blob: 5ba626fa213ad257a0371358adb393f0e880750a [file] [log] [blame]
//===- ControlFlowUtils.cpp - Control Flow Utilities -----------------------==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Utilities to manipulate the CFG and restore SSA for the new control flow.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/ControlFlowUtils.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Transforms/Utils/Local.h"
#define DEBUG_TYPE "control-flow-hub"
using namespace llvm;
using BBPredicates = DenseMap<BasicBlock *, Instruction *>;
using EdgeDescriptor = ControlFlowHub::BranchDescriptor;
// Redirects the terminator of the incoming block to the first guard block in
// the hub. Returns the branch condition from `BB` if it exits.
// - If only one of Succ0 or Succ1 is not null, the corresponding branch
// successor is redirected to the FirstGuardBlock.
// - Else both are not null, and branch is replaced with an unconditional
// branch to the FirstGuardBlock.
static Value *redirectToHub(BasicBlock *BB, BasicBlock *Succ0,
BasicBlock *Succ1, BasicBlock *FirstGuardBlock) {
assert(isa<BranchInst>(BB->getTerminator()) &&
"Only support branch terminator.");
auto *Branch = cast<BranchInst>(BB->getTerminator());
auto *Condition = Branch->isConditional() ? Branch->getCondition() : nullptr;
assert(Succ0 || Succ1);
if (Branch->isUnconditional()) {
assert(Succ0 == Branch->getSuccessor(0));
assert(!Succ1);
Branch->setSuccessor(0, FirstGuardBlock);
} else {
assert(!Succ1 || Succ1 == Branch->getSuccessor(1));
if (Succ0 && !Succ1) {
Branch->setSuccessor(0, FirstGuardBlock);
} else if (Succ1 && !Succ0) {
Branch->setSuccessor(1, FirstGuardBlock);
} else {
Branch->eraseFromParent();
BranchInst::Create(FirstGuardBlock, BB);
}
}
return Condition;
}
// Setup the branch instructions for guard blocks.
//
// Each guard block terminates in a conditional branch that transfers
// control to the corresponding outgoing block or the next guard
// block. The last guard block has two outgoing blocks as successors.
static void setupBranchForGuard(ArrayRef<BasicBlock *> GuardBlocks,
ArrayRef<BasicBlock *> Outgoing,
BBPredicates &GuardPredicates) {
assert(Outgoing.size() > 1);
assert(GuardBlocks.size() == Outgoing.size() - 1);
int I = 0;
for (int E = GuardBlocks.size() - 1; I != E; ++I) {
BasicBlock *Out = Outgoing[I];
BranchInst::Create(Out, GuardBlocks[I + 1], GuardPredicates[Out],
GuardBlocks[I]);
}
BasicBlock *Out = Outgoing[I];
BranchInst::Create(Out, Outgoing[I + 1], GuardPredicates[Out],
GuardBlocks[I]);
}
// Assign an index to each outgoing block. At the corresponding guard
// block, compute the branch condition by comparing this index.
static void calcPredicateUsingInteger(ArrayRef<EdgeDescriptor> Branches,
ArrayRef<BasicBlock *> Outgoing,
ArrayRef<BasicBlock *> GuardBlocks,
BBPredicates &GuardPredicates) {
LLVMContext &Context = GuardBlocks.front()->getContext();
BasicBlock *FirstGuardBlock = GuardBlocks.front();
Type *Int32Ty = Type::getInt32Ty(Context);
auto *Phi = PHINode::Create(Int32Ty, Branches.size(), "merged.bb.idx",
FirstGuardBlock);
for (auto [BB, Succ0, Succ1] : Branches) {
Value *Condition = redirectToHub(BB, Succ0, Succ1, FirstGuardBlock);
Value *IncomingId = nullptr;
if (Succ0 && Succ1) {
auto Succ0Iter = find(Outgoing, Succ0);
auto Succ1Iter = find(Outgoing, Succ1);
Value *Id0 =
ConstantInt::get(Int32Ty, std::distance(Outgoing.begin(), Succ0Iter));
Value *Id1 =
ConstantInt::get(Int32Ty, std::distance(Outgoing.begin(), Succ1Iter));
IncomingId = SelectInst::Create(Condition, Id0, Id1, "target.bb.idx",
BB->getTerminator()->getIterator());
} else {
// Get the index of the non-null successor.
auto SuccIter = Succ0 ? find(Outgoing, Succ0) : find(Outgoing, Succ1);
IncomingId =
ConstantInt::get(Int32Ty, std::distance(Outgoing.begin(), SuccIter));
}
Phi->addIncoming(IncomingId, BB);
}
for (int I = 0, E = Outgoing.size() - 1; I != E; ++I) {
BasicBlock *Out = Outgoing[I];
LLVM_DEBUG(dbgs() << "Creating integer guard for " << Out->getName()
<< "\n");
auto *Cmp = ICmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, Phi,
ConstantInt::get(Int32Ty, I),
Out->getName() + ".predicate", GuardBlocks[I]);
GuardPredicates[Out] = Cmp;
}
}
// Determine the branch condition to be used at each guard block from the
// original boolean values.
static void calcPredicateUsingBooleans(
ArrayRef<EdgeDescriptor> Branches, ArrayRef<BasicBlock *> Outgoing,
SmallVectorImpl<BasicBlock *> &GuardBlocks, BBPredicates &GuardPredicates,
SmallVectorImpl<WeakVH> &DeletionCandidates) {
LLVMContext &Context = GuardBlocks.front()->getContext();
auto *BoolTrue = ConstantInt::getTrue(Context);
auto *BoolFalse = ConstantInt::getFalse(Context);
BasicBlock *FirstGuardBlock = GuardBlocks.front();
// The predicate for the last outgoing is trivially true, and so we
// process only the first N-1 successors.
for (int I = 0, E = Outgoing.size() - 1; I != E; ++I) {
BasicBlock *Out = Outgoing[I];
LLVM_DEBUG(dbgs() << "Creating boolean guard for " << Out->getName()
<< "\n");
auto *Phi =
PHINode::Create(Type::getInt1Ty(Context), Branches.size(),
StringRef("Guard.") + Out->getName(), FirstGuardBlock);
GuardPredicates[Out] = Phi;
}
for (auto [BB, Succ0, Succ1] : Branches) {
Value *Condition = redirectToHub(BB, Succ0, Succ1, FirstGuardBlock);
// Optimization: Consider an incoming block A with both successors
// Succ0 and Succ1 in the set of outgoing blocks. The predicates
// for Succ0 and Succ1 complement each other. If Succ0 is visited
// first in the loop below, control will branch to Succ0 using the
// corresponding predicate. But if that branch is not taken, then
// control must reach Succ1, which means that the incoming value of
// the predicate from `BB` is true for Succ1.
bool OneSuccessorDone = false;
for (int I = 0, E = Outgoing.size() - 1; I != E; ++I) {
BasicBlock *Out = Outgoing[I];
PHINode *Phi = cast<PHINode>(GuardPredicates[Out]);
if (Out != Succ0 && Out != Succ1) {
Phi->addIncoming(BoolFalse, BB);
} else if (!Succ0 || !Succ1 || OneSuccessorDone) {
// Optimization: When only one successor is an outgoing block,
// the incoming predicate from `BB` is always true.
Phi->addIncoming(BoolTrue, BB);
} else {
assert(Succ0 && Succ1);
if (Out == Succ0) {
Phi->addIncoming(Condition, BB);
} else {
Value *Inverted = invertCondition(Condition);
DeletionCandidates.push_back(Condition);
Phi->addIncoming(Inverted, BB);
}
OneSuccessorDone = true;
}
}
}
}
// Capture the existing control flow as guard predicates, and redirect
// control flow from \p Incoming block through the \p GuardBlocks to the
// \p Outgoing blocks.
//
// There is one guard predicate for each outgoing block OutBB. The
// predicate represents whether the hub should transfer control flow
// to OutBB. These predicates are NOT ORTHOGONAL. The Hub evaluates
// them in the same order as the Outgoing set-vector, and control
// branches to the first outgoing block whose predicate evaluates to true.
//
// The last guard block has two outgoing blocks as successors since the
// condition for the final outgoing block is trivially true. So we create one
// less block (including the first guard block) than the number of outgoing
// blocks.
static void convertToGuardPredicates(
ArrayRef<EdgeDescriptor> Branches, ArrayRef<BasicBlock *> Outgoing,
SmallVectorImpl<BasicBlock *> &GuardBlocks,
SmallVectorImpl<WeakVH> &DeletionCandidates, const StringRef Prefix,
std::optional<unsigned> MaxControlFlowBooleans) {
BBPredicates GuardPredicates;
Function *F = Outgoing.front()->getParent();
for (int I = 0, E = Outgoing.size() - 1; I != E; ++I)
GuardBlocks.push_back(
BasicBlock::Create(F->getContext(), Prefix + ".guard", F));
// When we are using an integer to record which target block to jump to, we
// are creating less live values, actually we are using one single integer to
// store the index of the target block. When we are using booleans to store
// the branching information, we need (N-1) boolean values, where N is the
// number of outgoing block.
if (!MaxControlFlowBooleans || Outgoing.size() <= *MaxControlFlowBooleans)
calcPredicateUsingBooleans(Branches, Outgoing, GuardBlocks, GuardPredicates,
DeletionCandidates);
else
calcPredicateUsingInteger(Branches, Outgoing, GuardBlocks, GuardPredicates);
setupBranchForGuard(GuardBlocks, Outgoing, GuardPredicates);
}
// After creating a control flow hub, the operands of PHINodes in an outgoing
// block Out no longer match the predecessors of that block. Predecessors of Out
// that are incoming blocks to the hub are now replaced by just one edge from
// the hub. To match this new control flow, the corresponding values from each
// PHINode must now be moved a new PHINode in the first guard block of the hub.
//
// This operation cannot be performed with SSAUpdater, because it involves one
// new use: If the block Out is in the list of Incoming blocks, then the newly
// created PHI in the Hub will use itself along that edge from Out to Hub.
static void reconnectPhis(BasicBlock *Out, BasicBlock *GuardBlock,
ArrayRef<EdgeDescriptor> Incoming,
BasicBlock *FirstGuardBlock) {
auto I = Out->begin();
while (I != Out->end() && isa<PHINode>(I)) {
auto *Phi = cast<PHINode>(I);
auto *NewPhi =
PHINode::Create(Phi->getType(), Incoming.size(),
Phi->getName() + ".moved", FirstGuardBlock->begin());
bool AllUndef = true;
for (auto [BB, Succ0, Succ1] : Incoming) {
Value *V = PoisonValue::get(Phi->getType());
if (BB == Out) {
V = NewPhi;
} else if (Phi->getBasicBlockIndex(BB) != -1) {
V = Phi->removeIncomingValue(BB, false);
AllUndef &= isa<UndefValue>(V);
}
NewPhi->addIncoming(V, BB);
}
assert(NewPhi->getNumIncomingValues() == Incoming.size());
Value *NewV = NewPhi;
if (AllUndef) {
NewPhi->eraseFromParent();
NewV = PoisonValue::get(Phi->getType());
}
if (Phi->getNumOperands() == 0) {
Phi->replaceAllUsesWith(NewV);
I = Phi->eraseFromParent();
continue;
}
Phi->addIncoming(NewV, GuardBlock);
++I;
}
}
BasicBlock *ControlFlowHub::finalize(
DomTreeUpdater *DTU, SmallVectorImpl<BasicBlock *> &GuardBlocks,
const StringRef Prefix, std::optional<unsigned> MaxControlFlowBooleans) {
#ifndef NDEBUG
SmallSet<BasicBlock *, 8> Incoming;
#endif
SetVector<BasicBlock *> Outgoing;
for (auto [BB, Succ0, Succ1] : Branches) {
#ifndef NDEBUG
assert(Incoming.insert(BB).second && "Duplicate entry for incoming block.");
#endif
if (Succ0)
Outgoing.insert(Succ0);
if (Succ1)
Outgoing.insert(Succ1);
}
if (Outgoing.size() < 2)
return Outgoing.front();
SmallVector<DominatorTree::UpdateType, 16> Updates;
if (DTU) {
for (auto [BB, Succ0, Succ1] : Branches) {
if (Succ0)
Updates.push_back({DominatorTree::Delete, BB, Succ0});
if (Succ1)
Updates.push_back({DominatorTree::Delete, BB, Succ1});
}
}
SmallVector<WeakVH, 8> DeletionCandidates;
convertToGuardPredicates(Branches, Outgoing.getArrayRef(), GuardBlocks,
DeletionCandidates, Prefix, MaxControlFlowBooleans);
BasicBlock *FirstGuardBlock = GuardBlocks.front();
// Update the PHINodes in each outgoing block to match the new control flow.
for (int I = 0, E = GuardBlocks.size(); I != E; ++I)
reconnectPhis(Outgoing[I], GuardBlocks[I], Branches, FirstGuardBlock);
// Process the Nth (last) outgoing block with the (N-1)th (last) guard block.
reconnectPhis(Outgoing.back(), GuardBlocks.back(), Branches, FirstGuardBlock);
if (DTU) {
int NumGuards = GuardBlocks.size();
for (auto [BB, Succ0, Succ1] : Branches)
Updates.push_back({DominatorTree::Insert, BB, FirstGuardBlock});
for (int I = 0; I != NumGuards - 1; ++I) {
Updates.push_back({DominatorTree::Insert, GuardBlocks[I], Outgoing[I]});
Updates.push_back(
{DominatorTree::Insert, GuardBlocks[I], GuardBlocks[I + 1]});
}
// The second successor of the last guard block is an outgoing block instead
// of having a "next" guard block.
Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
Outgoing[NumGuards - 1]});
Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
Outgoing[NumGuards]});
DTU->applyUpdates(Updates);
}
for (auto I : DeletionCandidates) {
if (I->use_empty())
if (auto *Inst = dyn_cast_or_null<Instruction>(I))
Inst->eraseFromParent();
}
return FirstGuardBlock;
}