| //===- IndirectCallPromotion.cpp - Optimizations based on value profiling -===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the transformation that promotes indirect calls to |
| // conditional direct calls when the indirect-call value profile metadata is |
| // available. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/Analysis/IndirectCallPromotionAnalysis.h" |
| #include "llvm/Analysis/IndirectCallVisitor.h" |
| #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
| #include "llvm/Analysis/ProfileSummaryInfo.h" |
| #include "llvm/Analysis/TypeMetadataUtils.h" |
| #include "llvm/IR/DiagnosticInfo.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/MDBuilder.h" |
| #include "llvm/IR/PassManager.h" |
| #include "llvm/IR/ProfDataUtils.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/ProfileData/InstrProf.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/Error.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/Instrumentation.h" |
| #include "llvm/Transforms/Instrumentation/PGOInstrumentation.h" |
| #include "llvm/Transforms/Utils/CallPromotionUtils.h" |
| #include <cassert> |
| #include <cstdint> |
| #include <memory> |
| #include <set> |
| #include <string> |
| #include <unordered_map> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "pgo-icall-prom" |
| |
| STATISTIC(NumOfPGOICallPromotion, "Number of indirect call promotions."); |
| STATISTIC(NumOfPGOICallsites, "Number of indirect call candidate sites."); |
| |
| extern cl::opt<unsigned> MaxNumVTableAnnotations; |
| |
| namespace llvm { |
| extern cl::opt<bool> EnableVTableProfileUse; |
| } |
| |
| // Command line option to disable indirect-call promotion with the default as |
| // false. This is for debug purpose. |
| static cl::opt<bool> DisableICP("disable-icp", cl::init(false), cl::Hidden, |
| cl::desc("Disable indirect call promotion")); |
| |
| // Set the cutoff value for the promotion. If the value is other than 0, we |
| // stop the transformation once the total number of promotions equals the cutoff |
| // value. |
| // For debug use only. |
| static cl::opt<unsigned> |
| ICPCutOff("icp-cutoff", cl::init(0), cl::Hidden, |
| cl::desc("Max number of promotions for this compilation")); |
| |
| // If ICPCSSkip is non zero, the first ICPCSSkip callsites will be skipped. |
| // For debug use only. |
| static cl::opt<unsigned> |
| ICPCSSkip("icp-csskip", cl::init(0), cl::Hidden, |
| cl::desc("Skip Callsite up to this number for this compilation")); |
| |
| // Set if the pass is called in LTO optimization. The difference for LTO mode |
| // is the pass won't prefix the source module name to the internal linkage |
| // symbols. |
| static cl::opt<bool> ICPLTOMode("icp-lto", cl::init(false), cl::Hidden, |
| cl::desc("Run indirect-call promotion in LTO " |
| "mode")); |
| |
| // Set if the pass is called in SamplePGO mode. The difference for SamplePGO |
| // mode is it will add prof metadatato the created direct call. |
| static cl::opt<bool> |
| ICPSamplePGOMode("icp-samplepgo", cl::init(false), cl::Hidden, |
| cl::desc("Run indirect-call promotion in SamplePGO mode")); |
| |
| // If the option is set to true, only call instructions will be considered for |
| // transformation -- invoke instructions will be ignored. |
| static cl::opt<bool> |
| ICPCallOnly("icp-call-only", cl::init(false), cl::Hidden, |
| cl::desc("Run indirect-call promotion for call instructions " |
| "only")); |
| |
| // If the option is set to true, only invoke instructions will be considered for |
| // transformation -- call instructions will be ignored. |
| static cl::opt<bool> ICPInvokeOnly("icp-invoke-only", cl::init(false), |
| cl::Hidden, |
| cl::desc("Run indirect-call promotion for " |
| "invoke instruction only")); |
| |
| // Dump the function level IR if the transformation happened in this |
| // function. For debug use only. |
| static cl::opt<bool> |
| ICPDUMPAFTER("icp-dumpafter", cl::init(false), cl::Hidden, |
| cl::desc("Dump IR after transformation happens")); |
| |
| // Indirect call promotion pass will fall back to function-based comparison if |
| // vtable-count / function-count is smaller than this threshold. |
| static cl::opt<float> ICPVTablePercentageThreshold( |
| "icp-vtable-percentage-threshold", cl::init(0.99), cl::Hidden, |
| cl::desc("The percentage threshold of vtable-count / function-count for " |
| "cost-benefit analysis.")); |
| |
| // Although comparing vtables can save a vtable load, we may need to compare |
| // vtable pointer with multiple vtable address points due to class inheritance. |
| // Comparing with multiple vtables inserts additional instructions on hot code |
| // path, and doing so for an earlier candidate delays the comparisons for later |
| // candidates. For the last candidate, only the fallback path is affected. |
| // We allow multiple vtable comparison for the last function candidate and use |
| // the option below to cap the number of vtables. |
| static cl::opt<int> ICPMaxNumVTableLastCandidate( |
| "icp-max-num-vtable-last-candidate", cl::init(1), cl::Hidden, |
| cl::desc("The maximum number of vtable for the last candidate.")); |
| |
| namespace { |
| |
| // The key is a vtable global variable, and the value is a map. |
| // In the inner map, the key represents address point offsets and the value is a |
| // constant for this address point. |
| using VTableAddressPointOffsetValMap = |
| SmallDenseMap<const GlobalVariable *, std::unordered_map<int, Constant *>>; |
| |
| // A struct to collect type information for a virtual call site. |
| struct VirtualCallSiteInfo { |
| // The offset from the address point to virtual function in the vtable. |
| uint64_t FunctionOffset; |
| // The instruction that computes the address point of vtable. |
| Instruction *VPtr; |
| // The compatible type used in LLVM type intrinsics. |
| StringRef CompatibleTypeStr; |
| }; |
| |
| // The key is a virtual call, and value is its type information. |
| using VirtualCallSiteTypeInfoMap = |
| SmallDenseMap<const CallBase *, VirtualCallSiteInfo>; |
| |
| // The key is vtable GUID, and value is its value profile count. |
| using VTableGUIDCountsMap = SmallDenseMap<uint64_t, uint64_t, 16>; |
| |
| // Return the address point offset of the given compatible type. |
| // |
| // Type metadata of a vtable specifies the types that can contain a pointer to |
| // this vtable, for example, `Base*` can be a pointer to an derived type |
| // but not vice versa. See also https://llvm.org/docs/TypeMetadata.html |
| static std::optional<uint64_t> |
| getAddressPointOffset(const GlobalVariable &VTableVar, |
| StringRef CompatibleType) { |
| SmallVector<MDNode *> Types; |
| VTableVar.getMetadata(LLVMContext::MD_type, Types); |
| |
| for (MDNode *Type : Types) |
| if (auto *TypeId = dyn_cast<MDString>(Type->getOperand(1).get()); |
| TypeId && TypeId->getString() == CompatibleType) |
| return cast<ConstantInt>( |
| cast<ConstantAsMetadata>(Type->getOperand(0))->getValue()) |
| ->getZExtValue(); |
| |
| return std::nullopt; |
| } |
| |
| // Return a constant representing the vtable's address point specified by the |
| // offset. |
| static Constant *getVTableAddressPointOffset(GlobalVariable *VTable, |
| uint32_t AddressPointOffset) { |
| Module &M = *VTable->getParent(); |
| LLVMContext &Context = M.getContext(); |
| assert(AddressPointOffset < |
| M.getDataLayout().getTypeAllocSize(VTable->getValueType()) && |
| "Out-of-bound access"); |
| |
| return ConstantExpr::getInBoundsGetElementPtr( |
| Type::getInt8Ty(Context), VTable, |
| llvm::ConstantInt::get(Type::getInt32Ty(Context), AddressPointOffset)); |
| } |
| |
| // Return the basic block in which Use `U` is used via its `UserInst`. |
| static BasicBlock *getUserBasicBlock(Use &U, Instruction *UserInst) { |
| if (PHINode *PN = dyn_cast<PHINode>(UserInst)) |
| return PN->getIncomingBlock(U); |
| |
| return UserInst->getParent(); |
| } |
| |
| // `DestBB` is a suitable basic block to sink `Inst` into when `Inst` have users |
| // and all users are in `DestBB`. The caller guarantees that `Inst->getParent()` |
| // is the sole predecessor of `DestBB` and `DestBB` is dominated by |
| // `Inst->getParent()`. |
| static bool isDestBBSuitableForSink(Instruction *Inst, BasicBlock *DestBB) { |
| // 'BB' is used only by assert. |
| [[maybe_unused]] BasicBlock *BB = Inst->getParent(); |
| |
| assert(BB != DestBB && BB->getTerminator()->getNumSuccessors() == 2 && |
| DestBB->getUniquePredecessor() == BB && |
| "Guaranteed by ICP transformation"); |
| |
| BasicBlock *UserBB = nullptr; |
| for (Use &Use : Inst->uses()) { |
| User *User = Use.getUser(); |
| // Do checked cast since IR verifier guarantees that the user of an |
| // instruction must be an instruction. See `Verifier::visitInstruction`. |
| Instruction *UserInst = cast<Instruction>(User); |
| // We can sink debug or pseudo instructions together with Inst. |
| if (UserInst->isDebugOrPseudoInst()) |
| continue; |
| UserBB = getUserBasicBlock(Use, UserInst); |
| // Do not sink if Inst is used in a basic block that is not DestBB. |
| // TODO: Sink to the common dominator of all user blocks. |
| if (UserBB != DestBB) |
| return false; |
| } |
| return UserBB != nullptr; |
| } |
| |
| // For the virtual call dispatch sequence, try to sink vtable load instructions |
| // to the cold indirect call fallback. |
| // FIXME: Move the sink eligibility check below to a utility function in |
| // Transforms/Utils/ directory. |
| static bool tryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) { |
| if (!isDestBBSuitableForSink(I, DestBlock)) |
| return false; |
| |
| // Do not move control-flow-involving, volatile loads, vaarg, alloca |
| // instructions, etc. |
| if (isa<PHINode>(I) || I->isEHPad() || I->mayThrow() || !I->willReturn() || |
| isa<AllocaInst>(I)) |
| return false; |
| |
| // Do not sink convergent call instructions. |
| if (const auto *C = dyn_cast<CallBase>(I)) |
| if (C->isInlineAsm() || C->cannotMerge() || C->isConvergent()) |
| return false; |
| |
| // Do not move an instruction that may write to memory. |
| if (I->mayWriteToMemory()) |
| return false; |
| |
| // We can only sink load instructions if there is nothing between the load and |
| // the end of block that could change the value. |
| if (I->mayReadFromMemory()) { |
| // We already know that SrcBlock is the unique predecessor of DestBlock. |
| for (BasicBlock::iterator Scan = std::next(I->getIterator()), |
| E = I->getParent()->end(); |
| Scan != E; ++Scan) { |
| // Note analysis analysis can tell whether two pointers can point to the |
| // same object in memory or not thereby find further opportunities to |
| // sink. |
| if (Scan->mayWriteToMemory()) |
| return false; |
| } |
| } |
| |
| BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt(); |
| I->moveBefore(*DestBlock, InsertPos); |
| |
| // TODO: Sink debug intrinsic users of I to 'DestBlock'. |
| // 'InstCombinerImpl::tryToSinkInstructionDbgValues' and |
| // 'InstCombinerImpl::tryToSinkInstructionDbgVariableRecords' already have |
| // the core logic to do this. |
| return true; |
| } |
| |
| // Try to sink instructions after VPtr to the indirect call fallback. |
| // Return the number of sunk IR instructions. |
| static int tryToSinkInstructions(BasicBlock *OriginalBB, |
| BasicBlock *IndirectCallBB) { |
| int SinkCount = 0; |
| // Do not sink across a critical edge for simplicity. |
| if (IndirectCallBB->getUniquePredecessor() != OriginalBB) |
| return SinkCount; |
| // Sink all eligible instructions in OriginalBB in reverse order. |
| for (Instruction &I : |
| llvm::make_early_inc_range(llvm::drop_begin(llvm::reverse(*OriginalBB)))) |
| if (tryToSinkInstruction(&I, IndirectCallBB)) |
| SinkCount++; |
| |
| return SinkCount; |
| } |
| |
| // Promote indirect calls to conditional direct calls, keeping track of |
| // thresholds. |
| class IndirectCallPromoter { |
| private: |
| Function &F; |
| Module &M; |
| |
| ProfileSummaryInfo *PSI = nullptr; |
| |
| // Symtab that maps indirect call profile values to function names and |
| // defines. |
| InstrProfSymtab *const Symtab; |
| |
| const bool SamplePGO; |
| |
| // A map from a virtual call to its type information. |
| const VirtualCallSiteTypeInfoMap &VirtualCSInfo; |
| |
| VTableAddressPointOffsetValMap &VTableAddressPointOffsetVal; |
| |
| OptimizationRemarkEmitter &ORE; |
| |
| // A struct that records the direct target and it's call count. |
| struct PromotionCandidate { |
| Function *const TargetFunction; |
| const uint64_t Count; |
| |
| // The following fields only exists for promotion candidates with vtable |
| // information. |
| // |
| // Due to class inheritance, one virtual call candidate can come from |
| // multiple vtables. `VTableGUIDAndCounts` tracks the vtable GUIDs and |
| // counts for 'TargetFunction'. `AddressPoints` stores the vtable address |
| // points for comparison. |
| VTableGUIDCountsMap VTableGUIDAndCounts; |
| SmallVector<Constant *> AddressPoints; |
| |
| PromotionCandidate(Function *F, uint64_t C) : TargetFunction(F), Count(C) {} |
| }; |
| |
| // Check if the indirect-call call site should be promoted. Return the number |
| // of promotions. Inst is the candidate indirect call, ValueDataRef |
| // contains the array of value profile data for profiled targets, |
| // TotalCount is the total profiled count of call executions, and |
| // NumCandidates is the number of candidate entries in ValueDataRef. |
| std::vector<PromotionCandidate> getPromotionCandidatesForCallSite( |
| const CallBase &CB, ArrayRef<InstrProfValueData> ValueDataRef, |
| uint64_t TotalCount, uint32_t NumCandidates); |
| |
| // Promote a list of targets for one indirect-call callsite by comparing |
| // indirect callee with functions. Return true if there are IR |
| // transformations and false otherwise. |
| bool tryToPromoteWithFuncCmp(CallBase &CB, Instruction *VPtr, |
| ArrayRef<PromotionCandidate> Candidates, |
| uint64_t TotalCount, |
| ArrayRef<InstrProfValueData> ICallProfDataRef, |
| uint32_t NumCandidates, |
| VTableGUIDCountsMap &VTableGUIDCounts); |
| |
| // Promote a list of targets for one indirect call by comparing vtables with |
| // functions. Return true if there are IR transformations and false |
| // otherwise. |
| bool tryToPromoteWithVTableCmp( |
| CallBase &CB, Instruction *VPtr, ArrayRef<PromotionCandidate> Candidates, |
| uint64_t TotalFuncCount, uint32_t NumCandidates, |
| MutableArrayRef<InstrProfValueData> ICallProfDataRef, |
| VTableGUIDCountsMap &VTableGUIDCounts); |
| |
| // Return true if it's profitable to compare vtables for the callsite. |
| bool isProfitableToCompareVTables(const CallBase &CB, |
| ArrayRef<PromotionCandidate> Candidates, |
| uint64_t TotalCount); |
| |
| // Given an indirect callsite and the list of function candidates, compute |
| // the following vtable information in output parameters and return vtable |
| // pointer if type profiles exist. |
| // - Populate `VTableGUIDCounts` with <vtable-guid, count> using !prof |
| // metadata attached on the vtable pointer. |
| // - For each function candidate, finds out the vtables from which it gets |
| // called and stores the <vtable-guid, count> in promotion candidate. |
| Instruction *computeVTableInfos(const CallBase *CB, |
| VTableGUIDCountsMap &VTableGUIDCounts, |
| std::vector<PromotionCandidate> &Candidates); |
| |
| Constant *getOrCreateVTableAddressPointVar(GlobalVariable *GV, |
| uint64_t AddressPointOffset); |
| |
| void updateFuncValueProfiles(CallBase &CB, ArrayRef<InstrProfValueData> VDs, |
| uint64_t Sum, uint32_t MaxMDCount); |
| |
| void updateVPtrValueProfiles(Instruction *VPtr, |
| VTableGUIDCountsMap &VTableGUIDCounts); |
| |
| public: |
| IndirectCallPromoter( |
| Function &Func, Module &M, ProfileSummaryInfo *PSI, |
| InstrProfSymtab *Symtab, bool SamplePGO, |
| const VirtualCallSiteTypeInfoMap &VirtualCSInfo, |
| VTableAddressPointOffsetValMap &VTableAddressPointOffsetVal, |
| OptimizationRemarkEmitter &ORE) |
| : F(Func), M(M), PSI(PSI), Symtab(Symtab), SamplePGO(SamplePGO), |
| VirtualCSInfo(VirtualCSInfo), |
| VTableAddressPointOffsetVal(VTableAddressPointOffsetVal), ORE(ORE) {} |
| IndirectCallPromoter(const IndirectCallPromoter &) = delete; |
| IndirectCallPromoter &operator=(const IndirectCallPromoter &) = delete; |
| |
| bool processFunction(ProfileSummaryInfo *PSI); |
| }; |
| |
| } // end anonymous namespace |
| |
| // Indirect-call promotion heuristic. The direct targets are sorted based on |
| // the count. Stop at the first target that is not promoted. |
| std::vector<IndirectCallPromoter::PromotionCandidate> |
| IndirectCallPromoter::getPromotionCandidatesForCallSite( |
| const CallBase &CB, ArrayRef<InstrProfValueData> ValueDataRef, |
| uint64_t TotalCount, uint32_t NumCandidates) { |
| std::vector<PromotionCandidate> Ret; |
| |
| LLVM_DEBUG(dbgs() << " \nWork on callsite #" << NumOfPGOICallsites << CB |
| << " Num_targets: " << ValueDataRef.size() |
| << " Num_candidates: " << NumCandidates << "\n"); |
| NumOfPGOICallsites++; |
| if (ICPCSSkip != 0 && NumOfPGOICallsites <= ICPCSSkip) { |
| LLVM_DEBUG(dbgs() << " Skip: User options.\n"); |
| return Ret; |
| } |
| |
| for (uint32_t I = 0; I < NumCandidates; I++) { |
| uint64_t Count = ValueDataRef[I].Count; |
| assert(Count <= TotalCount); |
| (void)TotalCount; |
| uint64_t Target = ValueDataRef[I].Value; |
| LLVM_DEBUG(dbgs() << " Candidate " << I << " Count=" << Count |
| << " Target_func: " << Target << "\n"); |
| |
| if (ICPInvokeOnly && isa<CallInst>(CB)) { |
| LLVM_DEBUG(dbgs() << " Not promote: User options.\n"); |
| ORE.emit([&]() { |
| return OptimizationRemarkMissed(DEBUG_TYPE, "UserOptions", &CB) |
| << " Not promote: User options"; |
| }); |
| break; |
| } |
| if (ICPCallOnly && isa<InvokeInst>(CB)) { |
| LLVM_DEBUG(dbgs() << " Not promote: User option.\n"); |
| ORE.emit([&]() { |
| return OptimizationRemarkMissed(DEBUG_TYPE, "UserOptions", &CB) |
| << " Not promote: User options"; |
| }); |
| break; |
| } |
| if (ICPCutOff != 0 && NumOfPGOICallPromotion >= ICPCutOff) { |
| LLVM_DEBUG(dbgs() << " Not promote: Cutoff reached.\n"); |
| ORE.emit([&]() { |
| return OptimizationRemarkMissed(DEBUG_TYPE, "CutOffReached", &CB) |
| << " Not promote: Cutoff reached"; |
| }); |
| break; |
| } |
| |
| // Don't promote if the symbol is not defined in the module. This avoids |
| // creating a reference to a symbol that doesn't exist in the module |
| // This can happen when we compile with a sample profile collected from |
| // one binary but used for another, which may have profiled targets that |
| // aren't used in the new binary. We might have a declaration initially in |
| // the case where the symbol is globally dead in the binary and removed by |
| // ThinLTO. |
| Function *TargetFunction = Symtab->getFunction(Target); |
| if (TargetFunction == nullptr || TargetFunction->isDeclaration()) { |
| LLVM_DEBUG(dbgs() << " Not promote: Cannot find the target\n"); |
| ORE.emit([&]() { |
| return OptimizationRemarkMissed(DEBUG_TYPE, "UnableToFindTarget", &CB) |
| << "Cannot promote indirect call: target with md5sum " |
| << ore::NV("target md5sum", Target) << " not found"; |
| }); |
| break; |
| } |
| |
| const char *Reason = nullptr; |
| if (!isLegalToPromote(CB, TargetFunction, &Reason)) { |
| using namespace ore; |
| |
| ORE.emit([&]() { |
| return OptimizationRemarkMissed(DEBUG_TYPE, "UnableToPromote", &CB) |
| << "Cannot promote indirect call to " |
| << NV("TargetFunction", TargetFunction) << " with count of " |
| << NV("Count", Count) << ": " << Reason; |
| }); |
| break; |
| } |
| |
| Ret.push_back(PromotionCandidate(TargetFunction, Count)); |
| TotalCount -= Count; |
| } |
| return Ret; |
| } |
| |
| Constant *IndirectCallPromoter::getOrCreateVTableAddressPointVar( |
| GlobalVariable *GV, uint64_t AddressPointOffset) { |
| auto [Iter, Inserted] = |
| VTableAddressPointOffsetVal[GV].try_emplace(AddressPointOffset, nullptr); |
| if (Inserted) |
| Iter->second = getVTableAddressPointOffset(GV, AddressPointOffset); |
| return Iter->second; |
| } |
| |
| Instruction *IndirectCallPromoter::computeVTableInfos( |
| const CallBase *CB, VTableGUIDCountsMap &GUIDCountsMap, |
| std::vector<PromotionCandidate> &Candidates) { |
| if (!EnableVTableProfileUse) |
| return nullptr; |
| |
| // Take the following code sequence as an example, here is how the code works |
| // @vtable1 = {[n x ptr] [... ptr @func1]} |
| // @vtable2 = {[m x ptr] [... ptr @func2]} |
| // |
| // %vptr = load ptr, ptr %d, !prof !0 |
| // %0 = tail call i1 @llvm.type.test(ptr %vptr, metadata !"vtable1") |
| // tail call void @llvm.assume(i1 %0) |
| // %vfn = getelementptr inbounds ptr, ptr %vptr, i64 1 |
| // %1 = load ptr, ptr %vfn |
| // call void %1(ptr %d), !prof !1 |
| // |
| // !0 = !{!"VP", i32 2, i64 100, i64 123, i64 50, i64 456, i64 50} |
| // !1 = !{!"VP", i32 0, i64 100, i64 789, i64 50, i64 579, i64 50} |
| // |
| // Step 1. Find out the %vptr instruction for indirect call and use its !prof |
| // to populate `GUIDCountsMap`. |
| // Step 2. For each vtable-guid, look up its definition from symtab. LTO can |
| // make vtable definitions visible across modules. |
| // Step 3. Compute the byte offset of the virtual call, by adding vtable |
| // address point offset and function's offset relative to vtable address |
| // point. For each function candidate, this step tells us the vtable from |
| // which it comes from, and the vtable address point to compare %vptr with. |
| |
| // Only virtual calls have virtual call site info. |
| auto Iter = VirtualCSInfo.find(CB); |
| if (Iter == VirtualCSInfo.end()) |
| return nullptr; |
| |
| LLVM_DEBUG(dbgs() << "\nComputing vtable infos for callsite #" |
| << NumOfPGOICallsites << "\n"); |
| |
| const auto &VirtualCallInfo = Iter->second; |
| Instruction *VPtr = VirtualCallInfo.VPtr; |
| |
| SmallDenseMap<Function *, int, 4> CalleeIndexMap; |
| for (size_t I = 0; I < Candidates.size(); I++) |
| CalleeIndexMap[Candidates[I].TargetFunction] = I; |
| |
| uint64_t TotalVTableCount = 0; |
| auto VTableValueDataArray = |
| getValueProfDataFromInst(*VirtualCallInfo.VPtr, IPVK_VTableTarget, |
| MaxNumVTableAnnotations, TotalVTableCount); |
| if (VTableValueDataArray.empty()) |
| return VPtr; |
| |
| // Compute the functions and counts from by each vtable. |
| for (const auto &V : VTableValueDataArray) { |
| uint64_t VTableVal = V.Value; |
| GUIDCountsMap[VTableVal] = V.Count; |
| GlobalVariable *VTableVar = Symtab->getGlobalVariable(VTableVal); |
| if (!VTableVar) { |
| LLVM_DEBUG(dbgs() << " Cannot find vtable definition for " << VTableVal |
| << "; maybe the vtable isn't imported\n"); |
| continue; |
| } |
| |
| std::optional<uint64_t> MaybeAddressPointOffset = |
| getAddressPointOffset(*VTableVar, VirtualCallInfo.CompatibleTypeStr); |
| if (!MaybeAddressPointOffset) |
| continue; |
| |
| const uint64_t AddressPointOffset = *MaybeAddressPointOffset; |
| |
| Function *Callee = nullptr; |
| std::tie(Callee, std::ignore) = getFunctionAtVTableOffset( |
| VTableVar, AddressPointOffset + VirtualCallInfo.FunctionOffset, M); |
| if (!Callee) |
| continue; |
| auto CalleeIndexIter = CalleeIndexMap.find(Callee); |
| if (CalleeIndexIter == CalleeIndexMap.end()) |
| continue; |
| |
| auto &Candidate = Candidates[CalleeIndexIter->second]; |
| // There shouldn't be duplicate GUIDs in one !prof metadata (except |
| // duplicated zeros), so assign counters directly won't cause overwrite or |
| // counter loss. |
| Candidate.VTableGUIDAndCounts[VTableVal] = V.Count; |
| Candidate.AddressPoints.push_back( |
| getOrCreateVTableAddressPointVar(VTableVar, AddressPointOffset)); |
| } |
| |
| return VPtr; |
| } |
| |
| // Creates 'branch_weights' prof metadata using TrueWeight and FalseWeight. |
| // Scales uint64_t counters down to uint32_t if necessary to prevent overflow. |
| static MDNode *createBranchWeights(LLVMContext &Context, uint64_t TrueWeight, |
| uint64_t FalseWeight) { |
| MDBuilder MDB(Context); |
| uint64_t Scale = calculateCountScale(std::max(TrueWeight, FalseWeight)); |
| return MDB.createBranchWeights(scaleBranchCount(TrueWeight, Scale), |
| scaleBranchCount(FalseWeight, Scale)); |
| } |
| |
| CallBase &llvm::pgo::promoteIndirectCall(CallBase &CB, Function *DirectCallee, |
| uint64_t Count, uint64_t TotalCount, |
| bool AttachProfToDirectCall, |
| OptimizationRemarkEmitter *ORE) { |
| CallBase &NewInst = promoteCallWithIfThenElse( |
| CB, DirectCallee, |
| createBranchWeights(CB.getContext(), Count, TotalCount - Count)); |
| |
| if (AttachProfToDirectCall) |
| setBranchWeights(NewInst, {static_cast<uint32_t>(Count)}, |
| /*IsExpected=*/false); |
| |
| using namespace ore; |
| |
| if (ORE) |
| ORE->emit([&]() { |
| return OptimizationRemark(DEBUG_TYPE, "Promoted", &CB) |
| << "Promote indirect call to " << NV("DirectCallee", DirectCallee) |
| << " with count " << NV("Count", Count) << " out of " |
| << NV("TotalCount", TotalCount); |
| }); |
| return NewInst; |
| } |
| |
| // Promote indirect-call to conditional direct-call for one callsite. |
| bool IndirectCallPromoter::tryToPromoteWithFuncCmp( |
| CallBase &CB, Instruction *VPtr, ArrayRef<PromotionCandidate> Candidates, |
| uint64_t TotalCount, ArrayRef<InstrProfValueData> ICallProfDataRef, |
| uint32_t NumCandidates, VTableGUIDCountsMap &VTableGUIDCounts) { |
| uint32_t NumPromoted = 0; |
| |
| for (const auto &C : Candidates) { |
| uint64_t FuncCount = C.Count; |
| pgo::promoteIndirectCall(CB, C.TargetFunction, FuncCount, TotalCount, |
| SamplePGO, &ORE); |
| assert(TotalCount >= FuncCount); |
| TotalCount -= FuncCount; |
| NumOfPGOICallPromotion++; |
| NumPromoted++; |
| |
| if (!EnableVTableProfileUse || C.VTableGUIDAndCounts.empty()) |
| continue; |
| |
| // After a virtual call candidate gets promoted, update the vtable's counts |
| // proportionally. Each vtable-guid in `C.VTableGUIDAndCounts` represents |
| // a vtable from which the virtual call is loaded. Compute the sum and use |
| // 128-bit APInt to improve accuracy. |
| uint64_t SumVTableCount = 0; |
| for (const auto &[GUID, VTableCount] : C.VTableGUIDAndCounts) |
| SumVTableCount += VTableCount; |
| |
| for (const auto &[GUID, VTableCount] : C.VTableGUIDAndCounts) { |
| APInt APFuncCount((unsigned)128, FuncCount, false /*signed*/); |
| APFuncCount *= VTableCount; |
| VTableGUIDCounts[GUID] -= APFuncCount.udiv(SumVTableCount).getZExtValue(); |
| } |
| } |
| if (NumPromoted == 0) |
| return false; |
| |
| assert(NumPromoted <= ICallProfDataRef.size() && |
| "Number of promoted functions should not be greater than the number " |
| "of values in profile metadata"); |
| |
| // Update value profiles on the indirect call. |
| updateFuncValueProfiles(CB, ICallProfDataRef.slice(NumPromoted), TotalCount, |
| NumCandidates); |
| updateVPtrValueProfiles(VPtr, VTableGUIDCounts); |
| return true; |
| } |
| |
| void IndirectCallPromoter::updateFuncValueProfiles( |
| CallBase &CB, ArrayRef<InstrProfValueData> CallVDs, uint64_t TotalCount, |
| uint32_t MaxMDCount) { |
| // First clear the existing !prof. |
| CB.setMetadata(LLVMContext::MD_prof, nullptr); |
| // Annotate the remaining value profiles if counter is not zero. |
| if (TotalCount != 0) |
| annotateValueSite(M, CB, CallVDs, TotalCount, IPVK_IndirectCallTarget, |
| MaxMDCount); |
| } |
| |
| void IndirectCallPromoter::updateVPtrValueProfiles( |
| Instruction *VPtr, VTableGUIDCountsMap &VTableGUIDCounts) { |
| if (!EnableVTableProfileUse || VPtr == nullptr || |
| !VPtr->getMetadata(LLVMContext::MD_prof)) |
| return; |
| VPtr->setMetadata(LLVMContext::MD_prof, nullptr); |
| std::vector<InstrProfValueData> VTableValueProfiles; |
| uint64_t TotalVTableCount = 0; |
| for (auto [GUID, Count] : VTableGUIDCounts) { |
| if (Count == 0) |
| continue; |
| |
| VTableValueProfiles.push_back({GUID, Count}); |
| TotalVTableCount += Count; |
| } |
| llvm::sort(VTableValueProfiles, |
| [](const InstrProfValueData &LHS, const InstrProfValueData &RHS) { |
| return LHS.Count > RHS.Count; |
| }); |
| |
| annotateValueSite(M, *VPtr, VTableValueProfiles, TotalVTableCount, |
| IPVK_VTableTarget, VTableValueProfiles.size()); |
| } |
| |
| bool IndirectCallPromoter::tryToPromoteWithVTableCmp( |
| CallBase &CB, Instruction *VPtr, ArrayRef<PromotionCandidate> Candidates, |
| uint64_t TotalFuncCount, uint32_t NumCandidates, |
| MutableArrayRef<InstrProfValueData> ICallProfDataRef, |
| VTableGUIDCountsMap &VTableGUIDCounts) { |
| SmallVector<uint64_t, 4> PromotedFuncCount; |
| |
| for (const auto &Candidate : Candidates) { |
| for (auto &[GUID, Count] : Candidate.VTableGUIDAndCounts) |
| VTableGUIDCounts[GUID] -= Count; |
| |
| // 'OriginalBB' is the basic block of indirect call. After each candidate |
| // is promoted, a new basic block is created for the indirect fallback basic |
| // block and indirect call `CB` is moved into this new BB. |
| BasicBlock *OriginalBB = CB.getParent(); |
| promoteCallWithVTableCmp( |
| CB, VPtr, Candidate.TargetFunction, Candidate.AddressPoints, |
| createBranchWeights(CB.getContext(), Candidate.Count, |
| TotalFuncCount - Candidate.Count)); |
| |
| int SinkCount = tryToSinkInstructions(OriginalBB, CB.getParent()); |
| |
| ORE.emit([&]() { |
| OptimizationRemark Remark(DEBUG_TYPE, "Promoted", &CB); |
| |
| const auto &VTableGUIDAndCounts = Candidate.VTableGUIDAndCounts; |
| Remark << "Promote indirect call to " |
| << ore::NV("DirectCallee", Candidate.TargetFunction) |
| << " with count " << ore::NV("Count", Candidate.Count) |
| << " out of " << ore::NV("TotalCount", TotalFuncCount) << ", sink " |
| << ore::NV("SinkCount", SinkCount) |
| << " instruction(s) and compare " |
| << ore::NV("VTable", VTableGUIDAndCounts.size()) |
| << " vtable(s): {"; |
| |
| // Sort GUIDs so remark message is deterministic. |
| std::set<uint64_t> GUIDSet; |
| for (auto [GUID, Count] : VTableGUIDAndCounts) |
| GUIDSet.insert(GUID); |
| for (auto Iter = GUIDSet.begin(); Iter != GUIDSet.end(); Iter++) { |
| if (Iter != GUIDSet.begin()) |
| Remark << ", "; |
| Remark << ore::NV("VTable", Symtab->getGlobalVariable(*Iter)); |
| } |
| |
| Remark << "}"; |
| |
| return Remark; |
| }); |
| |
| PromotedFuncCount.push_back(Candidate.Count); |
| |
| assert(TotalFuncCount >= Candidate.Count && |
| "Within one prof metadata, total count is the sum of counts from " |
| "individual <target, count> pairs"); |
| // Use std::min since 'TotalFuncCount' is the saturated sum of individual |
| // counts, see |
| // https://github.com/llvm/llvm-project/blob/abedb3b8356d5d56f1c575c4f7682fba2cb19787/llvm/lib/ProfileData/InstrProf.cpp#L1281-L1288 |
| TotalFuncCount -= std::min(TotalFuncCount, Candidate.Count); |
| NumOfPGOICallPromotion++; |
| } |
| |
| if (PromotedFuncCount.empty()) |
| return false; |
| |
| // Update value profiles for 'CB' and 'VPtr', assuming that each 'CB' has a |
| // a distinct 'VPtr'. |
| // FIXME: When Clang `-fstrict-vtable-pointers` is enabled, a vtable might be |
| // used to load multiple virtual functions. The vtable profiles needs to be |
| // updated properly in that case (e.g, for each indirect call annotate both |
| // type profiles and function profiles in one !prof). |
| for (size_t I = 0; I < PromotedFuncCount.size(); I++) |
| ICallProfDataRef[I].Count -= |
| std::max(PromotedFuncCount[I], ICallProfDataRef[I].Count); |
| // Sort value profiles by count in descending order. |
| llvm::stable_sort(ICallProfDataRef, [](const InstrProfValueData &LHS, |
| const InstrProfValueData &RHS) { |
| return LHS.Count > RHS.Count; |
| }); |
| // Drop the <target-value, count> pair if count is zero. |
| ArrayRef<InstrProfValueData> VDs( |
| ICallProfDataRef.begin(), |
| llvm::upper_bound(ICallProfDataRef, 0U, |
| [](uint64_t Count, const InstrProfValueData &ProfData) { |
| return ProfData.Count <= Count; |
| })); |
| updateFuncValueProfiles(CB, VDs, TotalFuncCount, NumCandidates); |
| updateVPtrValueProfiles(VPtr, VTableGUIDCounts); |
| return true; |
| } |
| |
| // Traverse all the indirect-call callsite and get the value profile |
| // annotation to perform indirect-call promotion. |
| bool IndirectCallPromoter::processFunction(ProfileSummaryInfo *PSI) { |
| bool Changed = false; |
| ICallPromotionAnalysis ICallAnalysis; |
| for (auto *CB : findIndirectCalls(F)) { |
| uint32_t NumCandidates; |
| uint64_t TotalCount; |
| auto ICallProfDataRef = ICallAnalysis.getPromotionCandidatesForInstruction( |
| CB, TotalCount, NumCandidates); |
| if (!NumCandidates || |
| (PSI && PSI->hasProfileSummary() && !PSI->isHotCount(TotalCount))) |
| continue; |
| |
| auto PromotionCandidates = getPromotionCandidatesForCallSite( |
| *CB, ICallProfDataRef, TotalCount, NumCandidates); |
| |
| VTableGUIDCountsMap VTableGUIDCounts; |
| Instruction *VPtr = |
| computeVTableInfos(CB, VTableGUIDCounts, PromotionCandidates); |
| |
| if (isProfitableToCompareVTables(*CB, PromotionCandidates, TotalCount)) |
| Changed |= tryToPromoteWithVTableCmp(*CB, VPtr, PromotionCandidates, |
| TotalCount, NumCandidates, |
| ICallProfDataRef, VTableGUIDCounts); |
| else |
| Changed |= tryToPromoteWithFuncCmp(*CB, VPtr, PromotionCandidates, |
| TotalCount, ICallProfDataRef, |
| NumCandidates, VTableGUIDCounts); |
| } |
| return Changed; |
| } |
| |
| // TODO: Return false if the function addressing and vtable load instructions |
| // cannot sink to indirect fallback. |
| bool IndirectCallPromoter::isProfitableToCompareVTables( |
| const CallBase &CB, ArrayRef<PromotionCandidate> Candidates, |
| uint64_t TotalCount) { |
| if (!EnableVTableProfileUse || Candidates.empty()) |
| return false; |
| LLVM_DEBUG(dbgs() << "\nEvaluating vtable profitability for callsite #" |
| << NumOfPGOICallsites << CB << "\n"); |
| uint64_t RemainingVTableCount = TotalCount; |
| const size_t CandidateSize = Candidates.size(); |
| for (size_t I = 0; I < CandidateSize; I++) { |
| auto &Candidate = Candidates[I]; |
| auto &VTableGUIDAndCounts = Candidate.VTableGUIDAndCounts; |
| |
| LLVM_DEBUG(dbgs() << " Candidate " << I << " FunctionCount: " |
| << Candidate.Count << ", VTableCounts:"); |
| // Add [[maybe_unused]] since <GUID, Count> are only used by LLVM_DEBUG. |
| for ([[maybe_unused]] auto &[GUID, Count] : VTableGUIDAndCounts) |
| LLVM_DEBUG(dbgs() << " {" << Symtab->getGlobalVariable(GUID)->getName() |
| << ", " << Count << "}"); |
| LLVM_DEBUG(dbgs() << "\n"); |
| |
| uint64_t CandidateVTableCount = 0; |
| for (auto &[GUID, Count] : VTableGUIDAndCounts) |
| CandidateVTableCount += Count; |
| |
| if (CandidateVTableCount < Candidate.Count * ICPVTablePercentageThreshold) { |
| LLVM_DEBUG( |
| dbgs() << " function count " << Candidate.Count |
| << " and its vtable sum count " << CandidateVTableCount |
| << " have discrepancies. Bail out vtable comparison.\n"); |
| return false; |
| } |
| |
| RemainingVTableCount -= Candidate.Count; |
| |
| // 'MaxNumVTable' limits the number of vtables to make vtable comparison |
| // profitable. Comparing multiple vtables for one function candidate will |
| // insert additional instructions on the hot path, and allowing more than |
| // one vtable for non last candidates may or may not elongate the dependency |
| // chain for the subsequent candidates. Set its value to 1 for non-last |
| // candidate and allow option to override it for the last candidate. |
| int MaxNumVTable = 1; |
| if (I == CandidateSize - 1) |
| MaxNumVTable = ICPMaxNumVTableLastCandidate; |
| |
| if ((int)Candidate.AddressPoints.size() > MaxNumVTable) { |
| LLVM_DEBUG(dbgs() << " allow at most " << MaxNumVTable << " and got " |
| << Candidate.AddressPoints.size() |
| << " vtables. Bail out for vtable comparison.\n"); |
| return false; |
| } |
| } |
| |
| // If the indirect fallback is not cold, don't compare vtables. |
| if (PSI && PSI->hasProfileSummary() && |
| !PSI->isColdCount(RemainingVTableCount)) { |
| LLVM_DEBUG(dbgs() << " Indirect fallback basic block is not cold. Bail " |
| "out for vtable comparison.\n"); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| // For virtual calls in the module, collect per-callsite information which will |
| // be used to associate an ICP candidate with a vtable and a specific function |
| // in the vtable. With type intrinsics (llvm.type.test), we can find virtual |
| // calls in a compile-time efficient manner (by iterating its users) and more |
| // importantly use the compatible type later to figure out the function byte |
| // offset relative to the start of vtables. |
| static void |
| computeVirtualCallSiteTypeInfoMap(Module &M, ModuleAnalysisManager &MAM, |
| VirtualCallSiteTypeInfoMap &VirtualCSInfo) { |
| // Right now only llvm.type.test is used to find out virtual call sites. |
| // With ThinLTO and whole-program-devirtualization, llvm.type.test and |
| // llvm.public.type.test are emitted, and llvm.public.type.test is either |
| // refined to llvm.type.test or dropped before indirect-call-promotion pass. |
| // |
| // FIXME: For fullLTO with VFE, `llvm.type.checked.load intrinsic` is emitted. |
| // Find out virtual calls by looking at users of llvm.type.checked.load in |
| // that case. |
| Function *TypeTestFunc = |
| M.getFunction(Intrinsic::getName(Intrinsic::type_test)); |
| if (!TypeTestFunc || TypeTestFunc->use_empty()) |
| return; |
| |
| auto &FAM = MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); |
| auto LookupDomTree = [&FAM](Function &F) -> DominatorTree & { |
| return FAM.getResult<DominatorTreeAnalysis>(F); |
| }; |
| // Iterate all type.test calls to find all indirect calls. |
| for (Use &U : llvm::make_early_inc_range(TypeTestFunc->uses())) { |
| auto *CI = dyn_cast<CallInst>(U.getUser()); |
| if (!CI) |
| continue; |
| auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(1)); |
| if (!TypeMDVal) |
| continue; |
| auto *CompatibleTypeId = dyn_cast<MDString>(TypeMDVal->getMetadata()); |
| if (!CompatibleTypeId) |
| continue; |
| |
| // Find out all devirtualizable call sites given a llvm.type.test |
| // intrinsic call. |
| SmallVector<DevirtCallSite, 1> DevirtCalls; |
| SmallVector<CallInst *, 1> Assumes; |
| auto &DT = LookupDomTree(*CI->getFunction()); |
| findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT); |
| |
| for (auto &DevirtCall : DevirtCalls) { |
| CallBase &CB = DevirtCall.CB; |
| // Given an indirect call, try find the instruction which loads a |
| // pointer to virtual table. |
| Instruction *VTablePtr = |
| PGOIndirectCallVisitor::tryGetVTableInstruction(&CB); |
| if (!VTablePtr) |
| continue; |
| VirtualCSInfo[&CB] = {DevirtCall.Offset, VTablePtr, |
| CompatibleTypeId->getString()}; |
| } |
| } |
| } |
| |
| // A wrapper function that does the actual work. |
| static bool promoteIndirectCalls(Module &M, ProfileSummaryInfo *PSI, bool InLTO, |
| bool SamplePGO, ModuleAnalysisManager &MAM) { |
| if (DisableICP) |
| return false; |
| InstrProfSymtab Symtab; |
| if (Error E = Symtab.create(M, InLTO)) { |
| std::string SymtabFailure = toString(std::move(E)); |
| M.getContext().emitError("Failed to create symtab: " + SymtabFailure); |
| return false; |
| } |
| bool Changed = false; |
| VirtualCallSiteTypeInfoMap VirtualCSInfo; |
| |
| if (EnableVTableProfileUse) |
| computeVirtualCallSiteTypeInfoMap(M, MAM, VirtualCSInfo); |
| |
| // VTableAddressPointOffsetVal stores the vtable address points. The vtable |
| // address point of a given <vtable, address point offset> is static (doesn't |
| // change after being computed once). |
| // IndirectCallPromoter::getOrCreateVTableAddressPointVar creates the map |
| // entry the first time a <vtable, offset> pair is seen, as |
| // promoteIndirectCalls processes an IR module and calls IndirectCallPromoter |
| // repeatedly on each function. |
| VTableAddressPointOffsetValMap VTableAddressPointOffsetVal; |
| |
| for (auto &F : M) { |
| if (F.isDeclaration() || F.hasOptNone()) |
| continue; |
| |
| auto &FAM = |
| MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); |
| auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); |
| |
| IndirectCallPromoter CallPromoter(F, M, PSI, &Symtab, SamplePGO, |
| VirtualCSInfo, |
| VTableAddressPointOffsetVal, ORE); |
| bool FuncChanged = CallPromoter.processFunction(PSI); |
| if (ICPDUMPAFTER && FuncChanged) { |
| LLVM_DEBUG(dbgs() << "\n== IR Dump After =="; F.print(dbgs())); |
| LLVM_DEBUG(dbgs() << "\n"); |
| } |
| Changed |= FuncChanged; |
| if (ICPCutOff != 0 && NumOfPGOICallPromotion >= ICPCutOff) { |
| LLVM_DEBUG(dbgs() << " Stop: Cutoff reached.\n"); |
| break; |
| } |
| } |
| return Changed; |
| } |
| |
| PreservedAnalyses PGOIndirectCallPromotion::run(Module &M, |
| ModuleAnalysisManager &MAM) { |
| ProfileSummaryInfo *PSI = &MAM.getResult<ProfileSummaryAnalysis>(M); |
| |
| if (!promoteIndirectCalls(M, PSI, InLTO | ICPLTOMode, |
| SamplePGO | ICPSamplePGOMode, MAM)) |
| return PreservedAnalyses::all(); |
| |
| return PreservedAnalyses::none(); |
| } |