blob: cfdd9905c16fa680b0b02819c7ccced6a2611c26 [file] [log] [blame]
//===- llvm/CodeGen/GlobalISel/Utils.cpp -------------------------*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file This file implements the utility functions used by the GlobalISel
/// pipeline.
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/CodeGenCommonISel.h"
#include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
#include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
#include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
#include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h"
#include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/MachineSizeOpts.h"
#include "llvm/CodeGen/RegisterBankInfo.h"
#include "llvm/CodeGen/StackProtector.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/IR/Constants.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/Utils/SizeOpts.h"
#include <numeric>
#include <optional>
#define DEBUG_TYPE "globalisel-utils"
using namespace llvm;
using namespace MIPatternMatch;
Register llvm::constrainRegToClass(MachineRegisterInfo &MRI,
const TargetInstrInfo &TII,
const RegisterBankInfo &RBI, Register Reg,
const TargetRegisterClass &RegClass) {
if (!RBI.constrainGenericRegister(Reg, RegClass, MRI))
return MRI.createVirtualRegister(&RegClass);
return Reg;
}
Register llvm::constrainOperandRegClass(
const MachineFunction &MF, const TargetRegisterInfo &TRI,
MachineRegisterInfo &MRI, const TargetInstrInfo &TII,
const RegisterBankInfo &RBI, MachineInstr &InsertPt,
const TargetRegisterClass &RegClass, MachineOperand &RegMO) {
Register Reg = RegMO.getReg();
// Assume physical registers are properly constrained.
assert(Reg.isVirtual() && "PhysReg not implemented");
// Save the old register class to check whether
// the change notifications will be required.
// TODO: A better approach would be to pass
// the observers to constrainRegToClass().
auto *OldRegClass = MRI.getRegClassOrNull(Reg);
Register ConstrainedReg = constrainRegToClass(MRI, TII, RBI, Reg, RegClass);
// If we created a new virtual register because the class is not compatible
// then create a copy between the new and the old register.
if (ConstrainedReg != Reg) {
MachineBasicBlock::iterator InsertIt(&InsertPt);
MachineBasicBlock &MBB = *InsertPt.getParent();
// FIXME: The copy needs to have the classes constrained for its operands.
// Use operand's regbank to get the class for old register (Reg).
if (RegMO.isUse()) {
BuildMI(MBB, InsertIt, InsertPt.getDebugLoc(),
TII.get(TargetOpcode::COPY), ConstrainedReg)
.addReg(Reg);
} else {
assert(RegMO.isDef() && "Must be a definition");
BuildMI(MBB, std::next(InsertIt), InsertPt.getDebugLoc(),
TII.get(TargetOpcode::COPY), Reg)
.addReg(ConstrainedReg);
}
if (GISelChangeObserver *Observer = MF.getObserver()) {
Observer->changingInstr(*RegMO.getParent());
}
RegMO.setReg(ConstrainedReg);
if (GISelChangeObserver *Observer = MF.getObserver()) {
Observer->changedInstr(*RegMO.getParent());
}
} else if (OldRegClass != MRI.getRegClassOrNull(Reg)) {
if (GISelChangeObserver *Observer = MF.getObserver()) {
if (!RegMO.isDef()) {
MachineInstr *RegDef = MRI.getVRegDef(Reg);
Observer->changedInstr(*RegDef);
}
Observer->changingAllUsesOfReg(MRI, Reg);
Observer->finishedChangingAllUsesOfReg();
}
}
return ConstrainedReg;
}
Register llvm::constrainOperandRegClass(
const MachineFunction &MF, const TargetRegisterInfo &TRI,
MachineRegisterInfo &MRI, const TargetInstrInfo &TII,
const RegisterBankInfo &RBI, MachineInstr &InsertPt, const MCInstrDesc &II,
MachineOperand &RegMO, unsigned OpIdx) {
Register Reg = RegMO.getReg();
// Assume physical registers are properly constrained.
assert(Reg.isVirtual() && "PhysReg not implemented");
const TargetRegisterClass *OpRC = TII.getRegClass(II, OpIdx, &TRI, MF);
// Some of the target independent instructions, like COPY, may not impose any
// register class constraints on some of their operands: If it's a use, we can
// skip constraining as the instruction defining the register would constrain
// it.
if (OpRC) {
// Obtain the RC from incoming regbank if it is a proper sub-class. Operands
// can have multiple regbanks for a superclass that combine different
// register types (E.g., AMDGPU's VGPR and AGPR). The regbank ambiguity
// resolved by targets during regbankselect should not be overridden.
if (const auto *SubRC = TRI.getCommonSubClass(
OpRC, TRI.getConstrainedRegClassForOperand(RegMO, MRI)))
OpRC = SubRC;
OpRC = TRI.getAllocatableClass(OpRC);
}
if (!OpRC) {
assert((!isTargetSpecificOpcode(II.getOpcode()) || RegMO.isUse()) &&
"Register class constraint is required unless either the "
"instruction is target independent or the operand is a use");
// FIXME: Just bailing out like this here could be not enough, unless we
// expect the users of this function to do the right thing for PHIs and
// COPY:
// v1 = COPY v0
// v2 = COPY v1
// v1 here may end up not being constrained at all. Please notice that to
// reproduce the issue we likely need a destination pattern of a selection
// rule producing such extra copies, not just an input GMIR with them as
// every existing target using selectImpl handles copies before calling it
// and they never reach this function.
return Reg;
}
return constrainOperandRegClass(MF, TRI, MRI, TII, RBI, InsertPt, *OpRC,
RegMO);
}
bool llvm::constrainSelectedInstRegOperands(MachineInstr &I,
const TargetInstrInfo &TII,
const TargetRegisterInfo &TRI,
const RegisterBankInfo &RBI) {
assert(!isPreISelGenericOpcode(I.getOpcode()) &&
"A selected instruction is expected");
MachineBasicBlock &MBB = *I.getParent();
MachineFunction &MF = *MBB.getParent();
MachineRegisterInfo &MRI = MF.getRegInfo();
for (unsigned OpI = 0, OpE = I.getNumExplicitOperands(); OpI != OpE; ++OpI) {
MachineOperand &MO = I.getOperand(OpI);
// There's nothing to be done on non-register operands.
if (!MO.isReg())
continue;
LLVM_DEBUG(dbgs() << "Converting operand: " << MO << '\n');
assert(MO.isReg() && "Unsupported non-reg operand");
Register Reg = MO.getReg();
// Physical registers don't need to be constrained.
if (Reg.isPhysical())
continue;
// Register operands with a value of 0 (e.g. predicate operands) don't need
// to be constrained.
if (Reg == 0)
continue;
// If the operand is a vreg, we should constrain its regclass, and only
// insert COPYs if that's impossible.
// constrainOperandRegClass does that for us.
constrainOperandRegClass(MF, TRI, MRI, TII, RBI, I, I.getDesc(), MO, OpI);
// Tie uses to defs as indicated in MCInstrDesc if this hasn't already been
// done.
if (MO.isUse()) {
int DefIdx = I.getDesc().getOperandConstraint(OpI, MCOI::TIED_TO);
if (DefIdx != -1 && !I.isRegTiedToUseOperand(DefIdx))
I.tieOperands(DefIdx, OpI);
}
}
return true;
}
bool llvm::canReplaceReg(Register DstReg, Register SrcReg,
MachineRegisterInfo &MRI) {
// Give up if either DstReg or SrcReg is a physical register.
if (DstReg.isPhysical() || SrcReg.isPhysical())
return false;
// Give up if the types don't match.
if (MRI.getType(DstReg) != MRI.getType(SrcReg))
return false;
// Replace if either DstReg has no constraints or the register
// constraints match.
const auto &DstRBC = MRI.getRegClassOrRegBank(DstReg);
if (!DstRBC || DstRBC == MRI.getRegClassOrRegBank(SrcReg))
return true;
// Otherwise match if the Src is already a regclass that is covered by the Dst
// RegBank.
return DstRBC.is<const RegisterBank *>() && MRI.getRegClassOrNull(SrcReg) &&
DstRBC.get<const RegisterBank *>()->covers(
*MRI.getRegClassOrNull(SrcReg));
}
bool llvm::isTriviallyDead(const MachineInstr &MI,
const MachineRegisterInfo &MRI) {
// FIXME: This logical is mostly duplicated with
// DeadMachineInstructionElim::isDead. Why is LOCAL_ESCAPE not considered in
// MachineInstr::isLabel?
// Don't delete frame allocation labels.
if (MI.getOpcode() == TargetOpcode::LOCAL_ESCAPE)
return false;
// LIFETIME markers should be preserved even if they seem dead.
if (MI.getOpcode() == TargetOpcode::LIFETIME_START ||
MI.getOpcode() == TargetOpcode::LIFETIME_END)
return false;
// If we can move an instruction, we can remove it. Otherwise, it has
// a side-effect of some sort.
bool SawStore = false;
if (!MI.isSafeToMove(SawStore) && !MI.isPHI())
return false;
// Instructions without side-effects are dead iff they only define dead vregs.
for (const auto &MO : MI.all_defs()) {
Register Reg = MO.getReg();
if (Reg.isPhysical() || !MRI.use_nodbg_empty(Reg))
return false;
}
return true;
}
static void reportGISelDiagnostic(DiagnosticSeverity Severity,
MachineFunction &MF,
const TargetPassConfig &TPC,
MachineOptimizationRemarkEmitter &MORE,
MachineOptimizationRemarkMissed &R) {
bool IsFatal = Severity == DS_Error &&
TPC.isGlobalISelAbortEnabled();
// Print the function name explicitly if we don't have a debug location (which
// makes the diagnostic less useful) or if we're going to emit a raw error.
if (!R.getLocation().isValid() || IsFatal)
R << (" (in function: " + MF.getName() + ")").str();
if (IsFatal)
report_fatal_error(Twine(R.getMsg()));
else
MORE.emit(R);
}
void llvm::reportGISelWarning(MachineFunction &MF, const TargetPassConfig &TPC,
MachineOptimizationRemarkEmitter &MORE,
MachineOptimizationRemarkMissed &R) {
reportGISelDiagnostic(DS_Warning, MF, TPC, MORE, R);
}
void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC,
MachineOptimizationRemarkEmitter &MORE,
MachineOptimizationRemarkMissed &R) {
MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
reportGISelDiagnostic(DS_Error, MF, TPC, MORE, R);
}
void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC,
MachineOptimizationRemarkEmitter &MORE,
const char *PassName, StringRef Msg,
const MachineInstr &MI) {
MachineOptimizationRemarkMissed R(PassName, "GISelFailure: ",
MI.getDebugLoc(), MI.getParent());
R << Msg;
// Printing MI is expensive; only do it if expensive remarks are enabled.
if (TPC.isGlobalISelAbortEnabled() || MORE.allowExtraAnalysis(PassName))
R << ": " << ore::MNV("Inst", MI);
reportGISelFailure(MF, TPC, MORE, R);
}
std::optional<APInt> llvm::getIConstantVRegVal(Register VReg,
const MachineRegisterInfo &MRI) {
std::optional<ValueAndVReg> ValAndVReg = getIConstantVRegValWithLookThrough(
VReg, MRI, /*LookThroughInstrs*/ false);
assert((!ValAndVReg || ValAndVReg->VReg == VReg) &&
"Value found while looking through instrs");
if (!ValAndVReg)
return std::nullopt;
return ValAndVReg->Value;
}
APInt llvm::getIConstantFromReg(Register Reg, const MachineRegisterInfo &MRI) {
MachineInstr *Const = MRI.getVRegDef(Reg);
assert((Const && Const->getOpcode() == TargetOpcode::G_CONSTANT) &&
"expected a G_CONSTANT on Reg");
return Const->getOperand(1).getCImm()->getValue();
}
std::optional<int64_t>
llvm::getIConstantVRegSExtVal(Register VReg, const MachineRegisterInfo &MRI) {
std::optional<APInt> Val = getIConstantVRegVal(VReg, MRI);
if (Val && Val->getBitWidth() <= 64)
return Val->getSExtValue();
return std::nullopt;
}
namespace {
// This function is used in many places, and as such, it has some
// micro-optimizations to try and make it as fast as it can be.
//
// - We use template arguments to avoid an indirect call caused by passing a
// function_ref/std::function
// - GetAPCstValue does not return std::optional<APInt> as that's expensive.
// Instead it returns true/false and places the result in a pre-constructed
// APInt.
//
// Please change this function carefully and benchmark your changes.
template <bool (*IsConstantOpcode)(const MachineInstr *),
bool (*GetAPCstValue)(const MachineInstr *MI, APInt &)>
std::optional<ValueAndVReg>
getConstantVRegValWithLookThrough(Register VReg, const MachineRegisterInfo &MRI,
bool LookThroughInstrs = true,
bool LookThroughAnyExt = false) {
SmallVector<std::pair<unsigned, unsigned>, 4> SeenOpcodes;
MachineInstr *MI;
while ((MI = MRI.getVRegDef(VReg)) && !IsConstantOpcode(MI) &&
LookThroughInstrs) {
switch (MI->getOpcode()) {
case TargetOpcode::G_ANYEXT:
if (!LookThroughAnyExt)
return std::nullopt;
[[fallthrough]];
case TargetOpcode::G_TRUNC:
case TargetOpcode::G_SEXT:
case TargetOpcode::G_ZEXT:
SeenOpcodes.push_back(std::make_pair(
MI->getOpcode(),
MRI.getType(MI->getOperand(0).getReg()).getSizeInBits()));
VReg = MI->getOperand(1).getReg();
break;
case TargetOpcode::COPY:
VReg = MI->getOperand(1).getReg();
if (VReg.isPhysical())
return std::nullopt;
break;
case TargetOpcode::G_INTTOPTR:
VReg = MI->getOperand(1).getReg();
break;
default:
return std::nullopt;
}
}
if (!MI || !IsConstantOpcode(MI))
return std::nullopt;
APInt Val;
if (!GetAPCstValue(MI, Val))
return std::nullopt;
for (auto &Pair : reverse(SeenOpcodes)) {
switch (Pair.first) {
case TargetOpcode::G_TRUNC:
Val = Val.trunc(Pair.second);
break;
case TargetOpcode::G_ANYEXT:
case TargetOpcode::G_SEXT:
Val = Val.sext(Pair.second);
break;
case TargetOpcode::G_ZEXT:
Val = Val.zext(Pair.second);
break;
}
}
return ValueAndVReg{std::move(Val), VReg};
}
bool isIConstant(const MachineInstr *MI) {
if (!MI)
return false;
return MI->getOpcode() == TargetOpcode::G_CONSTANT;
}
bool isFConstant(const MachineInstr *MI) {
if (!MI)
return false;
return MI->getOpcode() == TargetOpcode::G_FCONSTANT;
}
bool isAnyConstant(const MachineInstr *MI) {
if (!MI)
return false;
unsigned Opc = MI->getOpcode();
return Opc == TargetOpcode::G_CONSTANT || Opc == TargetOpcode::G_FCONSTANT;
}
bool getCImmAsAPInt(const MachineInstr *MI, APInt &Result) {
const MachineOperand &CstVal = MI->getOperand(1);
if (!CstVal.isCImm())
return false;
Result = CstVal.getCImm()->getValue();
return true;
}
bool getCImmOrFPImmAsAPInt(const MachineInstr *MI, APInt &Result) {
const MachineOperand &CstVal = MI->getOperand(1);
if (CstVal.isCImm())
Result = CstVal.getCImm()->getValue();
else if (CstVal.isFPImm())
Result = CstVal.getFPImm()->getValueAPF().bitcastToAPInt();
else
return false;
return true;
}
} // end anonymous namespace
std::optional<ValueAndVReg> llvm::getIConstantVRegValWithLookThrough(
Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs) {
return getConstantVRegValWithLookThrough<isIConstant, getCImmAsAPInt>(
VReg, MRI, LookThroughInstrs);
}
std::optional<ValueAndVReg> llvm::getAnyConstantVRegValWithLookThrough(
Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs,
bool LookThroughAnyExt) {
return getConstantVRegValWithLookThrough<isAnyConstant,
getCImmOrFPImmAsAPInt>(
VReg, MRI, LookThroughInstrs, LookThroughAnyExt);
}
std::optional<FPValueAndVReg> llvm::getFConstantVRegValWithLookThrough(
Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs) {
auto Reg =
getConstantVRegValWithLookThrough<isFConstant, getCImmOrFPImmAsAPInt>(
VReg, MRI, LookThroughInstrs);
if (!Reg)
return std::nullopt;
return FPValueAndVReg{getConstantFPVRegVal(Reg->VReg, MRI)->getValueAPF(),
Reg->VReg};
}
const ConstantFP *
llvm::getConstantFPVRegVal(Register VReg, const MachineRegisterInfo &MRI) {
MachineInstr *MI = MRI.getVRegDef(VReg);
if (TargetOpcode::G_FCONSTANT != MI->getOpcode())
return nullptr;
return MI->getOperand(1).getFPImm();
}
std::optional<DefinitionAndSourceRegister>
llvm::getDefSrcRegIgnoringCopies(Register Reg, const MachineRegisterInfo &MRI) {
Register DefSrcReg = Reg;
auto *DefMI = MRI.getVRegDef(Reg);
auto DstTy = MRI.getType(DefMI->getOperand(0).getReg());
if (!DstTy.isValid())
return std::nullopt;
unsigned Opc = DefMI->getOpcode();
while (Opc == TargetOpcode::COPY || isPreISelGenericOptimizationHint(Opc)) {
Register SrcReg = DefMI->getOperand(1).getReg();
auto SrcTy = MRI.getType(SrcReg);
if (!SrcTy.isValid())
break;
DefMI = MRI.getVRegDef(SrcReg);
DefSrcReg = SrcReg;
Opc = DefMI->getOpcode();
}
return DefinitionAndSourceRegister{DefMI, DefSrcReg};
}
MachineInstr *llvm::getDefIgnoringCopies(Register Reg,
const MachineRegisterInfo &MRI) {
std::optional<DefinitionAndSourceRegister> DefSrcReg =
getDefSrcRegIgnoringCopies(Reg, MRI);
return DefSrcReg ? DefSrcReg->MI : nullptr;
}
Register llvm::getSrcRegIgnoringCopies(Register Reg,
const MachineRegisterInfo &MRI) {
std::optional<DefinitionAndSourceRegister> DefSrcReg =
getDefSrcRegIgnoringCopies(Reg, MRI);
return DefSrcReg ? DefSrcReg->Reg : Register();
}
void llvm::extractParts(Register Reg, LLT Ty, int NumParts,
SmallVectorImpl<Register> &VRegs,
MachineIRBuilder &MIRBuilder,
MachineRegisterInfo &MRI) {
for (int i = 0; i < NumParts; ++i)
VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
MIRBuilder.buildUnmerge(VRegs, Reg);
}
bool llvm::extractParts(Register Reg, LLT RegTy, LLT MainTy, LLT &LeftoverTy,
SmallVectorImpl<Register> &VRegs,
SmallVectorImpl<Register> &LeftoverRegs,
MachineIRBuilder &MIRBuilder,
MachineRegisterInfo &MRI) {
assert(!LeftoverTy.isValid() && "this is an out argument");
unsigned RegSize = RegTy.getSizeInBits();
unsigned MainSize = MainTy.getSizeInBits();
unsigned NumParts = RegSize / MainSize;
unsigned LeftoverSize = RegSize - NumParts * MainSize;
// Use an unmerge when possible.
if (LeftoverSize == 0) {
for (unsigned I = 0; I < NumParts; ++I)
VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
MIRBuilder.buildUnmerge(VRegs, Reg);
return true;
}
// Try to use unmerge for irregular vector split where possible
// For example when splitting a <6 x i32> into <4 x i32> with <2 x i32>
// leftover, it becomes:
// <2 x i32> %2, <2 x i32>%3, <2 x i32> %4 = G_UNMERGE_VALUE <6 x i32> %1
// <4 x i32> %5 = G_CONCAT_VECTOR <2 x i32> %2, <2 x i32> %3
if (RegTy.isVector() && MainTy.isVector()) {
unsigned RegNumElts = RegTy.getNumElements();
unsigned MainNumElts = MainTy.getNumElements();
unsigned LeftoverNumElts = RegNumElts % MainNumElts;
// If can unmerge to LeftoverTy, do it
if (MainNumElts % LeftoverNumElts == 0 &&
RegNumElts % LeftoverNumElts == 0 &&
RegTy.getScalarSizeInBits() == MainTy.getScalarSizeInBits() &&
LeftoverNumElts > 1) {
LeftoverTy =
LLT::fixed_vector(LeftoverNumElts, RegTy.getScalarSizeInBits());
// Unmerge the SrcReg to LeftoverTy vectors
SmallVector<Register, 4> UnmergeValues;
extractParts(Reg, LeftoverTy, RegNumElts / LeftoverNumElts, UnmergeValues,
MIRBuilder, MRI);
// Find how many LeftoverTy makes one MainTy
unsigned LeftoverPerMain = MainNumElts / LeftoverNumElts;
unsigned NumOfLeftoverVal =
((RegNumElts % MainNumElts) / LeftoverNumElts);
// Create as many MainTy as possible using unmerged value
SmallVector<Register, 4> MergeValues;
for (unsigned I = 0; I < UnmergeValues.size() - NumOfLeftoverVal; I++) {
MergeValues.push_back(UnmergeValues[I]);
if (MergeValues.size() == LeftoverPerMain) {
VRegs.push_back(
MIRBuilder.buildMergeLikeInstr(MainTy, MergeValues).getReg(0));
MergeValues.clear();
}
}
// Populate LeftoverRegs with the leftovers
for (unsigned I = UnmergeValues.size() - NumOfLeftoverVal;
I < UnmergeValues.size(); I++) {
LeftoverRegs.push_back(UnmergeValues[I]);
}
return true;
}
}
// Perform irregular split. Leftover is last element of RegPieces.
if (MainTy.isVector()) {
SmallVector<Register, 8> RegPieces;
extractVectorParts(Reg, MainTy.getNumElements(), RegPieces, MIRBuilder,
MRI);
for (unsigned i = 0; i < RegPieces.size() - 1; ++i)
VRegs.push_back(RegPieces[i]);
LeftoverRegs.push_back(RegPieces[RegPieces.size() - 1]);
LeftoverTy = MRI.getType(LeftoverRegs[0]);
return true;
}
LeftoverTy = LLT::scalar(LeftoverSize);
// For irregular sizes, extract the individual parts.
for (unsigned I = 0; I != NumParts; ++I) {
Register NewReg = MRI.createGenericVirtualRegister(MainTy);
VRegs.push_back(NewReg);
MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
}
for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
Offset += LeftoverSize) {
Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
LeftoverRegs.push_back(NewReg);
MIRBuilder.buildExtract(NewReg, Reg, Offset);
}
return true;
}
void llvm::extractVectorParts(Register Reg, unsigned NumElts,
SmallVectorImpl<Register> &VRegs,
MachineIRBuilder &MIRBuilder,
MachineRegisterInfo &MRI) {
LLT RegTy = MRI.getType(Reg);
assert(RegTy.isVector() && "Expected a vector type");
LLT EltTy = RegTy.getElementType();
LLT NarrowTy = (NumElts == 1) ? EltTy : LLT::fixed_vector(NumElts, EltTy);
unsigned RegNumElts = RegTy.getNumElements();
unsigned LeftoverNumElts = RegNumElts % NumElts;
unsigned NumNarrowTyPieces = RegNumElts / NumElts;
// Perfect split without leftover
if (LeftoverNumElts == 0)
return extractParts(Reg, NarrowTy, NumNarrowTyPieces, VRegs, MIRBuilder,
MRI);
// Irregular split. Provide direct access to all elements for artifact
// combiner using unmerge to elements. Then build vectors with NumElts
// elements. Remaining element(s) will be (used to build vector) Leftover.
SmallVector<Register, 8> Elts;
extractParts(Reg, EltTy, RegNumElts, Elts, MIRBuilder, MRI);
unsigned Offset = 0;
// Requested sub-vectors of NarrowTy.
for (unsigned i = 0; i < NumNarrowTyPieces; ++i, Offset += NumElts) {
ArrayRef<Register> Pieces(&Elts[Offset], NumElts);
VRegs.push_back(MIRBuilder.buildMergeLikeInstr(NarrowTy, Pieces).getReg(0));
}
// Leftover element(s).
if (LeftoverNumElts == 1) {
VRegs.push_back(Elts[Offset]);
} else {
LLT LeftoverTy = LLT::fixed_vector(LeftoverNumElts, EltTy);
ArrayRef<Register> Pieces(&Elts[Offset], LeftoverNumElts);
VRegs.push_back(
MIRBuilder.buildMergeLikeInstr(LeftoverTy, Pieces).getReg(0));
}
}
MachineInstr *llvm::getOpcodeDef(unsigned Opcode, Register Reg,
const MachineRegisterInfo &MRI) {
MachineInstr *DefMI = getDefIgnoringCopies(Reg, MRI);
return DefMI && DefMI->getOpcode() == Opcode ? DefMI : nullptr;
}
APFloat llvm::getAPFloatFromSize(double Val, unsigned Size) {
if (Size == 32)
return APFloat(float(Val));
if (Size == 64)
return APFloat(Val);
if (Size != 16)
llvm_unreachable("Unsupported FPConstant size");
bool Ignored;
APFloat APF(Val);
APF.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &Ignored);
return APF;
}
std::optional<APInt> llvm::ConstantFoldBinOp(unsigned Opcode,
const Register Op1,
const Register Op2,
const MachineRegisterInfo &MRI) {
auto MaybeOp2Cst = getAnyConstantVRegValWithLookThrough(Op2, MRI, false);
if (!MaybeOp2Cst)
return std::nullopt;
auto MaybeOp1Cst = getAnyConstantVRegValWithLookThrough(Op1, MRI, false);
if (!MaybeOp1Cst)
return std::nullopt;
const APInt &C1 = MaybeOp1Cst->Value;
const APInt &C2 = MaybeOp2Cst->Value;
switch (Opcode) {
default:
break;
case TargetOpcode::G_ADD:
return C1 + C2;
case TargetOpcode::G_PTR_ADD:
// Types can be of different width here.
// Result needs to be the same width as C1, so trunc or sext C2.
return C1 + C2.sextOrTrunc(C1.getBitWidth());
case TargetOpcode::G_AND:
return C1 & C2;
case TargetOpcode::G_ASHR:
return C1.ashr(C2);
case TargetOpcode::G_LSHR:
return C1.lshr(C2);
case TargetOpcode::G_MUL:
return C1 * C2;
case TargetOpcode::G_OR:
return C1 | C2;
case TargetOpcode::G_SHL:
return C1 << C2;
case TargetOpcode::G_SUB:
return C1 - C2;
case TargetOpcode::G_XOR:
return C1 ^ C2;
case TargetOpcode::G_UDIV:
if (!C2.getBoolValue())
break;
return C1.udiv(C2);
case TargetOpcode::G_SDIV:
if (!C2.getBoolValue())
break;
return C1.sdiv(C2);
case TargetOpcode::G_UREM:
if (!C2.getBoolValue())
break;
return C1.urem(C2);
case TargetOpcode::G_SREM:
if (!C2.getBoolValue())
break;
return C1.srem(C2);
case TargetOpcode::G_SMIN:
return APIntOps::smin(C1, C2);
case TargetOpcode::G_SMAX:
return APIntOps::smax(C1, C2);
case TargetOpcode::G_UMIN:
return APIntOps::umin(C1, C2);
case TargetOpcode::G_UMAX:
return APIntOps::umax(C1, C2);
}
return std::nullopt;
}
std::optional<APFloat>
llvm::ConstantFoldFPBinOp(unsigned Opcode, const Register Op1,
const Register Op2, const MachineRegisterInfo &MRI) {
const ConstantFP *Op2Cst = getConstantFPVRegVal(Op2, MRI);
if (!Op2Cst)
return std::nullopt;
const ConstantFP *Op1Cst = getConstantFPVRegVal(Op1, MRI);
if (!Op1Cst)
return std::nullopt;
APFloat C1 = Op1Cst->getValueAPF();
const APFloat &C2 = Op2Cst->getValueAPF();
switch (Opcode) {
case TargetOpcode::G_FADD:
C1.add(C2, APFloat::rmNearestTiesToEven);
return C1;
case TargetOpcode::G_FSUB:
C1.subtract(C2, APFloat::rmNearestTiesToEven);
return C1;
case TargetOpcode::G_FMUL:
C1.multiply(C2, APFloat::rmNearestTiesToEven);
return C1;
case TargetOpcode::G_FDIV:
C1.divide(C2, APFloat::rmNearestTiesToEven);
return C1;
case TargetOpcode::G_FREM:
C1.mod(C2);
return C1;
case TargetOpcode::G_FCOPYSIGN:
C1.copySign(C2);
return C1;
case TargetOpcode::G_FMINNUM:
return minnum(C1, C2);
case TargetOpcode::G_FMAXNUM:
return maxnum(C1, C2);
case TargetOpcode::G_FMINIMUM:
return minimum(C1, C2);
case TargetOpcode::G_FMAXIMUM:
return maximum(C1, C2);
case TargetOpcode::G_FMINNUM_IEEE:
case TargetOpcode::G_FMAXNUM_IEEE:
// FIXME: These operations were unfortunately named. fminnum/fmaxnum do not
// follow the IEEE behavior for signaling nans and follow libm's fmin/fmax,
// and currently there isn't a nice wrapper in APFloat for the version with
// correct snan handling.
break;
default:
break;
}
return std::nullopt;
}
SmallVector<APInt>
llvm::ConstantFoldVectorBinop(unsigned Opcode, const Register Op1,
const Register Op2,
const MachineRegisterInfo &MRI) {
auto *SrcVec2 = getOpcodeDef<GBuildVector>(Op2, MRI);
if (!SrcVec2)
return SmallVector<APInt>();
auto *SrcVec1 = getOpcodeDef<GBuildVector>(Op1, MRI);
if (!SrcVec1)
return SmallVector<APInt>();
SmallVector<APInt> FoldedElements;
for (unsigned Idx = 0, E = SrcVec1->getNumSources(); Idx < E; ++Idx) {
auto MaybeCst = ConstantFoldBinOp(Opcode, SrcVec1->getSourceReg(Idx),
SrcVec2->getSourceReg(Idx), MRI);
if (!MaybeCst)
return SmallVector<APInt>();
FoldedElements.push_back(*MaybeCst);
}
return FoldedElements;
}
bool llvm::isKnownNeverNaN(Register Val, const MachineRegisterInfo &MRI,
bool SNaN) {
const MachineInstr *DefMI = MRI.getVRegDef(Val);
if (!DefMI)
return false;
const TargetMachine& TM = DefMI->getMF()->getTarget();
if (DefMI->getFlag(MachineInstr::FmNoNans) || TM.Options.NoNaNsFPMath)
return true;
// If the value is a constant, we can obviously see if it is a NaN or not.
if (const ConstantFP *FPVal = getConstantFPVRegVal(Val, MRI)) {
return !FPVal->getValueAPF().isNaN() ||
(SNaN && !FPVal->getValueAPF().isSignaling());
}
if (DefMI->getOpcode() == TargetOpcode::G_BUILD_VECTOR) {
for (const auto &Op : DefMI->uses())
if (!isKnownNeverNaN(Op.getReg(), MRI, SNaN))
return false;
return true;
}
switch (DefMI->getOpcode()) {
default:
break;
case TargetOpcode::G_FADD:
case TargetOpcode::G_FSUB:
case TargetOpcode::G_FMUL:
case TargetOpcode::G_FDIV:
case TargetOpcode::G_FREM:
case TargetOpcode::G_FSIN:
case TargetOpcode::G_FCOS:
case TargetOpcode::G_FTAN:
case TargetOpcode::G_FACOS:
case TargetOpcode::G_FASIN:
case TargetOpcode::G_FATAN:
case TargetOpcode::G_FCOSH:
case TargetOpcode::G_FSINH:
case TargetOpcode::G_FTANH:
case TargetOpcode::G_FMA:
case TargetOpcode::G_FMAD:
if (SNaN)
return true;
// TODO: Need isKnownNeverInfinity
return false;
case TargetOpcode::G_FMINNUM_IEEE:
case TargetOpcode::G_FMAXNUM_IEEE: {
if (SNaN)
return true;
// This can return a NaN if either operand is an sNaN, or if both operands
// are NaN.
return (isKnownNeverNaN(DefMI->getOperand(1).getReg(), MRI) &&
isKnownNeverSNaN(DefMI->getOperand(2).getReg(), MRI)) ||
(isKnownNeverSNaN(DefMI->getOperand(1).getReg(), MRI) &&
isKnownNeverNaN(DefMI->getOperand(2).getReg(), MRI));
}
case TargetOpcode::G_FMINNUM:
case TargetOpcode::G_FMAXNUM: {
// Only one needs to be known not-nan, since it will be returned if the
// other ends up being one.
return isKnownNeverNaN(DefMI->getOperand(1).getReg(), MRI, SNaN) ||
isKnownNeverNaN(DefMI->getOperand(2).getReg(), MRI, SNaN);
}
}
if (SNaN) {
// FP operations quiet. For now, just handle the ones inserted during
// legalization.
switch (DefMI->getOpcode()) {
case TargetOpcode::G_FPEXT:
case TargetOpcode::G_FPTRUNC:
case TargetOpcode::G_FCANONICALIZE:
return true;
default:
return false;
}
}
return false;
}
Align llvm::inferAlignFromPtrInfo(MachineFunction &MF,
const MachinePointerInfo &MPO) {
auto PSV = dyn_cast_if_present<const PseudoSourceValue *>(MPO.V);
if (auto FSPV = dyn_cast_or_null<FixedStackPseudoSourceValue>(PSV)) {
MachineFrameInfo &MFI = MF.getFrameInfo();
return commonAlignment(MFI.getObjectAlign(FSPV->getFrameIndex()),
MPO.Offset);
}
if (const Value *V = dyn_cast_if_present<const Value *>(MPO.V)) {
const Module *M = MF.getFunction().getParent();
return V->getPointerAlignment(M->getDataLayout());
}
return Align(1);
}
Register llvm::getFunctionLiveInPhysReg(MachineFunction &MF,
const TargetInstrInfo &TII,
MCRegister PhysReg,
const TargetRegisterClass &RC,
const DebugLoc &DL, LLT RegTy) {
MachineBasicBlock &EntryMBB = MF.front();
MachineRegisterInfo &MRI = MF.getRegInfo();
Register LiveIn = MRI.getLiveInVirtReg(PhysReg);
if (LiveIn) {
MachineInstr *Def = MRI.getVRegDef(LiveIn);
if (Def) {
// FIXME: Should the verifier check this is in the entry block?
assert(Def->getParent() == &EntryMBB && "live-in copy not in entry block");
return LiveIn;
}
// It's possible the incoming argument register and copy was added during
// lowering, but later deleted due to being/becoming dead. If this happens,
// re-insert the copy.
} else {
// The live in register was not present, so add it.
LiveIn = MF.addLiveIn(PhysReg, &RC);
if (RegTy.isValid())
MRI.setType(LiveIn, RegTy);
}
BuildMI(EntryMBB, EntryMBB.begin(), DL, TII.get(TargetOpcode::COPY), LiveIn)
.addReg(PhysReg);
if (!EntryMBB.isLiveIn(PhysReg))
EntryMBB.addLiveIn(PhysReg);
return LiveIn;
}
std::optional<APInt> llvm::ConstantFoldExtOp(unsigned Opcode,
const Register Op1, uint64_t Imm,
const MachineRegisterInfo &MRI) {
auto MaybeOp1Cst = getIConstantVRegVal(Op1, MRI);
if (MaybeOp1Cst) {
switch (Opcode) {
default:
break;
case TargetOpcode::G_SEXT_INREG: {
LLT Ty = MRI.getType(Op1);
return MaybeOp1Cst->trunc(Imm).sext(Ty.getScalarSizeInBits());
}
}
}
return std::nullopt;
}
std::optional<APInt> llvm::ConstantFoldCastOp(unsigned Opcode, LLT DstTy,
const Register Op0,
const MachineRegisterInfo &MRI) {
std::optional<APInt> Val = getIConstantVRegVal(Op0, MRI);
if (!Val)
return Val;
const unsigned DstSize = DstTy.getScalarSizeInBits();
switch (Opcode) {
case TargetOpcode::G_SEXT:
return Val->sext(DstSize);
case TargetOpcode::G_ZEXT:
case TargetOpcode::G_ANYEXT:
// TODO: DAG considers target preference when constant folding any_extend.
return Val->zext(DstSize);
default:
break;
}
llvm_unreachable("unexpected cast opcode to constant fold");
}
std::optional<APFloat>
llvm::ConstantFoldIntToFloat(unsigned Opcode, LLT DstTy, Register Src,
const MachineRegisterInfo &MRI) {
assert(Opcode == TargetOpcode::G_SITOFP || Opcode == TargetOpcode::G_UITOFP);
if (auto MaybeSrcVal = getIConstantVRegVal(Src, MRI)) {
APFloat DstVal(getFltSemanticForLLT(DstTy));
DstVal.convertFromAPInt(*MaybeSrcVal, Opcode == TargetOpcode::G_SITOFP,
APFloat::rmNearestTiesToEven);
return DstVal;
}
return std::nullopt;
}
std::optional<SmallVector<unsigned>>
llvm::ConstantFoldCountZeros(Register Src, const MachineRegisterInfo &MRI,
std::function<unsigned(APInt)> CB) {
LLT Ty = MRI.getType(Src);
SmallVector<unsigned> FoldedCTLZs;
auto tryFoldScalar = [&](Register R) -> std::optional<unsigned> {
auto MaybeCst = getIConstantVRegVal(R, MRI);
if (!MaybeCst)
return std::nullopt;
return CB(*MaybeCst);
};
if (Ty.isVector()) {
// Try to constant fold each element.
auto *BV = getOpcodeDef<GBuildVector>(Src, MRI);
if (!BV)
return std::nullopt;
for (unsigned SrcIdx = 0; SrcIdx < BV->getNumSources(); ++SrcIdx) {
if (auto MaybeFold = tryFoldScalar(BV->getSourceReg(SrcIdx))) {
FoldedCTLZs.emplace_back(*MaybeFold);
continue;
}
return std::nullopt;
}
return FoldedCTLZs;
}
if (auto MaybeCst = tryFoldScalar(Src)) {
FoldedCTLZs.emplace_back(*MaybeCst);
return FoldedCTLZs;
}
return std::nullopt;
}
std::optional<SmallVector<APInt>>
llvm::ConstantFoldICmp(unsigned Pred, const Register Op1, const Register Op2,
const MachineRegisterInfo &MRI) {
LLT Ty = MRI.getType(Op1);
if (Ty != MRI.getType(Op2))
return std::nullopt;
auto TryFoldScalar = [&MRI, Pred](Register LHS,
Register RHS) -> std::optional<APInt> {
auto LHSCst = getIConstantVRegVal(LHS, MRI);
auto RHSCst = getIConstantVRegVal(RHS, MRI);
if (!LHSCst || !RHSCst)
return std::nullopt;
switch (Pred) {
case CmpInst::Predicate::ICMP_EQ:
return APInt(/*numBits=*/1, LHSCst->eq(*RHSCst));
case CmpInst::Predicate::ICMP_NE:
return APInt(/*numBits=*/1, LHSCst->ne(*RHSCst));
case CmpInst::Predicate::ICMP_UGT:
return APInt(/*numBits=*/1, LHSCst->ugt(*RHSCst));
case CmpInst::Predicate::ICMP_UGE:
return APInt(/*numBits=*/1, LHSCst->uge(*RHSCst));
case CmpInst::Predicate::ICMP_ULT:
return APInt(/*numBits=*/1, LHSCst->ult(*RHSCst));
case CmpInst::Predicate::ICMP_ULE:
return APInt(/*numBits=*/1, LHSCst->ule(*RHSCst));
case CmpInst::Predicate::ICMP_SGT:
return APInt(/*numBits=*/1, LHSCst->sgt(*RHSCst));
case CmpInst::Predicate::ICMP_SGE:
return APInt(/*numBits=*/1, LHSCst->sge(*RHSCst));
case CmpInst::Predicate::ICMP_SLT:
return APInt(/*numBits=*/1, LHSCst->slt(*RHSCst));
case CmpInst::Predicate::ICMP_SLE:
return APInt(/*numBits=*/1, LHSCst->sle(*RHSCst));
default:
return std::nullopt;
}
};
SmallVector<APInt> FoldedICmps;
if (Ty.isVector()) {
// Try to constant fold each element.
auto *BV1 = getOpcodeDef<GBuildVector>(Op1, MRI);
auto *BV2 = getOpcodeDef<GBuildVector>(Op2, MRI);
if (!BV1 || !BV2)
return std::nullopt;
assert(BV1->getNumSources() == BV2->getNumSources() && "Invalid vectors");
for (unsigned I = 0; I < BV1->getNumSources(); ++I) {
if (auto MaybeFold =
TryFoldScalar(BV1->getSourceReg(I), BV2->getSourceReg(I))) {
FoldedICmps.emplace_back(*MaybeFold);
continue;
}
return std::nullopt;
}
return FoldedICmps;
}
if (auto MaybeCst = TryFoldScalar(Op1, Op2)) {
FoldedICmps.emplace_back(*MaybeCst);
return FoldedICmps;
}
return std::nullopt;
}
bool llvm::isKnownToBeAPowerOfTwo(Register Reg, const MachineRegisterInfo &MRI,
GISelKnownBits *KB) {
std::optional<DefinitionAndSourceRegister> DefSrcReg =
getDefSrcRegIgnoringCopies(Reg, MRI);
if (!DefSrcReg)
return false;
const MachineInstr &MI = *DefSrcReg->MI;
const LLT Ty = MRI.getType(Reg);
switch (MI.getOpcode()) {
case TargetOpcode::G_CONSTANT: {
unsigned BitWidth = Ty.getScalarSizeInBits();
const ConstantInt *CI = MI.getOperand(1).getCImm();
return CI->getValue().zextOrTrunc(BitWidth).isPowerOf2();
}
case TargetOpcode::G_SHL: {
// A left-shift of a constant one will have exactly one bit set because
// shifting the bit off the end is undefined.
// TODO: Constant splat
if (auto ConstLHS = getIConstantVRegVal(MI.getOperand(1).getReg(), MRI)) {
if (*ConstLHS == 1)
return true;
}
break;
}
case TargetOpcode::G_LSHR: {
if (auto ConstLHS = getIConstantVRegVal(MI.getOperand(1).getReg(), MRI)) {
if (ConstLHS->isSignMask())
return true;
}
break;
}
case TargetOpcode::G_BUILD_VECTOR: {
// TODO: Probably should have a recursion depth guard since you could have
// bitcasted vector elements.
for (const MachineOperand &MO : llvm::drop_begin(MI.operands()))
if (!isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB))
return false;
return true;
}
case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
// Only handle constants since we would need to know if number of leading
// zeros is greater than the truncation amount.
const unsigned BitWidth = Ty.getScalarSizeInBits();
for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) {
auto Const = getIConstantVRegVal(MO.getReg(), MRI);
if (!Const || !Const->zextOrTrunc(BitWidth).isPowerOf2())
return false;
}
return true;
}
default:
break;
}
if (!KB)
return false;
// More could be done here, though the above checks are enough
// to handle some common cases.
// Fall back to computeKnownBits to catch other known cases.
KnownBits Known = KB->getKnownBits(Reg);
return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
}
void llvm::getSelectionDAGFallbackAnalysisUsage(AnalysisUsage &AU) {
AU.addPreserved<StackProtector>();
}
LLT llvm::getLCMType(LLT OrigTy, LLT TargetTy) {
if (OrigTy.getSizeInBits() == TargetTy.getSizeInBits())
return OrigTy;
if (OrigTy.isVector() && TargetTy.isVector()) {
LLT OrigElt = OrigTy.getElementType();
LLT TargetElt = TargetTy.getElementType();
// TODO: The docstring for this function says the intention is to use this
// function to build MERGE/UNMERGE instructions. It won't be the case that
// we generate a MERGE/UNMERGE between fixed and scalable vector types. We
// could implement getLCMType between the two in the future if there was a
// need, but it is not worth it now as this function should not be used in
// that way.
assert(((OrigTy.isScalableVector() && !TargetTy.isFixedVector()) ||
(OrigTy.isFixedVector() && !TargetTy.isScalableVector())) &&
"getLCMType not implemented between fixed and scalable vectors.");
if (OrigElt.getSizeInBits() == TargetElt.getSizeInBits()) {
int GCDMinElts = std::gcd(OrigTy.getElementCount().getKnownMinValue(),
TargetTy.getElementCount().getKnownMinValue());
// Prefer the original element type.
ElementCount Mul = OrigTy.getElementCount().multiplyCoefficientBy(
TargetTy.getElementCount().getKnownMinValue());
return LLT::vector(Mul.divideCoefficientBy(GCDMinElts),
OrigTy.getElementType());
}
unsigned LCM = std::lcm(OrigTy.getSizeInBits().getKnownMinValue(),
TargetTy.getSizeInBits().getKnownMinValue());
return LLT::vector(
ElementCount::get(LCM / OrigElt.getSizeInBits(), OrigTy.isScalable()),
OrigElt);
}
// One type is scalar, one type is vector
if (OrigTy.isVector() || TargetTy.isVector()) {
LLT VecTy = OrigTy.isVector() ? OrigTy : TargetTy;
LLT ScalarTy = OrigTy.isVector() ? TargetTy : OrigTy;
LLT EltTy = VecTy.getElementType();
LLT OrigEltTy = OrigTy.isVector() ? OrigTy.getElementType() : OrigTy;
// Prefer scalar type from OrigTy.
if (EltTy.getSizeInBits() == ScalarTy.getSizeInBits())
return LLT::vector(VecTy.getElementCount(), OrigEltTy);
// Different size scalars. Create vector with the same total size.
// LCM will take fixed/scalable from VecTy.
unsigned LCM = std::lcm(EltTy.getSizeInBits().getFixedValue() *
VecTy.getElementCount().getKnownMinValue(),
ScalarTy.getSizeInBits().getFixedValue());
// Prefer type from OrigTy
return LLT::vector(ElementCount::get(LCM / OrigEltTy.getSizeInBits(),
VecTy.getElementCount().isScalable()),
OrigEltTy);
}
// At this point, both types are scalars of different size
unsigned LCM = std::lcm(OrigTy.getSizeInBits().getFixedValue(),
TargetTy.getSizeInBits().getFixedValue());
// Preserve pointer types.
if (LCM == OrigTy.getSizeInBits())
return OrigTy;
if (LCM == TargetTy.getSizeInBits())
return TargetTy;
return LLT::scalar(LCM);
}
LLT llvm::getCoverTy(LLT OrigTy, LLT TargetTy) {
if ((OrigTy.isScalableVector() && TargetTy.isFixedVector()) ||
(OrigTy.isFixedVector() && TargetTy.isScalableVector()))
llvm_unreachable(
"getCoverTy not implemented between fixed and scalable vectors.");
if (!OrigTy.isVector() || !TargetTy.isVector() || OrigTy == TargetTy ||
(OrigTy.getScalarSizeInBits() != TargetTy.getScalarSizeInBits()))
return getLCMType(OrigTy, TargetTy);
unsigned OrigTyNumElts = OrigTy.getElementCount().getKnownMinValue();
unsigned TargetTyNumElts = TargetTy.getElementCount().getKnownMinValue();
if (OrigTyNumElts % TargetTyNumElts == 0)
return OrigTy;
unsigned NumElts = alignTo(OrigTyNumElts, TargetTyNumElts);
return LLT::scalarOrVector(ElementCount::getFixed(NumElts),
OrigTy.getElementType());
}
LLT llvm::getGCDType(LLT OrigTy, LLT TargetTy) {
if (OrigTy.getSizeInBits() == TargetTy.getSizeInBits())
return OrigTy;
if (OrigTy.isVector() && TargetTy.isVector()) {
LLT OrigElt = OrigTy.getElementType();
// TODO: The docstring for this function says the intention is to use this
// function to build MERGE/UNMERGE instructions. It won't be the case that
// we generate a MERGE/UNMERGE between fixed and scalable vector types. We
// could implement getGCDType between the two in the future if there was a
// need, but it is not worth it now as this function should not be used in
// that way.
assert(((OrigTy.isScalableVector() && !TargetTy.isFixedVector()) ||
(OrigTy.isFixedVector() && !TargetTy.isScalableVector())) &&
"getGCDType not implemented between fixed and scalable vectors.");
unsigned GCD = std::gcd(OrigTy.getSizeInBits().getKnownMinValue(),
TargetTy.getSizeInBits().getKnownMinValue());
if (GCD == OrigElt.getSizeInBits())
return LLT::scalarOrVector(ElementCount::get(1, OrigTy.isScalable()),
OrigElt);
// Cannot produce original element type, but both have vscale in common.
if (GCD < OrigElt.getSizeInBits())
return LLT::scalarOrVector(ElementCount::get(1, OrigTy.isScalable()),
GCD);
return LLT::vector(
ElementCount::get(GCD / OrigElt.getSizeInBits().getFixedValue(),
OrigTy.isScalable()),
OrigElt);
}
// If one type is vector and the element size matches the scalar size, then
// the gcd is the scalar type.
if (OrigTy.isVector() &&
OrigTy.getElementType().getSizeInBits() == TargetTy.getSizeInBits())
return OrigTy.getElementType();
if (TargetTy.isVector() &&
TargetTy.getElementType().getSizeInBits() == OrigTy.getSizeInBits())
return OrigTy;
// At this point, both types are either scalars of different type or one is a
// vector and one is a scalar. If both types are scalars, the GCD type is the
// GCD between the two scalar sizes. If one is vector and one is scalar, then
// the GCD type is the GCD between the scalar and the vector element size.
LLT OrigScalar = OrigTy.getScalarType();
LLT TargetScalar = TargetTy.getScalarType();
unsigned GCD = std::gcd(OrigScalar.getSizeInBits().getFixedValue(),
TargetScalar.getSizeInBits().getFixedValue());
return LLT::scalar(GCD);
}
std::optional<int> llvm::getSplatIndex(MachineInstr &MI) {
assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR &&
"Only G_SHUFFLE_VECTOR can have a splat index!");
ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
auto FirstDefinedIdx = find_if(Mask, [](int Elt) { return Elt >= 0; });
// If all elements are undefined, this shuffle can be considered a splat.
// Return 0 for better potential for callers to simplify.
if (FirstDefinedIdx == Mask.end())
return 0;
// Make sure all remaining elements are either undef or the same
// as the first non-undef value.
int SplatValue = *FirstDefinedIdx;
if (any_of(make_range(std::next(FirstDefinedIdx), Mask.end()),
[&SplatValue](int Elt) { return Elt >= 0 && Elt != SplatValue; }))
return std::nullopt;
return SplatValue;
}
static bool isBuildVectorOp(unsigned Opcode) {
return Opcode == TargetOpcode::G_BUILD_VECTOR ||
Opcode == TargetOpcode::G_BUILD_VECTOR_TRUNC;
}
namespace {
std::optional<ValueAndVReg> getAnyConstantSplat(Register VReg,
const MachineRegisterInfo &MRI,
bool AllowUndef) {
MachineInstr *MI = getDefIgnoringCopies(VReg, MRI);
if (!MI)
return std::nullopt;
bool isConcatVectorsOp = MI->getOpcode() == TargetOpcode::G_CONCAT_VECTORS;
if (!isBuildVectorOp(MI->getOpcode()) && !isConcatVectorsOp)
return std::nullopt;
std::optional<ValueAndVReg> SplatValAndReg;
for (MachineOperand &Op : MI->uses()) {
Register Element = Op.getReg();
// If we have a G_CONCAT_VECTOR, we recursively look into the
// vectors that we're concatenating to see if they're splats.
auto ElementValAndReg =
isConcatVectorsOp
? getAnyConstantSplat(Element, MRI, AllowUndef)
: getAnyConstantVRegValWithLookThrough(Element, MRI, true, true);
// If AllowUndef, treat undef as value that will result in a constant splat.
if (!ElementValAndReg) {
if (AllowUndef && isa<GImplicitDef>(MRI.getVRegDef(Element)))
continue;
return std::nullopt;
}
// Record splat value
if (!SplatValAndReg)
SplatValAndReg = ElementValAndReg;
// Different constant than the one already recorded, not a constant splat.
if (SplatValAndReg->Value != ElementValAndReg->Value)
return std::nullopt;
}
return SplatValAndReg;
}
} // end anonymous namespace
bool llvm::isBuildVectorConstantSplat(const Register Reg,
const MachineRegisterInfo &MRI,
int64_t SplatValue, bool AllowUndef) {
if (auto SplatValAndReg = getAnyConstantSplat(Reg, MRI, AllowUndef))
return mi_match(SplatValAndReg->VReg, MRI, m_SpecificICst(SplatValue));
return false;
}
bool llvm::isBuildVectorConstantSplat(const MachineInstr &MI,
const MachineRegisterInfo &MRI,
int64_t SplatValue, bool AllowUndef) {
return isBuildVectorConstantSplat(MI.getOperand(0).getReg(), MRI, SplatValue,
AllowUndef);
}
std::optional<APInt>
llvm::getIConstantSplatVal(const Register Reg, const MachineRegisterInfo &MRI) {
if (auto SplatValAndReg =
getAnyConstantSplat(Reg, MRI, /* AllowUndef */ false)) {
if (std::optional<ValueAndVReg> ValAndVReg =
getIConstantVRegValWithLookThrough(SplatValAndReg->VReg, MRI))
return ValAndVReg->Value;
}
return std::nullopt;
}
std::optional<APInt>
llvm::getIConstantSplatVal(const MachineInstr &MI,
const MachineRegisterInfo &MRI) {
return getIConstantSplatVal(MI.getOperand(0).getReg(), MRI);
}
std::optional<int64_t>
llvm::getIConstantSplatSExtVal(const Register Reg,
const MachineRegisterInfo &MRI) {
if (auto SplatValAndReg =
getAnyConstantSplat(Reg, MRI, /* AllowUndef */ false))
return getIConstantVRegSExtVal(SplatValAndReg->VReg, MRI);
return std::nullopt;
}
std::optional<int64_t>
llvm::getIConstantSplatSExtVal(const MachineInstr &MI,
const MachineRegisterInfo &MRI) {
return getIConstantSplatSExtVal(MI.getOperand(0).getReg(), MRI);
}
std::optional<FPValueAndVReg>
llvm::getFConstantSplat(Register VReg, const MachineRegisterInfo &MRI,
bool AllowUndef) {
if (auto SplatValAndReg = getAnyConstantSplat(VReg, MRI, AllowUndef))
return getFConstantVRegValWithLookThrough(SplatValAndReg->VReg, MRI);
return std::nullopt;
}
bool llvm::isBuildVectorAllZeros(const MachineInstr &MI,
const MachineRegisterInfo &MRI,
bool AllowUndef) {
return isBuildVectorConstantSplat(MI, MRI, 0, AllowUndef);
}
bool llvm::isBuildVectorAllOnes(const MachineInstr &MI,
const MachineRegisterInfo &MRI,
bool AllowUndef) {
return isBuildVectorConstantSplat(MI, MRI, -1, AllowUndef);
}
std::optional<RegOrConstant>
llvm::getVectorSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI) {
unsigned Opc = MI.getOpcode();
if (!isBuildVectorOp(Opc))
return std::nullopt;
if (auto Splat = getIConstantSplatSExtVal(MI, MRI))
return RegOrConstant(*Splat);
auto Reg = MI.getOperand(1).getReg();
if (any_of(drop_begin(MI.operands(), 2),
[&Reg](const MachineOperand &Op) { return Op.getReg() != Reg; }))
return std::nullopt;
return RegOrConstant(Reg);
}
static bool isConstantScalar(const MachineInstr &MI,
const MachineRegisterInfo &MRI,
bool AllowFP = true,
bool AllowOpaqueConstants = true) {
switch (MI.getOpcode()) {
case TargetOpcode::G_CONSTANT:
case TargetOpcode::G_IMPLICIT_DEF:
return true;
case TargetOpcode::G_FCONSTANT:
return AllowFP;
case TargetOpcode::G_GLOBAL_VALUE:
case TargetOpcode::G_FRAME_INDEX:
case TargetOpcode::G_BLOCK_ADDR:
case TargetOpcode::G_JUMP_TABLE:
return AllowOpaqueConstants;
default:
return false;
}
}
bool llvm::isConstantOrConstantVector(MachineInstr &MI,
const MachineRegisterInfo &MRI) {
Register Def = MI.getOperand(0).getReg();
if (auto C = getIConstantVRegValWithLookThrough(Def, MRI))
return true;
GBuildVector *BV = dyn_cast<GBuildVector>(&MI);
if (!BV)
return false;
for (unsigned SrcIdx = 0; SrcIdx < BV->getNumSources(); ++SrcIdx) {
if (getIConstantVRegValWithLookThrough(BV->getSourceReg(SrcIdx), MRI) ||
getOpcodeDef<GImplicitDef>(BV->getSourceReg(SrcIdx), MRI))
continue;
return false;
}
return true;
}
bool llvm::isConstantOrConstantVector(const MachineInstr &MI,
const MachineRegisterInfo &MRI,
bool AllowFP, bool AllowOpaqueConstants) {
if (isConstantScalar(MI, MRI, AllowFP, AllowOpaqueConstants))
return true;
if (!isBuildVectorOp(MI.getOpcode()))
return false;
const unsigned NumOps = MI.getNumOperands();
for (unsigned I = 1; I != NumOps; ++I) {
const MachineInstr *ElementDef = MRI.getVRegDef(MI.getOperand(I).getReg());
if (!isConstantScalar(*ElementDef, MRI, AllowFP, AllowOpaqueConstants))
return false;
}
return true;
}
std::optional<APInt>
llvm::isConstantOrConstantSplatVector(MachineInstr &MI,
const MachineRegisterInfo &MRI) {
Register Def = MI.getOperand(0).getReg();
if (auto C = getIConstantVRegValWithLookThrough(Def, MRI))
return C->Value;
auto MaybeCst = getIConstantSplatSExtVal(MI, MRI);
if (!MaybeCst)
return std::nullopt;
const unsigned ScalarSize = MRI.getType(Def).getScalarSizeInBits();
return APInt(ScalarSize, *MaybeCst, true);
}
bool llvm::isNullOrNullSplat(const MachineInstr &MI,
const MachineRegisterInfo &MRI, bool AllowUndefs) {
switch (MI.getOpcode()) {
case TargetOpcode::G_IMPLICIT_DEF:
return AllowUndefs;
case TargetOpcode::G_CONSTANT:
return MI.getOperand(1).getCImm()->isNullValue();
case TargetOpcode::G_FCONSTANT: {
const ConstantFP *FPImm = MI.getOperand(1).getFPImm();
return FPImm->isZero() && !FPImm->isNegative();
}
default:
if (!AllowUndefs) // TODO: isBuildVectorAllZeros assumes undef is OK already
return false;
return isBuildVectorAllZeros(MI, MRI);
}
}
bool llvm::isAllOnesOrAllOnesSplat(const MachineInstr &MI,
const MachineRegisterInfo &MRI,
bool AllowUndefs) {
switch (MI.getOpcode()) {
case TargetOpcode::G_IMPLICIT_DEF:
return AllowUndefs;
case TargetOpcode::G_CONSTANT:
return MI.getOperand(1).getCImm()->isAllOnesValue();
default:
if (!AllowUndefs) // TODO: isBuildVectorAllOnes assumes undef is OK already
return false;
return isBuildVectorAllOnes(MI, MRI);
}
}
bool llvm::matchUnaryPredicate(
const MachineRegisterInfo &MRI, Register Reg,
std::function<bool(const Constant *ConstVal)> Match, bool AllowUndefs) {
const MachineInstr *Def = getDefIgnoringCopies(Reg, MRI);
if (AllowUndefs && Def->getOpcode() == TargetOpcode::G_IMPLICIT_DEF)
return Match(nullptr);
// TODO: Also handle fconstant
if (Def->getOpcode() == TargetOpcode::G_CONSTANT)
return Match(Def->getOperand(1).getCImm());
if (Def->getOpcode() != TargetOpcode::G_BUILD_VECTOR)
return false;
for (unsigned I = 1, E = Def->getNumOperands(); I != E; ++I) {
Register SrcElt = Def->getOperand(I).getReg();
const MachineInstr *SrcDef = getDefIgnoringCopies(SrcElt, MRI);
if (AllowUndefs && SrcDef->getOpcode() == TargetOpcode::G_IMPLICIT_DEF) {
if (!Match(nullptr))
return false;
continue;
}
if (SrcDef->getOpcode() != TargetOpcode::G_CONSTANT ||
!Match(SrcDef->getOperand(1).getCImm()))
return false;
}
return true;
}
bool llvm::isConstTrueVal(const TargetLowering &TLI, int64_t Val, bool IsVector,
bool IsFP) {
switch (TLI.getBooleanContents(IsVector, IsFP)) {
case TargetLowering::UndefinedBooleanContent:
return Val & 0x1;
case TargetLowering::ZeroOrOneBooleanContent:
return Val == 1;
case TargetLowering::ZeroOrNegativeOneBooleanContent:
return Val == -1;
}
llvm_unreachable("Invalid boolean contents");
}
bool llvm::isConstFalseVal(const TargetLowering &TLI, int64_t Val,
bool IsVector, bool IsFP) {
switch (TLI.getBooleanContents(IsVector, IsFP)) {
case TargetLowering::UndefinedBooleanContent:
return ~Val & 0x1;
case TargetLowering::ZeroOrOneBooleanContent:
case TargetLowering::ZeroOrNegativeOneBooleanContent:
return Val == 0;
}
llvm_unreachable("Invalid boolean contents");
}
int64_t llvm::getICmpTrueVal(const TargetLowering &TLI, bool IsVector,
bool IsFP) {
switch (TLI.getBooleanContents(IsVector, IsFP)) {
case TargetLowering::UndefinedBooleanContent:
case TargetLowering::ZeroOrOneBooleanContent:
return 1;
case TargetLowering::ZeroOrNegativeOneBooleanContent:
return -1;
}
llvm_unreachable("Invalid boolean contents");
}
bool llvm::shouldOptForSize(const MachineBasicBlock &MBB,
ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) {
const auto &F = MBB.getParent()->getFunction();
return F.hasOptSize() || F.hasMinSize() ||
llvm::shouldOptimizeForSize(MBB.getBasicBlock(), PSI, BFI);
}
void llvm::saveUsesAndErase(MachineInstr &MI, MachineRegisterInfo &MRI,
LostDebugLocObserver *LocObserver,
SmallInstListTy &DeadInstChain) {
for (MachineOperand &Op : MI.uses()) {
if (Op.isReg() && Op.getReg().isVirtual())
DeadInstChain.insert(MRI.getVRegDef(Op.getReg()));
}
LLVM_DEBUG(dbgs() << MI << "Is dead; erasing.\n");
DeadInstChain.remove(&MI);
MI.eraseFromParent();
if (LocObserver)
LocObserver->checkpoint(false);
}
void llvm::eraseInstrs(ArrayRef<MachineInstr *> DeadInstrs,
MachineRegisterInfo &MRI,
LostDebugLocObserver *LocObserver) {
SmallInstListTy DeadInstChain;
for (MachineInstr *MI : DeadInstrs)
saveUsesAndErase(*MI, MRI, LocObserver, DeadInstChain);
while (!DeadInstChain.empty()) {
MachineInstr *Inst = DeadInstChain.pop_back_val();
if (!isTriviallyDead(*Inst, MRI))
continue;
saveUsesAndErase(*Inst, MRI, LocObserver, DeadInstChain);
}
}
void llvm::eraseInstr(MachineInstr &MI, MachineRegisterInfo &MRI,
LostDebugLocObserver *LocObserver) {
return eraseInstrs({&MI}, MRI, LocObserver);
}
void llvm::salvageDebugInfo(const MachineRegisterInfo &MRI, MachineInstr &MI) {
for (auto &Def : MI.defs()) {
assert(Def.isReg() && "Must be a reg");
SmallVector<MachineOperand *, 16> DbgUsers;
for (auto &MOUse : MRI.use_operands(Def.getReg())) {
MachineInstr *DbgValue = MOUse.getParent();
// Ignore partially formed DBG_VALUEs.
if (DbgValue->isNonListDebugValue() && DbgValue->getNumOperands() == 4) {
DbgUsers.push_back(&MOUse);
}
}
if (!DbgUsers.empty()) {
salvageDebugInfoForDbgValue(MRI, MI, DbgUsers);
}
}
}
bool llvm::isPreISelGenericFloatingPointOpcode(unsigned Opc) {
switch (Opc) {
case TargetOpcode::G_FABS:
case TargetOpcode::G_FADD:
case TargetOpcode::G_FCANONICALIZE:
case TargetOpcode::G_FCEIL:
case TargetOpcode::G_FCONSTANT:
case TargetOpcode::G_FCOPYSIGN:
case TargetOpcode::G_FCOS:
case TargetOpcode::G_FDIV:
case TargetOpcode::G_FEXP2:
case TargetOpcode::G_FEXP:
case TargetOpcode::G_FFLOOR:
case TargetOpcode::G_FLOG10:
case TargetOpcode::G_FLOG2:
case TargetOpcode::G_FLOG:
case TargetOpcode::G_FMA:
case TargetOpcode::G_FMAD:
case TargetOpcode::G_FMAXIMUM:
case TargetOpcode::G_FMAXNUM:
case TargetOpcode::G_FMAXNUM_IEEE:
case TargetOpcode::G_FMINIMUM:
case TargetOpcode::G_FMINNUM:
case TargetOpcode::G_FMINNUM_IEEE:
case TargetOpcode::G_FMUL:
case TargetOpcode::G_FNEARBYINT:
case TargetOpcode::G_FNEG:
case TargetOpcode::G_FPEXT:
case TargetOpcode::G_FPOW:
case TargetOpcode::G_FPTRUNC:
case TargetOpcode::G_FREM:
case TargetOpcode::G_FRINT:
case TargetOpcode::G_FSIN:
case TargetOpcode::G_FTAN:
case TargetOpcode::G_FACOS:
case TargetOpcode::G_FASIN:
case TargetOpcode::G_FATAN:
case TargetOpcode::G_FCOSH:
case TargetOpcode::G_FSINH:
case TargetOpcode::G_FTANH:
case TargetOpcode::G_FSQRT:
case TargetOpcode::G_FSUB:
case TargetOpcode::G_INTRINSIC_ROUND:
case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
case TargetOpcode::G_INTRINSIC_TRUNC:
return true;
default:
return false;
}
}
/// Shifts return poison if shiftwidth is larger than the bitwidth.
static bool shiftAmountKnownInRange(Register ShiftAmount,
const MachineRegisterInfo &MRI) {
LLT Ty = MRI.getType(ShiftAmount);
if (Ty.isScalableVector())
return false; // Can't tell, just return false to be safe
if (Ty.isScalar()) {
std::optional<ValueAndVReg> Val =
getIConstantVRegValWithLookThrough(ShiftAmount, MRI);
if (!Val)
return false;
return Val->Value.ult(Ty.getScalarSizeInBits());
}
GBuildVector *BV = getOpcodeDef<GBuildVector>(ShiftAmount, MRI);
if (!BV)
return false;
unsigned Sources = BV->getNumSources();
for (unsigned I = 0; I < Sources; ++I) {
std::optional<ValueAndVReg> Val =
getIConstantVRegValWithLookThrough(BV->getSourceReg(I), MRI);
if (!Val)
return false;
if (!Val->Value.ult(Ty.getScalarSizeInBits()))
return false;
}
return true;
}
namespace {
enum class UndefPoisonKind {
PoisonOnly = (1 << 0),
UndefOnly = (1 << 1),
UndefOrPoison = PoisonOnly | UndefOnly,
};
}
static bool includesPoison(UndefPoisonKind Kind) {
return (unsigned(Kind) & unsigned(UndefPoisonKind::PoisonOnly)) != 0;
}
static bool includesUndef(UndefPoisonKind Kind) {
return (unsigned(Kind) & unsigned(UndefPoisonKind::UndefOnly)) != 0;
}
static bool canCreateUndefOrPoison(Register Reg, const MachineRegisterInfo &MRI,
bool ConsiderFlagsAndMetadata,
UndefPoisonKind Kind) {
MachineInstr *RegDef = MRI.getVRegDef(Reg);
if (ConsiderFlagsAndMetadata && includesPoison(Kind))
if (auto *GMI = dyn_cast<GenericMachineInstr>(RegDef))
if (GMI->hasPoisonGeneratingFlags())
return true;
// Check whether opcode is a poison/undef-generating operation.
switch (RegDef->getOpcode()) {
case TargetOpcode::G_BUILD_VECTOR:
case TargetOpcode::G_CONSTANT_FOLD_BARRIER:
return false;
case TargetOpcode::G_SHL:
case TargetOpcode::G_ASHR:
case TargetOpcode::G_LSHR:
return includesPoison(Kind) &&
!shiftAmountKnownInRange(RegDef->getOperand(2).getReg(), MRI);
case TargetOpcode::G_FPTOSI:
case TargetOpcode::G_FPTOUI:
// fptosi/ui yields poison if the resulting value does not fit in the
// destination type.
return true;
case TargetOpcode::G_CTLZ:
case TargetOpcode::G_CTTZ:
case TargetOpcode::G_ABS:
case TargetOpcode::G_CTPOP:
case TargetOpcode::G_BSWAP:
case TargetOpcode::G_BITREVERSE:
case TargetOpcode::G_FSHL:
case TargetOpcode::G_FSHR:
case TargetOpcode::G_SMAX:
case TargetOpcode::G_SMIN:
case TargetOpcode::G_UMAX:
case TargetOpcode::G_UMIN:
case TargetOpcode::G_PTRMASK:
case TargetOpcode::G_SADDO:
case TargetOpcode::G_SSUBO:
case TargetOpcode::G_UADDO:
case TargetOpcode::G_USUBO:
case TargetOpcode::G_SMULO:
case TargetOpcode::G_UMULO:
case TargetOpcode::G_SADDSAT:
case TargetOpcode::G_UADDSAT:
case TargetOpcode::G_SSUBSAT:
case TargetOpcode::G_USUBSAT:
return false;
case TargetOpcode::G_SSHLSAT:
case TargetOpcode::G_USHLSAT:
return includesPoison(Kind) &&
!shiftAmountKnownInRange(RegDef->getOperand(2).getReg(), MRI);
case TargetOpcode::G_INSERT_VECTOR_ELT: {
GInsertVectorElement *Insert = cast<GInsertVectorElement>(RegDef);
if (includesPoison(Kind)) {
std::optional<ValueAndVReg> Index =
getIConstantVRegValWithLookThrough(Insert->getIndexReg(), MRI);
if (!Index)
return true;
LLT VecTy = MRI.getType(Insert->getVectorReg());
return Index->Value.uge(VecTy.getElementCount().getKnownMinValue());
}
return false;
}
case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
GExtractVectorElement *Extract = cast<GExtractVectorElement>(RegDef);
if (includesPoison(Kind)) {
std::optional<ValueAndVReg> Index =
getIConstantVRegValWithLookThrough(Extract->getIndexReg(), MRI);
if (!Index)
return true;
LLT VecTy = MRI.getType(Extract->getVectorReg());
return Index->Value.uge(VecTy.getElementCount().getKnownMinValue());
}
return false;
}
case TargetOpcode::G_SHUFFLE_VECTOR: {
GShuffleVector *Shuffle = cast<GShuffleVector>(RegDef);
ArrayRef<int> Mask = Shuffle->getMask();
return includesPoison(Kind) && is_contained(Mask, -1);
}
case TargetOpcode::G_FNEG:
case TargetOpcode::G_PHI:
case TargetOpcode::G_SELECT:
case TargetOpcode::G_UREM:
case TargetOpcode::G_SREM:
case TargetOpcode::G_FREEZE:
case TargetOpcode::G_ICMP:
case TargetOpcode::G_FCMP:
case TargetOpcode::G_FADD:
case TargetOpcode::G_FSUB:
case TargetOpcode::G_FMUL:
case TargetOpcode::G_FDIV:
case TargetOpcode::G_FREM:
case TargetOpcode::G_PTR_ADD:
return false;
default:
return !isa<GCastOp>(RegDef) && !isa<GBinOp>(RegDef);
}
}
static bool isGuaranteedNotToBeUndefOrPoison(Register Reg,
const MachineRegisterInfo &MRI,
unsigned Depth,
UndefPoisonKind Kind) {
if (Depth >= MaxAnalysisRecursionDepth)
return false;
MachineInstr *RegDef = MRI.getVRegDef(Reg);
switch (RegDef->getOpcode()) {
case TargetOpcode::G_FREEZE:
return true;
case TargetOpcode::G_IMPLICIT_DEF:
return !includesUndef(Kind);
case TargetOpcode::G_CONSTANT:
case TargetOpcode::G_FCONSTANT:
return true;
case TargetOpcode::G_BUILD_VECTOR: {
GBuildVector *BV = cast<GBuildVector>(RegDef);
unsigned NumSources = BV->getNumSources();
for (unsigned I = 0; I < NumSources; ++I)
if (!::isGuaranteedNotToBeUndefOrPoison(BV->getSourceReg(I), MRI,
Depth + 1, Kind))
return false;
return true;
}
case TargetOpcode::G_PHI: {
GPhi *Phi = cast<GPhi>(RegDef);
unsigned NumIncoming = Phi->getNumIncomingValues();
for (unsigned I = 0; I < NumIncoming; ++I)
if (!::isGuaranteedNotToBeUndefOrPoison(Phi->getIncomingValue(I), MRI,
Depth + 1, Kind))
return false;
return true;
}
default: {
auto MOCheck = [&](const MachineOperand &MO) {
if (!MO.isReg())
return true;
return ::isGuaranteedNotToBeUndefOrPoison(MO.getReg(), MRI, Depth + 1,
Kind);
};
return !::canCreateUndefOrPoison(Reg, MRI,
/*ConsiderFlagsAndMetadata=*/true, Kind) &&
all_of(RegDef->uses(), MOCheck);
}
}
}
bool llvm::canCreateUndefOrPoison(Register Reg, const MachineRegisterInfo &MRI,
bool ConsiderFlagsAndMetadata) {
return ::canCreateUndefOrPoison(Reg, MRI, ConsiderFlagsAndMetadata,
UndefPoisonKind::UndefOrPoison);
}
bool canCreatePoison(Register Reg, const MachineRegisterInfo &MRI,
bool ConsiderFlagsAndMetadata = true) {
return ::canCreateUndefOrPoison(Reg, MRI, ConsiderFlagsAndMetadata,
UndefPoisonKind::PoisonOnly);
}
bool llvm::isGuaranteedNotToBeUndefOrPoison(Register Reg,
const MachineRegisterInfo &MRI,
unsigned Depth) {
return ::isGuaranteedNotToBeUndefOrPoison(Reg, MRI, Depth,
UndefPoisonKind::UndefOrPoison);
}
bool llvm::isGuaranteedNotToBePoison(Register Reg,
const MachineRegisterInfo &MRI,
unsigned Depth) {
return ::isGuaranteedNotToBeUndefOrPoison(Reg, MRI, Depth,
UndefPoisonKind::PoisonOnly);
}
bool llvm::isGuaranteedNotToBeUndef(Register Reg,
const MachineRegisterInfo &MRI,
unsigned Depth) {
return ::isGuaranteedNotToBeUndefOrPoison(Reg, MRI, Depth,
UndefPoisonKind::UndefOnly);
}
Type *llvm::getTypeForLLT(LLT Ty, LLVMContext &C) {
if (Ty.isVector())
return VectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()),
Ty.getElementCount());
return IntegerType::get(C, Ty.getSizeInBits());
}