blob: 63e0e8a89813733319209a4d2c730329a902e9fe [file] [log] [blame]
//===- VPlanRecipes.cpp - Implementations for VPlan recipes ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file contains implementations for different VPlan recipes.
///
//===----------------------------------------------------------------------===//
#include "VPlan.h"
#include "VPlanAnalysis.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/IVDescriptors.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
#include <cassert>
using namespace llvm;
using VectorParts = SmallVector<Value *, 2>;
namespace llvm {
extern cl::opt<bool> EnableVPlanNativePath;
}
extern cl::opt<unsigned> ForceTargetInstructionCost;
#define LV_NAME "loop-vectorize"
#define DEBUG_TYPE LV_NAME
bool VPRecipeBase::mayWriteToMemory() const {
switch (getVPDefID()) {
case VPInterleaveSC:
return cast<VPInterleaveRecipe>(this)->getNumStoreOperands() > 0;
case VPWidenStoreEVLSC:
case VPWidenStoreSC:
return true;
case VPReplicateSC:
return cast<Instruction>(getVPSingleValue()->getUnderlyingValue())
->mayWriteToMemory();
case VPWidenCallSC:
return !cast<VPWidenCallRecipe>(this)
->getCalledScalarFunction()
->onlyReadsMemory();
case VPBranchOnMaskSC:
case VPScalarIVStepsSC:
case VPPredInstPHISC:
return false;
case VPBlendSC:
case VPReductionEVLSC:
case VPReductionSC:
case VPWidenCanonicalIVSC:
case VPWidenCastSC:
case VPWidenGEPSC:
case VPWidenIntOrFpInductionSC:
case VPWidenLoadEVLSC:
case VPWidenLoadSC:
case VPWidenPHISC:
case VPWidenSC:
case VPWidenSelectSC: {
const Instruction *I =
dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue());
(void)I;
assert((!I || !I->mayWriteToMemory()) &&
"underlying instruction may write to memory");
return false;
}
default:
return true;
}
}
bool VPRecipeBase::mayReadFromMemory() const {
switch (getVPDefID()) {
case VPWidenLoadEVLSC:
case VPWidenLoadSC:
return true;
case VPReplicateSC:
return cast<Instruction>(getVPSingleValue()->getUnderlyingValue())
->mayReadFromMemory();
case VPWidenCallSC:
return !cast<VPWidenCallRecipe>(this)
->getCalledScalarFunction()
->onlyWritesMemory();
case VPBranchOnMaskSC:
case VPPredInstPHISC:
case VPScalarIVStepsSC:
case VPWidenStoreEVLSC:
case VPWidenStoreSC:
return false;
case VPBlendSC:
case VPReductionEVLSC:
case VPReductionSC:
case VPWidenCanonicalIVSC:
case VPWidenCastSC:
case VPWidenGEPSC:
case VPWidenIntOrFpInductionSC:
case VPWidenPHISC:
case VPWidenSC:
case VPWidenSelectSC: {
const Instruction *I =
dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue());
(void)I;
assert((!I || !I->mayReadFromMemory()) &&
"underlying instruction may read from memory");
return false;
}
default:
return true;
}
}
bool VPRecipeBase::mayHaveSideEffects() const {
switch (getVPDefID()) {
case VPDerivedIVSC:
case VPPredInstPHISC:
case VPScalarCastSC:
return false;
case VPInstructionSC:
switch (cast<VPInstruction>(this)->getOpcode()) {
case Instruction::Or:
case Instruction::ICmp:
case Instruction::Select:
case VPInstruction::Not:
case VPInstruction::CalculateTripCountMinusVF:
case VPInstruction::CanonicalIVIncrementForPart:
case VPInstruction::ExtractFromEnd:
case VPInstruction::FirstOrderRecurrenceSplice:
case VPInstruction::LogicalAnd:
case VPInstruction::PtrAdd:
return false;
default:
return true;
}
case VPWidenCallSC: {
Function *Fn = cast<VPWidenCallRecipe>(this)->getCalledScalarFunction();
return mayWriteToMemory() || !Fn->doesNotThrow() || !Fn->willReturn();
}
case VPBlendSC:
case VPReductionEVLSC:
case VPReductionSC:
case VPScalarIVStepsSC:
case VPWidenCanonicalIVSC:
case VPWidenCastSC:
case VPWidenGEPSC:
case VPWidenIntOrFpInductionSC:
case VPWidenPHISC:
case VPWidenPointerInductionSC:
case VPWidenSC:
case VPWidenSelectSC: {
const Instruction *I =
dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue());
(void)I;
assert((!I || !I->mayHaveSideEffects()) &&
"underlying instruction has side-effects");
return false;
}
case VPInterleaveSC:
return mayWriteToMemory();
case VPWidenLoadEVLSC:
case VPWidenLoadSC:
case VPWidenStoreEVLSC:
case VPWidenStoreSC:
assert(
cast<VPWidenMemoryRecipe>(this)->getIngredient().mayHaveSideEffects() ==
mayWriteToMemory() &&
"mayHaveSideffects result for ingredient differs from this "
"implementation");
return mayWriteToMemory();
case VPReplicateSC: {
auto *R = cast<VPReplicateRecipe>(this);
return R->getUnderlyingInstr()->mayHaveSideEffects();
}
default:
return true;
}
}
void VPLiveOut::fixPhi(VPlan &Plan, VPTransformState &State) {
VPValue *ExitValue = getOperand(0);
VPBasicBlock *MiddleVPBB =
cast<VPBasicBlock>(Plan.getVectorLoopRegion()->getSingleSuccessor());
VPRecipeBase *ExitingRecipe = ExitValue->getDefiningRecipe();
auto *ExitingVPBB = ExitingRecipe ? ExitingRecipe->getParent() : nullptr;
// Values leaving the vector loop reach live out phi's in the exiting block
// via middle block.
auto *PredVPBB = !ExitingVPBB || ExitingVPBB->getEnclosingLoopRegion()
? MiddleVPBB
: ExitingVPBB;
BasicBlock *PredBB = State.CFG.VPBB2IRBB[PredVPBB];
Value *V = State.get(ExitValue, VPIteration(0, 0));
if (Phi->getBasicBlockIndex(PredBB) != -1)
Phi->setIncomingValueForBlock(PredBB, V);
else
Phi->addIncoming(V, PredBB);
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPLiveOut::print(raw_ostream &O, VPSlotTracker &SlotTracker) const {
O << "Live-out ";
getPhi()->printAsOperand(O);
O << " = ";
getOperand(0)->printAsOperand(O, SlotTracker);
O << "\n";
}
#endif
void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) {
assert(!Parent && "Recipe already in some VPBasicBlock");
assert(InsertPos->getParent() &&
"Insertion position not in any VPBasicBlock");
InsertPos->getParent()->insert(this, InsertPos->getIterator());
}
void VPRecipeBase::insertBefore(VPBasicBlock &BB,
iplist<VPRecipeBase>::iterator I) {
assert(!Parent && "Recipe already in some VPBasicBlock");
assert(I == BB.end() || I->getParent() == &BB);
BB.insert(this, I);
}
void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) {
assert(!Parent && "Recipe already in some VPBasicBlock");
assert(InsertPos->getParent() &&
"Insertion position not in any VPBasicBlock");
InsertPos->getParent()->insert(this, std::next(InsertPos->getIterator()));
}
void VPRecipeBase::removeFromParent() {
assert(getParent() && "Recipe not in any VPBasicBlock");
getParent()->getRecipeList().remove(getIterator());
Parent = nullptr;
}
iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() {
assert(getParent() && "Recipe not in any VPBasicBlock");
return getParent()->getRecipeList().erase(getIterator());
}
void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) {
removeFromParent();
insertAfter(InsertPos);
}
void VPRecipeBase::moveBefore(VPBasicBlock &BB,
iplist<VPRecipeBase>::iterator I) {
removeFromParent();
insertBefore(BB, I);
}
/// Return the underlying instruction to be used for computing \p R's cost via
/// the legacy cost model. Return nullptr if there's no suitable instruction.
static Instruction *getInstructionForCost(const VPRecipeBase *R) {
if (auto *S = dyn_cast<VPSingleDefRecipe>(R))
return dyn_cast_or_null<Instruction>(S->getUnderlyingValue());
if (auto *IG = dyn_cast<VPInterleaveRecipe>(R))
return IG->getInsertPos();
if (auto *WidenMem = dyn_cast<VPWidenMemoryRecipe>(R))
return &WidenMem->getIngredient();
return nullptr;
}
InstructionCost VPRecipeBase::cost(ElementCount VF, VPCostContext &Ctx) {
auto *UI = getInstructionForCost(this);
if (UI && Ctx.skipCostComputation(UI, VF.isVector()))
return 0;
InstructionCost RecipeCost = computeCost(VF, Ctx);
if (UI && ForceTargetInstructionCost.getNumOccurrences() > 0 &&
RecipeCost.isValid())
RecipeCost = InstructionCost(ForceTargetInstructionCost);
LLVM_DEBUG({
dbgs() << "Cost of " << RecipeCost << " for VF " << VF << ": ";
dump();
});
return RecipeCost;
}
InstructionCost VPRecipeBase::computeCost(ElementCount VF,
VPCostContext &Ctx) const {
// Compute the cost for the recipe falling back to the legacy cost model using
// the underlying instruction. If there is no underlying instruction, returns
// 0.
Instruction *UI = getInstructionForCost(this);
if (UI && isa<VPReplicateRecipe>(this)) {
// VPReplicateRecipe may be cloned as part of an existing VPlan-to-VPlan
// transform, avoid computing their cost multiple times for now.
Ctx.SkipCostComputation.insert(UI);
}
return UI ? Ctx.getLegacyCost(UI, VF) : 0;
}
FastMathFlags VPRecipeWithIRFlags::getFastMathFlags() const {
assert(OpType == OperationType::FPMathOp &&
"recipe doesn't have fast math flags");
FastMathFlags Res;
Res.setAllowReassoc(FMFs.AllowReassoc);
Res.setNoNaNs(FMFs.NoNaNs);
Res.setNoInfs(FMFs.NoInfs);
Res.setNoSignedZeros(FMFs.NoSignedZeros);
Res.setAllowReciprocal(FMFs.AllowReciprocal);
Res.setAllowContract(FMFs.AllowContract);
Res.setApproxFunc(FMFs.ApproxFunc);
return Res;
}
VPInstruction::VPInstruction(unsigned Opcode, CmpInst::Predicate Pred,
VPValue *A, VPValue *B, DebugLoc DL,
const Twine &Name)
: VPRecipeWithIRFlags(VPDef::VPInstructionSC, ArrayRef<VPValue *>({A, B}),
Pred, DL),
Opcode(Opcode), Name(Name.str()) {
assert(Opcode == Instruction::ICmp &&
"only ICmp predicates supported at the moment");
}
VPInstruction::VPInstruction(unsigned Opcode,
std::initializer_list<VPValue *> Operands,
FastMathFlags FMFs, DebugLoc DL, const Twine &Name)
: VPRecipeWithIRFlags(VPDef::VPInstructionSC, Operands, FMFs, DL),
Opcode(Opcode), Name(Name.str()) {
// Make sure the VPInstruction is a floating-point operation.
assert(isFPMathOp() && "this op can't take fast-math flags");
}
bool VPInstruction::doesGeneratePerAllLanes() const {
return Opcode == VPInstruction::PtrAdd && !vputils::onlyFirstLaneUsed(this);
}
bool VPInstruction::canGenerateScalarForFirstLane() const {
if (Instruction::isBinaryOp(getOpcode()))
return true;
if (isSingleScalar() || isVectorToScalar())
return true;
switch (Opcode) {
case Instruction::ICmp:
case VPInstruction::BranchOnCond:
case VPInstruction::BranchOnCount:
case VPInstruction::CalculateTripCountMinusVF:
case VPInstruction::CanonicalIVIncrementForPart:
case VPInstruction::PtrAdd:
case VPInstruction::ExplicitVectorLength:
return true;
default:
return false;
}
}
Value *VPInstruction::generatePerLane(VPTransformState &State,
const VPIteration &Lane) {
IRBuilderBase &Builder = State.Builder;
assert(getOpcode() == VPInstruction::PtrAdd &&
"only PtrAdd opcodes are supported for now");
return Builder.CreatePtrAdd(State.get(getOperand(0), Lane),
State.get(getOperand(1), Lane), Name);
}
Value *VPInstruction::generatePerPart(VPTransformState &State, unsigned Part) {
IRBuilderBase &Builder = State.Builder;
if (Instruction::isBinaryOp(getOpcode())) {
bool OnlyFirstLaneUsed = vputils::onlyFirstLaneUsed(this);
Value *A = State.get(getOperand(0), Part, OnlyFirstLaneUsed);
Value *B = State.get(getOperand(1), Part, OnlyFirstLaneUsed);
auto *Res =
Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B, Name);
if (auto *I = dyn_cast<Instruction>(Res))
setFlags(I);
return Res;
}
switch (getOpcode()) {
case VPInstruction::Not: {
Value *A = State.get(getOperand(0), Part);
return Builder.CreateNot(A, Name);
}
case Instruction::ICmp: {
bool OnlyFirstLaneUsed = vputils::onlyFirstLaneUsed(this);
Value *A = State.get(getOperand(0), Part, OnlyFirstLaneUsed);
Value *B = State.get(getOperand(1), Part, OnlyFirstLaneUsed);
return Builder.CreateCmp(getPredicate(), A, B, Name);
}
case Instruction::Select: {
Value *Cond = State.get(getOperand(0), Part);
Value *Op1 = State.get(getOperand(1), Part);
Value *Op2 = State.get(getOperand(2), Part);
return Builder.CreateSelect(Cond, Op1, Op2, Name);
}
case VPInstruction::ActiveLaneMask: {
// Get first lane of vector induction variable.
Value *VIVElem0 = State.get(getOperand(0), VPIteration(Part, 0));
// Get the original loop tripcount.
Value *ScalarTC = State.get(getOperand(1), VPIteration(Part, 0));
// If this part of the active lane mask is scalar, generate the CMP directly
// to avoid unnecessary extracts.
if (State.VF.isScalar())
return Builder.CreateCmp(CmpInst::Predicate::ICMP_ULT, VIVElem0, ScalarTC,
Name);
auto *Int1Ty = Type::getInt1Ty(Builder.getContext());
auto *PredTy = VectorType::get(Int1Ty, State.VF);
return Builder.CreateIntrinsic(Intrinsic::get_active_lane_mask,
{PredTy, ScalarTC->getType()},
{VIVElem0, ScalarTC}, nullptr, Name);
}
case VPInstruction::FirstOrderRecurrenceSplice: {
// Generate code to combine the previous and current values in vector v3.
//
// vector.ph:
// v_init = vector(..., ..., ..., a[-1])
// br vector.body
//
// vector.body
// i = phi [0, vector.ph], [i+4, vector.body]
// v1 = phi [v_init, vector.ph], [v2, vector.body]
// v2 = a[i, i+1, i+2, i+3];
// v3 = vector(v1(3), v2(0, 1, 2))
// For the first part, use the recurrence phi (v1), otherwise v2.
auto *V1 = State.get(getOperand(0), 0);
Value *PartMinus1 = Part == 0 ? V1 : State.get(getOperand(1), Part - 1);
if (!PartMinus1->getType()->isVectorTy())
return PartMinus1;
Value *V2 = State.get(getOperand(1), Part);
return Builder.CreateVectorSplice(PartMinus1, V2, -1, Name);
}
case VPInstruction::CalculateTripCountMinusVF: {
if (Part != 0)
return State.get(this, 0, /*IsScalar*/ true);
Value *ScalarTC = State.get(getOperand(0), {0, 0});
Value *Step =
createStepForVF(Builder, ScalarTC->getType(), State.VF, State.UF);
Value *Sub = Builder.CreateSub(ScalarTC, Step);
Value *Cmp = Builder.CreateICmp(CmpInst::Predicate::ICMP_UGT, ScalarTC, Step);
Value *Zero = ConstantInt::get(ScalarTC->getType(), 0);
return Builder.CreateSelect(Cmp, Sub, Zero);
}
case VPInstruction::ExplicitVectorLength: {
// Compute EVL
auto GetEVL = [=](VPTransformState &State, Value *AVL) {
assert(AVL->getType()->isIntegerTy() &&
"Requested vector length should be an integer.");
// TODO: Add support for MaxSafeDist for correct loop emission.
assert(State.VF.isScalable() && "Expected scalable vector factor.");
Value *VFArg = State.Builder.getInt32(State.VF.getKnownMinValue());
Value *EVL = State.Builder.CreateIntrinsic(
State.Builder.getInt32Ty(), Intrinsic::experimental_get_vector_length,
{AVL, VFArg, State.Builder.getTrue()});
return EVL;
};
// TODO: Restructure this code with an explicit remainder loop, vsetvli can
// be outside of the main loop.
assert(Part == 0 && "No unrolling expected for predicated vectorization.");
// Compute VTC - IV as the AVL (requested vector length).
Value *Index = State.get(getOperand(0), VPIteration(0, 0));
Value *TripCount = State.get(getOperand(1), VPIteration(0, 0));
Value *AVL = State.Builder.CreateSub(TripCount, Index);
Value *EVL = GetEVL(State, AVL);
return EVL;
}
case VPInstruction::CanonicalIVIncrementForPart: {
auto *IV = State.get(getOperand(0), VPIteration(0, 0));
if (Part == 0)
return IV;
// The canonical IV is incremented by the vectorization factor (num of SIMD
// elements) times the unroll part.
Value *Step = createStepForVF(Builder, IV->getType(), State.VF, Part);
return Builder.CreateAdd(IV, Step, Name, hasNoUnsignedWrap(),
hasNoSignedWrap());
}
case VPInstruction::BranchOnCond: {
if (Part != 0)
return nullptr;
Value *Cond = State.get(getOperand(0), VPIteration(Part, 0));
// Replace the temporary unreachable terminator with a new conditional
// branch, hooking it up to backward destination for exiting blocks now and
// to forward destination(s) later when they are created.
BranchInst *CondBr =
Builder.CreateCondBr(Cond, Builder.GetInsertBlock(), nullptr);
CondBr->setSuccessor(0, nullptr);
Builder.GetInsertBlock()->getTerminator()->eraseFromParent();
if (!getParent()->isExiting())
return CondBr;
VPRegionBlock *ParentRegion = getParent()->getParent();
VPBasicBlock *Header = ParentRegion->getEntryBasicBlock();
CondBr->setSuccessor(1, State.CFG.VPBB2IRBB[Header]);
return CondBr;
}
case VPInstruction::BranchOnCount: {
if (Part != 0)
return nullptr;
// First create the compare.
Value *IV = State.get(getOperand(0), Part, /*IsScalar*/ true);
Value *TC = State.get(getOperand(1), Part, /*IsScalar*/ true);
Value *Cond = Builder.CreateICmpEQ(IV, TC);
// Now create the branch.
auto *Plan = getParent()->getPlan();
VPRegionBlock *TopRegion = Plan->getVectorLoopRegion();
VPBasicBlock *Header = TopRegion->getEntry()->getEntryBasicBlock();
// Replace the temporary unreachable terminator with a new conditional
// branch, hooking it up to backward destination (the header) now and to the
// forward destination (the exit/middle block) later when it is created.
// Note that CreateCondBr expects a valid BB as first argument, so we need
// to set it to nullptr later.
BranchInst *CondBr = Builder.CreateCondBr(Cond, Builder.GetInsertBlock(),
State.CFG.VPBB2IRBB[Header]);
CondBr->setSuccessor(0, nullptr);
Builder.GetInsertBlock()->getTerminator()->eraseFromParent();
return CondBr;
}
case VPInstruction::ComputeReductionResult: {
if (Part != 0)
return State.get(this, 0, /*IsScalar*/ true);
// FIXME: The cross-recipe dependency on VPReductionPHIRecipe is temporary
// and will be removed by breaking up the recipe further.
auto *PhiR = cast<VPReductionPHIRecipe>(getOperand(0));
auto *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
// Get its reduction variable descriptor.
const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
RecurKind RK = RdxDesc.getRecurrenceKind();
VPValue *LoopExitingDef = getOperand(1);
Type *PhiTy = OrigPhi->getType();
VectorParts RdxParts(State.UF);
for (unsigned Part = 0; Part < State.UF; ++Part)
RdxParts[Part] = State.get(LoopExitingDef, Part, PhiR->isInLoop());
// If the vector reduction can be performed in a smaller type, we truncate
// then extend the loop exit value to enable InstCombine to evaluate the
// entire expression in the smaller type.
// TODO: Handle this in truncateToMinBW.
if (State.VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), State.VF);
for (unsigned Part = 0; Part < State.UF; ++Part)
RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
}
// Reduce all of the unrolled parts into a single vector.
Value *ReducedPartRdx = RdxParts[0];
unsigned Op = RecurrenceDescriptor::getOpcode(RK);
if (RecurrenceDescriptor::isAnyOfRecurrenceKind(RK))
Op = Instruction::Or;
if (PhiR->isOrdered()) {
ReducedPartRdx = RdxParts[State.UF - 1];
} else {
// Floating-point operations should have some FMF to enable the reduction.
IRBuilderBase::FastMathFlagGuard FMFG(Builder);
Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
for (unsigned Part = 1; Part < State.UF; ++Part) {
Value *RdxPart = RdxParts[Part];
if (Op != Instruction::ICmp && Op != Instruction::FCmp)
ReducedPartRdx = Builder.CreateBinOp(
(Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
else
ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
}
}
// Create the reduction after the loop. Note that inloop reductions create
// the target reduction in the loop using a Reduction recipe.
if ((State.VF.isVector() ||
RecurrenceDescriptor::isAnyOfRecurrenceKind(RK)) &&
!PhiR->isInLoop()) {
ReducedPartRdx =
createTargetReduction(Builder, RdxDesc, ReducedPartRdx, OrigPhi);
// If the reduction can be performed in a smaller type, we need to extend
// the reduction to the wider type before we branch to the original loop.
if (PhiTy != RdxDesc.getRecurrenceType())
ReducedPartRdx = RdxDesc.isSigned()
? Builder.CreateSExt(ReducedPartRdx, PhiTy)
: Builder.CreateZExt(ReducedPartRdx, PhiTy);
}
// If there were stores of the reduction value to a uniform memory address
// inside the loop, create the final store here.
if (StoreInst *SI = RdxDesc.IntermediateStore) {
auto *NewSI = Builder.CreateAlignedStore(
ReducedPartRdx, SI->getPointerOperand(), SI->getAlign());
propagateMetadata(NewSI, SI);
}
return ReducedPartRdx;
}
case VPInstruction::ExtractFromEnd: {
if (Part != 0)
return State.get(this, 0, /*IsScalar*/ true);
auto *CI = cast<ConstantInt>(getOperand(1)->getLiveInIRValue());
unsigned Offset = CI->getZExtValue();
assert(Offset > 0 && "Offset from end must be positive");
Value *Res;
if (State.VF.isVector()) {
assert(Offset <= State.VF.getKnownMinValue() &&
"invalid offset to extract from");
// Extract lane VF - Offset from the operand.
Res = State.get(
getOperand(0),
VPIteration(State.UF - 1, VPLane::getLaneFromEnd(State.VF, Offset)));
} else {
assert(Offset <= State.UF && "invalid offset to extract from");
// When loop is unrolled without vectorizing, retrieve UF - Offset.
Res = State.get(getOperand(0), State.UF - Offset);
}
if (isa<ExtractElementInst>(Res))
Res->setName(Name);
return Res;
}
case VPInstruction::LogicalAnd: {
Value *A = State.get(getOperand(0), Part);
Value *B = State.get(getOperand(1), Part);
return Builder.CreateLogicalAnd(A, B, Name);
}
case VPInstruction::PtrAdd: {
assert(vputils::onlyFirstLaneUsed(this) &&
"can only generate first lane for PtrAdd");
Value *Ptr = State.get(getOperand(0), Part, /* IsScalar */ true);
Value *Addend = State.get(getOperand(1), Part, /* IsScalar */ true);
return Builder.CreatePtrAdd(Ptr, Addend, Name);
}
case VPInstruction::ResumePhi: {
if (Part != 0)
return State.get(this, 0, /*IsScalar*/ true);
Value *IncomingFromVPlanPred =
State.get(getOperand(0), Part, /* IsScalar */ true);
Value *IncomingFromOtherPreds =
State.get(getOperand(1), Part, /* IsScalar */ true);
auto *NewPhi =
Builder.CreatePHI(IncomingFromOtherPreds->getType(), 2, Name);
BasicBlock *VPlanPred =
State.CFG
.VPBB2IRBB[cast<VPBasicBlock>(getParent()->getSinglePredecessor())];
NewPhi->addIncoming(IncomingFromVPlanPred, VPlanPred);
for (auto *OtherPred : predecessors(Builder.GetInsertBlock())) {
assert(OtherPred != VPlanPred &&
"VPlan predecessors should not be connected yet");
NewPhi->addIncoming(IncomingFromOtherPreds, OtherPred);
}
return NewPhi;
}
default:
llvm_unreachable("Unsupported opcode for instruction");
}
}
bool VPInstruction::isVectorToScalar() const {
return getOpcode() == VPInstruction::ExtractFromEnd ||
getOpcode() == VPInstruction::ComputeReductionResult;
}
bool VPInstruction::isSingleScalar() const {
return getOpcode() == VPInstruction::ResumePhi;
}
#if !defined(NDEBUG)
bool VPInstruction::isFPMathOp() const {
// Inspired by FPMathOperator::classof. Notable differences are that we don't
// support Call, PHI and Select opcodes here yet.
return Opcode == Instruction::FAdd || Opcode == Instruction::FMul ||
Opcode == Instruction::FNeg || Opcode == Instruction::FSub ||
Opcode == Instruction::FDiv || Opcode == Instruction::FRem ||
Opcode == Instruction::FCmp || Opcode == Instruction::Select;
}
#endif
void VPInstruction::execute(VPTransformState &State) {
assert(!State.Instance && "VPInstruction executing an Instance");
IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder);
assert((hasFastMathFlags() == isFPMathOp() ||
getOpcode() == Instruction::Select) &&
"Recipe not a FPMathOp but has fast-math flags?");
if (hasFastMathFlags())
State.Builder.setFastMathFlags(getFastMathFlags());
State.setDebugLocFrom(getDebugLoc());
bool GeneratesPerFirstLaneOnly = canGenerateScalarForFirstLane() &&
(vputils::onlyFirstLaneUsed(this) ||
isVectorToScalar() || isSingleScalar());
bool GeneratesPerAllLanes = doesGeneratePerAllLanes();
bool OnlyFirstPartUsed = vputils::onlyFirstPartUsed(this);
for (unsigned Part = 0; Part < State.UF; ++Part) {
if (GeneratesPerAllLanes) {
for (unsigned Lane = 0, NumLanes = State.VF.getKnownMinValue();
Lane != NumLanes; ++Lane) {
Value *GeneratedValue = generatePerLane(State, VPIteration(Part, Lane));
assert(GeneratedValue && "generatePerLane must produce a value");
State.set(this, GeneratedValue, VPIteration(Part, Lane));
}
continue;
}
if (Part != 0 && OnlyFirstPartUsed && hasResult()) {
Value *Part0 = State.get(this, 0, /*IsScalar*/ GeneratesPerFirstLaneOnly);
State.set(this, Part0, Part,
/*IsScalar*/ GeneratesPerFirstLaneOnly);
continue;
}
Value *GeneratedValue = generatePerPart(State, Part);
if (!hasResult())
continue;
assert(GeneratedValue && "generatePerPart must produce a value");
assert((GeneratedValue->getType()->isVectorTy() ==
!GeneratesPerFirstLaneOnly ||
State.VF.isScalar()) &&
"scalar value but not only first lane defined");
State.set(this, GeneratedValue, Part,
/*IsScalar*/ GeneratesPerFirstLaneOnly);
}
}
bool VPInstruction::onlyFirstLaneUsed(const VPValue *Op) const {
assert(is_contained(operands(), Op) && "Op must be an operand of the recipe");
if (Instruction::isBinaryOp(getOpcode()))
return vputils::onlyFirstLaneUsed(this);
switch (getOpcode()) {
default:
return false;
case Instruction::ICmp:
case VPInstruction::PtrAdd:
// TODO: Cover additional opcodes.
return vputils::onlyFirstLaneUsed(this);
case VPInstruction::ActiveLaneMask:
case VPInstruction::ExplicitVectorLength:
case VPInstruction::CalculateTripCountMinusVF:
case VPInstruction::CanonicalIVIncrementForPart:
case VPInstruction::BranchOnCount:
case VPInstruction::BranchOnCond:
case VPInstruction::ResumePhi:
return true;
};
llvm_unreachable("switch should return");
}
bool VPInstruction::onlyFirstPartUsed(const VPValue *Op) const {
assert(is_contained(operands(), Op) && "Op must be an operand of the recipe");
if (Instruction::isBinaryOp(getOpcode()))
return vputils::onlyFirstPartUsed(this);
switch (getOpcode()) {
default:
return false;
case Instruction::ICmp:
case Instruction::Select:
return vputils::onlyFirstPartUsed(this);
case VPInstruction::BranchOnCount:
case VPInstruction::BranchOnCond:
case VPInstruction::CanonicalIVIncrementForPart:
return true;
};
llvm_unreachable("switch should return");
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPInstruction::dump() const {
VPSlotTracker SlotTracker(getParent()->getPlan());
print(dbgs(), "", SlotTracker);
}
void VPInstruction::print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const {
O << Indent << "EMIT ";
if (hasResult()) {
printAsOperand(O, SlotTracker);
O << " = ";
}
switch (getOpcode()) {
case VPInstruction::Not:
O << "not";
break;
case VPInstruction::SLPLoad:
O << "combined load";
break;
case VPInstruction::SLPStore:
O << "combined store";
break;
case VPInstruction::ActiveLaneMask:
O << "active lane mask";
break;
case VPInstruction::ResumePhi:
O << "resume-phi";
break;
case VPInstruction::ExplicitVectorLength:
O << "EXPLICIT-VECTOR-LENGTH";
break;
case VPInstruction::FirstOrderRecurrenceSplice:
O << "first-order splice";
break;
case VPInstruction::BranchOnCond:
O << "branch-on-cond";
break;
case VPInstruction::CalculateTripCountMinusVF:
O << "TC > VF ? TC - VF : 0";
break;
case VPInstruction::CanonicalIVIncrementForPart:
O << "VF * Part +";
break;
case VPInstruction::BranchOnCount:
O << "branch-on-count";
break;
case VPInstruction::ExtractFromEnd:
O << "extract-from-end";
break;
case VPInstruction::ComputeReductionResult:
O << "compute-reduction-result";
break;
case VPInstruction::LogicalAnd:
O << "logical-and";
break;
case VPInstruction::PtrAdd:
O << "ptradd";
break;
default:
O << Instruction::getOpcodeName(getOpcode());
}
printFlags(O);
printOperands(O, SlotTracker);
if (auto DL = getDebugLoc()) {
O << ", !dbg ";
DL.print(O);
}
}
#endif
void VPWidenCallRecipe::execute(VPTransformState &State) {
assert(State.VF.isVector() && "not widening");
Function *CalledScalarFn = getCalledScalarFunction();
assert(!isDbgInfoIntrinsic(CalledScalarFn->getIntrinsicID()) &&
"DbgInfoIntrinsic should have been dropped during VPlan construction");
State.setDebugLocFrom(getDebugLoc());
bool UseIntrinsic = VectorIntrinsicID != Intrinsic::not_intrinsic;
FunctionType *VFTy = nullptr;
if (Variant)
VFTy = Variant->getFunctionType();
for (unsigned Part = 0; Part < State.UF; ++Part) {
SmallVector<Type *, 2> TysForDecl;
// Add return type if intrinsic is overloaded on it.
if (UseIntrinsic &&
isVectorIntrinsicWithOverloadTypeAtArg(VectorIntrinsicID, -1))
TysForDecl.push_back(VectorType::get(
CalledScalarFn->getReturnType()->getScalarType(), State.VF));
SmallVector<Value *, 4> Args;
for (const auto &I : enumerate(arg_operands())) {
// Some intrinsics have a scalar argument - don't replace it with a
// vector.
Value *Arg;
if (UseIntrinsic &&
isVectorIntrinsicWithScalarOpAtArg(VectorIntrinsicID, I.index()))
Arg = State.get(I.value(), VPIteration(0, 0));
// Some vectorized function variants may also take a scalar argument,
// e.g. linear parameters for pointers. This needs to be the scalar value
// from the start of the respective part when interleaving.
else if (VFTy && !VFTy->getParamType(I.index())->isVectorTy())
Arg = State.get(I.value(), VPIteration(Part, 0));
else
Arg = State.get(I.value(), Part);
if (UseIntrinsic &&
isVectorIntrinsicWithOverloadTypeAtArg(VectorIntrinsicID, I.index()))
TysForDecl.push_back(Arg->getType());
Args.push_back(Arg);
}
Function *VectorF;
if (UseIntrinsic) {
// Use vector version of the intrinsic.
Module *M = State.Builder.GetInsertBlock()->getModule();
VectorF = Intrinsic::getDeclaration(M, VectorIntrinsicID, TysForDecl);
assert(VectorF && "Can't retrieve vector intrinsic.");
} else {
#ifndef NDEBUG
assert(Variant != nullptr && "Can't create vector function.");
#endif
VectorF = Variant;
}
auto *CI = cast_or_null<CallInst>(getUnderlyingInstr());
SmallVector<OperandBundleDef, 1> OpBundles;
if (CI)
CI->getOperandBundlesAsDefs(OpBundles);
CallInst *V = State.Builder.CreateCall(VectorF, Args, OpBundles);
if (isa<FPMathOperator>(V))
V->copyFastMathFlags(CI);
if (!V->getType()->isVoidTy())
State.set(this, V, Part);
State.addMetadata(V, CI);
}
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const {
O << Indent << "WIDEN-CALL ";
Function *CalledFn = getCalledScalarFunction();
if (CalledFn->getReturnType()->isVoidTy())
O << "void ";
else {
printAsOperand(O, SlotTracker);
O << " = ";
}
O << "call @" << CalledFn->getName() << "(";
interleaveComma(arg_operands(), O, [&O, &SlotTracker](VPValue *Op) {
Op->printAsOperand(O, SlotTracker);
});
O << ")";
if (VectorIntrinsicID)
O << " (using vector intrinsic)";
else {
O << " (using library function";
if (Variant->hasName())
O << ": " << Variant->getName();
O << ")";
}
}
void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const {
O << Indent << "WIDEN-SELECT ";
printAsOperand(O, SlotTracker);
O << " = select ";
getOperand(0)->printAsOperand(O, SlotTracker);
O << ", ";
getOperand(1)->printAsOperand(O, SlotTracker);
O << ", ";
getOperand(2)->printAsOperand(O, SlotTracker);
O << (isInvariantCond() ? " (condition is loop invariant)" : "");
}
#endif
void VPWidenSelectRecipe::execute(VPTransformState &State) {
State.setDebugLocFrom(getDebugLoc());
// The condition can be loop invariant but still defined inside the
// loop. This means that we can't just use the original 'cond' value.
// We have to take the 'vectorized' value and pick the first lane.
// Instcombine will make this a no-op.
auto *InvarCond =
isInvariantCond() ? State.get(getCond(), VPIteration(0, 0)) : nullptr;
for (unsigned Part = 0; Part < State.UF; ++Part) {
Value *Cond = InvarCond ? InvarCond : State.get(getCond(), Part);
Value *Op0 = State.get(getOperand(1), Part);
Value *Op1 = State.get(getOperand(2), Part);
Value *Sel = State.Builder.CreateSelect(Cond, Op0, Op1);
State.set(this, Sel, Part);
State.addMetadata(Sel, dyn_cast_or_null<Instruction>(getUnderlyingValue()));
}
}
VPRecipeWithIRFlags::FastMathFlagsTy::FastMathFlagsTy(
const FastMathFlags &FMF) {
AllowReassoc = FMF.allowReassoc();
NoNaNs = FMF.noNaNs();
NoInfs = FMF.noInfs();
NoSignedZeros = FMF.noSignedZeros();
AllowReciprocal = FMF.allowReciprocal();
AllowContract = FMF.allowContract();
ApproxFunc = FMF.approxFunc();
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPRecipeWithIRFlags::printFlags(raw_ostream &O) const {
switch (OpType) {
case OperationType::Cmp:
O << " " << CmpInst::getPredicateName(getPredicate());
break;
case OperationType::DisjointOp:
if (DisjointFlags.IsDisjoint)
O << " disjoint";
break;
case OperationType::PossiblyExactOp:
if (ExactFlags.IsExact)
O << " exact";
break;
case OperationType::OverflowingBinOp:
if (WrapFlags.HasNUW)
O << " nuw";
if (WrapFlags.HasNSW)
O << " nsw";
break;
case OperationType::FPMathOp:
getFastMathFlags().print(O);
break;
case OperationType::GEPOp:
if (GEPFlags.IsInBounds)
O << " inbounds";
break;
case OperationType::NonNegOp:
if (NonNegFlags.NonNeg)
O << " nneg";
break;
case OperationType::Other:
break;
}
if (getNumOperands() > 0)
O << " ";
}
#endif
void VPWidenRecipe::execute(VPTransformState &State) {
State.setDebugLocFrom(getDebugLoc());
auto &Builder = State.Builder;
switch (Opcode) {
case Instruction::Call:
case Instruction::Br:
case Instruction::PHI:
case Instruction::GetElementPtr:
case Instruction::Select:
llvm_unreachable("This instruction is handled by a different recipe.");
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::SRem:
case Instruction::URem:
case Instruction::Add:
case Instruction::FAdd:
case Instruction::Sub:
case Instruction::FSub:
case Instruction::FNeg:
case Instruction::Mul:
case Instruction::FMul:
case Instruction::FDiv:
case Instruction::FRem:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor: {
// Just widen unops and binops.
for (unsigned Part = 0; Part < State.UF; ++Part) {
SmallVector<Value *, 2> Ops;
for (VPValue *VPOp : operands())
Ops.push_back(State.get(VPOp, Part));
Value *V = Builder.CreateNAryOp(Opcode, Ops);
if (auto *VecOp = dyn_cast<Instruction>(V))
setFlags(VecOp);
// Use this vector value for all users of the original instruction.
State.set(this, V, Part);
State.addMetadata(V, dyn_cast_or_null<Instruction>(getUnderlyingValue()));
}
break;
}
case Instruction::Freeze: {
for (unsigned Part = 0; Part < State.UF; ++Part) {
Value *Op = State.get(getOperand(0), Part);
Value *Freeze = Builder.CreateFreeze(Op);
State.set(this, Freeze, Part);
}
break;
}
case Instruction::ICmp:
case Instruction::FCmp: {
// Widen compares. Generate vector compares.
bool FCmp = Opcode == Instruction::FCmp;
for (unsigned Part = 0; Part < State.UF; ++Part) {
Value *A = State.get(getOperand(0), Part);
Value *B = State.get(getOperand(1), Part);
Value *C = nullptr;
if (FCmp) {
// Propagate fast math flags.
IRBuilder<>::FastMathFlagGuard FMFG(Builder);
if (auto *I = dyn_cast_or_null<Instruction>(getUnderlyingValue()))
Builder.setFastMathFlags(I->getFastMathFlags());
C = Builder.CreateFCmp(getPredicate(), A, B);
} else {
C = Builder.CreateICmp(getPredicate(), A, B);
}
State.set(this, C, Part);
State.addMetadata(C, dyn_cast_or_null<Instruction>(getUnderlyingValue()));
}
break;
}
default:
// This instruction is not vectorized by simple widening.
LLVM_DEBUG(dbgs() << "LV: Found an unhandled opcode : "
<< Instruction::getOpcodeName(Opcode));
llvm_unreachable("Unhandled instruction!");
} // end of switch.
#if !defined(NDEBUG)
// Verify that VPlan type inference results agree with the type of the
// generated values.
for (unsigned Part = 0; Part < State.UF; ++Part) {
assert(VectorType::get(State.TypeAnalysis.inferScalarType(this),
State.VF) == State.get(this, Part)->getType() &&
"inferred type and type from generated instructions do not match");
}
#endif
}
InstructionCost VPWidenRecipe::computeCost(ElementCount VF,
VPCostContext &Ctx) const {
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
switch (Opcode) {
case Instruction::FNeg: {
Type *VectorTy =
ToVectorTy(Ctx.Types.inferScalarType(this->getVPSingleValue()), VF);
return Ctx.TTI.getArithmeticInstrCost(
Opcode, VectorTy, CostKind,
{TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
{TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None});
}
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::SRem:
case Instruction::URem:
// More complex computation, let the legacy cost-model handle this for now.
return Ctx.getLegacyCost(cast<Instruction>(getUnderlyingValue()), VF);
case Instruction::Add:
case Instruction::FAdd:
case Instruction::Sub:
case Instruction::FSub:
case Instruction::Mul:
case Instruction::FMul:
case Instruction::FDiv:
case Instruction::FRem:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor: {
VPValue *RHS = getOperand(1);
// Certain instructions can be cheaper to vectorize if they have a constant
// second vector operand. One example of this are shifts on x86.
TargetTransformInfo::OperandValueInfo RHSInfo = {
TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None};
if (RHS->isLiveIn())
RHSInfo = Ctx.TTI.getOperandInfo(RHS->getLiveInIRValue());
if (RHSInfo.Kind == TargetTransformInfo::OK_AnyValue &&
getOperand(1)->isDefinedOutsideVectorRegions())
RHSInfo.Kind = TargetTransformInfo::OK_UniformValue;
Type *VectorTy =
ToVectorTy(Ctx.Types.inferScalarType(this->getVPSingleValue()), VF);
Instruction *CtxI = dyn_cast_or_null<Instruction>(getUnderlyingValue());
SmallVector<const Value *, 4> Operands;
if (CtxI)
Operands.append(CtxI->value_op_begin(), CtxI->value_op_end());
return Ctx.TTI.getArithmeticInstrCost(
Opcode, VectorTy, CostKind,
{TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
RHSInfo, Operands, CtxI, &Ctx.TLI);
}
case Instruction::Freeze: {
// This opcode is unknown. Assume that it is the same as 'mul'.
Type *VectorTy =
ToVectorTy(Ctx.Types.inferScalarType(this->getVPSingleValue()), VF);
return Ctx.TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
}
case Instruction::ICmp:
case Instruction::FCmp: {
Instruction *CtxI = dyn_cast_or_null<Instruction>(getUnderlyingValue());
Type *VectorTy = ToVectorTy(Ctx.Types.inferScalarType(getOperand(0)), VF);
return Ctx.TTI.getCmpSelInstrCost(Opcode, VectorTy, nullptr, getPredicate(),
CostKind, CtxI);
}
default:
llvm_unreachable("Unsupported opcode for instruction");
}
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const {
O << Indent << "WIDEN ";
printAsOperand(O, SlotTracker);
O << " = " << Instruction::getOpcodeName(Opcode);
printFlags(O);
printOperands(O, SlotTracker);
}
#endif
void VPWidenCastRecipe::execute(VPTransformState &State) {
State.setDebugLocFrom(getDebugLoc());
auto &Builder = State.Builder;
/// Vectorize casts.
assert(State.VF.isVector() && "Not vectorizing?");
Type *DestTy = VectorType::get(getResultType(), State.VF);
VPValue *Op = getOperand(0);
for (unsigned Part = 0; Part < State.UF; ++Part) {
if (Part > 0 && Op->isLiveIn()) {
// FIXME: Remove once explicit unrolling is implemented using VPlan.
State.set(this, State.get(this, 0), Part);
continue;
}
Value *A = State.get(Op, Part);
Value *Cast = Builder.CreateCast(Instruction::CastOps(Opcode), A, DestTy);
State.set(this, Cast, Part);
State.addMetadata(Cast, cast_or_null<Instruction>(getUnderlyingValue()));
}
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPWidenCastRecipe::print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const {
O << Indent << "WIDEN-CAST ";
printAsOperand(O, SlotTracker);
O << " = " << Instruction::getOpcodeName(Opcode) << " ";
printFlags(O);
printOperands(O, SlotTracker);
O << " to " << *getResultType();
}
#endif
/// This function adds
/// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
/// to each vector element of Val. The sequence starts at StartIndex.
/// \p Opcode is relevant for FP induction variable.
static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step,
Instruction::BinaryOps BinOp, ElementCount VF,
IRBuilderBase &Builder) {
assert(VF.isVector() && "only vector VFs are supported");
// Create and check the types.
auto *ValVTy = cast<VectorType>(Val->getType());
ElementCount VLen = ValVTy->getElementCount();
Type *STy = Val->getType()->getScalarType();
assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
"Induction Step must be an integer or FP");
assert(Step->getType() == STy && "Step has wrong type");
SmallVector<Constant *, 8> Indices;
// Create a vector of consecutive numbers from zero to VF.
VectorType *InitVecValVTy = ValVTy;
if (STy->isFloatingPointTy()) {
Type *InitVecValSTy =
IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
}
Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
// Splat the StartIdx
Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx);
if (STy->isIntegerTy()) {
InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
Step = Builder.CreateVectorSplat(VLen, Step);
assert(Step->getType() == Val->getType() && "Invalid step vec");
// FIXME: The newly created binary instructions should contain nsw/nuw
// flags, which can be found from the original scalar operations.
Step = Builder.CreateMul(InitVec, Step);
return Builder.CreateAdd(Val, Step, "induction");
}
// Floating point induction.
assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
"Binary Opcode should be specified for FP induction");
InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat);
Step = Builder.CreateVectorSplat(VLen, Step);
Value *MulOp = Builder.CreateFMul(InitVec, Step);
return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
}
/// A helper function that returns an integer or floating-point constant with
/// value C.
static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
: ConstantFP::get(Ty, C);
}
static Value *getRuntimeVFAsFloat(IRBuilderBase &B, Type *FTy,
ElementCount VF) {
assert(FTy->isFloatingPointTy() && "Expected floating point type!");
Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits());
Value *RuntimeVF = getRuntimeVF(B, IntTy, VF);
return B.CreateUIToFP(RuntimeVF, FTy);
}
void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
assert(!State.Instance && "Int or FP induction being replicated.");
Value *Start = getStartValue()->getLiveInIRValue();
const InductionDescriptor &ID = getInductionDescriptor();
TruncInst *Trunc = getTruncInst();
IRBuilderBase &Builder = State.Builder;
assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
assert(State.VF.isVector() && "must have vector VF");
// The value from the original loop to which we are mapping the new induction
// variable.
Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
// Fast-math-flags propagate from the original induction instruction.
IRBuilder<>::FastMathFlagGuard FMFG(Builder);
if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
// Now do the actual transformations, and start with fetching the step value.
Value *Step = State.get(getStepValue(), VPIteration(0, 0));
assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
"Expected either an induction phi-node or a truncate of it!");
// Construct the initial value of the vector IV in the vector loop preheader
auto CurrIP = Builder.saveIP();
BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this);
Builder.SetInsertPoint(VectorPH->getTerminator());
if (isa<TruncInst>(EntryVal)) {
assert(Start->getType()->isIntegerTy() &&
"Truncation requires an integer type");
auto *TruncType = cast<IntegerType>(EntryVal->getType());
Step = Builder.CreateTrunc(Step, TruncType);
Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
}
Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0);
Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start);
Value *SteppedStart = getStepVector(
SplatStart, Zero, Step, ID.getInductionOpcode(), State.VF, State.Builder);
// We create vector phi nodes for both integer and floating-point induction
// variables. Here, we determine the kind of arithmetic we will perform.
Instruction::BinaryOps AddOp;
Instruction::BinaryOps MulOp;
if (Step->getType()->isIntegerTy()) {
AddOp = Instruction::Add;
MulOp = Instruction::Mul;
} else {
AddOp = ID.getInductionOpcode();
MulOp = Instruction::FMul;
}
// Multiply the vectorization factor by the step using integer or
// floating-point arithmetic as appropriate.
Type *StepType = Step->getType();
Value *RuntimeVF;
if (Step->getType()->isFloatingPointTy())
RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF);
else
RuntimeVF = getRuntimeVF(Builder, StepType, State.VF);
Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);
// Create a vector splat to use in the induction update.
//
// FIXME: If the step is non-constant, we create the vector splat with
// IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
// handle a constant vector splat.
Value *SplatVF = isa<Constant>(Mul)
? ConstantVector::getSplat(State.VF, cast<Constant>(Mul))
: Builder.CreateVectorSplat(State.VF, Mul);
Builder.restoreIP(CurrIP);
// We may need to add the step a number of times, depending on the unroll
// factor. The last of those goes into the PHI.
PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind");
VecInd->insertBefore(State.CFG.PrevBB->getFirstInsertionPt());
VecInd->setDebugLoc(EntryVal->getDebugLoc());
Instruction *LastInduction = VecInd;
for (unsigned Part = 0; Part < State.UF; ++Part) {
State.set(this, LastInduction, Part);
if (isa<TruncInst>(EntryVal))
State.addMetadata(LastInduction, EntryVal);
LastInduction = cast<Instruction>(
Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
LastInduction->setDebugLoc(EntryVal->getDebugLoc());
}
LastInduction->setName("vec.ind.next");
VecInd->addIncoming(SteppedStart, VectorPH);
// Add induction update using an incorrect block temporarily. The phi node
// will be fixed after VPlan execution. Note that at this point the latch
// block cannot be used, as it does not exist yet.
// TODO: Model increment value in VPlan, by turning the recipe into a
// multi-def and a subclass of VPHeaderPHIRecipe.
VecInd->addIncoming(LastInduction, VectorPH);
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const {
O << Indent << "WIDEN-INDUCTION";
if (getTruncInst()) {
O << "\\l\"";
O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\"";
O << " +\n" << Indent << "\" ";
getVPValue(0)->printAsOperand(O, SlotTracker);
} else
O << " " << VPlanIngredient(IV);
O << ", ";
getStepValue()->printAsOperand(O, SlotTracker);
}
#endif
bool VPWidenIntOrFpInductionRecipe::isCanonical() const {
// The step may be defined by a recipe in the preheader (e.g. if it requires
// SCEV expansion), but for the canonical induction the step is required to be
// 1, which is represented as live-in.
if (getStepValue()->getDefiningRecipe())
return false;
auto *StepC = dyn_cast<ConstantInt>(getStepValue()->getLiveInIRValue());
auto *StartC = dyn_cast<ConstantInt>(getStartValue()->getLiveInIRValue());
auto *CanIV = cast<VPCanonicalIVPHIRecipe>(&*getParent()->begin());
return StartC && StartC->isZero() && StepC && StepC->isOne() &&
getScalarType() == CanIV->getScalarType();
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPDerivedIVRecipe::print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const {
O << Indent;
printAsOperand(O, SlotTracker);
O << Indent << "= DERIVED-IV ";
getStartValue()->printAsOperand(O, SlotTracker);
O << " + ";
getOperand(1)->printAsOperand(O, SlotTracker);
O << " * ";
getStepValue()->printAsOperand(O, SlotTracker);
}
#endif
void VPScalarIVStepsRecipe::execute(VPTransformState &State) {
// Fast-math-flags propagate from the original induction instruction.
IRBuilder<>::FastMathFlagGuard FMFG(State.Builder);
if (hasFastMathFlags())
State.Builder.setFastMathFlags(getFastMathFlags());
/// Compute scalar induction steps. \p ScalarIV is the scalar induction
/// variable on which to base the steps, \p Step is the size of the step.
Value *BaseIV = State.get(getOperand(0), VPIteration(0, 0));
Value *Step = State.get(getStepValue(), VPIteration(0, 0));
IRBuilderBase &Builder = State.Builder;
// Ensure step has the same type as that of scalar IV.
Type *BaseIVTy = BaseIV->getType()->getScalarType();
assert(BaseIVTy == Step->getType() && "Types of BaseIV and Step must match!");
// We build scalar steps for both integer and floating-point induction
// variables. Here, we determine the kind of arithmetic we will perform.
Instruction::BinaryOps AddOp;
Instruction::BinaryOps MulOp;
if (BaseIVTy->isIntegerTy()) {
AddOp = Instruction::Add;
MulOp = Instruction::Mul;
} else {
AddOp = InductionOpcode;
MulOp = Instruction::FMul;
}
// Determine the number of scalars we need to generate for each unroll
// iteration.
bool FirstLaneOnly = vputils::onlyFirstLaneUsed(this);
// Compute the scalar steps and save the results in State.
Type *IntStepTy =
IntegerType::get(BaseIVTy->getContext(), BaseIVTy->getScalarSizeInBits());
Type *VecIVTy = nullptr;
Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
if (!FirstLaneOnly && State.VF.isScalable()) {
VecIVTy = VectorType::get(BaseIVTy, State.VF);
UnitStepVec =
Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF));
SplatStep = Builder.CreateVectorSplat(State.VF, Step);
SplatIV = Builder.CreateVectorSplat(State.VF, BaseIV);
}
unsigned StartPart = 0;
unsigned EndPart = State.UF;
unsigned StartLane = 0;
unsigned EndLane = FirstLaneOnly ? 1 : State.VF.getKnownMinValue();
if (State.Instance) {
StartPart = State.Instance->Part;
EndPart = StartPart + 1;
StartLane = State.Instance->Lane.getKnownLane();
EndLane = StartLane + 1;
}
for (unsigned Part = StartPart; Part < EndPart; ++Part) {
Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part);
if (!FirstLaneOnly && State.VF.isScalable()) {
auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0);
auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
if (BaseIVTy->isFloatingPointTy())
InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
State.set(this, Add, Part);
// It's useful to record the lane values too for the known minimum number
// of elements so we do those below. This improves the code quality when
// trying to extract the first element, for example.
}
if (BaseIVTy->isFloatingPointTy())
StartIdx0 = Builder.CreateSIToFP(StartIdx0, BaseIVTy);
for (unsigned Lane = StartLane; Lane < EndLane; ++Lane) {
Value *StartIdx = Builder.CreateBinOp(
AddOp, StartIdx0, getSignedIntOrFpConstant(BaseIVTy, Lane));
// The step returned by `createStepForVF` is a runtime-evaluated value
// when VF is scalable. Otherwise, it should be folded into a Constant.
assert((State.VF.isScalable() || isa<Constant>(StartIdx)) &&
"Expected StartIdx to be folded to a constant when VF is not "
"scalable");
auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
auto *Add = Builder.CreateBinOp(AddOp, BaseIV, Mul);
State.set(this, Add, VPIteration(Part, Lane));
}
}
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPScalarIVStepsRecipe::print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const {
O << Indent;
printAsOperand(O, SlotTracker);
O << " = SCALAR-STEPS ";
printOperands(O, SlotTracker);
}
#endif
void VPWidenGEPRecipe::execute(VPTransformState &State) {
assert(State.VF.isVector() && "not widening");
auto *GEP = cast<GetElementPtrInst>(getUnderlyingInstr());
// Construct a vector GEP by widening the operands of the scalar GEP as
// necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
// results in a vector of pointers when at least one operand of the GEP
// is vector-typed. Thus, to keep the representation compact, we only use
// vector-typed operands for loop-varying values.
if (areAllOperandsInvariant()) {
// If we are vectorizing, but the GEP has only loop-invariant operands,
// the GEP we build (by only using vector-typed operands for
// loop-varying values) would be a scalar pointer. Thus, to ensure we
// produce a vector of pointers, we need to either arbitrarily pick an
// operand to broadcast, or broadcast a clone of the original GEP.
// Here, we broadcast a clone of the original.
//
// TODO: If at some point we decide to scalarize instructions having
// loop-invariant operands, this special case will no longer be
// required. We would add the scalarization decision to
// collectLoopScalars() and teach getVectorValue() to broadcast
// the lane-zero scalar value.
SmallVector<Value *> Ops;
for (unsigned I = 0, E = getNumOperands(); I != E; I++)
Ops.push_back(State.get(getOperand(I), VPIteration(0, 0)));
auto *NewGEP =
State.Builder.CreateGEP(GEP->getSourceElementType(), Ops[0],
ArrayRef(Ops).drop_front(), "", isInBounds());
for (unsigned Part = 0; Part < State.UF; ++Part) {
Value *EntryPart = State.Builder.CreateVectorSplat(State.VF, NewGEP);
State.set(this, EntryPart, Part);
State.addMetadata(EntryPart, GEP);
}
} else {
// If the GEP has at least one loop-varying operand, we are sure to
// produce a vector of pointers. But if we are only unrolling, we want
// to produce a scalar GEP for each unroll part. Thus, the GEP we
// produce with the code below will be scalar (if VF == 1) or vector
// (otherwise). Note that for the unroll-only case, we still maintain
// values in the vector mapping with initVector, as we do for other
// instructions.
for (unsigned Part = 0; Part < State.UF; ++Part) {
// The pointer operand of the new GEP. If it's loop-invariant, we
// won't broadcast it.
auto *Ptr = isPointerLoopInvariant()
? State.get(getOperand(0), VPIteration(0, 0))
: State.get(getOperand(0), Part);
// Collect all the indices for the new GEP. If any index is
// loop-invariant, we won't broadcast it.
SmallVector<Value *, 4> Indices;
for (unsigned I = 1, E = getNumOperands(); I < E; I++) {
VPValue *Operand = getOperand(I);
if (isIndexLoopInvariant(I - 1))
Indices.push_back(State.get(Operand, VPIteration(0, 0)));
else
Indices.push_back(State.get(Operand, Part));
}
// Create the new GEP. Note that this GEP may be a scalar if VF == 1,
// but it should be a vector, otherwise.
auto *NewGEP = State.Builder.CreateGEP(GEP->getSourceElementType(), Ptr,
Indices, "", isInBounds());
assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
"NewGEP is not a pointer vector");
State.set(this, NewGEP, Part);
State.addMetadata(NewGEP, GEP);
}
}
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const {
O << Indent << "WIDEN-GEP ";
O << (isPointerLoopInvariant() ? "Inv" : "Var");
for (size_t I = 0; I < getNumOperands() - 1; ++I)
O << "[" << (isIndexLoopInvariant(I) ? "Inv" : "Var") << "]";
O << " ";
printAsOperand(O, SlotTracker);
O << " = getelementptr";
printFlags(O);
printOperands(O, SlotTracker);
}
#endif
void VPVectorPointerRecipe ::execute(VPTransformState &State) {
auto &Builder = State.Builder;
State.setDebugLocFrom(getDebugLoc());
for (unsigned Part = 0; Part < State.UF; ++Part) {
// Calculate the pointer for the specific unroll-part.
Value *PartPtr = nullptr;
// Use i32 for the gep index type when the value is constant,
// or query DataLayout for a more suitable index type otherwise.
const DataLayout &DL =
Builder.GetInsertBlock()->getDataLayout();
Type *IndexTy = State.VF.isScalable() && (IsReverse || Part > 0)
? DL.getIndexType(IndexedTy->getPointerTo())
: Builder.getInt32Ty();
Value *Ptr = State.get(getOperand(0), VPIteration(0, 0));
bool InBounds = isInBounds();
if (IsReverse) {
// If the address is consecutive but reversed, then the
// wide store needs to start at the last vector element.
// RunTimeVF = VScale * VF.getKnownMinValue()
// For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
Value *RunTimeVF = getRuntimeVF(Builder, IndexTy, State.VF);
// NumElt = -Part * RunTimeVF
Value *NumElt = Builder.CreateMul(
ConstantInt::get(IndexTy, -(int64_t)Part), RunTimeVF);
// LastLane = 1 - RunTimeVF
Value *LastLane =
Builder.CreateSub(ConstantInt::get(IndexTy, 1), RunTimeVF);
PartPtr = Builder.CreateGEP(IndexedTy, Ptr, NumElt, "", InBounds);
PartPtr = Builder.CreateGEP(IndexedTy, PartPtr, LastLane, "", InBounds);
} else {
Value *Increment = createStepForVF(Builder, IndexTy, State.VF, Part);
PartPtr = Builder.CreateGEP(IndexedTy, Ptr, Increment, "", InBounds);
}
State.set(this, PartPtr, Part, /*IsScalar*/ true);
}
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPVectorPointerRecipe::print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const {
O << Indent;
printAsOperand(O, SlotTracker);
O << " = vector-pointer ";
if (IsReverse)
O << "(reverse) ";
printOperands(O, SlotTracker);
}
#endif
void VPBlendRecipe::execute(VPTransformState &State) {
assert(isNormalized() && "Expected blend to be normalized!");
State.setDebugLocFrom(getDebugLoc());
// We know that all PHIs in non-header blocks are converted into
// selects, so we don't have to worry about the insertion order and we
// can just use the builder.
// At this point we generate the predication tree. There may be
// duplications since this is a simple recursive scan, but future
// optimizations will clean it up.
unsigned NumIncoming = getNumIncomingValues();
// Generate a sequence of selects of the form:
// SELECT(Mask3, In3,
// SELECT(Mask2, In2,
// SELECT(Mask1, In1,
// In0)))
// Note that Mask0 is never used: lanes for which no path reaches this phi and
// are essentially undef are taken from In0.
VectorParts Entry(State.UF);
bool OnlyFirstLaneUsed = vputils::onlyFirstLaneUsed(this);
for (unsigned In = 0; In < NumIncoming; ++In) {
for (unsigned Part = 0; Part < State.UF; ++Part) {
// We might have single edge PHIs (blocks) - use an identity
// 'select' for the first PHI operand.
Value *In0 = State.get(getIncomingValue(In), Part, OnlyFirstLaneUsed);
if (In == 0)
Entry[Part] = In0; // Initialize with the first incoming value.
else {
// Select between the current value and the previous incoming edge
// based on the incoming mask.
Value *Cond = State.get(getMask(In), Part, OnlyFirstLaneUsed);
Entry[Part] =
State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
}
}
}
for (unsigned Part = 0; Part < State.UF; ++Part)
State.set(this, Entry[Part], Part, OnlyFirstLaneUsed);
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const {
O << Indent << "BLEND ";
printAsOperand(O, SlotTracker);
O << " =";
if (getNumIncomingValues() == 1) {
// Not a User of any mask: not really blending, this is a
// single-predecessor phi.
O << " ";
getIncomingValue(0)->printAsOperand(O, SlotTracker);
} else {
for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) {
O << " ";
getIncomingValue(I)->printAsOperand(O, SlotTracker);
if (I == 0)
continue;
O << "/";
getMask(I)->printAsOperand(O, SlotTracker);
}
}
}
#endif
void VPReductionRecipe::execute(VPTransformState &State) {
assert(!State.Instance && "Reduction being replicated.");
Value *PrevInChain = State.get(getChainOp(), 0, /*IsScalar*/ true);
RecurKind Kind = RdxDesc.getRecurrenceKind();
// Propagate the fast-math flags carried by the underlying instruction.
IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder);
State.Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
for (unsigned Part = 0; Part < State.UF; ++Part) {
Value *NewVecOp = State.get(getVecOp(), Part);
if (VPValue *Cond = getCondOp()) {
Value *NewCond = State.get(Cond, Part, State.VF.isScalar());
VectorType *VecTy = dyn_cast<VectorType>(NewVecOp->getType());
Type *ElementTy = VecTy ? VecTy->getElementType() : NewVecOp->getType();
Value *Iden = RdxDesc.getRecurrenceIdentity(Kind, ElementTy,
RdxDesc.getFastMathFlags());
if (State.VF.isVector()) {
Iden = State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden);
}
Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, Iden);
NewVecOp = Select;
}
Value *NewRed;
Value *NextInChain;
if (IsOrdered) {
if (State.VF.isVector())
NewRed = createOrderedReduction(State.Builder, RdxDesc, NewVecOp,
PrevInChain);
else
NewRed = State.Builder.CreateBinOp(
(Instruction::BinaryOps)RdxDesc.getOpcode(Kind), PrevInChain,
NewVecOp);
PrevInChain = NewRed;
} else {
PrevInChain = State.get(getChainOp(), Part, /*IsScalar*/ true);
NewRed = createTargetReduction(State.Builder, RdxDesc, NewVecOp);
}
if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
NextInChain = createMinMaxOp(State.Builder, RdxDesc.getRecurrenceKind(),
NewRed, PrevInChain);
} else if (IsOrdered)
NextInChain = NewRed;
else
NextInChain = State.Builder.CreateBinOp(
(Instruction::BinaryOps)RdxDesc.getOpcode(Kind), NewRed, PrevInChain);
State.set(this, NextInChain, Part, /*IsScalar*/ true);
}
}
void VPReductionEVLRecipe::execute(VPTransformState &State) {
assert(!State.Instance && "Reduction being replicated.");
assert(State.UF == 1 &&
"Expected only UF == 1 when vectorizing with explicit vector length.");
auto &Builder = State.Builder;
// Propagate the fast-math flags carried by the underlying instruction.
IRBuilderBase::FastMathFlagGuard FMFGuard(Builder);
const RecurrenceDescriptor &RdxDesc = getRecurrenceDescriptor();
Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
RecurKind Kind = RdxDesc.getRecurrenceKind();
Value *Prev = State.get(getChainOp(), 0, /*IsScalar*/ true);
Value *VecOp = State.get(getVecOp(), 0);
Value *EVL = State.get(getEVL(), VPIteration(0, 0));
VectorBuilder VBuilder(Builder);
VBuilder.setEVL(EVL);
Value *Mask;
// TODO: move the all-true mask generation into VectorBuilder.
if (VPValue *CondOp = getCondOp())
Mask = State.get(CondOp, 0);
else
Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
VBuilder.setMask(Mask);
Value *NewRed;
if (isOrdered()) {
NewRed = createOrderedReduction(VBuilder, RdxDesc, VecOp, Prev);
} else {
NewRed = createSimpleTargetReduction(VBuilder, VecOp, RdxDesc);
if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
NewRed = createMinMaxOp(Builder, Kind, NewRed, Prev);
else
NewRed = Builder.CreateBinOp(
(Instruction::BinaryOps)RdxDesc.getOpcode(Kind), NewRed, Prev);
}
State.set(this, NewRed, 0, /*IsScalar*/ true);
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPReductionRecipe::print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const {
O << Indent << "REDUCE ";
printAsOperand(O, SlotTracker);
O << " = ";
getChainOp()->printAsOperand(O, SlotTracker);
O << " +";
if (isa<FPMathOperator>(getUnderlyingInstr()))
O << getUnderlyingInstr()->getFastMathFlags();
O << " reduce." << Instruction::getOpcodeName(RdxDesc.getOpcode()) << " (";
getVecOp()->printAsOperand(O, SlotTracker);
if (isConditional()) {
O << ", ";
getCondOp()->printAsOperand(O, SlotTracker);
}
O << ")";
if (RdxDesc.IntermediateStore)
O << " (with final reduction value stored in invariant address sank "
"outside of loop)";
}
void VPReductionEVLRecipe::print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const {
const RecurrenceDescriptor &RdxDesc = getRecurrenceDescriptor();
O << Indent << "REDUCE ";
printAsOperand(O, SlotTracker);
O << " = ";
getChainOp()->printAsOperand(O, SlotTracker);
O << " +";
if (isa<FPMathOperator>(getUnderlyingInstr()))
O << getUnderlyingInstr()->getFastMathFlags();
O << " vp.reduce." << Instruction::getOpcodeName(RdxDesc.getOpcode()) << " (";
getVecOp()->printAsOperand(O, SlotTracker);
O << ", ";
getEVL()->printAsOperand(O, SlotTracker);
if (isConditional()) {
O << ", ";
getCondOp()->printAsOperand(O, SlotTracker);
}
O << ")";
if (RdxDesc.IntermediateStore)
O << " (with final reduction value stored in invariant address sank "
"outside of loop)";
}
#endif
bool VPReplicateRecipe::shouldPack() const {
// Find if the recipe is used by a widened recipe via an intervening
// VPPredInstPHIRecipe. In this case, also pack the scalar values in a vector.
return any_of(users(), [](const VPUser *U) {
if (auto *PredR = dyn_cast<VPPredInstPHIRecipe>(U))
return any_of(PredR->users(), [PredR](const VPUser *U) {
return !U->usesScalars(PredR);
});
return false;
});
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const {
O << Indent << (IsUniform ? "CLONE " : "REPLICATE ");
if (!getUnderlyingInstr()->getType()->isVoidTy()) {
printAsOperand(O, SlotTracker);
O << " = ";
}
if (auto *CB = dyn_cast<CallBase>(getUnderlyingInstr())) {
O << "call";
printFlags(O);
O << "@" << CB->getCalledFunction()->getName() << "(";
interleaveComma(make_range(op_begin(), op_begin() + (getNumOperands() - 1)),
O, [&O, &SlotTracker](VPValue *Op) {
Op->printAsOperand(O, SlotTracker);
});
O << ")";
} else {
O << Instruction::getOpcodeName(getUnderlyingInstr()->getOpcode());
printFlags(O);
printOperands(O, SlotTracker);
}
if (shouldPack())
O << " (S->V)";
}
#endif
/// Checks if \p C is uniform across all VFs and UFs. It is considered as such
/// if it is either defined outside the vector region or its operand is known to
/// be uniform across all VFs and UFs (e.g. VPDerivedIV or VPCanonicalIVPHI).
/// TODO: Uniformity should be associated with a VPValue and there should be a
/// generic way to check.
static bool isUniformAcrossVFsAndUFs(VPScalarCastRecipe *C) {
return C->isDefinedOutsideVectorRegions() ||
isa<VPDerivedIVRecipe>(C->getOperand(0)) ||
isa<VPCanonicalIVPHIRecipe>(C->getOperand(0));
}
Value *VPScalarCastRecipe ::generate(VPTransformState &State, unsigned Part) {
assert(vputils::onlyFirstLaneUsed(this) &&
"Codegen only implemented for first lane.");
switch (Opcode) {
case Instruction::SExt:
case Instruction::ZExt:
case Instruction::Trunc: {
// Note: SExt/ZExt not used yet.
Value *Op = State.get(getOperand(0), VPIteration(Part, 0));
return State.Builder.CreateCast(Instruction::CastOps(Opcode), Op, ResultTy);
}
default:
llvm_unreachable("opcode not implemented yet");
}
}
void VPScalarCastRecipe ::execute(VPTransformState &State) {
bool IsUniformAcrossVFsAndUFs = isUniformAcrossVFsAndUFs(this);
for (unsigned Part = 0; Part != State.UF; ++Part) {
Value *Res;
// Only generate a single instance, if the recipe is uniform across UFs and
// VFs.
if (Part > 0 && IsUniformAcrossVFsAndUFs)
Res = State.get(this, VPIteration(0, 0));
else
Res = generate(State, Part);
State.set(this, Res, VPIteration(Part, 0));
}
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPScalarCastRecipe ::print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const {
O << Indent << "SCALAR-CAST ";
printAsOperand(O, SlotTracker);
O << " = " << Instruction::getOpcodeName(Opcode) << " ";
printOperands(O, SlotTracker);
O << " to " << *ResultTy;
}
#endif
void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
assert(State.Instance && "Branch on Mask works only on single instance.");
unsigned Part = State.Instance->Part;
unsigned Lane = State.Instance->Lane.getKnownLane();
Value *ConditionBit = nullptr;
VPValue *BlockInMask = getMask();
if (BlockInMask) {
ConditionBit = State.get(BlockInMask, Part);
if (ConditionBit->getType()->isVectorTy())
ConditionBit = State.Builder.CreateExtractElement(
ConditionBit, State.Builder.getInt32(Lane));
} else // Block in mask is all-one.
ConditionBit = State.Builder.getTrue();
// Replace the temporary unreachable terminator with a new conditional branch,
// whose two destinations will be set later when they are created.
auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
assert(isa<UnreachableInst>(CurrentTerminator) &&
"Expected to replace unreachable terminator with conditional branch.");
auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
CondBr->setSuccessor(0, nullptr);
ReplaceInstWithInst(CurrentTerminator, CondBr);
}
void VPPredInstPHIRecipe::execute(VPTransformState &State) {
assert(State.Instance && "Predicated instruction PHI works per instance.");
Instruction *ScalarPredInst =
cast<Instruction>(State.get(getOperand(0), *State.Instance));
BasicBlock *PredicatedBB = ScalarPredInst->getParent();
BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
assert(PredicatingBB && "Predicated block has no single predecessor.");
assert(isa<VPReplicateRecipe>(getOperand(0)) &&
"operand must be VPReplicateRecipe");
// By current pack/unpack logic we need to generate only a single phi node: if
// a vector value for the predicated instruction exists at this point it means
// the instruction has vector users only, and a phi for the vector value is
// needed. In this case the recipe of the predicated instruction is marked to
// also do that packing, thereby "hoisting" the insert-element sequence.
// Otherwise, a phi node for the scalar value is needed.
unsigned Part = State.Instance->Part;
if (State.hasVectorValue(getOperand(0), Part)) {
Value *VectorValue = State.get(getOperand(0), Part);
InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
if (State.hasVectorValue(this, Part))
State.reset(this, VPhi, Part);
else
State.set(this, VPhi, Part);
// NOTE: Currently we need to update the value of the operand, so the next
// predicated iteration inserts its generated value in the correct vector.
State.reset(getOperand(0), VPhi, Part);
} else {
Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType();
PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
PredicatingBB);
Phi->addIncoming(ScalarPredInst, PredicatedBB);
if (State.hasScalarValue(this, *State.Instance))
State.reset(this, Phi, *State.Instance);
else
State.set(this, Phi, *State.Instance);
// NOTE: Currently we need to update the value of the operand, so the next
// predicated iteration inserts its generated value in the correct vector.
State.reset(getOperand(0), Phi, *State.Instance);
}
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const {
O << Indent << "PHI-PREDICATED-INSTRUCTION ";
printAsOperand(O, SlotTracker);
O << " = ";
printOperands(O, SlotTracker);
}
#endif
void VPWidenLoadRecipe::execute(VPTransformState &State) {
auto *LI = cast<LoadInst>(&Ingredient);
Type *ScalarDataTy = getLoadStoreType(&Ingredient);
auto *DataTy = VectorType::get(ScalarDataTy, State.VF);
const Align Alignment = getLoadStoreAlignment(&Ingredient);
bool CreateGather = !isConsecutive();
auto &Builder = State.Builder;
State.setDebugLocFrom(getDebugLoc());
for (unsigned Part = 0; Part < State.UF; ++Part) {
Value *NewLI;
Value *Mask = nullptr;
if (auto *VPMask = getMask()) {
// Mask reversal is only needed for non-all-one (null) masks, as reverse
// of a null all-one mask is a null mask.
Mask = State.get(VPMask, Part);
if (isReverse())
Mask = Builder.CreateVectorReverse(Mask, "reverse");
}
Value *Addr = State.get(getAddr(), Part, /*IsScalar*/ !CreateGather);
if (CreateGather) {
NewLI = Builder.CreateMaskedGather(DataTy, Addr, Alignment, Mask, nullptr,
"wide.masked.gather");
} else if (Mask) {
NewLI = Builder.CreateMaskedLoad(DataTy, Addr, Alignment, Mask,
PoisonValue::get(DataTy),
"wide.masked.load");
} else {
NewLI = Builder.CreateAlignedLoad(DataTy, Addr, Alignment, "wide.load");
}
// Add metadata to the load, but setVectorValue to the reverse shuffle.
State.addMetadata(NewLI, LI);
if (Reverse)
NewLI = Builder.CreateVectorReverse(NewLI, "reverse");
State.set(this, NewLI, Part);
}
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPWidenLoadRecipe::print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const {
O << Indent << "WIDEN ";
printAsOperand(O, SlotTracker);
O << " = load ";
printOperands(O, SlotTracker);
}
void VPWidenLoadEVLRecipe::print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const {
O << Indent << "WIDEN ";
printAsOperand(O, SlotTracker);
O << " = vp.load ";
printOperands(O, SlotTracker);
}
#endif
void VPWidenStoreRecipe::execute(VPTransformState &State) {
auto *SI = cast<StoreInst>(&Ingredient);
VPValue *StoredVPValue = getStoredValue();
bool CreateScatter = !isConsecutive();
const Align Alignment = getLoadStoreAlignment(&Ingredient);
auto &Builder = State.Builder;
State.setDebugLocFrom(getDebugLoc());
for (unsigned Part = 0; Part < State.UF; ++Part) {
Instruction *NewSI = nullptr;
Value *Mask = nullptr;
if (auto *VPMask = getMask()) {
// Mask reversal is only needed for non-all-one (null) masks, as reverse
// of a null all-one mask is a null mask.
Mask = State.get(VPMask, Part);
if (isReverse())
Mask = Builder.CreateVectorReverse(Mask, "reverse");
}
Value *StoredVal = State.get(StoredVPValue, Part);
if (isReverse()) {
// If we store to reverse consecutive memory locations, then we need
// to reverse the order of elements in the stored value.
StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse");
// We don't want to update the value in the map as it might be used in
// another expression. So don't call resetVectorValue(StoredVal).
}
Value *Addr = State.get(getAddr(), Part, /*IsScalar*/ !CreateScatter);
if (CreateScatter)
NewSI = Builder.CreateMaskedScatter(StoredVal, Addr, Alignment, Mask);
else if (Mask)
NewSI = Builder.CreateMaskedStore(StoredVal, Addr, Alignment, Mask);
else
NewSI = Builder.CreateAlignedStore(StoredVal, Addr, Alignment);
State.addMetadata(NewSI, SI);
}
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPWidenStoreRecipe::print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const {
O << Indent << "WIDEN store ";
printOperands(O, SlotTracker);
}
void VPWidenStoreEVLRecipe::print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const {
O << Indent << "WIDEN vp.store ";
printOperands(O, SlotTracker);
}
#endif
static Value *createBitOrPointerCast(IRBuilderBase &Builder, Value *V,
VectorType *DstVTy, const DataLayout &DL) {
// Verify that V is a vector type with same number of elements as DstVTy.
auto VF = DstVTy->getElementCount();
auto *SrcVecTy = cast<VectorType>(V->getType());
assert(VF == SrcVecTy->getElementCount() && "Vector dimensions do not match");
Type *SrcElemTy = SrcVecTy->getElementType();
Type *DstElemTy = DstVTy->getElementType();
assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
"Vector elements must have same size");
// Do a direct cast if element types are castable.
if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
return Builder.CreateBitOrPointerCast(V, DstVTy);
}
// V cannot be directly casted to desired vector type.
// May happen when V is a floating point vector but DstVTy is a vector of
// pointers or vice-versa. Handle this using a two-step bitcast using an
// intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
"Only one type should be a pointer type");
assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
"Only one type should be a floating point type");
Type *IntTy =
IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
auto *VecIntTy = VectorType::get(IntTy, VF);
Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
return Builder.CreateBitOrPointerCast(CastVal, DstVTy);
}
/// Return a vector containing interleaved elements from multiple
/// smaller input vectors.
static Value *interleaveVectors(IRBuilderBase &Builder, ArrayRef<Value *> Vals,
const Twine &Name) {
unsigned Factor = Vals.size();
assert(Factor > 1 && "Tried to interleave invalid number of vectors");
VectorType *VecTy = cast<VectorType>(Vals[0]->getType());
#ifndef NDEBUG
for (Value *Val : Vals)
assert(Val->getType() == VecTy && "Tried to interleave mismatched types");
#endif
// Scalable vectors cannot use arbitrary shufflevectors (only splats), so
// must use intrinsics to interleave.
if (VecTy->isScalableTy()) {
VectorType *WideVecTy = VectorType::getDoubleElementsVectorType(VecTy);
return Builder.CreateIntrinsic(WideVecTy, Intrinsic::vector_interleave2,
Vals,
/*FMFSource=*/nullptr, Name);
}
// Fixed length. Start by concatenating all vectors into a wide vector.
Value *WideVec = concatenateVectors(Builder, Vals);
// Interleave the elements into the wide vector.
const unsigned NumElts = VecTy->getElementCount().getFixedValue();
return Builder.CreateShuffleVector(
WideVec, createInterleaveMask(NumElts, Factor), Name);
}
// Try to vectorize the interleave group that \p Instr belongs to.
//
// E.g. Translate following interleaved load group (factor = 3):
// for (i = 0; i < N; i+=3) {
// R = Pic[i]; // Member of index 0
// G = Pic[i+1]; // Member of index 1
// B = Pic[i+2]; // Member of index 2
// ... // do something to R, G, B
// }
// To:
// %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B
// %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements
// %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements
// %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements
//
// Or translate following interleaved store group (factor = 3):
// for (i = 0; i < N; i+=3) {
// ... do something to R, G, B
// Pic[i] = R; // Member of index 0
// Pic[i+1] = G; // Member of index 1
// Pic[i+2] = B; // Member of index 2
// }
// To:
// %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
// %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
// %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements
// store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B
void VPInterleaveRecipe::execute(VPTransformState &State) {
assert(!State.Instance && "Interleave group being replicated.");
const InterleaveGroup<Instruction> *Group = IG;
Instruction *Instr = Group->getInsertPos();
// Prepare for the vector type of the interleaved load/store.
Type *ScalarTy = getLoadStoreType(Instr);
unsigned InterleaveFactor = Group->getFactor();
auto *VecTy = VectorType::get(ScalarTy, State.VF * InterleaveFactor);
// Prepare for the new pointers.
SmallVector<Value *, 2> AddrParts;
unsigned Index = Group->getIndex(Instr);
// TODO: extend the masked interleaved-group support to reversed access.
VPValue *BlockInMask = getMask();
assert((!BlockInMask || !Group->isReverse()) &&
"Reversed masked interleave-group not supported.");
Value *Idx;
// If the group is reverse, adjust the index to refer to the last vector lane
// instead of the first. We adjust the index from the first vector lane,
// rather than directly getting the pointer for lane VF - 1, because the
// pointer operand of the interleaved access is supposed to be uniform. For
// uniform instructions, we're only required to generate a value for the
// first vector lane in each unroll iteration.
if (Group->isReverse()) {
Value *RuntimeVF =
getRuntimeVF(State.Builder, State.Builder.getInt32Ty(), State.VF);
Idx = State.Builder.CreateSub(RuntimeVF, State.Builder.getInt32(1));
Idx = State.Builder.CreateMul(Idx,
State.Builder.getInt32(Group->getFactor()));
Idx = State.Builder.CreateAdd(Idx, State.Builder.getInt32(Index));
Idx = State.Builder.CreateNeg(Idx);
} else
Idx = State.Builder.getInt32(-Index);
VPValue *Addr = getAddr();
for (unsigned Part = 0; Part < State.UF; Part++) {
Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
if (auto *I = dyn_cast<Instruction>(AddrPart))
State.setDebugLocFrom(I->getDebugLoc());
// Notice current instruction could be any index. Need to adjust the address
// to the member of index 0.
//
// E.g. a = A[i+1]; // Member of index 1 (Current instruction)
// b = A[i]; // Member of index 0
// Current pointer is pointed to A[i+1], adjust it to A[i].
//
// E.g. A[i+1] = a; // Member of index 1
// A[i] = b; // Member of index 0
// A[i+2] = c; // Member of index 2 (Current instruction)
// Current pointer is pointed to A[i+2], adjust it to A[i].
bool InBounds = false;
if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
InBounds = gep->isInBounds();
AddrPart = State.Builder.CreateGEP(ScalarTy, AddrPart, Idx, "", InBounds);
AddrParts.push_back(AddrPart);
}
State.setDebugLocFrom(Instr->getDebugLoc());
Value *PoisonVec = PoisonValue::get(VecTy);
auto CreateGroupMask = [&BlockInMask, &State, &InterleaveFactor](
unsigned Part, Value *MaskForGaps) -> Value * {
if (State.VF.isScalable()) {
assert(!MaskForGaps && "Interleaved groups with gaps are not supported.");
assert(InterleaveFactor == 2 &&
"Unsupported deinterleave factor for scalable vectors");
auto *BlockInMaskPart = State.get(BlockInMask, Part);
SmallVector<Value *, 2> Ops = {BlockInMaskPart, BlockInMaskPart};
auto *MaskTy = VectorType::get(State.Builder.getInt1Ty(),
State.VF.getKnownMinValue() * 2, true);
return State.Builder.CreateIntrinsic(
MaskTy, Intrinsic::vector_interleave2, Ops,
/*FMFSource=*/nullptr, "interleaved.mask");
}
if (!BlockInMask)
return MaskForGaps;
Value *BlockInMaskPart = State.get(BlockInMask, Part);
Value *ShuffledMask = State.Builder.CreateShuffleVector(
BlockInMaskPart,
createReplicatedMask(InterleaveFactor, State.VF.getKnownMinValue()),
"interleaved.mask");
return MaskForGaps ? State.Builder.CreateBinOp(Instruction::And,
ShuffledMask, MaskForGaps)
: ShuffledMask;
};
const DataLayout &DL = Instr->getDataLayout();
// Vectorize the interleaved load group.
if (isa<LoadInst>(Instr)) {
Value *MaskForGaps = nullptr;
if (NeedsMaskForGaps) {
MaskForGaps = createBitMaskForGaps(State.Builder,
State.VF.getKnownMinValue(), *Group);
assert(MaskForGaps && "Mask for Gaps is required but it is null");
}
// For each unroll part, create a wide load for the group.
SmallVector<Value *, 2> NewLoads;
for (unsigned Part = 0; Part < State.UF; Part++) {
Instruction *NewLoad;
if (BlockInMask || MaskForGaps) {
Value *GroupMask = CreateGroupMask(Part, MaskForGaps);
NewLoad = State.Builder.CreateMaskedLoad(VecTy, AddrParts[Part],
Group->getAlign(), GroupMask,
PoisonVec, "wide.masked.vec");
} else
NewLoad = State.Builder.CreateAlignedLoad(
VecTy, AddrParts[Part], Group->getAlign(), "wide.vec");
Group->addMetadata(NewLoad);
NewLoads.push_back(NewLoad);
}
ArrayRef<VPValue *> VPDefs = definedValues();
const DataLayout &DL = State.CFG.PrevBB->getDataLayout();
if (VecTy->isScalableTy()) {
assert(InterleaveFactor == 2 &&
"Unsupported deinterleave factor for scalable vectors");
for (unsigned Part = 0; Part < State.UF; ++Part) {
// Scalable vectors cannot use arbitrary shufflevectors (only splats),
// so must use intrinsics to deinterleave.
Value *DI = State.Builder.CreateIntrinsic(
Intrinsic::vector_deinterleave2, VecTy, NewLoads[Part],
/*FMFSource=*/nullptr, "strided.vec");
unsigned J = 0;
for (unsigned I = 0; I < InterleaveFactor; ++I) {
Instruction *Member = Group->getMember(I);
if (!Member)
continue;
Value *StridedVec = State.Builder.CreateExtractValue(DI, I);
// If this member has different type, cast the result type.
if (Member->getType() != ScalarTy) {
VectorType *OtherVTy = VectorType::get(Member->getType(), State.VF);
StridedVec =
createBitOrPointerCast(State.Builder, StridedVec, OtherVTy, DL);
}
if (Group->isReverse())
StridedVec =
State.Builder.CreateVectorReverse(StridedVec, "reverse");
State.set(VPDefs[J], StridedVec, Part);
++J;
}
}
return;
}
// For each member in the group, shuffle out the appropriate data from the
// wide loads.
unsigned J = 0;
for (unsigned I = 0; I < InterleaveFactor; ++I) {
Instruction *Member = Group->getMember(I);
// Skip the gaps in the group.
if (!Member)
continue;
auto StrideMask =
createStrideMask(I, InterleaveFactor, State.VF.getKnownMinValue());
for (unsigned Part = 0; Part < State.UF; Part++) {
Value *StridedVec = State.Builder.CreateShuffleVector(
NewLoads[Part], StrideMask, "strided.vec");
// If this member has different type, cast the result type.
if (Member->getType() != ScalarTy) {
assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
VectorType *OtherVTy = VectorType::get(Member->getType(), State.VF);
StridedVec =
createBitOrPointerCast(State.Builder, StridedVec, OtherVTy, DL);
}
if (Group->isReverse())
StridedVec = State.Builder.CreateVectorReverse(StridedVec, "reverse");
State.set(VPDefs[J], StridedVec, Part);
}
++J;
}
return;
}
// The sub vector type for current instruction.
auto *SubVT = VectorType::get(ScalarTy, State.VF);
// Vectorize the interleaved store group.
Value *MaskForGaps =
createBitMaskForGaps(State.Builder, State.VF.getKnownMinValue(), *Group);
assert((!MaskForGaps || !State.VF.isScalable()) &&
"masking gaps for scalable vectors is not yet supported.");
ArrayRef<VPValue *> StoredValues = getStoredValues();
for (unsigned Part = 0; Part < State.UF; Part++) {
// Collect the stored vector from each member.
SmallVector<Value *, 4> StoredVecs;
unsigned StoredIdx = 0;
for (unsigned i = 0; i < InterleaveFactor; i++) {
assert((Group->getMember(i) || MaskForGaps) &&
"Fail to get a member from an interleaved store group");
Instruction *Member = Group->getMember(i);
// Skip the gaps in the group.
if (!Member) {
Value *Undef = PoisonValue::get(SubVT);
StoredVecs.push_back(Undef);
continue;
}
Value *StoredVec = State.get(StoredValues[StoredIdx], Part);
++StoredIdx;
if (Group->isReverse())
StoredVec = State.Builder.CreateVectorReverse(StoredVec, "reverse");
// If this member has different type, cast it to a unified type.
if (StoredVec->getType() != SubVT)
StoredVec = createBitOrPointerCast(State.Builder, StoredVec, SubVT, DL);
StoredVecs.push_back(StoredVec);
}
// Interleave all the smaller vectors into one wider vector.
Value *IVec =
interleaveVectors(State.Builder, StoredVecs, "interleaved.vec");
Instruction *NewStoreInstr;
if (BlockInMask || MaskForGaps) {
Value *GroupMask = CreateGroupMask(Part, MaskForGaps);
NewStoreInstr = State.Builder.CreateMaskedStore(
IVec, AddrParts[Part], Group->getAlign(), GroupMask);
} else
NewStoreInstr = State.Builder.CreateAlignedStore(IVec, AddrParts[Part],
Group->getAlign());
Group->addMetadata(NewStoreInstr);
}
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const {
O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
IG->getInsertPos()->printAsOperand(O, false);
O << ", ";
getAddr()->printAsOperand(O, SlotTracker);
VPValue *Mask = getMask();
if (Mask) {
O << ", ";
Mask->printAsOperand(O, SlotTracker);
}
unsigned OpIdx = 0;
for (unsigned i = 0; i < IG->getFactor(); ++i) {
if (!IG->getMember(i))
continue;
if (getNumStoreOperands() > 0) {
O << "\n" << Indent << " store ";
getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker);
O << " to index " << i;
} else {
O << "\n" << Indent << " ";
getVPValue(OpIdx)->printAsOperand(O, SlotTracker);
O << " = load from index " << i;
}
++OpIdx;
}
}
#endif
void VPCanonicalIVPHIRecipe::execute(VPTransformState &State) {
Value *Start = getStartValue()->getLiveInIRValue();
PHINode *EntryPart = PHINode::Create(Start->getType(), 2, "index");
EntryPart->insertBefore(State.CFG.PrevBB->getFirstInsertionPt());
BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this);
EntryPart->addIncoming(Start, VectorPH);
EntryPart->setDebugLoc(getDebugLoc());
for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part)
State.set(this, EntryPart, Part, /*IsScalar*/ true);
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPCanonicalIVPHIRecipe::print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const {
O << Indent << "EMIT ";
printAsOperand(O, SlotTracker);
O << " = CANONICAL-INDUCTION ";
printOperands(O, SlotTracker);
}
#endif
bool VPCanonicalIVPHIRecipe::isCanonical(
InductionDescriptor::InductionKind Kind, VPValue *Start,
VPValue *Step) const {
// Must be an integer induction.
if (Kind != InductionDescriptor::IK_IntInduction)
return false;
// Start must match the start value of this canonical induction.
if (Start != getStartValue())
return false;
// If the step is defined by a recipe, it is not a ConstantInt.
if (Step->getDefiningRecipe())
return false;
ConstantInt *StepC = dyn_cast<ConstantInt>(Step->getLiveInIRValue());
return StepC && StepC->isOne();
}
bool VPWidenPointerInductionRecipe::onlyScalarsGenerated(bool IsScalable) {
return IsScalarAfterVectorization &&
(!IsScalable || vputils::onlyFirstLaneUsed(this));
}
void VPWidenPointerInductionRecipe::execute(VPTransformState &State) {
assert(IndDesc.getKind() == InductionDescriptor::IK_PtrInduction &&
"Not a pointer induction according to InductionDescriptor!");
assert(cast<PHINode>(getUnderlyingInstr())->getType()->isPointerTy() &&
"Unexpected type.");
assert(!onlyScalarsGenerated(State.VF.isScalable()) &&
"Recipe should have been replaced");
auto *IVR = getParent()->getPlan()->getCanonicalIV();
PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0, /*IsScalar*/ true));
Type *PhiType = IndDesc.getStep()->getType();
// Build a pointer phi
Value *ScalarStartValue = getStartValue()->getLiveInIRValue();
Type *ScStValueType = ScalarStartValue->getType();
PHINode *NewPointerPhi = PHINode::Create(ScStValueType, 2, "pointer.phi",
CanonicalIV->getIterator());
BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this);
NewPointerPhi->addIncoming(ScalarStartValue, VectorPH);
// A pointer induction, performed by using a gep
BasicBlock::iterator InductionLoc = State.Builder.GetInsertPoint();
Value *ScalarStepValue = State.get(getOperand(1), VPIteration(0, 0));
Value *RuntimeVF = getRuntimeVF(State.Builder, PhiType, State.VF);
Value *NumUnrolledElems =
State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF));
Value *InductionGEP = GetElementPtrInst::Create(
State.Builder.getInt8Ty(), NewPointerPhi,
State.Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind",
InductionLoc);
// Add induction update using an incorrect block temporarily. The phi node
// will be fixed after VPlan execution. Note that at this point the latch
// block cannot be used, as it does not exist yet.
// TODO: Model increment value in VPlan, by turning the recipe into a
// multi-def and a subclass of VPHeaderPHIRecipe.
NewPointerPhi->addIncoming(InductionGEP, VectorPH);
// Create UF many actual address geps that use the pointer
// phi as base and a vectorized version of the step value
// (<step*0, ..., step*N>) as offset.
for (unsigned Part = 0; Part < State.UF; ++Part) {
Type *VecPhiType = VectorType::get(PhiType, State.VF);
Value *StartOffsetScalar =
State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part));
Value *StartOffset =
State.Builder.CreateVectorSplat(State.VF, StartOffsetScalar);
// Create a vector of consecutive numbers from zero to VF.
StartOffset = State.Builder.CreateAdd(
StartOffset, State.Builder.CreateStepVector(VecPhiType));
assert(ScalarStepValue == State.get(getOperand(1), VPIteration(Part, 0)) &&
"scalar step must be the same across all parts");
Value *GEP = State.Builder.CreateGEP(
State.Builder.getInt8Ty(), NewPointerPhi,
State.Builder.CreateMul(
StartOffset,
State.Builder.CreateVectorSplat(State.VF, ScalarStepValue),
"vector.gep"));
State.set(this, GEP, Part);
}
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPWidenPointerInductionRecipe::print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const {
O << Indent << "EMIT ";
printAsOperand(O, SlotTracker);
O << " = WIDEN-POINTER-INDUCTION ";
getStartValue()->printAsOperand(O, SlotTracker);
O << ", " << *IndDesc.getStep();
}
#endif
void VPExpandSCEVRecipe::execute(VPTransformState &State) {
assert(!State.Instance && "cannot be used in per-lane");
const DataLayout &DL = State.CFG.PrevBB->getDataLayout();
SCEVExpander Exp(SE, DL, "induction");
Value *Res = Exp.expandCodeFor(Expr, Expr->getType(),
&*State.Builder.GetInsertPoint());
assert(!State.ExpandedSCEVs.contains(Expr) &&
"Same SCEV expanded multiple times");
State.ExpandedSCEVs[Expr] = Res;
for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part)
State.set(this, Res, {Part, 0});
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPExpandSCEVRecipe::print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const {
O << Indent << "EMIT ";
getVPSingleValue()->printAsOperand(O, SlotTracker);
O << " = EXPAND SCEV " << *Expr;
}
#endif
void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) {
Value *CanonicalIV = State.get(getOperand(0), 0, /*IsScalar*/ true);
Type *STy = CanonicalIV->getType();
IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
ElementCount VF = State.VF;
Value *VStart = VF.isScalar()
? CanonicalIV
: Builder.CreateVectorSplat(VF, CanonicalIV, "broadcast");
for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) {
Value *VStep = createStepForVF(Builder, STy, VF, Part);
if (VF.isVector()) {
VStep = Builder.CreateVectorSplat(VF, VStep);
VStep =
Builder.CreateAdd(VStep, Builder.CreateStepVector(VStep->getType()));
}
Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv");
State.set(this, CanonicalVectorIV, Part);
}
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const {
O << Indent << "EMIT ";
printAsOperand(O, SlotTracker);
O << " = WIDEN-CANONICAL-INDUCTION ";
printOperands(O, SlotTracker);
}
#endif
void VPFirstOrderRecurrencePHIRecipe::execute(VPTransformState &State) {
auto &Builder = State.Builder;
// Create a vector from the initial value.
auto *VectorInit = getStartValue()->getLiveInIRValue();
Type *VecTy = State.VF.isScalar()
? VectorInit->getType()
: VectorType::get(VectorInit->getType(), State.VF);
BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this);
if (State.VF.isVector()) {
auto *IdxTy = Builder.getInt32Ty();
auto *One = ConstantInt::get(IdxTy, 1);
IRBuilder<>::InsertPointGuard Guard(Builder);
Builder.SetInsertPoint(VectorPH->getTerminator());
auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, State.VF);
auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
VectorInit = Builder.CreateInsertElement(
PoisonValue::get(VecTy), VectorInit, LastIdx, "vector.recur.init");
}
// Create a phi node for the new recurrence.
PHINode *EntryPart = PHINode::Create(VecTy, 2, "vector.recur");
EntryPart->insertBefore(State.CFG.PrevBB->getFirstInsertionPt());
EntryPart->addIncoming(VectorInit, VectorPH);
State.set(this, EntryPart, 0);
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPFirstOrderRecurrencePHIRecipe::print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const {
O << Indent << "FIRST-ORDER-RECURRENCE-PHI ";
printAsOperand(O, SlotTracker);
O << " = phi ";
printOperands(O, SlotTracker);
}
#endif
void VPReductionPHIRecipe::execute(VPTransformState &State) {
auto &Builder = State.Builder;
// Reductions do not have to start at zero. They can start with
// any loop invariant values.
VPValue *StartVPV = getStartValue();
Value *StartV = StartVPV->getLiveInIRValue();
// In order to support recurrences we need to be able to vectorize Phi nodes.
// Phi nodes have cycles, so we need to vectorize them in two stages. This is
// stage #1: We create a new vector PHI node with no incoming edges. We'll use
// this value when we vectorize all of the instructions that use the PHI.
bool ScalarPHI = State.VF.isScalar() || IsInLoop;
Type *VecTy = ScalarPHI ? StartV->getType()
: VectorType::get(StartV->getType(), State.VF);
BasicBlock *HeaderBB = State.CFG.PrevBB;
assert(State.CurrentVectorLoop->getHeader() == HeaderBB &&
"recipe must be in the vector loop header");
unsigned LastPartForNewPhi = isOrdered() ? 1 : State.UF;
for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
Instruction *EntryPart = PHINode::Create(VecTy, 2, "vec.phi");
EntryPart->insertBefore(HeaderBB->getFirstInsertionPt());
State.set(this, EntryPart, Part, IsInLoop);
}
BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this);
Value *Iden = nullptr;
RecurKind RK = RdxDesc.getRecurrenceKind();
if (RecurrenceDescriptor::isMinMaxRecurrenceKind(RK) ||
RecurrenceDescriptor::isAnyOfRecurrenceKind(RK)) {
// MinMax and AnyOf reductions have the start value as their identity.
if (ScalarPHI) {
Iden = StartV;
} else {
IRBuilderBase::InsertPointGuard IPBuilder(Builder);
Builder.SetInsertPoint(VectorPH->getTerminator());
StartV = Iden =
Builder.CreateVectorSplat(State.VF, StartV, "minmax.ident");
}
} else {
Iden = RdxDesc.getRecurrenceIdentity(RK, VecTy->getScalarType(),
RdxDesc.getFastMathFlags());
if (!ScalarPHI) {
Iden = Builder.CreateVectorSplat(State.VF, Iden);
IRBuilderBase::InsertPointGuard IPBuilder(Builder);
Builder.SetInsertPoint(VectorPH->getTerminator());
Constant *Zero = Builder.getInt32(0);
StartV = Builder.CreateInsertElement(Iden, StartV, Zero);
}
}
for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
Value *EntryPart = State.get(this, Part, IsInLoop);
// Make sure to add the reduction start value only to the
// first unroll part.
Value *StartVal = (Part == 0) ? StartV : Iden;
cast<PHINode>(EntryPart)->addIncoming(StartVal, VectorPH);
}
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPReductionPHIRecipe::print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const {
O << Indent << "WIDEN-REDUCTION-PHI ";
printAsOperand(O, SlotTracker);
O << " = phi ";
printOperands(O, SlotTracker);
}
#endif
void VPWidenPHIRecipe::execute(VPTransformState &State) {
assert(EnableVPlanNativePath &&
"Non-native vplans are not expected to have VPWidenPHIRecipes.");
Value *Op0 = State.get(getOperand(0), 0);
Type *VecTy = Op0->getType();
Value *VecPhi = State.Builder.CreatePHI(VecTy, 2, "vec.phi");
State.set(this, VecPhi, 0);
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const {
O << Indent << "WIDEN-PHI ";
auto *OriginalPhi = cast<PHINode>(getUnderlyingValue());
// Unless all incoming values are modeled in VPlan print the original PHI
// directly.
// TODO: Remove once all VPWidenPHIRecipe instances keep all relevant incoming
// values as VPValues.
if (getNumOperands() != OriginalPhi->getNumOperands()) {
O << VPlanIngredient(OriginalPhi);
return;
}
printAsOperand(O, SlotTracker);
O << " = phi ";
printOperands(O, SlotTracker);
}
#endif
// TODO: It would be good to use the existing VPWidenPHIRecipe instead and
// remove VPActiveLaneMaskPHIRecipe.
void VPActiveLaneMaskPHIRecipe::execute(VPTransformState &State) {
BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this);
for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) {
Value *StartMask = State.get(getOperand(0), Part);
PHINode *EntryPart =
State.Builder.CreatePHI(StartMask->getType(), 2, "active.lane.mask");
EntryPart->addIncoming(StartMask, VectorPH);
EntryPart->setDebugLoc(getDebugLoc());
State.set(this, EntryPart, Part);
}
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPActiveLaneMaskPHIRecipe::print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const {
O << Indent << "ACTIVE-LANE-MASK-PHI ";
printAsOperand(O, SlotTracker);
O << " = phi ";
printOperands(O, SlotTracker);
}
#endif
void VPEVLBasedIVPHIRecipe::execute(VPTransformState &State) {
BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this);
assert(State.UF == 1 && "Expected unroll factor 1 for VP vectorization.");
Value *Start = State.get(getOperand(0), VPIteration(0, 0));
PHINode *EntryPart =
State.Builder.CreatePHI(Start->getType(), 2, "evl.based.iv");
EntryPart->addIncoming(Start, VectorPH);
EntryPart->setDebugLoc(getDebugLoc());
State.set(this, EntryPart, 0, /*IsScalar=*/true);
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPEVLBasedIVPHIRecipe::print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const {
O << Indent << "EXPLICIT-VECTOR-LENGTH-BASED-IV-PHI ";
printAsOperand(O, SlotTracker);
O << " = phi ";
printOperands(O, SlotTracker);
}
#endif