| //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops |
| // and generates target-independent LLVM-IR. |
| // The vectorizer uses the TargetTransformInfo analysis to estimate the costs |
| // of instructions in order to estimate the profitability of vectorization. |
| // |
| // The loop vectorizer combines consecutive loop iterations into a single |
| // 'wide' iteration. After this transformation the index is incremented |
| // by the SIMD vector width, and not by one. |
| // |
| // This pass has three parts: |
| // 1. The main loop pass that drives the different parts. |
| // 2. LoopVectorizationLegality - A unit that checks for the legality |
| // of the vectorization. |
| // 3. InnerLoopVectorizer - A unit that performs the actual |
| // widening of instructions. |
| // 4. LoopVectorizationCostModel - A unit that checks for the profitability |
| // of vectorization. It decides on the optimal vector width, which |
| // can be one, if vectorization is not profitable. |
| // |
| // There is a development effort going on to migrate loop vectorizer to the |
| // VPlan infrastructure and to introduce outer loop vectorization support (see |
| // docs/VectorizationPlan.rst and |
| // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this |
| // purpose, we temporarily introduced the VPlan-native vectorization path: an |
| // alternative vectorization path that is natively implemented on top of the |
| // VPlan infrastructure. See EnableVPlanNativePath for enabling. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // The reduction-variable vectorization is based on the paper: |
| // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. |
| // |
| // Variable uniformity checks are inspired by: |
| // Karrenberg, R. and Hack, S. Whole Function Vectorization. |
| // |
| // The interleaved access vectorization is based on the paper: |
| // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved |
| // Data for SIMD |
| // |
| // Other ideas/concepts are from: |
| // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. |
| // |
| // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of |
| // Vectorizing Compilers. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Vectorize/LoopVectorize.h" |
| #include "LoopVectorizationPlanner.h" |
| #include "VPRecipeBuilder.h" |
| #include "VPlan.h" |
| #include "VPlanAnalysis.h" |
| #include "VPlanHCFGBuilder.h" |
| #include "VPlanPatternMatch.h" |
| #include "VPlanTransforms.h" |
| #include "VPlanVerifier.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/DenseMapInfo.h" |
| #include "llvm/ADT/Hashing.h" |
| #include "llvm/ADT/MapVector.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/ADT/TypeSwitch.h" |
| #include "llvm/ADT/iterator_range.h" |
| #include "llvm/Analysis/AssumptionCache.h" |
| #include "llvm/Analysis/BasicAliasAnalysis.h" |
| #include "llvm/Analysis/BlockFrequencyInfo.h" |
| #include "llvm/Analysis/CFG.h" |
| #include "llvm/Analysis/CodeMetrics.h" |
| #include "llvm/Analysis/DemandedBits.h" |
| #include "llvm/Analysis/GlobalsModRef.h" |
| #include "llvm/Analysis/LoopAccessAnalysis.h" |
| #include "llvm/Analysis/LoopAnalysisManager.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/LoopIterator.h" |
| #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
| #include "llvm/Analysis/ProfileSummaryInfo.h" |
| #include "llvm/Analysis/ScalarEvolution.h" |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| #include "llvm/Analysis/TargetLibraryInfo.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/Analysis/VectorUtils.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/CFG.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DebugInfo.h" |
| #include "llvm/IR/DebugInfoMetadata.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/DiagnosticInfo.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/MDBuilder.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/IR/ProfDataUtils.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Use.h" |
| #include "llvm/IR/User.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/IR/ValueHandle.h" |
| #include "llvm/IR/VectorBuilder.h" |
| #include "llvm/IR/Verifier.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/InstructionCost.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Transforms/Utils/InjectTLIMappings.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/Transforms/Utils/LoopSimplify.h" |
| #include "llvm/Transforms/Utils/LoopUtils.h" |
| #include "llvm/Transforms/Utils/LoopVersioning.h" |
| #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" |
| #include "llvm/Transforms/Utils/SizeOpts.h" |
| #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cmath> |
| #include <cstdint> |
| #include <functional> |
| #include <iterator> |
| #include <limits> |
| #include <map> |
| #include <memory> |
| #include <string> |
| #include <tuple> |
| #include <utility> |
| |
| using namespace llvm; |
| |
| #define LV_NAME "loop-vectorize" |
| #define DEBUG_TYPE LV_NAME |
| |
| #ifndef NDEBUG |
| const char VerboseDebug[] = DEBUG_TYPE "-verbose"; |
| #endif |
| |
| /// @{ |
| /// Metadata attribute names |
| const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; |
| const char LLVMLoopVectorizeFollowupVectorized[] = |
| "llvm.loop.vectorize.followup_vectorized"; |
| const char LLVMLoopVectorizeFollowupEpilogue[] = |
| "llvm.loop.vectorize.followup_epilogue"; |
| /// @} |
| |
| STATISTIC(LoopsVectorized, "Number of loops vectorized"); |
| STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); |
| STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); |
| |
| static cl::opt<bool> EnableEpilogueVectorization( |
| "enable-epilogue-vectorization", cl::init(true), cl::Hidden, |
| cl::desc("Enable vectorization of epilogue loops.")); |
| |
| static cl::opt<unsigned> EpilogueVectorizationForceVF( |
| "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, |
| cl::desc("When epilogue vectorization is enabled, and a value greater than " |
| "1 is specified, forces the given VF for all applicable epilogue " |
| "loops.")); |
| |
| static cl::opt<unsigned> EpilogueVectorizationMinVF( |
| "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, |
| cl::desc("Only loops with vectorization factor equal to or larger than " |
| "the specified value are considered for epilogue vectorization.")); |
| |
| /// Loops with a known constant trip count below this number are vectorized only |
| /// if no scalar iteration overheads are incurred. |
| static cl::opt<unsigned> TinyTripCountVectorThreshold( |
| "vectorizer-min-trip-count", cl::init(16), cl::Hidden, |
| cl::desc("Loops with a constant trip count that is smaller than this " |
| "value are vectorized only if no scalar iteration overheads " |
| "are incurred.")); |
| |
| static cl::opt<unsigned> VectorizeMemoryCheckThreshold( |
| "vectorize-memory-check-threshold", cl::init(128), cl::Hidden, |
| cl::desc("The maximum allowed number of runtime memory checks")); |
| |
| // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, |
| // that predication is preferred, and this lists all options. I.e., the |
| // vectorizer will try to fold the tail-loop (epilogue) into the vector body |
| // and predicate the instructions accordingly. If tail-folding fails, there are |
| // different fallback strategies depending on these values: |
| namespace PreferPredicateTy { |
| enum Option { |
| ScalarEpilogue = 0, |
| PredicateElseScalarEpilogue, |
| PredicateOrDontVectorize |
| }; |
| } // namespace PreferPredicateTy |
| |
| static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( |
| "prefer-predicate-over-epilogue", |
| cl::init(PreferPredicateTy::ScalarEpilogue), |
| cl::Hidden, |
| cl::desc("Tail-folding and predication preferences over creating a scalar " |
| "epilogue loop."), |
| cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, |
| "scalar-epilogue", |
| "Don't tail-predicate loops, create scalar epilogue"), |
| clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, |
| "predicate-else-scalar-epilogue", |
| "prefer tail-folding, create scalar epilogue if tail " |
| "folding fails."), |
| clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, |
| "predicate-dont-vectorize", |
| "prefers tail-folding, don't attempt vectorization if " |
| "tail-folding fails."))); |
| |
| static cl::opt<TailFoldingStyle> ForceTailFoldingStyle( |
| "force-tail-folding-style", cl::desc("Force the tail folding style"), |
| cl::init(TailFoldingStyle::None), |
| cl::values( |
| clEnumValN(TailFoldingStyle::None, "none", "Disable tail folding"), |
| clEnumValN( |
| TailFoldingStyle::Data, "data", |
| "Create lane mask for data only, using active.lane.mask intrinsic"), |
| clEnumValN(TailFoldingStyle::DataWithoutLaneMask, |
| "data-without-lane-mask", |
| "Create lane mask with compare/stepvector"), |
| clEnumValN(TailFoldingStyle::DataAndControlFlow, "data-and-control", |
| "Create lane mask using active.lane.mask intrinsic, and use " |
| "it for both data and control flow"), |
| clEnumValN(TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck, |
| "data-and-control-without-rt-check", |
| "Similar to data-and-control, but remove the runtime check"), |
| clEnumValN(TailFoldingStyle::DataWithEVL, "data-with-evl", |
| "Use predicated EVL instructions for tail folding. If EVL " |
| "is unsupported, fallback to data-without-lane-mask."))); |
| |
| static cl::opt<bool> MaximizeBandwidth( |
| "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, |
| cl::desc("Maximize bandwidth when selecting vectorization factor which " |
| "will be determined by the smallest type in loop.")); |
| |
| static cl::opt<bool> EnableInterleavedMemAccesses( |
| "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, |
| cl::desc("Enable vectorization on interleaved memory accesses in a loop")); |
| |
| /// An interleave-group may need masking if it resides in a block that needs |
| /// predication, or in order to mask away gaps. |
| static cl::opt<bool> EnableMaskedInterleavedMemAccesses( |
| "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, |
| cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); |
| |
| static cl::opt<unsigned> ForceTargetNumScalarRegs( |
| "force-target-num-scalar-regs", cl::init(0), cl::Hidden, |
| cl::desc("A flag that overrides the target's number of scalar registers.")); |
| |
| static cl::opt<unsigned> ForceTargetNumVectorRegs( |
| "force-target-num-vector-regs", cl::init(0), cl::Hidden, |
| cl::desc("A flag that overrides the target's number of vector registers.")); |
| |
| static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( |
| "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, |
| cl::desc("A flag that overrides the target's max interleave factor for " |
| "scalar loops.")); |
| |
| static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( |
| "force-target-max-vector-interleave", cl::init(0), cl::Hidden, |
| cl::desc("A flag that overrides the target's max interleave factor for " |
| "vectorized loops.")); |
| |
| cl::opt<unsigned> ForceTargetInstructionCost( |
| "force-target-instruction-cost", cl::init(0), cl::Hidden, |
| cl::desc("A flag that overrides the target's expected cost for " |
| "an instruction to a single constant value. Mostly " |
| "useful for getting consistent testing.")); |
| |
| static cl::opt<bool> ForceTargetSupportsScalableVectors( |
| "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, |
| cl::desc( |
| "Pretend that scalable vectors are supported, even if the target does " |
| "not support them. This flag should only be used for testing.")); |
| |
| static cl::opt<unsigned> SmallLoopCost( |
| "small-loop-cost", cl::init(20), cl::Hidden, |
| cl::desc( |
| "The cost of a loop that is considered 'small' by the interleaver.")); |
| |
| static cl::opt<bool> LoopVectorizeWithBlockFrequency( |
| "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, |
| cl::desc("Enable the use of the block frequency analysis to access PGO " |
| "heuristics minimizing code growth in cold regions and being more " |
| "aggressive in hot regions.")); |
| |
| // Runtime interleave loops for load/store throughput. |
| static cl::opt<bool> EnableLoadStoreRuntimeInterleave( |
| "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, |
| cl::desc( |
| "Enable runtime interleaving until load/store ports are saturated")); |
| |
| /// The number of stores in a loop that are allowed to need predication. |
| static cl::opt<unsigned> NumberOfStoresToPredicate( |
| "vectorize-num-stores-pred", cl::init(1), cl::Hidden, |
| cl::desc("Max number of stores to be predicated behind an if.")); |
| |
| static cl::opt<bool> EnableIndVarRegisterHeur( |
| "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, |
| cl::desc("Count the induction variable only once when interleaving")); |
| |
| static cl::opt<bool> EnableCondStoresVectorization( |
| "enable-cond-stores-vec", cl::init(true), cl::Hidden, |
| cl::desc("Enable if predication of stores during vectorization.")); |
| |
| static cl::opt<unsigned> MaxNestedScalarReductionIC( |
| "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, |
| cl::desc("The maximum interleave count to use when interleaving a scalar " |
| "reduction in a nested loop.")); |
| |
| static cl::opt<bool> |
| PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), |
| cl::Hidden, |
| cl::desc("Prefer in-loop vector reductions, " |
| "overriding the targets preference.")); |
| |
| static cl::opt<bool> ForceOrderedReductions( |
| "force-ordered-reductions", cl::init(false), cl::Hidden, |
| cl::desc("Enable the vectorisation of loops with in-order (strict) " |
| "FP reductions")); |
| |
| static cl::opt<bool> PreferPredicatedReductionSelect( |
| "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, |
| cl::desc( |
| "Prefer predicating a reduction operation over an after loop select.")); |
| |
| namespace llvm { |
| cl::opt<bool> EnableVPlanNativePath( |
| "enable-vplan-native-path", cl::Hidden, |
| cl::desc("Enable VPlan-native vectorization path with " |
| "support for outer loop vectorization.")); |
| } |
| |
| // This flag enables the stress testing of the VPlan H-CFG construction in the |
| // VPlan-native vectorization path. It must be used in conjuction with |
| // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the |
| // verification of the H-CFGs built. |
| static cl::opt<bool> VPlanBuildStressTest( |
| "vplan-build-stress-test", cl::init(false), cl::Hidden, |
| cl::desc( |
| "Build VPlan for every supported loop nest in the function and bail " |
| "out right after the build (stress test the VPlan H-CFG construction " |
| "in the VPlan-native vectorization path).")); |
| |
| cl::opt<bool> llvm::EnableLoopInterleaving( |
| "interleave-loops", cl::init(true), cl::Hidden, |
| cl::desc("Enable loop interleaving in Loop vectorization passes")); |
| cl::opt<bool> llvm::EnableLoopVectorization( |
| "vectorize-loops", cl::init(true), cl::Hidden, |
| cl::desc("Run the Loop vectorization passes")); |
| |
| static cl::opt<cl::boolOrDefault> ForceSafeDivisor( |
| "force-widen-divrem-via-safe-divisor", cl::Hidden, |
| cl::desc( |
| "Override cost based safe divisor widening for div/rem instructions")); |
| |
| static cl::opt<bool> UseWiderVFIfCallVariantsPresent( |
| "vectorizer-maximize-bandwidth-for-vector-calls", cl::init(true), |
| cl::Hidden, |
| cl::desc("Try wider VFs if they enable the use of vector variants")); |
| |
| // Likelyhood of bypassing the vectorized loop because assumptions about SCEV |
| // variables not overflowing do not hold. See `emitSCEVChecks`. |
| static constexpr uint32_t SCEVCheckBypassWeights[] = {1, 127}; |
| // Likelyhood of bypassing the vectorized loop because pointers overlap. See |
| // `emitMemRuntimeChecks`. |
| static constexpr uint32_t MemCheckBypassWeights[] = {1, 127}; |
| // Likelyhood of bypassing the vectorized loop because there are zero trips left |
| // after prolog. See `emitIterationCountCheck`. |
| static constexpr uint32_t MinItersBypassWeights[] = {1, 127}; |
| |
| /// A helper function that returns true if the given type is irregular. The |
| /// type is irregular if its allocated size doesn't equal the store size of an |
| /// element of the corresponding vector type. |
| static bool hasIrregularType(Type *Ty, const DataLayout &DL) { |
| // Determine if an array of N elements of type Ty is "bitcast compatible" |
| // with a <N x Ty> vector. |
| // This is only true if there is no padding between the array elements. |
| return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); |
| } |
| |
| /// Returns "best known" trip count for the specified loop \p L as defined by |
| /// the following procedure: |
| /// 1) Returns exact trip count if it is known. |
| /// 2) Returns expected trip count according to profile data if any. |
| /// 3) Returns upper bound estimate if it is known. |
| /// 4) Returns std::nullopt if all of the above failed. |
| static std::optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, |
| Loop *L) { |
| // Check if exact trip count is known. |
| if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) |
| return ExpectedTC; |
| |
| // Check if there is an expected trip count available from profile data. |
| if (LoopVectorizeWithBlockFrequency) |
| if (auto EstimatedTC = getLoopEstimatedTripCount(L)) |
| return *EstimatedTC; |
| |
| // Check if upper bound estimate is known. |
| if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) |
| return ExpectedTC; |
| |
| return std::nullopt; |
| } |
| |
| namespace { |
| // Forward declare GeneratedRTChecks. |
| class GeneratedRTChecks; |
| |
| using SCEV2ValueTy = DenseMap<const SCEV *, Value *>; |
| } // namespace |
| |
| namespace llvm { |
| |
| AnalysisKey ShouldRunExtraVectorPasses::Key; |
| |
| /// InnerLoopVectorizer vectorizes loops which contain only one basic |
| /// block to a specified vectorization factor (VF). |
| /// This class performs the widening of scalars into vectors, or multiple |
| /// scalars. This class also implements the following features: |
| /// * It inserts an epilogue loop for handling loops that don't have iteration |
| /// counts that are known to be a multiple of the vectorization factor. |
| /// * It handles the code generation for reduction variables. |
| /// * Scalarization (implementation using scalars) of un-vectorizable |
| /// instructions. |
| /// InnerLoopVectorizer does not perform any vectorization-legality |
| /// checks, and relies on the caller to check for the different legality |
| /// aspects. The InnerLoopVectorizer relies on the |
| /// LoopVectorizationLegality class to provide information about the induction |
| /// and reduction variables that were found to a given vectorization factor. |
| class InnerLoopVectorizer { |
| public: |
| InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, |
| LoopInfo *LI, DominatorTree *DT, |
| const TargetLibraryInfo *TLI, |
| const TargetTransformInfo *TTI, AssumptionCache *AC, |
| OptimizationRemarkEmitter *ORE, ElementCount VecWidth, |
| ElementCount MinProfitableTripCount, |
| unsigned UnrollFactor, LoopVectorizationLegality *LVL, |
| LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, |
| ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks) |
| : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), |
| AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), |
| Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), |
| PSI(PSI), RTChecks(RTChecks) { |
| // Query this against the original loop and save it here because the profile |
| // of the original loop header may change as the transformation happens. |
| OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( |
| OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); |
| |
| if (MinProfitableTripCount.isZero()) |
| this->MinProfitableTripCount = VecWidth; |
| else |
| this->MinProfitableTripCount = MinProfitableTripCount; |
| } |
| |
| virtual ~InnerLoopVectorizer() = default; |
| |
| /// Create a new empty loop that will contain vectorized instructions later |
| /// on, while the old loop will be used as the scalar remainder. Control flow |
| /// is generated around the vectorized (and scalar epilogue) loops consisting |
| /// of various checks and bypasses. Return the pre-header block of the new |
| /// loop and the start value for the canonical induction, if it is != 0. The |
| /// latter is the case when vectorizing the epilogue loop. In the case of |
| /// epilogue vectorization, this function is overriden to handle the more |
| /// complex control flow around the loops. \p ExpandedSCEVs is used to |
| /// look up SCEV expansions for expressions needed during skeleton creation. |
| virtual std::pair<BasicBlock *, Value *> |
| createVectorizedLoopSkeleton(const SCEV2ValueTy &ExpandedSCEVs); |
| |
| /// Fix the vectorized code, taking care of header phi's, live-outs, and more. |
| void fixVectorizedLoop(VPTransformState &State, VPlan &Plan); |
| |
| // Return true if any runtime check is added. |
| bool areSafetyChecksAdded() { return AddedSafetyChecks; } |
| |
| /// A helper function to scalarize a single Instruction in the innermost loop. |
| /// Generates a sequence of scalar instances for each lane between \p MinLane |
| /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, |
| /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p |
| /// Instr's operands. |
| void scalarizeInstruction(const Instruction *Instr, |
| VPReplicateRecipe *RepRecipe, |
| const VPIteration &Instance, |
| VPTransformState &State); |
| |
| /// Fix the non-induction PHIs in \p Plan. |
| void fixNonInductionPHIs(VPlan &Plan, VPTransformState &State); |
| |
| /// Create a new phi node for the induction variable \p OrigPhi to resume |
| /// iteration count in the scalar epilogue, from where the vectorized loop |
| /// left off. \p Step is the SCEV-expanded induction step to use. In cases |
| /// where the loop skeleton is more complicated (i.e., epilogue vectorization) |
| /// and the resume values can come from an additional bypass block, the \p |
| /// AdditionalBypass pair provides information about the bypass block and the |
| /// end value on the edge from bypass to this loop. |
| PHINode *createInductionResumeValue( |
| PHINode *OrigPhi, const InductionDescriptor &ID, Value *Step, |
| ArrayRef<BasicBlock *> BypassBlocks, |
| std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); |
| |
| /// Returns the original loop trip count. |
| Value *getTripCount() const { return TripCount; } |
| |
| /// Used to set the trip count after ILV's construction and after the |
| /// preheader block has been executed. Note that this always holds the trip |
| /// count of the original loop for both main loop and epilogue vectorization. |
| void setTripCount(Value *TC) { TripCount = TC; } |
| |
| protected: |
| friend class LoopVectorizationPlanner; |
| |
| /// A small list of PHINodes. |
| using PhiVector = SmallVector<PHINode *, 4>; |
| |
| /// A type for scalarized values in the new loop. Each value from the |
| /// original loop, when scalarized, is represented by UF x VF scalar values |
| /// in the new unrolled loop, where UF is the unroll factor and VF is the |
| /// vectorization factor. |
| using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; |
| |
| /// Set up the values of the IVs correctly when exiting the vector loop. |
| void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, |
| Value *VectorTripCount, Value *EndValue, |
| BasicBlock *MiddleBlock, BasicBlock *VectorHeader, |
| VPlan &Plan, VPTransformState &State); |
| |
| /// Iteratively sink the scalarized operands of a predicated instruction into |
| /// the block that was created for it. |
| void sinkScalarOperands(Instruction *PredInst); |
| |
| /// Returns (and creates if needed) the trip count of the widened loop. |
| Value *getOrCreateVectorTripCount(BasicBlock *InsertBlock); |
| |
| /// Emit a bypass check to see if the vector trip count is zero, including if |
| /// it overflows. |
| void emitIterationCountCheck(BasicBlock *Bypass); |
| |
| /// Emit a bypass check to see if all of the SCEV assumptions we've |
| /// had to make are correct. Returns the block containing the checks or |
| /// nullptr if no checks have been added. |
| BasicBlock *emitSCEVChecks(BasicBlock *Bypass); |
| |
| /// Emit bypass checks to check any memory assumptions we may have made. |
| /// Returns the block containing the checks or nullptr if no checks have been |
| /// added. |
| BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass); |
| |
| /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, |
| /// vector loop preheader, middle block and scalar preheader. |
| void createVectorLoopSkeleton(StringRef Prefix); |
| |
| /// Create new phi nodes for the induction variables to resume iteration count |
| /// in the scalar epilogue, from where the vectorized loop left off. |
| /// In cases where the loop skeleton is more complicated (eg. epilogue |
| /// vectorization) and the resume values can come from an additional bypass |
| /// block, the \p AdditionalBypass pair provides information about the bypass |
| /// block and the end value on the edge from bypass to this loop. |
| void createInductionResumeValues( |
| const SCEV2ValueTy &ExpandedSCEVs, |
| std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); |
| |
| /// Complete the loop skeleton by adding debug MDs, creating appropriate |
| /// conditional branches in the middle block, preparing the builder and |
| /// running the verifier. Return the preheader of the completed vector loop. |
| BasicBlock *completeLoopSkeleton(); |
| |
| /// Allow subclasses to override and print debug traces before/after vplan |
| /// execution, when trace information is requested. |
| virtual void printDebugTracesAtStart(){}; |
| virtual void printDebugTracesAtEnd(){}; |
| |
| /// The original loop. |
| Loop *OrigLoop; |
| |
| /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies |
| /// dynamic knowledge to simplify SCEV expressions and converts them to a |
| /// more usable form. |
| PredicatedScalarEvolution &PSE; |
| |
| /// Loop Info. |
| LoopInfo *LI; |
| |
| /// Dominator Tree. |
| DominatorTree *DT; |
| |
| /// Target Library Info. |
| const TargetLibraryInfo *TLI; |
| |
| /// Target Transform Info. |
| const TargetTransformInfo *TTI; |
| |
| /// Assumption Cache. |
| AssumptionCache *AC; |
| |
| /// Interface to emit optimization remarks. |
| OptimizationRemarkEmitter *ORE; |
| |
| /// The vectorization SIMD factor to use. Each vector will have this many |
| /// vector elements. |
| ElementCount VF; |
| |
| ElementCount MinProfitableTripCount; |
| |
| /// The vectorization unroll factor to use. Each scalar is vectorized to this |
| /// many different vector instructions. |
| unsigned UF; |
| |
| /// The builder that we use |
| IRBuilder<> Builder; |
| |
| // --- Vectorization state --- |
| |
| /// The vector-loop preheader. |
| BasicBlock *LoopVectorPreHeader; |
| |
| /// The scalar-loop preheader. |
| BasicBlock *LoopScalarPreHeader; |
| |
| /// Middle Block between the vector and the scalar. |
| BasicBlock *LoopMiddleBlock; |
| |
| /// The unique ExitBlock of the scalar loop if one exists. Note that |
| /// there can be multiple exiting edges reaching this block. |
| BasicBlock *LoopExitBlock; |
| |
| /// The scalar loop body. |
| BasicBlock *LoopScalarBody; |
| |
| /// A list of all bypass blocks. The first block is the entry of the loop. |
| SmallVector<BasicBlock *, 4> LoopBypassBlocks; |
| |
| /// Store instructions that were predicated. |
| SmallVector<Instruction *, 4> PredicatedInstructions; |
| |
| /// Trip count of the original loop. |
| Value *TripCount = nullptr; |
| |
| /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) |
| Value *VectorTripCount = nullptr; |
| |
| /// The legality analysis. |
| LoopVectorizationLegality *Legal; |
| |
| /// The profitablity analysis. |
| LoopVectorizationCostModel *Cost; |
| |
| // Record whether runtime checks are added. |
| bool AddedSafetyChecks = false; |
| |
| // Holds the end values for each induction variable. We save the end values |
| // so we can later fix-up the external users of the induction variables. |
| DenseMap<PHINode *, Value *> IVEndValues; |
| |
| /// BFI and PSI are used to check for profile guided size optimizations. |
| BlockFrequencyInfo *BFI; |
| ProfileSummaryInfo *PSI; |
| |
| // Whether this loop should be optimized for size based on profile guided size |
| // optimizatios. |
| bool OptForSizeBasedOnProfile; |
| |
| /// Structure to hold information about generated runtime checks, responsible |
| /// for cleaning the checks, if vectorization turns out unprofitable. |
| GeneratedRTChecks &RTChecks; |
| |
| // Holds the resume values for reductions in the loops, used to set the |
| // correct start value of reduction PHIs when vectorizing the epilogue. |
| SmallMapVector<const RecurrenceDescriptor *, PHINode *, 4> |
| ReductionResumeValues; |
| }; |
| |
| class InnerLoopUnroller : public InnerLoopVectorizer { |
| public: |
| InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, |
| LoopInfo *LI, DominatorTree *DT, |
| const TargetLibraryInfo *TLI, |
| const TargetTransformInfo *TTI, AssumptionCache *AC, |
| OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, |
| LoopVectorizationLegality *LVL, |
| LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, |
| ProfileSummaryInfo *PSI, GeneratedRTChecks &Check) |
| : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, |
| ElementCount::getFixed(1), |
| ElementCount::getFixed(1), UnrollFactor, LVL, CM, |
| BFI, PSI, Check) {} |
| }; |
| |
| /// Encapsulate information regarding vectorization of a loop and its epilogue. |
| /// This information is meant to be updated and used across two stages of |
| /// epilogue vectorization. |
| struct EpilogueLoopVectorizationInfo { |
| ElementCount MainLoopVF = ElementCount::getFixed(0); |
| unsigned MainLoopUF = 0; |
| ElementCount EpilogueVF = ElementCount::getFixed(0); |
| unsigned EpilogueUF = 0; |
| BasicBlock *MainLoopIterationCountCheck = nullptr; |
| BasicBlock *EpilogueIterationCountCheck = nullptr; |
| BasicBlock *SCEVSafetyCheck = nullptr; |
| BasicBlock *MemSafetyCheck = nullptr; |
| Value *TripCount = nullptr; |
| Value *VectorTripCount = nullptr; |
| |
| EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, |
| ElementCount EVF, unsigned EUF) |
| : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) { |
| assert(EUF == 1 && |
| "A high UF for the epilogue loop is likely not beneficial."); |
| } |
| }; |
| |
| /// An extension of the inner loop vectorizer that creates a skeleton for a |
| /// vectorized loop that has its epilogue (residual) also vectorized. |
| /// The idea is to run the vplan on a given loop twice, firstly to setup the |
| /// skeleton and vectorize the main loop, and secondly to complete the skeleton |
| /// from the first step and vectorize the epilogue. This is achieved by |
| /// deriving two concrete strategy classes from this base class and invoking |
| /// them in succession from the loop vectorizer planner. |
| class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { |
| public: |
| InnerLoopAndEpilogueVectorizer( |
| Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, |
| DominatorTree *DT, const TargetLibraryInfo *TLI, |
| const TargetTransformInfo *TTI, AssumptionCache *AC, |
| OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, |
| LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, |
| BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, |
| GeneratedRTChecks &Checks) |
| : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, |
| EPI.MainLoopVF, EPI.MainLoopVF, EPI.MainLoopUF, LVL, |
| CM, BFI, PSI, Checks), |
| EPI(EPI) {} |
| |
| // Override this function to handle the more complex control flow around the |
| // three loops. |
| std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton( |
| const SCEV2ValueTy &ExpandedSCEVs) final { |
| return createEpilogueVectorizedLoopSkeleton(ExpandedSCEVs); |
| } |
| |
| /// The interface for creating a vectorized skeleton using one of two |
| /// different strategies, each corresponding to one execution of the vplan |
| /// as described above. |
| virtual std::pair<BasicBlock *, Value *> |
| createEpilogueVectorizedLoopSkeleton(const SCEV2ValueTy &ExpandedSCEVs) = 0; |
| |
| /// Holds and updates state information required to vectorize the main loop |
| /// and its epilogue in two separate passes. This setup helps us avoid |
| /// regenerating and recomputing runtime safety checks. It also helps us to |
| /// shorten the iteration-count-check path length for the cases where the |
| /// iteration count of the loop is so small that the main vector loop is |
| /// completely skipped. |
| EpilogueLoopVectorizationInfo &EPI; |
| }; |
| |
| /// A specialized derived class of inner loop vectorizer that performs |
| /// vectorization of *main* loops in the process of vectorizing loops and their |
| /// epilogues. |
| class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { |
| public: |
| EpilogueVectorizerMainLoop( |
| Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, |
| DominatorTree *DT, const TargetLibraryInfo *TLI, |
| const TargetTransformInfo *TTI, AssumptionCache *AC, |
| OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, |
| LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, |
| BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, |
| GeneratedRTChecks &Check) |
| : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, |
| EPI, LVL, CM, BFI, PSI, Check) {} |
| /// Implements the interface for creating a vectorized skeleton using the |
| /// *main loop* strategy (ie the first pass of vplan execution). |
| std::pair<BasicBlock *, Value *> |
| createEpilogueVectorizedLoopSkeleton(const SCEV2ValueTy &ExpandedSCEVs) final; |
| |
| protected: |
| /// Emits an iteration count bypass check once for the main loop (when \p |
| /// ForEpilogue is false) and once for the epilogue loop (when \p |
| /// ForEpilogue is true). |
| BasicBlock *emitIterationCountCheck(BasicBlock *Bypass, bool ForEpilogue); |
| void printDebugTracesAtStart() override; |
| void printDebugTracesAtEnd() override; |
| }; |
| |
| // A specialized derived class of inner loop vectorizer that performs |
| // vectorization of *epilogue* loops in the process of vectorizing loops and |
| // their epilogues. |
| class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { |
| public: |
| EpilogueVectorizerEpilogueLoop( |
| Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, |
| DominatorTree *DT, const TargetLibraryInfo *TLI, |
| const TargetTransformInfo *TTI, AssumptionCache *AC, |
| OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, |
| LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, |
| BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, |
| GeneratedRTChecks &Checks) |
| : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, |
| EPI, LVL, CM, BFI, PSI, Checks) { |
| TripCount = EPI.TripCount; |
| } |
| /// Implements the interface for creating a vectorized skeleton using the |
| /// *epilogue loop* strategy (ie the second pass of vplan execution). |
| std::pair<BasicBlock *, Value *> |
| createEpilogueVectorizedLoopSkeleton(const SCEV2ValueTy &ExpandedSCEVs) final; |
| |
| protected: |
| /// Emits an iteration count bypass check after the main vector loop has |
| /// finished to see if there are any iterations left to execute by either |
| /// the vector epilogue or the scalar epilogue. |
| BasicBlock *emitMinimumVectorEpilogueIterCountCheck( |
| BasicBlock *Bypass, |
| BasicBlock *Insert); |
| void printDebugTracesAtStart() override; |
| void printDebugTracesAtEnd() override; |
| }; |
| } // end namespace llvm |
| |
| /// Look for a meaningful debug location on the instruction or it's |
| /// operands. |
| static DebugLoc getDebugLocFromInstOrOperands(Instruction *I) { |
| if (!I) |
| return DebugLoc(); |
| |
| DebugLoc Empty; |
| if (I->getDebugLoc() != Empty) |
| return I->getDebugLoc(); |
| |
| for (Use &Op : I->operands()) { |
| if (Instruction *OpInst = dyn_cast<Instruction>(Op)) |
| if (OpInst->getDebugLoc() != Empty) |
| return OpInst->getDebugLoc(); |
| } |
| |
| return I->getDebugLoc(); |
| } |
| |
| /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I |
| /// is passed, the message relates to that particular instruction. |
| #ifndef NDEBUG |
| static void debugVectorizationMessage(const StringRef Prefix, |
| const StringRef DebugMsg, |
| Instruction *I) { |
| dbgs() << "LV: " << Prefix << DebugMsg; |
| if (I != nullptr) |
| dbgs() << " " << *I; |
| else |
| dbgs() << '.'; |
| dbgs() << '\n'; |
| } |
| #endif |
| |
| /// Create an analysis remark that explains why vectorization failed |
| /// |
| /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p |
| /// RemarkName is the identifier for the remark. If \p I is passed it is an |
| /// instruction that prevents vectorization. Otherwise \p TheLoop is used for |
| /// the location of the remark. If \p DL is passed, use it as debug location for |
| /// the remark. \return the remark object that can be streamed to. |
| static OptimizationRemarkAnalysis |
| createLVAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, |
| Instruction *I, DebugLoc DL = {}) { |
| Value *CodeRegion = I ? I->getParent() : TheLoop->getHeader(); |
| // If debug location is attached to the instruction, use it. Otherwise if DL |
| // was not provided, use the loop's. |
| if (I && I->getDebugLoc()) |
| DL = I->getDebugLoc(); |
| else if (!DL) |
| DL = TheLoop->getStartLoc(); |
| |
| return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion); |
| } |
| |
| namespace llvm { |
| |
| /// Return a value for Step multiplied by VF. |
| Value *createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, |
| int64_t Step) { |
| assert(Ty->isIntegerTy() && "Expected an integer step"); |
| return B.CreateElementCount(Ty, VF.multiplyCoefficientBy(Step)); |
| } |
| |
| /// Return the runtime value for VF. |
| Value *getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF) { |
| return B.CreateElementCount(Ty, VF); |
| } |
| |
| const SCEV *createTripCountSCEV(Type *IdxTy, PredicatedScalarEvolution &PSE, |
| Loop *OrigLoop) { |
| const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); |
| assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && "Invalid loop count"); |
| |
| ScalarEvolution &SE = *PSE.getSE(); |
| return SE.getTripCountFromExitCount(BackedgeTakenCount, IdxTy, OrigLoop); |
| } |
| |
| void reportVectorizationFailure(const StringRef DebugMsg, |
| const StringRef OREMsg, const StringRef ORETag, |
| OptimizationRemarkEmitter *ORE, Loop *TheLoop, |
| Instruction *I) { |
| LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I)); |
| LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); |
| ORE->emit( |
| createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) |
| << "loop not vectorized: " << OREMsg); |
| } |
| |
| /// Reports an informative message: print \p Msg for debugging purposes as well |
| /// as an optimization remark. Uses either \p I as location of the remark, or |
| /// otherwise \p TheLoop. If \p DL is passed, use it as debug location for the |
| /// remark. If \p DL is passed, use it as debug location for the remark. |
| static void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, |
| OptimizationRemarkEmitter *ORE, |
| Loop *TheLoop, Instruction *I = nullptr, |
| DebugLoc DL = {}) { |
| LLVM_DEBUG(debugVectorizationMessage("", Msg, I)); |
| LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); |
| ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, |
| I, DL) |
| << Msg); |
| } |
| |
| /// Report successful vectorization of the loop. In case an outer loop is |
| /// vectorized, prepend "outer" to the vectorization remark. |
| static void reportVectorization(OptimizationRemarkEmitter *ORE, Loop *TheLoop, |
| VectorizationFactor VF, unsigned IC) { |
| LLVM_DEBUG(debugVectorizationMessage( |
| "Vectorizing: ", TheLoop->isInnermost() ? "innermost loop" : "outer loop", |
| nullptr)); |
| StringRef LoopType = TheLoop->isInnermost() ? "" : "outer "; |
| ORE->emit([&]() { |
| return OptimizationRemark(LV_NAME, "Vectorized", TheLoop->getStartLoc(), |
| TheLoop->getHeader()) |
| << "vectorized " << LoopType << "loop (vectorization width: " |
| << ore::NV("VectorizationFactor", VF.Width) |
| << ", interleaved count: " << ore::NV("InterleaveCount", IC) << ")"; |
| }); |
| } |
| |
| } // end namespace llvm |
| |
| namespace llvm { |
| |
| // Loop vectorization cost-model hints how the scalar epilogue loop should be |
| // lowered. |
| enum ScalarEpilogueLowering { |
| |
| // The default: allowing scalar epilogues. |
| CM_ScalarEpilogueAllowed, |
| |
| // Vectorization with OptForSize: don't allow epilogues. |
| CM_ScalarEpilogueNotAllowedOptSize, |
| |
| // A special case of vectorisation with OptForSize: loops with a very small |
| // trip count are considered for vectorization under OptForSize, thereby |
| // making sure the cost of their loop body is dominant, free of runtime |
| // guards and scalar iteration overheads. |
| CM_ScalarEpilogueNotAllowedLowTripLoop, |
| |
| // Loop hint predicate indicating an epilogue is undesired. |
| CM_ScalarEpilogueNotNeededUsePredicate, |
| |
| // Directive indicating we must either tail fold or not vectorize |
| CM_ScalarEpilogueNotAllowedUsePredicate |
| }; |
| |
| using InstructionVFPair = std::pair<Instruction *, ElementCount>; |
| |
| /// LoopVectorizationCostModel - estimates the expected speedups due to |
| /// vectorization. |
| /// In many cases vectorization is not profitable. This can happen because of |
| /// a number of reasons. In this class we mainly attempt to predict the |
| /// expected speedup/slowdowns due to the supported instruction set. We use the |
| /// TargetTransformInfo to query the different backends for the cost of |
| /// different operations. |
| class LoopVectorizationCostModel { |
| public: |
| LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, |
| PredicatedScalarEvolution &PSE, LoopInfo *LI, |
| LoopVectorizationLegality *Legal, |
| const TargetTransformInfo &TTI, |
| const TargetLibraryInfo *TLI, DemandedBits *DB, |
| AssumptionCache *AC, |
| OptimizationRemarkEmitter *ORE, const Function *F, |
| const LoopVectorizeHints *Hints, |
| InterleavedAccessInfo &IAI) |
| : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), |
| TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), |
| Hints(Hints), InterleaveInfo(IAI) {} |
| |
| /// \return An upper bound for the vectorization factors (both fixed and |
| /// scalable). If the factors are 0, vectorization and interleaving should be |
| /// avoided up front. |
| FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC); |
| |
| /// \return True if runtime checks are required for vectorization, and false |
| /// otherwise. |
| bool runtimeChecksRequired(); |
| |
| /// Setup cost-based decisions for user vectorization factor. |
| /// \return true if the UserVF is a feasible VF to be chosen. |
| bool selectUserVectorizationFactor(ElementCount UserVF) { |
| collectUniformsAndScalars(UserVF); |
| collectInstsToScalarize(UserVF); |
| return expectedCost(UserVF).isValid(); |
| } |
| |
| /// \return The size (in bits) of the smallest and widest types in the code |
| /// that needs to be vectorized. We ignore values that remain scalar such as |
| /// 64 bit loop indices. |
| std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); |
| |
| /// \return The desired interleave count. |
| /// If interleave count has been specified by metadata it will be returned. |
| /// Otherwise, the interleave count is computed and returned. VF and LoopCost |
| /// are the selected vectorization factor and the cost of the selected VF. |
| unsigned selectInterleaveCount(ElementCount VF, InstructionCost LoopCost); |
| |
| /// Memory access instruction may be vectorized in more than one way. |
| /// Form of instruction after vectorization depends on cost. |
| /// This function takes cost-based decisions for Load/Store instructions |
| /// and collects them in a map. This decisions map is used for building |
| /// the lists of loop-uniform and loop-scalar instructions. |
| /// The calculated cost is saved with widening decision in order to |
| /// avoid redundant calculations. |
| void setCostBasedWideningDecision(ElementCount VF); |
| |
| /// A call may be vectorized in different ways depending on whether we have |
| /// vectorized variants available and whether the target supports masking. |
| /// This function analyzes all calls in the function at the supplied VF, |
| /// makes a decision based on the costs of available options, and stores that |
| /// decision in a map for use in planning and plan execution. |
| void setVectorizedCallDecision(ElementCount VF); |
| |
| /// A struct that represents some properties of the register usage |
| /// of a loop. |
| struct RegisterUsage { |
| /// Holds the number of loop invariant values that are used in the loop. |
| /// The key is ClassID of target-provided register class. |
| SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; |
| /// Holds the maximum number of concurrent live intervals in the loop. |
| /// The key is ClassID of target-provided register class. |
| SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; |
| }; |
| |
| /// \return Returns information about the register usages of the loop for the |
| /// given vectorization factors. |
| SmallVector<RegisterUsage, 8> |
| calculateRegisterUsage(ArrayRef<ElementCount> VFs); |
| |
| /// Collect values we want to ignore in the cost model. |
| void collectValuesToIgnore(); |
| |
| /// Collect all element types in the loop for which widening is needed. |
| void collectElementTypesForWidening(); |
| |
| /// Split reductions into those that happen in the loop, and those that happen |
| /// outside. In loop reductions are collected into InLoopReductions. |
| void collectInLoopReductions(); |
| |
| /// Returns true if we should use strict in-order reductions for the given |
| /// RdxDesc. This is true if the -enable-strict-reductions flag is passed, |
| /// the IsOrdered flag of RdxDesc is set and we do not allow reordering |
| /// of FP operations. |
| bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const { |
| return !Hints->allowReordering() && RdxDesc.isOrdered(); |
| } |
| |
| /// \returns The smallest bitwidth each instruction can be represented with. |
| /// The vector equivalents of these instructions should be truncated to this |
| /// type. |
| const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { |
| return MinBWs; |
| } |
| |
| /// \returns True if it is more profitable to scalarize instruction \p I for |
| /// vectorization factor \p VF. |
| bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { |
| assert(VF.isVector() && |
| "Profitable to scalarize relevant only for VF > 1."); |
| assert( |
| TheLoop->isInnermost() && |
| "cost-model should not be used for outer loops (in VPlan-native path)"); |
| |
| auto Scalars = InstsToScalarize.find(VF); |
| assert(Scalars != InstsToScalarize.end() && |
| "VF not yet analyzed for scalarization profitability"); |
| return Scalars->second.contains(I); |
| } |
| |
| /// Returns true if \p I is known to be uniform after vectorization. |
| bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { |
| assert( |
| TheLoop->isInnermost() && |
| "cost-model should not be used for outer loops (in VPlan-native path)"); |
| // Pseudo probe needs to be duplicated for each unrolled iteration and |
| // vector lane so that profiled loop trip count can be accurately |
| // accumulated instead of being under counted. |
| if (isa<PseudoProbeInst>(I)) |
| return false; |
| |
| if (VF.isScalar()) |
| return true; |
| |
| auto UniformsPerVF = Uniforms.find(VF); |
| assert(UniformsPerVF != Uniforms.end() && |
| "VF not yet analyzed for uniformity"); |
| return UniformsPerVF->second.count(I); |
| } |
| |
| /// Returns true if \p I is known to be scalar after vectorization. |
| bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { |
| assert( |
| TheLoop->isInnermost() && |
| "cost-model should not be used for outer loops (in VPlan-native path)"); |
| if (VF.isScalar()) |
| return true; |
| |
| auto ScalarsPerVF = Scalars.find(VF); |
| assert(ScalarsPerVF != Scalars.end() && |
| "Scalar values are not calculated for VF"); |
| return ScalarsPerVF->second.count(I); |
| } |
| |
| /// \returns True if instruction \p I can be truncated to a smaller bitwidth |
| /// for vectorization factor \p VF. |
| bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { |
| return VF.isVector() && MinBWs.contains(I) && |
| !isProfitableToScalarize(I, VF) && |
| !isScalarAfterVectorization(I, VF); |
| } |
| |
| /// Decision that was taken during cost calculation for memory instruction. |
| enum InstWidening { |
| CM_Unknown, |
| CM_Widen, // For consecutive accesses with stride +1. |
| CM_Widen_Reverse, // For consecutive accesses with stride -1. |
| CM_Interleave, |
| CM_GatherScatter, |
| CM_Scalarize, |
| CM_VectorCall, |
| CM_IntrinsicCall |
| }; |
| |
| /// Save vectorization decision \p W and \p Cost taken by the cost model for |
| /// instruction \p I and vector width \p VF. |
| void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, |
| InstructionCost Cost) { |
| assert(VF.isVector() && "Expected VF >=2"); |
| WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); |
| } |
| |
| /// Save vectorization decision \p W and \p Cost taken by the cost model for |
| /// interleaving group \p Grp and vector width \p VF. |
| void setWideningDecision(const InterleaveGroup<Instruction> *Grp, |
| ElementCount VF, InstWidening W, |
| InstructionCost Cost) { |
| assert(VF.isVector() && "Expected VF >=2"); |
| /// Broadcast this decicion to all instructions inside the group. |
| /// But the cost will be assigned to one instruction only. |
| for (unsigned i = 0; i < Grp->getFactor(); ++i) { |
| if (auto *I = Grp->getMember(i)) { |
| if (Grp->getInsertPos() == I) |
| WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); |
| else |
| WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); |
| } |
| } |
| } |
| |
| /// Return the cost model decision for the given instruction \p I and vector |
| /// width \p VF. Return CM_Unknown if this instruction did not pass |
| /// through the cost modeling. |
| InstWidening getWideningDecision(Instruction *I, ElementCount VF) const { |
| assert(VF.isVector() && "Expected VF to be a vector VF"); |
| assert( |
| TheLoop->isInnermost() && |
| "cost-model should not be used for outer loops (in VPlan-native path)"); |
| |
| std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); |
| auto Itr = WideningDecisions.find(InstOnVF); |
| if (Itr == WideningDecisions.end()) |
| return CM_Unknown; |
| return Itr->second.first; |
| } |
| |
| /// Return the vectorization cost for the given instruction \p I and vector |
| /// width \p VF. |
| InstructionCost getWideningCost(Instruction *I, ElementCount VF) { |
| assert(VF.isVector() && "Expected VF >=2"); |
| std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); |
| assert(WideningDecisions.contains(InstOnVF) && |
| "The cost is not calculated"); |
| return WideningDecisions[InstOnVF].second; |
| } |
| |
| struct CallWideningDecision { |
| InstWidening Kind; |
| Function *Variant; |
| Intrinsic::ID IID; |
| std::optional<unsigned> MaskPos; |
| InstructionCost Cost; |
| }; |
| |
| void setCallWideningDecision(CallInst *CI, ElementCount VF, InstWidening Kind, |
| Function *Variant, Intrinsic::ID IID, |
| std::optional<unsigned> MaskPos, |
| InstructionCost Cost) { |
| assert(!VF.isScalar() && "Expected vector VF"); |
| CallWideningDecisions[std::make_pair(CI, VF)] = {Kind, Variant, IID, |
| MaskPos, Cost}; |
| } |
| |
| CallWideningDecision getCallWideningDecision(CallInst *CI, |
| ElementCount VF) const { |
| assert(!VF.isScalar() && "Expected vector VF"); |
| return CallWideningDecisions.at(std::make_pair(CI, VF)); |
| } |
| |
| /// Return True if instruction \p I is an optimizable truncate whose operand |
| /// is an induction variable. Such a truncate will be removed by adding a new |
| /// induction variable with the destination type. |
| bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { |
| // If the instruction is not a truncate, return false. |
| auto *Trunc = dyn_cast<TruncInst>(I); |
| if (!Trunc) |
| return false; |
| |
| // Get the source and destination types of the truncate. |
| Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); |
| Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); |
| |
| // If the truncate is free for the given types, return false. Replacing a |
| // free truncate with an induction variable would add an induction variable |
| // update instruction to each iteration of the loop. We exclude from this |
| // check the primary induction variable since it will need an update |
| // instruction regardless. |
| Value *Op = Trunc->getOperand(0); |
| if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) |
| return false; |
| |
| // If the truncated value is not an induction variable, return false. |
| return Legal->isInductionPhi(Op); |
| } |
| |
| /// Collects the instructions to scalarize for each predicated instruction in |
| /// the loop. |
| void collectInstsToScalarize(ElementCount VF); |
| |
| /// Collect Uniform and Scalar values for the given \p VF. |
| /// The sets depend on CM decision for Load/Store instructions |
| /// that may be vectorized as interleave, gather-scatter or scalarized. |
| /// Also make a decision on what to do about call instructions in the loop |
| /// at that VF -- scalarize, call a known vector routine, or call a |
| /// vector intrinsic. |
| void collectUniformsAndScalars(ElementCount VF) { |
| // Do the analysis once. |
| if (VF.isScalar() || Uniforms.contains(VF)) |
| return; |
| setCostBasedWideningDecision(VF); |
| setVectorizedCallDecision(VF); |
| collectLoopUniforms(VF); |
| collectLoopScalars(VF); |
| } |
| |
| /// Returns true if the target machine supports masked store operation |
| /// for the given \p DataType and kind of access to \p Ptr. |
| bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const { |
| return Legal->isConsecutivePtr(DataType, Ptr) && |
| TTI.isLegalMaskedStore(DataType, Alignment); |
| } |
| |
| /// Returns true if the target machine supports masked load operation |
| /// for the given \p DataType and kind of access to \p Ptr. |
| bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const { |
| return Legal->isConsecutivePtr(DataType, Ptr) && |
| TTI.isLegalMaskedLoad(DataType, Alignment); |
| } |
| |
| /// Returns true if the target machine can represent \p V as a masked gather |
| /// or scatter operation. |
| bool isLegalGatherOrScatter(Value *V, ElementCount VF) { |
| bool LI = isa<LoadInst>(V); |
| bool SI = isa<StoreInst>(V); |
| if (!LI && !SI) |
| return false; |
| auto *Ty = getLoadStoreType(V); |
| Align Align = getLoadStoreAlignment(V); |
| if (VF.isVector()) |
| Ty = VectorType::get(Ty, VF); |
| return (LI && TTI.isLegalMaskedGather(Ty, Align)) || |
| (SI && TTI.isLegalMaskedScatter(Ty, Align)); |
| } |
| |
| /// Returns true if the target machine supports all of the reduction |
| /// variables found for the given VF. |
| bool canVectorizeReductions(ElementCount VF) const { |
| return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { |
| const RecurrenceDescriptor &RdxDesc = Reduction.second; |
| return TTI.isLegalToVectorizeReduction(RdxDesc, VF); |
| })); |
| } |
| |
| /// Given costs for both strategies, return true if the scalar predication |
| /// lowering should be used for div/rem. This incorporates an override |
| /// option so it is not simply a cost comparison. |
| bool isDivRemScalarWithPredication(InstructionCost ScalarCost, |
| InstructionCost SafeDivisorCost) const { |
| switch (ForceSafeDivisor) { |
| case cl::BOU_UNSET: |
| return ScalarCost < SafeDivisorCost; |
| case cl::BOU_TRUE: |
| return false; |
| case cl::BOU_FALSE: |
| return true; |
| }; |
| llvm_unreachable("impossible case value"); |
| } |
| |
| /// Returns true if \p I is an instruction which requires predication and |
| /// for which our chosen predication strategy is scalarization (i.e. we |
| /// don't have an alternate strategy such as masking available). |
| /// \p VF is the vectorization factor that will be used to vectorize \p I. |
| bool isScalarWithPredication(Instruction *I, ElementCount VF) const; |
| |
| /// Returns true if \p I is an instruction that needs to be predicated |
| /// at runtime. The result is independent of the predication mechanism. |
| /// Superset of instructions that return true for isScalarWithPredication. |
| bool isPredicatedInst(Instruction *I) const; |
| |
| /// Return the costs for our two available strategies for lowering a |
| /// div/rem operation which requires speculating at least one lane. |
| /// First result is for scalarization (will be invalid for scalable |
| /// vectors); second is for the safe-divisor strategy. |
| std::pair<InstructionCost, InstructionCost> |
| getDivRemSpeculationCost(Instruction *I, |
| ElementCount VF) const; |
| |
| /// Returns true if \p I is a memory instruction with consecutive memory |
| /// access that can be widened. |
| bool memoryInstructionCanBeWidened(Instruction *I, ElementCount VF); |
| |
| /// Returns true if \p I is a memory instruction in an interleaved-group |
| /// of memory accesses that can be vectorized with wide vector loads/stores |
| /// and shuffles. |
| bool interleavedAccessCanBeWidened(Instruction *I, ElementCount VF) const; |
| |
| /// Check if \p Instr belongs to any interleaved access group. |
| bool isAccessInterleaved(Instruction *Instr) const { |
| return InterleaveInfo.isInterleaved(Instr); |
| } |
| |
| /// Get the interleaved access group that \p Instr belongs to. |
| const InterleaveGroup<Instruction> * |
| getInterleavedAccessGroup(Instruction *Instr) const { |
| return InterleaveInfo.getInterleaveGroup(Instr); |
| } |
| |
| /// Returns true if we're required to use a scalar epilogue for at least |
| /// the final iteration of the original loop. |
| bool requiresScalarEpilogue(bool IsVectorizing) const { |
| if (!isScalarEpilogueAllowed()) { |
| LLVM_DEBUG(dbgs() << "LV: Loop does not require scalar epilogue\n"); |
| return false; |
| } |
| // If we might exit from anywhere but the latch, must run the exiting |
| // iteration in scalar form. |
| if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { |
| LLVM_DEBUG( |
| dbgs() << "LV: Loop requires scalar epilogue: multiple exits\n"); |
| return true; |
| } |
| if (IsVectorizing && InterleaveInfo.requiresScalarEpilogue()) { |
| LLVM_DEBUG(dbgs() << "LV: Loop requires scalar epilogue: " |
| "interleaved group requires scalar epilogue\n"); |
| return true; |
| } |
| LLVM_DEBUG(dbgs() << "LV: Loop does not require scalar epilogue\n"); |
| return false; |
| } |
| |
| /// Returns true if we're required to use a scalar epilogue for at least |
| /// the final iteration of the original loop for all VFs in \p Range. |
| /// A scalar epilogue must either be required for all VFs in \p Range or for |
| /// none. |
| bool requiresScalarEpilogue(VFRange Range) const { |
| auto RequiresScalarEpilogue = [this](ElementCount VF) { |
| return requiresScalarEpilogue(VF.isVector()); |
| }; |
| bool IsRequired = all_of(Range, RequiresScalarEpilogue); |
| assert( |
| (IsRequired || none_of(Range, RequiresScalarEpilogue)) && |
| "all VFs in range must agree on whether a scalar epilogue is required"); |
| return IsRequired; |
| } |
| |
| /// Returns true if a scalar epilogue is not allowed due to optsize or a |
| /// loop hint annotation. |
| bool isScalarEpilogueAllowed() const { |
| return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; |
| } |
| |
| /// Returns the TailFoldingStyle that is best for the current loop. |
| TailFoldingStyle getTailFoldingStyle(bool IVUpdateMayOverflow = true) const { |
| if (!ChosenTailFoldingStyle) |
| return TailFoldingStyle::None; |
| return IVUpdateMayOverflow ? ChosenTailFoldingStyle->first |
| : ChosenTailFoldingStyle->second; |
| } |
| |
| /// Selects and saves TailFoldingStyle for 2 options - if IV update may |
| /// overflow or not. |
| /// \param IsScalableVF true if scalable vector factors enabled. |
| /// \param UserIC User specific interleave count. |
| void setTailFoldingStyles(bool IsScalableVF, unsigned UserIC) { |
| assert(!ChosenTailFoldingStyle && "Tail folding must not be selected yet."); |
| if (!Legal->canFoldTailByMasking()) { |
| ChosenTailFoldingStyle = |
| std::make_pair(TailFoldingStyle::None, TailFoldingStyle::None); |
| return; |
| } |
| |
| if (!ForceTailFoldingStyle.getNumOccurrences()) { |
| ChosenTailFoldingStyle = std::make_pair( |
| TTI.getPreferredTailFoldingStyle(/*IVUpdateMayOverflow=*/true), |
| TTI.getPreferredTailFoldingStyle(/*IVUpdateMayOverflow=*/false)); |
| return; |
| } |
| |
| // Set styles when forced. |
| ChosenTailFoldingStyle = std::make_pair(ForceTailFoldingStyle.getValue(), |
| ForceTailFoldingStyle.getValue()); |
| if (ForceTailFoldingStyle != TailFoldingStyle::DataWithEVL) |
| return; |
| // Override forced styles if needed. |
| // FIXME: use actual opcode/data type for analysis here. |
| // FIXME: Investigate opportunity for fixed vector factor. |
| bool EVLIsLegal = |
| IsScalableVF && UserIC <= 1 && |
| TTI.hasActiveVectorLength(0, nullptr, Align()) && |
| !EnableVPlanNativePath && |
| // FIXME: implement support for max safe dependency distance. |
| Legal->isSafeForAnyVectorWidth(); |
| if (!EVLIsLegal) { |
| // If for some reason EVL mode is unsupported, fallback to |
| // DataWithoutLaneMask to try to vectorize the loop with folded tail |
| // in a generic way. |
| ChosenTailFoldingStyle = |
| std::make_pair(TailFoldingStyle::DataWithoutLaneMask, |
| TailFoldingStyle::DataWithoutLaneMask); |
| LLVM_DEBUG( |
| dbgs() |
| << "LV: Preference for VP intrinsics indicated. Will " |
| "not try to generate VP Intrinsics " |
| << (UserIC > 1 |
| ? "since interleave count specified is greater than 1.\n" |
| : "due to non-interleaving reasons.\n")); |
| } |
| } |
| |
| /// Returns true if all loop blocks should be masked to fold tail loop. |
| bool foldTailByMasking() const { |
| // TODO: check if it is possible to check for None style independent of |
| // IVUpdateMayOverflow flag in getTailFoldingStyle. |
| return getTailFoldingStyle() != TailFoldingStyle::None; |
| } |
| |
| /// Returns true if the instructions in this block requires predication |
| /// for any reason, e.g. because tail folding now requires a predicate |
| /// or because the block in the original loop was predicated. |
| bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const { |
| return foldTailByMasking() || Legal->blockNeedsPredication(BB); |
| } |
| |
| /// Returns true if VP intrinsics with explicit vector length support should |
| /// be generated in the tail folded loop. |
| bool foldTailWithEVL() const { |
| return getTailFoldingStyle() == TailFoldingStyle::DataWithEVL; |
| } |
| |
| /// Returns true if the Phi is part of an inloop reduction. |
| bool isInLoopReduction(PHINode *Phi) const { |
| return InLoopReductions.contains(Phi); |
| } |
| |
| /// Estimate cost of an intrinsic call instruction CI if it were vectorized |
| /// with factor VF. Return the cost of the instruction, including |
| /// scalarization overhead if it's needed. |
| InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const; |
| |
| /// Estimate cost of a call instruction CI if it were vectorized with factor |
| /// VF. Return the cost of the instruction, including scalarization overhead |
| /// if it's needed. |
| InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF) const; |
| |
| /// Invalidates decisions already taken by the cost model. |
| void invalidateCostModelingDecisions() { |
| WideningDecisions.clear(); |
| CallWideningDecisions.clear(); |
| Uniforms.clear(); |
| Scalars.clear(); |
| } |
| |
| /// Returns the expected execution cost. The unit of the cost does |
| /// not matter because we use the 'cost' units to compare different |
| /// vector widths. The cost that is returned is *not* normalized by |
| /// the factor width. |
| InstructionCost expectedCost(ElementCount VF); |
| |
| bool hasPredStores() const { return NumPredStores > 0; } |
| |
| /// Returns true if epilogue vectorization is considered profitable, and |
| /// false otherwise. |
| /// \p VF is the vectorization factor chosen for the original loop. |
| bool isEpilogueVectorizationProfitable(const ElementCount VF) const; |
| |
| /// Returns the execution time cost of an instruction for a given vector |
| /// width. Vector width of one means scalar. |
| InstructionCost getInstructionCost(Instruction *I, ElementCount VF); |
| |
| /// Return the cost of instructions in an inloop reduction pattern, if I is |
| /// part of that pattern. |
| std::optional<InstructionCost> |
| getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy, |
| TTI::TargetCostKind CostKind) const; |
| |
| private: |
| unsigned NumPredStores = 0; |
| |
| /// \return An upper bound for the vectorization factors for both |
| /// fixed and scalable vectorization, where the minimum-known number of |
| /// elements is a power-of-2 larger than zero. If scalable vectorization is |
| /// disabled or unsupported, then the scalable part will be equal to |
| /// ElementCount::getScalable(0). |
| FixedScalableVFPair computeFeasibleMaxVF(unsigned MaxTripCount, |
| ElementCount UserVF, |
| bool FoldTailByMasking); |
| |
| /// \return the maximized element count based on the targets vector |
| /// registers and the loop trip-count, but limited to a maximum safe VF. |
| /// This is a helper function of computeFeasibleMaxVF. |
| ElementCount getMaximizedVFForTarget(unsigned MaxTripCount, |
| unsigned SmallestType, |
| unsigned WidestType, |
| ElementCount MaxSafeVF, |
| bool FoldTailByMasking); |
| |
| /// Checks if scalable vectorization is supported and enabled. Caches the |
| /// result to avoid repeated debug dumps for repeated queries. |
| bool isScalableVectorizationAllowed(); |
| |
| /// \return the maximum legal scalable VF, based on the safe max number |
| /// of elements. |
| ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements); |
| |
| /// Calculate vectorization cost of memory instruction \p I. |
| InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); |
| |
| /// The cost computation for scalarized memory instruction. |
| InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); |
| |
| /// The cost computation for interleaving group of memory instructions. |
| InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); |
| |
| /// The cost computation for Gather/Scatter instruction. |
| InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); |
| |
| /// The cost computation for widening instruction \p I with consecutive |
| /// memory access. |
| InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); |
| |
| /// The cost calculation for Load/Store instruction \p I with uniform pointer - |
| /// Load: scalar load + broadcast. |
| /// Store: scalar store + (loop invariant value stored? 0 : extract of last |
| /// element) |
| InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); |
| |
| /// Estimate the overhead of scalarizing an instruction. This is a |
| /// convenience wrapper for the type-based getScalarizationOverhead API. |
| InstructionCost getScalarizationOverhead(Instruction *I, ElementCount VF, |
| TTI::TargetCostKind CostKind) const; |
| |
| /// Returns true if an artificially high cost for emulated masked memrefs |
| /// should be used. |
| bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF); |
| |
| /// Map of scalar integer values to the smallest bitwidth they can be legally |
| /// represented as. The vector equivalents of these values should be truncated |
| /// to this type. |
| MapVector<Instruction *, uint64_t> MinBWs; |
| |
| /// A type representing the costs for instructions if they were to be |
| /// scalarized rather than vectorized. The entries are Instruction-Cost |
| /// pairs. |
| using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; |
| |
| /// A set containing all BasicBlocks that are known to present after |
| /// vectorization as a predicated block. |
| DenseMap<ElementCount, SmallPtrSet<BasicBlock *, 4>> |
| PredicatedBBsAfterVectorization; |
| |
| /// Records whether it is allowed to have the original scalar loop execute at |
| /// least once. This may be needed as a fallback loop in case runtime |
| /// aliasing/dependence checks fail, or to handle the tail/remainder |
| /// iterations when the trip count is unknown or doesn't divide by the VF, |
| /// or as a peel-loop to handle gaps in interleave-groups. |
| /// Under optsize and when the trip count is very small we don't allow any |
| /// iterations to execute in the scalar loop. |
| ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; |
| |
| /// Control finally chosen tail folding style. The first element is used if |
| /// the IV update may overflow, the second element - if it does not. |
| std::optional<std::pair<TailFoldingStyle, TailFoldingStyle>> |
| ChosenTailFoldingStyle; |
| |
| /// true if scalable vectorization is supported and enabled. |
| std::optional<bool> IsScalableVectorizationAllowed; |
| |
| /// A map holding scalar costs for different vectorization factors. The |
| /// presence of a cost for an instruction in the mapping indicates that the |
| /// instruction will be scalarized when vectorizing with the associated |
| /// vectorization factor. The entries are VF-ScalarCostTy pairs. |
| DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; |
| |
| /// Holds the instructions known to be uniform after vectorization. |
| /// The data is collected per VF. |
| DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; |
| |
| /// Holds the instructions known to be scalar after vectorization. |
| /// The data is collected per VF. |
| DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; |
| |
| /// Holds the instructions (address computations) that are forced to be |
| /// scalarized. |
| DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; |
| |
| /// PHINodes of the reductions that should be expanded in-loop. |
| SmallPtrSet<PHINode *, 4> InLoopReductions; |
| |
| /// A Map of inloop reduction operations and their immediate chain operand. |
| /// FIXME: This can be removed once reductions can be costed correctly in |
| /// VPlan. This was added to allow quick lookup of the inloop operations. |
| DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; |
| |
| /// Returns the expected difference in cost from scalarizing the expression |
| /// feeding a predicated instruction \p PredInst. The instructions to |
| /// scalarize and their scalar costs are collected in \p ScalarCosts. A |
| /// non-negative return value implies the expression will be scalarized. |
| /// Currently, only single-use chains are considered for scalarization. |
| InstructionCost computePredInstDiscount(Instruction *PredInst, |
| ScalarCostsTy &ScalarCosts, |
| ElementCount VF); |
| |
| /// Collect the instructions that are uniform after vectorization. An |
| /// instruction is uniform if we represent it with a single scalar value in |
| /// the vectorized loop corresponding to each vector iteration. Examples of |
| /// uniform instructions include pointer operands of consecutive or |
| /// interleaved memory accesses. Note that although uniformity implies an |
| /// instruction will be scalar, the reverse is not true. In general, a |
| /// scalarized instruction will be represented by VF scalar values in the |
| /// vectorized loop, each corresponding to an iteration of the original |
| /// scalar loop. |
| void collectLoopUniforms(ElementCount VF); |
| |
| /// Collect the instructions that are scalar after vectorization. An |
| /// instruction is scalar if it is known to be uniform or will be scalarized |
| /// during vectorization. collectLoopScalars should only add non-uniform nodes |
| /// to the list if they are used by a load/store instruction that is marked as |
| /// CM_Scalarize. Non-uniform scalarized instructions will be represented by |
| /// VF values in the vectorized loop, each corresponding to an iteration of |
| /// the original scalar loop. |
| void collectLoopScalars(ElementCount VF); |
| |
| /// Keeps cost model vectorization decision and cost for instructions. |
| /// Right now it is used for memory instructions only. |
| using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, |
| std::pair<InstWidening, InstructionCost>>; |
| |
| DecisionList WideningDecisions; |
| |
| using CallDecisionList = |
| DenseMap<std::pair<CallInst *, ElementCount>, CallWideningDecision>; |
| |
| CallDecisionList CallWideningDecisions; |
| |
| /// Returns true if \p V is expected to be vectorized and it needs to be |
| /// extracted. |
| bool needsExtract(Value *V, ElementCount VF) const { |
| Instruction *I = dyn_cast<Instruction>(V); |
| if (VF.isScalar() || !I || !TheLoop->contains(I) || |
| TheLoop->isLoopInvariant(I)) |
| return false; |
| |
| // Assume we can vectorize V (and hence we need extraction) if the |
| // scalars are not computed yet. This can happen, because it is called |
| // via getScalarizationOverhead from setCostBasedWideningDecision, before |
| // the scalars are collected. That should be a safe assumption in most |
| // cases, because we check if the operands have vectorizable types |
| // beforehand in LoopVectorizationLegality. |
| return !Scalars.contains(VF) || !isScalarAfterVectorization(I, VF); |
| }; |
| |
| /// Returns a range containing only operands needing to be extracted. |
| SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, |
| ElementCount VF) const { |
| return SmallVector<Value *, 4>(make_filter_range( |
| Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); |
| } |
| |
| public: |
| /// The loop that we evaluate. |
| Loop *TheLoop; |
| |
| /// Predicated scalar evolution analysis. |
| PredicatedScalarEvolution &PSE; |
| |
| /// Loop Info analysis. |
| LoopInfo *LI; |
| |
| /// Vectorization legality. |
| LoopVectorizationLegality *Legal; |
| |
| /// Vector target information. |
| const TargetTransformInfo &TTI; |
| |
| /// Target Library Info. |
| const TargetLibraryInfo *TLI; |
| |
| /// Demanded bits analysis. |
| DemandedBits *DB; |
| |
| /// Assumption cache. |
| AssumptionCache *AC; |
| |
| /// Interface to emit optimization remarks. |
| OptimizationRemarkEmitter *ORE; |
| |
| const Function *TheFunction; |
| |
| /// Loop Vectorize Hint. |
| const LoopVectorizeHints *Hints; |
| |
| /// The interleave access information contains groups of interleaved accesses |
| /// with the same stride and close to each other. |
| InterleavedAccessInfo &InterleaveInfo; |
| |
| /// Values to ignore in the cost model. |
| SmallPtrSet<const Value *, 16> ValuesToIgnore; |
| |
| /// Values to ignore in the cost model when VF > 1. |
| SmallPtrSet<const Value *, 16> VecValuesToIgnore; |
| |
| /// All element types found in the loop. |
| SmallPtrSet<Type *, 16> ElementTypesInLoop; |
| }; |
| } // end namespace llvm |
| |
| namespace { |
| /// Helper struct to manage generating runtime checks for vectorization. |
| /// |
| /// The runtime checks are created up-front in temporary blocks to allow better |
| /// estimating the cost and un-linked from the existing IR. After deciding to |
| /// vectorize, the checks are moved back. If deciding not to vectorize, the |
| /// temporary blocks are completely removed. |
| class GeneratedRTChecks { |
| /// Basic block which contains the generated SCEV checks, if any. |
| BasicBlock *SCEVCheckBlock = nullptr; |
| |
| /// The value representing the result of the generated SCEV checks. If it is |
| /// nullptr, either no SCEV checks have been generated or they have been used. |
| Value *SCEVCheckCond = nullptr; |
| |
| /// Basic block which contains the generated memory runtime checks, if any. |
| BasicBlock *MemCheckBlock = nullptr; |
| |
| /// The value representing the result of the generated memory runtime checks. |
| /// If it is nullptr, either no memory runtime checks have been generated or |
| /// they have been used. |
| Value *MemRuntimeCheckCond = nullptr; |
| |
| DominatorTree *DT; |
| LoopInfo *LI; |
| TargetTransformInfo *TTI; |
| |
| SCEVExpander SCEVExp; |
| SCEVExpander MemCheckExp; |
| |
| bool CostTooHigh = false; |
| const bool AddBranchWeights; |
| |
| Loop *OuterLoop = nullptr; |
| |
| public: |
| GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI, |
| TargetTransformInfo *TTI, const DataLayout &DL, |
| bool AddBranchWeights) |
| : DT(DT), LI(LI), TTI(TTI), SCEVExp(SE, DL, "scev.check"), |
| MemCheckExp(SE, DL, "scev.check"), AddBranchWeights(AddBranchWeights) {} |
| |
| /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can |
| /// accurately estimate the cost of the runtime checks. The blocks are |
| /// un-linked from the IR and is added back during vector code generation. If |
| /// there is no vector code generation, the check blocks are removed |
| /// completely. |
| void Create(Loop *L, const LoopAccessInfo &LAI, |
| const SCEVPredicate &UnionPred, ElementCount VF, unsigned IC) { |
| |
| // Hard cutoff to limit compile-time increase in case a very large number of |
| // runtime checks needs to be generated. |
| // TODO: Skip cutoff if the loop is guaranteed to execute, e.g. due to |
| // profile info. |
| CostTooHigh = |
| LAI.getNumRuntimePointerChecks() > VectorizeMemoryCheckThreshold; |
| if (CostTooHigh) |
| return; |
| |
| BasicBlock *LoopHeader = L->getHeader(); |
| BasicBlock *Preheader = L->getLoopPreheader(); |
| |
| // Use SplitBlock to create blocks for SCEV & memory runtime checks to |
| // ensure the blocks are properly added to LoopInfo & DominatorTree. Those |
| // may be used by SCEVExpander. The blocks will be un-linked from their |
| // predecessors and removed from LI & DT at the end of the function. |
| if (!UnionPred.isAlwaysTrue()) { |
| SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, |
| nullptr, "vector.scevcheck"); |
| |
| SCEVCheckCond = SCEVExp.expandCodeForPredicate( |
| &UnionPred, SCEVCheckBlock->getTerminator()); |
| } |
| |
| const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); |
| if (RtPtrChecking.Need) { |
| auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; |
| MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, |
| "vector.memcheck"); |
| |
| auto DiffChecks = RtPtrChecking.getDiffChecks(); |
| if (DiffChecks) { |
| Value *RuntimeVF = nullptr; |
| MemRuntimeCheckCond = addDiffRuntimeChecks( |
| MemCheckBlock->getTerminator(), *DiffChecks, MemCheckExp, |
| [VF, &RuntimeVF](IRBuilderBase &B, unsigned Bits) { |
| if (!RuntimeVF) |
| RuntimeVF = getRuntimeVF(B, B.getIntNTy(Bits), VF); |
| return RuntimeVF; |
| }, |
| IC); |
| } else { |
| MemRuntimeCheckCond = addRuntimeChecks( |
| MemCheckBlock->getTerminator(), L, RtPtrChecking.getChecks(), |
| MemCheckExp, VectorizerParams::HoistRuntimeChecks); |
| } |
| assert(MemRuntimeCheckCond && |
| "no RT checks generated although RtPtrChecking " |
| "claimed checks are required"); |
| } |
| |
| if (!MemCheckBlock && !SCEVCheckBlock) |
| return; |
| |
| // Unhook the temporary block with the checks, update various places |
| // accordingly. |
| if (SCEVCheckBlock) |
| SCEVCheckBlock->replaceAllUsesWith(Preheader); |
| if (MemCheckBlock) |
| MemCheckBlock->replaceAllUsesWith(Preheader); |
| |
| if (SCEVCheckBlock) { |
| SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); |
| new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); |
| Preheader->getTerminator()->eraseFromParent(); |
| } |
| if (MemCheckBlock) { |
| MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); |
| new UnreachableInst(Preheader->getContext(), MemCheckBlock); |
| Preheader->getTerminator()->eraseFromParent(); |
| } |
| |
| DT->changeImmediateDominator(LoopHeader, Preheader); |
| if (MemCheckBlock) { |
| DT->eraseNode(MemCheckBlock); |
| LI->removeBlock(MemCheckBlock); |
| } |
| if (SCEVCheckBlock) { |
| DT->eraseNode(SCEVCheckBlock); |
| LI->removeBlock(SCEVCheckBlock); |
| } |
| |
| // Outer loop is used as part of the later cost calculations. |
| OuterLoop = L->getParentLoop(); |
| } |
| |
| InstructionCost getCost() { |
| if (SCEVCheckBlock || MemCheckBlock) |
| LLVM_DEBUG(dbgs() << "Calculating cost of runtime checks:\n"); |
| |
| if (CostTooHigh) { |
| InstructionCost Cost; |
| Cost.setInvalid(); |
| LLVM_DEBUG(dbgs() << " number of checks exceeded threshold\n"); |
| return Cost; |
| } |
| |
| InstructionCost RTCheckCost = 0; |
| if (SCEVCheckBlock) |
| for (Instruction &I : *SCEVCheckBlock) { |
| if (SCEVCheckBlock->getTerminator() == &I) |
| continue; |
| InstructionCost C = |
| TTI->getInstructionCost(&I, TTI::TCK_RecipThroughput); |
| LLVM_DEBUG(dbgs() << " " << C << " for " << I << "\n"); |
| RTCheckCost += C; |
| } |
| if (MemCheckBlock) { |
| InstructionCost MemCheckCost = 0; |
| for (Instruction &I : *MemCheckBlock) { |
| if (MemCheckBlock->getTerminator() == &I) |
| continue; |
| InstructionCost C = |
| TTI->getInstructionCost(&I, TTI::TCK_RecipThroughput); |
| LLVM_DEBUG(dbgs() << " " << C << " for " << I << "\n"); |
| MemCheckCost += C; |
| } |
| |
| // If the runtime memory checks are being created inside an outer loop |
| // we should find out if these checks are outer loop invariant. If so, |
| // the checks will likely be hoisted out and so the effective cost will |
| // reduce according to the outer loop trip count. |
| if (OuterLoop) { |
| ScalarEvolution *SE = MemCheckExp.getSE(); |
| // TODO: If profitable, we could refine this further by analysing every |
| // individual memory check, since there could be a mixture of loop |
| // variant and invariant checks that mean the final condition is |
| // variant. |
| const SCEV *Cond = SE->getSCEV(MemRuntimeCheckCond); |
| if (SE->isLoopInvariant(Cond, OuterLoop)) { |
| // It seems reasonable to assume that we can reduce the effective |
| // cost of the checks even when we know nothing about the trip |
| // count. Assume that the outer loop executes at least twice. |
| unsigned BestTripCount = 2; |
| |
| // If exact trip count is known use that. |
| if (unsigned SmallTC = SE->getSmallConstantTripCount(OuterLoop)) |
| BestTripCount = SmallTC; |
| else if (LoopVectorizeWithBlockFrequency) { |
| // Else use profile data if available. |
| if (auto EstimatedTC = getLoopEstimatedTripCount(OuterLoop)) |
| BestTripCount = *EstimatedTC; |
| } |
| |
| BestTripCount = std::max(BestTripCount, 1U); |
| InstructionCost NewMemCheckCost = MemCheckCost / BestTripCount; |
| |
| // Let's ensure the cost is always at least 1. |
| NewMemCheckCost = std::max(*NewMemCheckCost.getValue(), |
| (InstructionCost::CostType)1); |
| |
| if (BestTripCount > 1) |
| LLVM_DEBUG(dbgs() |
| << "We expect runtime memory checks to be hoisted " |
| << "out of the outer loop. Cost reduced from " |
| << MemCheckCost << " to " << NewMemCheckCost << '\n'); |
| |
| MemCheckCost = NewMemCheckCost; |
| } |
| } |
| |
| RTCheckCost += MemCheckCost; |
| } |
| |
| if (SCEVCheckBlock || MemCheckBlock) |
| LLVM_DEBUG(dbgs() << "Total cost of runtime checks: " << RTCheckCost |
| << "\n"); |
| |
| return RTCheckCost; |
| } |
| |
| /// Remove the created SCEV & memory runtime check blocks & instructions, if |
| /// unused. |
| ~GeneratedRTChecks() { |
| SCEVExpanderCleaner SCEVCleaner(SCEVExp); |
| SCEVExpanderCleaner MemCheckCleaner(MemCheckExp); |
| if (!SCEVCheckCond) |
| SCEVCleaner.markResultUsed(); |
| |
| if (!MemRuntimeCheckCond) |
| MemCheckCleaner.markResultUsed(); |
| |
| if (MemRuntimeCheckCond) { |
| auto &SE = *MemCheckExp.getSE(); |
| // Memory runtime check generation creates compares that use expanded |
| // values. Remove them before running the SCEVExpanderCleaners. |
| for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { |
| if (MemCheckExp.isInsertedInstruction(&I)) |
| continue; |
| SE.forgetValue(&I); |
| I.eraseFromParent(); |
| } |
| } |
| MemCheckCleaner.cleanup(); |
| SCEVCleaner.cleanup(); |
| |
| if (SCEVCheckCond) |
| SCEVCheckBlock->eraseFromParent(); |
| if (MemRuntimeCheckCond) |
| MemCheckBlock->eraseFromParent(); |
| } |
| |
| /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and |
| /// adjusts the branches to branch to the vector preheader or \p Bypass, |
| /// depending on the generated condition. |
| BasicBlock *emitSCEVChecks(BasicBlock *Bypass, |
| BasicBlock *LoopVectorPreHeader, |
| BasicBlock *LoopExitBlock) { |
| if (!SCEVCheckCond) |
| return nullptr; |
| |
| Value *Cond = SCEVCheckCond; |
| // Mark the check as used, to prevent it from being removed during cleanup. |
| SCEVCheckCond = nullptr; |
| if (auto *C = dyn_cast<ConstantInt>(Cond)) |
| if (C->isZero()) |
| return nullptr; |
| |
| auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); |
| |
| BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); |
| // Create new preheader for vector loop. |
| if (OuterLoop) |
| OuterLoop->addBasicBlockToLoop(SCEVCheckBlock, *LI); |
| |
| SCEVCheckBlock->getTerminator()->eraseFromParent(); |
| SCEVCheckBlock->moveBefore(LoopVectorPreHeader); |
| Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, |
| SCEVCheckBlock); |
| |
| DT->addNewBlock(SCEVCheckBlock, Pred); |
| DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); |
| |
| BranchInst &BI = *BranchInst::Create(Bypass, LoopVectorPreHeader, Cond); |
| if (AddBranchWeights) |
| setBranchWeights(BI, SCEVCheckBypassWeights, /*IsExpected=*/false); |
| ReplaceInstWithInst(SCEVCheckBlock->getTerminator(), &BI); |
| return SCEVCheckBlock; |
| } |
| |
| /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts |
| /// the branches to branch to the vector preheader or \p Bypass, depending on |
| /// the generated condition. |
| BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass, |
| BasicBlock *LoopVectorPreHeader) { |
| // Check if we generated code that checks in runtime if arrays overlap. |
| if (!MemRuntimeCheckCond) |
| return nullptr; |
| |
| auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); |
| Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, |
| MemCheckBlock); |
| |
| DT->addNewBlock(MemCheckBlock, Pred); |
| DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); |
| MemCheckBlock->moveBefore(LoopVectorPreHeader); |
| |
| if (OuterLoop) |
| OuterLoop->addBasicBlockToLoop(MemCheckBlock, *LI); |
| |
| BranchInst &BI = |
| *BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond); |
| if (AddBranchWeights) { |
| setBranchWeights(BI, MemCheckBypassWeights, /*IsExpected=*/false); |
| } |
| ReplaceInstWithInst(MemCheckBlock->getTerminator(), &BI); |
| MemCheckBlock->getTerminator()->setDebugLoc( |
| Pred->getTerminator()->getDebugLoc()); |
| |
| // Mark the check as used, to prevent it from being removed during cleanup. |
| MemRuntimeCheckCond = nullptr; |
| return MemCheckBlock; |
| } |
| }; |
| } // namespace |
| |
| static bool useActiveLaneMask(TailFoldingStyle Style) { |
| return Style == TailFoldingStyle::Data || |
| Style == TailFoldingStyle::DataAndControlFlow || |
| Style == TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck; |
| } |
| |
| static bool useActiveLaneMaskForControlFlow(TailFoldingStyle Style) { |
| return Style == TailFoldingStyle::DataAndControlFlow || |
| Style == TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck; |
| } |
| |
| // Return true if \p OuterLp is an outer loop annotated with hints for explicit |
| // vectorization. The loop needs to be annotated with #pragma omp simd |
| // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the |
| // vector length information is not provided, vectorization is not considered |
| // explicit. Interleave hints are not allowed either. These limitations will be |
| // relaxed in the future. |
| // Please, note that we are currently forced to abuse the pragma 'clang |
| // vectorize' semantics. This pragma provides *auto-vectorization hints* |
| // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' |
| // provides *explicit vectorization hints* (LV can bypass legal checks and |
| // assume that vectorization is legal). However, both hints are implemented |
| // using the same metadata (llvm.loop.vectorize, processed by |
| // LoopVectorizeHints). This will be fixed in the future when the native IR |
| // representation for pragma 'omp simd' is introduced. |
| static bool isExplicitVecOuterLoop(Loop *OuterLp, |
| OptimizationRemarkEmitter *ORE) { |
| assert(!OuterLp->isInnermost() && "This is not an outer loop"); |
| LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); |
| |
| // Only outer loops with an explicit vectorization hint are supported. |
| // Unannotated outer loops are ignored. |
| if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) |
| return false; |
| |
| Function *Fn = OuterLp->getHeader()->getParent(); |
| if (!Hints.allowVectorization(Fn, OuterLp, |
| true /*VectorizeOnlyWhenForced*/)) { |
| LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); |
| return false; |
| } |
| |
| if (Hints.getInterleave() > 1) { |
| // TODO: Interleave support is future work. |
| LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " |
| "outer loops.\n"); |
| Hints.emitRemarkWithHints(); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static void collectSupportedLoops(Loop &L, LoopInfo *LI, |
| OptimizationRemarkEmitter *ORE, |
| SmallVectorImpl<Loop *> &V) { |
| // Collect inner loops and outer loops without irreducible control flow. For |
| // now, only collect outer loops that have explicit vectorization hints. If we |
| // are stress testing the VPlan H-CFG construction, we collect the outermost |
| // loop of every loop nest. |
| if (L.isInnermost() || VPlanBuildStressTest || |
| (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { |
| LoopBlocksRPO RPOT(&L); |
| RPOT.perform(LI); |
| if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { |
| V.push_back(&L); |
| // TODO: Collect inner loops inside marked outer loops in case |
| // vectorization fails for the outer loop. Do not invoke |
| // 'containsIrreducibleCFG' again for inner loops when the outer loop is |
| // already known to be reducible. We can use an inherited attribute for |
| // that. |
| return; |
| } |
| } |
| for (Loop *InnerL : L) |
| collectSupportedLoops(*InnerL, LI, ORE, V); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and |
| // LoopVectorizationCostModel and LoopVectorizationPlanner. |
| //===----------------------------------------------------------------------===// |
| |
| /// Compute the transformed value of Index at offset StartValue using step |
| /// StepValue. |
| /// For integer induction, returns StartValue + Index * StepValue. |
| /// For pointer induction, returns StartValue[Index * StepValue]. |
| /// FIXME: The newly created binary instructions should contain nsw/nuw |
| /// flags, which can be found from the original scalar operations. |
| static Value * |
| emitTransformedIndex(IRBuilderBase &B, Value *Index, Value *StartValue, |
| Value *Step, |
| InductionDescriptor::InductionKind InductionKind, |
| const BinaryOperator *InductionBinOp) { |
| Type *StepTy = Step->getType(); |
| Value *CastedIndex = StepTy->isIntegerTy() |
| ? B.CreateSExtOrTrunc(Index, StepTy) |
| : B.CreateCast(Instruction::SIToFP, Index, StepTy); |
| if (CastedIndex != Index) { |
| CastedIndex->setName(CastedIndex->getName() + ".cast"); |
| Index = CastedIndex; |
| } |
| |
| // Note: the IR at this point is broken. We cannot use SE to create any new |
| // SCEV and then expand it, hoping that SCEV's simplification will give us |
| // a more optimal code. Unfortunately, attempt of doing so on invalid IR may |
| // lead to various SCEV crashes. So all we can do is to use builder and rely |
| // on InstCombine for future simplifications. Here we handle some trivial |
| // cases only. |
| auto CreateAdd = [&B](Value *X, Value *Y) { |
| assert(X->getType() == Y->getType() && "Types don't match!"); |
| if (auto *CX = dyn_cast<ConstantInt>(X)) |
| if (CX->isZero()) |
| return Y; |
| if (auto *CY = dyn_cast<ConstantInt>(Y)) |
| if (CY->isZero()) |
| return X; |
| return B.CreateAdd(X, Y); |
| }; |
| |
| // We allow X to be a vector type, in which case Y will potentially be |
| // splatted into a vector with the same element count. |
| auto CreateMul = [&B](Value *X, Value *Y) { |
| assert(X->getType()->getScalarType() == Y->getType() && |
| "Types don't match!"); |
| if (auto *CX = dyn_cast<ConstantInt>(X)) |
| if (CX->isOne()) |
| return Y; |
| if (auto *CY = dyn_cast<ConstantInt>(Y)) |
| if (CY->isOne()) |
| return X; |
| VectorType *XVTy = dyn_cast<VectorType>(X->getType()); |
| if (XVTy && !isa<VectorType>(Y->getType())) |
| Y = B.CreateVectorSplat(XVTy->getElementCount(), Y); |
| return B.CreateMul(X, Y); |
| }; |
| |
| switch (InductionKind) { |
| case InductionDescriptor::IK_IntInduction: { |
| assert(!isa<VectorType>(Index->getType()) && |
| "Vector indices not supported for integer inductions yet"); |
| assert(Index->getType() == StartValue->getType() && |
| "Index type does not match StartValue type"); |
| if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne()) |
| return B.CreateSub(StartValue, Index); |
| auto *Offset = CreateMul(Index, Step); |
| return CreateAdd(StartValue, Offset); |
| } |
| case InductionDescriptor::IK_PtrInduction: |
| return B.CreatePtrAdd(StartValue, CreateMul(Index, Step)); |
| case InductionDescriptor::IK_FpInduction: { |
| assert(!isa<VectorType>(Index->getType()) && |
| "Vector indices not supported for FP inductions yet"); |
| assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); |
| assert(InductionBinOp && |
| (InductionBinOp->getOpcode() == Instruction::FAdd || |
| InductionBinOp->getOpcode() == Instruction::FSub) && |
| "Original bin op should be defined for FP induction"); |
| |
| Value *MulExp = B.CreateFMul(Step, Index); |
| return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, |
| "induction"); |
| } |
| case InductionDescriptor::IK_NoInduction: |
| return nullptr; |
| } |
| llvm_unreachable("invalid enum"); |
| } |
| |
| std::optional<unsigned> getMaxVScale(const Function &F, |
| const TargetTransformInfo &TTI) { |
| if (std::optional<unsigned> MaxVScale = TTI.getMaxVScale()) |
| return MaxVScale; |
| |
| if (F.hasFnAttribute(Attribute::VScaleRange)) |
| return F.getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax(); |
| |
| return std::nullopt; |
| } |
| |
| /// For the given VF and UF and maximum trip count computed for the loop, return |
| /// whether the induction variable might overflow in the vectorized loop. If not, |
| /// then we know a runtime overflow check always evaluates to false and can be |
| /// removed. |
| static bool isIndvarOverflowCheckKnownFalse( |
| const LoopVectorizationCostModel *Cost, |
| ElementCount VF, std::optional<unsigned> UF = std::nullopt) { |
| // Always be conservative if we don't know the exact unroll factor. |
| unsigned MaxUF = UF ? *UF : Cost->TTI.getMaxInterleaveFactor(VF); |
| |
| Type *IdxTy = Cost->Legal->getWidestInductionType(); |
| APInt MaxUIntTripCount = cast<IntegerType>(IdxTy)->getMask(); |
| |
| // We know the runtime overflow check is known false iff the (max) trip-count |
| // is known and (max) trip-count + (VF * UF) does not overflow in the type of |
| // the vector loop induction variable. |
| if (unsigned TC = |
| Cost->PSE.getSE()->getSmallConstantMaxTripCount(Cost->TheLoop)) { |
| uint64_t MaxVF = VF.getKnownMinValue(); |
| if (VF.isScalable()) { |
| std::optional<unsigned> MaxVScale = |
| getMaxVScale(*Cost->TheFunction, Cost->TTI); |
| if (!MaxVScale) |
| return false; |
| MaxVF *= *MaxVScale; |
| } |
| |
| return (MaxUIntTripCount - TC).ugt(MaxVF * MaxUF); |
| } |
| |
| return false; |
| } |
| |
| // Return whether we allow using masked interleave-groups (for dealing with |
| // strided loads/stores that reside in predicated blocks, or for dealing |
| // with gaps). |
| static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { |
| // If an override option has been passed in for interleaved accesses, use it. |
| if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) |
| return EnableMaskedInterleavedMemAccesses; |
| |
| return TTI.enableMaskedInterleavedAccessVectorization(); |
| } |
| |
| void InnerLoopVectorizer::scalarizeInstruction(const Instruction *Instr, |
| VPReplicateRecipe *RepRecipe, |
| const VPIteration &Instance, |
| VPTransformState &State) { |
| assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); |
| |
| // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for |
| // the first lane and part. |
| if (isa<NoAliasScopeDeclInst>(Instr)) |
| if (!Instance.isFirstIteration()) |
| return; |
| |
| // Does this instruction return a value ? |
| bool IsVoidRetTy = Instr->getType()->isVoidTy(); |
| |
| Instruction *Cloned = Instr->clone(); |
| if (!IsVoidRetTy) { |
| Cloned->setName(Instr->getName() + ".cloned"); |
| #if !defined(NDEBUG) |
| // Verify that VPlan type inference results agree with the type of the |
| // generated values. |
| assert(State.TypeAnalysis.inferScalarType(RepRecipe) == Cloned->getType() && |
| "inferred type and type from generated instructions do not match"); |
| #endif |
| } |
| |
| RepRecipe->setFlags(Cloned); |
| |
| if (auto DL = Instr->getDebugLoc()) |
| State.setDebugLocFrom(DL); |
| |
| // Replace the operands of the cloned instructions with their scalar |
| // equivalents in the new loop. |
| for (const auto &I : enumerate(RepRecipe->operands())) { |
| auto InputInstance = Instance; |
| VPValue *Operand = I.value(); |
| if (vputils::isUniformAfterVectorization(Operand)) |
| InputInstance.Lane = VPLane::getFirstLane(); |
| Cloned->setOperand(I.index(), State.get(Operand, InputInstance)); |
| } |
| State.addNewMetadata(Cloned, Instr); |
| |
| // Place the cloned scalar in the new loop. |
| State.Builder.Insert(Cloned); |
| |
| State.set(RepRecipe, Cloned, Instance); |
| |
| // If we just cloned a new assumption, add it the assumption cache. |
| if (auto *II = dyn_cast<AssumeInst>(Cloned)) |
| AC->registerAssumption(II); |
| |
| // End if-block. |
| bool IfPredicateInstr = RepRecipe->getParent()->getParent()->isReplicator(); |
| if (IfPredicateInstr) |
| PredicatedInstructions.push_back(Cloned); |
| } |
| |
| Value * |
| InnerLoopVectorizer::getOrCreateVectorTripCount(BasicBlock *InsertBlock) { |
| if (VectorTripCount) |
| return VectorTripCount; |
| |
| Value *TC = getTripCount(); |
| IRBuilder<> Builder(InsertBlock->getTerminator()); |
| |
| Type *Ty = TC->getType(); |
| // This is where we can make the step a runtime constant. |
| Value *Step = createStepForVF(Builder, Ty, VF, UF); |
| |
| // If the tail is to be folded by masking, round the number of iterations N |
| // up to a multiple of Step instead of rounding down. This is done by first |
| // adding Step-1 and then rounding down. Note that it's ok if this addition |
| // overflows: the vector induction variable will eventually wrap to zero given |
| // that it starts at zero and its Step is a power of two; the loop will then |
| // exit, with the last early-exit vector comparison also producing all-true. |
| // For scalable vectors the VF is not guaranteed to be a power of 2, but this |
| // is accounted for in emitIterationCountCheck that adds an overflow check. |
| if (Cost->foldTailByMasking()) { |
| assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && |
| "VF*UF must be a power of 2 when folding tail by masking"); |
| TC = Builder.CreateAdd(TC, Builder.CreateSub(Step, ConstantInt::get(Ty, 1)), |
| "n.rnd.up"); |
| } |
| |
| // Now we need to generate the expression for the part of the loop that the |
| // vectorized body will execute. This is equal to N - (N % Step) if scalar |
| // iterations are not required for correctness, or N - Step, otherwise. Step |
| // is equal to the vectorization factor (number of SIMD elements) times the |
| // unroll factor (number of SIMD instructions). |
| Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); |
| |
| // There are cases where we *must* run at least one iteration in the remainder |
| // loop. See the cost model for when this can happen. If the step evenly |
| // divides the trip count, we set the remainder to be equal to the step. If |
| // the step does not evenly divide the trip count, no adjustment is necessary |
| // since there will already be scalar iterations. Note that the minimum |
| // iterations check ensures that N >= Step. |
| if (Cost->requiresScalarEpilogue(VF.isVector())) { |
| auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); |
| R = Builder.CreateSelect(IsZero, Step, R); |
| } |
| |
| VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); |
| |
| return VectorTripCount; |
| } |
| |
| void InnerLoopVectorizer::emitIterationCountCheck(BasicBlock *Bypass) { |
| Value *Count = getTripCount(); |
| // Reuse existing vector loop preheader for TC checks. |
| // Note that new preheader block is generated for vector loop. |
| BasicBlock *const TCCheckBlock = LoopVectorPreHeader; |
| IRBuilder<> Builder(TCCheckBlock->getTerminator()); |
| |
| // Generate code to check if the loop's trip count is less than VF * UF, or |
| // equal to it in case a scalar epilogue is required; this implies that the |
| // vector trip count is zero. This check also covers the case where adding one |
| // to the backedge-taken count overflowed leading to an incorrect trip count |
| // of zero. In this case we will also jump to the scalar loop. |
| auto P = Cost->requiresScalarEpilogue(VF.isVector()) ? ICmpInst::ICMP_ULE |
| : ICmpInst::ICMP_ULT; |
| |
| // If tail is to be folded, vector loop takes care of all iterations. |
| Type *CountTy = Count->getType(); |
| Value *CheckMinIters = Builder.getFalse(); |
| auto CreateStep = [&]() -> Value * { |
| // Create step with max(MinProTripCount, UF * VF). |
| if (UF * VF.getKnownMinValue() >= MinProfitableTripCount.getKnownMinValue()) |
| return createStepForVF(Builder, CountTy, VF, UF); |
| |
| Value *MinProfTC = |
| createStepForVF(Builder, CountTy, MinProfitableTripCount, 1); |
| if (!VF.isScalable()) |
| return MinProfTC; |
| return Builder.CreateBinaryIntrinsic( |
| Intrinsic::umax, MinProfTC, createStepForVF(Builder, CountTy, VF, UF)); |
| }; |
| |
| TailFoldingStyle Style = Cost->getTailFoldingStyle(); |
| if (Style == TailFoldingStyle::None) |
| CheckMinIters = |
| Builder.CreateICmp(P, Count, CreateStep(), "min.iters.check"); |
| else if (VF.isScalable() && |
| !isIndvarOverflowCheckKnownFalse(Cost, VF, UF) && |
| Style != TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck) { |
| // vscale is not necessarily a power-of-2, which means we cannot guarantee |
| // an overflow to zero when updating induction variables and so an |
| // additional overflow check is required before entering the vector loop. |
| |
| // Get the maximum unsigned value for the type. |
| Value *MaxUIntTripCount = |
| ConstantInt::get(CountTy, cast<IntegerType>(CountTy)->getMask()); |
| Value *LHS = Builder.CreateSub(MaxUIntTripCount, Count); |
| |
| // Don't execute the vector loop if (UMax - n) < (VF * UF). |
| CheckMinIters = Builder.CreateICmp(ICmpInst::ICMP_ULT, LHS, CreateStep()); |
| } |
| |
| // Create new preheader for vector loop. |
| LoopVectorPreHeader = |
| SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, |
| "vector.ph"); |
| |
| assert(DT->properlyDominates(DT->getNode(TCCheckBlock), |
| DT->getNode(Bypass)->getIDom()) && |
| "TC check is expected to dominate Bypass"); |
| |
| // Update dominator for Bypass & LoopExit (if needed). |
| DT->changeImmediateDominator(Bypass, TCCheckBlock); |
| BranchInst &BI = |
| *BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters); |
| if (hasBranchWeightMD(*OrigLoop->getLoopLatch()->getTerminator())) |
| setBranchWeights(BI, MinItersBypassWeights, /*IsExpected=*/false); |
| ReplaceInstWithInst(TCCheckBlock->getTerminator(), &BI); |
| LoopBypassBlocks.push_back(TCCheckBlock); |
| } |
| |
| BasicBlock *InnerLoopVectorizer::emitSCEVChecks(BasicBlock *Bypass) { |
| BasicBlock *const SCEVCheckBlock = |
| RTChecks.emitSCEVChecks(Bypass, LoopVectorPreHeader, LoopExitBlock); |
| if (!SCEVCheckBlock) |
| return nullptr; |
| |
| assert(!(SCEVCheckBlock->getParent()->hasOptSize() || |
| (OptForSizeBasedOnProfile && |
| Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && |
| "Cannot SCEV check stride or overflow when optimizing for size"); |
| |
| |
| // Update dominator only if this is first RT check. |
| if (LoopBypassBlocks.empty()) { |
| DT->changeImmediateDominator(Bypass, SCEVCheckBlock); |
| if (!Cost->requiresScalarEpilogue(VF.isVector())) |
| // If there is an epilogue which must run, there's no edge from the |
| // middle block to exit blocks and thus no need to update the immediate |
| // dominator of the exit blocks. |
| DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); |
| } |
| |
| LoopBypassBlocks.push_back(SCEVCheckBlock); |
| AddedSafetyChecks = true; |
| return SCEVCheckBlock; |
| } |
| |
| BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(BasicBlock *Bypass) { |
| // VPlan-native path does not do any analysis for runtime checks currently. |
| if (EnableVPlanNativePath) |
| return nullptr; |
| |
| BasicBlock *const MemCheckBlock = |
| RTChecks.emitMemRuntimeChecks(Bypass, LoopVectorPreHeader); |
| |
| // Check if we generated code that checks in runtime if arrays overlap. We put |
| // the checks into a separate block to make the more common case of few |
| // elements faster. |
| if (!MemCheckBlock) |
| return nullptr; |
| |
| if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { |
| assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && |
| "Cannot emit memory checks when optimizing for size, unless forced " |
| "to vectorize."); |
| ORE->emit([&]() { |
| return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", |
| OrigLoop->getStartLoc(), |
| OrigLoop->getHeader()) |
| << "Code-size may be reduced by not forcing " |
| "vectorization, or by source-code modifications " |
| "eliminating the need for runtime checks " |
| "(e.g., adding 'restrict')."; |
| }); |
| } |
| |
| LoopBypassBlocks.push_back(MemCheckBlock); |
| |
| AddedSafetyChecks = true; |
| |
| return MemCheckBlock; |
| } |
| |
| void InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { |
| LoopScalarBody = OrigLoop->getHeader(); |
| LoopVectorPreHeader = OrigLoop->getLoopPreheader(); |
| assert(LoopVectorPreHeader && "Invalid loop structure"); |
| LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr |
| assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF.isVector())) && |
| "multiple exit loop without required epilogue?"); |
| |
| LoopMiddleBlock = |
| SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, |
| LI, nullptr, Twine(Prefix) + "middle.block"); |
| LoopScalarPreHeader = |
| SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, |
| nullptr, Twine(Prefix) + "scalar.ph"); |
| } |
| |
| PHINode *InnerLoopVectorizer::createInductionResumeValue( |
| PHINode *OrigPhi, const InductionDescriptor &II, Value *Step, |
| ArrayRef<BasicBlock *> BypassBlocks, |
| std::pair<BasicBlock *, Value *> AdditionalBypass) { |
| Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader); |
| assert(VectorTripCount && "Expected valid arguments"); |
| |
| Instruction *OldInduction = Legal->getPrimaryInduction(); |
| Value *&EndValue = IVEndValues[OrigPhi]; |
| Value *EndValueFromAdditionalBypass = AdditionalBypass.second; |
| if (OrigPhi == OldInduction) { |
| // We know what the end value is. |
| EndValue = VectorTripCount; |
| } else { |
| IRBuilder<> B(LoopVectorPreHeader->getTerminator()); |
| |
| // Fast-math-flags propagate from the original induction instruction. |
| if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) |
| B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); |
| |
| EndValue = emitTransformedIndex(B, VectorTripCount, II.getStartValue(), |
| Step, II.getKind(), II.getInductionBinOp()); |
| EndValue->setName("ind.end"); |
| |
| // Compute the end value for the additional bypass (if applicable). |
| if (AdditionalBypass.first) { |
| B.SetInsertPoint(AdditionalBypass.first, |
| AdditionalBypass.first->getFirstInsertionPt()); |
| EndValueFromAdditionalBypass = |
| emitTransformedIndex(B, AdditionalBypass.second, II.getStartValue(), |
| Step, II.getKind(), II.getInductionBinOp()); |
| EndValueFromAdditionalBypass->setName("ind.end"); |
| } |
| } |
| |
| // Create phi nodes to merge from the backedge-taken check block. |
| PHINode *BCResumeVal = |
| PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", |
| LoopScalarPreHeader->getFirstNonPHIIt()); |
| // Copy original phi DL over to the new one. |
| BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); |
| |
| // The new PHI merges the original incoming value, in case of a bypass, |
| // or the value at the end of the vectorized loop. |
| BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); |
| |
| // Fix the scalar body counter (PHI node). |
| // The old induction's phi node in the scalar body needs the truncated |
| // value. |
| for (BasicBlock *BB : BypassBlocks) |
| BCResumeVal->addIncoming(II.getStartValue(), BB); |
| |
| if (AdditionalBypass.first) |
| BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, |
| EndValueFromAdditionalBypass); |
| return BCResumeVal; |
| } |
| |
| /// Return the expanded step for \p ID using \p ExpandedSCEVs to look up SCEV |
| /// expansion results. |
| static Value *getExpandedStep(const InductionDescriptor &ID, |
| const SCEV2ValueTy &ExpandedSCEVs) { |
| const SCEV *Step = ID.getStep(); |
| if (auto *C = dyn_cast<SCEVConstant>(Step)) |
| return C->getValue(); |
| if (auto *U = dyn_cast<SCEVUnknown>(Step)) |
| return U->getValue(); |
| auto I = ExpandedSCEVs.find(Step); |
| assert(I != ExpandedSCEVs.end() && "SCEV must be expanded at this point"); |
| return I->second; |
| } |
| |
| void InnerLoopVectorizer::createInductionResumeValues( |
| const SCEV2ValueTy &ExpandedSCEVs, |
| std::pair<BasicBlock *, Value *> AdditionalBypass) { |
| assert(((AdditionalBypass.first && AdditionalBypass.second) || |
| (!AdditionalBypass.first && !AdditionalBypass.second)) && |
| "Inconsistent information about additional bypass."); |
| // We are going to resume the execution of the scalar loop. |
| // Go over all of the induction variables that we found and fix the |
| // PHIs that are left in the scalar version of the loop. |
| // The starting values of PHI nodes depend on the counter of the last |
| // iteration in the vectorized loop. |
| // If we come from a bypass edge then we need to start from the original |
| // start value. |
| for (const auto &InductionEntry : Legal->getInductionVars()) { |
| PHINode *OrigPhi = InductionEntry.first; |
| const InductionDescriptor &II = InductionEntry.second; |
| PHINode *BCResumeVal = createInductionResumeValue( |
| OrigPhi, II, getExpandedStep(II, ExpandedSCEVs), LoopBypassBlocks, |
| AdditionalBypass); |
| OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); |
| } |
| } |
| |
| std::pair<BasicBlock *, Value *> |
| InnerLoopVectorizer::createVectorizedLoopSkeleton( |
| const SCEV2ValueTy &ExpandedSCEVs) { |
| /* |
| In this function we generate a new loop. The new loop will contain |
| the vectorized instructions while the old loop will continue to run the |
| scalar remainder. |
| |
| [ ] <-- old preheader - loop iteration number check and SCEVs in Plan's |
| / | preheader are expanded here. Eventually all required SCEV |
| / | expansion should happen here. |
| / v |
| | [ ] <-- vector loop bypass (may consist of multiple blocks). |
| | / | |
| | / v |
| || [ ] <-- vector pre header. |
| |/ | |
| | v |
| | [ ] \ |
| | [ ]_| <-- vector loop (created during VPlan execution). |
| | | |
| | v |
| \ -[ ] <--- middle-block (wrapped in VPIRBasicBlock with the branch to |
| | | successors created during VPlan execution) |
| \/ | |
| /\ v |
| | ->[ ] <--- new preheader (wrapped in VPIRBasicBlock). |
| | | |
| (opt) v <-- edge from middle to exit iff epilogue is not required. |
| | [ ] \ |
| | [ ]_| <-- old scalar loop to handle remainder (scalar epilogue). |
| \ | |
| \ v |
| >[ ] <-- exit block(s). (wrapped in VPIRBasicBlock) |
| ... |
| */ |
| |
| // Create an empty vector loop, and prepare basic blocks for the runtime |
| // checks. |
| createVectorLoopSkeleton(""); |
| |
| // Now, compare the new count to zero. If it is zero skip the vector loop and |
| // jump to the scalar loop. This check also covers the case where the |
| // backedge-taken count is uint##_max: adding one to it will overflow leading |
| // to an incorrect trip count of zero. In this (rare) case we will also jump |
| // to the scalar loop. |
| emitIterationCountCheck(LoopScalarPreHeader); |
| |
| // Generate the code to check any assumptions that we've made for SCEV |
| // expressions. |
| emitSCEVChecks(LoopScalarPreHeader); |
| |
| // Generate the code that checks in runtime if arrays overlap. We put the |
| // checks into a separate block to make the more common case of few elements |
| // faster. |
| emitMemRuntimeChecks(LoopScalarPreHeader); |
| |
| // Emit phis for the new starting index of the scalar loop. |
| createInductionResumeValues(ExpandedSCEVs); |
| |
| return {LoopVectorPreHeader, nullptr}; |
| } |
| |
| // Fix up external users of the induction variable. At this point, we are |
| // in LCSSA form, with all external PHIs that use the IV having one input value, |
| // coming from the remainder loop. We need those PHIs to also have a correct |
| // value for the IV when arriving directly from the middle block. |
| void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, |
| const InductionDescriptor &II, |
| Value *VectorTripCount, Value *EndValue, |
| BasicBlock *MiddleBlock, |
| BasicBlock *VectorHeader, VPlan &Plan, |
| VPTransformState &State) { |
| // There are two kinds of external IV usages - those that use the value |
| // computed in the last iteration (the PHI) and those that use the penultimate |
| // value (the value that feeds into the phi from the loop latch). |
| // We allow both, but they, obviously, have different values. |
| |
| assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); |
| |
| DenseMap<Value *, Value *> MissingVals; |
| |
| // An external user of the last iteration's value should see the value that |
| // the remainder loop uses to initialize its own IV. |
| Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); |
| for (User *U : PostInc->users()) { |
| Instruction *UI = cast<Instruction>(U); |
| if (!OrigLoop->contains(UI)) { |
| assert(isa<PHINode>(UI) && "Expected LCSSA form"); |
| MissingVals[UI] = EndValue; |
| } |
| } |
| |
| // An external user of the penultimate value need to see EndValue - Step. |
| // The simplest way to get this is to recompute it from the constituent SCEVs, |
| // that is Start + (Step * (CRD - 1)). |
| for (User *U : OrigPhi->users()) { |
| auto *UI = cast<Instruction>(U); |
| if (!OrigLoop->contains(UI)) { |
| assert(isa<PHINode>(UI) && "Expected LCSSA form"); |
| IRBuilder<> B(MiddleBlock->getTerminator()); |
| |
| // Fast-math-flags propagate from the original induction instruction. |
| if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) |
| B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); |
| |
| Value *CountMinusOne = B.CreateSub( |
| VectorTripCount, ConstantInt::get(VectorTripCount->getType(), 1)); |
| CountMinusOne->setName("cmo"); |
| |
| VPValue *StepVPV = Plan.getSCEVExpansion(II.getStep()); |
| assert(StepVPV && "step must have been expanded during VPlan execution"); |
| Value *Step = StepVPV->isLiveIn() ? StepVPV->getLiveInIRValue() |
| : State.get(StepVPV, {0, 0}); |
| Value *Escape = |
| emitTransformedIndex(B, CountMinusOne, II.getStartValue(), Step, |
| II.getKind(), II.getInductionBinOp()); |
| Escape->setName("ind.escape"); |
| MissingVals[UI] = Escape; |
| } |
| } |
| |
| for (auto &I : MissingVals) { |
| PHINode *PHI = cast<PHINode>(I.first); |
| // One corner case we have to handle is two IVs "chasing" each-other, |
| // that is %IV2 = phi [...], [ %IV1, %latch ] |
| // In this case, if IV1 has an external use, we need to avoid adding both |
| // "last value of IV1" and "penultimate value of IV2". So, verify that we |
| // don't already have an incoming value for the middle block. |
| if (PHI->getBasicBlockIndex(MiddleBlock) == -1) |
| PHI->addIncoming(I.second, MiddleBlock); |
| } |
| } |
| |
| namespace { |
| |
| struct CSEDenseMapInfo { |
| static bool canHandle(const Instruction *I) { |
| return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || |
| isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); |
| } |
| |
| static inline Instruction *getEmptyKey() { |
| return DenseMapInfo<Instruction *>::getEmptyKey(); |
| } |
| |
| static inline Instruction *getTombstoneKey() { |
| return DenseMapInfo<Instruction *>::getTombstoneKey(); |
| } |
| |
| static unsigned getHashValue(const Instruction *I) { |
| assert(canHandle(I) && "Unknown instruction!"); |
| return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), |
| I->value_op_end())); |
| } |
| |
| static bool isEqual(const Instruction *LHS, const Instruction *RHS) { |
| if (LHS == getEmptyKey() || RHS == getEmptyKey() || |
| LHS == getTombstoneKey() || RHS == getTombstoneKey()) |
| return LHS == RHS; |
| return LHS->isIdenticalTo(RHS); |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| ///Perform cse of induction variable instructions. |
| static void cse(BasicBlock *BB) { |
| // Perform simple cse. |
| SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; |
| for (Instruction &In : llvm::make_early_inc_range(*BB)) { |
| if (!CSEDenseMapInfo::canHandle(&In)) |
| continue; |
| |
| // Check if we can replace this instruction with any of the |
| // visited instructions. |
| if (Instruction *V = CSEMap.lookup(&In)) { |
| In.replaceAllUsesWith(V); |
| In.eraseFromParent(); |
| continue; |
| } |
| |
| CSEMap[&In] = &In; |
| } |
| } |
| |
| InstructionCost |
| LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, |
| ElementCount VF) const { |
| // We only need to calculate a cost if the VF is scalar; for actual vectors |
| // we should already have a pre-calculated cost at each VF. |
| if (!VF.isScalar()) |
| return CallWideningDecisions.at(std::make_pair(CI, VF)).Cost; |
| |
| TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; |
| Type *RetTy = CI->getType(); |
| if (RecurrenceDescriptor::isFMulAddIntrinsic(CI)) |
| if (auto RedCost = getReductionPatternCost(CI, VF, RetTy, CostKind)) |
| return *RedCost; |
| |
| SmallVector<Type *, 4> Tys; |
| for (auto &ArgOp : CI->args()) |
| Tys.push_back(ArgOp->getType()); |
| |
| InstructionCost ScalarCallCost = |
| TTI.getCallInstrCost(CI->getCalledFunction(), RetTy, Tys, CostKind); |
| |
| // If this is an intrinsic we may have a lower cost for it. |
| if (getVectorIntrinsicIDForCall(CI, TLI)) { |
| InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); |
| return std::min(ScalarCallCost, IntrinsicCost); |
| } |
| return ScalarCallCost; |
| } |
| |
| static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) { |
| if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) |
| return Elt; |
| return VectorType::get(Elt, VF); |
| } |
| |
| InstructionCost |
| LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, |
| ElementCount VF) const { |
| Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); |
| assert(ID && "Expected intrinsic call!"); |
| Type *RetTy = MaybeVectorizeType(CI->getType(), VF); |
| FastMathFlags FMF; |
| if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) |
| FMF = FPMO->getFastMathFlags(); |
| |
| SmallVector<const Value *> Arguments(CI->args()); |
| FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); |
| SmallVector<Type *> ParamTys; |
| std::transform(FTy->param_begin(), FTy->param_end(), |
| std::back_inserter(ParamTys), |
| [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); }); |
| |
| IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, |
| dyn_cast<IntrinsicInst>(CI)); |
| return TTI.getIntrinsicInstrCost(CostAttrs, |
| TargetTransformInfo::TCK_RecipThroughput); |
| } |
| |
| void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State, |
| VPlan &Plan) { |
| // Fix widened non-induction PHIs by setting up the PHI operands. |
| if (EnableVPlanNativePath) |
| fixNonInductionPHIs(Plan, State); |
| |
| // Forget the original basic block. |
| PSE.getSE()->forgetLoop(OrigLoop); |
| PSE.getSE()->forgetBlockAndLoopDispositions(); |
| |
| // After vectorization, the exit blocks of the original loop will have |
| // additional predecessors. Invalidate SCEVs for the exit phis in case SE |
| // looked through single-entry phis. |
| SmallVector<BasicBlock *> ExitBlocks; |
| OrigLoop->getExitBlocks(ExitBlocks); |
| for (BasicBlock *Exit : ExitBlocks) |
| for (PHINode &PN : Exit->phis()) |
| PSE.getSE()->forgetLcssaPhiWithNewPredecessor(OrigLoop, &PN); |
| |
| VPRegionBlock *VectorRegion = State.Plan->getVectorLoopRegion(); |
| VPBasicBlock *LatchVPBB = VectorRegion->getExitingBasicBlock(); |
| Loop *VectorLoop = LI->getLoopFor(State.CFG.VPBB2IRBB[LatchVPBB]); |
| if (Cost->requiresScalarEpilogue(VF.isVector())) { |
| // No edge from the middle block to the unique exit block has been inserted |
| // and there is nothing to fix from vector loop; phis should have incoming |
| // from scalar loop only. |
| } else { |
| // TODO: Check VPLiveOuts to see if IV users need fixing instead of checking |
| // the cost model. |
| |
| // If we inserted an edge from the middle block to the unique exit block, |
| // update uses outside the loop (phis) to account for the newly inserted |
| // edge. |
| |
| // Fix-up external users of the induction variables. |
| for (const auto &Entry : Legal->getInductionVars()) |
| fixupIVUsers(Entry.first, Entry.second, |
| getOrCreateVectorTripCount(VectorLoop->getLoopPreheader()), |
| IVEndValues[Entry.first], LoopMiddleBlock, |
| VectorLoop->getHeader(), Plan, State); |
| } |
| |
| // Fix live-out phis not already fixed earlier. |
| for (const auto &KV : Plan.getLiveOuts()) |
| KV.second->fixPhi(Plan, State); |
| |
| for (Instruction *PI : PredicatedInstructions) |
| sinkScalarOperands(&*PI); |
| |
| // Remove redundant induction instructions. |
| cse(VectorLoop->getHeader()); |
| |
| // Set/update profile weights for the vector and remainder loops as original |
| // loop iterations are now distributed among them. Note that original loop |
| // represented by LoopScalarBody becomes remainder loop after vectorization. |
| // |
| // For cases like foldTailByMasking() and requiresScalarEpiloque() we may |
| // end up getting slightly roughened result but that should be OK since |
| // profile is not inherently precise anyway. Note also possible bypass of |
| // vector code caused by legality checks is ignored, assigning all the weight |
| // to the vector loop, optimistically. |
| // |
| // For scalable vectorization we can't know at compile time how many iterations |
| // of the loop are handled in one vector iteration, so instead assume a pessimistic |
| // vscale of '1'. |
| setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody), VectorLoop, |
| LI->getLoopFor(LoopScalarBody), |
| VF.getKnownMinValue() * UF); |
| } |
| |
| void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { |
| // The basic block and loop containing the predicated instruction. |
| auto *PredBB = PredInst->getParent(); |
| auto *VectorLoop = LI->getLoopFor(PredBB); |
| |
| // Initialize a worklist with the operands of the predicated instruction. |
| SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); |
| |
| // Holds instructions that we need to analyze again. An instruction may be |
| // reanalyzed if we don't yet know if we can sink it or not. |
| SmallVector<Instruction *, 8> InstsToReanalyze; |
| |
| // Returns true if a given use occurs in the predicated block. Phi nodes use |
| // their operands in their corresponding predecessor blocks. |
| auto isBlockOfUsePredicated = [&](Use &U) -> bool { |
| auto *I = cast<Instruction>(U.getUser()); |
| BasicBlock *BB = I->getParent(); |
| if (auto *Phi = dyn_cast<PHINode>(I)) |
| BB = Phi->getIncomingBlock( |
| PHINode::getIncomingValueNumForOperand(U.getOperandNo())); |
| return BB == PredBB; |
| }; |
| |
| // Iteratively sink the scalarized operands of the predicated instruction |
| // into the block we created for it. When an instruction is sunk, it's |
| // operands are then added to the worklist. The algorithm ends after one pass |
| // through the worklist doesn't sink a single instruction. |
| bool Changed; |
| do { |
| // Add the instructions that need to be reanalyzed to the worklist, and |
| // reset the changed indicator. |
| Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); |
| InstsToReanalyze.clear(); |
| Changed = false; |
| |
| while (!Worklist.empty()) { |
| auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); |
| |
| // We can't sink an instruction if it is a phi node, is not in the loop, |
| // may have side effects or may read from memory. |
| // TODO Could dor more granular checking to allow sinking a load past non-store instructions. |
| if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) || |
| I->mayHaveSideEffects() || I->mayReadFromMemory()) |
| continue; |
| |
| // If the instruction is already in PredBB, check if we can sink its |
| // operands. In that case, VPlan's sinkScalarOperands() succeeded in |
| // sinking the scalar instruction I, hence it appears in PredBB; but it |
| // may have failed to sink I's operands (recursively), which we try |
| // (again) here. |
| if (I->getParent() == PredBB) { |
| Worklist.insert(I->op_begin(), I->op_end()); |
| continue; |
| } |
| |
| // It's legal to sink the instruction if all its uses occur in the |
| // predicated block. Otherwise, there's nothing to do yet, and we may |
| // need to reanalyze the instruction. |
| if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { |
| InstsToReanalyze.push_back(I); |
| continue; |
| } |
| |
| // Move the instruction to the beginning of the predicated block, and add |
| // it's operands to the worklist. |
| I->moveBefore(&*PredBB->getFirstInsertionPt()); |
| Worklist.insert(I->op_begin(), I->op_end()); |
| |
| // The sinking may have enabled other instructions to be sunk, so we will |
| // need to iterate. |
| Changed = true; |
| } |
| } while (Changed); |
| } |
| |
| void InnerLoopVectorizer::fixNonInductionPHIs(VPlan &Plan, |
| VPTransformState &State) { |
| auto Iter = vp_depth_first_deep(Plan.getEntry()); |
| for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { |
| for (VPRecipeBase &P : VPBB->phis()) { |
| VPWidenPHIRecipe *VPPhi = dyn_cast<VPWidenPHIRecipe>(&P); |
| if (!VPPhi) |
| continue; |
| PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0)); |
| // Make sure the builder has a valid insert point. |
| Builder.SetInsertPoint(NewPhi); |
| for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) { |
| VPValue *Inc = VPPhi->getIncomingValue(i); |
| VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i); |
| NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]); |
| } |
| } |
| } |
| } |
| |
| void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { |
| // We should not collect Scalars more than once per VF. Right now, this |
| // function is called from collectUniformsAndScalars(), which already does |
| // this check. Collecting Scalars for VF=1 does not make any sense. |
| assert(VF.isVector() && !Scalars.contains(VF) && |
| "This function should not be visited twice for the same VF"); |
| |
| // This avoids any chances of creating a REPLICATE recipe during planning |
| // since that would result in generation of scalarized code during execution, |
| // which is not supported for scalable vectors. |
| if (VF.isScalable()) { |
| Scalars[VF].insert(Uniforms[VF].begin(), Uniforms[VF].end()); |
| return; |
| } |
| |
| SmallSetVector<Instruction *, 8> Worklist; |
| |
| // These sets are used to seed the analysis with pointers used by memory |
| // accesses that will remain scalar. |
| SmallSetVector<Instruction *, 8> ScalarPtrs; |
| SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; |
| auto *Latch = TheLoop->getLoopLatch(); |
| |
| // A helper that returns true if the use of Ptr by MemAccess will be scalar. |
| // The pointer operands of loads and stores will be scalar as long as the |
| // memory access is not a gather or scatter operation. The value operand of a |
| // store will remain scalar if the store is scalarized. |
| auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { |
| InstWidening WideningDecision = getWideningDecision(MemAccess, VF); |
| assert(WideningDecision != CM_Unknown && |
| "Widening decision should be ready at this moment"); |
| if (auto *Store = dyn_cast<StoreInst>(MemAccess)) |
| if (Ptr == Store->getValueOperand()) |
| return WideningDecision == CM_Scalarize; |
| assert(Ptr == getLoadStorePointerOperand(MemAccess) && |
| "Ptr is neither a value or pointer operand"); |
| return WideningDecision != CM_GatherScatter; |
| }; |
| |
| // A helper that returns true if the given value is a getelementptr |
| // instruction contained in the loop. |
| auto isLoopVaryingGEP = [&](Value *V) { |
| return isa<GetElementPtrInst>(V) && !TheLoop->isLoopInvariant(V); |
| }; |
| |
| // A helper that evaluates a memory access's use of a pointer. If the use will |
| // be a scalar use and the pointer is only used by memory accesses, we place |
| // the pointer in ScalarPtrs. Otherwise, the pointer is placed in |
| // PossibleNonScalarPtrs. |
| auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { |
| // We only care about bitcast and getelementptr instructions contained in |
| // the loop. |
| if (!isLoopVaryingGEP(Ptr)) |
| return; |
| |
| // If the pointer has already been identified as scalar (e.g., if it was |
| // also identified as uniform), there's nothing to do. |
| auto *I = cast<Instruction>(Ptr); |
| if (Worklist.count(I)) |
| return; |
| |
| // If the use of the pointer will be a scalar use, and all users of the |
| // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, |
| // place the pointer in PossibleNonScalarPtrs. |
| if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { |
| return isa<LoadInst>(U) || isa<StoreInst>(U); |
| })) |
| ScalarPtrs.insert(I); |
| else |
| PossibleNonScalarPtrs.insert(I); |
| }; |
| |
| // We seed the scalars analysis with three classes of instructions: (1) |
| // instructions marked uniform-after-vectorization and (2) bitcast, |
| // getelementptr and (pointer) phi instructions used by memory accesses |
| // requiring a scalar use. |
| // |
| // (1) Add to the worklist all instructions that have been identified as |
| // uniform-after-vectorization. |
| Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); |
| |
| // (2) Add to the worklist all bitcast and getelementptr instructions used by |
| // memory accesses requiring a scalar use. The pointer operands of loads and |
| // stores will be scalar as long as the memory accesses is not a gather or |
| // scatter operation. The value operand of a store will remain scalar if the |
| // store is scalarized. |
| for (auto *BB : TheLoop->blocks()) |
| for (auto &I : *BB) { |
| if (auto *Load = dyn_cast<LoadInst>(&I)) { |
| evaluatePtrUse(Load, Load->getPointerOperand()); |
| } else if (auto *Store = dyn_cast<StoreInst>(&I)) { |
| evaluatePtrUse(Store, Store->getPointerOperand()); |
| evaluatePtrUse(Store, Store->getValueOperand()); |
| } |
| } |
| for (auto *I : ScalarPtrs) |
| if (!PossibleNonScalarPtrs.count(I)) { |
| LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); |
| Worklist.insert(I); |
| } |
| |
| // Insert the forced scalars. |
| // FIXME: Currently VPWidenPHIRecipe() often creates a dead vector |
| // induction variable when the PHI user is scalarized. |
| auto ForcedScalar = ForcedScalars.find(VF); |
| if (ForcedScalar != ForcedScalars.end()) |
| for (auto *I : ForcedScalar->second) { |
| LLVM_DEBUG(dbgs() << "LV: Found (forced) scalar instruction: " << *I << "\n"); |
| Worklist.insert(I); |
| } |
| |
| // Expand the worklist by looking through any bitcasts and getelementptr |
| // instructions we've already identified as scalar. This is similar to the |
| // expansion step in collectLoopUniforms(); however, here we're only |
| // expanding to include additional bitcasts and getelementptr instructions. |
| unsigned Idx = 0; |
| while (Idx != Worklist.size()) { |
| Instruction *Dst = Worklist[Idx++]; |
| if (!isLoopVaryingGEP(Dst->getOperand(0))) |
| continue; |
| auto *Src = cast<Instruction>(Dst->getOperand(0)); |
| if (llvm::all_of(Src->users(), [&](User *U) -> bool { |
| auto *J = cast<Instruction>(U); |
| return !TheLoop->contains(J) || Worklist.count(J) || |
| ((isa<LoadInst>(J) || isa<StoreInst>(J)) && |
| isScalarUse(J, Src)); |
| })) { |
| Worklist.insert(Src); |
| LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); |
| } |
| } |
| |
| // An induction variable will remain scalar if all users of the induction |
| // variable and induction variable update remain scalar. |
| for (const auto &Induction : Legal->getInductionVars()) { |
| auto *Ind = Induction.first; |
| auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); |
| |
| // If tail-folding is applied, the primary induction variable will be used |
| // to feed a vector compare. |
| if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) |
| continue; |
| |
| // Returns true if \p Indvar is a pointer induction that is used directly by |
| // load/store instruction \p I. |
| auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar, |
| Instruction *I) { |
| return Induction.second.getKind() == |
| InductionDescriptor::IK_PtrInduction && |
| (isa<LoadInst>(I) || isa<StoreInst>(I)) && |
| Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar); |
| }; |
| |
| // Determine if all users of the induction variable are scalar after |
| // vectorization. |
| auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { |
| auto *I = cast<Instruction>(U); |
| return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || |
| IsDirectLoadStoreFromPtrIndvar(Ind, I); |
| }); |
| if (!ScalarInd) |
| continue; |
| |
| // If the induction variable update is a fixed-order recurrence, neither the |
| // induction variable or its update should be marked scalar after |
| // vectorization. |
| auto *IndUpdatePhi = dyn_cast<PHINode>(IndUpdate); |
| if (IndUpdatePhi && Legal->isFixedOrderRecurrence(IndUpdatePhi)) |
| continue; |
| |
| // Determine if all users of the induction variable update instruction are |
| // scalar after vectorization. |
| auto ScalarIndUpdate = |
| llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { |
| auto *I = cast<Instruction>(U); |
| return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || |
| IsDirectLoadStoreFromPtrIndvar(IndUpdate, I); |
| }); |
| if (!ScalarIndUpdate) |
| continue; |
| |
| // The induction variable and its update instruction will remain scalar. |
| Worklist.insert(Ind); |
| Worklist.insert(IndUpdate); |
| LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); |
| LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate |
| << "\n"); |
| } |
| |
| Scalars[VF].insert(Worklist.begin(), Worklist.end()); |
| } |
| |
| bool LoopVectorizationCostModel::isScalarWithPredication( |
| Instruction *I, ElementCount VF) const { |
| if (!isPredicatedInst(I)) |
| return false; |
| |
| // Do we have a non-scalar lowering for this predicated |
| // instruction? No - it is scalar with predication. |
| switch(I->getOpcode()) { |
| default: |
| return true; |
| case Instruction::Call: |
| if (VF.isScalar()) |
| return true; |
| return CallWideningDecisions.at(std::make_pair(cast<CallInst>(I), VF)) |
| .Kind == CM_Scalarize; |
| case Instruction::Load: |
| case Instruction::Store: { |
| auto *Ptr = getLoadStorePointerOperand(I); |
| auto *Ty = getLoadStoreType(I); |
| Type *VTy = Ty; |
| if (VF.isVector()) |
| VTy = VectorType::get(Ty, VF); |
| const Align Alignment = getLoadStoreAlignment(I); |
| return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || |
| TTI.isLegalMaskedGather(VTy, Alignment)) |
| : !(isLegalMaskedStore(Ty, Ptr, Alignment) || |
| TTI.isLegalMaskedScatter(VTy, Alignment)); |
| } |
| case Instruction::UDiv: |
| case Instruction::SDiv: |
| case Instruction::SRem: |
| case Instruction::URem: { |
| // We have the option to use the safe-divisor idiom to avoid predication. |
| // The cost based decision here will always select safe-divisor for |
| // scalable vectors as scalarization isn't legal. |
| const auto [ScalarCost, SafeDivisorCost] = getDivRemSpeculationCost(I, VF); |
| return isDivRemScalarWithPredication(ScalarCost, SafeDivisorCost); |
| } |
| } |
| } |
| |
| // TODO: Fold into LoopVectorizationLegality::isMaskRequired. |
| bool LoopVectorizationCostModel::isPredicatedInst(Instruction *I) const { |
| // If predication is not needed, avoid it. |
| // TODO: We can use the loop-preheader as context point here and get |
| // context sensitive reasoning for isSafeToSpeculativelyExecute. |
| if (!blockNeedsPredicationForAnyReason(I->getParent()) || |
| isSafeToSpeculativelyExecute(I) || |
| (isa<LoadInst, StoreInst, CallInst>(I) && !Legal->isMaskRequired(I)) || |
| isa<BranchInst, SwitchInst, PHINode, AllocaInst>(I)) |
| return false; |
| |
| // If the instruction was executed conditionally in the original scalar loop, |
| // predication is needed with a mask whose lanes are all possibly inactive. |
| if (Legal->blockNeedsPredication(I->getParent())) |
| return true; |
| |
| // All that remain are instructions with side-effects originally executed in |
| // the loop unconditionally, but now execute under a tail-fold mask (only) |
| // having at least one active lane (the first). If the side-effects of the |
| // instruction are invariant, executing it w/o (the tail-folding) mask is safe |
| // - it will cause the same side-effects as when masked. |
| switch(I->getOpcode()) { |
| default: |
| llvm_unreachable( |
| "instruction should have been considered by earlier checks"); |
| case Instruction::Call: |
| // Side-effects of a Call are assumed to be non-invariant, needing a |
| // (fold-tail) mask. |
| assert(Legal->isMaskRequired(I) && |
| "should have returned earlier for calls not needing a mask"); |
| return true; |
| case Instruction::Load: |
| // If the address is loop invariant no predication is needed. |
| return !Legal->isInvariant(getLoadStorePointerOperand(I)); |
| case Instruction::Store: { |
| // For stores, we need to prove both speculation safety (which follows from |
| // the same argument as loads), but also must prove the value being stored |
| // is correct. The easiest form of the later is to require that all values |
| // stored are the same. |
| return !(Legal->isInvariant(getLoadStorePointerOperand(I)) && |
| TheLoop->isLoopInvariant(cast<StoreInst>(I)->getValueOperand())); |
| } |
| case Instruction::UDiv: |
| case Instruction::SDiv: |
| case Instruction::SRem: |
| case Instruction::URem: |
| // If the divisor is loop-invariant no predication is needed. |
| return !TheLoop->isLoopInvariant(I->getOperand(1)); |
| } |
| } |
| |
| std::pair<InstructionCost, InstructionCost> |
| LoopVectorizationCostModel::getDivRemSpeculationCost(Instruction *I, |
| ElementCount VF) const { |
| assert(I->getOpcode() == Instruction::UDiv || |
| I->getOpcode() == Instruction::SDiv || |
| I->getOpcode() == Instruction::SRem || |
| I->getOpcode() == Instruction::URem); |
| assert(!isSafeToSpeculativelyExecute(I)); |
| |
| const TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; |
| |
| // Scalarization isn't legal for scalable vector types |
| InstructionCost ScalarizationCost = InstructionCost::getInvalid(); |
| if (!VF.isScalable()) { |
| // Get the scalarization cost and scale this amount by the probability of |
| // executing the predicated block. If the instruction is not predicated, |
| // we fall through to the next case. |
| ScalarizationCost = 0; |
| |
| // These instructions have a non-void type, so account for the phi nodes |
| // that we will create. This cost is likely to be zero. The phi node |
| // cost, if any, should be scaled by the block probability because it |
| // models a copy at the end of each predicated block. |
| ScalarizationCost += VF.getKnownMinValue() * |
| TTI.getCFInstrCost(Instruction::PHI, CostKind); |
| |
| // The cost of the non-predicated instruction. |
| ScalarizationCost += VF.getKnownMinValue() * |
| TTI.getArithmeticInstrCost(I->getOpcode(), I->getType(), CostKind); |
| |
| // The cost of insertelement and extractelement instructions needed for |
| // scalarization. |
| ScalarizationCost += getScalarizationOverhead(I, VF, CostKind); |
| |
| // Scale the cost by the probability of executing the predicated blocks. |
| // This assumes the predicated block for each vector lane is equally |
| // likely. |
| ScalarizationCost = ScalarizationCost / getReciprocalPredBlockProb(); |
| } |
| InstructionCost SafeDivisorCost = 0; |
| |
| auto *VecTy = ToVectorTy(I->getType(), VF); |
| |
| // The cost of the select guard to ensure all lanes are well defined |
| // after we speculate above any internal control flow. |
| SafeDivisorCost += TTI.getCmpSelInstrCost( |
| Instruction::Select, VecTy, |
| ToVectorTy(Type::getInt1Ty(I->getContext()), VF), |
| CmpInst::BAD_ICMP_PREDICATE, CostKind); |
| |
| // Certain instructions can be cheaper to vectorize if they have a constant |
| // second vector operand. One example of this are shifts on x86. |
| Value *Op2 = I->getOperand(1); |
| auto Op2Info = TTI.getOperandInfo(Op2); |
| if (Op2Info.Kind == TargetTransformInfo::OK_AnyValue && |
| Legal->isInvariant(Op2)) |
| Op2Info.Kind = TargetTransformInfo::OK_UniformValue; |
| |
| SmallVector<const Value *, 4> Operands(I->operand_values()); |
| SafeDivisorCost += TTI.getArithmeticInstrCost( |
| I->getOpcode(), VecTy, CostKind, |
| {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None}, |
| Op2Info, Operands, I); |
| return {ScalarizationCost, SafeDivisorCost}; |
| } |
| |
| bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( |
| Instruction *I, ElementCount VF) const { |
| assert(isAccessInterleaved(I) && "Expecting interleaved access."); |
| assert(getWideningDecision(I, VF) == CM_Unknown && |
| "Decision should not be set yet."); |
| auto *Group = getInterleavedAccessGroup(I); |
| assert(Group && "Must have a group."); |
| |
| // If the instruction's allocated size doesn't equal it's type size, it |
| // requires padding and will be scalarized. |
| auto &DL = I->getDataLayout(); |
| auto *ScalarTy = getLoadStoreType(I); |
| if (hasIrregularType(ScalarTy, DL)) |
| return false; |
| |
| // If the group involves a non-integral pointer, we may not be able to |
| // losslessly cast all values to a common type. |
| unsigned InterleaveFactor = Group->getFactor(); |
| bool ScalarNI = DL.isNonIntegralPointerType(ScalarTy); |
| for (unsigned i = 0; i < InterleaveFactor; i++) { |
| Instruction *Member = Group->getMember(i); |
| if (!Member) |
| continue; |
| auto *MemberTy = getLoadStoreType(Member); |
| bool MemberNI = DL.isNonIntegralPointerType(MemberTy); |
| // Don't coerce non-integral pointers to integers or vice versa. |
| if (MemberNI != ScalarNI) { |
| // TODO: Consider adding special nullptr value case here |
| return false; |
| } else if (MemberNI && ScalarNI && |
| ScalarTy->getPointerAddressSpace() != |
| MemberTy->getPointerAddressSpace()) { |
| return false; |
| } |
| } |
| |
| // Check if masking is required. |
| // A Group may need masking for one of two reasons: it resides in a block that |
| // needs predication, or it was decided to use masking to deal with gaps |
| // (either a gap at the end of a load-access that may result in a speculative |
| // load, or any gaps in a store-access). |
| bool PredicatedAccessRequiresMasking = |
| blockNeedsPredicationForAnyReason(I->getParent()) && |
| Legal->isMaskRequired(I); |
| bool LoadAccessWithGapsRequiresEpilogMasking = |
| isa<LoadInst>(I) && Group->requiresScalarEpilogue() && |
| !isScalarEpilogueAllowed(); |
| bool StoreAccessWithGapsRequiresMasking = |
| isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()); |
| if (!PredicatedAccessRequiresMasking && |
| !LoadAccessWithGapsRequiresEpilogMasking && |
| !StoreAccessWithGapsRequiresMasking) |
| return true; |
| |
| // If masked interleaving is required, we expect that the user/target had |
| // enabled it, because otherwise it either wouldn't have been created or |
| // it should have been invalidated by the CostModel. |
| assert(useMaskedInterleavedAccesses(TTI) && |
| "Masked interleave-groups for predicated accesses are not enabled."); |
| |
| if (Group->isReverse()) |
| return false; |
| |
| auto *Ty = getLoadStoreType(I); |
| const Align Alignment = getLoadStoreAlignment(I); |
| return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) |
| : TTI.isLegalMaskedStore(Ty, Alignment); |
| } |
| |
| bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( |
| Instruction *I, ElementCount VF) { |
| // Get and ensure we have a valid memory instruction. |
| assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction"); |
| |
| auto *Ptr = getLoadStorePointerOperand(I); |
| auto *ScalarTy = getLoadStoreType(I); |
| |
| // In order to be widened, the pointer should be consecutive, first of all. |
| if (!Legal->isConsecutivePtr(ScalarTy, Ptr)) |
| return false; |
| |
| // If the instruction is a store located in a predicated block, it will be |
| // scalarized. |
| if (isScalarWithPredication(I, VF)) |
| return false; |
| |
| // If the instruction's allocated size doesn't equal it's type size, it |
| // requires padding and will be scalarized. |
| auto &DL = I->getDataLayout(); |
| if (hasIrregularType(ScalarTy, DL)) |
| return false; |
| |
| return true; |
| } |
| |
| void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { |
| // We should not collect Uniforms more than once per VF. Right now, |
| // this function is called from collectUniformsAndScalars(), which |
| // already does this check. Collecting Uniforms for VF=1 does not make any |
| // sense. |
| |
| assert(VF.isVector() && !Uniforms.contains(VF) && |
| "This function should not be visited twice for the same VF"); |
| |
| // Visit the list of Uniforms. If we'll not find any uniform value, we'll |
| // not analyze again. Uniforms.count(VF) will return 1. |
| Uniforms[VF].clear(); |
| |
| // We now know that the loop is vectorizable! |
| // Collect instructions inside the loop that will remain uniform after |
| // vectorization. |
| |
| // Global values, params and instructions outside of current loop are out of |
| // scope. |
| auto isOutOfScope = [&](Value *V) -> bool { |
| Instruction *I = dyn_cast<Instruction>(V); |
| return (!I || !TheLoop->contains(I)); |
| }; |
| |
| // Worklist containing uniform instructions demanding lane 0. |
| SetVector<Instruction *> Worklist; |
| |
| // Add uniform instructions demanding lane 0 to the worklist. Instructions |
| // that require predication must not be considered uniform after |
| // vectorization, because that would create an erroneous replicating region |
| // where only a single instance out of VF should be formed. |
| auto addToWorklistIfAllowed = [&](Instruction *I) -> void { |
| if (isOutOfScope(I)) { |
| LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " |
| << *I << "\n"); |
| return; |
| } |
| if (isPredicatedInst(I)) { |
| LLVM_DEBUG( |
| dbgs() << "LV: Found not uniform due to requiring predication: " << *I |
| << "\n"); |
| return; |
| } |
| LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); |
| Worklist.insert(I); |
| }; |
| |
| // Start with the conditional branches exiting the loop. If the branch |
| // condition is an instruction contained in the loop that is only used by the |
| // branch, it is uniform. |
| SmallVector<BasicBlock *> Exiting; |
| TheLoop->getExitingBlocks(Exiting); |
| for (BasicBlock *E : Exiting) { |
| auto *Cmp = dyn_cast<Instruction>(E->getTerminator()->getOperand(0)); |
| if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) |
| addToWorklistIfAllowed(Cmp); |
| } |
| |
| auto PrevVF = VF.divideCoefficientBy(2); |
| // Return true if all lanes perform the same memory operation, and we can |
| // thus chose to execute only one. |
| auto isUniformMemOpUse = [&](Instruction *I) { |
| // If the value was already known to not be uniform for the previous |
| // (smaller VF), it cannot be uniform for the larger VF. |
| if (PrevVF.isVector()) { |
| auto Iter = Uniforms.find(PrevVF); |
| if (Iter != Uniforms.end() && !Iter->second.contains(I)) |
| return false; |
| } |
| if (!Legal->isUniformMemOp(*I, VF)) |
| return false; |
| if (isa<LoadInst>(I)) |
| // Loading the same address always produces the same result - at least |
| // assuming aliasing and ordering which have already been checked. |
| return true; |
| // Storing the same value on every iteration. |
| return TheLoop->isLoopInvariant(cast<StoreInst>(I)->getValueOperand()); |
| }; |
| |
| auto isUniformDecision = [&](Instruction *I, ElementCount VF) { |
| InstWidening WideningDecision = getWideningDecision(I, VF); |
| assert(WideningDecision != CM_Unknown && |
| "Widening decision should be ready at this moment"); |
| |
| if (isUniformMemOpUse(I)) |
| return true; |
| |
| return (WideningDecision == CM_Widen || |
| WideningDecision == CM_Widen_Reverse || |
| WideningDecision == CM_Interleave); |
| }; |
| |
| // Returns true if Ptr is the pointer operand of a memory access instruction |
| // I, I is known to not require scalarization, and the pointer is not also |
| // stored. |
| auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { |
| if (isa<StoreInst>(I) && I->getOperand(0) == Ptr) |
| return false; |
| return getLoadStorePointerOperand(I) == Ptr && |
| (isUniformDecision(I, VF) || Legal->isInvariant(Ptr)); |
| }; |
| |
| // Holds a list of values which are known to have at least one uniform use. |
| // Note that there may be other uses which aren't uniform. A "uniform use" |
| // here is something which only demands lane 0 of the unrolled iterations; |
| // it does not imply that all lanes produce the same value (e.g. this is not |
| // the usual meaning of uniform) |
| SetVector<Value *> HasUniformUse; |
| |
| // Scan the loop for instructions which are either a) known to have only |
| // lane 0 demanded or b) are uses which demand only lane 0 of their operand. |
| for (auto *BB : TheLoop->blocks()) |
| for (auto &I : *BB) { |
| if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) { |
| switch (II->getIntrinsicID()) { |
| case Intrinsic::sideeffect: |
| case Intrinsic::experimental_noalias_scope_decl: |
| case Intrinsic::assume: |
| case Intrinsic::lifetime_start: |
| case Intrinsic::lifetime_end: |
| if (TheLoop->hasLoopInvariantOperands(&I)) |
| addToWorklistIfAllowed(&I); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| // ExtractValue instructions must be uniform, because the operands are |
| // known to be loop-invariant. |
| if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) { |
| assert(isOutOfScope(EVI->getAggregateOperand()) && |
| "Expected aggregate value to be loop invariant"); |
| addToWorklistIfAllowed(EVI); |
| continue; |
| } |
| |
| // If there's no pointer operand, there's nothing to do. |
| auto *Ptr = getLoadStorePointerOperand(&I); |
| if (!Ptr) |
| continue; |
| |
| if (isUniformMemOpUse(&I)) |
| addToWorklistIfAllowed(&I); |
| |
| if (isVectorizedMemAccessUse(&I, Ptr)) |
| HasUniformUse.insert(Ptr); |
| } |
| |
| // Add to the worklist any operands which have *only* uniform (e.g. lane 0 |
| // demanding) users. Since loops are assumed to be in LCSSA form, this |
| // disallows uses outside the loop as well. |
| for (auto *V : HasUniformUse) { |
| if (isOutOfScope(V)) |
| continue; |
| auto *I = cast<Instruction>(V); |
| auto UsersAreMemAccesses = |
| llvm::all_of(I->users(), [&](User *U) -> bool { |
| auto *UI = cast<Instruction>(U); |
| return TheLoop->contains(UI) && isVectorizedMemAccessUse(UI, V); |
| }); |
| if (UsersAreMemAccesses) |
| addToWorklistIfAllowed(I); |
| } |
| |
| // Expand Worklist in topological order: whenever a new instruction |
| // is added , its users should be already inside Worklist. It ensures |
| // a uniform instruction will only be used by uniform instructions. |
| unsigned idx = 0; |
| while (idx != Worklist.size()) { |
| Instruction *I = Worklist[idx++]; |
| |
| for (auto *OV : I->operand_values()) { |
| // isOutOfScope operands cannot be uniform instructions. |
| if (isOutOfScope(OV)) |
| continue; |
| // First order recurrence Phi's should typically be considered |
| // non-uniform. |
| auto *OP = dyn_cast<PHINode>(OV); |
| if (OP && Legal->isFixedOrderRecurrence(OP)) |
| continue; |
| // If all the users of the operand are uniform, then add the |
| // operand into the uniform worklist. |
| auto *OI = cast<Instruction>(OV); |
| if (llvm::all_of(OI->users(), [&](User *U) -> bool { |
| auto *J = cast<Instruction>(U); |
| return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); |
| })) |
| addToWorklistIfAllowed(OI); |
| } |
| } |
| |
| // For an instruction to be added into Worklist above, all its users inside |
| // the loop should also be in Worklist. However, this condition cannot be |
| // true for phi nodes that form a cyclic dependence. We must process phi |
| // nodes separately. An induction variable will remain uniform if all users |
| // of the induction variable and induction variable update remain uniform. |
| // The code below handles both pointer and non-pointer induction variables. |
| BasicBlock *Latch = TheLoop->getLoopLatch(); |
| for (const auto &Induction : Legal->getInductionVars()) { |
| auto *Ind = Induction.first; |
| auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); |
| |
| // Determine if all users of the induction variable are uniform after |
| // vectorization. |
| auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { |
| auto *I = cast<Instruction>(U); |
| return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || |
| isVectorizedMemAccessUse(I, Ind); |
| }); |
| if (!UniformInd) |
| continue; |
| |
| // Determine if all users of the induction variable update instruction are |
| // uniform after vectorization. |
| auto UniformIndUpdate = |
| llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { |
| auto *I = cast<Instruction>(U); |
| return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || |
| isVectorizedMemAccessUse(I, IndUpdate); |
| }); |
| if (!UniformIndUpdate) |
| continue; |
| |
| // The induction variable and its update instruction will remain uniform. |
| addToWorklistIfAllowed(Ind); |
| addToWorklistIfAllowed(IndUpdate); |
| } |
| |
| Uniforms[VF].insert(Worklist.begin(), Worklist.end()); |
| } |
| |
| bool LoopVectorizationCostModel::runtimeChecksRequired() { |
| LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); |
| |
| if (Legal->getRuntimePointerChecking()->Need) { |
| reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", |
| "runtime pointer checks needed. Enable vectorization of this " |
| "loop with '#pragma clang loop vectorize(enable)' when " |
| "compiling with -Os/-Oz", |
| "CantVersionLoopWithOptForSize", ORE, TheLoop); |
| return true; |
| } |
| |
| if (!PSE.getPredicate().isAlwaysTrue()) { |
| reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", |
| "runtime SCEV checks needed. Enable vectorization of this " |
| "loop with '#pragma clang loop vectorize(enable)' when " |
| "compiling with -Os/-Oz", |
| "CantVersionLoopWithOptForSize", ORE, TheLoop); |
| return true; |
| } |
| |
| // FIXME: Avoid specializing for stride==1 instead of bailing out. |
| if (!Legal->getLAI()->getSymbolicStrides().empty()) { |
| reportVectorizationFailure("Runtime stride check for small trip count", |
| "runtime stride == 1 checks needed. Enable vectorization of " |
| "this loop without such check by compiling with -Os/-Oz", |
| "CantVersionLoopWithOptForSize", ORE, TheLoop); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool LoopVectorizationCostModel::isScalableVectorizationAllowed() { |
| if (IsScalableVectorizationAllowed) |
| return *IsScalableVectorizationAllowed; |
| |
| IsScalableVectorizationAllowed = false; |
| if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) |
| return false; |
| |
| if (Hints->isScalableVectorizationDisabled()) { |
| reportVectorizationInfo("Scalable vectorization is explicitly disabled", |
| "ScalableVectorizationDisabled", ORE, TheLoop); |
| return false; |
| } |
| |
| LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n"); |
| |
| auto MaxScalableVF = ElementCount::getScalable( |
| std::numeric_limits<ElementCount::ScalarTy>::max()); |
| |
| // Test that the loop-vectorizer can legalize all operations for this MaxVF. |
| // FIXME: While for scalable vectors this is currently sufficient, this should |
| // be replaced by a more detailed mechanism that filters out specific VFs, |
| // instead of invalidating vectorization for a whole set of VFs based on the |
| // MaxVF. |
| |
| // Disable scalable vectorization if the loop contains unsupported reductions. |
| if (!canVectorizeReductions(MaxScalableVF)) { |
| reportVectorizationInfo( |
| "Scalable vectorization not supported for the reduction " |
| "operations found in this loop.", |
| "ScalableVFUnfeasible", ORE, TheLoop); |
| return false; |
| } |
| |
| // Disable scalable vectorization if the loop contains any instructions |
| // with element types not supported for scalable vectors. |
| if (any_of(ElementTypesInLoop, [&](Type *Ty) { |
| return !Ty->isVoidTy() && |
| !this->TTI.isElementTypeLegalForScalableVector(Ty); |
| })) { |
| reportVectorizationInfo("Scalable vectorization is not supported " |
| "for all element types found in this loop.", |
| "ScalableVFUnfeasible", ORE, TheLoop); |
| return false; |
| } |
| |
| if (!Legal->isSafeForAnyVectorWidth() && !getMaxVScale(*TheFunction, TTI)) { |
| reportVectorizationInfo("The target does not provide maximum vscale value " |
| "for safe distance analysis.", |
| "ScalableVFUnfeasible", ORE, TheLoop); |
| return false; |
| } |
| |
| IsScalableVectorizationAllowed = true; |
| return true; |
| } |
| |
| ElementCount |
| LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) { |
| if (!isScalableVectorizationAllowed()) |
| return ElementCount::getScalable(0); |
| |
| auto MaxScalableVF = ElementCount::getScalable( |
| std::numeric_limits<ElementCount::ScalarTy>::max()); |
| if (Legal->isSafeForAnyVectorWidth()) |
| return MaxScalableVF; |
| |
| std::optional<unsigned> MaxVScale = getMaxVScale(*TheFunction, TTI); |
| // Limit MaxScalableVF by the maximum safe dependence distance. |
| MaxScalableVF = ElementCount::getScalable(MaxSafeElements / *MaxVScale); |
| |
| if (!MaxScalableVF) |
| reportVectorizationInfo( |
| "Max legal vector width too small, scalable vectorization " |
| "unfeasible.", |
| "ScalableVFUnfeasible", ORE, TheLoop); |
| |
| return MaxScalableVF; |
| } |
| |
| FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF( |
| unsigned MaxTripCount, ElementCount UserVF, bool FoldTailByMasking) { |
| MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); |
| unsigned SmallestType, WidestType; |
| std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); |
| |
| // Get the maximum safe dependence distance in bits computed by LAA. |
| // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from |
| // the memory accesses that is most restrictive (involved in the smallest |
| // dependence distance). |
| unsigned MaxSafeElements = |
| llvm::bit_floor(Legal->getMaxSafeVectorWidthInBits() / WidestType); |
| |
| auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements); |
| auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements); |
| |
| LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF |
| << ".\n"); |
| LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF |
| << ".\n"); |
| |
| // First analyze the UserVF, fall back if the UserVF should be ignored. |
| if (UserVF) { |
| auto MaxSafeUserVF = |
| UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF; |
| |
| if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) { |
| // If `VF=vscale x N` is safe, then so is `VF=N` |
| if (UserVF.isScalable()) |
| return FixedScalableVFPair( |
| ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF); |
| else |
| return UserVF; |
| } |
| |
| assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF)); |
| |
| // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it |
| // is better to ignore the hint and let the compiler choose a suitable VF. |
| if (!UserVF.isScalable()) { |
| LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF |
| << " is unsafe, clamping to max safe VF=" |
| << MaxSafeFixedVF << ".\n"); |
| ORE->emit([&]() { |
| return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", |
| TheLoop->getStartLoc(), |
| TheLoop->getHeader()) |
| << "User-specified vectorization factor " |
| << ore::NV("UserVectorizationFactor", UserVF) |
| << " is unsafe, clamping to maximum safe vectorization factor " |
| << ore::NV("VectorizationFactor", MaxSafeFixedVF); |
| }); |
| return MaxSafeFixedVF; |
| } |
| |
| if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) { |
| LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF |
| << " is ignored because scalable vectors are not " |
| "available.\n"); |
| ORE->emit([&]() { |
| return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", |
| TheLoop->getStartLoc(), |
| TheLoop->getHeader()) |
| << "User-specified vectorization factor " |
| << ore::NV("UserVectorizationFactor", UserVF) |
| << " is ignored because the target does not support scalable " |
| "vectors. The compiler will pick a more suitable value."; |
| }); |
| } else { |
| LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF |
| << " is unsafe. Ignoring scalable UserVF.\n"); |
| ORE->emit([&]() { |
| return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", |
| TheLoop->getStartLoc(), |
| TheLoop->getHeader()) |
| << "User-specified vectorization factor " |
| << ore::NV("UserVectorizationFactor", UserVF) |
| << " is unsafe. Ignoring the hint to let the compiler pick a " |
| "more suitable value."; |
| }); |
| } |
| } |
| |
| LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType |
| << " / " << WidestType << " bits.\n"); |
| |
| FixedScalableVFPair Result(ElementCount::getFixed(1), |
| ElementCount::getScalable(0)); |
| if (auto MaxVF = |
| getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType, |
| MaxSafeFixedVF, FoldTailByMasking)) |
| Result.FixedVF = MaxVF; |
| |
| if (auto MaxVF = |
| getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType, |
| MaxSafeScalableVF, FoldTailByMasking)) |
| if (MaxVF.isScalable()) { |
| Result.ScalableVF = MaxVF; |
| LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF |
| << "\n"); |
| } |
| |
| return Result; |
| } |
| |
| FixedScalableVFPair |
| LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { |
| if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { |
| // TODO: It may by useful to do since it's still likely to be dynamically |
| // uniform if the target can skip. |
| reportVectorizationFailure( |
| "Not inserting runtime ptr check for divergent target", |
| "runtime pointer checks needed. Not enabled for divergent target", |
| "CantVersionLoopWithDivergentTarget", ORE, TheLoop); |
| return FixedScalableVFPair::getNone(); |
| } |
| |
| unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); |
| unsigned MaxTC = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop); |
| LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); |
| if (TC == 1) { |
| reportVectorizationFailure("Single iteration (non) loop", |
| "loop trip count is one, irrelevant for vectorization", |
| "SingleIterationLoop", ORE, TheLoop); |
| return FixedScalableVFPair::getNone(); |
| } |
| |
| switch (ScalarEpilogueStatus) { |
| case CM_ScalarEpilogueAllowed: |
| return computeFeasibleMaxVF(MaxTC, UserVF, false); |
| case CM_ScalarEpilogueNotAllowedUsePredicate: |
| [[fallthrough]]; |
| case CM_ScalarEpilogueNotNeededUsePredicate: |
| LLVM_DEBUG( |
| dbgs() << "LV: vector predicate hint/switch found.\n" |
| << "LV: Not allowing scalar epilogue, creating predicated " |
| << "vector loop.\n"); |
| break; |
| case CM_ScalarEpilogueNotAllowedLowTripLoop: |
| // fallthrough as a special case of OptForSize |
| case CM_ScalarEpilogueNotAllowedOptSize: |
| if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) |
| LLVM_DEBUG( |
| dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); |
| else |
| LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " |
| << "count.\n"); |
| |
| // Bail if runtime checks are required, which are not good when optimising |
| // for size. |
| if (runtimeChecksRequired()) |
| return FixedScalableVFPair::getNone(); |
| |
| break; |
| } |
| |
| // The only loops we can vectorize without a scalar epilogue, are loops with |
| // a bottom-test and a single exiting block. We'd have to handle the fact |
| // that not every instruction executes on the last iteration. This will |
| // require a lane mask which varies through the vector loop body. (TODO) |
| if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { |
| // If there was a tail-folding hint/switch, but we can't fold the tail by |
| // masking, fallback to a vectorization with a scalar epilogue. |
| if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { |
| LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " |
| "scalar epilogue instead.\n"); |
| ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; |
| return computeFeasibleMaxVF(MaxTC, UserVF, false); |
| } |
| return FixedScalableVFPair::getNone(); |
| } |
| |
| // Now try the tail folding |
| |
| // Invalidate interleave groups that require an epilogue if we can't mask |
| // the interleave-group. |
| if (!useMaskedInterleavedAccesses(TTI)) { |
| assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && |
| "No decisions should have been taken at this point"); |
| // Note: There is no need to invalidate any cost modeling decisions here, as |
| // non where taken so far. |
| InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); |
| } |
| |
| FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(MaxTC, UserVF, true); |
| |
| // Avoid tail folding if the trip count is known to be a multiple of any VF |
| // we choose. |
| std::optional<unsigned> MaxPowerOf2RuntimeVF = |
| MaxFactors.FixedVF.getFixedValue(); |
| if (MaxFactors.ScalableVF) { |
| std::optional<unsigned> MaxVScale = getMaxVScale(*TheFunction, TTI); |
| if (MaxVScale && TTI.isVScaleKnownToBeAPowerOfTwo()) { |
| MaxPowerOf2RuntimeVF = std::max<unsigned>( |
| *MaxPowerOf2RuntimeVF, |
| *MaxVScale * MaxFactors.ScalableVF.getKnownMinValue()); |
| } else |
| MaxPowerOf2RuntimeVF = std::nullopt; // Stick with tail-folding for now. |
| } |
| |
| if (MaxPowerOf2RuntimeVF && *MaxPowerOf2RuntimeVF > 0) { |
| assert((UserVF.isNonZero() || isPowerOf2_32(*MaxPowerOf2RuntimeVF)) && |
| "MaxFixedVF must be a power of 2"); |
| unsigned MaxVFtimesIC = |
| UserIC ? *MaxPowerOf2RuntimeVF * UserIC : *MaxPowerOf2RuntimeVF; |
| ScalarEvolution *SE = PSE.getSE(); |
| const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); |
| const SCEV *ExitCount = SE->getAddExpr( |
| BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); |
| const SCEV *Rem = SE->getURemExpr( |
| SE->applyLoopGuards(ExitCount, TheLoop), |
| SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); |
| if (Rem->isZero()) { |
| // Accept MaxFixedVF if we do not have a tail. |
| LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); |
| return MaxFactors; |
| } |
| } |
| |
| // If we don't know the precise trip count, or if the trip count that we |
| // found modulo the vectorization factor is not zero, try to fold the tail |
| // by masking. |
| // FIXME: look for a smaller MaxVF that does divide TC rather than masking. |
| setTailFoldingStyles(MaxFactors.ScalableVF.isScalable(), UserIC); |
| if (foldTailByMasking()) { |
| if (getTailFoldingStyle() == TailFoldingStyle::DataWithEVL) { |
| LLVM_DEBUG( |
| dbgs() |
| << "LV: tail is folded with EVL, forcing unroll factor to be 1. Will " |
| "try to generate VP Intrinsics with scalable vector " |
| "factors only.\n"); |
| // Tail folded loop using VP intrinsics restricts the VF to be scalable |
| // for now. |
| // TODO: extend it for fixed vectors, if required. |
| assert(MaxFactors.ScalableVF.isScalable() && |
| "Expected scalable vector factor."); |
| |
| MaxFactors.FixedVF = ElementCount::getFixed(1); |
| } |
| return MaxFactors; |
| } |
| |
| // If there was a tail-folding hint/switch, but we can't fold the tail by |
| // masking, fallback to a vectorization with a scalar epilogue. |
| if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { |
| LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " |
| "scalar epilogue instead.\n"); |
| ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; |
| return MaxFactors; |
| } |
| |
| if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { |
| LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); |
| return FixedScalableVFPair::getNone(); |
| } |
| |
| if (TC == 0) { |
| reportVectorizationFailure( |
| "Unable to calculate the loop count due to complex control flow", |
| "unable to calculate the loop count due to complex control flow", |
| "UnknownLoopCountComplexCFG", ORE, TheLoop); |
| return FixedScalableVFPair::getNone(); |
| } |
| |
| reportVectorizationFailure( |
| "Cannot optimize for size and vectorize at the same time.", |
| "cannot optimize for size and vectorize at the same time. " |
| "Enable vectorization of this loop with '#pragma clang loop " |
| "vectorize(enable)' when compiling with -Os/-Oz", |
| "NoTailLoopWithOptForSize", ORE, TheLoop); |
| return FixedScalableVFPair::getNone(); |
| } |
| |
| ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget( |
| unsigned MaxTripCount, unsigned SmallestType, unsigned WidestType, |
| ElementCount MaxSafeVF, bool FoldTailByMasking) { |
| bool ComputeScalableMaxVF = MaxSafeVF.isScalable(); |
| const TypeSize WidestRegister = TTI.getRegisterBitWidth( |
| ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector |
| : TargetTransformInfo::RGK_FixedWidthVector); |
| |
| // Convenience function to return the minimum of two ElementCounts. |
| auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) { |
| assert((LHS.isScalable() == RHS.isScalable()) && |
| "Scalable flags must match"); |
| return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS; |
| }; |
| |
| // Ensure MaxVF is a power of 2; the dependence distance bound may not be. |
| // Note that both WidestRegister and WidestType may not be a powers of 2. |
| auto MaxVectorElementCount = ElementCount::get( |
| llvm::bit_floor(WidestRegister.getKnownMinValue() / WidestType), |
| ComputeScalableMaxVF); |
| MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF); |
| LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " |
| << (MaxVectorElementCount * WidestType) << " bits.\n"); |
| |
| if (!MaxVectorElementCount) { |
| LLVM_DEBUG(dbgs() << "LV: The target has no " |
| << (ComputeScalableMaxVF ? "scalable" : "fixed") |
| << " vector registers.\n"); |
| return ElementCount::getFixed(1); |
| } |
| |
| unsigned WidestRegisterMinEC = MaxVectorElementCount.getKnownMinValue(); |
| if (MaxVectorElementCount.isScalable() && |
| TheFunction->hasFnAttribute(Attribute::VScaleRange)) { |
| auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange); |
| auto Min = Attr.getVScaleRangeMin(); |
| WidestRegisterMinEC *= Min; |
| } |
| |
| // When a scalar epilogue is required, at least one iteration of the scalar |
| // loop has to execute. Adjust MaxTripCount accordingly to avoid picking a |
| // max VF that results in a dead vector loop. |
| if (MaxTripCount > 0 && requiresScalarEpilogue(true)) |
| MaxTripCount -= 1; |
| |
| if (MaxTripCount && MaxTripCount <= WidestRegisterMinEC && |
| (!FoldTailByMasking || isPowerOf2_32(MaxTripCount))) { |
| // If upper bound loop trip count (TC) is known at compile time there is no |
| // point in choosing VF greater than TC (as done in the loop below). Select |
| // maximum power of two which doesn't exceed TC. If MaxVectorElementCount is |
| // scalable, we only fall back on a fixed VF when the TC is less than or |
| // equal to the known number of lanes. |
| auto ClampedUpperTripCount = llvm::bit_floor(MaxTripCount); |
| LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not " |
| "exceeding the constant trip count: " |
| << ClampedUpperTripCount << "\n"); |
| return ElementCount::get( |
| ClampedUpperTripCount, |
| FoldTailByMasking ? MaxVectorElementCount.isScalable() : false); |
| } |
| |
| TargetTransformInfo::RegisterKind RegKind = |
| ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector |
| : TargetTransformInfo::RGK_FixedWidthVector; |
| ElementCount MaxVF = MaxVectorElementCount; |
| if (MaximizeBandwidth || |
| (MaximizeBandwidth.getNumOccurrences() == 0 && |
| (TTI.shouldMaximizeVectorBandwidth(RegKind) || |
| (UseWiderVFIfCallVariantsPresent && Legal->hasVectorCallVariants())))) { |
| auto MaxVectorElementCountMaxBW = ElementCount::get( |
| llvm::bit_floor(WidestRegister.getKnownMinValue() / SmallestType), |
| ComputeScalableMaxVF); |
| MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF); |
| |
| // Collect all viable vectorization factors larger than the default MaxVF |
| // (i.e. MaxVectorElementCount). |
| SmallVector<ElementCount, 8> VFs; |
| for (ElementCount VS = MaxVectorElementCount * 2; |
| ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2) |
| VFs.push_back(VS); |
| |
| // For each VF calculate its register usage. |
| auto RUs = calculateRegisterUsage(VFs); |
| |
| // Select the largest VF which doesn't require more registers than existing |
| // ones. |
| for (int I = RUs.size() - 1; I >= 0; --I) { |
| const auto &MLU = RUs[I].MaxLocalUsers; |
| if (all_of(MLU, [&](decltype(MLU.front()) &LU) { |
| return LU.second <= TTI.getNumberOfRegisters(LU.first); |
| })) { |
| MaxVF = VFs[I]; |
| break; |
| } |
| } |
| if (ElementCount MinVF = |
| TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) { |
| if (ElementCount::isKnownLT(MaxVF, MinVF)) { |
| LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF |
| << ") with target's minimum: " << MinVF << '\n'); |
| MaxVF = MinVF; |
| } |
| } |
| |
| // Invalidate any widening decisions we might have made, in case the loop |
| // requires prediction (decided later), but we have already made some |
| // load/store widening decisions. |
| invalidateCostModelingDecisions(); |
| } |
| return MaxVF; |
| } |
| |
| /// Convenience function that returns the value of vscale_range iff |
| /// vscale_range.min == vscale_range.max or otherwise returns the value |
| /// returned by the corresponding TTI method. |
| static std::optional<unsigned> |
| getVScaleForTuning(const Loop *L, const TargetTransformInfo &TTI) { |
| const Function *Fn = L->getHeader()->getParent(); |
| if (Fn->hasFnAttribute(Attribute::VScaleRange)) { |
| auto Attr = Fn->getFnAttribute(Attribute::VScaleRange); |
| auto Min = Attr.getVScaleRangeMin(); |
| auto Max = Attr.getVScaleRangeMax(); |
| if (Max && Min == Max) |
| return Max; |
| } |
| |
| return TTI.getVScaleForTuning(); |
| } |
| |
| bool LoopVectorizationPlanner::isMoreProfitable( |
| const VectorizationFactor &A, const VectorizationFactor &B) const { |
| InstructionCost CostA = A.Cost; |
| InstructionCost CostB = B.Cost; |
| |
| unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(OrigLoop); |
| |
| // Improve estimate for the vector width if it is scalable. |
| unsigned EstimatedWidthA = A.Width.getKnownMinValue(); |
| unsigned EstimatedWidthB = B.Width.getKnownMinValue(); |
| if (std::optional<unsigned> VScale = getVScaleForTuning(OrigLoop, TTI)) { |
| if (A.Width.isScalable()) |
| EstimatedWidthA *= *VScale; |
| if (B.Width.isScalable()) |
| EstimatedWidthB *= *VScale; |
| } |
| |
| // Assume vscale may be larger than 1 (or the value being tuned for), |
| // so that scalable vectorization is slightly favorable over fixed-width |
| // vectorization. |
| bool PreferScalable = !TTI.preferFixedOverScalableIfEqualCost() && |
| A.Width.isScalable() && !B.Width.isScalable(); |
| |
| auto CmpFn = [PreferScalable](const InstructionCost &LHS, |
| const InstructionCost &RHS) { |
| return PreferScalable ? LHS <= RHS : LHS < RHS; |
| }; |
| |
| // To avoid the need for FP division: |
| // (CostA / EstimatedWidthA) < (CostB / EstimatedWidthB) |
| // <=> (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA) |
| if (!MaxTripCount) |
| return CmpFn(CostA * EstimatedWidthB, CostB * EstimatedWidthA); |
| |
| auto GetCostForTC = [MaxTripCount, this](unsigned VF, |
| InstructionCost VectorCost, |
| InstructionCost ScalarCost) { |
| // If the trip count is a known (possibly small) constant, the trip count |
| // will be rounded up to an integer number of iterations under |
| // FoldTailByMasking. The total cost in that case will be |
| // VecCost*ceil(TripCount/VF). When not folding the tail, the total |
| // cost will be VecCost*floor(TC/VF) + ScalarCost*(TC%VF). There will be |
| // some extra overheads, but for the purpose of comparing the costs of |
| // different VFs we can use this to compare the total loop-body cost |
| // expected after vectorization. |
| if (CM.foldTailByMasking()) |
| return VectorCost * divideCeil(MaxTripCount, VF); |
| return VectorCost * (MaxTripCount / VF) + ScalarCost * (MaxTripCount % VF); |
| }; |
| |
| auto RTCostA = GetCostForTC(EstimatedWidthA, CostA, A.ScalarCost); |
| auto RTCostB = GetCostForTC(EstimatedWidthB, CostB, B.ScalarCost); |
| return CmpFn(RTCostA, RTCostB); |
| } |
| |
| void LoopVectorizationPlanner::emitInvalidCostRemarks( |
| OptimizationRemarkEmitter *ORE) { |
| using RecipeVFPair = std::pair<VPRecipeBase *, ElementCount>; |
| LLVMContext &LLVMCtx = OrigLoop->getHeader()->getContext(); |
| SmallVector<RecipeVFPair> InvalidCosts; |
| for (const auto &Plan : VPlans) { |
| for (ElementCount VF : Plan->vectorFactors()) { |
| VPCostContext CostCtx(CM.TTI, *CM.TLI, Legal->getWidestInductionType(), |
| LLVMCtx, CM); |
| auto Iter = vp_depth_first_deep(Plan->getVectorLoopRegion()->getEntry()); |
| for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { |
| for (auto &R : *VPBB) { |
| if (!R.cost(VF, CostCtx).isValid()) |
| InvalidCosts.emplace_back(&R, VF); |
| } |
| } |
| } |
| } |
| if (InvalidCosts.empty()) |
| return; |
| |
| // Emit a report of VFs with invalid costs in the loop. |
| |
| // Group the remarks per recipe, keeping the recipe order from InvalidCosts. |
| DenseMap<VPRecipeBase *, unsigned> Numbering; |
| unsigned I = 0; |
| for (auto &Pair : InvalidCosts) |
| if (!Numbering.count(Pair.first)) |
| Numbering[Pair.first] = I++; |
| |
| // Sort the list, first on recipe(number) then on VF. |
| sort(InvalidCosts, [&Numbering](RecipeVFPair &A, RecipeVFPair &B) { |
| if (Numbering[A.first] != Numbering[B.first]) |
| return Numbering[A.first] < Numbering[B.first]; |
| const auto &LHS = A.second; |
| const auto &RHS = B.second; |
| return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < |
| std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); |
| }); |
| |
| // For a list of ordered recipe-VF pairs: |
| // [(load, VF1), (load, VF2), (store, VF1)] |
| // group the recipes together to emit separate remarks for: |
| // load (VF1, VF2) |
| // store (VF1) |
| auto Tail = ArrayRef<RecipeVFPair>(InvalidCosts); |
| auto Subset = ArrayRef<RecipeVFPair>(); |
| do { |
| if (Subset.empty()) |
| Subset = Tail.take_front(1); |
| |
| VPRecipeBase *R = Subset.front().first; |
| |
| unsigned Opcode = |
| TypeSwitch<const VPRecipeBase *, unsigned>(R) |
| .Case<VPHeaderPHIRecipe>( |
| [](const auto *R) { return Instruction::PHI; }) |
| .Case<VPWidenSelectRecipe>( |
| [](const auto *R) { return Instruction::Select; }) |
| .Case<VPWidenStoreRecipe>( |
| [](const auto *R) { return Instruction::Store; }) |
| .Case<VPWidenLoadRecipe>( |
| [](const auto *R) { return Instruction::Load; }) |
| .Case<VPWidenCallRecipe>( |
| [](const auto *R) { return Instruction::Call; }) |
| .Case<VPInstruction, VPWidenRecipe, VPReplicateRecipe, |
| VPWidenCastRecipe>( |
| [](const auto *R) { return R->getOpcode(); }) |
| .Case<VPInterleaveRecipe>([](const VPInterleaveRecipe *R) { |
| return R->getStoredValues().empty() ? Instruction::Load |
| : Instruction::Store; |
| }); |
| |
| // If the next recipe is different, or if there are no other pairs, |
| // emit a remark for the collated subset. e.g. |
| // [(load, VF1), (load, VF2))] |
| // to emit: |
| // remark: invalid costs for 'load' at VF=(VF1, VF2) |
| if (Subset == Tail || Tail[Subset.size()].first != R) { |
| std::string OutString; |
| raw_string_ostream OS(OutString); |
| assert(!Subset.empty() && "Unexpected empty range"); |
| OS << "Recipe with invalid costs prevented vectorization at VF=("; |
| for (const auto &Pair : Subset) |
| OS << (Pair.second == Subset.front().second ? "" : ", ") << Pair.second; |
| OS << "):"; |
| if (Opcode == Instruction::Call) { |
| auto *WidenCall = dyn_cast<VPWidenCallRecipe>(R); |
| Function *CalledFn = |
| WidenCall ? WidenCall->getCalledScalarFunction() |
| : cast<Function>(R->getOperand(R->getNumOperands() - 1) |
| ->getLiveInIRValue()); |
| OS << " call to " << CalledFn->getName(); |
| } else |
| OS << " " << Instruction::getOpcodeName(Opcode); |
| OS.flush(); |
| reportVectorizationInfo(OutString, "InvalidCost", ORE, OrigLoop, nullptr, |
| R->getDebugLoc()); |
| Tail = Tail.drop_front(Subset.size()); |
| Subset = {}; |
| } else |
| // Grow the subset by one element |
| Subset = Tail.take_front(Subset.size() + 1); |
| } while (!Tail.empty()); |
| } |
| |
| /// Check if any recipe of \p Plan will generate a vector value, which will be |
| /// assigned a vector register. |
| static bool willGenerateVectors(VPlan &Plan, ElementCount VF, |
| const TargetTransformInfo &TTI) { |
| assert(VF.isVector() && "Checking a scalar VF?"); |
| VPTypeAnalysis TypeInfo(Plan.getCanonicalIV()->getScalarType(), |
| Plan.getCanonicalIV()->getScalarType()->getContext()); |
| DenseSet<VPRecipeBase *> EphemeralRecipes; |
| collectEphemeralRecipesForVPlan(Plan, EphemeralRecipes); |
| // Set of already visited types. |
| DenseSet<Type *> Visited; |
| for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( |
| vp_depth_first_shallow(Plan.getVectorLoopRegion()->getEntry()))) { |
| for (VPRecipeBase &R : *VPBB) { |
| if (EphemeralRecipes.contains(&R)) |
| continue; |
| // Continue early if the recipe is considered to not produce a vector |
| // result. Note that this includes VPInstruction where some opcodes may |
| // produce a vector, to preserve existing behavior as VPInstructions model |
| // aspects not directly mapped to existing IR instructions. |
| switch (R.getVPDefID()) { |
| case VPDef::VPDerivedIVSC: |
| case VPDef::VPScalarIVStepsSC: |
| case VPDef::VPScalarCastSC: |
| case VPDef::VPReplicateSC: |
| case VPDef::VPInstructionSC: |
| case VPDef::VPCanonicalIVPHISC: |
| case VPDef::VPVectorPointerSC: |
| case VPDef::VPExpandSCEVSC: |
| case VPDef::VPEVLBasedIVPHISC: |
| case VPDef::VPPredInstPHISC: |
| case VPDef::VPBranchOnMaskSC: |
| continue; |
| case VPDef::VPReductionSC: |
| case VPDef::VPActiveLaneMaskPHISC: |
| case VPDef::VPWidenCallSC: |
| case VPDef::VPWidenCanonicalIVSC: |
| case VPDef::VPWidenCastSC: |
| case VPDef::VPWidenGEPSC: |
| case VPDef::VPWidenSC: |
| case VPDef::VPWidenSelectSC: |
| case VPDef::VPBlendSC: |
| case VPDef::VPFirstOrderRecurrencePHISC: |
| case VPDef::VPWidenPHISC: |
| case VPDef::VPWidenIntOrFpInductionSC: |
| case VPDef::VPWidenPointerInductionSC: |
| case VPDef::VPReductionPHISC: |
| case VPDef::VPInterleaveSC: |
| case VPDef::VPWidenLoadEVLSC: |
| case VPDef::VPWidenLoadSC: |
| case VPDef::VPWidenStoreEVLSC: |
| case VPDef::VPWidenStoreSC: |
| break; |
| default: |
| llvm_unreachable("unhandled recipe"); |
| } |
| |
| auto WillWiden = [&TTI, VF](Type *ScalarTy) { |
| Type *VectorTy = ToVectorTy(ScalarTy, VF); |
| unsigned NumLegalParts = TTI.getNumberOfParts(VectorTy); |
| if (!NumLegalParts) |
| return false; |
| if (VF.isScalable()) { |
| // <vscale x 1 x iN> is assumed to be profitable over iN because |
| // scalable registers are a distinct register class from scalar |
| // ones. If we ever find a target which wants to lower scalable |
| // vectors back to scalars, we'll need to update this code to |
| // explicitly ask TTI about the register class uses for each part. |
| return NumLegalParts <= VF.getKnownMinValue(); |
| } |
| // Two or more parts that share a register - are vectorized. |
| return NumLegalParts < VF.getKnownMinValue(); |
| }; |
| |
| // If no def nor is a store, e.g., branches, continue - no value to check. |
| if (R.getNumDefinedValues() == 0 && |
| !isa<VPWidenStoreRecipe, VPWidenStoreEVLRecipe, VPInterleaveRecipe>( |
| &R)) |
| continue; |
| // For multi-def recipes, currently only interleaved loads, suffice to |
| // check first def only. |
| // For stores check their stored value; for interleaved stores suffice |
| // the check first stored value only. In all cases this is the second |
| // operand. |
| VPValue *ToCheck = |
| R.getNumDefinedValues() >= 1 ? R.getVPValue(0) : R.getOperand(1); |
| Type *ScalarTy = TypeInfo.inferScalarType(ToCheck); |
| if (!Visited.insert({ScalarTy}).second) |
| continue; |
| if (WillWiden(ScalarTy)) |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| #ifndef NDEBUG |
| VectorizationFactor LoopVectorizationPlanner::selectVectorizationFactor() { |
| InstructionCost ExpectedCost = CM.expectedCost(ElementCount::getFixed(1)); |
| LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); |
| assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); |
| assert(any_of(VPlans, |
| [](std::unique_ptr<VPlan> &P) { |
| return P->hasVF(ElementCount::getFixed(1)); |
| }) && |
| "Expected Scalar VF to be a candidate"); |
| |
| const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost, |
| ExpectedCost); |
| VectorizationFactor ChosenFactor = ScalarCost; |
| |
| bool ForceVectorization = Hints.getForce() == LoopVectorizeHints::FK_Enabled; |
| if (ForceVectorization && |
| (VPlans.size() > 1 || !VPlans[0]->hasScalarVFOnly())) { |
| // Ignore scalar width, because the user explicitly wants vectorization. |
| // Initialize cost to max so that VF = 2 is, at least, chosen during cost |
| // evaluation. |
| ChosenFactor.Cost = InstructionCost::getMax(); |
| } |
| |
| for (auto &P : VPlans) { |
| for (ElementCount VF : P->vectorFactors()) { |
| // The cost for scalar VF=1 is already calculated, so ignore it. |
| if (VF.isScalar()) |
| continue; |
| |
| InstructionCost C = CM.expectedCost(VF); |
| VectorizationFactor Candidate(VF, C, ScalarCost.ScalarCost); |
| |
| unsigned AssumedMinimumVscale = |
| getVScaleForTuning(OrigLoop, TTI).value_or(1); |
| unsigned Width = |
| Candidate.Width.isScalable() |
| ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale |
| : Candidate.Width.getFixedValue(); |
| LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << VF |
| << " costs: " << (Candidate.Cost / Width)); |
| if (VF.isScalable()) |
| LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of " |
| << AssumedMinimumVscale << ")"); |
| LLVM_DEBUG(dbgs() << ".\n"); |
| |
| if (!ForceVectorization && !willGenerateVectors(*P, VF, TTI)) { |
| LLVM_DEBUG( |
| dbgs() |
| << "LV: Not considering vector loop of width " << VF |
| << " because it will not generate any vector instructions.\n"); |
| continue; |
| } |
| |
| if (isMoreProfitable(Candidate, ChosenFactor)) |
| ChosenFactor = Candidate; |
| } |
| } |
| |
| if (!EnableCondStoresVectorization && CM.hasPredStores()) { |
| reportVectorizationFailure( |
| "There are conditional stores.", |
| "store that is conditionally executed prevents vectorization", |
| "ConditionalStore", ORE, OrigLoop); |
| ChosenFactor = ScalarCost; |
| } |
| |
| LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() && |
| !isMoreProfitable(ChosenFactor, ScalarCost)) dbgs() |
| << "LV: Vectorization seems to be not beneficial, " |
| << "but was forced by a user.\n"); |
| LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n"); |
| return ChosenFactor; |
| } |
| #endif |
| |
| bool LoopVectorizationPlanner::isCandidateForEpilogueVectorization( |
| ElementCount VF) const { |
| // Cross iteration phis such as reductions need special handling and are |
| // currently unsupported. |
| if (any_of(OrigLoop->getHeader()->phis(), |
| [&](PHINode &Phi) { return Legal->isFixedOrderRecurrence(&Phi); })) |
| return false; |
| |
| // Phis with uses outside of the loop require special handling and are |
| // currently unsupported. |
| for (const auto &Entry : Legal->getInductionVars()) { |
| // Look for uses of the value of the induction at the last iteration. |
| Value *PostInc = |
| Entry.first->getIncomingValueForBlock(OrigLoop->getLoopLatch()); |
| for (User *U : PostInc->users()) |
| if (!OrigLoop->contains(cast<Instruction>(U))) |
| return false; |
| // Look for uses of penultimate value of the induction. |
| for (User *U : Entry.first->users()) |
| if (!OrigLoop->contains(cast<Instruction>(U))) |
| return false; |
| } |
| |
| // Epilogue vectorization code has not been auditted to ensure it handles |
| // non-latch exits properly. It may be fine, but it needs auditted and |
| // tested. |
| if (OrigLoop->getExitingBlock() != OrigLoop->getLoopLatch()) |
| return false; |
| |
| return true; |
| } |
| |
| bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( |
| const ElementCount VF) const { |
| // FIXME: We need a much better cost-model to take different parameters such |
| // as register pressure, code size increase and cost of extra branches into |
| // account. For now we apply a very crude heuristic and only consider loops |
| // with vectorization factors larger than a certain value. |
| |
| // Allow the target to opt out entirely. |
| if (!TTI.preferEpilogueVectorization()) |
| return false; |
| |
| // We also consider epilogue vectorization unprofitable for targets that don't |
| // consider interleaving beneficial (eg. MVE). |
| if (TTI.getMaxInterleaveFactor(VF) <= 1) |
| return false; |
| |
| unsigned Multiplier = 1; |
| if (VF.isScalable()) |
| Multiplier = getVScaleForTuning(TheLoop, TTI).value_or(1); |
| if ((Multiplier * VF.getKnownMinValue()) >= EpilogueVectorizationMinVF) |
| return true; |
| return false; |
| } |
| |
| VectorizationFactor LoopVectorizationPlanner::selectEpilogueVectorizationFactor( |
| const ElementCount MainLoopVF, unsigned IC) { |
| VectorizationFactor Result = VectorizationFactor::Disabled(); |
| if (!EnableEpilogueVectorization) { |
| LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n"); |
| return Result; |
| } |
| |
| if (!CM.isScalarEpilogueAllowed()) { |
| LLVM_DEBUG(dbgs() << "LEV: Unable to vectorize epilogue because no " |
| "epilogue is allowed.\n"); |
| return Result; |
| } |
| |
| // Not really a cost consideration, but check for unsupported cases here to |
| // simplify the logic. |
| if (!isCandidateForEpilogueVectorization(MainLoopVF)) { |
| LLVM_DEBUG(dbgs() << "LEV: Unable to vectorize epilogue because the loop " |
| "is not a supported candidate.\n"); |
| return Result; |
| } |
| |
| if (EpilogueVectorizationForceVF > 1) { |
| LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n"); |
| ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF); |
| if (hasPlanWithVF(ForcedEC)) |
| return {ForcedEC, 0, 0}; |
| else { |
| LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization forced factor is not " |
| "viable.\n"); |
| return Result; |
| } |
| } |
| |
| if (OrigLoop->getHeader()->getParent()->hasOptSize() || |
| OrigLoop->getHeader()->getParent()->hasMinSize()) { |
| LLVM_DEBUG( |
| dbgs() << "LEV: Epilogue vectorization skipped due to opt for size.\n"); |
| return Result; |
| } |
| |
| if (!CM.isEpilogueVectorizationProfitable(MainLoopVF)) { |
| LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for " |
| "this loop\n"); |
| return Result; |
| } |
| |
| // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know |
| // the main loop handles 8 lanes per iteration. We could still benefit from |
| // vectorizing the epilogue loop with VF=4. |
| ElementCount EstimatedRuntimeVF = MainLoopVF; |
| if (MainLoopVF.isScalable()) { |
| EstimatedRuntimeVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue()); |
| if (std::optional<unsigned> VScale = getVScaleForTuning(OrigLoop, TTI)) |
| EstimatedRuntimeVF *= *VScale; |
| } |
| |
| ScalarEvolution &SE = *PSE.getSE(); |
| Type *TCType = Legal->getWidestInductionType(); |
| const SCEV *RemainingIterations = nullptr; |
| for (auto &NextVF : ProfitableVFs) { |
| // Skip candidate VFs without a corresponding VPlan. |
| if (!hasPlanWithVF(NextVF.Width)) |
| continue; |
| |
| // Skip candidate VFs with widths >= the estimate runtime VF (scalable |
| // vectors) or the VF of the main loop (fixed vectors). |
| if ((!NextVF.Width.isScalable() && MainLoopVF.isScalable() && |
| ElementCount::isKnownGE(NextVF.Width, EstimatedRuntimeVF)) || |
| ElementCount::isKnownGE(NextVF.Width, MainLoopVF)) |
| continue; |
| |
| // If NextVF is greater than the number of remaining iterations, the |
| // epilogue loop would be dead. Skip such factors. |
| if (!MainLoopVF.isScalable() && !NextVF.Width.isScalable()) { |
| // TODO: extend to support scalable VFs. |
| if (!RemainingIterations) { |
| const SCEV *TC = createTripCountSCEV(TCType, PSE, OrigLoop); |
| RemainingIterations = SE.getURemExpr( |
| TC, SE.getConstant(TCType, MainLoopVF.getKnownMinValue() * IC)); |
| } |
| if (SE.isKnownPredicate( |
| CmpInst::ICMP_UGT, |
| SE.getConstant(TCType, NextVF.Width.getKnownMinValue()), |
| RemainingIterations)) |
| continue; |
| } |
| |
| if (Result.Width.isScalar() || isMoreProfitable(NextVF, Result)) |
| Result = NextVF; |
| } |
| |
| if (Result != VectorizationFactor::Disabled()) |
| LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " |
| << Result.Width << "\n"); |
| return Result; |
| } |
| |
| std::pair<unsigned, unsigned> |
| LoopVectorizationCostModel::getSmallestAndWidestTypes() { |
| unsigned MinWidth = -1U; |
| unsigned MaxWidth = 8; |
| const DataLayout &DL = TheFunction->getDataLayout(); |
| // For in-loop reductions, no element types are added to ElementTypesInLoop |
| // if there are no loads/stores in the loop. In this case, check through the |
| // reduction variables to determine the maximum width. |
| if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) { |
| // Reset MaxWidth so that we can find the smallest type used by recurrences |
| // in the loop. |
| MaxWidth = -1U; |
| for (const auto &PhiDescriptorPair : Legal->getReductionVars()) { |
| const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second; |
| // When finding the min width used by the recurrence we need to account |
| // for casts on the input operands of the recurrence. |
| MaxWidth = std::min<unsigned>( |
| MaxWidth, std::min<unsigned>( |
| RdxDesc.getMinWidthCastToRecurrenceTypeInBits(), |
| RdxDesc.getRecurrenceType()->getScalarSizeInBits())); |
| } |
| } else { |
| for (Type *T : ElementTypesInLoop) { |
| MinWidth = std::min<unsigned>( |
| MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedValue()); |
| MaxWidth = std::max<unsigned>( |
| MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedValue()); |
| } |
| } |
| return {MinWidth, MaxWidth}; |
| } |
| |
| void LoopVectorizationCostModel::collectElementTypesForWidening() { |
| ElementTypesInLoop.clear(); |
| // For each block. |
| for (BasicBlock *BB : TheLoop->blocks()) { |
| // For each instruction in the loop. |
| for (Instruction &I : BB->instructionsWithoutDebug()) { |
| Type *T = I.getType(); |
| |
| // Skip ignored values. |
| if (ValuesToIgnore.count(&I)) |
| continue; |
| |
| // Only examine Loads, Stores and PHINodes. |
| if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) |
| continue; |
| |
| // Examine PHI nodes that are reduction variables. Update the type to |
| // account for the recurrence type. |
| if (auto *PN = dyn_cast<PHINode>(&I)) { |
| if (!Legal->isReductionVariable(PN)) |
| continue; |
| const RecurrenceDescriptor &RdxDesc = |
| Legal->getReductionVars().find(PN)->second; |
| if (PreferInLoopReductions || useOrderedReductions(RdxDesc) || |
| TTI.preferInLoopReduction(RdxDesc.getOpcode(), |
| RdxDesc.getRecurrenceType(), |
| TargetTransformInfo::ReductionFlags())) |
| continue; |
| T = RdxDesc.getRecurrenceType(); |
| } |
| |
| // Examine the stored values. |
| if (auto *ST = dyn_cast<StoreInst>(&I)) |
| T = ST->getValueOperand()->getType(); |
| |
| assert(T->isSized() && |
| "Expected the load/store/recurrence type to be sized"); |
| |
| ElementTypesInLoop.insert(T); |
| } |
| } |
| } |
| |
| unsigned |
| LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, |
| InstructionCost LoopCost) { |
| // -- The interleave heuristics -- |
| // We interleave the loop in order to expose ILP and reduce the loop overhead. |
| // There are many micro-architectural considerations that we can't predict |
| // at this level. For example, frontend pressure (on decode or fetch) due to |
| // code size, or the number and capabilities of the execution ports. |
| // |
| // We use the following heuristics to select the interleave count: |
| // 1. If the code has reductions, then we interleave to break the cross |
| // iteration dependency. |
| // 2. If the loop is really small, then we interleave to reduce the loop |
| // overhead. |
| // 3. We don't interleave if we think that we will spill registers to memory |
| // due to the increased register pressure. |
| |
| if (!isScalarEpilogueAllowed()) |
| return 1; |
| |
| // Do not interleave if EVL is preferred and no User IC is specified. |
| if (foldTailWithEVL()) { |
| LLVM_DEBUG(dbgs() << "LV: Preference for VP intrinsics indicated. " |
| "Unroll factor forced to be 1.\n"); |
| return 1; |
| } |
| |
| // We used the distance for the interleave count. |
| if (!Legal->isSafeForAnyVectorWidth()) |
| return 1; |
| |
| auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); |
| const bool HasReductions = !Legal->getReductionVars().empty(); |
| |
| // If we did not calculate the cost for VF (because the user selected the VF) |
| // then we calculate the cost of VF here. |
| if (LoopCost == 0) { |
| LoopCost = expectedCost(VF); |
| assert(LoopCost.isValid() && "Expected to have chosen a VF with valid cost"); |
| |
| // Loop body is free and there is no need for interleaving. |
| if (LoopCost == 0) |
| return 1; |
| } |
| |
| RegisterUsage R = calculateRegisterUsage({VF})[0]; |
| // We divide by these constants so assume that we have at least one |
| // instruction that uses at least one register. |
| for (auto& pair : R.MaxLocalUsers) { |
| pair.second = std::max(pair.second, 1U); |
| } |
| |
| // We calculate the interleave count using the following formula. |
| // Subtract the number of loop invariants from the number of available |
| // registers. These registers are used by all of the interleaved instances. |
| // Next, divide the remaining registers by the number of registers that is |
| // required by the loop, in order to estimate how many parallel instances |
| // fit without causing spills. All of this is rounded down if necessary to be |
| // a power of two. We want power of two interleave count to simplify any |
| // addressing operations or alignment considerations. |
| // We also want power of two interleave counts to ensure that the induction |
| // variable of the vector loop wraps to zero, when tail is folded by masking; |
| // this currently happens when OptForSize, in which case IC is set to 1 above. |
| unsigned IC = UINT_MAX; |
| |
| for (auto& pair : R.MaxLocalUsers) { |
| unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); |
| LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters |
| << " registers of " |
| << TTI.getRegisterClassName(pair.first) << " register class\n"); |
| if (VF.isScalar()) { |
| if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) |
| TargetNumRegisters = ForceTargetNumScalarRegs; |
| } else { |
| if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) |
| TargetNumRegisters = ForceTargetNumVectorRegs; |
| } |
| unsigned MaxLocalUsers = pair.second; |
| unsigned LoopInvariantRegs = 0; |
| if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) |
| LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; |
| |
| unsigned TmpIC = llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs) / |
| MaxLocalUsers); |
| // Don't count the induction variable as interleaved. |
| if (EnableIndVarRegisterHeur) { |
| TmpIC = llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs - 1) / |
| std::max(1U, (MaxLocalUsers - 1))); |
| } |
| |
| IC = std::min(IC, TmpIC); |
| } |
| |
| // Clamp the interleave ranges to reasonable counts. |
| unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); |
| |
| // Check if the user has overridden the max. |
| if (VF.isScalar()) { |
| if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) |
| MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; |
| } else { |
| if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) |
| MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; |
| } |
| |
| unsigned EstimatedVF = VF.getKnownMinValue(); |
| if (VF.isScalable()) { |
| if (std::optional<unsigned> VScale = getVScaleForTuning(TheLoop, TTI)) |
| EstimatedVF *= *VScale; |
| } |
| assert(EstimatedVF >= 1 && "Estimated VF shouldn't be less than 1"); |
| |
| unsigned KnownTC = PSE.getSE()->getSmallConstantTripCount(TheLoop); |
| if (KnownTC > 0) { |
| // At least one iteration must be scalar when this constraint holds. So the |
| // maximum available iterations for interleaving is one less. |
| unsigned AvailableTC = |
| requiresScalarEpilogue(VF.isVector()) ? KnownTC - 1 : KnownTC; |
| |
| // If trip count is known we select between two prospective ICs, where |
| // 1) the aggressive IC is capped by the trip count divided by VF |
| // 2) the conservative IC is capped by the trip count divided by (VF * 2) |
| // The final IC is selected in a way that the epilogue loop trip count is |
| // minimized while maximizing the IC itself, so that we either run the |
| // vector loop at least once if it generates a small epilogue loop, or else |
| // we run the vector loop at least twice. |
| |
| unsigned InterleaveCountUB = bit_floor( |
| std::max(1u, std::min(AvailableTC / EstimatedVF, MaxInterleaveCount))); |
| unsigned InterleaveCountLB = bit_floor(std::max( |
| 1u, std::min(AvailableTC / (EstimatedVF * 2), MaxInterleaveCount))); |
| MaxInterleaveCount = InterleaveCountLB; |
| |
| if (InterleaveCountUB != InterleaveCountLB) { |
| unsigned TailTripCountUB = |
| (AvailableTC % (EstimatedVF * InterleaveCountUB)); |
| unsigned TailTripCountLB = |
| (AvailableTC % (EstimatedVF * InterleaveCountLB)); |
| // If both produce same scalar tail, maximize the IC to do the same work |
| // in fewer vector loop iterations |
| if (TailTripCountUB == TailTripCountLB) |
| MaxInterleaveCount = InterleaveCountUB; |
| } |
| } else if (BestKnownTC && *BestKnownTC > 0) { |
| // At least one iteration must be scalar when this constraint holds. So the |
| // maximum available iterations for interleaving is one less. |
| unsigned AvailableTC = requiresScalarEpilogue(VF.isVector()) |
| ? (*BestKnownTC) - 1 |
| : *BestKnownTC; |
| |
| // If trip count is an estimated compile time constant, limit the |
| // IC to be capped by the trip count divided by VF * 2, such that the vector |
| // loop runs at least twice to make interleaving seem profitable when there |
| // is an epilogue loop present. Since exact Trip count is not known we |
| // choose to be conservative in our IC estimate. |
| MaxInterleaveCount = bit_floor(std::max( |
| 1u, std::min(AvailableTC / (EstimatedVF * 2), MaxInterleaveCount))); |
| } |
| |
| assert(MaxInterleaveCount > 0 && |
| "Maximum interleave count must be greater than 0"); |
| |
| // Clamp the calculated IC to be between the 1 and the max interleave count |
| // that the target and trip count allows. |
| if (IC > MaxInterleaveCount) |
| IC = MaxInterleaveCount; |
| else |
| // Make sure IC is greater than 0. |
| IC = std::max(1u, IC); |
| |
| assert(IC > 0 && "Interleave count must be greater than 0."); |
| |
| // Interleave if we vectorized this loop and there is a reduction that could |
| // benefit from interleaving. |
| if (VF.isVector() && HasReductions) { |
| LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); |
| return IC; |
| } |
| |
| // For any scalar loop that either requires runtime checks or predication we |
| // are better off leaving this to the unroller. Note that if we've already |
| // vectorized the loop we will have done the runtime check and so interleaving |
| // won't require further checks. |
| bool ScalarInterleavingRequiresPredication = |
| (VF.isScalar() && any_of(TheLoop->blocks(), [this](BasicBlock *BB) { |
| return Legal->blockNeedsPredication(BB); |
| })); |
| bool ScalarInterleavingRequiresRuntimePointerCheck = |
| (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); |
| |
| // We want to interleave small loops in order to reduce the loop overhead and |
| // potentially expose ILP opportunities. |
| LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' |
| << "LV: IC is " << IC << '\n' |
| << "LV: VF is " << VF << '\n'); |
| const bool AggressivelyInterleaveReductions = |
| TTI.enableAggressiveInterleaving(HasReductions); |
| if (!ScalarInterleavingRequiresRuntimePointerCheck && |
| !ScalarInterleavingRequiresPredication && LoopCost < SmallLoopCost) { |
| // We assume that the cost overhead is 1 and we use the cost model |
| // to estimate the cost of the loop and interleave until the cost of the |
| // loop overhead is about 5% of the cost of the loop. |
| unsigned SmallIC = std::min(IC, (unsigned)llvm::bit_floor<uint64_t>( |
| SmallLoopCost / *LoopCost.getValue())); |
| |
| // Interleave until store/load ports (estimated by max interleave count) are |
| // saturated. |
| unsigned NumStores = Legal->getNumStores(); |
| unsigned NumLoads = Legal->getNumLoads(); |
| unsigned StoresIC = IC / (NumStores ? NumStores : 1); |
| unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); |
| |
| // There is little point in interleaving for reductions containing selects |
| // and compares when VF=1 since it may just create more overhead than it's |
| // worth for loops with small trip counts. This is because we still have to |
| // do the final reduction after the loop. |
| bool HasSelectCmpReductions = |
| HasReductions && |
| any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { |
| const RecurrenceDescriptor &RdxDesc = Reduction.second; |
| return RecurrenceDescriptor::isAnyOfRecurrenceKind( |
| RdxDesc.getRecurrenceKind()); |
| }); |
| if (HasSelectCmpReductions) { |
| LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n"); |
| return 1; |
| } |
| |
| // If we have a scalar reduction (vector reductions are already dealt with |
| // by this point), we can increase the critical path length if the loop |
| // we're interleaving is inside another loop. For tree-wise reductions |
| // set the limit to 2, and for ordered reductions it's best to disable |
| // interleaving entirely. |
| if (HasReductions && TheLoop->getLoopDepth() > 1) { |
| bool HasOrderedReductions = |
| any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { |
| const RecurrenceDescriptor &RdxDesc = Reduction.second; |
| return RdxDesc.isOrdered(); |
| }); |
| if (HasOrderedReductions) { |
| LLVM_DEBUG( |
| dbgs() << "LV: Not interleaving scalar ordered reductions.\n"); |
| return 1; |
| } |
| |
| unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); |
| SmallIC = std::min(SmallIC, F); |
| StoresIC = std::min(StoresIC, F); |
| LoadsIC = std::min(LoadsIC, F); |
| } |
| |
| if (EnableLoadStoreRuntimeInterleave && |
| std::max(StoresIC, LoadsIC) > SmallIC) { |
| LLVM_DEBUG( |
| dbgs() << "LV: Interleaving to saturate store or load ports.\n"); |
| return std::max(StoresIC, LoadsIC); |
| } |
| |
| // If there are scalar reductions and TTI has enabled aggressive |
| // interleaving for reductions, we will interleave to expose ILP. |
| if (VF.isScalar() && AggressivelyInterleaveReductions) { |
| LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); |
| // Interleave no less than SmallIC but not as aggressive as the normal IC |
| // to satisfy the rare situation when resources are too limited. |
| return std::max(IC / 2, SmallIC); |
| } else { |
| LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); |
| return SmallIC; |
| } |
| } |
| |
| // Interleave if this is a large loop (small loops are already dealt with by |
| // this point) that could benefit from interleaving. |
| if (AggressivelyInterleaveReductions) { |
| LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); |
| return IC; |
| } |
| |
| LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); |
| return 1; |
| } |
| |
| SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> |
| LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { |
| // This function calculates the register usage by measuring the highest number |
| // of values that are alive at a single location. Obviously, this is a very |
| // rough estimation. We scan the loop in a topological order in order and |
| // assign a number to each instruction. We use RPO to ensure that defs are |
| // met before their users. We assume that each instruction that has in-loop |
| // users starts an interval. We record every time that an in-loop value is |
| // used, so we have a list of the first and last occurrences of each |
| // instruction. Next, we transpose this data structure into a multi map that |
| // holds the list of intervals that *end* at a specific location. This multi |
| // map allows us to perform a linear search. We scan the instructions linearly |
| // and record each time that a new interval starts, by placing it in a set. |
| // If we find this value in the multi-map then we remove it from the set. |
| // The max register usage is the maximum size of the set. |
| // We also search for instructions that are defined outside the loop, but are |
| // used inside the loop. We need this number separately from the max-interval |
| // usage number because when we unroll, loop-invariant values do not take |
| // more register. |
| LoopBlocksDFS DFS(TheLoop); |
| DFS.perform(LI); |
| |
| RegisterUsage RU; |
| |
| // Each 'key' in the map opens a new interval. The values |
| // of the map are the index of the 'last seen' usage of the |
| // instruction that is the key. |
| using IntervalMap = DenseMap<Instruction *, unsigned>; |
| |
| // Maps instruction to its index. |
| SmallVector<Instruction *, 64> IdxToInstr; |
| // Marks the end of each interval. |
| IntervalMap EndPoint; |
| // Saves the list of instruction indices that are used in the loop. |
| SmallPtrSet<Instruction *, 8> Ends; |
| // Saves the list of values that are used in the loop but are defined outside |
| // the loop (not including non-instruction values such as arguments and |
| // constants). |
| SmallSetVector<Instruction *, 8> LoopInvariants; |
| |
| for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { |
| for (Instruction &I : BB->instructionsWithoutDebug()) { |
| IdxToInstr.push_back(&I); |
| |
| // Save the end location of each USE. |
| for (Value *U : I.operands()) { |
| auto *Instr = dyn_cast<Instruction>(U); |
| |
| // Ignore non-instruction values such as arguments, constants, etc. |
| // FIXME: Might need some motivation why these values are ignored. If |
| // for example an argument is used inside the loop it will increase the |
| // register pressure (so shouldn't we add it to LoopInvariants). |
| if (!Instr) |
| continue; |
| |
| // If this instruction is outside the loop then record it and continue. |
| if (!TheLoop->contains(Instr)) { |
| LoopInvariants.insert(Instr); |
| continue; |
| } |
| |
| // Overwrite previous end points. |
| EndPoint[Instr] = IdxToInstr.size(); |
| Ends.insert(Instr); |
| } |
| } |
| } |
| |
| // Saves the list of intervals that end with the index in 'key'. |
| using InstrList = SmallVector<Instruction *, 2>; |
| DenseMap<unsigned, InstrList> TransposeEnds; |
| |
| // Transpose the EndPoints to a list of values that end at each index. |
| for (auto &Interval : EndPoint) |
| TransposeEnds[Interval.second].push_back(Interval.first); |
| |
| SmallPtrSet<Instruction *, 8> OpenIntervals; |
| SmallVector<RegisterUsage, 8> RUs(VFs.size()); |
| SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); |
| |
| LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); |
| |
| const auto &TTICapture = TTI; |
| auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned { |
| if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) |
| return 0; |
| return TTICapture.getRegUsageForType(VectorType::get(Ty, VF)); |
| }; |
| |
| for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { |
| Instruction *I = IdxToInstr[i]; |
| |
| // Remove all of the instructions that end at this location. |
| InstrList &List = TransposeEnds[i]; |
| for (Instruction *ToRemove : List) |
| OpenIntervals.erase(ToRemove); |
| |
| // Ignore instructions that are never used within the loop. |
| if (!Ends.count(I)) |
| continue; |
| |
| // Skip ignored values. |
| if (ValuesToIgnore.count(I)) |
| continue; |
| |
| collectInLoopReductions(); |
| |
| // For each VF find the maximum usage of registers. |
| for (unsigned j = 0, e = VFs.size(); j < e; ++j) { |
| // Count the number of registers used, per register class, given all open |
| // intervals. |
| // Note that elements in this SmallMapVector will be default constructed |
| // as 0. So we can use "RegUsage[ClassID] += n" in the code below even if |
| // there is no previous entry for ClassID. |
| SmallMapVector<unsigned, unsigned, 4> RegUsage; |
| |
| if (VFs[j].isScalar()) { |
| for (auto *Inst : OpenIntervals) { |
| unsigned ClassID = |
| TTI.getRegisterClassForType(false, Inst->getType()); |
| // FIXME: The target might use more than one register for the type |
| // even in the scalar case. |
| RegUsage[ClassID] += 1; |
| } |
| } else { |
| collectUniformsAndScalars(VFs[j]); |
| for (auto *Inst : OpenIntervals) { |
| // Skip ignored values for VF > 1. |
| if (VecValuesToIgnore.count(Inst)) |
| continue; |
| if (isScalarAfterVectorization(Inst, VFs[j])) { |
| unsigned ClassID = |
| TTI.getRegisterClassForType(false, Inst->getType()); |
| // FIXME: The target might use more than one register for the type |
| // even in the scalar case. |
| RegUsage[ClassID] += 1; |
| } else { |
| unsigned ClassID = |
| TTI.getRegisterClassForType(true, Inst->getType()); |
| RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); |
| } |
| } |
| } |
| |
| for (auto& pair : RegUsage) { |
| auto &Entry = MaxUsages[j][pair.first]; |
| Entry = std::max(Entry, pair.second); |
| } |
| } |
| |
| LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " |
| << OpenIntervals.size() << '\n'); |
| |
| // Add the current instruction to the list of open intervals. |
| OpenIntervals.insert(I); |
| } |
| |
| for (unsigned i = 0, e = VFs.size(); i < e; ++i) { |
| // Note that elements in this SmallMapVector will be default constructed |
| // as 0. So we can use "Invariant[ClassID] += n" in the code below even if |
| // there is no previous entry for ClassID. |
| SmallMapVector<unsigned, unsigned, 4> Invariant; |
| |
| for (auto *Inst : LoopInvariants) { |
| // FIXME: The target might use more than one register for the type |
| // even in the scalar case. |
| bool IsScalar = all_of(Inst->users(), [&](User *U) { |
| auto *I = cast<Instruction>(U); |
| return TheLoop != LI->getLoopFor(I->getParent()) || |
| isScalarAfterVectorization(I, VFs[i]); |
| }); |
| |
| ElementCount VF = IsScalar ? ElementCount::getFixed(1) : VFs[i]; |
| unsigned ClassID = |
| TTI.getRegisterClassForType(VF.isVector(), Inst->getType()); |
| Invariant[ClassID] += GetRegUsage(Inst->getType(), VF); |
| } |
| |
| LLVM_DEBUG({ |
| dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; |
| dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() |
| << " item\n"; |
| for (const auto &pair : MaxUsages[i]) { |
| dbgs() << "LV(REG): RegisterClass: " |
| << TTI.getRegisterClassName(pair.first) << ", " << pair.second |
| << " registers\n"; |
| } |
| dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() |
| << " item\n"; |
| for (const auto &pair : Invariant) { |
| dbgs() << "LV(REG): RegisterClass: " |
| << TTI.getRegisterClassName(pair.first) << ", " << pair.second |
| << " registers\n"; |
| } |
| }); |
| |
| RU.LoopInvariantRegs = Invariant; |
| RU.MaxLocalUsers = MaxUsages[i]; |
| RUs[i] = RU; |
| } |
| |
| return RUs; |
| } |
| |
| bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I, |
| ElementCount VF) { |
| // TODO: Cost model for emulated masked load/store is completely |
| // broken. This hack guides the cost model to use an artificially |
| // high enough value to practically disable vectorization with such |
| // operations, except where previously deployed legality hack allowed |
| // using very low cost values. This is to avoid regressions coming simply |
| // from moving "masked load/store" check from legality to cost model. |
| // Masked Load/Gather emulation was previously never allowed. |
| // Limited number of Masked Store/Scatter emulation was allowed. |
| assert((isPredicatedInst(I)) && |
| "Expecting a scalar emulated instruction"); |
| return isa<LoadInst>(I) || |
| (isa<StoreInst>(I) && |
| NumPredStores > NumberOfStoresToPredicate); |
| } |
| |
| void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { |
| // If we aren't vectorizing the loop, or if we've already collected the |
| // instructions to scalarize, there's nothing to do. Collection may already |
| // have occurred if we have a user-selected VF and are now computing the |
| // expected cost for interleaving. |
| if (VF.isScalar() || VF.isZero() || InstsToScalarize.contains(VF)) |
| return; |
| |
| // Initialize a mapping for VF in InstsToScalalarize. If we find that it's |
| // not profitable to scalarize any instructions, the presence of VF in the |
| // map will indicate that we've analyzed it already. |
| ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; |
| |
| PredicatedBBsAfterVectorization[VF].clear(); |
| |
| // Find all the instructions that are scalar with predication in the loop and |
| // determine if it would be better to not if-convert the blocks they are in. |
| // If so, we also record the instructions to scalarize. |
| for (BasicBlock *BB : TheLoop->blocks()) { |
| if (!blockNeedsPredicationForAnyReason(BB)) |
| continue; |
| for (Instruction &I : *BB) |
| if (isScalarWithPredication(&I, VF)) { |
| ScalarCostsTy ScalarCosts; |
| // Do not apply discount logic for: |
| // 1. Scalars after vectorization, as there will only be a single copy |
| // of the instruction. |
| // 2. Scalable VF, as that would lead to invalid scalarization costs. |
| // 3. Emulated masked memrefs, if a hacked cost is needed. |
| if (!isScalarAfterVectorization(&I, VF) && !VF.isScalable() && |
| !useEmulatedMaskMemRefHack(&I, VF) && |
| computePredInstDiscount(&I, ScalarCosts, VF) >= 0) |
| ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); |
| // Remember that BB will remain after vectorization. |
| PredicatedBBsAfterVectorization[VF].insert(BB); |
| for (auto *Pred : predecessors(BB)) { |
| if (Pred->getSingleSuccessor() == BB) |
| PredicatedBBsAfterVectorization[VF].insert(Pred); |
| } |
| } |
| } |
| } |
| |
| InstructionCost LoopVectorizationCostModel::computePredInstDiscount( |
| Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { |
| assert(!isUniformAfterVectorization(PredInst, VF) && |
| "Instruction marked uniform-after-vectorization will be predicated"); |
| |
| // Initialize the discount to zero, meaning that the scalar version and the |
| // vector version cost the same. |
| InstructionCost Discount = 0; |
| |
| // Holds instructions to analyze. The instructions we visit are mapped in |
| // ScalarCosts. Those instructions are the ones that would be scalarized if |
| // we find that the scalar version costs less. |
| SmallVector<Instruction *, 8> Worklist; |
| |
| // Returns true if the given instruction can be scalarized. |
| auto canBeScalarized = [&](Instruction *I) -> bool { |
| // We only attempt to scalarize instructions forming a single-use chain |
| // from the original predicated block that would otherwise be vectorized. |
| // Although not strictly necessary, we give up on instructions we know will |
| // already be scalar to avoid traversing chains that are unlikely to be |
| // beneficial. |
| if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || |
| isScalarAfterVectorization(I, VF)) |
| return false; |
| |
| // If the instruction is scalar with predication, it will be analyzed |
| // separately. We ignore it within the context of PredInst. |
| if (isScalarWithPredication(I, VF)) |
| return false; |
| |
| // If any of the instruction's operands are uniform after vectorization, |
| // the instruction cannot be scalarized. This prevents, for example, a |
| // masked load from being scalarized. |
| // |
| // We assume we will only emit a value for lane zero of an instruction |
| // marked uniform after vectorization, rather than VF identical values. |
| // Thus, if we scalarize an instruction that uses a uniform, we would |
| // create uses of values corresponding to the lanes we aren't emitting code |
| // for. This behavior can be changed by allowing getScalarValue to clone |
| // the lane zero values for uniforms rather than asserting. |
| for (Use &U : I->operands()) |
| if (auto *J = dyn_cast<Instruction>(U.get())) |
| if (isUniformAfterVectorization(J, VF)) |
| return false; |
| |
| // Otherwise, we can scalarize the instruction. |
| return true; |
| }; |
| |
| // Compute the expected cost discount from scalarizing the entire expression |
| // feeding the predicated instruction. We currently only consider expressions |
| // that are single-use instruction chains. |
| Worklist.push_back(PredInst); |
| while (!Worklist.empty()) { |
| Instruction *I = Worklist.pop_back_val(); |
| |
| // If we've already analyzed the instruction, there's nothing to do. |
| if (ScalarCosts.contains(I)) |
| continue; |
| |
| // Compute the cost of the vector instruction. Note that this cost already |
| // includes the scalarization overhead of the predicated instruction. |
| InstructionCost VectorCost = getInstructionCost(I, VF); |
| |
| // Compute the cost of the scalarized instruction. This cost is the cost of |
| // the instruction as if it wasn't if-converted and instead remained in the |
| // predicated block. We will scale this cost by block probability after |
| // computing the scalarization overhead. |
| InstructionCost ScalarCost = |
| VF.getFixedValue() * getInstructionCost(I, ElementCount::getFixed(1)); |
| |
| // Compute the scalarization overhead of needed insertelement instructions |
| // and phi nodes. |
| TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; |
| if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) { |
| ScalarCost += TTI.getScalarizationOverhead( |
| cast<VectorType>(ToVectorTy(I->getType(), VF)), |
| APInt::getAllOnes(VF.getFixedValue()), /*Insert*/ true, |
| /*Extract*/ false, CostKind); |
| ScalarCost += |
| VF.getFixedValue() * TTI.getCFInstrCost(Instruction::PHI, CostKind); |
| } |
| |
| // Compute the scalarization overhead of needed extractelement |
| // instructions. For each of the instruction's operands, if the operand can |
| // be scalarized, add it to the worklist; otherwise, account for the |
| // overhead. |
| for (Use &U : I->operands()) |
| if (auto *J = dyn_cast<Instruction>(U.get())) { |
| assert(VectorType::isValidElementType(J->getType()) && |
| "Instruction has non-scalar type"); |
| if (canBeScalarized(J)) |
| Worklist.push_back(J); |
| else if (needsExtract(J, VF)) { |
| ScalarCost += TTI.getScalarizationOverhead( |
| cast<VectorType>(ToVectorTy(J->getType(), VF)), |
| APInt::getAllOnes(VF.getFixedValue()), /*Insert*/ false, |
| /*Extract*/ true, CostKind); |
| } |
| } |
| |
| // Scale the total scalar cost by block probability. |
| ScalarCost /= getReciprocalPredBlockProb(); |
| |
| // Compute the discount. A non-negative discount means the vector version |
| // of the instruction costs more, and scalarizing would be beneficial. |
| Discount += VectorCost - ScalarCost; |
| ScalarCosts[I] = ScalarCost; |
| } |
| |
| return Discount; |
| } |
| |
| InstructionCost LoopVectorizationCostModel::expectedCost(ElementCount VF) { |
| InstructionCost Cost; |
| |
| // For each block. |
| for (BasicBlock *BB : TheLoop->blocks()) { |
| InstructionCost BlockCost; |
| |
| // For each instruction in the old loop. |
| for (Instruction &I : BB->instructionsWithoutDebug()) { |
| // Skip ignored values. |
| if (ValuesToIgnore.count(&I) || |
| (VF.isVector() && VecValuesToIgnore.count(&I))) |
| continue; |
| |
| InstructionCost C = getInstructionCost(&I, VF); |
| |
| // Check if we should override the cost. |
| if (C.isValid() && ForceTargetInstructionCost.getNumOccurrences() > 0) |
| C = InstructionCost(ForceTargetInstructionCost); |
| |
| BlockCost += C; |
| LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF " |
| << VF << " For instruction: " << I << '\n'); |
| } |
| |
| // If we are vectorizing a predicated block, it will have been |
| // if-converted. This means that the block's instructions (aside from |
| // stores and instructions that may divide by zero) will now be |
| // unconditionally executed. For the scalar case, we may not always execute |
| // the predicated block, if it is an if-else block. Thus, scale the block's |
| // cost by the probability of executing it. blockNeedsPredication from |
| // Legal is used so as to not include all blocks in tail folded loops. |
| if (VF.isScalar() && Legal->blockNeedsPredication(BB)) |
| BlockCost /= getReciprocalPredBlockProb(); |
| |
| Cost += BlockCost; |
| } |
| |
| return Cost; |
| } |
| |
| /// Gets Address Access SCEV after verifying that the access pattern |
| /// is loop invariant except the induction variable dependence. |
| /// |
| /// This SCEV can be sent to the Target in order to estimate the address |
| /// calculation cost. |
| static const SCEV *getAddressAccessSCEV( |
| Value *Ptr, |
| LoopVectorizationLegality *Legal, |
| PredicatedScalarEvolution &PSE, |
| const Loop *TheLoop) { |
| |
| auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); |
| if (!Gep) |
| return nullptr; |
| |
| // We are looking for a gep with all loop invariant indices except for one |
| // which should be an induction variable. |
| auto SE = PSE.getSE(); |
| unsigned NumOperands = Gep->getNumOperands(); |
| for (unsigned i = 1; i < NumOperands; ++i) { |
| Value *Opd = Gep->getOperand(i); |
| if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && |
| !Legal->isInductionVariable(Opd)) |
| return nullptr; |
| } |
| |
| // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. |
| return PSE.getSCEV(Ptr); |
| } |
| |
| InstructionCost |
| LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, |
| ElementCount VF) { |
| assert(VF.isVector() && |
| "Scalarization cost of instruction implies vectorization."); |
| if (VF.isScalable()) |
| return InstructionCost::getInvalid(); |
| |
| Type *ValTy = getLoadStoreType(I); |
| auto SE = PSE.getSE(); |
| |
| unsigned AS = getLoadStoreAddressSpace(I); |
| Value *Ptr = getLoadStorePointerOperand(I); |
| Type *PtrTy = ToVectorTy(Ptr->getType(), VF); |
| // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost` |
| // that it is being called from this specific place. |
| |
| // Figure out whether the access is strided and get the stride value |
| // if it's known in compile time |
| const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); |
| |
| // Get the cost of the scalar memory instruction and address computation. |
| InstructionCost Cost = |
| VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); |
| |
| // Don't pass *I here, since it is scalar but will actually be part of a |
| // vectorized loop where the user of it is a vectorized instruction. |
| TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; |
| const Align Alignment = getLoadStoreAlignment(I); |
| Cost += VF.getKnownMinValue() * TTI.getMemoryOpCost(I->getOpcode(), |
| ValTy->getScalarType(), |
| Alignment, AS, CostKind); |
| |
| // Get the overhead of the extractelement and insertelement instructions |
| // we might create due to scalarization. |
| Cost += getScalarizationOverhead(I, VF, CostKind); |
| |
| // If we have a predicated load/store, it will need extra i1 extracts and |
| // conditional branches, but may not be executed for each vector lane. Scale |
| // the cost by the probability of executing the predicated block. |
| if (isPredicatedInst(I)) { |
| Cost /= getReciprocalPredBlockProb(); |
| |
| // Add the cost of an i1 extract and a branch |
| auto *Vec_i1Ty = |
| VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF); |
| Cost += TTI.getScalarizationOverhead( |
| Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()), |
| /*Insert=*/false, /*Extract=*/true, CostKind); |
| Cost += TTI.getCFInstrCost(Instruction::Br, CostKind); |
| |
| if (useEmulatedMaskMemRefHack(I, VF)) |
| // Artificially setting to a high enough value to practically disable |
| // vectorization with such operations. |
| Cost = 3000000; |
| } |
| |
| return Cost; |
| } |
| |
| InstructionCost |
| LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, |
| ElementCount VF) { |
| Type *ValTy = getLoadStoreType(I); |
| auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); |
| Value *Ptr = getLoadStorePointerOperand(I); |
| unsigned AS = getLoadStoreAddressSpace(I); |
| int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr); |
| enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; |
| |
| assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && |
| "Stride should be 1 or -1 for consecutive memory access"); |
| const Align Alignment = getLoadStoreAlignment(I); |
| InstructionCost Cost = 0; |
| if (Legal->isMaskRequired(I)) { |
| Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, |
| CostKind); |
| } else { |
| TTI::OperandValueInfo OpInfo = TTI::getOperandInfo(I->getOperand(0)); |
| Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, |
| CostKind, OpInfo, I); |
| } |
| |
| bool Reverse = ConsecutiveStride < 0; |
| if (Reverse) |
| Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, |
| std::nullopt, CostKind, 0); |
| return Cost; |
| } |
| |
| InstructionCost |
| LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, |
| ElementCount VF) { |
| assert(Legal->isUniformMemOp(*I, VF)); |
| |
| Type *ValTy = getLoadStoreType(I); |
| auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); |
| const Align Alignment = getLoadStoreAlignment(I); |
| unsigned AS = getLoadStoreAddressSpace(I); |
| enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; |
| if (isa<LoadInst>(I)) { |
| return TTI.getAddressComputationCost(ValTy) + |
| TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, |
| CostKind) + |
| TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); |
| } |
| StoreInst *SI = cast<StoreInst>(I); |
| |
| bool isLoopInvariantStoreValue = Legal->isInvariant(SI->getValueOperand()); |
| return TTI.getAddressComputationCost(ValTy) + |
| TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, |
| CostKind) + |
| (isLoopInvariantStoreValue |
| ? 0 |
| : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, |
| CostKind, VF.getKnownMinValue() - 1)); |
| } |
| |
| InstructionCost |
| LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, |
| ElementCount VF) { |
| Type *ValTy = getLoadStoreType(I); |
| auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); |
| const Align Alignment = getLoadStoreAlignment(I); |
| const Value *Ptr = getLoadStorePointerOperand(I); |
| |
| return TTI.getAddressComputationCost(VectorTy) + |
| TTI.getGatherScatterOpCost( |
| I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, |
| TargetTransformInfo::TCK_RecipThroughput, I); |
| } |
| |
| InstructionCost |
| LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, |
| ElementCount VF) { |
| Type *ValTy = getLoadStoreType(I); |
| auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); |
| unsigned AS = getLoadStoreAddressSpace(I); |
| enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; |
| |
| auto Group = getInterleavedAccessGroup(I); |
| assert(Group && "Fail to get an interleaved access group."); |
| |
| unsigned InterleaveFactor = Group->getFactor(); |
| auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); |
| |
| // Holds the indices of existing members in the interleaved group. |
| SmallVector<unsigned, 4> Indices; |
| for (unsigned IF = 0; IF < InterleaveFactor; IF++) |
| if (Group->getMember(IF)) |
| Indices.push_back(IF); |
| |
| // Calculate the cost of the whole interleaved group. |
| bool UseMaskForGaps = |
| (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) || |
| (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor())); |
| InstructionCost Cost = TTI.getInterleavedMemoryOpCost( |
| I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), |
| AS, CostKind, Legal->isMaskRequired(I), UseMaskForGaps); |
| |
| if (Group->isReverse()) { |
| // TODO: Add support for reversed masked interleaved access. |
| assert(!Legal->isMaskRequired(I) && |
| "Reverse masked interleaved access not supported."); |
| Cost += Group->getNumMembers() * |
| TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, |
| std::nullopt, CostKind, 0); |
| } |
| return Cost; |
| } |
| |
| std::optional<InstructionCost> |
| LoopVectorizationCostModel::getReductionPatternCost( |
| Instruction *I, ElementCount VF, Type *Ty, |
| TTI::TargetCostKind CostKind) const { |
| using namespace llvm::PatternMatch; |
| // Early exit for no inloop reductions |
| if (InLoopReductions.empty() || VF.isScalar() || !isa<VectorType>(Ty)) |
| return std::nullopt; |
| auto *VectorTy = cast<VectorType>(Ty); |
| |
| // We are looking for a pattern of, and finding the minimal acceptable cost: |
| // reduce(mul(ext(A), ext(B))) or |
| // reduce(mul(A, B)) or |
| // reduce(ext(A)) or |
| // reduce(A). |
| // The basic idea is that we walk down the tree to do that, finding the root |
| // reduction instruction in InLoopReductionImmediateChains. From there we find |
| // the pattern of mul/ext and test the cost of the entire pattern vs the cost |
| // of the components. If the reduction cost is lower then we return it for the |
| // reduction instruction and 0 for the other instructions in the pattern. If |
| // it is not we return an invalid cost specifying the orignal cost method |
| // should be used. |
| Instruction *RetI = I; |
| if (match(RetI, m_ZExtOrSExt(m_Value()))) { |
| if (!RetI->hasOneUser()) |
| return std::nullopt; |
| RetI = RetI->user_back(); |
| } |
| |
| if (match(RetI, m_OneUse(m_Mul(m_Value(), m_Value()))) && |
| RetI->user_back()->getOpcode() == Instruction::Add) { |
| RetI = RetI->user_back(); |
| } |
| |
| // Test if the found instruction is a reduction, and if not return an invalid |
| // cost specifying the parent to use the original cost modelling. |
| if (!InLoopReductionImmediateChains.count(RetI)) |
| return std::nullopt; |
| |
| // Find the reduction this chain is a part of and calculate the basic cost of |
| // the reduction on its own. |
| Instruction *LastChain = InLoopReductionImmediateChains.at(RetI); |
| Instruction *ReductionPhi = LastChain; |
| while (!isa<PHINode>(ReductionPhi)) |
| ReductionPhi = InLoopReductionImmediateChains.at(ReductionPhi); |
| |
| const RecurrenceDescriptor &RdxDesc = |
| Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second; |
| |
| InstructionCost BaseCost; |
| RecurKind RK = RdxDesc.getRecurrenceKind(); |
| if (RecurrenceDescriptor::isMinMaxRecurrenceKind(RK)) { |
| Intrinsic::ID MinMaxID = getMinMaxReductionIntrinsicOp(RK); |
| BaseCost = TTI.getMinMaxReductionCost(MinMaxID, VectorTy, |
| RdxDesc.getFastMathFlags(), CostKind); |
| } else { |
| BaseCost = TTI.getArithmeticReductionCost( |
| RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind); |
| } |
| |
| // For a call to the llvm.fmuladd intrinsic we need to add the cost of a |
| // normal fmul instruction to the cost of the fadd reduction. |
| if (RK == RecurKind::FMulAdd) |
| BaseCost += |
| TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind); |
| |
| // If we're using ordered reductions then we can just return the base cost |
| // here, since getArithmeticReductionCost calculates the full ordered |
| // reduction cost when FP reassociation is not allowed. |
| if (useOrderedReductions(RdxDesc)) |
| return BaseCost; |
| |
| // Get the operand that was not the reduction chain and match it to one of the |
| // patterns, returning the better cost if it is found. |
| Instruction *RedOp = RetI->getOperand(1) == LastChain |
| ? dyn_cast<Instruction>(RetI->getOperand(0)) |
| : dyn_cast<Instruction>(RetI->getOperand(1)); |
| |
| VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); |
| |
| Instruction *Op0, *Op1; |
| if (RedOp && RdxDesc.getOpcode() == Instruction::Add && |
| match(RedOp, |
| m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) && |
| match(Op0, m_ZExtOrSExt(m_Value())) && |
| Op0->getOpcode() == Op1->getOpcode() && |
| Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && |
| !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) && |
| (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) { |
| |
| // Matched reduce.add(ext(mul(ext(A), ext(B))) |
| // Note that the extend opcodes need to all match, or if A==B they will have |
| // been converted to zext(mul(sext(A), sext(A))) as it is known positive, |
| // which is equally fine. |
| bool IsUnsigned = isa<ZExtInst>(Op0); |
| auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); |
| auto *MulType = VectorType::get(Op0->getType(), VectorTy); |
| |
| InstructionCost ExtCost = |
| TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType, |
| TTI::CastContextHint::None, CostKind, Op0); |
| InstructionCost MulCost = |
| TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind); |
| InstructionCost Ext2Cost = |
| TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType, |
| TTI::CastContextHint::None, CostKind, RedOp); |
| |
| InstructionCost RedCost = TTI.getMulAccReductionCost( |
| IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, CostKind); |
| |
| if (RedCost.isValid() && |
| RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost) |
| return I == RetI ? RedCost : 0; |
| } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) && |
| !TheLoop->isLoopInvariant(RedOp)) { |
| // Matched reduce(ext(A)) |
| bool IsUnsigned = isa<ZExtInst>(RedOp); |
| auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); |
| InstructionCost RedCost = TTI.getExtendedReductionCost( |
| RdxDesc.getOpcode(), IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, |
| RdxDesc.getFastMathFlags(), CostKind); |
| |
| InstructionCost ExtCost = |
| TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, |
| TTI::CastContextHint::None, CostKind, RedOp); |
| if (RedCost.isValid() && RedCost < BaseCost + ExtCost) |
| return I == RetI ? RedCost : 0; |
| } else if (RedOp && RdxDesc.getOpcode() == Instruction::Add && |
| match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) { |
| if (match(Op0, m_ZExtOrSExt(m_Value())) && |
| Op0->getOpcode() == Op1->getOpcode() && |
| !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { |
| bool IsUnsigned = isa<ZExtInst>(Op0); |
| Type *Op0Ty = Op0->getOperand(0)->getType(); |
| Type *Op1Ty = Op1->getOperand(0)->getType(); |
| Type *LargestOpTy = |
| Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty |
| : Op0Ty; |
| auto *ExtType = VectorType::get(LargestOpTy, VectorTy); |
| |
| // Matched reduce.add(mul(ext(A), ext(B))), where the two ext may be of |
| // different sizes. We take the largest type as the ext to reduce, and add |
| // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))). |
| InstructionCost ExtCost0 = TTI.getCastInstrCost( |
| Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy), |
| TTI::CastContextHint::None, CostKind, Op0); |
| InstructionCost ExtCost1 = TTI.getCastInstrCost( |
| Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy), |
| TTI::CastContextHint::None, CostKind, Op1); |
| InstructionCost MulCost = |
| TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); |
| |
| InstructionCost RedCost = TTI.getMulAccReductionCost( |
| IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, CostKind); |
| InstructionCost ExtraExtCost = 0; |
| if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) { |
| Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1; |
| ExtraExtCost = TTI.getCastInstrCost( |
| ExtraExtOp->getOpcode(), ExtType, |
| VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy), |
| TTI::CastContextHint::None, CostKind, ExtraExtOp); |
| } |
| |
| if (RedCost.isValid() && |
| (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost)) |
| return I == RetI ? RedCost : 0; |
| } else if (!match(I, m_ZExtOrSExt(m_Value()))) { |
| // Matched reduce.add(mul()) |
| InstructionCost MulCost = |
| TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); |
| |
| InstructionCost RedCost = TTI.getMulAccReductionCost( |
| true, RdxDesc.getRecurrenceType(), VectorTy, CostKind); |
| |
| if (RedCost.isValid() && RedCost < MulCost + BaseCost) |
| return I == RetI ? RedCost : 0; |
| } |
| } |
| |
| return I == RetI ? std::optional<InstructionCost>(BaseCost) : std::nullopt; |
| } |
| |
| InstructionCost |
| LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, |
| ElementCount VF) { |
| // Calculate scalar cost only. Vectorization cost should be ready at this |
| // moment. |
| if (VF.isScalar()) { |
| Type *ValTy = getLoadStoreType(I); |
| const Align Alignment = getLoadStoreAlignment(I); |
| unsigned AS = getLoadStoreAddressSpace(I); |
| |
| TTI::OperandValueInfo OpInfo = TTI::getOperandInfo(I->getOperand(0)); |
| return TTI.getAddressComputationCost(ValTy) + |
| TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, |
| TTI::TCK_RecipThroughput, OpInfo, I); |
| } |
| return getWideningCost(I, VF); |
| } |
| |
| InstructionCost LoopVectorizationCostModel::getScalarizationOverhead( |
| Instruction *I, ElementCount VF, TTI::TargetCostKind CostKind) const { |
| |
| // There is no mechanism yet to create a scalable scalarization loop, |
| // so this is currently Invalid. |
| if (VF.isScalable()) |
| return InstructionCost::getInvalid(); |
| |
| if (VF.isScalar()) |
| return 0; |
| |
| InstructionCost Cost = 0; |
| Type *RetTy = ToVectorTy(I->getType(), VF); |
| if (!RetTy->isVoidTy() && |
| (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) |
| Cost += TTI.getScalarizationOverhead( |
| cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), |
| /*Insert*/ true, |
| /*Extract*/ false, CostKind); |
| |
| // Some targets keep addresses scalar. |
| if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) |
| return Cost; |
| |
| // Some targets support efficient element stores. |
| if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) |
| return Cost; |
| |
| // Collect operands to consider. |
| CallInst *CI = dyn_cast<CallInst>(I); |
| Instruction::op_range Ops = CI ? CI->args() : I->operands(); |
| |
| // Skip operands that do not require extraction/scalarization and do not incur |
| // any overhead. |
| SmallVector<Type *> Tys; |
| for (auto *V : filterExtractingOperands(Ops, VF)) |
| Tys.push_back(MaybeVectorizeType(V->getType(), VF)); |
| return Cost + TTI.getOperandsScalarizationOverhead( |
| filterExtractingOperands(Ops, VF), Tys, CostKind); |
| } |
| |
| void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { |
| if (VF.isScalar()) |
| return; |
| NumPredStores = 0; |
| for (BasicBlock *BB : TheLoop->blocks()) { |
| // For each instruction in the old loop. |
| for (Instruction &I : *BB) { |
| Value *Ptr = getLoadStorePointerOperand(&I); |
| if (!Ptr) |
| continue; |
| |
| // TODO: We should generate better code and update the cost model for |
| // predicated uniform stores. Today they are treated as any other |
| // predicated store (see added test cases in |
| // invariant-store-vectorization.ll). |
| if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF)) |
| NumPredStores++; |
| |
| if (Legal->isUniformMemOp(I, VF)) { |
| auto isLegalToScalarize = [&]() { |
| if (!VF.isScalable()) |
| // Scalarization of fixed length vectors "just works". |
| return true; |
| |
| // We have dedicated lowering for unpredicated uniform loads and |
| // stores. Note that even with tail folding we know that at least |
| // one lane is active (i.e. generalized predication is not possible |
| // here), and the logic below depends on this fact. |
| if (!foldTailByMasking()) |
| return true; |
| |
| // For scalable vectors, a uniform memop load is always |
| // uniform-by-parts and we know how to scalarize that. |
| if (isa<LoadInst>(I)) |
| return true; |
| |
| // A uniform store isn't neccessarily uniform-by-part |
| // and we can't assume scalarization. |
| auto &SI = cast<StoreInst>(I); |
| return TheLoop->isLoopInvariant(SI.getValueOperand()); |
| }; |
| |
| const InstructionCost GatherScatterCost = |
| isLegalGatherOrScatter(&I, VF) ? |
| getGatherScatterCost(&I, VF) : InstructionCost::getInvalid(); |
| |
| // Load: Scalar load + broadcast |
| // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract |
| // FIXME: This cost is a significant under-estimate for tail folded |
| // memory ops. |
| const InstructionCost ScalarizationCost = isLegalToScalarize() ? |
| getUniformMemOpCost(&I, VF) : InstructionCost::getInvalid(); |
| |
| // Choose better solution for the current VF, Note that Invalid |
| // costs compare as maximumal large. If both are invalid, we get |
| // scalable invalid which signals a failure and a vectorization abort. |
| if (GatherScatterCost < ScalarizationCost) |
| setWideningDecision(&I, VF, CM_GatherScatter, GatherScatterCost); |
| else |
| setWideningDecision(&I, VF, CM_Scalarize, ScalarizationCost); |
| continue; |
| } |
| |
| // We assume that widening is the best solution when possible. |
| if (memoryInstructionCanBeWidened(&I, VF)) { |
| InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); |
| int ConsecutiveStride = Legal->isConsecutivePtr( |
| getLoadStoreType(&I), getLoadStorePointerOperand(&I)); |
| assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && |
| "Expected consecutive stride."); |
| InstWidening Decision = |
| ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; |
| setWideningDecision(&I, VF, Decision, Cost); |
| continue; |
| } |
| |
| // Choose between Interleaving, Gather/Scatter or Scalarization. |
| InstructionCost InterleaveCost = InstructionCost::getInvalid(); |
| unsigned NumAccesses = 1; |
| if (isAccessInterleaved(&I)) { |
| auto Group = getInterleavedAccessGroup(&I); |
| assert(Group && "Fail to get an interleaved access group."); |
| |
| // Make one decision for the whole group. |
| if (getWideningDecision(&I, VF) != CM_Unknown) |
| continue; |
| |
| NumAccesses = Group->getNumMembers(); |
| if (interleavedAccessCanBeWidened(&I, VF)) |
| InterleaveCost = getInterleaveGroupCost(&I, VF); |
| } |
| |
| InstructionCost GatherScatterCost = |
| isLegalGatherOrScatter(&I, VF) |
| ? getGatherScatterCost(&I, VF) * NumAccesses |
| : InstructionCost::getInvalid(); |
| |
| InstructionCost ScalarizationCost = |
| getMemInstScalarizationCost(&I, VF) * NumAccesses; |
| |
| // Choose better solution for the current VF, |
| // write down this decision and use it during vectorization. |
| InstructionCost Cost; |
| InstWidening Decision; |
| if (InterleaveCost <= GatherScatterCost && |
| InterleaveCost < ScalarizationCost) { |
| Decision = CM_Interleave; |
| Cost = InterleaveCost; |
| } else if (GatherScatterCost < ScalarizationCost) { |
| Decision = CM_GatherScatter; |
| Cost = GatherScatterCost; |
| } else { |
| Decision = CM_Scalarize; |
| Cost = ScalarizationCost; |
| } |
| // If the instructions belongs to an interleave group, the whole group |
| // receives the same decision. The whole group receives the cost, but |
| // the cost will actually be assigned to one instruction. |
| if (auto Group = getInterleavedAccessGroup(&I)) |
| setWideningDecision(Group, VF, Decision, Cost); |
| else |
| setWideningDecision(&I, VF, Decision, Cost); |
| } |
| } |
| |
| // Make sure that any load of address and any other address computation |
| // remains scalar unless there is gather/scatter support. This avoids |
| // inevitable extracts into address registers, and also has the benefit of |
| // activating LSR more, since that pass can't optimize vectorized |
| // addresses. |
| if (TTI.prefersVectorizedAddressing()) |
| return; |
| |
| // Start with all scalar pointer uses. |
| SmallPtrSet<Instruction *, 8> AddrDefs; |
| for (BasicBlock *BB : TheLoop->blocks()) |
| for (Instruction &I : *BB) { |
| Instruction *PtrDef = |
| dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); |
| if (PtrDef && TheLoop->contains(PtrDef) && |
| getWideningDecision(&I, VF) != CM_GatherScatter) |
| AddrDefs.insert(PtrDef); |
| } |
| |
| // Add all instructions used to generate the addresses. |
| SmallVector<Instruction *, 4> Worklist; |
| append_range(Worklist, AddrDefs); |
| while (!Worklist.empty()) { |
| Instruction *I = Worklist.pop_back_val(); |
| for (auto &Op : I->operands()) |
| if (auto *InstOp = dyn_cast<Instruction>(Op)) |
| if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && |
| AddrDefs.insert(InstOp).second) |
| Worklist.push_back(InstOp); |
| } |
| |
| for (auto *I : AddrDefs) { |
| if (isa<LoadInst>(I)) { |
| // Setting the desired widening decision should ideally be handled in |
| // by cost functions, but since this involves the task of finding out |
| // if the loaded register is involved in an address computation, it is |
| // instead changed here when we know this is the case. |
| InstWidening Decision = getWideningDecision(I, VF); |
| if (Decision == CM_Widen || Decision == CM_Widen_Reverse) |
| // Scalarize a widened load of address. |
| setWideningDecision( |
| I, VF, CM_Scalarize, |
| (VF.getKnownMinValue() * |
| getMemoryInstructionCost(I, ElementCount::getFixed(1)))); |
| else if (auto Group = getInterleavedAccessGroup(I)) { |
| // Scalarize an interleave group of address loads. |
| for (unsigned I = 0; I < Group->getFactor(); ++I) { |
| if (Instruction *Member = Group->getMember(I)) |
| setWideningDecision( |
| Member, VF, CM_Scalarize, |
| (VF.getKnownMinValue() * |
| getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); |
| } |
| } |
| } else |
| // Make sure I gets scalarized and a cost estimate without |
| // scalarization overhead. |
| ForcedScalars[VF].insert(I); |
| } |
| } |
| |
| void LoopVectorizationCostModel::setVectorizedCallDecision(ElementCount VF) { |
| assert(!VF.isScalar() && |
| "Trying to set a vectorization decision for a scalar VF"); |
| |
| for (BasicBlock *BB : TheLoop->blocks()) { |
| // For each instruction in the old loop. |
| for (Instruction &I : *BB) { |
| CallInst *CI = dyn_cast<CallInst>(&I); |
| |
| if (!CI) |
| continue; |
| |
| InstructionCost ScalarCost = InstructionCost::getInvalid(); |
| InstructionCost VectorCost = InstructionCost::getInvalid(); |
| InstructionCost IntrinsicCost = InstructionCost::getInvalid(); |
| TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; |
| |
| Function *ScalarFunc = CI->getCalledFunction(); |
| Type *ScalarRetTy = CI->getType(); |
| SmallVector<Type *, 4> Tys, ScalarTys; |
| bool MaskRequired = Legal->isMaskRequired(CI); |
| for (auto &ArgOp : CI->args()) |
| ScalarTys.push_back(ArgOp->getType()); |
| |
| // Compute corresponding vector type for return value and arguments. |
| Type *RetTy = ToVectorTy(ScalarRetTy, VF); |
| for (Type *ScalarTy : ScalarTys) |
| Tys.push_back(ToVectorTy(ScalarTy, VF)); |
| |
| // An in-loop reduction using an fmuladd intrinsic is a special case; |
| // we don't want the normal cost for that intrinsic. |
| if (RecurrenceDescriptor::isFMulAddIntrinsic(CI)) |
| if (auto RedCost = getReductionPatternCost(CI, VF, RetTy, CostKind)) { |
| setCallWideningDecision(CI, VF, CM_IntrinsicCall, nullptr, |
| getVectorIntrinsicIDForCall(CI, TLI), |
| std::nullopt, *RedCost); |
| continue; |
| } |
| |
| // Estimate cost of scalarized vector call. The source operands are |
| // assumed to be vectors, so we need to extract individual elements from |
| // there, execute VF scalar calls, and then gather the result into the |
| // vector return value. |
| InstructionCost ScalarCallCost = |
| TTI.getCallInstrCost(ScalarFunc, ScalarRetTy, ScalarTys, CostKind); |
| |
| // Compute costs of unpacking argument values for the scalar calls and |
| // packing the return values to a vector. |
| InstructionCost ScalarizationCost = |
| getScalarizationOverhead(CI, VF, CostKind); |
| |
| ScalarCost = ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; |
| |
| // Find the cost of vectorizing the call, if we can find a suitable |
| // vector variant of the function. |
| bool UsesMask = false; |
| VFInfo FuncInfo; |
| Function *VecFunc = nullptr; |
| // Search through any available variants for one we can use at this VF. |
| for (VFInfo &Info : VFDatabase::getMappings(*CI)) { |
| // Must match requested VF. |
| if (Info.Shape.VF != VF) |
| continue; |
| |
| // Must take a mask argument if one is required |
| if (MaskRequired && !Info.isMasked()) |
| continue; |
| |
| // Check that all parameter kinds are supported |
| bool ParamsOk = true; |
| for (VFParameter Param : Info.Shape.Parameters) { |
| switch (Param.ParamKind) { |
| case VFParamKind::Vector: |
| break; |
| case VFParamKind::OMP_Uniform: { |
| Value *ScalarParam = CI->getArgOperand(Param.ParamPos); |
| // Make sure the scalar parameter in the loop is invariant. |
| if (!PSE.getSE()->isLoopInvariant(PSE.getSCEV(ScalarParam), |
| TheLoop)) |
| ParamsOk = false; |
| break; |
| } |
| case VFParamKind::OMP_Linear: { |
| Value *ScalarParam = CI->getArgOperand(Param.ParamPos); |
| // Find the stride for the scalar parameter in this loop and see if |
| // it matches the stride for the variant. |
| // TODO: do we need to figure out the cost of an extract to get the |
| // first lane? Or do we hope that it will be folded away? |
| ScalarEvolution *SE = PSE.getSE(); |
| const auto *SAR = |
| dyn_cast<SCEVAddRecExpr>(SE->getSCEV(ScalarParam)); |
| |
| if (!SAR || SAR->getLoop() != TheLoop) { |
| ParamsOk = false; |
| break; |
| } |
| |
| const SCEVConstant *Step = |
| dyn_cast<SCEVConstant>(SAR->getStepRecurrence(*SE)); |
| |
| if (!Step || |
| Step->getAPInt().getSExtValue() != Param.LinearStepOrPos) |
| ParamsOk = false; |
| |
| break; |
| } |
| case VFParamKind::GlobalPredicate: |
| UsesMask = true; |
| break; |
| default: |
| ParamsOk = false; |
| break; |
| } |
| } |
| |
| if (!ParamsOk) |
| continue; |
| |
| // Found a suitable candidate, stop here. |
| VecFunc = CI->getModule()->getFunction(Info.VectorName); |
| FuncInfo = Info; |
| break; |
| } |
| |
| // Add in the cost of synthesizing a mask if one wasn't required. |
| InstructionCost MaskCost = 0; |
| if (VecFunc && UsesMask && !MaskRequired) |
| MaskCost = TTI.getShuffleCost( |
| TargetTransformInfo::SK_Broadcast, |
| VectorType::get(IntegerType::getInt1Ty( |
| VecFunc->getFunctionType()->getContext()), |
| VF)); |
| |
| if (TLI && VecFunc && !CI->isNoBuiltin()) |
| VectorCost = |
| TTI.getCallInstrCost(nullptr, RetTy, Tys, CostKind) + MaskCost; |
| |
| // Find the cost of an intrinsic; some targets may have instructions that |
| // perform the operation without needing an actual call. |
| Intrinsic::ID IID = getVectorIntrinsicIDForCall(CI, TLI); |
| if (IID != Intrinsic::not_intrinsic) |
| IntrinsicCost = getVectorIntrinsicCost(CI, VF); |
| |
| InstructionCost Cost = ScalarCost; |
| InstWidening Decision = CM_Scalarize; |
| |
| if (VectorCost <= Cost) { |
| Cost = VectorCost; |
| Decision = CM_VectorCall; |
| } |
| |
| if (IntrinsicCost <= Cost) { |
| Cost = IntrinsicCost; |
| Decision = CM_IntrinsicCall; |
| } |
| |
| setCallWideningDecision(CI, VF, Decision, VecFunc, IID, |
| FuncInfo.getParamIndexForOptionalMask(), Cost); |
| } |
| } |
| } |
| |
| InstructionCost |
| LoopVectorizationCostModel::getInstructionCost(Instruction *I, |
| ElementCount VF) { |
| // If we know that this instruction will remain uniform, check the cost of |
| // the scalar version. |
| if (isUniformAfterVectorization(I, VF)) |
| VF = ElementCount::getFixed(1); |
| |
| if (VF.isVector() && isProfitableToScalarize(I, VF)) |
| return InstsToScalarize[VF][I]; |
| |
| // Forced scalars do not have any scalarization overhead. |
| auto ForcedScalar = ForcedScalars.find(VF); |
| if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { |
| auto InstSet = ForcedScalar->second; |
| if (InstSet.count(I)) |
| return getInstructionCost(I, ElementCount::getFixed(1)) * |
| VF.getKnownMinValue(); |
| } |
| |
| Type *RetTy = I->getType(); |
| if (canTruncateToMinimalBitwidth(I, VF)) |
| RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); |
| auto SE = PSE.getSE(); |
| TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; |
| |
| auto hasSingleCopyAfterVectorization = [this](Instruction *I, |
| ElementCount VF) -> bool { |
| if (VF.isScalar()) |
| return true; |
| |
| auto Scalarized = InstsToScalarize.find(VF); |
| assert(Scalarized != InstsToScalarize.end() && |
| "VF not yet analyzed for scalarization profitability"); |
| return !Scalarized->second.count(I) && |
| llvm::all_of(I->users(), [&](User *U) { |
| auto *UI = cast<Instruction>(U); |
| return !Scalarized->second.count(UI); |
| }); |
| }; |
| (void) hasSingleCopyAfterVectorization; |
| |
| Type *VectorTy; |
| if (isScalarAfterVectorization(I, VF)) { |
| // With the exception of GEPs and PHIs, after scalarization there should |
| // only be one copy of the instruction generated in the loop. This is |
| // because the VF is either 1, or any instructions that need scalarizing |
| // have already been dealt with by the time we get here. As a result, |
| // it means we don't have to multiply the instruction cost by VF. |
| assert(I->getOpcode() == Instruction::GetElementPtr || |
| I->getOpcode() == Instruction::PHI || |
| (I->getOpcode() == Instruction::BitCast && |
| I->getType()->isPointerTy()) || |
| hasSingleCopyAfterVectorization(I, VF)); |
| VectorTy = RetTy; |
| } else |
| VectorTy = ToVectorTy(RetTy, VF); |
| |
| if (VF.isVector() && VectorTy->isVectorTy() && |
| !TTI.getNumberOfParts(VectorTy)) |
| return InstructionCost::getInvalid(); |
| |
| // TODO: We need to estimate the cost of intrinsic calls. |
| switch (I->getOpcode()) { |
| case Instruction::GetElementPtr: |
| // We mark this instruction as zero-cost because the cost of GEPs in |
| // vectorized code depends on whether the corresponding memory instruction |
| // is scalarized or not. Therefore, we handle GEPs with the memory |
| // instruction cost. |
| return 0; |
| case Instruction::Br: { |
| // In cases of scalarized and predicated instructions, there will be VF |
| // predicated blocks in the vectorized loop. Each branch around these |
| // blocks requires also an extract of its vector compare i1 element. |
| // Note that the conditional branch from the loop latch will be replaced by |
| // a single branch controlling the loop, so there is no extra overhead from |
| // scalarization. |
| bool ScalarPredicatedBB = false; |
| BranchInst *BI = cast<BranchInst>(I); |
| if (VF.isVector() && BI->isConditional() && |
| (PredicatedBBsAfterVectorization[VF].count(BI->getSuccessor(0)) || |
| PredicatedBBsAfterVectorization[VF].count(BI->getSuccessor(1))) && |
| BI->getParent() != TheLoop->getLoopLatch()) |
| ScalarPredicatedBB = true; |
| |
| if (ScalarPredicatedBB) { |
| // Not possible to scalarize scalable vector with predicated instructions. |
| if (VF.isScalable()) |
| return InstructionCost::getInvalid(); |
| // Return cost for branches around scalarized and predicated blocks. |
| auto *Vec_i1Ty = |
| VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); |
| return ( |
| TTI.getScalarizationOverhead( |
| Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), |
| /*Insert*/ false, /*Extract*/ true, CostKind) + |
| (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue())); |
| } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) |
| // The back-edge branch will remain, as will all scalar branches. |
| return TTI.getCFInstrCost(Instruction::Br, CostKind); |
| else |
| // This branch will be eliminated by if-conversion. |
| return 0; |
| // Note: We currently assume zero cost for an unconditional branch inside |
| // a predicated block since it will become a fall-through, although we |
| // may decide in the future to call TTI for all branches. |
| } |
| case Instruction::Switch: { |
| if (VF.isScalar()) |
| return TTI.getCFInstrCost(Instruction::Switch, CostKind); |
| auto *Switch = cast<SwitchInst>(I); |
| return Switch->getNumCases() * |
| TTI.getCmpSelInstrCost( |
| Instruction::ICmp, |
| ToVectorTy(Switch->getCondition()->getType(), VF), |
| ToVectorTy(Type::getInt1Ty(I->getContext()), VF), |
| CmpInst::ICMP_EQ, CostKind); |
| } |
| case Instruction::PHI: { |
| auto *Phi = cast<PHINode>(I); |
| |
| // First-order recurrences are replaced by vector shuffles inside the loop. |
| if (VF.isVector() && Legal->isFixedOrderRecurrence(Phi)) { |
| // For <vscale x 1 x i64>, if vscale = 1 we are unable to extract the |
| // penultimate value of the recurrence. |
| // TODO: Consider vscale_range info. |
| if (VF.isScalable() && VF.getKnownMinValue() == 1) |
| return InstructionCost::getInvalid(); |
| SmallVector<int> Mask(VF.getKnownMinValue()); |
| std::iota(Mask.begin(), Mask.end(), VF.getKnownMinValue() - 1); |
| return TTI.getShuffleCost(TargetTransformInfo::SK_Splice, |
| cast<VectorType>(VectorTy), Mask, CostKind, |
| VF.getKnownMinValue() - 1); |
| } |
| |
| // Phi nodes in non-header blocks (not inductions, reductions, etc.) are |
| // converted into select instructions. We require N - 1 selects per phi |
| // node, where N is the number of incoming values. |
| if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) |
| return (Phi->getNumIncomingValues() - 1) * |
| TTI.getCmpSelInstrCost( |
| Instruction::Select, ToVectorTy(Phi->getType(), VF), |
| ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), |
| CmpInst::BAD_ICMP_PREDICATE, CostKind); |
| |
| return TTI.getCFInstrCost(Instruction::PHI, CostKind); |
| } |
| case Instruction::UDiv: |
| case Instruction::SDiv: |
| case Instruction::URem: |
| case Instruction::SRem: |
| if (VF.isVector() && isPredicatedInst(I)) { |
| const auto [ScalarCost, SafeDivisorCost] = getDivRemSpeculationCost(I, VF); |
| return isDivRemScalarWithPredication(ScalarCost, SafeDivisorCost) ? |
| ScalarCost : SafeDivisorCost; |
| } |
| // We've proven all lanes safe to speculate, fall through. |
| [[fallthrough]]; |
| case Instruction::Add: |
| case Instruction::FAdd: |
| case Instruction::Sub: |
| case Instruction::FSub: |
| case Instruction::Mul: |
| case Instruction::FMul: |
| case Instruction::FDiv: |
| case Instruction::FRem: |
| case Instruction::Shl: |
| case Instruction::LShr: |
| case Instruction::AShr: |
| case Instruction::And: |
| case Instruction::Or: |
| case Instruction::Xor: { |
| // If we're speculating on the stride being 1, the multiplication may |
| // fold away. We can generalize this for all operations using the notion |
| // of neutral elements. (TODO) |
| if (I->getOpcode() == Instruction::Mul && |
| (PSE.getSCEV(I->getOperand(0))->isOne() || |
| PSE.getSCEV(I->getOperand(1))->isOne())) |
| return 0; |
| |
| // Detect reduction patterns |
| if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) |
| return *RedCost; |
| |
| // Certain instructions can be cheaper to vectorize if they have a constant |
| // second vector operand. One example of this are shifts on x86. |
| Value *Op2 = I->getOperand(1); |
| auto Op2Info = TTI.getOperandInfo(Op2); |
| if (Op2Info.Kind == TargetTransformInfo::OK_AnyValue && |
| Legal->isInvariant(Op2)) |
| Op2Info.Kind = TargetTransformInfo::OK_UniformValue; |
| |
| SmallVector<const Value *, 4> Operands(I->operand_values()); |
| return TTI.getArithmeticInstrCost( |
| I->getOpcode(), VectorTy, CostKind, |
| {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None}, |
| Op2Info, Operands, I, TLI); |
| } |
| case Instruction::FNeg: { |
| return TTI.getArithmeticInstrCost( |
| I->getOpcode(), VectorTy, CostKind, |
| {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None}, |
| {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None}, |
| I->getOperand(0), I); |
| } |
| case Instruction::Select: { |
| SelectInst *SI = cast<SelectInst>(I); |
| const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); |
| bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); |
| |
| const Value *Op0, *Op1; |
| using namespace llvm::PatternMatch; |
| if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) || |
| match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) { |
| // select x, y, false --> x & y |
| // select x, true, y --> x | y |
| const auto [Op1VK, Op1VP] = TTI::getOperandInfo(Op0); |
| const auto [Op2VK, Op2VP] = TTI::getOperandInfo(Op1); |
| assert(Op0->getType()->getScalarSizeInBits() == 1 && |
| Op1->getType()->getScalarSizeInBits() == 1); |
| |
| SmallVector<const Value *, 2> Operands{Op0, Op1}; |
| return TTI.getArithmeticInstrCost( |
| match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy, |
| CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP}, Operands, I); |
| } |
| |
| Type *CondTy = SI->getCondition()->getType(); |
| if (!ScalarCond) |
| CondTy = VectorType::get(CondTy, VF); |
| |
| CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; |
| if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition())) |
| Pred = Cmp->getPredicate(); |
| return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred, |
| CostKind, I); |
| } |
| case Instruction::ICmp: |
| case Instruction::FCmp: { |
| Type *ValTy = I->getOperand(0)->getType(); |
| Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); |
| if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) |
| ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); |
| VectorTy = ToVectorTy(ValTy, VF); |
| return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, |
| cast<CmpInst>(I)->getPredicate(), CostKind, |
| I); |
| } |
| case Instruction::Store: |
| case Instruction::Load: { |
| ElementCount Width = VF; |
| if (Width.isVector()) { |
| InstWidening Decision = getWideningDecision(I, Width); |
| assert(Decision != CM_Unknown && |
| "CM decision should be taken at this point"); |
| if (getWideningCost(I, VF) == InstructionCost::getInvalid()) |
| return InstructionCost::getInvalid(); |
| if (Decision == CM_Scalarize) |
| Width = ElementCount::getFixed(1); |
| } |
| VectorTy = ToVectorTy(getLoadStoreType(I), Width); |
| return getMemoryInstructionCost(I, VF); |
| } |
| case Instruction::BitCast: |
| if (I->getType()->isPointerTy()) |
| return 0; |
| [[fallthrough]]; |
| case Instruction::ZExt: |
| case Instruction::SExt: |
| case Instruction::FPToUI: |
| case Instruction::FPToSI: |
| case Instruction::FPExt: |
| case Instruction::PtrToInt: |
| case Instruction::IntToPtr: |
| case Instruction::SIToFP: |
| case Instruction::UIToFP: |
| case Instruction::Trunc: |
| case Instruction::FPTrunc: { |
| // Computes the CastContextHint from a Load/Store instruction. |
| auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { |
| assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && |
| "Expected a load or a store!"); |
| |
| if (VF.isScalar() || !TheLoop->contains(I)) |
| return TTI::CastContextHint::Normal; |
| |
| switch (getWideningDecision(I, VF)) { |
| case LoopVectorizationCostModel::CM_GatherScatter: |
| return TTI::CastContextHint::GatherScatter; |
| case LoopVectorizationCostModel::CM_Interleave: |
| return TTI::CastContextHint::Interleave; |
| case LoopVectorizationCostModel::CM_Scalarize: |
| case LoopVectorizationCostModel::CM_Widen: |
| return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked |
| : TTI::CastContextHint::Normal; |
| case LoopVectorizationCostModel::CM_Widen_Reverse: |
| return TTI::CastContextHint::Reversed; |
| case LoopVectorizationCostModel::CM_Unknown: |
| llvm_unreachable("Instr did not go through cost modelling?"); |
| case LoopVectorizationCostModel::CM_VectorCall: |
| case LoopVectorizationCostModel::CM_IntrinsicCall: |
| llvm_unreachable_internal("Instr has invalid widening decision"); |
| } |
| |
| llvm_unreachable("Unhandled case!"); |
| }; |
| |
| unsigned Opcode = I->getOpcode(); |
| TTI::CastContextHint CCH = TTI::CastContextHint::None; |
| // For Trunc, the context is the only user, which must be a StoreInst. |
| if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { |
| if (I->hasOneUse()) |
| if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) |
| CCH = ComputeCCH(Store); |
| } |
| // For Z/Sext, the context is the operand, which must be a LoadInst. |
| else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || |
| Opcode == Instruction::FPExt) { |
| if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) |
| CCH = ComputeCCH(Load); |
| } |
| |
| // We optimize the truncation of induction variables having constant |
| // integer steps. The cost of these truncations is the same as the scalar |
| // operation. |
| if (isOptimizableIVTruncate(I, VF)) { |
| auto *Trunc = cast<TruncInst>(I); |
| return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), |
| Trunc->getSrcTy(), CCH, CostKind, Trunc); |
| } |
| |
| // Detect reduction patterns |
| if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) |
| return *RedCost; |
| |
| Type *SrcScalarTy = I->getOperand(0)->getType(); |
| Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); |
| if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) |
| SrcScalarTy = |
| IntegerType::get(SrcScalarTy->getContext(), MinBWs[Op0AsInstruction]); |
| Type *SrcVecTy = |
| VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; |
| |
| if (canTruncateToMinimalBitwidth(I, VF)) { |
| // If the result type is <= the source type, there will be no extend |
| // after truncating the users to the minimal required bitwidth. |
| if (VectorTy->getScalarSizeInBits() <= SrcVecTy->getScalarSizeInBits() && |
| (I->getOpcode() == Instruction::ZExt || |
| I->getOpcode() == Instruction::SExt)) |
| return 0; |
| } |
| |
| return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); |
| } |
| case Instruction::Call: |
| return getVectorCallCost(cast<CallInst>(I), VF); |
| case Instruction::ExtractValue: |
| return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); |
| case Instruction::Alloca: |
| // We cannot easily widen alloca to a scalable alloca, as |
| // the result would need to be a vector of pointers. |
| if (VF.isScalable()) |
| return InstructionCost::getInvalid(); |
| [[fallthrough]]; |
| default: |
| // This opcode is unknown. Assume that it is the same as 'mul'. |
| return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); |
| } // end of switch. |
| } |
| |
| void LoopVectorizationCostModel::collectValuesToIgnore() { |
| // Ignore ephemeral values. |
| CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); |
| |
| SmallVector<Value *, 4> DeadInterleavePointerOps; |
| SmallVector<Value *, 4> DeadOps; |
| |
| // If a scalar epilogue is required, users outside the loop won't use |
| // live-outs from the vector loop but from the scalar epilogue. Ignore them if |
| // that is the case. |
| bool RequiresScalarEpilogue = requiresScalarEpilogue(true); |
| auto IsLiveOutDead = [this, RequiresScalarEpilogue](User *U) { |
| return RequiresScalarEpilogue && |
| !TheLoop->contains(cast<Instruction>(U)->getParent()); |
| }; |
| |
| LoopBlocksDFS DFS(TheLoop); |
| DFS.perform(LI); |
| MapVector<Value *, SmallVector<Value *>> DeadInvariantStoreOps; |
| for (BasicBlock *BB : reverse(make_range(DFS.beginRPO(), DFS.endRPO()))) |
| for (Instruction &I : reverse(*BB)) { |
| // Find all stores to invariant variables. Since they are going to sink |
| // outside the loop we do not need calculate cost for them. |
| StoreInst *SI; |
| if ((SI = dyn_cast<StoreInst>(&I)) && |
| Legal->isInvariantAddressOfReduction(SI->getPointerOperand())) { |
| ValuesToIgnore.insert(&I); |
| auto I = DeadInvariantStoreOps.insert({SI->getPointerOperand(), {}}); |
| I.first->second.push_back(SI->getValueOperand()); |
| } |
| |
| if (VecValuesToIgnore.contains(&I) || ValuesToIgnore.contains(&I)) |
| continue; |
| |
| // Add instructions that would be trivially dead and are only used by |
| // values already ignored to DeadOps to seed worklist. |
| if (wouldInstructionBeTriviallyDead(&I, TLI) && |
| all_of(I.users(), [this, IsLiveOutDead](User *U) { |
| return VecValuesToIgnore.contains(U) || |
| ValuesToIgnore.contains(U) || IsLiveOutDead(U); |
| })) |
| DeadOps.push_back(&I); |
| |
| // For interleave groups, we only create a pointer for the start of the |
| // interleave group. Queue up addresses of group members except the insert |
| // position for further processing. |
| if (isAccessInterleaved(&I)) { |
| auto *Group = getInterleavedAccessGroup(&I); |
| if (Group->getInsertPos() == &I) |
| continue; |
| Value *PointerOp = getLoadStorePointerOperand(&I); |
| DeadInterleavePointerOps.push_back(PointerOp); |
| } |
| |
| // Queue branches for analysis. They are dead, if their successors only |
| // contain dead instructions. |
| if (auto *Br = dyn_cast<BranchInst>(&I)) { |
| if (Br->isConditional()) |
| DeadOps.push_back(&I); |
| } |
| } |
| |
| // Mark ops feeding interleave group members as free, if they are only used |
| // by other dead computations. |
| for (unsigned I = 0; I != DeadInterleavePointerOps.size(); ++I) { |
| auto *Op = dyn_cast<Instruction>(DeadInterleavePointerOps[I]); |
| if (!Op || !TheLoop->contains(Op) || any_of(Op->users(), [this](User *U) { |
| Instruction *UI = cast<Instruction>(U); |
| return !VecValuesToIgnore.contains(U) && |
| (!isAccessInterleaved(UI) || |
| getInterleavedAccessGroup(UI)->getInsertPos() == UI); |
| })) |
| continue; |
| VecValuesToIgnore.insert(Op); |
| DeadInterleavePointerOps.append(Op->op_begin(), Op->op_end()); |
| } |
| |
| for (const auto &[_, Ops] : DeadInvariantStoreOps) { |
| for (Value *Op : ArrayRef(Ops).drop_back()) |
| DeadOps.push_back(Op); |
| } |
| // Mark ops that would be trivially dead and are only used by ignored |
| // instructions as free. |
| BasicBlock *Header = TheLoop->getHeader(); |
| |
| // Returns true if the block contains only dead instructions. Such blocks will |
| // be removed by VPlan-to-VPlan transforms and won't be considered by the |
| // VPlan-based cost model, so skip them in the legacy cost-model as well. |
| auto IsEmptyBlock = [this](BasicBlock *BB) { |
| return all_of(*BB, [this](Instruction &I) { |
| return ValuesToIgnore.contains(&I) || VecValuesToIgnore.contains(&I) || |
| (isa<BranchInst>(&I) && !cast<BranchInst>(&I)->isConditional()); |
| }); |
| }; |
| for (unsigned I = 0; I != DeadOps.size(); ++I) { |
| auto *Op = dyn_cast<Instruction>(DeadOps[I]); |
| |
| // Check if the branch should be considered dead. |
| if (auto *Br = dyn_cast_or_null<BranchInst>(Op)) { |
| BasicBlock *ThenBB = Br->getSuccessor(0); |
| BasicBlock *ElseBB = Br->getSuccessor(1); |
| bool ThenEmpty = IsEmptyBlock(ThenBB); |
| bool ElseEmpty = IsEmptyBlock(ElseBB); |
| if ((ThenEmpty && ElseEmpty) || |
| (ThenEmpty && ThenBB->getSingleSuccessor() == ElseBB && |
| ElseBB->phis().empty()) || |
| (ElseEmpty && ElseBB->getSingleSuccessor() == ThenBB && |
| ThenBB->phis().empty())) { |
| VecValuesToIgnore.insert(Br); |
| DeadOps.push_back(Br->getCondition()); |
| } |
| continue; |
| } |
| |
| // Skip any op that shouldn't be considered dead. |
| if (!Op || !TheLoop->contains(Op) || |
| (isa<PHINode>(Op) && Op->getParent() == Header) || |
| !wouldInstructionBeTriviallyDead(Op, TLI) || |
| any_of(Op->users(), [this, IsLiveOutDead](User *U) { |
| return !VecValuesToIgnore.contains(U) && |
| !ValuesToIgnore.contains(U) && !IsLiveOutDead(U); |
| })) |
| continue; |
| |
| if (!TheLoop->contains(Op->getParent())) |
| continue; |
| |
| // If all of Op's users are in ValuesToIgnore, add it to ValuesToIgnore |
| // which applies for both scalar and vector versions. Otherwise it is only |
| // dead in vector versions, so only add it to VecValuesToIgnore. |
| if (all_of(Op->users(), |
| [this](User *U) { return ValuesToIgnore.contains(U); })) |
| ValuesToIgnore.insert(Op); |
| |
| VecValuesToIgnore.insert(Op); |
| DeadOps.append(Op->op_begin(), Op->op_end()); |
| } |
| |
| // Ignore type-promoting instructions we identified during reduction |
| // detection. |
| for (const auto &Reduction : Legal->getReductionVars()) { |
| const RecurrenceDescriptor &RedDes = Reduction.second; |
| const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); |
| VecValuesToIgnore.insert(Casts.begin(), Casts.end()); |
| } |
| // Ignore type-casting instructions we identified during induction |
| // detection. |
| for (const auto &Induction : Legal->getInductionVars()) { |
| const InductionDescriptor &IndDes = Induction.second; |
| const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); |
| VecValuesToIgnore.insert(Casts.begin(), Casts.end()); |
| } |
| } |
| |
| void LoopVectorizationCostModel::collectInLoopReductions() { |
| for (const auto &Reduction : Legal->getReductionVars()) { |
| PHINode *Phi = Reduction.first; |
| const RecurrenceDescriptor &RdxDesc = Reduction.second; |
| |
| // We don't collect reductions that are type promoted (yet). |
| if (RdxDesc.getRecurrenceType() != Phi->getType()) |
| continue; |
| |
| // If the target would prefer this reduction to happen "in-loop", then we |
| // want to record it as such. |
| unsigned Opcode = RdxDesc.getOpcode(); |
| if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) && |
| !TTI.preferInLoopReduction(Opcode, Phi->getType(), |
| TargetTransformInfo::ReductionFlags())) |
| continue; |
| |
| // Check that we can correctly put the reductions into the loop, by |
| // finding the chain of operations that leads from the phi to the loop |
| // exit value. |
| SmallVector<Instruction *, 4> ReductionOperations = |
| RdxDesc.getReductionOpChain(Phi, TheLoop); |
| bool InLoop = !ReductionOperations.empty(); |
| |
| if (InLoop) { |
| InLoopReductions.insert(Phi); |
| // Add the elements to InLoopReductionImmediateChains for cost modelling. |
| Instruction *LastChain = Phi; |
| for (auto *I : ReductionOperations) { |
| InLoopReductionImmediateChains[I] = LastChain; |
| LastChain = I; |
| } |
| } |
| LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") |
| << " reduction for phi: " << *Phi << "\n"); |
| } |
| } |
| |
| VPValue *VPBuilder::createICmp(CmpInst::Predicate Pred, VPValue *A, VPValue *B, |
| DebugLoc DL, const Twine &Name) { |
| assert(Pred >= CmpInst::FIRST_ICMP_PREDICATE && |
| Pred <= CmpInst::LAST_ICMP_PREDICATE && "invalid predicate"); |
| return tryInsertInstruction( |
| new VPInstruction(Instruction::ICmp, Pred, A, B, DL, Name)); |
| } |
| |
| // This function will select a scalable VF if the target supports scalable |
| // vectors and a fixed one otherwise. |
| // TODO: we could return a pair of values that specify the max VF and |
| // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of |
| // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment |
| // doesn't have a cost model that can choose which plan to execute if |
| // more than one is generated. |
| static ElementCount determineVPlanVF(const TargetTransformInfo &TTI, |
| LoopVectorizationCostModel &CM) { |
| unsigned WidestType; |
| std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); |
| |
| TargetTransformInfo::RegisterKind RegKind = |
| TTI.enableScalableVectorization() |
| ? TargetTransformInfo::RGK_ScalableVector |
| : TargetTransformInfo::RGK_FixedWidthVector; |
| |
| TypeSize RegSize = TTI.getRegisterBitWidth(RegKind); |
| unsigned N = RegSize.getKnownMinValue() / WidestType; |
| return ElementCount::get(N, RegSize.isScalable()); |
| } |
| |
| VectorizationFactor |
| LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { |
| ElementCount VF = UserVF; |
| // Outer loop handling: They may require CFG and instruction level |
| // transformations before even evaluating whether vectorization is profitable. |
| // Since we cannot modify the incoming IR, we need to build VPlan upfront in |
| // the vectorization pipeline. |
| if (!OrigLoop->isInnermost()) { |
| // If the user doesn't provide a vectorization factor, determine a |
| // reasonable one. |
| if (UserVF.isZero()) { |
| VF = determineVPlanVF(TTI, CM); |
| LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); |
| |
| // Make sure we have a VF > 1 for stress testing. |
| if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { |
| LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " |
| << "overriding computed VF.\n"); |
| VF = ElementCount::getFixed(4); |
| } |
| } else if (UserVF.isScalable() && !TTI.supportsScalableVectors() && |
| !ForceTargetSupportsScalableVectors) { |
| LLVM_DEBUG(dbgs() << "LV: Not vectorizing. Scalable VF requested, but " |
| << "not supported by the target.\n"); |
| reportVectorizationFailure( |
| "Scalable vectorization requested but not supported by the target", |
| "the scalable user-specified vectorization width for outer-loop " |
| "vectorization cannot be used because the target does not support " |
| "scalable vectors.", |
| "ScalableVFUnfeasible", ORE, OrigLoop); |
| return VectorizationFactor::Disabled(); |
| } |
| assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); |
| assert(isPowerOf2_32(VF.getKnownMinValue()) && |
| "VF needs to be a power of two"); |
| LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") |
| << "VF " << VF << " to build VPlans.\n"); |
| buildVPlans(VF, VF); |
| |
| // For VPlan build stress testing, we bail out after VPlan construction. |
| if (VPlanBuildStressTest) |
| return VectorizationFactor::Disabled(); |
| |
| return {VF, 0 /*Cost*/, 0 /* ScalarCost */}; |
| } |
| |
| LLVM_DEBUG( |
| dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " |
| "VPlan-native path.\n"); |
| return VectorizationFactor::Disabled(); |
| } |
| |
| void LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { |
| assert(OrigLoop->isInnermost() && "Inner loop expected."); |
| CM.collectValuesToIgnore(); |
| CM.collectElementTypesForWidening(); |
| |
| FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC); |
| if (!MaxFactors) // Cases that should not to be vectorized nor interleaved. |
| return; |
| |
| // Invalidate interleave groups if all blocks of loop will be predicated. |
| if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) && |
| !useMaskedInterleavedAccesses(TTI)) { |
| LLVM_DEBUG( |
| dbgs() |
| << "LV: Invalidate all interleaved groups due to fold-tail by masking " |
| "which requires masked-interleaved support.\n"); |
| if (CM.InterleaveInfo.invalidateGroups()) |
| // Invalidating interleave groups also requires invalidating all decisions |
| // based on them, which includes widening decisions and uniform and scalar |
| // values. |
| CM.invalidateCostModelingDecisions(); |
| } |
| |
| if (CM.foldTailByMasking()) |
| Legal->prepareToFoldTailByMasking(); |
| |
| ElementCount MaxUserVF = |
| UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF; |
| if (UserVF) { |
| if (!ElementCount::isKnownLE(UserVF, MaxUserVF)) { |
| reportVectorizationInfo( |
| "UserVF ignored because it may be larger than the maximal safe VF", |
| "InvalidUserVF", ORE, OrigLoop); |
| } else { |
| assert(isPowerOf2_32(UserVF.getKnownMinValue()) && |
| "VF needs to be a power of two"); |
| // Collect the instructions (and their associated costs) that will be more |
| // profitable to scalarize. |
| CM.collectInLoopReductions(); |
| if (CM.selectUserVectorizationFactor(UserVF)) { |
| LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); |
| buildVPlansWithVPRecipes(UserVF, UserVF); |
| LLVM_DEBUG(printPlans(dbgs())); |
| return; |
| } else |
| reportVectorizationInfo("UserVF ignored because of invalid costs.", |
| "InvalidCost", ORE, OrigLoop); |
| } |
| } |
| |
| // Collect the Vectorization Factor Candidates. |
| SmallVector<ElementCount> VFCandidates; |
| for (auto VF = ElementCount::getFixed(1); |
| ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2) |
| VFCandidates.push_back(VF); |
| for (auto VF = ElementCount::getScalable(1); |
| ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2) |
| VFCandidates.push_back(VF); |
| |
| CM.collectInLoopReductions(); |
| for (const auto &VF : VFCandidates) { |
| // Collect Uniform and Scalar instructions after vectorization with VF. |
| CM.collectUniformsAndScalars(VF); |
| |
| // Collect the instructions (and their associated costs) that will be more |
| // profitable to scalarize. |
| if (VF.isVector()) |
| CM.collectInstsToScalarize(VF); |
| } |
| |
| buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF); |
| buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF); |
| |
| LLVM_DEBUG(printPlans(dbgs())); |
| } |
| |
| InstructionCost VPCostContext::getLegacyCost(Instruction *UI, |
| ElementCount VF) const { |
| return CM.getInstructionCost(UI, VF); |
| } |
| |
| bool VPCostContext::skipCostComputation(Instruction *UI, bool IsVector) const { |
| return CM.ValuesToIgnore.contains(UI) || |
| (IsVector && CM.VecValuesToIgnore.contains(UI)) || |
| SkipCostComputation.contains(UI); |
| } |
| |
| InstructionCost LoopVectorizationPlanner::cost(VPlan &Plan, |
| ElementCount VF) const { |
| InstructionCost Cost = 0; |
| LLVMContext &LLVMCtx = OrigLoop->getHeader()->getContext(); |
| VPCostContext CostCtx(CM.TTI, *CM.TLI, Legal->getWidestInductionType(), |
| LLVMCtx, CM); |
| |
| // Cost modeling for inductions is inaccurate in the legacy cost model |
| // compared to the recipes that are generated. To match here initially during |
| // VPlan cost model bring up directly use the induction costs from the legacy |
| // cost model. Note that we do this as pre-processing; the VPlan may not have |
| // any recipes associated with the original induction increment instruction |
| // and may replace truncates with VPWidenIntOrFpInductionRecipe. We precompute |
| // the cost of induction phis and increments (both that are represented by |
| // recipes and those that are not), to avoid distinguishing between them here, |
| // and skip all recipes that represent induction phis and increments (the |
| // former case) later on, if they exist, to avoid counting them twice. |
| // Similarly we pre-compute the cost of any optimized truncates. |
| // TODO: Switch to more accurate costing based on VPlan. |
| for (const auto &[IV, IndDesc] : Legal->getInductionVars()) { |
| Instruction *IVInc = cast<Instruction>( |
| IV->getIncomingValueForBlock(OrigLoop->getLoopLatch())); |
| SmallVector<Instruction *> IVInsts = {IVInc}; |
| for (unsigned I = 0; I != IVInsts.size(); I++) { |
| for (Value *Op : IVInsts[I]->operands()) { |
| auto *OpI = dyn_cast<Instruction>(Op); |
| if (Op == IV || !OpI || !OrigLoop->contains(OpI) || !Op->hasOneUse()) |
| continue; |
| IVInsts.push_back(OpI); |
| } |
| } |
| IVInsts.push_back(IV); |
| for (User *U : IV->users()) { |
| auto *CI = cast<Instruction>(U); |
| if (!CostCtx.CM.isOptimizableIVTruncate(CI, VF)) |
| continue; |
| IVInsts.push_back(CI); |
| } |
| for (Instruction *IVInst : IVInsts) { |
| if (!CostCtx.SkipCostComputation.insert(IVInst).second) |
| continue; |
| InstructionCost InductionCost = CostCtx.getLegacyCost(IVInst, VF); |
| LLVM_DEBUG({ |
| dbgs() << "Cost of " << InductionCost << " for VF " << VF |
| << ": induction instruction " << *IVInst << "\n"; |
| }); |
| Cost += InductionCost; |
| } |
| } |
| |
| /// Compute the cost of all exiting conditions of the loop using the legacy |
| /// cost model. This is to match the legacy behavior, which adds the cost of |
| /// all exit conditions. Note that this over-estimates the cost, as there will |
| /// be a single condition to control the vector loop. |
| SmallVector<BasicBlock *> Exiting; |
| CM.TheLoop->getExitingBlocks(Exiting); |
| SetVector<Instruction *> ExitInstrs; |
| // Collect all exit conditions. |
| for (BasicBlock *EB : Exiting) { |
| auto *Term = dyn_cast<BranchInst>(EB->getTerminator()); |
| if (!Term) |
| continue; |
| if (auto *CondI = dyn_cast<Instruction>(Term->getOperand(0))) { |
| ExitInstrs.insert(CondI); |
| } |
| } |
| // Compute the cost of all instructions only feeding the exit conditions. |
| for (unsigned I = 0; I != ExitInstrs.size(); ++I) { |
| Instruction *CondI = ExitInstrs[I]; |
| if (!OrigLoop->contains(CondI) || |
| !CostCtx.SkipCostComputation.insert(CondI).second) |
| continue; |
| Cost += CostCtx.getLegacyCost(CondI, VF); |
| for (Value *Op : CondI->operands()) { |
| auto *OpI = dyn_cast<Instruction>(Op); |
| if (!OpI || any_of(OpI->users(), [&ExitInstrs, this](User *U) { |
| return OrigLoop->contains(cast<Instruction>(U)->getParent()) && |
| !ExitInstrs.contains(cast<Instruction>(U)); |
| })) |
| continue; |
| ExitInstrs.insert(OpI); |
| } |
| } |
| |
| // The legacy cost model has special logic to compute the cost of in-loop |
| // reductions, which may be smaller than the sum of all instructions involved |
| // in the reduction. For AnyOf reductions, VPlan codegen may remove the select |
| // which the legacy cost model uses to assign cost. Pre-compute their costs |
| // for now. |
| // TODO: Switch to costing based on VPlan once the logic has been ported. |
| for (const auto &[RedPhi, RdxDesc] : Legal->getReductionVars()) { |
| if (!CM.isInLoopReduction(RedPhi) && |
| !RecurrenceDescriptor::isAnyOfRecurrenceKind( |
| RdxDesc.getRecurrenceKind())) |
| continue; |
| |
| // AnyOf reduction codegen may remove the select. To match the legacy cost |
| // model, pre-compute the cost for AnyOf reductions here. |
| if (RecurrenceDescriptor::isAnyOfRecurrenceKind( |
| RdxDesc.getRecurrenceKind())) { |
| auto *Select = cast<SelectInst>(*find_if( |
| RedPhi->users(), [](User *U) { return isa<SelectInst>(U); })); |
| assert(!CostCtx.SkipCostComputation.contains(Select) && |
| "reduction op visited multiple times"); |
| CostCtx.SkipCostComputation.insert(Select); |
| auto ReductionCost = CostCtx.getLegacyCost(Select, VF); |
| LLVM_DEBUG(dbgs() << "Cost of " << ReductionCost << " for VF " << VF |
| << ":\n any-of reduction " << *Select << "\n"); |
| Cost += ReductionCost; |
| continue; |
| } |
| |
| const auto &ChainOps = RdxDesc.getReductionOpChain(RedPhi, OrigLoop); |
| SetVector<Instruction *> ChainOpsAndOperands(ChainOps.begin(), |
| ChainOps.end()); |
| // Also include the operands of instructions in the chain, as the cost-model |
| // may mark extends as free. |
| for (auto *ChainOp : ChainOps) { |
| for (Value *Op : ChainOp->operands()) { |
| if (auto *I = dyn_cast<Instruction>(Op)) |
| ChainOpsAndOperands.insert(I); |
| } |
| } |
| |
| // Pre-compute the cost for I, if it has a reduction pattern cost. |
| for (Instruction *I : ChainOpsAndOperands) { |
| auto ReductionCost = CM.getReductionPatternCost( |
| I, VF, ToVectorTy(I->getType(), VF), TTI::TCK_RecipThroughput); |
| if (!ReductionCost) |
| continue; |
| |
| assert(!CostCtx.SkipCostComputation.contains(I) && |
| "reduction op visited multiple times"); |
| CostCtx.SkipCostComputation.insert(I); |
| LLVM_DEBUG(dbgs() << "Cost of " << ReductionCost << " for VF " << VF |
| << ":\n in-loop reduction " << *I << "\n"); |
| Cost += *ReductionCost; |
| } |
| } |
| |
| // Pre-compute the costs for branches except for the backedge, as the number |
| // of replicate regions in a VPlan may not directly match the number of |
| // branches, which would lead to different decisions. |
| // TODO: Compute cost of branches for each replicate region in the VPlan, |
| // which is more accurate than the legacy cost model. |
| for (BasicBlock *BB : OrigLoop->blocks()) { |
| if (BB == OrigLoop->getLoopLatch()) |
| continue; |
| CostCtx.SkipCostComputation.insert(BB->getTerminator()); |
| auto BranchCost = CostCtx.getLegacyCost(BB->getTerminator(), VF); |
| Cost += BranchCost; |
| } |
| // Now compute and add the VPlan-based cost. |
| Cost += Plan.cost(VF, CostCtx); |
| LLVM_DEBUG(dbgs() << "Cost for VF " << VF << ": " << Cost << "\n"); |
| return Cost; |
| } |
| |
| VectorizationFactor LoopVectorizationPlanner::computeBestVF() { |
| if (VPlans.empty()) |
| return VectorizationFactor::Disabled(); |
| // If there is a single VPlan with a single VF, return it directly. |
| VPlan &FirstPlan = *VPlans[0]; |
| if (VPlans.size() == 1 && size(FirstPlan.vectorFactors()) == 1) |
| return {*FirstPlan.vectorFactors().begin(), 0, 0}; |
| |
| ElementCount ScalarVF = ElementCount::getFixed(1); |
| assert(hasPlanWithVF(ScalarVF) && |
| "More than a single plan/VF w/o any plan having scalar VF"); |
| |
| // TODO: Compute scalar cost using VPlan-based cost model. |
| InstructionCost ScalarCost = CM.expectedCost(ScalarVF); |
| LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ScalarCost << ".\n"); |
| VectorizationFactor ScalarFactor(ScalarVF, ScalarCost, ScalarCost); |
| VectorizationFactor BestFactor = ScalarFactor; |
| |
| bool ForceVectorization = Hints.getForce() == LoopVectorizeHints::FK_Enabled; |
| if (ForceVectorization) { |
| // Ignore scalar width, because the user explicitly wants vectorization. |
| // Initialize cost to max so that VF = 2 is, at least, chosen during cost |
| // evaluation. |
| BestFactor.Cost = InstructionCost::getMax(); |
| } |
| |
| for (auto &P : VPlans) { |
| for (ElementCount VF : P->vectorFactors()) { |
| if (VF.isScalar()) |
| continue; |
| if (!ForceVectorization && !willGenerateVectors(*P, VF, TTI)) { |
| LLVM_DEBUG( |
| dbgs() |
| << "LV: Not considering vector loop of width " << VF |
| << " because it will not generate any vector instructions.\n"); |
| continue; |
| } |
| |
| InstructionCost Cost = cost(*P, VF); |
| VectorizationFactor CurrentFactor(VF, Cost, ScalarCost); |
| if (isMoreProfitable(CurrentFactor, BestFactor)) |
| BestFactor = CurrentFactor; |
| |
| // If profitable add it to ProfitableVF list. |
| if (isMoreProfitable(CurrentFactor, ScalarFactor)) |
| ProfitableVFs.push_back(CurrentFactor); |
| } |
| } |
| |
| #ifndef NDEBUG |
| // Select the optimal vectorization factor according to the legacy cost-model. |
| // This is now only used to verify the decisions by the new VPlan-based |
| // cost-model and will be retired once the VPlan-based cost-model is |
| // stabilized. |
| VectorizationFactor LegacyVF = selectVectorizationFactor(); |
| assert(BestFactor.Width == LegacyVF.Width && |
| " VPlan cost model and legacy cost model disagreed"); |
| assert((BestFactor.Width.isScalar() || BestFactor.ScalarCost > 0) && |
| "when vectorizing, the scalar cost must be computed."); |
| #endif |
| |
| return BestFactor; |
| } |
| |
| static void AddRuntimeUnrollDisableMetaData(Loop *L) { |
| SmallVector<Metadata *, 4> MDs; |
| // Reserve first location for self reference to the LoopID metadata node. |
| MDs.push_back(nullptr); |
| bool IsUnrollMetadata = false; |
| MDNode *LoopID = L->getLoopID(); |
| if (LoopID) { |
| // First find existing loop unrolling disable metadata. |
| for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { |
| auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); |
| if (MD) { |
| const auto *S = dyn_cast<MDString>(MD->getOperand(0)); |
| IsUnrollMetadata = |
| S && S->getString().starts_with("llvm.loop.unroll.disable"); |
| } |
| MDs.push_back(LoopID->getOperand(i)); |
| } |
| } |
| |
| if (!IsUnrollMetadata) { |
| // Add runtime unroll disable metadata. |
| LLVMContext &Context = L->getHeader()->getContext(); |
| SmallVector<Metadata *, 1> DisableOperands; |
| DisableOperands.push_back( |
| MDString::get(Context, "llvm.loop.unroll.runtime.disable")); |
| MDNode *DisableNode = MDNode::get(Context, DisableOperands); |
| MDs.push_back(DisableNode); |
| MDNode *NewLoopID = MDNode::get(Context, MDs); |
| // Set operand 0 to refer to the loop id itself. |
| NewLoopID->replaceOperandWith(0, NewLoopID); |
| L->setLoopID(NewLoopID); |
| } |
| } |
| |
| // Check if \p RedResult is a ComputeReductionResult instruction, and if it is |
| // create a merge phi node for it and add it to \p ReductionResumeValues. |
| static void createAndCollectMergePhiForReduction( |
| VPInstruction *RedResult, |
| DenseMap<const RecurrenceDescriptor *, Value *> &ReductionResumeValues, |
| VPTransformState &State, Loop *OrigLoop, BasicBlock *LoopMiddleBlock, |
| bool VectorizingEpilogue) { |
| if (!RedResult || |
| RedResult->getOpcode() != VPInstruction::ComputeReductionResult) |
| return; |
| |
| auto *PhiR = cast<VPReductionPHIRecipe>(RedResult->getOperand(0)); |
| const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); |
| |
| Value *FinalValue = |
| State.get(RedResult, VPIteration(State.UF - 1, VPLane::getFirstLane())); |
| auto *ResumePhi = |
| dyn_cast<PHINode>(PhiR->getStartValue()->getUnderlyingValue()); |
| if (VectorizingEpilogue && RecurrenceDescriptor::isAnyOfRecurrenceKind( |
| RdxDesc.getRecurrenceKind())) { |
| auto *Cmp = cast<ICmpInst>(PhiR->getStartValue()->getUnderlyingValue()); |
| assert(Cmp->getPredicate() == CmpInst::ICMP_NE); |
| assert(Cmp->getOperand(1) == RdxDesc.getRecurrenceStartValue()); |
| ResumePhi = cast<PHINode>(Cmp->getOperand(0)); |
| } |
| assert((!VectorizingEpilogue || ResumePhi) && |
| "when vectorizing the epilogue loop, we need a resume phi from main " |
| "vector loop"); |
| |
| // TODO: bc.merge.rdx should not be created here, instead it should be |
| // modeled in VPlan. |
| BasicBlock *LoopScalarPreHeader = OrigLoop->getLoopPreheader(); |
| // Create a phi node that merges control-flow from the backedge-taken check |
| // block and the middle block. |
| auto *BCBlockPhi = |
| PHINode::Create(FinalValue->getType(), 2, "bc.merge.rdx", |
| LoopScalarPreHeader->getTerminator()->getIterator()); |
| |
| // If we are fixing reductions in the epilogue loop then we should already |
| // have created a bc.merge.rdx Phi after the main vector body. Ensure that |
| // we carry over the incoming values correctly. |
| for (auto *Incoming : predecessors(LoopScalarPreHeader)) { |
| if (Incoming == LoopMiddleBlock) |
| BCBlockPhi->addIncoming(FinalValue, Incoming); |
| else if (ResumePhi && is_contained(ResumePhi->blocks(), Incoming)) |
| BCBlockPhi->addIncoming(ResumePhi->getIncomingValueForBlock(Incoming), |
| Incoming); |
| else |
| BCBlockPhi->addIncoming(RdxDesc.getRecurrenceStartValue(), Incoming); |
| } |
| |
| auto *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); |
| // TODO: This fixup should instead be modeled in VPlan. |
| // Fix the scalar loop reduction variable with the incoming reduction sum |
| // from the vector body and from the backedge value. |
| int IncomingEdgeBlockIdx = |
| OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch()); |
| assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); |
| // Pick the other block. |
| int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); |
| OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); |
| Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); |
| OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); |
| |
| ReductionResumeValues[&RdxDesc] = BCBlockPhi; |
| } |
| |
| std::pair<DenseMap<const SCEV *, Value *>, |
| DenseMap<const RecurrenceDescriptor *, Value *>> |
| LoopVectorizationPlanner::executePlan( |
| ElementCount BestVF, unsigned BestUF, VPlan &BestVPlan, |
| InnerLoopVectorizer &ILV, DominatorTree *DT, bool IsEpilogueVectorization, |
| const DenseMap<const SCEV *, Value *> *ExpandedSCEVs) { |
| assert(BestVPlan.hasVF(BestVF) && |
| "Trying to execute plan with unsupported VF"); |
| assert(BestVPlan.hasUF(BestUF) && |
| "Trying to execute plan with unsupported UF"); |
| assert( |
| (IsEpilogueVectorization || !ExpandedSCEVs) && |
| "expanded SCEVs to reuse can only be used during epilogue vectorization"); |
| (void)IsEpilogueVectorization; |
| |
| VPlanTransforms::optimizeForVFAndUF(BestVPlan, BestVF, BestUF, PSE); |
| |
| LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF |
| << ", UF=" << BestUF << '\n'); |
| BestVPlan.setName("Final VPlan"); |
| LLVM_DEBUG(BestVPlan.dump()); |
| |
| // Perform the actual loop transformation. |
| VPTransformState State(BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan, |
| OrigLoop->getHeader()->getContext()); |
| |
| // 0. Generate SCEV-dependent code into the preheader, including TripCount, |
| // before making any changes to the CFG. |
| if (!BestVPlan.getPreheader()->empty()) { |
| State.CFG.PrevBB = OrigLoop->getLoopPreheader(); |
| State.Builder.SetInsertPoint(OrigLoop->getLoopPreheader()->getTerminator()); |
| BestVPlan.getPreheader()->execute(&State); |
| } |
| if (!ILV.getTripCount()) |
| ILV.setTripCount(State.get(BestVPlan.getTripCount(), {0, 0})); |
| else |
| assert(IsEpilogueVectorization && "should only re-use the existing trip " |
| "count during epilogue vectorization"); |
| |
| // 1. Set up the skeleton for vectorization, including vector pre-header and |
| // middle block. The vector loop is created during VPlan execution. |
| Value *CanonicalIVStartValue; |
| std::tie(State.CFG.PrevBB, CanonicalIVStartValue) = |
| ILV.createVectorizedLoopSkeleton(ExpandedSCEVs ? *ExpandedSCEVs |
| : State.ExpandedSCEVs); |
| #ifdef EXPENSIVE_CHECKS |
| assert(DT->verify(DominatorTree::VerificationLevel::Fast)); |
| #endif |
| |
| // Only use noalias metadata when using memory checks guaranteeing no overlap |
| // across all iterations. |
| const LoopAccessInfo *LAI = ILV.Legal->getLAI(); |
| std::unique_ptr<LoopVersioning> LVer = nullptr; |
| if (LAI && !LAI->getRuntimePointerChecking()->getChecks().empty() && |
| !LAI->getRuntimePointerChecking()->getDiffChecks()) { |
| |
| // We currently don't use LoopVersioning for the actual loop cloning but we |
| // still use it to add the noalias metadata. |
| // TODO: Find a better way to re-use LoopVersioning functionality to add |
| // metadata. |
| LVer = std::make_unique<LoopVersioning>( |
| *LAI, LAI->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, DT, |
| PSE.getSE()); |
| State.LVer = &*LVer; |
| State.LVer->prepareNoAliasMetadata(); |
| } |
| |
| ILV.printDebugTracesAtStart(); |
| |
| //===------------------------------------------------===// |
| // |
| // Notice: any optimization or new instruction that go |
| // into the code below should also be implemented in |
| // the cost-model. |
| // |
| //===------------------------------------------------===// |
| |
| // 2. Copy and widen instructions from the old loop into the new loop. |
| BestVPlan.prepareToExecute(ILV.getTripCount(), |
| ILV.getOrCreateVectorTripCount(nullptr), |
| CanonicalIVStartValue, State); |
| |
| BestVPlan.execute(&State); |
| |
| // 2.5 Collect reduction resume values. |
| DenseMap<const RecurrenceDescriptor *, Value *> ReductionResumeValues; |
| auto *ExitVPBB = |
| cast<VPBasicBlock>(BestVPlan.getVectorLoopRegion()->getSingleSuccessor()); |
| for (VPRecipeBase &R : *ExitVPBB) { |
| createAndCollectMergePhiForReduction( |
| dyn_cast<VPInstruction>(&R), ReductionResumeValues, State, OrigLoop, |
| State.CFG.VPBB2IRBB[ExitVPBB], ExpandedSCEVs); |
| } |
| |
| // 2.6. Maintain Loop Hints |
| // Keep all loop hints from the original loop on the vector loop (we'll |
| // replace the vectorizer-specific hints below). |
| MDNode *OrigLoopID = OrigLoop->getLoopID(); |
| |
| std::optional<MDNode *> VectorizedLoopID = |
| makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, |
| LLVMLoopVectorizeFollowupVectorized}); |
| |
| VPBasicBlock *HeaderVPBB = |
| BestVPlan.getVectorLoopRegion()->getEntryBasicBlock(); |
| Loop *L = LI->getLoopFor(State.CFG.VPBB2IRBB[HeaderVPBB]); |
| if (VectorizedLoopID) |
| L->setLoopID(*VectorizedLoopID); |
| else { |
| // Keep all loop hints from the original loop on the vector loop (we'll |
| // replace the vectorizer-specific hints below). |
| if (MDNode *LID = OrigLoop->getLoopID()) |
| L->setLoopID(LID); |
| |
| LoopVectorizeHints Hints(L, true, *ORE); |
| Hints.setAlreadyVectorized(); |
| } |
| TargetTransformInfo::UnrollingPreferences UP; |
| TTI.getUnrollingPreferences(L, *PSE.getSE(), UP, ORE); |
| if (!UP.UnrollVectorizedLoop || CanonicalIVStartValue) |
| AddRuntimeUnrollDisableMetaData(L); |
| |
| // 3. Fix the vectorized code: take care of header phi's, live-outs, |
| // predication, updating analyses. |
| ILV.fixVectorizedLoop(State, BestVPlan); |
| |
| ILV.printDebugTracesAtEnd(); |
| |
| // 4. Adjust branch weight of the branch in the middle block. |
| auto *MiddleTerm = |
| cast<BranchInst>(State.CFG.VPBB2IRBB[ExitVPBB]->getTerminator()); |
| if (MiddleTerm->isConditional() && |
| hasBranchWeightMD(*OrigLoop->getLoopLatch()->getTerminator())) { |
| // Assume that `Count % VectorTripCount` is equally distributed. |
| unsigned TripCount = State.UF * State.VF.getKnownMinValue(); |
| assert(TripCount > 0 && "trip count should not be zero"); |
| const uint32_t Weights[] = {1, TripCount - 1}; |
| setBranchWeights(*MiddleTerm, Weights, /*IsExpected=*/false); |
| } |
| |
| return {State.ExpandedSCEVs, ReductionResumeValues}; |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // EpilogueVectorizerMainLoop |
| //===--------------------------------------------------------------------===// |
| |
| /// This function is partially responsible for generating the control flow |
| /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. |
| std::pair<BasicBlock *, Value *> |
| EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton( |
| const SCEV2ValueTy &ExpandedSCEVs) { |
| createVectorLoopSkeleton(""); |
| |
| // Generate the code to check the minimum iteration count of the vector |
| // epilogue (see below). |
| EPI.EpilogueIterationCountCheck = |
| emitIterationCountCheck(LoopScalarPreHeader, true); |
| EPI.EpilogueIterationCountCheck->setName("iter.check"); |
| |
| // Generate the code to check any assumptions that we've made for SCEV |
| // expressions. |
| EPI.SCEVSafetyCheck = emitSCEVChecks(LoopScalarPreHeader); |
| |
| // Generate the code that checks at runtime if arrays overlap. We put the |
| // checks into a separate block to make the more common case of few elements |
| // faster. |
| EPI.MemSafetyCheck = emitMemRuntimeChecks(LoopScalarPreHeader); |
| |
| // Generate the iteration count check for the main loop, *after* the check |
| // for the epilogue loop, so that the path-length is shorter for the case |
| // that goes directly through the vector epilogue. The longer-path length for |
| // the main loop is compensated for, by the gain from vectorizing the larger |
| // trip count. Note: the branch will get updated later on when we vectorize |
| // the epilogue. |
| EPI.MainLoopIterationCountCheck = |
| emitIterationCountCheck(LoopScalarPreHeader, false); |
| |
| // Generate the induction variable. |
| EPI.VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader); |
| |
| // Skip induction resume value creation here because they will be created in |
| // the second pass for the scalar loop. The induction resume values for the |
| // inductions in the epilogue loop are created before executing the plan for |
| // the epilogue loop. |
| |
| return {LoopVectorPreHeader, nullptr}; |
| } |
| |
| void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { |
| LLVM_DEBUG({ |
| dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" |
| << "Main Loop VF:" << EPI.MainLoopVF |
| << ", Main Loop UF:" << EPI.MainLoopUF |
| << ", Epilogue Loop VF:" << EPI.EpilogueVF |
| << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; |
| }); |
| } |
| |
| void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { |
| DEBUG_WITH_TYPE(VerboseDebug, { |
| dbgs() << "intermediate fn:\n" |
| << *OrigLoop->getHeader()->getParent() << "\n"; |
| }); |
| } |
| |
| BasicBlock * |
| EpilogueVectorizerMainLoop::emitIterationCountCheck(BasicBlock *Bypass, |
| bool ForEpilogue) { |
| assert(Bypass && "Expected valid bypass basic block."); |
| ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF; |
| unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; |
| Value *Count = getTripCount(); |
| // Reuse existing vector loop preheader for TC checks. |
| // Note that new preheader block is generated for vector loop. |
| BasicBlock *const TCCheckBlock = LoopVectorPreHeader; |
| IRBuilder<> Builder(TCCheckBlock->getTerminator()); |
| |
| // Generate code to check if the loop's trip count is less than VF * UF of the |
| // main vector loop. |
| auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF.isVector() |
| : VF.isVector()) |
| ? ICmpInst::ICMP_ULE |
| : ICmpInst::ICMP_ULT; |
| |
| Value *CheckMinIters = Builder.CreateICmp( |
| P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor), |
| "min.iters.check"); |
| |
| if (!ForEpilogue) |
| TCCheckBlock->setName("vector.main.loop.iter.check"); |
| |
| // Create new preheader for vector loop. |
| LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), |
| DT, LI, nullptr, "vector.ph"); |
| |
| if (ForEpilogue) { |
| assert(DT->properlyDominates(DT->getNode(TCCheckBlock), |
| DT->getNode(Bypass)->getIDom()) && |
| "TC check is expected to dominate Bypass"); |
| |
| // Update dominator for Bypass. |
| DT->changeImmediateDominator(Bypass, TCCheckBlock); |
| LoopBypassBlocks.push_back(TCCheckBlock); |
| |
| // Save the trip count so we don't have to regenerate it in the |
| // vec.epilog.iter.check. This is safe to do because the trip count |
| // generated here dominates the vector epilog iter check. |
| EPI.TripCount = Count; |
| } |
| |
| BranchInst &BI = |
| *BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters); |
| if (hasBranchWeightMD(*OrigLoop->getLoopLatch()->getTerminator())) |
| setBranchWeights(BI, MinItersBypassWeights, /*IsExpected=*/false); |
| ReplaceInstWithInst(TCCheckBlock->getTerminator(), &BI); |
| |
| return TCCheckBlock; |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // EpilogueVectorizerEpilogueLoop |
| //===--------------------------------------------------------------------===// |
| |
| /// This function is partially responsible for generating the control flow |
| /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. |
| std::pair<BasicBlock *, Value *> |
| EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton( |
| const SCEV2ValueTy &ExpandedSCEVs) { |
| createVectorLoopSkeleton("vec.epilog."); |
| |
| // Now, compare the remaining count and if there aren't enough iterations to |
| // execute the vectorized epilogue skip to the scalar part. |
| LoopVectorPreHeader->setName("vec.epilog.ph"); |
| BasicBlock *VecEpilogueIterationCountCheck = |
| SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->begin(), DT, LI, |
| nullptr, "vec.epilog.iter.check", true); |
| emitMinimumVectorEpilogueIterCountCheck(LoopScalarPreHeader, |
| VecEpilogueIterationCountCheck); |
| |
| // Adjust the control flow taking the state info from the main loop |
| // vectorization into account. |
| assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && |
| "expected this to be saved from the previous pass."); |
| EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( |
| VecEpilogueIterationCountCheck, LoopVectorPreHeader); |
| |
| DT->changeImmediateDominator(LoopVectorPreHeader, |
| EPI.MainLoopIterationCountCheck); |
| |
| EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( |
| VecEpilogueIterationCountCheck, LoopScalarPreHeader); |
| |
| if (EPI.SCEVSafetyCheck) |
| EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( |
| VecEpilogueIterationCountCheck, LoopScalarPreHeader); |
| if (EPI.MemSafetyCheck) |
| EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( |
| VecEpilogueIterationCountCheck, LoopScalarPreHeader); |
| |
| DT->changeImmediateDominator( |
| VecEpilogueIterationCountCheck, |
| VecEpilogueIterationCountCheck->getSinglePredecessor()); |
| |
| DT->changeImmediateDominator(LoopScalarPreHeader, |
| EPI.EpilogueIterationCountCheck); |
| if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF.isVector())) |
| // If there is an epilogue which must run, there's no edge from the |
| // middle block to exit blocks and thus no need to update the immediate |
| // dominator of the exit blocks. |
| DT->changeImmediateDominator(LoopExitBlock, |
| EPI.EpilogueIterationCountCheck); |
| |
| // Keep track of bypass blocks, as they feed start values to the induction and |
| // reduction phis in the scalar loop preheader. |
| if (EPI.SCEVSafetyCheck) |
| LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); |
| if (EPI.MemSafetyCheck) |
| LoopBypassBlocks.push_back(EPI.MemSafetyCheck); |
| LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); |
| |
| // The vec.epilog.iter.check block may contain Phi nodes from inductions or |
| // reductions which merge control-flow from the latch block and the middle |
| // block. Update the incoming values here and move the Phi into the preheader. |
| SmallVector<PHINode *, 4> PhisInBlock; |
| for (PHINode &Phi : VecEpilogueIterationCountCheck->phis()) |
| PhisInBlock.push_back(&Phi); |
| |
| for (PHINode *Phi : PhisInBlock) { |
| Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI()); |
| Phi->replaceIncomingBlockWith( |
| VecEpilogueIterationCountCheck->getSinglePredecessor(), |
| VecEpilogueIterationCountCheck); |
| |
| // If the phi doesn't have an incoming value from the |
| // EpilogueIterationCountCheck, we are done. Otherwise remove the incoming |
| // value and also those from other check blocks. This is needed for |
| // reduction phis only. |
| if (none_of(Phi->blocks(), [&](BasicBlock *IncB) { |
| return EPI.EpilogueIterationCountCheck == IncB; |
| })) |
| continue; |
| Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck); |
| if (EPI.SCEVSafetyCheck) |
| Phi->removeIncomingValue(EPI.SCEVSafetyCheck); |
| if (EPI.MemSafetyCheck) |
| Phi->removeIncomingValue(EPI.MemSafetyCheck); |
| } |
| |
| // Generate a resume induction for the vector epilogue and put it in the |
| // vector epilogue preheader |
| Type *IdxTy = Legal->getWidestInductionType(); |
| PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val"); |
| EPResumeVal->insertBefore(LoopVectorPreHeader->getFirstNonPHIIt()); |
| EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); |
| EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), |
| EPI.MainLoopIterationCountCheck); |
| |
| // Generate induction resume values. These variables save the new starting |
| // indexes for the scalar loop. They are used to test if there are any tail |
| // iterations left once the vector loop has completed. |
| // Note that when the vectorized epilogue is skipped due to iteration count |
| // check, then the resume value for the induction variable comes from |
| // the trip count of the main vector loop, hence passing the AdditionalBypass |
| // argument. |
| createInductionResumeValues(ExpandedSCEVs, |
| {VecEpilogueIterationCountCheck, |
| EPI.VectorTripCount} /* AdditionalBypass */); |
| |
| return {LoopVectorPreHeader, EPResumeVal}; |
| } |
| |
| BasicBlock * |
| EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( |
| BasicBlock *Bypass, BasicBlock *Insert) { |
| |
| assert(EPI.TripCount && |
| "Expected trip count to have been safed in the first pass."); |
| assert( |
| (!isa<Instruction>(EPI.TripCount) || |
| DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && |
| "saved trip count does not dominate insertion point."); |
| Value *TC = EPI.TripCount; |
| IRBuilder<> Builder(Insert->getTerminator()); |
| Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); |
| |
| // Generate code to check if the loop's trip count is less than VF * UF of the |
| // vector epilogue loop. |
| auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF.isVector()) |
| ? ICmpInst::ICMP_ULE |
| : ICmpInst::ICMP_ULT; |
| |
| Value *CheckMinIters = |
| Builder.CreateICmp(P, Count, |
| createStepForVF(Builder, Count->getType(), |
| EPI.EpilogueVF, EPI.EpilogueUF), |
| "min.epilog.iters.check"); |
| |
| BranchInst &BI = |
| *BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters); |
| if (hasBranchWeightMD(*OrigLoop->getLoopLatch()->getTerminator())) { |
| unsigned MainLoopStep = UF * VF.getKnownMinValue(); |
| unsigned EpilogueLoopStep = |
| EPI.EpilogueUF * EPI.EpilogueVF.getKnownMinValue(); |
| // We assume the remaining `Count` is equally distributed in |
| // [0, MainLoopStep) |
| // So the probability for `Count < EpilogueLoopStep` should be |
| // min(MainLoopStep, EpilogueLoopStep) / MainLoopStep |
| unsigned EstimatedSkipCount = std::min(MainLoopStep, EpilogueLoopStep); |
| const uint32_t Weights[] = {EstimatedSkipCount, |
| MainLoopStep - EstimatedSkipCount}; |
| setBranchWeights(BI, Weights, /*IsExpected=*/false); |
| } |
| ReplaceInstWithInst(Insert->getTerminator(), &BI); |
| LoopBypassBlocks.push_back(Insert); |
| return Insert; |
| } |
| |
| void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { |
| LLVM_DEBUG({ |
| dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" |
| << "Epilogue Loop VF:" << EPI.EpilogueVF |
| << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; |
| }); |
| } |
| |
| void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { |
| DEBUG_WITH_TYPE(VerboseDebug, { |
| dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n"; |
| }); |
| } |
| |
| iterator_range<mapped_iterator<Use *, std::function<VPValue *(Value *)>>> |
| VPRecipeBuilder::mapToVPValues(User::op_range Operands) { |
| std::function<VPValue *(Value *)> Fn = [this](Value *Op) { |
| if (auto *I = dyn_cast<Instruction>(Op)) { |
| if (auto *R = Ingredient2Recipe.lookup(I)) |
| return R->getVPSingleValue(); |
| } |
| return Plan.getOrAddLiveIn(Op); |
| }; |
| return map_range(Operands, Fn); |
| } |
| |
| void VPRecipeBuilder::createSwitchEdgeMasks(SwitchInst *SI) { |
| BasicBlock *Src = SI->getParent(); |
| assert(!OrigLoop->isLoopExiting(Src) && |
| all_of(successors(Src), |
| [this](BasicBlock *Succ) { |
| return OrigLoop->getHeader() != Succ; |
| }) && |
| "unsupported switch either exiting loop or continuing to header"); |
| // Create masks where the terminator in Src is a switch. We create mask for |
| // all edges at the same time. This is more efficient, as we can create and |
| // collect compares for all cases once. |
| VPValue *Cond = getVPValueOrAddLiveIn(SI->getCondition(), Plan); |
| BasicBlock *DefaultDst = SI->getDefaultDest(); |
| MapVector<BasicBlock *, SmallVector<VPValue *>> Dst2Compares; |
| for (auto &C : SI->cases()) { |
| BasicBlock *Dst = C.getCaseSuccessor(); |
| assert(!EdgeMaskCache.contains({Src, Dst}) && "Edge masks already created"); |
| // Cases whose destination is the same as default are redundant and can be |
| // ignored - they will get there anyhow. |
| if (Dst == DefaultDst) |
| continue; |
| auto I = Dst2Compares.insert({Dst, {}}); |
| VPValue *V = getVPValueOrAddLiveIn(C.getCaseValue(), Plan); |
| I.first->second.push_back(Builder.createICmp(CmpInst::ICMP_EQ, Cond, V)); |
| } |
| |
| // We need to handle 2 separate cases below for all entries in Dst2Compares, |
| // which excludes destinations matching the default destination. |
| VPValue *SrcMask = getBlockInMask(Src); |
| VPValue *DefaultMask = nullptr; |
| for (const auto &[Dst, Conds] : Dst2Compares) { |
| // 1. Dst is not the default destination. Dst is reached if any of the cases |
| // with destination == Dst are taken. Join the conditions for each case |
| // whose destination == Dst using an OR. |
| VPValue *Mask = Conds[0]; |
| for (VPValue *V : ArrayRef<VPValue *>(Conds).drop_front()) |
| Mask = Builder.createOr(Mask, V); |
| if (SrcMask) |
| Mask = Builder.createLogicalAnd(SrcMask, Mask); |
| EdgeMaskCache[{Src, Dst}] = Mask; |
| |
| // 2. Create the mask for the default destination, which is reached if none |
| // of the cases with destination != default destination are taken. Join the |
| // conditions for each case where the destination is != Dst using an OR and |
| // negate it. |
| DefaultMask = DefaultMask ? Builder.createOr(DefaultMask, Mask) : Mask; |
| } |
| |
| if (DefaultMask) { |
| DefaultMask = Builder.createNot(DefaultMask); |
| if (SrcMask) |
| DefaultMask = Builder.createLogicalAnd(SrcMask, DefaultMask); |
| } |
| EdgeMaskCache[{Src, DefaultDst}] = DefaultMask; |
| } |
| |
| VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { |
| assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); |
| |
| // Look for cached value. |
| std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); |
| EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); |
| if (ECEntryIt != EdgeMaskCache.end()) |
| return ECEntryIt->second; |
| |
| if (auto *SI = dyn_cast<SwitchInst>(Src->getTerminator())) { |
| createSwitchEdgeMasks(SI); |
| assert(EdgeMaskCache.contains(Edge) && "Mask for Edge not created?"); |
| return EdgeMaskCache[Edge]; |
| } |
| |
| VPValue *SrcMask = getBlockInMask(Src); |
| |
| // The terminator has to be a branch inst! |
| BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); |
| assert(BI && "Unexpected terminator found"); |
| if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) |
| return EdgeMaskCache[Edge] = SrcMask; |
| |
| // If source is an exiting block, we know the exit edge is dynamically dead |
| // in the vector loop, and thus we don't need to restrict the mask. Avoid |
| // adding uses of an otherwise potentially dead instruction. |
| if (OrigLoop->isLoopExiting(Src)) |
| return EdgeMaskCache[Edge] = SrcMask; |
| |
| VPValue *EdgeMask = getVPValueOrAddLiveIn(BI->getCondition(), Plan); |
| assert(EdgeMask && "No Edge Mask found for condition"); |
| |
| if (BI->getSuccessor(0) != Dst) |
| EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc()); |
| |
| if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. |
| // The bitwise 'And' of SrcMask and EdgeMask introduces new UB if SrcMask |
| // is false and EdgeMask is poison. Avoid that by using 'LogicalAnd' |
| // instead which generates 'select i1 SrcMask, i1 EdgeMask, i1 false'. |
| EdgeMask = Builder.createLogicalAnd(SrcMask, EdgeMask, BI->getDebugLoc()); |
| } |
| |
| return EdgeMaskCache[Edge] = EdgeMask; |
| } |
| |
| VPValue *VPRecipeBuilder::getEdgeMask(BasicBlock *Src, BasicBlock *Dst) const { |
| assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); |
| |
| // Look for cached value. |
| std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); |
| EdgeMaskCacheTy::const_iterator ECEntryIt = EdgeMaskCache.find(Edge); |
| assert(ECEntryIt != EdgeMaskCache.end() && |
| "looking up mask for edge which has not been created"); |
| return ECEntryIt->second; |
| } |
| |
| void VPRecipeBuilder::createHeaderMask() { |
| BasicBlock *Header = OrigLoop->getHeader(); |
| |
| // When not folding the tail, use nullptr to model all-true mask. |
| if (!CM.foldTailByMasking()) { |
| BlockMaskCache[Header] = nullptr; |
| return; |
| } |
| |
| // Introduce the early-exit compare IV <= BTC to form header block mask. |
| // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by |
| // constructing the desired canonical IV in the header block as its first |
| // non-phi instructions. |
| |
| VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock(); |
| auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi(); |
| auto *IV = new VPWidenCanonicalIVRecipe(Plan.getCanonicalIV()); |
| HeaderVPBB->insert(IV, NewInsertionPoint); |
| |
| VPBuilder::InsertPointGuard Guard(Builder); |
| Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint); |
| VPValue *BlockMask = nullptr; |
| VPValue *BTC = Plan.getOrCreateBackedgeTakenCount(); |
| BlockMask = Builder.createICmp(CmpInst::ICMP_ULE, IV, BTC); |
| BlockMaskCache[Header] = BlockMask; |
| } |
| |
| VPValue *VPRecipeBuilder::getBlockInMask(BasicBlock *BB) const { |
| // Return the cached value. |
| BlockMaskCacheTy::const_iterator BCEntryIt = BlockMaskCache.find(BB); |
| assert(BCEntryIt != BlockMaskCache.end() && |
| "Trying to access mask for block without one."); |
| return BCEntryIt->second; |
| } |
| |
| void VPRecipeBuilder::createBlockInMask(BasicBlock *BB) { |
| assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); |
| assert(BlockMaskCache.count(BB) == 0 && "Mask for block already computed"); |
| assert(OrigLoop->getHeader() != BB && |
| "Loop header must have cached block mask"); |
| |
| // All-one mask is modelled as no-mask following the convention for masked |
| // load/store/gather/scatter. Initialize BlockMask to no-mask. |
| VPValue *BlockMask = nullptr; |
| // This is the block mask. We OR all unique incoming edges. |
| for (auto *Predecessor : |
| SetVector<BasicBlock *>(pred_begin(BB), pred_end(BB))) { |
| VPValue *EdgeMask = createEdgeMask(Predecessor, BB); |
| if (!EdgeMask) { // Mask of predecessor is all-one so mask of block is too. |
| BlockMaskCache[BB] = EdgeMask; |
| return; |
| } |
| |
| if (!BlockMask) { // BlockMask has its initialized nullptr value. |
| BlockMask = EdgeMask; |
| continue; |
| } |
| |
| BlockMask = Builder.createOr(BlockMask, EdgeMask, {}); |
| } |
| |
| BlockMaskCache[BB] = BlockMask; |
| } |
| |
| VPWidenMemoryRecipe * |
| VPRecipeBuilder::tryToWidenMemory(Instruction *I, ArrayRef<VPValue *> Operands, |
| VFRange &Range) { |
| assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && |
| "Must be called with either a load or store"); |
| |
| auto willWiden = [&](ElementCount VF) -> bool { |
| LoopVectorizationCostModel::InstWidening Decision = |
| CM.getWideningDecision(I, VF); |
| assert(Decision != LoopVectorizationCostModel::CM_Unknown && |
| "CM decision should be taken at this point."); |
| if (Decision == LoopVectorizationCostModel::CM_Interleave) |
| return true; |
| if (CM.isScalarAfterVectorization(I, VF) || |
| CM.isProfitableToScalarize(I, VF)) |
| return false; |
| return Decision != LoopVectorizationCostModel::CM_Scalarize; |
| }; |
| |
| if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) |
| return nullptr; |
| |
| VPValue *Mask = nullptr; |
| if (Legal->isMaskRequired(I)) |
| Mask = getBlockInMask(I->getParent()); |
| |
| // Determine if the pointer operand of the access is either consecutive or |
| // reverse consecutive. |
| LoopVectorizationCostModel::InstWidening Decision = |
| CM.getWideningDecision(I, Range.Start); |
| bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse; |
| bool Consecutive = |
| Reverse || Decision == LoopVectorizationCostModel::CM_Widen; |
| |
| VPValue *Ptr = isa<LoadInst>(I) ? Operands[0] : Operands[1]; |
| if (Consecutive) { |
| auto *GEP = dyn_cast<GetElementPtrInst>( |
| Ptr->getUnderlyingValue()->stripPointerCasts()); |
| auto *VectorPtr = new VPVectorPointerRecipe( |
| Ptr, getLoadStoreType(I), Reverse, GEP ? GEP->isInBounds() : false, |
| I->getDebugLoc()); |
| Builder.getInsertBlock()->appendRecipe(VectorPtr); |
| Ptr = VectorPtr; |
| } |
| if (LoadInst *Load = dyn_cast<LoadInst>(I)) |
| return new VPWidenLoadRecipe(*Load, Ptr, Mask, Consecutive, Reverse, |
| I->getDebugLoc()); |
| |
| StoreInst *Store = cast<StoreInst>(I); |
| return new VPWidenStoreRecipe(*Store, Ptr, Operands[0], Mask, Consecutive, |
| Reverse, I->getDebugLoc()); |
| } |
| |
| /// Creates a VPWidenIntOrFpInductionRecpipe for \p Phi. If needed, it will also |
| /// insert a recipe to expand the step for the induction recipe. |
| static VPWidenIntOrFpInductionRecipe * |
| createWidenInductionRecipes(PHINode *Phi, Instruction *PhiOrTrunc, |
| VPValue *Start, const InductionDescriptor &IndDesc, |
| VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop) { |
| assert(IndDesc.getStartValue() == |
| Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader())); |
| assert(SE.isLoopInvariant(IndDesc.getStep(), &OrigLoop) && |
| "step must be loop invariant"); |
| |
| VPValue *Step = |
| vputils::getOrCreateVPValueForSCEVExpr(Plan, IndDesc.getStep(), SE); |
| if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) { |
| return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, IndDesc, TruncI); |
| } |
| assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here"); |
| return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, IndDesc); |
| } |
| |
| VPHeaderPHIRecipe *VPRecipeBuilder::tryToOptimizeInductionPHI( |
| PHINode *Phi, ArrayRef<VPValue *> Operands, VFRange &Range) { |
| |
| // Check if this is an integer or fp induction. If so, build the recipe that |
| // produces its scalar and vector values. |
| if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi)) |
| return createWidenInductionRecipes(Phi, Phi, Operands[0], *II, Plan, |
| *PSE.getSE(), *OrigLoop); |
| |
| // Check if this is pointer induction. If so, build the recipe for it. |
| if (auto *II = Legal->getPointerInductionDescriptor(Phi)) { |
| VPValue *Step = vputils::getOrCreateVPValueForSCEVExpr(Plan, II->getStep(), |
| *PSE.getSE()); |
| return new VPWidenPointerInductionRecipe( |
| Phi, Operands[0], Step, *II, |
| LoopVectorizationPlanner::getDecisionAndClampRange( |
| [&](ElementCount VF) { |
| return CM.isScalarAfterVectorization(Phi, VF); |
| }, |
| Range)); |
| } |
| return nullptr; |
| } |
| |
| VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate( |
| TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range) { |
| // Optimize the special case where the source is a constant integer |
| // induction variable. Notice that we can only optimize the 'trunc' case |
| // because (a) FP conversions lose precision, (b) sext/zext may wrap, and |
| // (c) other casts depend on pointer size. |
| |
| // Determine whether \p K is a truncation based on an induction variable that |
| // can be optimized. |
| auto isOptimizableIVTruncate = |
| [&](Instruction *K) -> std::function<bool(ElementCount)> { |
| return [=](ElementCount VF) -> bool { |
| return CM.isOptimizableIVTruncate(K, VF); |
| }; |
| }; |
| |
| if (LoopVectorizationPlanner::getDecisionAndClampRange( |
| isOptimizableIVTruncate(I), Range)) { |
| |
| auto *Phi = cast<PHINode>(I->getOperand(0)); |
| const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi); |
| VPValue *Start = Plan.getOrAddLiveIn(II.getStartValue()); |
| return createWidenInductionRecipes(Phi, I, Start, II, Plan, *PSE.getSE(), |
| *OrigLoop); |
| } |
| return nullptr; |
| } |
| |
| VPBlendRecipe *VPRecipeBuilder::tryToBlend(PHINode *Phi, |
| ArrayRef<VPValue *> Operands) { |
| unsigned NumIncoming = Phi->getNumIncomingValues(); |
| |
| // We know that all PHIs in non-header blocks are converted into selects, so |
| // we don't have to worry about the insertion order and we can just use the |
| // builder. At this point we generate the predication tree. There may be |
| // duplications since this is a simple recursive scan, but future |
| // optimizations will clean it up. |
| SmallVector<VPValue *, 2> OperandsWithMask; |
| |
| for (unsigned In = 0; In < NumIncoming; In++) { |
| OperandsWithMask.push_back(Operands[In]); |
| VPValue *EdgeMask = |
| getEdgeMask(Phi->getIncomingBlock(In), Phi->getParent()); |
| if (!EdgeMask) { |
| assert(In == 0 && "Both null and non-null edge masks found"); |
| assert(all_equal(Operands) && |
| "Distinct incoming values with one having a full mask"); |
| break; |
| } |
| OperandsWithMask.push_back(EdgeMask); |
| } |
| return new VPBlendRecipe(Phi, OperandsWithMask); |
| } |
| |
| VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, |
| ArrayRef<VPValue *> Operands, |
| VFRange &Range) { |
| bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( |
| [this, CI](ElementCount VF) { |
| return CM.isScalarWithPredication(CI, VF); |
| }, |
| Range); |
| |
| if (IsPredicated) |
| return nullptr; |
| |
| Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); |
| if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || |
| ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || |
| ID == Intrinsic::pseudoprobe || |
| ID == Intrinsic::experimental_noalias_scope_decl)) |
| return nullptr; |
| |
| SmallVector<VPValue *, 4> Ops(Operands.take_front(CI->arg_size())); |
| Ops.push_back(Operands.back()); |
| |
| // Is it beneficial to perform intrinsic call compared to lib call? |
| bool ShouldUseVectorIntrinsic = |
| ID && LoopVectorizationPlanner::getDecisionAndClampRange( |
| [&](ElementCount VF) -> bool { |
| return CM.getCallWideningDecision(CI, VF).Kind == |
| LoopVectorizationCostModel::CM_IntrinsicCall; |
| }, |
| Range); |
| if (ShouldUseVectorIntrinsic) |
| return new VPWidenCallRecipe(CI, make_range(Ops.begin(), Ops.end()), ID, |
| CI->getDebugLoc()); |
| |
| Function *Variant = nullptr; |
| std::optional<unsigned> MaskPos; |
| // Is better to call a vectorized version of the function than to to scalarize |
| // the call? |
| auto ShouldUseVectorCall = LoopVectorizationPlanner::getDecisionAndClampRange( |
| [&](ElementCount VF) -> bool { |
| // The following case may be scalarized depending on the VF. |
| // The flag shows whether we can use a usual Call for vectorized |
| // version of the instruction. |
| |
| // If we've found a variant at a previous VF, then stop looking. A |
| // vectorized variant of a function expects input in a certain shape |
| // -- basically the number of input registers, the number of lanes |
| // per register, and whether there's a mask required. |
| // We store a pointer to the variant in the VPWidenCallRecipe, so |
| // once we have an appropriate variant it's only valid for that VF. |
| // This will force a different vplan to be generated for each VF that |
| // finds a valid variant. |
| if (Variant) |
| return false; |
| LoopVectorizationCostModel::CallWideningDecision Decision = |
| CM.getCallWideningDecision(CI, VF); |
| if (Decision.Kind == LoopVectorizationCostModel::CM_VectorCall) { |
| Variant = Decision.Variant; |
| MaskPos = Decision.MaskPos; |
| return true; |
| } |
| |
| return false; |
| }, |
| Range); |
| if (ShouldUseVectorCall) { |
| if (MaskPos.has_value()) { |
| // We have 2 cases that would require a mask: |
| // 1) The block needs to be predicated, either due to a conditional |
| // in the scalar loop or use of an active lane mask with |
| // tail-folding, and we use the appropriate mask for the block. |
| // 2) No mask is required for the block, but the only available |
| // vector variant at this VF requires a mask, so we synthesize an |
| // all-true mask. |
| VPValue *Mask = nullptr; |
| if (Legal->isMaskRequired(CI)) |
| Mask = getBlockInMask(CI->getParent()); |
| else |
| Mask = Plan.getOrAddLiveIn(ConstantInt::getTrue( |
| IntegerType::getInt1Ty(Variant->getFunctionType()->getContext()))); |
| |
| Ops.insert(Ops.begin() + *MaskPos, Mask); |
| } |
| |
| return new VPWidenCallRecipe(CI, make_range(Ops.begin(), Ops.end()), |
| Intrinsic::not_intrinsic, CI->getDebugLoc(), |
| Variant); |
| } |
| |
| return nullptr; |
| } |
| |
| bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { |
| assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && |
| !isa<StoreInst>(I) && "Instruction should have been handled earlier"); |
| // Instruction should be widened, unless it is scalar after vectorization, |
| // scalarization is profitable or it is predicated. |
| auto WillScalarize = [this, I](ElementCount VF) -> bool { |
| return CM.isScalarAfterVectorization(I, VF) || |
| CM.isProfitableToScalarize(I, VF) || |
| CM.isScalarWithPredication(I, VF); |
| }; |
| return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, |
| Range); |
| } |
| |
| VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, |
| ArrayRef<VPValue *> Operands, |
| VPBasicBlock *VPBB) { |
| switch (I->getOpcode()) { |
| default: |
| return nullptr; |
| case Instruction::SDiv: |
| case Instruction::UDiv: |
| case Instruction::SRem: |
| case Instruction::URem: { |
| // If not provably safe, use a select to form a safe divisor before widening the |
| // div/rem operation itself. Otherwise fall through to general handling below. |
| if (CM.isPredicatedInst(I)) { |
| SmallVector<VPValue *> Ops(Operands); |
| VPValue *Mask = getBlockInMask(I->getParent()); |
| VPValue *One = |
| Plan.getOrAddLiveIn(ConstantInt::get(I->getType(), 1u, false)); |
| auto *SafeRHS = Builder.createSelect(Mask, Ops[1], One, I->getDebugLoc()); |
| Ops[1] = SafeRHS; |
| return new VPWidenRecipe(*I, make_range(Ops.begin(), Ops.end())); |
| } |
| [[fallthrough]]; |
| } |
| case Instruction::Add: |
| case Instruction::And: |
| case Instruction::AShr: |
| case Instruction::FAdd: |
| case Instruction::FCmp: |
| case Instruction::FDiv: |
| case Instruction::FMul: |
| case Instruction::FNeg: |
| case Instruction::FRem: |
| case Instruction::FSub: |
| case Instruction::ICmp: |
| case Instruction::LShr: |
| case Instruction::Mul: |
| case Instruction::Or: |
| case Instruction::Select: |
| case Instruction::Shl: |
| case Instruction::Sub: |
| case Instruction::Xor: |
| case Instruction::Freeze: |
| return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end())); |
| }; |
| } |
| |
| void VPRecipeBuilder::fixHeaderPhis() { |
| BasicBlock *OrigLatch = OrigLoop->getLoopLatch(); |
| for (VPHeaderPHIRecipe *R : PhisToFix) { |
| auto *PN = cast<PHINode>(R->getUnderlyingValue()); |
| VPRecipeBase *IncR = |
| getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch))); |
| R->addOperand(IncR->getVPSingleValue()); |
| } |
| } |
| |
| VPReplicateRecipe *VPRecipeBuilder::handleReplication(Instruction *I, |
| VFRange &Range) { |
| bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( |
| [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, |
| Range); |
| |
| bool IsPredicated = CM.isPredicatedInst(I); |
| |
| // Even if the instruction is not marked as uniform, there are certain |
| // intrinsic calls that can be effectively treated as such, so we check for |
| // them here. Conservatively, we only do this for scalable vectors, since |
| // for fixed-width VFs we can always fall back on full scalarization. |
| if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) { |
| switch (cast<IntrinsicInst>(I)->getIntrinsicID()) { |
| case Intrinsic::assume: |
| case Intrinsic::lifetime_start: |
| case Intrinsic::lifetime_end: |
| // For scalable vectors if one of the operands is variant then we still |
| // want to mark as uniform, which will generate one instruction for just |
| // the first lane of the vector. We can't scalarize the call in the same |
| // way as for fixed-width vectors because we don't know how many lanes |
| // there are. |
| // |
| // The reasons for doing it this way for scalable vectors are: |
| // 1. For the assume intrinsic generating the instruction for the first |
| // lane is still be better than not generating any at all. For |
| // example, the input may be a splat across all lanes. |
| // 2. For the lifetime start/end intrinsics the pointer operand only |
| // does anything useful when the input comes from a stack object, |
| // which suggests it should always be uniform. For non-stack objects |
| // the effect is to poison the object, which still allows us to |
| // remove the call. |
| IsUniform = true; |
| break; |
| default: |
| break; |
| } |
| } |
| VPValue *BlockInMask = nullptr; |
| if (!IsPredicated) { |
| // Finalize the recipe for Instr, first if it is not predicated. |
| LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); |
| } else { |
| LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); |
| // Instructions marked for predication are replicated and a mask operand is |
| // added initially. Masked replicate recipes will later be placed under an |
| // if-then construct to prevent side-effects. Generate recipes to compute |
| // the block mask for this region. |
| BlockInMask = getBlockInMask(I->getParent()); |
| } |
| |
| // Note that there is some custom logic to mark some intrinsics as uniform |
| // manually above for scalable vectors, which this assert needs to account for |
| // as well. |
| assert((Range.Start.isScalar() || !IsUniform || !IsPredicated || |
| (Range.Start.isScalable() && isa<IntrinsicInst>(I))) && |
| "Should not predicate a uniform recipe"); |
| auto *Recipe = new VPReplicateRecipe(I, mapToVPValues(I->operands()), |
| IsUniform, BlockInMask); |
| return Recipe; |
| } |
| |
| VPRecipeBase * |
| VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, |
| ArrayRef<VPValue *> Operands, |
| VFRange &Range, VPBasicBlock *VPBB) { |
| // First, check for specific widening recipes that deal with inductions, Phi |
| // nodes, calls and memory operations. |
| VPRecipeBase *Recipe; |
| if (auto Phi = dyn_cast<PHINode>(Instr)) { |
| if (Phi->getParent() != OrigLoop->getHeader()) |
| return tryToBlend(Phi, Operands); |
| |
| if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, Range))) |
| return Recipe; |
| |
| VPHeaderPHIRecipe *PhiRecipe = nullptr; |
| assert((Legal->isReductionVariable(Phi) || |
| Legal->isFixedOrderRecurrence(Phi)) && |
| "can only widen reductions and fixed-order recurrences here"); |
| VPValue *StartV = Operands[0]; |
| if (Legal->isReductionVariable(Phi)) { |
| const RecurrenceDescriptor &RdxDesc = |
| Legal->getReductionVars().find(Phi)->second; |
| assert(RdxDesc.getRecurrenceStartValue() == |
| Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); |
| PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV, |
| CM.isInLoopReduction(Phi), |
| CM.useOrderedReductions(RdxDesc)); |
| } else { |
| // TODO: Currently fixed-order recurrences are modeled as chains of |
| // first-order recurrences. If there are no users of the intermediate |
| // recurrences in the chain, the fixed order recurrence should be modeled |
| // directly, enabling more efficient codegen. |
| PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV); |
| } |
| |
| PhisToFix.push_back(PhiRecipe); |
| return PhiRecipe; |
| } |
| |
| if (isa<TruncInst>(Instr) && (Recipe = tryToOptimizeInductionTruncate( |
| cast<TruncInst>(Instr), Operands, Range))) |
| return Recipe; |
| |
| // All widen recipes below deal only with VF > 1. |
| if (LoopVectorizationPlanner::getDecisionAndClampRange( |
| [&](ElementCount VF) { return VF.isScalar(); }, Range)) |
| return nullptr; |
| |
| if (auto *CI = dyn_cast<CallInst>(Instr)) |
| return tryToWidenCall(CI, Operands, Range); |
| |
| if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) |
| return tryToWidenMemory(Instr, Operands, Range); |
| |
| if (!shouldWiden(Instr, Range)) |
| return nullptr; |
| |
| if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) |
| return new VPWidenGEPRecipe(GEP, |
| make_range(Operands.begin(), Operands.end())); |
| |
| if (auto *SI = dyn_cast<SelectInst>(Instr)) { |
| return new VPWidenSelectRecipe( |
| *SI, make_range(Operands.begin(), Operands.end())); |
| } |
| |
| if (auto *CI = dyn_cast<CastInst>(Instr)) { |
| return new VPWidenCastRecipe(CI->getOpcode(), Operands[0], CI->getType(), |
| *CI); |
| } |
| |
| return tryToWiden(Instr, Operands, VPBB); |
| } |
| |
| void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, |
| ElementCount MaxVF) { |
| assert(OrigLoop->isInnermost() && "Inner loop expected."); |
| |
| auto MaxVFTimes2 = MaxVF * 2; |
| for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFTimes2);) { |
| VFRange SubRange = {VF, MaxVFTimes2}; |
| if (auto Plan = tryToBuildVPlanWithVPRecipes(SubRange)) { |
| // Now optimize the initial VPlan. |
| if (!Plan->hasVF(ElementCount::getFixed(1))) |
| VPlanTransforms::truncateToMinimalBitwidths( |
| *Plan, CM.getMinimalBitwidths(), PSE.getSE()->getContext()); |
| VPlanTransforms::optimize(*Plan, *PSE.getSE()); |
| // TODO: try to put it close to addActiveLaneMask(). |
| // Discard the plan if it is not EVL-compatible |
| if (CM.foldTailWithEVL() && |
| !VPlanTransforms::tryAddExplicitVectorLength(*Plan)) |
| break; |
| assert(verifyVPlanIsValid(*Plan) && "VPlan is invalid"); |
| VPlans.push_back(std::move(Plan)); |
| } |
| VF = SubRange.End; |
| } |
| } |
| |
| // Add the necessary canonical IV and branch recipes required to control the |
| // loop. |
| static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, bool HasNUW, |
| DebugLoc DL) { |
| Value *StartIdx = ConstantInt::get(IdxTy, 0); |
| auto *StartV = Plan.getOrAddLiveIn(StartIdx); |
| |
| // Add a VPCanonicalIVPHIRecipe starting at 0 to the header. |
| auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL); |
| VPRegionBlock *TopRegion = Plan.getVectorLoopRegion(); |
| VPBasicBlock *Header = TopRegion->getEntryBasicBlock(); |
| Header->insert(CanonicalIVPHI, Header->begin()); |
| |
| VPBuilder Builder(TopRegion->getExitingBasicBlock()); |
| // Add a VPInstruction to increment the scalar canonical IV by VF * UF. |
| auto *CanonicalIVIncrement = Builder.createOverflowingOp( |
| Instruction::Add, {CanonicalIVPHI, &Plan.getVFxUF()}, {HasNUW, false}, DL, |
| "index.next"); |
| CanonicalIVPHI->addOperand(CanonicalIVIncrement); |
| |
| // Add the BranchOnCount VPInstruction to the latch. |
| Builder.createNaryOp(VPInstruction::BranchOnCount, |
| {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL); |
| } |
| |
| // Collect (ExitPhi, ExitingValue) pairs phis in the original exit block that |
| // are modeled in VPlan. Some exiting values are not modeled explicitly yet and |
| // won't be included. Those are un-truncated VPWidenIntOrFpInductionRecipe, |
| // VPWidenPointerInductionRecipe and induction increments. |
| static MapVector<PHINode *, VPValue *> collectUsersInExitBlock( |
| Loop *OrigLoop, VPRecipeBuilder &Builder, VPlan &Plan, |
| const MapVector<PHINode *, InductionDescriptor> &Inductions) { |
| auto MiddleVPBB = |
| cast<VPBasicBlock>(Plan.getVectorLoopRegion()->getSingleSuccessor()); |
| // No edge from the middle block to the unique exit block has been inserted |
| // and there is nothing to fix from vector loop; phis should have incoming |
| // from scalar loop only. |
| if (MiddleVPBB->getNumSuccessors() != 2) |
| return {}; |
| MapVector<PHINode *, VPValue *> ExitingValuesToFix; |
| BasicBlock *ExitBB = |
| cast<VPIRBasicBlock>(MiddleVPBB->getSuccessors()[0])->getIRBasicBlock(); |
| BasicBlock *ExitingBB = OrigLoop->getExitingBlock(); |
| for (PHINode &ExitPhi : ExitBB->phis()) { |
| Value *IncomingValue = |
| ExitPhi.getIncomingValueForBlock(ExitingBB); |
| VPValue *V = Builder.getVPValueOrAddLiveIn(IncomingValue, Plan); |
| // Exit values for inductions are computed and updated outside of VPlan and |
| // independent of induction recipes. |
| // TODO: Compute induction exit values in VPlan, use VPLiveOuts to update |
| // live-outs. |
| if ((isa<VPWidenIntOrFpInductionRecipe>(V) && |
| !cast<VPWidenIntOrFpInductionRecipe>(V)->getTruncInst()) || |
| isa<VPWidenPointerInductionRecipe>(V) || |
| (isa<Instruction>(IncomingValue) && |
| any_of(IncomingValue->users(), [&Inductions](User *U) { |
| auto *P = dyn_cast<PHINode>(U); |
| return P && Inductions.contains(P); |
| }))) |
| continue; |
| ExitingValuesToFix.insert({&ExitPhi, V}); |
| } |
| return ExitingValuesToFix; |
| } |
| |
| // Add exit values to \p Plan. Extracts and VPLiveOuts are added for each entry |
| // in \p ExitingValuesToFix. |
| static void |
| addUsersInExitBlock(VPlan &Plan, |
| MapVector<PHINode *, VPValue *> &ExitingValuesToFix) { |
| if (ExitingValuesToFix.empty()) |
| return; |
| |
| auto MiddleVPBB = |
| cast<VPBasicBlock>(Plan.getVectorLoopRegion()->getSingleSuccessor()); |
| BasicBlock *ExitBB = |
| cast<VPIRBasicBlock>(MiddleVPBB->getSuccessors()[0])->getIRBasicBlock(); |
| // TODO: set B to MiddleVPBB->getFirstNonPhi(), taking care of affected tests. |
| VPBuilder B(MiddleVPBB); |
| if (auto *Terminator = MiddleVPBB->getTerminator()) { |
| auto *Condition = dyn_cast<VPInstruction>(Terminator->getOperand(0)); |
| assert((!Condition || Condition->getParent() == MiddleVPBB) && |
| "Condition expected in MiddleVPBB"); |
| B.setInsertPoint(Condition ? Condition : Terminator); |
| } |
| |
| // Introduce VPUsers modeling the exit values. |
| for (const auto &[ExitPhi, V] : ExitingValuesToFix) { |
| VPValue *Ext = B.createNaryOp( |
| VPInstruction::ExtractFromEnd, |
| {V, Plan.getOrAddLiveIn(ConstantInt::get( |
| IntegerType::get(ExitBB->getContext(), 32), 1))}); |
| Plan.addLiveOut(ExitPhi, Ext); |
| } |
| } |
| |
| /// Handle live-outs for first order reductions, both in the scalar preheader |
| /// and the original exit block: |
| /// 1. Feed a resume value for every FOR from the vector loop to the scalar |
| /// loop, if middle block branches to scalar preheader, by introducing |
| /// ExtractFromEnd and ResumePhi recipes in each, respectively, and a |
| /// VPLiveOut which uses the latter and corresponds to the scalar header. |
| /// 2. Feed the penultimate value of recurrences to their LCSSA phi users in |
| /// the original exit block using a VPLiveOut. |
| static void addLiveOutsForFirstOrderRecurrences( |
| VPlan &Plan, MapVector<PHINode *, VPValue *> &ExitingValuesToFix) { |
| VPRegionBlock *VectorRegion = Plan.getVectorLoopRegion(); |
| |
| // Start by finding out if middle block branches to scalar preheader, which is |
| // not a VPIRBasicBlock, unlike Exit block - the other possible successor of |
| // middle block. |
| // TODO: Should be replaced by |
| // Plan->getScalarLoopRegion()->getSinglePredecessor() in the future once the |
| // scalar region is modeled as well. |
| auto *MiddleVPBB = cast<VPBasicBlock>(VectorRegion->getSingleSuccessor()); |
| BasicBlock *ExitBB = nullptr; |
| VPBasicBlock *ScalarPHVPBB = nullptr; |
| if (MiddleVPBB->getNumSuccessors() == 2) { |
| // Order is strict: first is the exit block, second is the scalar preheader. |
| ExitBB = |
| cast<VPIRBasicBlock>(MiddleVPBB->getSuccessors()[0])->getIRBasicBlock(); |
| ScalarPHVPBB = cast<VPBasicBlock>(MiddleVPBB->getSuccessors()[1]); |
| } else if (ExitingValuesToFix.empty()) { |
| ScalarPHVPBB = cast<VPBasicBlock>(MiddleVPBB->getSingleSuccessor()); |
| } else { |
| ExitBB = cast<VPIRBasicBlock>(MiddleVPBB->getSingleSuccessor()) |
| ->getIRBasicBlock(); |
| } |
| if (!ScalarPHVPBB) { |
| assert(ExitingValuesToFix.empty() && |
| "missed inserting extracts for exiting values"); |
| return; |
| } |
| |
| VPBuilder ScalarPHBuilder(ScalarPHVPBB); |
| VPBuilder MiddleBuilder(MiddleVPBB); |
| // Reset insert point so new recipes are inserted before terminator and |
| // condition, if there is either the former or both. |
| // TODO: set MiddleBuilder to MiddleVPBB->getFirstNonPhi(). |
| if (auto *Terminator = MiddleVPBB->getTerminator()) { |
| auto *Condition = dyn_cast<VPInstruction>(Terminator->getOperand(0)); |
| assert((!Condition || Condition->getParent() == MiddleVPBB) && |
| "Condition expected in MiddleVPBB"); |
| MiddleBuilder.setInsertPoint(Condition ? Condition : Terminator); |
| } |
| VPValue *OneVPV = Plan.getOrAddLiveIn( |
| ConstantInt::get(Plan.getCanonicalIV()->getScalarType(), 1)); |
| VPValue *TwoVPV = Plan.getOrAddLiveIn( |
| ConstantInt::get(Plan.getCanonicalIV()->getScalarType(), 2)); |
| |
| for (auto &HeaderPhi : VectorRegion->getEntryBasicBlock()->phis()) { |
| auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&HeaderPhi); |
| if (!FOR) |
| continue; |
| |
| // This is the second phase of vectorizing first-order recurrences, creating |
| // extract for users outside the loop. An overview of the transformation is |
| // described below. Suppose we have the following loop with some use after |
| // the loop of the last a[i-1], |
| // |
| // for (int i = 0; i < n; ++i) { |
| // t = a[i - 1]; |
| // b[i] = a[i] - t; |
| // } |
| // use t; |
| // |
| // There is a first-order recurrence on "a". For this loop, the shorthand |
| // scalar IR looks like: |
| // |
| // scalar.ph: |
| // s.init = a[-1] |
| // br scalar.body |
| // |
| // scalar.body: |
| // i = phi [0, scalar.ph], [i+1, scalar.body] |
| // s1 = phi [s.init, scalar.ph], [s2, scalar.body] |
| // s2 = a[i] |
| // b[i] = s2 - s1 |
| // br cond, scalar.body, exit.block |
| // |
| // exit.block: |
| // use = lcssa.phi [s1, scalar.body] |
| // |
| // In this example, s1 is a recurrence because it's value depends on the |
| // previous iteration. In the first phase of vectorization, we created a |
| // VPFirstOrderRecurrencePHIRecipe v1 for s1. Now we create the extracts |
| // for users in the scalar preheader and exit block. |
| // |
| // vector.ph: |
| // v_init = vector(..., ..., ..., a[-1]) |
| // br vector.body |
| // |
| // vector.body |
| // i = phi [0, vector.ph], [i+4, vector.body] |
| // v1 = phi [v_init, vector.ph], [v2, vector.body] |
| // v2 = a[i, i+1, i+2, i+3] |
| // b[i] = v2 - v1 |
| // // Next, third phase will introduce v1' = splice(v1(3), v2(0, 1, 2)) |
| // b[i, i+1, i+2, i+3] = v2 - v1 |
| // br cond, vector.body, middle.block |
| // |
| // middle.block: |
| // vector.recur.extract.for.phi = v2(2) |
| // vector.recur.extract = v2(3) |
| // br cond, scalar.ph, exit.block |
| // |
| // scalar.ph: |
| // scalar.recur.init = phi [vector.recur.extract, middle.block], |
| // [s.init, otherwise] |
| // br scalar.body |
| // |
| // scalar.body: |
| // i = phi [0, scalar.ph], [i+1, scalar.body] |
| // s1 = phi [scalar.recur.init, scalar.ph], [s2, scalar.body] |
| // s2 = a[i] |
| // b[i] = s2 - s1 |
| // br cond, scalar.body, exit.block |
| // |
| // exit.block: |
| // lo = lcssa.phi [s1, scalar.body], |
| // [vector.recur.extract.for.phi, middle.block] |
| // |
| // Extract the resume value and create a new VPLiveOut for it. |
| auto *Resume = MiddleBuilder.createNaryOp(VPInstruction::ExtractFromEnd, |
| {FOR->getBackedgeValue(), OneVPV}, |
| {}, "vector.recur.extract"); |
| auto *ResumePhiRecipe = ScalarPHBuilder.createNaryOp( |
| VPInstruction::ResumePhi, {Resume, FOR->getStartValue()}, {}, |
| "scalar.recur.init"); |
| auto *FORPhi = cast<PHINode>(FOR->getUnderlyingInstr()); |
| Plan.addLiveOut(FORPhi, ResumePhiRecipe); |
| |
| // Now create VPLiveOuts for users in the exit block. |
| // Extract the penultimate value of the recurrence and add VPLiveOut |
| // users of the recurrence splice. |
| |
| // No edge from the middle block to the unique exit block has been inserted |
| // and there is nothing to fix from vector loop; phis should have incoming |
| // from scalar loop only. |
| if (ExitingValuesToFix.empty()) |
| continue; |
| for (User *U : FORPhi->users()) { |
| auto *UI = cast<Instruction>(U); |
| if (UI->getParent() != ExitBB) |
| continue; |
| VPValue *Ext = MiddleBuilder.createNaryOp( |
| VPInstruction::ExtractFromEnd, {FOR->getBackedgeValue(), TwoVPV}, {}, |
| "vector.recur.extract.for.phi"); |
| Plan.addLiveOut(cast<PHINode>(UI), Ext); |
| ExitingValuesToFix.erase(cast<PHINode>(UI)); |
| } |
| } |
| } |
| |
| VPlanPtr |
| LoopVectorizationPlanner::tryToBuildVPlanWithVPRecipes(VFRange &Range) { |
| |
| SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; |
| |
| // --------------------------------------------------------------------------- |
| // Build initial VPlan: Scan the body of the loop in a topological order to |
| // visit each basic block after having visited its predecessor basic blocks. |
| // --------------------------------------------------------------------------- |
| |
| // Create initial VPlan skeleton, having a basic block for the pre-header |
| // which contains SCEV expansions that need to happen before the CFG is |
| // modified; a basic block for the vector pre-header, followed by a region for |
| // the vector loop, followed by the middle basic block. The skeleton vector |
| // loop region contains a header and latch basic blocks. |
| |
| bool RequiresScalarEpilogueCheck = |
| LoopVectorizationPlanner::getDecisionAndClampRange( |
| [this](ElementCount VF) { |
| return !CM.requiresScalarEpilogue(VF.isVector()); |
| }, |
| Range); |
| VPlanPtr Plan = VPlan::createInitialVPlan( |
| createTripCountSCEV(Legal->getWidestInductionType(), PSE, OrigLoop), |
| *PSE.getSE(), RequiresScalarEpilogueCheck, CM.foldTailByMasking(), |
| OrigLoop); |
| |
| // Don't use getDecisionAndClampRange here, because we don't know the UF |
| // so this function is better to be conservative, rather than to split |
| // it up into different VPlans. |
| // TODO: Consider using getDecisionAndClampRange here to split up VPlans. |
| bool IVUpdateMayOverflow = false; |
| for (ElementCount VF : Range) |
| IVUpdateMayOverflow |= !isIndvarOverflowCheckKnownFalse(&CM, VF); |
| |
| DebugLoc DL = getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()); |
| TailFoldingStyle Style = CM.getTailFoldingStyle(IVUpdateMayOverflow); |
| // When not folding the tail, we know that the induction increment will not |
| // overflow. |
| bool HasNUW = Style == TailFoldingStyle::None; |
| addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), HasNUW, DL); |
| |
| VPRecipeBuilder RecipeBuilder(*Plan, OrigLoop, TLI, Legal, CM, PSE, Builder); |
| |
| // --------------------------------------------------------------------------- |
| // Pre-construction: record ingredients whose recipes we'll need to further |
| // process after constructing the initial VPlan. |
| // --------------------------------------------------------------------------- |
| |
| // For each interleave group which is relevant for this (possibly trimmed) |
| // Range, add it to the set of groups to be later applied to the VPlan and add |
| // placeholders for its members' Recipes which we'll be replacing with a |
| // single VPInterleaveRecipe. |
| for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { |
| auto applyIG = [IG, this](ElementCount VF) -> bool { |
| bool Result = (VF.isVector() && // Query is illegal for VF == 1 |
| CM.getWideningDecision(IG->getInsertPos(), VF) == |
| LoopVectorizationCostModel::CM_Interleave); |
| // For scalable vectors, the only interleave factor currently supported |
| // is 2 since we require the (de)interleave2 intrinsics instead of |
| // shufflevectors. |
| assert((!Result || !VF.isScalable() || IG->getFactor() == 2) && |
| "Unsupported interleave factor for scalable vectors"); |
| return Result; |
| }; |
| if (!getDecisionAndClampRange(applyIG, Range)) |
| continue; |
| InterleaveGroups.insert(IG); |
| }; |
| |
| // --------------------------------------------------------------------------- |
| // Construct recipes for the instructions in the loop |
| // --------------------------------------------------------------------------- |
| |
| // Scan the body of the loop in a topological order to visit each basic block |
| // after having visited its predecessor basic blocks. |
| LoopBlocksDFS DFS(OrigLoop); |
| DFS.perform(LI); |
| |
| VPBasicBlock *HeaderVPBB = Plan->getVectorLoopRegion()->getEntryBasicBlock(); |
| VPBasicBlock *VPBB = HeaderVPBB; |
| BasicBlock *HeaderBB = OrigLoop->getHeader(); |
| bool NeedsMasks = |
| CM.foldTailByMasking() || |
| any_of(OrigLoop->blocks(), [this, HeaderBB](BasicBlock *BB) { |
| bool NeedsBlends = BB != HeaderBB && !BB->phis().empty(); |
| return Legal->blockNeedsPredication(BB) || NeedsBlends; |
| }); |
| for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { |
| // Relevant instructions from basic block BB will be grouped into VPRecipe |
| // ingredients and fill a new VPBasicBlock. |
| if (VPBB != HeaderVPBB) |
| VPBB->setName(BB->getName()); |
| Builder.setInsertPoint(VPBB); |
| |
| if (VPBB == HeaderVPBB) |
| RecipeBuilder.createHeaderMask(); |
| else if (NeedsMasks) |
| RecipeBuilder.createBlockInMask(BB); |
| |
| // Introduce each ingredient into VPlan. |
| // TODO: Model and preserve debug intrinsics in VPlan. |
| for (Instruction &I : drop_end(BB->instructionsWithoutDebug(false))) { |
| Instruction *Instr = &I; |
| SmallVector<VPValue *, 4> Operands; |
| auto *Phi = dyn_cast<PHINode>(Instr); |
| if (Phi && Phi->getParent() == HeaderBB) { |
| Operands.push_back(Plan->getOrAddLiveIn( |
| Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()))); |
| } else { |
| auto OpRange = RecipeBuilder.mapToVPValues(Instr->operands()); |
| Operands = {OpRange.begin(), OpRange.end()}; |
| } |
| |
| // Invariant stores inside loop will be deleted and a single store |
| // with the final reduction value will be added to the exit block |
| StoreInst *SI; |
| if ((SI = dyn_cast<StoreInst>(&I)) && |
| Legal->isInvariantAddressOfReduction(SI->getPointerOperand())) |
| continue; |
| |
| VPRecipeBase *Recipe = |
| RecipeBuilder.tryToCreateWidenRecipe(Instr, Operands, Range, VPBB); |
| if (!Recipe) |
| Recipe = RecipeBuilder.handleReplication(Instr, Range); |
| |
| RecipeBuilder.setRecipe(Instr, Recipe); |
| if (isa<VPHeaderPHIRecipe>(Recipe)) { |
| // VPHeaderPHIRecipes must be kept in the phi section of HeaderVPBB. In |
| // the following cases, VPHeaderPHIRecipes may be created after non-phi |
| // recipes and need to be moved to the phi section of HeaderVPBB: |
| // * tail-folding (non-phi recipes computing the header mask are |
| // introduced earlier than regular header phi recipes, and should appear |
| // after them) |
| // * Optimizing truncates to VPWidenIntOrFpInductionRecipe. |
| |
| assert((HeaderVPBB->getFirstNonPhi() == VPBB->end() || |
| CM.foldTailByMasking() || isa<TruncInst>(Instr)) && |
| "unexpected recipe needs moving"); |
| Recipe->insertBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi()); |
| } else |
| VPBB->appendRecipe(Recipe); |
| } |
| |
| VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB); |
| VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor()); |
| } |
| |
| // After here, VPBB should not be used. |
| VPBB = nullptr; |
| |
| assert(isa<VPRegionBlock>(Plan->getVectorLoopRegion()) && |
| !Plan->getVectorLoopRegion()->getEntryBasicBlock()->empty() && |
| "entry block must be set to a VPRegionBlock having a non-empty entry " |
| "VPBasicBlock"); |
| RecipeBuilder.fixHeaderPhis(); |
| |
| MapVector<PHINode *, VPValue *> ExitingValuesToFix = collectUsersInExitBlock( |
| OrigLoop, RecipeBuilder, *Plan, Legal->getInductionVars()); |
| |
| addLiveOutsForFirstOrderRecurrences(*Plan, ExitingValuesToFix); |
| addUsersInExitBlock(*Plan, ExitingValuesToFix); |
| |
| // --------------------------------------------------------------------------- |
| // Transform initial VPlan: Apply previously taken decisions, in order, to |
| // bring the VPlan to its final state. |
| // --------------------------------------------------------------------------- |
| |
| // Adjust the recipes for any inloop reductions. |
| adjustRecipesForReductions(Plan, RecipeBuilder, Range.Start); |
| |
| // Interleave memory: for each Interleave Group we marked earlier as relevant |
| // for this VPlan, replace the Recipes widening its memory instructions with a |
| // single VPInterleaveRecipe at its insertion point. |
| for (const auto *IG : InterleaveGroups) { |
| auto *Recipe = |
| cast<VPWidenMemoryRecipe>(RecipeBuilder.getRecipe(IG->getInsertPos())); |
| SmallVector<VPValue *, 4> StoredValues; |
| for (unsigned i = 0; i < IG->getFactor(); ++i) |
| if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) { |
| auto *StoreR = cast<VPWidenStoreRecipe>(RecipeBuilder.getRecipe(SI)); |
| StoredValues.push_back(StoreR->getStoredValue()); |
| } |
| |
| bool NeedsMaskForGaps = |
| IG->requiresScalarEpilogue() && !CM.isScalarEpilogueAllowed(); |
| assert((!NeedsMaskForGaps || useMaskedInterleavedAccesses(CM.TTI)) && |
| "masked interleaved groups are not allowed."); |
| auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, |
| Recipe->getMask(), NeedsMaskForGaps); |
| VPIG->insertBefore(Recipe); |
| unsigned J = 0; |
| for (unsigned i = 0; i < IG->getFactor(); ++i) |
| if (Instruction *Member = IG->getMember(i)) { |
| VPRecipeBase *MemberR = RecipeBuilder.getRecipe(Member); |
| if (!Member->getType()->isVoidTy()) { |
| VPValue *OriginalV = MemberR->getVPSingleValue(); |
| OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); |
| J++; |
| } |
| MemberR->eraseFromParent(); |
| } |
| } |
| |
| for (ElementCount VF : Range) |
| Plan->addVF(VF); |
| Plan->setName("Initial VPlan"); |
| |
| // Replace VPValues for known constant strides guaranteed by predicate scalar |
| // evolution. |
| for (auto [_, Stride] : Legal->getLAI()->getSymbolicStrides()) { |
| auto *StrideV = cast<SCEVUnknown>(Stride)->getValue(); |
| auto *ScevStride = dyn_cast<SCEVConstant>(PSE.getSCEV(StrideV)); |
| // Only handle constant strides for now. |
| if (!ScevStride) |
| continue; |
| |
| auto *CI = Plan->getOrAddLiveIn( |
| ConstantInt::get(Stride->getType(), ScevStride->getAPInt())); |
| if (VPValue *StrideVPV = Plan->getLiveIn(StrideV)) |
| StrideVPV->replaceAllUsesWith(CI); |
| |
| // The versioned value may not be used in the loop directly but through a |
| // sext/zext. Add new live-ins in those cases. |
| for (Value *U : StrideV->users()) { |
| if (!isa<SExtInst, ZExtInst>(U)) |
| continue; |
| VPValue *StrideVPV = Plan->getLiveIn(U); |
| if (!StrideVPV) |
| continue; |
| unsigned BW = U->getType()->getScalarSizeInBits(); |
| APInt C = isa<SExtInst>(U) ? ScevStride->getAPInt().sext(BW) |
| : ScevStride->getAPInt().zext(BW); |
| VPValue *CI = Plan->getOrAddLiveIn(ConstantInt::get(U->getType(), C)); |
| StrideVPV->replaceAllUsesWith(CI); |
| } |
| } |
| |
| VPlanTransforms::dropPoisonGeneratingRecipes(*Plan, [this](BasicBlock *BB) { |
| return Legal->blockNeedsPredication(BB); |
| }); |
| |
| // Sink users of fixed-order recurrence past the recipe defining the previous |
| // value and introduce FirstOrderRecurrenceSplice VPInstructions. |
| if (!VPlanTransforms::adjustFixedOrderRecurrences(*Plan, Builder)) |
| return nullptr; |
| |
| if (useActiveLaneMask(Style)) { |
| // TODO: Move checks to VPlanTransforms::addActiveLaneMask once |
| // TailFoldingStyle is visible there. |
| bool ForControlFlow = useActiveLaneMaskForControlFlow(Style); |
| bool WithoutRuntimeCheck = |
| Style == TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck; |
| VPlanTransforms::addActiveLaneMask(*Plan, ForControlFlow, |
| WithoutRuntimeCheck); |
| } |
| return Plan; |
| } |
| |
| VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { |
| // Outer loop handling: They may require CFG and instruction level |
| // transformations before even evaluating whether vectorization is profitable. |
| // Since we cannot modify the incoming IR, we need to build VPlan upfront in |
| // the vectorization pipeline. |
| assert(!OrigLoop->isInnermost()); |
| assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); |
| |
| // Create new empty VPlan |
| auto Plan = VPlan::createInitialVPlan( |
| createTripCountSCEV(Legal->getWidestInductionType(), PSE, OrigLoop), |
| *PSE.getSE(), true, false, OrigLoop); |
| |
| // Build hierarchical CFG |
| VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); |
| HCFGBuilder.buildHierarchicalCFG(); |
| |
| for (ElementCount VF : Range) |
| Plan->addVF(VF); |
| |
| VPlanTransforms::VPInstructionsToVPRecipes( |
| Plan, |
| [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); }, |
| *PSE.getSE(), *TLI); |
| |
| // Remove the existing terminator of the exiting block of the top-most region. |
| // A BranchOnCount will be added instead when adding the canonical IV recipes. |
| auto *Term = |
| Plan->getVectorLoopRegion()->getExitingBasicBlock()->getTerminator(); |
| Term->eraseFromParent(); |
| |
| // Tail folding is not supported for outer loops, so the induction increment |
| // is guaranteed to not wrap. |
| bool HasNUW = true; |
| addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), HasNUW, |
| DebugLoc()); |
| assert(verifyVPlanIsValid(*Plan) && "VPlan is invalid"); |
| return Plan; |
| } |
| |
| // Adjust the recipes for reductions. For in-loop reductions the chain of |
| // instructions leading from the loop exit instr to the phi need to be converted |
| // to reductions, with one operand being vector and the other being the scalar |
| // reduction chain. For other reductions, a select is introduced between the phi |
| // and live-out recipes when folding the tail. |
| // |
| // A ComputeReductionResult recipe is added to the middle block, also for |
| // in-loop reductions which compute their result in-loop, because generating |
| // the subsequent bc.merge.rdx phi is driven by ComputeReductionResult recipes. |
| // |
| // Adjust AnyOf reductions; replace the reduction phi for the selected value |
| // with a boolean reduction phi node to check if the condition is true in any |
| // iteration. The final value is selected by the final ComputeReductionResult. |
| void LoopVectorizationPlanner::adjustRecipesForReductions( |
| VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, ElementCount MinVF) { |
| using namespace VPlanPatternMatch; |
| VPRegionBlock *VectorLoopRegion = Plan->getVectorLoopRegion(); |
| VPBasicBlock *Header = VectorLoopRegion->getEntryBasicBlock(); |
| // Gather all VPReductionPHIRecipe and sort them so that Intermediate stores |
| // sank outside of the loop would keep the same order as they had in the |
| // original loop. |
| SmallVector<VPReductionPHIRecipe *> ReductionPHIList; |
| for (VPRecipeBase &R : Header->phis()) { |
| if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) |
| ReductionPHIList.emplace_back(ReductionPhi); |
| } |
| bool HasIntermediateStore = false; |
| stable_sort(ReductionPHIList, |
| [this, &HasIntermediateStore](const VPReductionPHIRecipe *R1, |
| const VPReductionPHIRecipe *R2) { |
| auto *IS1 = R1->getRecurrenceDescriptor().IntermediateStore; |
| auto *IS2 = R2->getRecurrenceDescriptor().IntermediateStore; |
| HasIntermediateStore |= IS1 || IS2; |
| |
| // If neither of the recipes has an intermediate store, keep the |
| // order the same. |
| if (!IS1 && !IS2) |
| return false; |
| |
| // If only one of the recipes has an intermediate store, then |
| // move it towards the beginning of the list. |
| if (IS1 && !IS2) |
| return true; |
| |
| if (!IS1 && IS2) |
| return false; |
| |
| // If both recipes have an intermediate store, then the recipe |
| // with the later store should be processed earlier. So it |
| // should go to the beginning of the list. |
| return DT->dominates(IS2, IS1); |
| }); |
| |
| if (HasIntermediateStore && ReductionPHIList.size() > 1) |
| for (VPRecipeBase *R : ReductionPHIList) |
| R->moveBefore(*Header, Header->getFirstNonPhi()); |
| |
| for (VPRecipeBase &R : Header->phis()) { |
| auto *PhiR = dyn_cast<VPReductionPHIRecipe>(&R); |
| if (!PhiR || !PhiR->isInLoop() || (MinVF.isScalar() && !PhiR->isOrdered())) |
| continue; |
| |
| const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); |
| RecurKind Kind = RdxDesc.getRecurrenceKind(); |
| assert(!RecurrenceDescriptor::isAnyOfRecurrenceKind(Kind) && |
| "AnyOf reductions are not allowed for in-loop reductions"); |
| |
| // Collect the chain of "link" recipes for the reduction starting at PhiR. |
| SetVector<VPSingleDefRecipe *> Worklist; |
| Worklist.insert(PhiR); |
| for (unsigned I = 0; I != Worklist.size(); ++I) { |
| VPSingleDefRecipe *Cur = Worklist[I]; |
| for (VPUser *U : Cur->users()) { |
| auto *UserRecipe = cast<VPSingleDefRecipe>(U); |
| if (!UserRecipe->getParent()->getEnclosingLoopRegion()) { |
| assert(match(U, m_Binary<VPInstruction::ExtractFromEnd>( |
| m_VPValue(), m_VPValue())) && |
| "U must be an ExtractFromEnd VPInstruction"); |
| continue; |
| } |
| Worklist.insert(UserRecipe); |
| } |
| } |
| |
| // Visit operation "Links" along the reduction chain top-down starting from |
| // the phi until LoopExitValue. We keep track of the previous item |
| // (PreviousLink) to tell which of the two operands of a Link will remain |
| // scalar and which will be reduced. For minmax by select(cmp), Link will be |
| // the select instructions. Blend recipes of in-loop reduction phi's will |
| // get folded to their non-phi operand, as the reduction recipe handles the |
| // condition directly. |
| VPSingleDefRecipe *PreviousLink = PhiR; // Aka Worklist[0]. |
| for (VPSingleDefRecipe *CurrentLink : Worklist.getArrayRef().drop_front()) { |
| Instruction *CurrentLinkI = CurrentLink->getUnderlyingInstr(); |
| |
| // Index of the first operand which holds a non-mask vector operand. |
| unsigned IndexOfFirstOperand; |
| // Recognize a call to the llvm.fmuladd intrinsic. |
| bool IsFMulAdd = (Kind == RecurKind::FMulAdd); |
| VPValue *VecOp; |
| VPBasicBlock *LinkVPBB = CurrentLink->getParent(); |
| if (IsFMulAdd) { |
| assert( |
| RecurrenceDescriptor::isFMulAddIntrinsic(CurrentLinkI) && |
| "Expected instruction to be a call to the llvm.fmuladd intrinsic"); |
| assert(((MinVF.isScalar() && isa<VPReplicateRecipe>(CurrentLink)) || |
| isa<VPWidenCallRecipe>(CurrentLink)) && |
| CurrentLink->getOperand(2) == PreviousLink && |
| "expected a call where the previous link is the added operand"); |
| |
| // If the instruction is a call to the llvm.fmuladd intrinsic then we |
| // need to create an fmul recipe (multiplying the first two operands of |
| // the fmuladd together) to use as the vector operand for the fadd |
| // reduction. |
| VPInstruction *FMulRecipe = new VPInstruction( |
| Instruction::FMul, |
| {CurrentLink->getOperand(0), CurrentLink->getOperand(1)}, |
| CurrentLinkI->getFastMathFlags()); |
| LinkVPBB->insert(FMulRecipe, CurrentLink->getIterator()); |
| VecOp = FMulRecipe; |
| } else { |
| auto *Blend = dyn_cast<VPBlendRecipe>(CurrentLink); |
| if (PhiR->isInLoop() && Blend) { |
| assert(Blend->getNumIncomingValues() == 2 && |
| "Blend must have 2 incoming values"); |
| if (Blend->getIncomingValue(0) == PhiR) |
| Blend->replaceAllUsesWith(Blend->getIncomingValue(1)); |
| else { |
| assert(Blend->getIncomingValue(1) == PhiR && |
| "PhiR must be an operand of the blend"); |
| Blend->replaceAllUsesWith(Blend->getIncomingValue(0)); |
| } |
| continue; |
| } |
| |
| if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { |
| if (isa<VPWidenRecipe>(CurrentLink)) { |
| assert(isa<CmpInst>(CurrentLinkI) && |
| "need to have the compare of the select"); |
| continue; |
| } |
| assert(isa<VPWidenSelectRecipe>(CurrentLink) && |
| "must be a select recipe"); |
| IndexOfFirstOperand = 1; |
| } else { |
| assert((MinVF.isScalar() || isa<VPWidenRecipe>(CurrentLink)) && |
| "Expected to replace a VPWidenSC"); |
| IndexOfFirstOperand = 0; |
| } |
| // Note that for non-commutable operands (cmp-selects), the semantics of |
| // the cmp-select are captured in the recurrence kind. |
| unsigned VecOpId = |
| CurrentLink->getOperand(IndexOfFirstOperand) == PreviousLink |
| ? IndexOfFirstOperand + 1 |
| : IndexOfFirstOperand; |
| VecOp = CurrentLink->getOperand(VecOpId); |
| assert(VecOp != PreviousLink && |
| CurrentLink->getOperand(CurrentLink->getNumOperands() - 1 - |
| (VecOpId - IndexOfFirstOperand)) == |
| PreviousLink && |
| "PreviousLink must be the operand other than VecOp"); |
| } |
| |
| BasicBlock *BB = CurrentLinkI->getParent(); |
| VPValue *CondOp = nullptr; |
| if (CM.blockNeedsPredicationForAnyReason(BB)) |
| CondOp = RecipeBuilder.getBlockInMask(BB); |
| |
| VPReductionRecipe *RedRecipe = |
| new VPReductionRecipe(RdxDesc, CurrentLinkI, PreviousLink, VecOp, |
| CondOp, CM.useOrderedReductions(RdxDesc)); |
| // Append the recipe to the end of the VPBasicBlock because we need to |
| // ensure that it comes after all of it's inputs, including CondOp. |
| // Note that this transformation may leave over dead recipes (including |
| // CurrentLink), which will be cleaned by a later VPlan transform. |
| LinkVPBB->appendRecipe(RedRecipe); |
| CurrentLink->replaceAllUsesWith(RedRecipe); |
| PreviousLink = RedRecipe; |
| } |
| } |
| VPBasicBlock *LatchVPBB = VectorLoopRegion->getExitingBasicBlock(); |
| Builder.setInsertPoint(&*LatchVPBB->begin()); |
| VPBasicBlock *MiddleVPBB = |
| cast<VPBasicBlock>(VectorLoopRegion->getSingleSuccessor()); |
| VPBasicBlock::iterator IP = MiddleVPBB->getFirstNonPhi(); |
| for (VPRecipeBase &R : |
| Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) { |
| VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R); |
| if (!PhiR) |
| continue; |
| |
| const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); |
| // Adjust AnyOf reductions; replace the reduction phi for the selected value |
| // with a boolean reduction phi node to check if the condition is true in |
| // any iteration. The final value is selected by the final |
| // ComputeReductionResult. |
| if (RecurrenceDescriptor::isAnyOfRecurrenceKind( |
| RdxDesc.getRecurrenceKind())) { |
| auto *Select = cast<VPRecipeBase>(*find_if(PhiR->users(), [](VPUser *U) { |
| return isa<VPWidenSelectRecipe>(U) || |
| (isa<VPReplicateRecipe>(U) && |
| cast<VPReplicateRecipe>(U)->getUnderlyingInstr()->getOpcode() == |
| Instruction::Select); |
| })); |
| VPValue *Cmp = Select->getOperand(0); |
| // If the compare is checking the reduction PHI node, adjust it to check |
| // the start value. |
| if (VPRecipeBase *CmpR = Cmp->getDefiningRecipe()) { |
| for (unsigned I = 0; I != CmpR->getNumOperands(); ++I) |
| if (CmpR->getOperand(I) == PhiR) |
| CmpR->setOperand(I, PhiR->getStartValue()); |
| } |
| VPBuilder::InsertPointGuard Guard(Builder); |
| Builder.setInsertPoint(Select); |
| |
| // If the true value of the select is the reduction phi, the new value is |
| // selected if the negated condition is true in any iteration. |
| if (Select->getOperand(1) == PhiR) |
| Cmp = Builder.createNot(Cmp); |
| VPValue *Or = Builder.createOr(PhiR, Cmp); |
| Select->getVPSingleValue()->replaceAllUsesWith(Or); |
| |
| // Convert the reduction phi to operate on bools. |
| PhiR->setOperand(0, Plan->getOrAddLiveIn(ConstantInt::getFalse( |
| OrigLoop->getHeader()->getContext()))); |
| } |
| |
| // If tail is folded by masking, introduce selects between the phi |
| // and the live-out instruction of each reduction, at the beginning of the |
| // dedicated latch block. |
| auto *OrigExitingVPV = PhiR->getBackedgeValue(); |
| auto *NewExitingVPV = PhiR->getBackedgeValue(); |
| if (!PhiR->isInLoop() && CM.foldTailByMasking()) { |
| VPValue *Cond = RecipeBuilder.getBlockInMask(OrigLoop->getHeader()); |
| assert(OrigExitingVPV->getDefiningRecipe()->getParent() != LatchVPBB && |
| "reduction recipe must be defined before latch"); |
| Type *PhiTy = PhiR->getOperand(0)->getLiveInIRValue()->getType(); |
| std::optional<FastMathFlags> FMFs = |
| PhiTy->isFloatingPointTy() |
| ? std::make_optional(RdxDesc.getFastMathFlags()) |
| : std::nullopt; |
| NewExitingVPV = |
| Builder.createSelect(Cond, OrigExitingVPV, PhiR, {}, "", FMFs); |
| OrigExitingVPV->replaceUsesWithIf(NewExitingVPV, [](VPUser &U, unsigned) { |
| return isa<VPInstruction>(&U) && |
| cast<VPInstruction>(&U)->getOpcode() == |
| VPInstruction::ComputeReductionResult; |
| }); |
| if (PreferPredicatedReductionSelect || |
| TTI.preferPredicatedReductionSelect( |
| PhiR->getRecurrenceDescriptor().getOpcode(), PhiTy, |
| TargetTransformInfo::ReductionFlags())) |
| PhiR->setOperand(1, NewExitingVPV); |
| } |
| |
| // If the vector reduction can be performed in a smaller type, we truncate |
| // then extend the loop exit value to enable InstCombine to evaluate the |
| // entire expression in the smaller type. |
| Type *PhiTy = PhiR->getStartValue()->getLiveInIRValue()->getType(); |
| if (MinVF.isVector() && PhiTy != RdxDesc.getRecurrenceType() && |
| !RecurrenceDescriptor::isAnyOfRecurrenceKind( |
| RdxDesc.getRecurrenceKind())) { |
| assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!"); |
| Type *RdxTy = RdxDesc.getRecurrenceType(); |
| auto *Trunc = |
| new VPWidenCastRecipe(Instruction::Trunc, NewExitingVPV, RdxTy); |
| auto *Extnd = |
| RdxDesc.isSigned() |
| ? new VPWidenCastRecipe(Instruction::SExt, Trunc, PhiTy) |
| : new VPWidenCastRecipe(Instruction::ZExt, Trunc, PhiTy); |
| |
| Trunc->insertAfter(NewExitingVPV->getDefiningRecipe()); |
| Extnd->insertAfter(Trunc); |
| if (PhiR->getOperand(1) == NewExitingVPV) |
| PhiR->setOperand(1, Extnd->getVPSingleValue()); |
| NewExitingVPV = Extnd; |
| } |
| |
| // We want code in the middle block to appear to execute on the location of |
| // the scalar loop's latch terminator because: (a) it is all compiler |
| // generated, (b) these instructions are always executed after evaluating |
| // the latch conditional branch, and (c) other passes may add new |
| // predecessors which terminate on this line. This is the easiest way to |
| // ensure we don't accidentally cause an extra step back into the loop while |
| // debugging. |
| DebugLoc ExitDL = OrigLoop->getLoopLatch()->getTerminator()->getDebugLoc(); |
| |
| // TODO: At the moment ComputeReductionResult also drives creation of the |
| // bc.merge.rdx phi nodes, hence it needs to be created unconditionally here |
| // even for in-loop reductions, until the reduction resume value handling is |
| // also modeled in VPlan. |
| auto *FinalReductionResult = new VPInstruction( |
| VPInstruction::ComputeReductionResult, {PhiR, NewExitingVPV}, ExitDL); |
| FinalReductionResult->insertBefore(*MiddleVPBB, IP); |
| OrigExitingVPV->replaceUsesWithIf(FinalReductionResult, [](VPUser &User, |
| unsigned) { |
| return match(&User, m_Binary<VPInstruction::ExtractFromEnd>(m_VPValue(), |
| m_VPValue())); |
| }); |
| } |
| |
| VPlanTransforms::clearReductionWrapFlags(*Plan); |
| } |
| |
| void VPDerivedIVRecipe::execute(VPTransformState &State) { |
| assert(!State.Instance && "VPDerivedIVRecipe being replicated."); |
| |
| // Fast-math-flags propagate from the original induction instruction. |
| IRBuilder<>::FastMathFlagGuard FMFG(State.Builder); |
| if (FPBinOp) |
| State.Builder.setFastMathFlags(FPBinOp->getFastMathFlags()); |
| |
| Value *Step = State.get(getStepValue(), VPIteration(0, 0)); |
| Value *CanonicalIV = State.get(getOperand(1), VPIteration(0, 0)); |
| Value *DerivedIV = emitTransformedIndex( |
| State.Builder, CanonicalIV, getStartValue()->getLiveInIRValue(), Step, |
| Kind, cast_if_present<BinaryOperator>(FPBinOp)); |
| DerivedIV->setName("offset.idx"); |
| assert(DerivedIV != CanonicalIV && "IV didn't need transforming?"); |
| |
| State.set(this, DerivedIV, VPIteration(0, 0)); |
| } |
| |
| void VPReplicateRecipe::execute(VPTransformState &State) { |
| Instruction *UI = getUnderlyingInstr(); |
| if (State.Instance) { // Generate a single instance. |
| assert((State.VF.isScalar() || !isUniform()) && |
| "uniform recipe shouldn't be predicated"); |
| assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); |
| State.ILV->scalarizeInstruction(UI, this, *State.Instance, State); |
| // Insert scalar instance packing it into a vector. |
| if (State.VF.isVector() && shouldPack()) { |
| // If we're constructing lane 0, initialize to start from poison. |
| if (State.Instance->Lane.isFirstLane()) { |
| assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); |
| Value *Poison = PoisonValue::get( |
| VectorType::get(UI->getType(), State.VF)); |
| State.set(this, Poison, State.Instance->Part); |
| } |
| State.packScalarIntoVectorValue(this, *State.Instance); |
| } |
| return; |
| } |
| |
| if (IsUniform) { |
| // If the recipe is uniform across all parts (instead of just per VF), only |
| // generate a single instance. |
| if ((isa<LoadInst>(UI) || isa<StoreInst>(UI)) && |
| all_of(operands(), [](VPValue *Op) { |
| return Op->isDefinedOutsideVectorRegions(); |
| })) { |
| State.ILV->scalarizeInstruction(UI, this, VPIteration(0, 0), State); |
| if (user_begin() != user_end()) { |
| for (unsigned Part = 1; Part < State.UF; ++Part) |
| State.set(this, State.get(this, VPIteration(0, 0)), |
| VPIteration(Part, 0)); |
| } |
| return; |
| } |
| |
| // Uniform within VL means we need to generate lane 0 only for each |
| // unrolled copy. |
| for (unsigned Part = 0; Part < State.UF; ++Part) |
| State.ILV->scalarizeInstruction(UI, this, VPIteration(Part, 0), State); |
| return; |
| } |
| |
| // A store of a loop varying value to a uniform address only needs the last |
| // copy of the store. |
| if (isa<StoreInst>(UI) && |
| vputils::isUniformAfterVectorization(getOperand(1))) { |
| auto Lane = VPLane::getLastLaneForVF(State.VF); |
| State.ILV->scalarizeInstruction(UI, this, VPIteration(State.UF - 1, Lane), |
| State); |
| return; |
| } |
| |
| // Generate scalar instances for all VF lanes of all UF parts. |
| assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); |
| const unsigned EndLane = State.VF.getKnownMinValue(); |
| for (unsigned Part = 0; Part < State.UF; ++Part) |
| for (unsigned Lane = 0; Lane < EndLane; ++Lane) |
| State.ILV->scalarizeInstruction(UI, this, VPIteration(Part, Lane), State); |
| } |
| |
| /// Use all-true mask for reverse rather than actual mask, as it avoids a |
| /// dependence w/o affecting the result. |
| static Instruction *createReverseEVL(IRBuilderBase &Builder, Value *Operand, |
| Value *EVL, const Twine &Name) { |
| VectorType *ValTy = cast<VectorType>(Operand->getType()); |
| Value *AllTrueMask = |
| Builder.CreateVectorSplat(ValTy->getElementCount(), Builder.getTrue()); |
| return Builder.CreateIntrinsic(ValTy, Intrinsic::experimental_vp_reverse, |
| {Operand, AllTrueMask, EVL}, nullptr, Name); |
| } |
| |
| void VPWidenLoadEVLRecipe::execute(VPTransformState &State) { |
| assert(State.UF == 1 && "Expected only UF == 1 when vectorizing with " |
| "explicit vector length."); |
| auto *LI = cast<LoadInst>(&Ingredient); |
| |
| Type *ScalarDataTy = getLoadStoreType(&Ingredient); |
| auto *DataTy = VectorType::get(ScalarDataTy, State.VF); |
| const Align Alignment = getLoadStoreAlignment(&Ingredient); |
| bool CreateGather = !isConsecutive(); |
| |
| auto &Builder = State.Builder; |
| State.setDebugLocFrom(getDebugLoc()); |
| CallInst *NewLI; |
| Value *EVL = State.get(getEVL(), VPIteration(0, 0)); |
| Value *Addr = State.get(getAddr(), 0, !CreateGather); |
| Value *Mask = nullptr; |
| if (VPValue *VPMask = getMask()) { |
| Mask = State.get(VPMask, 0); |
| if (isReverse()) |
| Mask = createReverseEVL(Builder, Mask, EVL, "vp.reverse.mask"); |
| } else { |
| Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue()); |
| } |
| |
| if (CreateGather) { |
| NewLI = |
| Builder.CreateIntrinsic(DataTy, Intrinsic::vp_gather, {Addr, Mask, EVL}, |
| nullptr, "wide.masked.gather"); |
| } else { |
| VectorBuilder VBuilder(Builder); |
| VBuilder.setEVL(EVL).setMask(Mask); |
| NewLI = cast<CallInst>(VBuilder.createVectorInstruction( |
| Instruction::Load, DataTy, Addr, "vp.op.load")); |
| } |
| NewLI->addParamAttr( |
| 0, Attribute::getWithAlignment(NewLI->getContext(), Alignment)); |
| State.addMetadata(NewLI, LI); |
| Instruction *Res = NewLI; |
| if (isReverse()) |
| Res = createReverseEVL(Builder, Res, EVL, "vp.reverse"); |
| State.set(this, Res, 0); |
| } |
| |
| void VPWidenStoreEVLRecipe::execute(VPTransformState &State) { |
| assert(State.UF == 1 && "Expected only UF == 1 when vectorizing with " |
| "explicit vector length."); |
| auto *SI = cast<StoreInst>(&Ingredient); |
| |
| VPValue *StoredValue = getStoredValue(); |
| bool CreateScatter = !isConsecutive(); |
| const Align Alignment = getLoadStoreAlignment(&Ingredient); |
| |
| auto &Builder = State.Builder; |
| State.setDebugLocFrom(getDebugLoc()); |
| |
| CallInst *NewSI = nullptr; |
| Value *StoredVal = State.get(StoredValue, 0); |
| Value *EVL = State.get(getEVL(), VPIteration(0, 0)); |
| if (isReverse()) |
| StoredVal = createReverseEVL(Builder, StoredVal, EVL, "vp.reverse"); |
| Value *Mask = nullptr; |
| if (VPValue *VPMask = getMask()) { |
| Mask = State.get(VPMask, 0); |
| if (isReverse()) |
| Mask = createReverseEVL(Builder, Mask, EVL, "vp.reverse.mask"); |
| } else { |
| Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue()); |
| } |
| Value *Addr = State.get(getAddr(), 0, !CreateScatter); |
| if (CreateScatter) { |
| NewSI = Builder.CreateIntrinsic(Type::getVoidTy(EVL->getContext()), |
| Intrinsic::vp_scatter, |
| {StoredVal, Addr, Mask, EVL}); |
| } else { |
| VectorBuilder VBuilder(Builder); |
| VBuilder.setEVL(EVL).setMask(Mask); |
| NewSI = cast<CallInst>(VBuilder.createVectorInstruction( |
| Instruction::Store, Type::getVoidTy(EVL->getContext()), |
| {StoredVal, Addr})); |
| } |
| NewSI->addParamAttr( |
| 1, Attribute::getWithAlignment(NewSI->getContext(), Alignment)); |
| State.addMetadata(NewSI, SI); |
| } |
| |
| // Determine how to lower the scalar epilogue, which depends on 1) optimising |
| // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing |
| // predication, and 4) a TTI hook that analyses whether the loop is suitable |
| // for predication. |
| static ScalarEpilogueLowering getScalarEpilogueLowering( |
| Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, |
| BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, |
| LoopVectorizationLegality &LVL, InterleavedAccessInfo *IAI) { |
| // 1) OptSize takes precedence over all other options, i.e. if this is set, |
| // don't look at hints or options, and don't request a scalar epilogue. |
| // (For PGSO, as shouldOptimizeForSize isn't currently accessible from |
| // LoopAccessInfo (due to code dependency and not being able to reliably get |
| // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection |
| // of strides in LoopAccessInfo::analyzeLoop() and vectorize without |
| // versioning when the vectorization is forced, unlike hasOptSize. So revert |
| // back to the old way and vectorize with versioning when forced. See D81345.) |
| if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, |
| PGSOQueryType::IRPass) && |
| Hints.getForce() != LoopVectorizeHints::FK_Enabled)) |
| return CM_ScalarEpilogueNotAllowedOptSize; |
| |
| // 2) If set, obey the directives |
| if (PreferPredicateOverEpilogue.getNumOccurrences()) { |
| switch (PreferPredicateOverEpilogue) { |
| case PreferPredicateTy::ScalarEpilogue: |
| return CM_ScalarEpilogueAllowed; |
| case PreferPredicateTy::PredicateElseScalarEpilogue: |
| return CM_ScalarEpilogueNotNeededUsePredicate; |
| case PreferPredicateTy::PredicateOrDontVectorize: |
| return CM_ScalarEpilogueNotAllowedUsePredicate; |
| }; |
| } |
| |
| // 3) If set, obey the hints |
| switch (Hints.getPredicate()) { |
| case LoopVectorizeHints::FK_Enabled: |
| return CM_ScalarEpilogueNotNeededUsePredicate; |
| case LoopVectorizeHints::FK_Disabled: |
| return CM_ScalarEpilogueAllowed; |
| }; |
| |
| // 4) if the TTI hook indicates this is profitable, request predication. |
| TailFoldingInfo TFI(TLI, &LVL, IAI); |
| if (TTI->preferPredicateOverEpilogue(&TFI)) |
| return CM_ScalarEpilogueNotNeededUsePredicate; |
| |
| return CM_ScalarEpilogueAllowed; |
| } |
| |
| // Process the loop in the VPlan-native vectorization path. This path builds |
| // VPlan upfront in the vectorization pipeline, which allows to apply |
| // VPlan-to-VPlan transformations from the very beginning without modifying the |
| // input LLVM IR. |
| static bool processLoopInVPlanNativePath( |
| Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, |
| LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, |
| TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, |
| OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, |
| ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, |
| LoopVectorizationRequirements &Requirements) { |
| |
| if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { |
| LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); |
| return false; |
| } |
| assert(EnableVPlanNativePath && "VPlan-native path is disabled."); |
| Function *F = L->getHeader()->getParent(); |
| InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); |
| |
| ScalarEpilogueLowering SEL = |
| getScalarEpilogueLowering(F, L, Hints, PSI, BFI, TTI, TLI, *LVL, &IAI); |
| |
| LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, |
| &Hints, IAI); |
| // Use the planner for outer loop vectorization. |
| // TODO: CM is not used at this point inside the planner. Turn CM into an |
| // optional argument if we don't need it in the future. |
| LoopVectorizationPlanner LVP(L, LI, DT, TLI, *TTI, LVL, CM, IAI, PSE, Hints, |
| ORE); |
| |
| // Get user vectorization factor. |
| ElementCount UserVF = Hints.getWidth(); |
| |
| CM.collectElementTypesForWidening(); |
| |
| // Plan how to best vectorize, return the best VF and its cost. |
| const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); |
| |
| // If we are stress testing VPlan builds, do not attempt to generate vector |
| // code. Masked vector code generation support will follow soon. |
| // Also, do not attempt to vectorize if no vector code will be produced. |
| if (VPlanBuildStressTest || VectorizationFactor::Disabled() == VF) |
| return false; |
| |
| VPlan &BestPlan = LVP.getPlanFor(VF.Width); |
| |
| { |
| bool AddBranchWeights = |
| hasBranchWeightMD(*L->getLoopLatch()->getTerminator()); |
| GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, TTI, |
| F->getDataLayout(), AddBranchWeights); |
| InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, |
| VF.Width, 1, LVL, &CM, BFI, PSI, Checks); |
| LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" |
| << L->getHeader()->getParent()->getName() << "\"\n"); |
| LVP.executePlan(VF.Width, 1, BestPlan, LB, DT, false); |
| } |
| |
| reportVectorization(ORE, L, VF, 1); |
| |
| // Mark the loop as already vectorized to avoid vectorizing again. |
| Hints.setAlreadyVectorized(); |
| assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); |
| return true; |
| } |
| |
| // Emit a remark if there are stores to floats that required a floating point |
| // extension. If the vectorized loop was generated with floating point there |
| // will be a performance penalty from the conversion overhead and the change in |
| // the vector width. |
| static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { |
| SmallVector<Instruction *, 4> Worklist; |
| for (BasicBlock *BB : L->getBlocks()) { |
| for (Instruction &Inst : *BB) { |
| if (auto *S = dyn_cast<StoreInst>(&Inst)) { |
| if (S->getValueOperand()->getType()->isFloatTy()) |
| Worklist.push_back(S); |
| } |
| } |
| } |
| |
| // Traverse the floating point stores upwards searching, for floating point |
| // conversions. |
| SmallPtrSet<const Instruction *, 4> Visited; |
| SmallPtrSet<const Instruction *, 4> EmittedRemark; |
| while (!Worklist.empty()) { |
| auto *I = Worklist.pop_back_val(); |
| if (!L->contains(I)) |
| continue; |
| if (!Visited.insert(I).second) |
| continue; |
| |
| // Emit a remark if the floating point store required a floating |
| // point conversion. |
| // TODO: More work could be done to identify the root cause such as a |
| // constant or a function return type and point the user to it. |
| if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) |
| ORE->emit([&]() { |
| return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", |
| I->getDebugLoc(), L->getHeader()) |
| << "floating point conversion changes vector width. " |
| << "Mixed floating point precision requires an up/down " |
| << "cast that will negatively impact performance."; |
| }); |
| |
| for (Use &Op : I->operands()) |
| if (auto *OpI = dyn_cast<Instruction>(Op)) |
| Worklist.push_back(OpI); |
| } |
| } |
| |
| static bool areRuntimeChecksProfitable(GeneratedRTChecks &Checks, |
| VectorizationFactor &VF, |
| std::optional<unsigned> VScale, Loop *L, |
| ScalarEvolution &SE, |
| ScalarEpilogueLowering SEL) { |
| InstructionCost CheckCost = Checks.getCost(); |
| if (!CheckCost.isValid()) |
| return false; |
| |
| // When interleaving only scalar and vector cost will be equal, which in turn |
| // would lead to a divide by 0. Fall back to hard threshold. |
| if (VF.Width.isScalar()) { |
| if (CheckCost > VectorizeMemoryCheckThreshold) { |
| LLVM_DEBUG( |
| dbgs() |
| << "LV: Interleaving only is not profitable due to runtime checks\n"); |
| return false; |
| } |
| return true; |
| } |
| |
| // The scalar cost should only be 0 when vectorizing with a user specified VF/IC. In those cases, runtime checks should always be generated. |
| uint64_t ScalarC = *VF.ScalarCost.getValue(); |
| if (ScalarC == 0) |
| return true; |
| |
| // First, compute the minimum iteration count required so that the vector |
| // loop outperforms the scalar loop. |
| // The total cost of the scalar loop is |
| // ScalarC * TC |
| // where |
| // * TC is the actual trip count of the loop. |
| // * ScalarC is the cost of a single scalar iteration. |
| // |
| // The total cost of the vector loop is |
| // RtC + VecC * (TC / VF) + EpiC |
| // where |
| // * RtC is the cost of the generated runtime checks |
| // * VecC is the cost of a single vector iteration. |
| // * TC is the actual trip count of the loop |
| // * VF is the vectorization factor |
| // * EpiCost is the cost of the generated epilogue, including the cost |
| // of the remaining scalar operations. |
| // |
| // Vectorization is profitable once the total vector cost is less than the |
| // total scalar cost: |
| // RtC + VecC * (TC / VF) + EpiC < ScalarC * TC |
| // |
| // Now we can compute the minimum required trip count TC as |
| // VF * (RtC + EpiC) / (ScalarC * VF - VecC) < TC |
| // |
| // For now we assume the epilogue cost EpiC = 0 for simplicity. Note that |
| // the computations are performed on doubles, not integers and the result |
| // is rounded up, hence we get an upper estimate of the TC. |
| unsigned IntVF = VF.Width.getKnownMinValue(); |
| if (VF.Width.isScalable()) { |
| unsigned AssumedMinimumVscale = 1; |
| if (VScale) |
| AssumedMinimumVscale = *VScale; |
| IntVF *= AssumedMinimumVscale; |
| } |
| uint64_t RtC = *CheckCost.getValue(); |
| uint64_t Div = ScalarC * IntVF - *VF.Cost.getValue(); |
| uint64_t MinTC1 = Div == 0 ? 0 : divideCeil(RtC * IntVF, Div); |
| |
| // Second, compute a minimum iteration count so that the cost of the |
| // runtime checks is only a fraction of the total scalar loop cost. This |
| // adds a loop-dependent bound on the overhead incurred if the runtime |
| // checks fail. In case the runtime checks fail, the cost is RtC + ScalarC |
| // * TC. To bound the runtime check to be a fraction 1/X of the scalar |
| // cost, compute |
| // RtC < ScalarC * TC * (1 / X) ==> RtC * X / ScalarC < TC |
| uint64_t MinTC2 = divideCeil(RtC * 10, ScalarC); |
| |
| // Now pick the larger minimum. If it is not a multiple of VF and a scalar |
| // epilogue is allowed, choose the next closest multiple of VF. This should |
| // partly compensate for ignoring the epilogue cost. |
| uint64_t MinTC = std::max(MinTC1, MinTC2); |
| if (SEL == CM_ScalarEpilogueAllowed) |
| MinTC = alignTo(MinTC, IntVF); |
| VF.MinProfitableTripCount = ElementCount::getFixed(MinTC); |
| |
| LLVM_DEBUG( |
| dbgs() << "LV: Minimum required TC for runtime checks to be profitable:" |
| << VF.MinProfitableTripCount << "\n"); |
| |
| // Skip vectorization if the expected trip count is less than the minimum |
| // required trip count. |
| if (auto ExpectedTC = getSmallBestKnownTC(SE, L)) { |
| if (ElementCount::isKnownLT(ElementCount::getFixed(*ExpectedTC), |
| VF.MinProfitableTripCount)) { |
| LLVM_DEBUG(dbgs() << "LV: Vectorization is not beneficial: expected " |
| "trip count < minimum profitable VF (" |
| << *ExpectedTC << " < " << VF.MinProfitableTripCount |
| << ")\n"); |
| |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) |
| : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || |
| !EnableLoopInterleaving), |
| VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || |
| !EnableLoopVectorization) {} |
| |
| bool LoopVectorizePass::processLoop(Loop *L) { |
| assert((EnableVPlanNativePath || L->isInnermost()) && |
| "VPlan-native path is not enabled. Only process inner loops."); |
| |
| LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in '" |
| << L->getHeader()->getParent()->getName() << "' from " |
| << L->getLocStr() << "\n"); |
| |
| LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI); |
| |
| LLVM_DEBUG( |
| dbgs() << "LV: Loop hints:" |
| << " force=" |
| << (Hints.getForce() == LoopVectorizeHints::FK_Disabled |
| ? "disabled" |
| : (Hints.getForce() == LoopVectorizeHints::FK_Enabled |
| ? "enabled" |
| : "?")) |
| << " width=" << Hints.getWidth() |
| << " interleave=" << Hints.getInterleave() << "\n"); |
| |
| // Function containing loop |
| Function *F = L->getHeader()->getParent(); |
| |
| // Looking at the diagnostic output is the only way to determine if a loop |
| // was vectorized (other than looking at the IR or machine code), so it |
| // is important to generate an optimization remark for each loop. Most of |
| // these messages are generated as OptimizationRemarkAnalysis. Remarks |
| // generated as OptimizationRemark and OptimizationRemarkMissed are |
| // less verbose reporting vectorized loops and unvectorized loops that may |
| // benefit from vectorization, respectively. |
| |
| if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { |
| LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); |
| return false; |
| } |
| |
| PredicatedScalarEvolution PSE(*SE, *L); |
| |
| // Check if it is legal to vectorize the loop. |
| LoopVectorizationRequirements Requirements; |
| LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, F, *LAIs, LI, ORE, |
| &Requirements, &Hints, DB, AC, BFI, PSI); |
| if (!LVL.canVectorize(EnableVPlanNativePath)) { |
| LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); |
| Hints.emitRemarkWithHints(); |
| return false; |
| } |
| |
| // Entrance to the VPlan-native vectorization path. Outer loops are processed |
| // here. They may require CFG and instruction level transformations before |
| // even evaluating whether vectorization is profitable. Since we cannot modify |
| // the incoming IR, we need to build VPlan upfront in the vectorization |
| // pipeline. |
| if (!L->isInnermost()) |
| return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, |
| ORE, BFI, PSI, Hints, Requirements); |
| |
| assert(L->isInnermost() && "Inner loop expected."); |
| |
| InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); |
| bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); |
| |
| // If an override option has been passed in for interleaved accesses, use it. |
| if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) |
| UseInterleaved = EnableInterleavedMemAccesses; |
| |
| // Analyze interleaved memory accesses. |
| if (UseInterleaved) |
| IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); |
| |
| // Check the function attributes and profiles to find out if this function |
| // should be optimized for size. |
| ScalarEpilogueLowering SEL = |
| getScalarEpilogueLowering(F, L, Hints, PSI, BFI, TTI, TLI, LVL, &IAI); |
| |
| // Check the loop for a trip count threshold: vectorize loops with a tiny trip |
| // count by optimizing for size, to minimize overheads. |
| auto ExpectedTC = getSmallBestKnownTC(*SE, L); |
| if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { |
| LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " |
| << "This loop is worth vectorizing only if no scalar " |
| << "iteration overheads are incurred."); |
| if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) |
| LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); |
| else { |
| if (*ExpectedTC > TTI->getMinTripCountTailFoldingThreshold()) { |
| LLVM_DEBUG(dbgs() << "\n"); |
| // Predicate tail-folded loops are efficient even when the loop |
| // iteration count is low. However, setting the epilogue policy to |
| // `CM_ScalarEpilogueNotAllowedLowTripLoop` prevents vectorizing loops |
| // with runtime checks. It's more effective to let |
| // `areRuntimeChecksProfitable` determine if vectorization is beneficial |
| // for the loop. |
| if (SEL != CM_ScalarEpilogueNotNeededUsePredicate) |
| SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; |
| } else { |
| LLVM_DEBUG(dbgs() << " But the target considers the trip count too " |
| "small to consider vectorizing.\n"); |
| reportVectorizationFailure( |
| "The trip count is below the minial threshold value.", |
| "loop trip count is too low, avoiding vectorization", |
| "LowTripCount", ORE, L); |
| Hints.emitRemarkWithHints(); |
| return false; |
| } |
| } |
| } |
| |
| // Check the function attributes to see if implicit floats or vectors are |
| // allowed. |
| if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { |
| reportVectorizationFailure( |
| "Can't vectorize when the NoImplicitFloat attribute is used", |
| "loop not vectorized due to NoImplicitFloat attribute", |
| "NoImplicitFloat", ORE, L); |
| Hints.emitRemarkWithHints(); |
| return false; |
| } |
| |
| // Check if the target supports potentially unsafe FP vectorization. |
| // FIXME: Add a check for the type of safety issue (denormal, signaling) |
| // for the target we're vectorizing for, to make sure none of the |
| // additional fp-math flags can help. |
| if (Hints.isPotentiallyUnsafe() && |
| TTI->isFPVectorizationPotentiallyUnsafe()) { |
| reportVectorizationFailure( |
| "Potentially unsafe FP op prevents vectorization", |
| "loop not vectorized due to unsafe FP support.", |
| "UnsafeFP", ORE, L); |
| Hints.emitRemarkWithHints(); |
| return false; |
| } |
| |
| bool AllowOrderedReductions; |
| // If the flag is set, use that instead and override the TTI behaviour. |
| if (ForceOrderedReductions.getNumOccurrences() > 0) |
| AllowOrderedReductions = ForceOrderedReductions; |
| else |
| AllowOrderedReductions = TTI->enableOrderedReductions(); |
| if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) { |
| ORE->emit([&]() { |
| auto *ExactFPMathInst = Requirements.getExactFPInst(); |
| return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps", |
| ExactFPMathInst->getDebugLoc(), |
| ExactFPMathInst->getParent()) |
| << "loop not vectorized: cannot prove it is safe to reorder " |
| "floating-point operations"; |
| }); |
| LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to " |
| "reorder floating-point operations\n"); |
| Hints.emitRemarkWithHints(); |
| return false; |
| } |
| |
| // Use the cost model. |
| LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, |
| F, &Hints, IAI); |
| // Use the planner for vectorization. |
| LoopVectorizationPlanner LVP(L, LI, DT, TLI, *TTI, &LVL, CM, IAI, PSE, Hints, |
| ORE); |
| |
| // Get user vectorization factor and interleave count. |
| ElementCount UserVF = Hints.getWidth(); |
| unsigned UserIC = Hints.getInterleave(); |
| |
| // Plan how to best vectorize. |
| LVP.plan(UserVF, UserIC); |
| VectorizationFactor VF = LVP.computeBestVF(); |
| unsigned IC = 1; |
| |
| if (ORE->allowExtraAnalysis(LV_NAME)) |
| LVP.emitInvalidCostRemarks(ORE); |
| |
| bool AddBranchWeights = |
| hasBranchWeightMD(*L->getLoopLatch()->getTerminator()); |
| GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, TTI, |
| F->getDataLayout(), AddBranchWeights); |
| if (LVP.hasPlanWithVF(VF.Width)) { |
| // Select the interleave count. |
| IC = CM.selectInterleaveCount(VF.Width, VF.Cost); |
| |
| unsigned SelectedIC = std::max(IC, UserIC); |
| // Optimistically generate runtime checks if they are needed. Drop them if |
| // they turn out to not be profitable. |
| if (VF.Width.isVector() || SelectedIC > 1) |
| Checks.Create(L, *LVL.getLAI(), PSE.getPredicate(), VF.Width, SelectedIC); |
| |
| // Check if it is profitable to vectorize with runtime checks. |
| bool ForceVectorization = |
| Hints.getForce() == LoopVectorizeHints::FK_Enabled; |
| if (!ForceVectorization && |
| !areRuntimeChecksProfitable(Checks, VF, getVScaleForTuning(L, *TTI), L, |
| *PSE.getSE(), SEL)) { |
| ORE->emit([&]() { |
| return OptimizationRemarkAnalysisAliasing( |
| DEBUG_TYPE, "CantReorderMemOps", L->getStartLoc(), |
| L->getHeader()) |
| << "loop not vectorized: cannot prove it is safe to reorder " |
| "memory operations"; |
| }); |
| LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); |
| Hints.emitRemarkWithHints(); |
| return false; |
| } |
| } |
| |
| // Identify the diagnostic messages that should be produced. |
| std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; |
| bool VectorizeLoop = true, InterleaveLoop = true; |
| if (VF.Width.isScalar()) { |
| LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); |
| VecDiagMsg = std::make_pair( |
| "VectorizationNotBeneficial", |
| "the cost-model indicates that vectorization is not beneficial"); |
| VectorizeLoop = false; |
| } |
| |
| if (!LVP.hasPlanWithVF(VF.Width) && UserIC > 1) { |
| // Tell the user interleaving was avoided up-front, despite being explicitly |
| // requested. |
| LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " |
| "interleaving should be avoided up front\n"); |
| IntDiagMsg = std::make_pair( |
| "InterleavingAvoided", |
| "Ignoring UserIC, because interleaving was avoided up front"); |
| InterleaveLoop = false; |
| } else if (IC == 1 && UserIC <= 1) { |
| // Tell the user interleaving is not beneficial. |
| LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); |
| IntDiagMsg = std::make_pair( |
| "InterleavingNotBeneficial", |
| "the cost-model indicates that interleaving is not beneficial"); |
| InterleaveLoop = false; |
| if (UserIC == 1) { |
| IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; |
| IntDiagMsg.second += |
| " and is explicitly disabled or interleave count is set to 1"; |
| } |
| } else if (IC > 1 && UserIC == 1) { |
| // Tell the user interleaving is beneficial, but it explicitly disabled. |
| LLVM_DEBUG( |
| dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); |
| IntDiagMsg = std::make_pair( |
| "InterleavingBeneficialButDisabled", |
| "the cost-model indicates that interleaving is beneficial " |
| "but is explicitly disabled or interleave count is set to 1"); |
| InterleaveLoop = false; |
| } |
| |
| // Override IC if user provided an interleave count. |
| IC = UserIC > 0 ? UserIC : IC; |
| |
| // Emit diagnostic messages, if any. |
| const char *VAPassName = Hints.vectorizeAnalysisPassName(); |
| if (!VectorizeLoop && !InterleaveLoop) { |
| // Do not vectorize or interleaving the loop. |
| ORE->emit([&]() { |
| return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, |
| L->getStartLoc(), L->getHeader()) |
| << VecDiagMsg.second; |
| }); |
| ORE->emit([&]() { |
| return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, |
| L->getStartLoc(), L->getHeader()) |
| << IntDiagMsg.second; |
| }); |
| return false; |
| } else if (!VectorizeLoop && InterleaveLoop) { |
| LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); |
| ORE->emit([&]() { |
| return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, |
| L->getStartLoc(), L->getHeader()) |
| << VecDiagMsg.second; |
| }); |
| } else if (VectorizeLoop && !InterleaveLoop) { |
| LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width |
| << ") in " << L->getLocStr() << '\n'); |
| ORE->emit([&]() { |
| return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, |
| L->getStartLoc(), L->getHeader()) |
| << IntDiagMsg.second; |
| }); |
| } else if (VectorizeLoop && InterleaveLoop) { |
| LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width |
| << ") in " << L->getLocStr() << '\n'); |
| LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); |
| } |
| |
| bool DisableRuntimeUnroll = false; |
| MDNode *OrigLoopID = L->getLoopID(); |
| { |
| using namespace ore; |
| if (!VectorizeLoop) { |
| assert(IC > 1 && "interleave count should not be 1 or 0"); |
| // If we decided that it is not legal to vectorize the loop, then |
| // interleave it. |
| InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, |
| &CM, BFI, PSI, Checks); |
| |
| VPlan &BestPlan = LVP.getPlanFor(VF.Width); |
| LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT, false); |
| |
| ORE->emit([&]() { |
| return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), |
| L->getHeader()) |
| << "interleaved loop (interleaved count: " |
| << NV("InterleaveCount", IC) << ")"; |
| }); |
| } else { |
| // If we decided that it is *legal* to vectorize the loop, then do it. |
| |
| VPlan &BestPlan = LVP.getPlanFor(VF.Width); |
| // Consider vectorizing the epilogue too if it's profitable. |
| VectorizationFactor EpilogueVF = |
| LVP.selectEpilogueVectorizationFactor(VF.Width, IC); |
| if (EpilogueVF.Width.isVector()) { |
| |
| // The first pass vectorizes the main loop and creates a scalar epilogue |
| // to be vectorized by executing the plan (potentially with a different |
| // factor) again shortly afterwards. |
| EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1); |
| EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, |
| EPI, &LVL, &CM, BFI, PSI, Checks); |
| |
| std::unique_ptr<VPlan> BestMainPlan(BestPlan.duplicate()); |
| const auto &[ExpandedSCEVs, ReductionResumeValues] = LVP.executePlan( |
| EPI.MainLoopVF, EPI.MainLoopUF, *BestMainPlan, MainILV, DT, true); |
| ++LoopsVectorized; |
| |
| // Second pass vectorizes the epilogue and adjusts the control flow |
| // edges from the first pass. |
| EPI.MainLoopVF = EPI.EpilogueVF; |
| EPI.MainLoopUF = EPI.EpilogueUF; |
| EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, |
| ORE, EPI, &LVL, &CM, BFI, PSI, |
| Checks); |
| |
| VPlan &BestEpiPlan = LVP.getPlanFor(EPI.EpilogueVF); |
| VPRegionBlock *VectorLoop = BestEpiPlan.getVectorLoopRegion(); |
| VPBasicBlock *Header = VectorLoop->getEntryBasicBlock(); |
| Header->setName("vec.epilog.vector.body"); |
| |
| // Re-use the trip count and steps expanded for the main loop, as |
| // skeleton creation needs it as a value that dominates both the scalar |
| // and vector epilogue loops |
| // TODO: This is a workaround needed for epilogue vectorization and it |
| // should be removed once induction resume value creation is done |
| // directly in VPlan. |
| EpilogILV.setTripCount(MainILV.getTripCount()); |
| for (auto &R : make_early_inc_range(*BestEpiPlan.getPreheader())) { |
| auto *ExpandR = cast<VPExpandSCEVRecipe>(&R); |
| auto *ExpandedVal = BestEpiPlan.getOrAddLiveIn( |
| ExpandedSCEVs.find(ExpandR->getSCEV())->second); |
| ExpandR->replaceAllUsesWith(ExpandedVal); |
| if (BestEpiPlan.getTripCount() == ExpandR) |
| BestEpiPlan.resetTripCount(ExpandedVal); |
| ExpandR->eraseFromParent(); |
| } |
| |
| // Ensure that the start values for any VPWidenIntOrFpInductionRecipe, |
| // VPWidenPointerInductionRecipe and VPReductionPHIRecipes are updated |
| // before vectorizing the epilogue loop. |
| for (VPRecipeBase &R : Header->phis()) { |
| if (isa<VPCanonicalIVPHIRecipe>(&R)) |
| continue; |
| |
| Value *ResumeV = nullptr; |
| // TODO: Move setting of resume values to prepareToExecute. |
| if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) { |
| const RecurrenceDescriptor &RdxDesc = |
| ReductionPhi->getRecurrenceDescriptor(); |
| RecurKind RK = RdxDesc.getRecurrenceKind(); |
| ResumeV = ReductionResumeValues.find(&RdxDesc)->second; |
| if (RecurrenceDescriptor::isAnyOfRecurrenceKind(RK)) { |
| // VPReductionPHIRecipes for AnyOf reductions expect a boolean as |
| // start value; compare the final value from the main vector loop |
| // to the start value. |
| IRBuilder<> Builder( |
| cast<Instruction>(ResumeV)->getParent()->getFirstNonPHI()); |
| ResumeV = Builder.CreateICmpNE(ResumeV, |
| RdxDesc.getRecurrenceStartValue()); |
| } |
| } else { |
| // Create induction resume values for both widened pointer and |
| // integer/fp inductions and update the start value of the induction |
| // recipes to use the resume value. |
| PHINode *IndPhi = nullptr; |
| const InductionDescriptor *ID; |
| if (auto *Ind = dyn_cast<VPWidenPointerInductionRecipe>(&R)) { |
| IndPhi = cast<PHINode>(Ind->getUnderlyingValue()); |
| ID = &Ind->getInductionDescriptor(); |
| } else { |
| auto *WidenInd = cast<VPWidenIntOrFpInductionRecipe>(&R); |
| IndPhi = WidenInd->getPHINode(); |
| ID = &WidenInd->getInductionDescriptor(); |
| } |
| |
| ResumeV = MainILV.createInductionResumeValue( |
| IndPhi, *ID, getExpandedStep(*ID, ExpandedSCEVs), |
| {EPI.MainLoopIterationCountCheck}); |
| } |
| assert(ResumeV && "Must have a resume value"); |
| VPValue *StartVal = BestEpiPlan.getOrAddLiveIn(ResumeV); |
| cast<VPHeaderPHIRecipe>(&R)->setStartValue(StartVal); |
| } |
| |
| assert(DT->verify(DominatorTree::VerificationLevel::Fast) && |
| "DT not preserved correctly"); |
| LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV, |
| DT, true, &ExpandedSCEVs); |
| ++LoopsEpilogueVectorized; |
| |
| if (!MainILV.areSafetyChecksAdded()) |
| DisableRuntimeUnroll = true; |
| } else { |
| InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, |
| VF.MinProfitableTripCount, IC, &LVL, &CM, BFI, |
| PSI, Checks); |
| LVP.executePlan(VF.Width, IC, BestPlan, LB, DT, false); |
| ++LoopsVectorized; |
| |
| // Add metadata to disable runtime unrolling a scalar loop when there |
| // are no runtime checks about strides and memory. A scalar loop that is |
| // rarely used is not worth unrolling. |
| if (!LB.areSafetyChecksAdded()) |
| DisableRuntimeUnroll = true; |
| } |
| // Report the vectorization decision. |
| reportVectorization(ORE, L, VF, IC); |
| } |
| |
| if (ORE->allowExtraAnalysis(LV_NAME)) |
| checkMixedPrecision(L, ORE); |
| } |
| |
| std::optional<MDNode *> RemainderLoopID = |
| makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, |
| LLVMLoopVectorizeFollowupEpilogue}); |
| if (RemainderLoopID) { |
| L->setLoopID(*RemainderLoopID); |
| } else { |
| if (DisableRuntimeUnroll) |
| AddRuntimeUnrollDisableMetaData(L); |
| |
| // Mark the loop as already vectorized to avoid vectorizing again. |
| Hints.setAlreadyVectorized(); |
| } |
| |
| assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); |
| return true; |
| } |
| |
| LoopVectorizeResult LoopVectorizePass::runImpl(Function &F) { |
| |
| // Don't attempt if |
| // 1. the target claims to have no vector registers, and |
| // 2. interleaving won't help ILP. |
| // |
| // The second condition is necessary because, even if the target has no |
| // vector registers, loop vectorization may still enable scalar |
| // interleaving. |
| if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && |
| TTI->getMaxInterleaveFactor(ElementCount::getFixed(1)) < 2) |
| return LoopVectorizeResult(false, false); |
| |
| bool Changed = false, CFGChanged = false; |
| |
| // The vectorizer requires loops to be in simplified form. |
| // Since simplification may add new inner loops, it has to run before the |
| // legality and profitability checks. This means running the loop vectorizer |
| // will simplify all loops, regardless of whether anything end up being |
| // vectorized. |
| for (const auto &L : *LI) |
| Changed |= CFGChanged |= |
| simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); |
| |
| // Build up a worklist of inner-loops to vectorize. This is necessary as |
| // the act of vectorizing or partially unrolling a loop creates new loops |
| // and can invalidate iterators across the loops. |
| SmallVector<Loop *, 8> Worklist; |
| |
| for (Loop *L : *LI) |
| collectSupportedLoops(*L, LI, ORE, Worklist); |
| |
| LoopsAnalyzed += Worklist.size(); |
| |
| // Now walk the identified inner loops. |
| while (!Worklist.empty()) { |
| Loop *L = Worklist.pop_back_val(); |
| |
| // For the inner loops we actually process, form LCSSA to simplify the |
| // transform. |
| Changed |= formLCSSARecursively(*L, *DT, LI, SE); |
| |
| Changed |= CFGChanged |= processLoop(L); |
| |
| if (Changed) { |
| LAIs->clear(); |
| |
| #ifndef NDEBUG |
| if (VerifySCEV) |
| SE->verify(); |
| #endif |
| } |
| } |
| |
| // Process each loop nest in the function. |
| return LoopVectorizeResult(Changed, CFGChanged); |
| } |
| |
| PreservedAnalyses LoopVectorizePass::run(Function &F, |
| FunctionAnalysisManager &AM) { |
| LI = &AM.getResult<LoopAnalysis>(F); |
| // There are no loops in the function. Return before computing other |
| // expensive analyses. |
| if (LI->empty()) |
| return PreservedAnalyses::all(); |
| SE = &AM.getResult<ScalarEvolutionAnalysis>(F); |
| TTI = &AM.getResult<TargetIRAnalysis>(F); |
| DT = &AM.getResult<DominatorTreeAnalysis>(F); |
| TLI = &AM.getResult<TargetLibraryAnalysis>(F); |
| AC = &AM.getResult<AssumptionAnalysis>(F); |
| DB = &AM.getResult<DemandedBitsAnalysis>(F); |
| ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); |
| LAIs = &AM.getResult<LoopAccessAnalysis>(F); |
| |
| auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); |
| PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); |
| BFI = nullptr; |
| if (PSI && PSI->hasProfileSummary()) |
| BFI = &AM.getResult<BlockFrequencyAnalysis>(F); |
| LoopVectorizeResult Result = runImpl(F); |
| if (!Result.MadeAnyChange) |
| return PreservedAnalyses::all(); |
| PreservedAnalyses PA; |
| |
| if (isAssignmentTrackingEnabled(*F.getParent())) { |
| for (auto &BB : F) |
| RemoveRedundantDbgInstrs(&BB); |
| } |
| |
| PA.preserve<LoopAnalysis>(); |
| PA.preserve<DominatorTreeAnalysis>(); |
| PA.preserve<ScalarEvolutionAnalysis>(); |
| PA.preserve<LoopAccessAnalysis>(); |
| |
| if (Result.MadeCFGChange) { |
| // Making CFG changes likely means a loop got vectorized. Indicate that |
| // extra simplification passes should be run. |
| // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only |
| // be run if runtime checks have been added. |
| AM.getResult<ShouldRunExtraVectorPasses>(F); |
| PA.preserve<ShouldRunExtraVectorPasses>(); |
| } else { |
| PA.preserveSet<CFGAnalyses>(); |
| } |
| return PA; |
| } |
| |
| void LoopVectorizePass::printPipeline( |
| raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { |
| static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline( |
| OS, MapClassName2PassName); |
| |
| OS << '<'; |
| OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;"; |
| OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;"; |
| OS << '>'; |
| } |