inline BitMap::idx_t BitMap::ReverseIterator::initial_end(const BitMap& map,
idx_t beg,
idx_t end) {
idx_t pos = map.find_last_set_bit(beg, end);
return (pos < end) ? (pos + 1) : beg;
}
inline BitMap::ReverseIterator::ReverseIterator() : _impl() {}
inline BitMap::ReverseIterator::ReverseIterator(const BitMap& map)
: ReverseIterator(map, 0, map.size())
{}
inline BitMap::ReverseIterator::ReverseIterator(const BitMap& map,
idx_t beg,
idx_t end)
: _impl(&map, beg, initial_end(map, beg, end))
{}
inline bool BitMap::ReverseIterator::is_empty() const {
return _impl.is_empty();
}
inline BitMap::idx_t BitMap::ReverseIterator::index() const {
return _impl.last();
}
inline void BitMap::ReverseIterator::step() {
_impl.step_last();
}
inline BitMap::ReverseRBFIterator BitMap::ReverseIterator::begin() const {
return ReverseRBFIterator(_impl._map, _impl._cur_beg, _impl._cur_end);
}
inline BitMap::ReverseRBFIterator BitMap::ReverseIterator::end() const {
return ReverseRBFIterator(_impl._map, _impl._cur_beg, _impl._cur_beg);
}
/// BitMap::RBFIterator
inline BitMap::RBFIterator::RBFIterator(const BitMap* map, idx_t beg, idx_t end)
: _impl(map, beg, end)
{}
inline bool BitMap::RBFIterator::operator!=(const RBFIterator& i) const {
// Shouldn't be comparing RBF iterators from different contexts.
assert(_impl._map == i._impl._map, "mismatched range-based for iterators");
assert(_impl._cur_end == i._impl._cur_end, "mismatched range-based for iterators");
return _impl._cur_beg != i._impl._cur_beg;
}
inline BitMap::idx_t BitMap::RBFIterator::operator*() const {
return _impl.first();
}
inline BitMap::RBFIterator& BitMap::RBFIterator::operator++() {
_impl.step_first();
return *this;
}
/// BitMap::ReverseRBFIterator
inline BitMap::ReverseRBFIterator::ReverseRBFIterator(const BitMap* map,
idx_t beg,
idx_t end)
: _impl(map, beg, end)
{}
inline bool BitMap::ReverseRBFIterator::operator!=(const ReverseRBFIterator& i) const {
// Shouldn't be comparing RBF iterators from different contexts.
assert(_impl._map == i._impl._map, "mismatched range-based for iterators");
assert(_impl._cur_beg == i._impl._cur_beg, "mismatched range-based for iterators");
return _impl._cur_end != i._impl._cur_end;
}
inline BitMap::idx_t BitMap::ReverseRBFIterator::operator*() const {
return _impl.last();
}
inline BitMap::ReverseRBFIterator& BitMap::ReverseRBFIterator::operator++() {
_impl.step_last();
return *this;
}
// Returns a bit mask for a range of bits [beg, end) within a single word. Each
// bit in the mask is 0 if the bit is in the range, 1 if not in the range. The
// returned mask can be used directly to clear the range, or inverted to set the
// range. Note: end must not be 0.
inline BitMap::bm_word_t
BitMap::inverted_bit_mask_for_range(idx_t beg, idx_t end) const {
assert(end != 0, "does not work when end == 0");
assert(beg == end || to_words_align_down(beg) == to_words_align_down(end - 1),
"must be a single-word range");
bm_word_t mask = bit_mask(beg) - 1; // low (right) bits
if (bit_in_word(end) != 0) {
mask |= ~(bit_mask(end) - 1); // high (left) bits
}
return mask;
}
inline void BitMap::set_large_range_of_words(idx_t beg, idx_t end) {
assert(beg <= end, "underflow");
memset(_map + beg, ~(unsigned char)0, (end - beg) * sizeof(bm_word_t));
}
inline void BitMap::clear_large_range_of_words(idx_t beg, idx_t end) {
assert(beg <= end, "underflow");
memset(_map + beg, 0, (end - beg) * sizeof(bm_word_t));
}
inline bool BitMap2D::is_valid_index(idx_t slot_index, idx_t bit_within_slot_index) {
verify_bit_within_slot_index(bit_within_slot_index);
return (bit_index(slot_index, bit_within_slot_index) < size_in_bits());
}
inline bool BitMap2D::at(idx_t slot_index, idx_t bit_within_slot_index) const {
verify_bit_within_slot_index(bit_within_slot_index);
return _map.at(bit_index(slot_index, bit_within_slot_index));
}
inline void BitMap2D::set_bit(idx_t slot_index, idx_t bit_within_slot_index) {
verify_bit_within_slot_index(bit_within_slot_index);
_map.set_bit(bit_index(slot_index, bit_within_slot_index));
}
inline void BitMap2D::clear_bit(idx_t slot_index, idx_t bit_within_slot_index) {
verify_bit_within_slot_index(bit_within_slot_index);
_map.clear_bit(bit_index(slot_index, bit_within_slot_index));
}
inline void BitMap2D::at_put(idx_t slot_index, idx_t bit_within_slot_index, bool value) {
verify_bit_within_slot_index(bit_within_slot_index);
_map.at_put(bit_index(slot_index, bit_within_slot_index), value);
}
inline void BitMap2D::at_put_grow(idx_t slot_index, idx_t bit_within_slot_index, bool value) {
verify_bit_within_slot_index(bit_within_slot_index);
idx_t bit = bit_index(slot_index, bit_within_slot_index);
if (bit >= _map.size()) {
_map.resize(2 * MAX2(_map.size(), bit));
}
_map.at_put(bit, value);
}
#endif // SHARE_UTILITIES_BITMAP_INLINE_HPP