blob: 0d1f506986379d2833d0d980ef7070b2d5abc219 [file] [log] [blame]
//===- IndirectCallPromotion.cpp - Optimizations based on value profiling -===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the transformation that promotes indirect calls to
// conditional direct calls when the indirect-call value profile metadata is
// available.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/IndirectCallPromotionAnalysis.h"
#include "llvm/Analysis/IndirectCallVisitor.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/Analysis/TypeMetadataUtils.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/ProfDataUtils.h"
#include "llvm/IR/Value.h"
#include "llvm/ProfileData/InstrProf.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Instrumentation.h"
#include "llvm/Transforms/Instrumentation/PGOInstrumentation.h"
#include "llvm/Transforms/Utils/CallPromotionUtils.h"
#include <cassert>
#include <cstdint>
#include <memory>
#include <set>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "pgo-icall-prom"
STATISTIC(NumOfPGOICallPromotion, "Number of indirect call promotions.");
STATISTIC(NumOfPGOICallsites, "Number of indirect call candidate sites.");
extern cl::opt<unsigned> MaxNumVTableAnnotations;
namespace llvm {
extern cl::opt<bool> EnableVTableProfileUse;
}
// Command line option to disable indirect-call promotion with the default as
// false. This is for debug purpose.
static cl::opt<bool> DisableICP("disable-icp", cl::init(false), cl::Hidden,
cl::desc("Disable indirect call promotion"));
// Set the cutoff value for the promotion. If the value is other than 0, we
// stop the transformation once the total number of promotions equals the cutoff
// value.
// For debug use only.
static cl::opt<unsigned>
ICPCutOff("icp-cutoff", cl::init(0), cl::Hidden,
cl::desc("Max number of promotions for this compilation"));
// If ICPCSSkip is non zero, the first ICPCSSkip callsites will be skipped.
// For debug use only.
static cl::opt<unsigned>
ICPCSSkip("icp-csskip", cl::init(0), cl::Hidden,
cl::desc("Skip Callsite up to this number for this compilation"));
// Set if the pass is called in LTO optimization. The difference for LTO mode
// is the pass won't prefix the source module name to the internal linkage
// symbols.
static cl::opt<bool> ICPLTOMode("icp-lto", cl::init(false), cl::Hidden,
cl::desc("Run indirect-call promotion in LTO "
"mode"));
// Set if the pass is called in SamplePGO mode. The difference for SamplePGO
// mode is it will add prof metadatato the created direct call.
static cl::opt<bool>
ICPSamplePGOMode("icp-samplepgo", cl::init(false), cl::Hidden,
cl::desc("Run indirect-call promotion in SamplePGO mode"));
// If the option is set to true, only call instructions will be considered for
// transformation -- invoke instructions will be ignored.
static cl::opt<bool>
ICPCallOnly("icp-call-only", cl::init(false), cl::Hidden,
cl::desc("Run indirect-call promotion for call instructions "
"only"));
// If the option is set to true, only invoke instructions will be considered for
// transformation -- call instructions will be ignored.
static cl::opt<bool> ICPInvokeOnly("icp-invoke-only", cl::init(false),
cl::Hidden,
cl::desc("Run indirect-call promotion for "
"invoke instruction only"));
// Dump the function level IR if the transformation happened in this
// function. For debug use only.
static cl::opt<bool>
ICPDUMPAFTER("icp-dumpafter", cl::init(false), cl::Hidden,
cl::desc("Dump IR after transformation happens"));
// Indirect call promotion pass will fall back to function-based comparison if
// vtable-count / function-count is smaller than this threshold.
static cl::opt<float> ICPVTablePercentageThreshold(
"icp-vtable-percentage-threshold", cl::init(0.99), cl::Hidden,
cl::desc("The percentage threshold of vtable-count / function-count for "
"cost-benefit analysis."));
// Although comparing vtables can save a vtable load, we may need to compare
// vtable pointer with multiple vtable address points due to class inheritance.
// Comparing with multiple vtables inserts additional instructions on hot code
// path, and doing so for an earlier candidate delays the comparisons for later
// candidates. For the last candidate, only the fallback path is affected.
// We allow multiple vtable comparison for the last function candidate and use
// the option below to cap the number of vtables.
static cl::opt<int> ICPMaxNumVTableLastCandidate(
"icp-max-num-vtable-last-candidate", cl::init(1), cl::Hidden,
cl::desc("The maximum number of vtable for the last candidate."));
namespace {
// The key is a vtable global variable, and the value is a map.
// In the inner map, the key represents address point offsets and the value is a
// constant for this address point.
using VTableAddressPointOffsetValMap =
SmallDenseMap<const GlobalVariable *, std::unordered_map<int, Constant *>>;
// A struct to collect type information for a virtual call site.
struct VirtualCallSiteInfo {
// The offset from the address point to virtual function in the vtable.
uint64_t FunctionOffset;
// The instruction that computes the address point of vtable.
Instruction *VPtr;
// The compatible type used in LLVM type intrinsics.
StringRef CompatibleTypeStr;
};
// The key is a virtual call, and value is its type information.
using VirtualCallSiteTypeInfoMap =
SmallDenseMap<const CallBase *, VirtualCallSiteInfo>;
// The key is vtable GUID, and value is its value profile count.
using VTableGUIDCountsMap = SmallDenseMap<uint64_t, uint64_t, 16>;
// Return the address point offset of the given compatible type.
//
// Type metadata of a vtable specifies the types that can contain a pointer to
// this vtable, for example, `Base*` can be a pointer to an derived type
// but not vice versa. See also https://llvm.org/docs/TypeMetadata.html
static std::optional<uint64_t>
getAddressPointOffset(const GlobalVariable &VTableVar,
StringRef CompatibleType) {
SmallVector<MDNode *> Types;
VTableVar.getMetadata(LLVMContext::MD_type, Types);
for (MDNode *Type : Types)
if (auto *TypeId = dyn_cast<MDString>(Type->getOperand(1).get());
TypeId && TypeId->getString() == CompatibleType)
return cast<ConstantInt>(
cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
->getZExtValue();
return std::nullopt;
}
// Return a constant representing the vtable's address point specified by the
// offset.
static Constant *getVTableAddressPointOffset(GlobalVariable *VTable,
uint32_t AddressPointOffset) {
Module &M = *VTable->getParent();
LLVMContext &Context = M.getContext();
assert(AddressPointOffset <
M.getDataLayout().getTypeAllocSize(VTable->getValueType()) &&
"Out-of-bound access");
return ConstantExpr::getInBoundsGetElementPtr(
Type::getInt8Ty(Context), VTable,
llvm::ConstantInt::get(Type::getInt32Ty(Context), AddressPointOffset));
}
// Return the basic block in which Use `U` is used via its `UserInst`.
static BasicBlock *getUserBasicBlock(Use &U, Instruction *UserInst) {
if (PHINode *PN = dyn_cast<PHINode>(UserInst))
return PN->getIncomingBlock(U);
return UserInst->getParent();
}
// `DestBB` is a suitable basic block to sink `Inst` into when `Inst` have users
// and all users are in `DestBB`. The caller guarantees that `Inst->getParent()`
// is the sole predecessor of `DestBB` and `DestBB` is dominated by
// `Inst->getParent()`.
static bool isDestBBSuitableForSink(Instruction *Inst, BasicBlock *DestBB) {
// 'BB' is used only by assert.
[[maybe_unused]] BasicBlock *BB = Inst->getParent();
assert(BB != DestBB && BB->getTerminator()->getNumSuccessors() == 2 &&
DestBB->getUniquePredecessor() == BB &&
"Guaranteed by ICP transformation");
BasicBlock *UserBB = nullptr;
for (Use &Use : Inst->uses()) {
User *User = Use.getUser();
// Do checked cast since IR verifier guarantees that the user of an
// instruction must be an instruction. See `Verifier::visitInstruction`.
Instruction *UserInst = cast<Instruction>(User);
// We can sink debug or pseudo instructions together with Inst.
if (UserInst->isDebugOrPseudoInst())
continue;
UserBB = getUserBasicBlock(Use, UserInst);
// Do not sink if Inst is used in a basic block that is not DestBB.
// TODO: Sink to the common dominator of all user blocks.
if (UserBB != DestBB)
return false;
}
return UserBB != nullptr;
}
// For the virtual call dispatch sequence, try to sink vtable load instructions
// to the cold indirect call fallback.
// FIXME: Move the sink eligibility check below to a utility function in
// Transforms/Utils/ directory.
static bool tryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
if (!isDestBBSuitableForSink(I, DestBlock))
return false;
// Do not move control-flow-involving, volatile loads, vaarg, alloca
// instructions, etc.
if (isa<PHINode>(I) || I->isEHPad() || I->mayThrow() || !I->willReturn() ||
isa<AllocaInst>(I))
return false;
// Do not sink convergent call instructions.
if (const auto *C = dyn_cast<CallBase>(I))
if (C->isInlineAsm() || C->cannotMerge() || C->isConvergent())
return false;
// Do not move an instruction that may write to memory.
if (I->mayWriteToMemory())
return false;
// We can only sink load instructions if there is nothing between the load and
// the end of block that could change the value.
if (I->mayReadFromMemory()) {
// We already know that SrcBlock is the unique predecessor of DestBlock.
for (BasicBlock::iterator Scan = std::next(I->getIterator()),
E = I->getParent()->end();
Scan != E; ++Scan) {
// Note analysis analysis can tell whether two pointers can point to the
// same object in memory or not thereby find further opportunities to
// sink.
if (Scan->mayWriteToMemory())
return false;
}
}
BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
I->moveBefore(*DestBlock, InsertPos);
// TODO: Sink debug intrinsic users of I to 'DestBlock'.
// 'InstCombinerImpl::tryToSinkInstructionDbgValues' and
// 'InstCombinerImpl::tryToSinkInstructionDbgVariableRecords' already have
// the core logic to do this.
return true;
}
// Try to sink instructions after VPtr to the indirect call fallback.
// Return the number of sunk IR instructions.
static int tryToSinkInstructions(BasicBlock *OriginalBB,
BasicBlock *IndirectCallBB) {
int SinkCount = 0;
// Do not sink across a critical edge for simplicity.
if (IndirectCallBB->getUniquePredecessor() != OriginalBB)
return SinkCount;
// Sink all eligible instructions in OriginalBB in reverse order.
for (Instruction &I :
llvm::make_early_inc_range(llvm::drop_begin(llvm::reverse(*OriginalBB))))
if (tryToSinkInstruction(&I, IndirectCallBB))
SinkCount++;
return SinkCount;
}
// Promote indirect calls to conditional direct calls, keeping track of
// thresholds.
class IndirectCallPromoter {
private:
Function &F;
Module &M;
ProfileSummaryInfo *PSI = nullptr;
// Symtab that maps indirect call profile values to function names and
// defines.
InstrProfSymtab *const Symtab;
const bool SamplePGO;
// A map from a virtual call to its type information.
const VirtualCallSiteTypeInfoMap &VirtualCSInfo;
VTableAddressPointOffsetValMap &VTableAddressPointOffsetVal;
OptimizationRemarkEmitter &ORE;
// A struct that records the direct target and it's call count.
struct PromotionCandidate {
Function *const TargetFunction;
const uint64_t Count;
// The following fields only exists for promotion candidates with vtable
// information.
//
// Due to class inheritance, one virtual call candidate can come from
// multiple vtables. `VTableGUIDAndCounts` tracks the vtable GUIDs and
// counts for 'TargetFunction'. `AddressPoints` stores the vtable address
// points for comparison.
VTableGUIDCountsMap VTableGUIDAndCounts;
SmallVector<Constant *> AddressPoints;
PromotionCandidate(Function *F, uint64_t C) : TargetFunction(F), Count(C) {}
};
// Check if the indirect-call call site should be promoted. Return the number
// of promotions. Inst is the candidate indirect call, ValueDataRef
// contains the array of value profile data for profiled targets,
// TotalCount is the total profiled count of call executions, and
// NumCandidates is the number of candidate entries in ValueDataRef.
std::vector<PromotionCandidate> getPromotionCandidatesForCallSite(
const CallBase &CB, ArrayRef<InstrProfValueData> ValueDataRef,
uint64_t TotalCount, uint32_t NumCandidates);
// Promote a list of targets for one indirect-call callsite by comparing
// indirect callee with functions. Return true if there are IR
// transformations and false otherwise.
bool tryToPromoteWithFuncCmp(CallBase &CB, Instruction *VPtr,
ArrayRef<PromotionCandidate> Candidates,
uint64_t TotalCount,
ArrayRef<InstrProfValueData> ICallProfDataRef,
uint32_t NumCandidates,
VTableGUIDCountsMap &VTableGUIDCounts);
// Promote a list of targets for one indirect call by comparing vtables with
// functions. Return true if there are IR transformations and false
// otherwise.
bool tryToPromoteWithVTableCmp(
CallBase &CB, Instruction *VPtr, ArrayRef<PromotionCandidate> Candidates,
uint64_t TotalFuncCount, uint32_t NumCandidates,
MutableArrayRef<InstrProfValueData> ICallProfDataRef,
VTableGUIDCountsMap &VTableGUIDCounts);
// Return true if it's profitable to compare vtables for the callsite.
bool isProfitableToCompareVTables(const CallBase &CB,
ArrayRef<PromotionCandidate> Candidates,
uint64_t TotalCount);
// Given an indirect callsite and the list of function candidates, compute
// the following vtable information in output parameters and return vtable
// pointer if type profiles exist.
// - Populate `VTableGUIDCounts` with <vtable-guid, count> using !prof
// metadata attached on the vtable pointer.
// - For each function candidate, finds out the vtables from which it gets
// called and stores the <vtable-guid, count> in promotion candidate.
Instruction *computeVTableInfos(const CallBase *CB,
VTableGUIDCountsMap &VTableGUIDCounts,
std::vector<PromotionCandidate> &Candidates);
Constant *getOrCreateVTableAddressPointVar(GlobalVariable *GV,
uint64_t AddressPointOffset);
void updateFuncValueProfiles(CallBase &CB, ArrayRef<InstrProfValueData> VDs,
uint64_t Sum, uint32_t MaxMDCount);
void updateVPtrValueProfiles(Instruction *VPtr,
VTableGUIDCountsMap &VTableGUIDCounts);
public:
IndirectCallPromoter(
Function &Func, Module &M, ProfileSummaryInfo *PSI,
InstrProfSymtab *Symtab, bool SamplePGO,
const VirtualCallSiteTypeInfoMap &VirtualCSInfo,
VTableAddressPointOffsetValMap &VTableAddressPointOffsetVal,
OptimizationRemarkEmitter &ORE)
: F(Func), M(M), PSI(PSI), Symtab(Symtab), SamplePGO(SamplePGO),
VirtualCSInfo(VirtualCSInfo),
VTableAddressPointOffsetVal(VTableAddressPointOffsetVal), ORE(ORE) {}
IndirectCallPromoter(const IndirectCallPromoter &) = delete;
IndirectCallPromoter &operator=(const IndirectCallPromoter &) = delete;
bool processFunction(ProfileSummaryInfo *PSI);
};
} // end anonymous namespace
// Indirect-call promotion heuristic. The direct targets are sorted based on
// the count. Stop at the first target that is not promoted.
std::vector<IndirectCallPromoter::PromotionCandidate>
IndirectCallPromoter::getPromotionCandidatesForCallSite(
const CallBase &CB, ArrayRef<InstrProfValueData> ValueDataRef,
uint64_t TotalCount, uint32_t NumCandidates) {
std::vector<PromotionCandidate> Ret;
LLVM_DEBUG(dbgs() << " \nWork on callsite #" << NumOfPGOICallsites << CB
<< " Num_targets: " << ValueDataRef.size()
<< " Num_candidates: " << NumCandidates << "\n");
NumOfPGOICallsites++;
if (ICPCSSkip != 0 && NumOfPGOICallsites <= ICPCSSkip) {
LLVM_DEBUG(dbgs() << " Skip: User options.\n");
return Ret;
}
for (uint32_t I = 0; I < NumCandidates; I++) {
uint64_t Count = ValueDataRef[I].Count;
assert(Count <= TotalCount);
(void)TotalCount;
uint64_t Target = ValueDataRef[I].Value;
LLVM_DEBUG(dbgs() << " Candidate " << I << " Count=" << Count
<< " Target_func: " << Target << "\n");
if (ICPInvokeOnly && isa<CallInst>(CB)) {
LLVM_DEBUG(dbgs() << " Not promote: User options.\n");
ORE.emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "UserOptions", &CB)
<< " Not promote: User options";
});
break;
}
if (ICPCallOnly && isa<InvokeInst>(CB)) {
LLVM_DEBUG(dbgs() << " Not promote: User option.\n");
ORE.emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "UserOptions", &CB)
<< " Not promote: User options";
});
break;
}
if (ICPCutOff != 0 && NumOfPGOICallPromotion >= ICPCutOff) {
LLVM_DEBUG(dbgs() << " Not promote: Cutoff reached.\n");
ORE.emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "CutOffReached", &CB)
<< " Not promote: Cutoff reached";
});
break;
}
// Don't promote if the symbol is not defined in the module. This avoids
// creating a reference to a symbol that doesn't exist in the module
// This can happen when we compile with a sample profile collected from
// one binary but used for another, which may have profiled targets that
// aren't used in the new binary. We might have a declaration initially in
// the case where the symbol is globally dead in the binary and removed by
// ThinLTO.
Function *TargetFunction = Symtab->getFunction(Target);
if (TargetFunction == nullptr || TargetFunction->isDeclaration()) {
LLVM_DEBUG(dbgs() << " Not promote: Cannot find the target\n");
ORE.emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "UnableToFindTarget", &CB)
<< "Cannot promote indirect call: target with md5sum "
<< ore::NV("target md5sum", Target) << " not found";
});
break;
}
const char *Reason = nullptr;
if (!isLegalToPromote(CB, TargetFunction, &Reason)) {
using namespace ore;
ORE.emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "UnableToPromote", &CB)
<< "Cannot promote indirect call to "
<< NV("TargetFunction", TargetFunction) << " with count of "
<< NV("Count", Count) << ": " << Reason;
});
break;
}
Ret.push_back(PromotionCandidate(TargetFunction, Count));
TotalCount -= Count;
}
return Ret;
}
Constant *IndirectCallPromoter::getOrCreateVTableAddressPointVar(
GlobalVariable *GV, uint64_t AddressPointOffset) {
auto [Iter, Inserted] =
VTableAddressPointOffsetVal[GV].try_emplace(AddressPointOffset, nullptr);
if (Inserted)
Iter->second = getVTableAddressPointOffset(GV, AddressPointOffset);
return Iter->second;
}
Instruction *IndirectCallPromoter::computeVTableInfos(
const CallBase *CB, VTableGUIDCountsMap &GUIDCountsMap,
std::vector<PromotionCandidate> &Candidates) {
if (!EnableVTableProfileUse)
return nullptr;
// Take the following code sequence as an example, here is how the code works
// @vtable1 = {[n x ptr] [... ptr @func1]}
// @vtable2 = {[m x ptr] [... ptr @func2]}
//
// %vptr = load ptr, ptr %d, !prof !0
// %0 = tail call i1 @llvm.type.test(ptr %vptr, metadata !"vtable1")
// tail call void @llvm.assume(i1 %0)
// %vfn = getelementptr inbounds ptr, ptr %vptr, i64 1
// %1 = load ptr, ptr %vfn
// call void %1(ptr %d), !prof !1
//
// !0 = !{!"VP", i32 2, i64 100, i64 123, i64 50, i64 456, i64 50}
// !1 = !{!"VP", i32 0, i64 100, i64 789, i64 50, i64 579, i64 50}
//
// Step 1. Find out the %vptr instruction for indirect call and use its !prof
// to populate `GUIDCountsMap`.
// Step 2. For each vtable-guid, look up its definition from symtab. LTO can
// make vtable definitions visible across modules.
// Step 3. Compute the byte offset of the virtual call, by adding vtable
// address point offset and function's offset relative to vtable address
// point. For each function candidate, this step tells us the vtable from
// which it comes from, and the vtable address point to compare %vptr with.
// Only virtual calls have virtual call site info.
auto Iter = VirtualCSInfo.find(CB);
if (Iter == VirtualCSInfo.end())
return nullptr;
LLVM_DEBUG(dbgs() << "\nComputing vtable infos for callsite #"
<< NumOfPGOICallsites << "\n");
const auto &VirtualCallInfo = Iter->second;
Instruction *VPtr = VirtualCallInfo.VPtr;
SmallDenseMap<Function *, int, 4> CalleeIndexMap;
for (size_t I = 0; I < Candidates.size(); I++)
CalleeIndexMap[Candidates[I].TargetFunction] = I;
uint64_t TotalVTableCount = 0;
auto VTableValueDataArray =
getValueProfDataFromInst(*VirtualCallInfo.VPtr, IPVK_VTableTarget,
MaxNumVTableAnnotations, TotalVTableCount);
if (VTableValueDataArray.empty())
return VPtr;
// Compute the functions and counts from by each vtable.
for (const auto &V : VTableValueDataArray) {
uint64_t VTableVal = V.Value;
GUIDCountsMap[VTableVal] = V.Count;
GlobalVariable *VTableVar = Symtab->getGlobalVariable(VTableVal);
if (!VTableVar) {
LLVM_DEBUG(dbgs() << " Cannot find vtable definition for " << VTableVal
<< "; maybe the vtable isn't imported\n");
continue;
}
std::optional<uint64_t> MaybeAddressPointOffset =
getAddressPointOffset(*VTableVar, VirtualCallInfo.CompatibleTypeStr);
if (!MaybeAddressPointOffset)
continue;
const uint64_t AddressPointOffset = *MaybeAddressPointOffset;
Function *Callee = nullptr;
std::tie(Callee, std::ignore) = getFunctionAtVTableOffset(
VTableVar, AddressPointOffset + VirtualCallInfo.FunctionOffset, M);
if (!Callee)
continue;
auto CalleeIndexIter = CalleeIndexMap.find(Callee);
if (CalleeIndexIter == CalleeIndexMap.end())
continue;
auto &Candidate = Candidates[CalleeIndexIter->second];
// There shouldn't be duplicate GUIDs in one !prof metadata (except
// duplicated zeros), so assign counters directly won't cause overwrite or
// counter loss.
Candidate.VTableGUIDAndCounts[VTableVal] = V.Count;
Candidate.AddressPoints.push_back(
getOrCreateVTableAddressPointVar(VTableVar, AddressPointOffset));
}
return VPtr;
}
// Creates 'branch_weights' prof metadata using TrueWeight and FalseWeight.
// Scales uint64_t counters down to uint32_t if necessary to prevent overflow.
static MDNode *createBranchWeights(LLVMContext &Context, uint64_t TrueWeight,
uint64_t FalseWeight) {
MDBuilder MDB(Context);
uint64_t Scale = calculateCountScale(std::max(TrueWeight, FalseWeight));
return MDB.createBranchWeights(scaleBranchCount(TrueWeight, Scale),
scaleBranchCount(FalseWeight, Scale));
}
CallBase &llvm::pgo::promoteIndirectCall(CallBase &CB, Function *DirectCallee,
uint64_t Count, uint64_t TotalCount,
bool AttachProfToDirectCall,
OptimizationRemarkEmitter *ORE) {
CallBase &NewInst = promoteCallWithIfThenElse(
CB, DirectCallee,
createBranchWeights(CB.getContext(), Count, TotalCount - Count));
if (AttachProfToDirectCall)
setBranchWeights(NewInst, {static_cast<uint32_t>(Count)},
/*IsExpected=*/false);
using namespace ore;
if (ORE)
ORE->emit([&]() {
return OptimizationRemark(DEBUG_TYPE, "Promoted", &CB)
<< "Promote indirect call to " << NV("DirectCallee", DirectCallee)
<< " with count " << NV("Count", Count) << " out of "
<< NV("TotalCount", TotalCount);
});
return NewInst;
}
// Promote indirect-call to conditional direct-call for one callsite.
bool IndirectCallPromoter::tryToPromoteWithFuncCmp(
CallBase &CB, Instruction *VPtr, ArrayRef<PromotionCandidate> Candidates,
uint64_t TotalCount, ArrayRef<InstrProfValueData> ICallProfDataRef,
uint32_t NumCandidates, VTableGUIDCountsMap &VTableGUIDCounts) {
uint32_t NumPromoted = 0;
for (const auto &C : Candidates) {
uint64_t FuncCount = C.Count;
pgo::promoteIndirectCall(CB, C.TargetFunction, FuncCount, TotalCount,
SamplePGO, &ORE);
assert(TotalCount >= FuncCount);
TotalCount -= FuncCount;
NumOfPGOICallPromotion++;
NumPromoted++;
if (!EnableVTableProfileUse || C.VTableGUIDAndCounts.empty())
continue;
// After a virtual call candidate gets promoted, update the vtable's counts
// proportionally. Each vtable-guid in `C.VTableGUIDAndCounts` represents
// a vtable from which the virtual call is loaded. Compute the sum and use
// 128-bit APInt to improve accuracy.
uint64_t SumVTableCount = 0;
for (const auto &[GUID, VTableCount] : C.VTableGUIDAndCounts)
SumVTableCount += VTableCount;
for (const auto &[GUID, VTableCount] : C.VTableGUIDAndCounts) {
APInt APFuncCount((unsigned)128, FuncCount, false /*signed*/);
APFuncCount *= VTableCount;
VTableGUIDCounts[GUID] -= APFuncCount.udiv(SumVTableCount).getZExtValue();
}
}
if (NumPromoted == 0)
return false;
assert(NumPromoted <= ICallProfDataRef.size() &&
"Number of promoted functions should not be greater than the number "
"of values in profile metadata");
// Update value profiles on the indirect call.
updateFuncValueProfiles(CB, ICallProfDataRef.slice(NumPromoted), TotalCount,
NumCandidates);
updateVPtrValueProfiles(VPtr, VTableGUIDCounts);
return true;
}
void IndirectCallPromoter::updateFuncValueProfiles(
CallBase &CB, ArrayRef<InstrProfValueData> CallVDs, uint64_t TotalCount,
uint32_t MaxMDCount) {
// First clear the existing !prof.
CB.setMetadata(LLVMContext::MD_prof, nullptr);
// Annotate the remaining value profiles if counter is not zero.
if (TotalCount != 0)
annotateValueSite(M, CB, CallVDs, TotalCount, IPVK_IndirectCallTarget,
MaxMDCount);
}
void IndirectCallPromoter::updateVPtrValueProfiles(
Instruction *VPtr, VTableGUIDCountsMap &VTableGUIDCounts) {
if (!EnableVTableProfileUse || VPtr == nullptr ||
!VPtr->getMetadata(LLVMContext::MD_prof))
return;
VPtr->setMetadata(LLVMContext::MD_prof, nullptr);
std::vector<InstrProfValueData> VTableValueProfiles;
uint64_t TotalVTableCount = 0;
for (auto [GUID, Count] : VTableGUIDCounts) {
if (Count == 0)
continue;
VTableValueProfiles.push_back({GUID, Count});
TotalVTableCount += Count;
}
llvm::sort(VTableValueProfiles,
[](const InstrProfValueData &LHS, const InstrProfValueData &RHS) {
return LHS.Count > RHS.Count;
});
annotateValueSite(M, *VPtr, VTableValueProfiles, TotalVTableCount,
IPVK_VTableTarget, VTableValueProfiles.size());
}
bool IndirectCallPromoter::tryToPromoteWithVTableCmp(
CallBase &CB, Instruction *VPtr, ArrayRef<PromotionCandidate> Candidates,
uint64_t TotalFuncCount, uint32_t NumCandidates,
MutableArrayRef<InstrProfValueData> ICallProfDataRef,
VTableGUIDCountsMap &VTableGUIDCounts) {
SmallVector<uint64_t, 4> PromotedFuncCount;
for (const auto &Candidate : Candidates) {
for (auto &[GUID, Count] : Candidate.VTableGUIDAndCounts)
VTableGUIDCounts[GUID] -= Count;
// 'OriginalBB' is the basic block of indirect call. After each candidate
// is promoted, a new basic block is created for the indirect fallback basic
// block and indirect call `CB` is moved into this new BB.
BasicBlock *OriginalBB = CB.getParent();
promoteCallWithVTableCmp(
CB, VPtr, Candidate.TargetFunction, Candidate.AddressPoints,
createBranchWeights(CB.getContext(), Candidate.Count,
TotalFuncCount - Candidate.Count));
int SinkCount = tryToSinkInstructions(OriginalBB, CB.getParent());
ORE.emit([&]() {
OptimizationRemark Remark(DEBUG_TYPE, "Promoted", &CB);
const auto &VTableGUIDAndCounts = Candidate.VTableGUIDAndCounts;
Remark << "Promote indirect call to "
<< ore::NV("DirectCallee", Candidate.TargetFunction)
<< " with count " << ore::NV("Count", Candidate.Count)
<< " out of " << ore::NV("TotalCount", TotalFuncCount) << ", sink "
<< ore::NV("SinkCount", SinkCount)
<< " instruction(s) and compare "
<< ore::NV("VTable", VTableGUIDAndCounts.size())
<< " vtable(s): {";
// Sort GUIDs so remark message is deterministic.
std::set<uint64_t> GUIDSet;
for (auto [GUID, Count] : VTableGUIDAndCounts)
GUIDSet.insert(GUID);
for (auto Iter = GUIDSet.begin(); Iter != GUIDSet.end(); Iter++) {
if (Iter != GUIDSet.begin())
Remark << ", ";
Remark << ore::NV("VTable", Symtab->getGlobalVariable(*Iter));
}
Remark << "}";
return Remark;
});
PromotedFuncCount.push_back(Candidate.Count);
assert(TotalFuncCount >= Candidate.Count &&
"Within one prof metadata, total count is the sum of counts from "
"individual <target, count> pairs");
// Use std::min since 'TotalFuncCount' is the saturated sum of individual
// counts, see
// https://github.com/llvm/llvm-project/blob/abedb3b8356d5d56f1c575c4f7682fba2cb19787/llvm/lib/ProfileData/InstrProf.cpp#L1281-L1288
TotalFuncCount -= std::min(TotalFuncCount, Candidate.Count);
NumOfPGOICallPromotion++;
}
if (PromotedFuncCount.empty())
return false;
// Update value profiles for 'CB' and 'VPtr', assuming that each 'CB' has a
// a distinct 'VPtr'.
// FIXME: When Clang `-fstrict-vtable-pointers` is enabled, a vtable might be
// used to load multiple virtual functions. The vtable profiles needs to be
// updated properly in that case (e.g, for each indirect call annotate both
// type profiles and function profiles in one !prof).
for (size_t I = 0; I < PromotedFuncCount.size(); I++)
ICallProfDataRef[I].Count -=
std::max(PromotedFuncCount[I], ICallProfDataRef[I].Count);
// Sort value profiles by count in descending order.
llvm::stable_sort(ICallProfDataRef, [](const InstrProfValueData &LHS,
const InstrProfValueData &RHS) {
return LHS.Count > RHS.Count;
});
// Drop the <target-value, count> pair if count is zero.
ArrayRef<InstrProfValueData> VDs(
ICallProfDataRef.begin(),
llvm::upper_bound(ICallProfDataRef, 0U,
[](uint64_t Count, const InstrProfValueData &ProfData) {
return ProfData.Count <= Count;
}));
updateFuncValueProfiles(CB, VDs, TotalFuncCount, NumCandidates);
updateVPtrValueProfiles(VPtr, VTableGUIDCounts);
return true;
}
// Traverse all the indirect-call callsite and get the value profile
// annotation to perform indirect-call promotion.
bool IndirectCallPromoter::processFunction(ProfileSummaryInfo *PSI) {
bool Changed = false;
ICallPromotionAnalysis ICallAnalysis;
for (auto *CB : findIndirectCalls(F)) {
uint32_t NumCandidates;
uint64_t TotalCount;
auto ICallProfDataRef = ICallAnalysis.getPromotionCandidatesForInstruction(
CB, TotalCount, NumCandidates);
if (!NumCandidates ||
(PSI && PSI->hasProfileSummary() && !PSI->isHotCount(TotalCount)))
continue;
auto PromotionCandidates = getPromotionCandidatesForCallSite(
*CB, ICallProfDataRef, TotalCount, NumCandidates);
VTableGUIDCountsMap VTableGUIDCounts;
Instruction *VPtr =
computeVTableInfos(CB, VTableGUIDCounts, PromotionCandidates);
if (isProfitableToCompareVTables(*CB, PromotionCandidates, TotalCount))
Changed |= tryToPromoteWithVTableCmp(*CB, VPtr, PromotionCandidates,
TotalCount, NumCandidates,
ICallProfDataRef, VTableGUIDCounts);
else
Changed |= tryToPromoteWithFuncCmp(*CB, VPtr, PromotionCandidates,
TotalCount, ICallProfDataRef,
NumCandidates, VTableGUIDCounts);
}
return Changed;
}
// TODO: Return false if the function addressing and vtable load instructions
// cannot sink to indirect fallback.
bool IndirectCallPromoter::isProfitableToCompareVTables(
const CallBase &CB, ArrayRef<PromotionCandidate> Candidates,
uint64_t TotalCount) {
if (!EnableVTableProfileUse || Candidates.empty())
return false;
LLVM_DEBUG(dbgs() << "\nEvaluating vtable profitability for callsite #"
<< NumOfPGOICallsites << CB << "\n");
uint64_t RemainingVTableCount = TotalCount;
const size_t CandidateSize = Candidates.size();
for (size_t I = 0; I < CandidateSize; I++) {
auto &Candidate = Candidates[I];
auto &VTableGUIDAndCounts = Candidate.VTableGUIDAndCounts;
LLVM_DEBUG(dbgs() << " Candidate " << I << " FunctionCount: "
<< Candidate.Count << ", VTableCounts:");
// Add [[maybe_unused]] since <GUID, Count> are only used by LLVM_DEBUG.
for ([[maybe_unused]] auto &[GUID, Count] : VTableGUIDAndCounts)
LLVM_DEBUG(dbgs() << " {" << Symtab->getGlobalVariable(GUID)->getName()
<< ", " << Count << "}");
LLVM_DEBUG(dbgs() << "\n");
uint64_t CandidateVTableCount = 0;
for (auto &[GUID, Count] : VTableGUIDAndCounts)
CandidateVTableCount += Count;
if (CandidateVTableCount < Candidate.Count * ICPVTablePercentageThreshold) {
LLVM_DEBUG(
dbgs() << " function count " << Candidate.Count
<< " and its vtable sum count " << CandidateVTableCount
<< " have discrepancies. Bail out vtable comparison.\n");
return false;
}
RemainingVTableCount -= Candidate.Count;
// 'MaxNumVTable' limits the number of vtables to make vtable comparison
// profitable. Comparing multiple vtables for one function candidate will
// insert additional instructions on the hot path, and allowing more than
// one vtable for non last candidates may or may not elongate the dependency
// chain for the subsequent candidates. Set its value to 1 for non-last
// candidate and allow option to override it for the last candidate.
int MaxNumVTable = 1;
if (I == CandidateSize - 1)
MaxNumVTable = ICPMaxNumVTableLastCandidate;
if ((int)Candidate.AddressPoints.size() > MaxNumVTable) {
LLVM_DEBUG(dbgs() << " allow at most " << MaxNumVTable << " and got "
<< Candidate.AddressPoints.size()
<< " vtables. Bail out for vtable comparison.\n");
return false;
}
}
// If the indirect fallback is not cold, don't compare vtables.
if (PSI && PSI->hasProfileSummary() &&
!PSI->isColdCount(RemainingVTableCount)) {
LLVM_DEBUG(dbgs() << " Indirect fallback basic block is not cold. Bail "
"out for vtable comparison.\n");
return false;
}
return true;
}
// For virtual calls in the module, collect per-callsite information which will
// be used to associate an ICP candidate with a vtable and a specific function
// in the vtable. With type intrinsics (llvm.type.test), we can find virtual
// calls in a compile-time efficient manner (by iterating its users) and more
// importantly use the compatible type later to figure out the function byte
// offset relative to the start of vtables.
static void
computeVirtualCallSiteTypeInfoMap(Module &M, ModuleAnalysisManager &MAM,
VirtualCallSiteTypeInfoMap &VirtualCSInfo) {
// Right now only llvm.type.test is used to find out virtual call sites.
// With ThinLTO and whole-program-devirtualization, llvm.type.test and
// llvm.public.type.test are emitted, and llvm.public.type.test is either
// refined to llvm.type.test or dropped before indirect-call-promotion pass.
//
// FIXME: For fullLTO with VFE, `llvm.type.checked.load intrinsic` is emitted.
// Find out virtual calls by looking at users of llvm.type.checked.load in
// that case.
Function *TypeTestFunc =
M.getFunction(Intrinsic::getName(Intrinsic::type_test));
if (!TypeTestFunc || TypeTestFunc->use_empty())
return;
auto &FAM = MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
auto LookupDomTree = [&FAM](Function &F) -> DominatorTree & {
return FAM.getResult<DominatorTreeAnalysis>(F);
};
// Iterate all type.test calls to find all indirect calls.
for (Use &U : llvm::make_early_inc_range(TypeTestFunc->uses())) {
auto *CI = dyn_cast<CallInst>(U.getUser());
if (!CI)
continue;
auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(1));
if (!TypeMDVal)
continue;
auto *CompatibleTypeId = dyn_cast<MDString>(TypeMDVal->getMetadata());
if (!CompatibleTypeId)
continue;
// Find out all devirtualizable call sites given a llvm.type.test
// intrinsic call.
SmallVector<DevirtCallSite, 1> DevirtCalls;
SmallVector<CallInst *, 1> Assumes;
auto &DT = LookupDomTree(*CI->getFunction());
findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT);
for (auto &DevirtCall : DevirtCalls) {
CallBase &CB = DevirtCall.CB;
// Given an indirect call, try find the instruction which loads a
// pointer to virtual table.
Instruction *VTablePtr =
PGOIndirectCallVisitor::tryGetVTableInstruction(&CB);
if (!VTablePtr)
continue;
VirtualCSInfo[&CB] = {DevirtCall.Offset, VTablePtr,
CompatibleTypeId->getString()};
}
}
}
// A wrapper function that does the actual work.
static bool promoteIndirectCalls(Module &M, ProfileSummaryInfo *PSI, bool InLTO,
bool SamplePGO, ModuleAnalysisManager &MAM) {
if (DisableICP)
return false;
InstrProfSymtab Symtab;
if (Error E = Symtab.create(M, InLTO)) {
std::string SymtabFailure = toString(std::move(E));
M.getContext().emitError("Failed to create symtab: " + SymtabFailure);
return false;
}
bool Changed = false;
VirtualCallSiteTypeInfoMap VirtualCSInfo;
if (EnableVTableProfileUse)
computeVirtualCallSiteTypeInfoMap(M, MAM, VirtualCSInfo);
// VTableAddressPointOffsetVal stores the vtable address points. The vtable
// address point of a given <vtable, address point offset> is static (doesn't
// change after being computed once).
// IndirectCallPromoter::getOrCreateVTableAddressPointVar creates the map
// entry the first time a <vtable, offset> pair is seen, as
// promoteIndirectCalls processes an IR module and calls IndirectCallPromoter
// repeatedly on each function.
VTableAddressPointOffsetValMap VTableAddressPointOffsetVal;
for (auto &F : M) {
if (F.isDeclaration() || F.hasOptNone())
continue;
auto &FAM =
MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
IndirectCallPromoter CallPromoter(F, M, PSI, &Symtab, SamplePGO,
VirtualCSInfo,
VTableAddressPointOffsetVal, ORE);
bool FuncChanged = CallPromoter.processFunction(PSI);
if (ICPDUMPAFTER && FuncChanged) {
LLVM_DEBUG(dbgs() << "\n== IR Dump After =="; F.print(dbgs()));
LLVM_DEBUG(dbgs() << "\n");
}
Changed |= FuncChanged;
if (ICPCutOff != 0 && NumOfPGOICallPromotion >= ICPCutOff) {
LLVM_DEBUG(dbgs() << " Stop: Cutoff reached.\n");
break;
}
}
return Changed;
}
PreservedAnalyses PGOIndirectCallPromotion::run(Module &M,
ModuleAnalysisManager &MAM) {
ProfileSummaryInfo *PSI = &MAM.getResult<ProfileSummaryAnalysis>(M);
if (!promoteIndirectCalls(M, PSI, InLTO | ICPLTOMode,
SamplePGO | ICPSamplePGOMode, MAM))
return PreservedAnalyses::all();
return PreservedAnalyses::none();
}