blob: 7b88ddb7b0e95d10cf4d9ed33fa0bbedbc9ab791 [file] [log] [blame]
//===- AMDKernelCodeTUtils.cpp --------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file - utility functions to parse/print AMDGPUMCKernelCodeT structure
//
//===----------------------------------------------------------------------===//
#include "AMDKernelCodeTUtils.h"
#include "AMDKernelCodeT.h"
#include "SIDefines.h"
#include "Utils/AMDGPUBaseInfo.h"
#include "Utils/SIDefinesUtils.h"
#include "llvm/ADT/IndexedMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCParser/MCAsmLexer.h"
#include "llvm/MC/MCParser/MCAsmParser.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
using namespace llvm::AMDGPU;
// Generates the following for AMDGPUMCKernelCodeT struct members:
// - HasMemberXXXXX class
// A check to see if AMDGPUMCKernelCodeT has a specific member so it can
// determine which of the original amd_kernel_code_t members are duplicated
// (if the names don't match, the table driven strategy won't work).
// - IsMCExprXXXXX class
// Check whether a AMDGPUMCKernelcodeT struct member is MCExpr-ified or not.
// - GetMemberXXXXX class
// A retrieval helper for said member (of type const MCExpr *&). Will return
// a `Phony` const MCExpr * initialized to nullptr to preserve reference
// returns.
#define GEN_HAS_MEMBER(member) \
class HasMember##member { \
private: \
struct KnownWithMember { \
int member; \
}; \
class AmbiguousDerived : public AMDGPUMCKernelCodeT, \
public KnownWithMember {}; \
template <typename U> \
static constexpr std::false_type Test(decltype(U::member) *); \
template <typename U> static constexpr std::true_type Test(...); \
\
public: \
static constexpr bool RESULT = \
std::is_same_v<decltype(Test<AmbiguousDerived>(nullptr)), \
std::true_type>; \
}; \
class IsMCExpr##member { \
template <typename U, \
typename std::enable_if_t< \
HasMember##member::RESULT && \
std::is_same_v<decltype(U::member), const MCExpr *>, \
U> * = nullptr> \
static constexpr std::true_type HasMCExprType(decltype(U::member) *); \
template <typename U> static constexpr std::false_type HasMCExprType(...); \
\
public: \
static constexpr bool RESULT = \
std::is_same_v<decltype(HasMCExprType<AMDGPUMCKernelCodeT>(nullptr)), \
std::true_type>; \
}; \
class GetMember##member { \
public: \
static const MCExpr *Phony; \
template <typename U, typename std::enable_if_t<IsMCExpr##member::RESULT, \
U> * = nullptr> \
static const MCExpr *&Get(U &C) { \
assert(IsMCExpr##member::RESULT && \
"Trying to retrieve member that does not exist."); \
return C.member; \
} \
template <typename U, typename std::enable_if_t<!IsMCExpr##member::RESULT, \
U> * = nullptr> \
static const MCExpr *&Get(U &C) { \
return Phony; \
} \
}; \
const MCExpr *GetMember##member::Phony = nullptr;
// Cannot generate class declarations using the table driver approach (see table
// in AMDKernelCodeTInfo.h). Luckily, if any are missing here or eventually
// added to the table, an error should occur when trying to retrieve the table
// in getMCExprIndexTable.
GEN_HAS_MEMBER(amd_code_version_major)
GEN_HAS_MEMBER(amd_code_version_minor)
GEN_HAS_MEMBER(amd_machine_kind)
GEN_HAS_MEMBER(amd_machine_version_major)
GEN_HAS_MEMBER(amd_machine_version_minor)
GEN_HAS_MEMBER(amd_machine_version_stepping)
GEN_HAS_MEMBER(kernel_code_entry_byte_offset)
GEN_HAS_MEMBER(kernel_code_prefetch_byte_size)
GEN_HAS_MEMBER(granulated_workitem_vgpr_count)
GEN_HAS_MEMBER(granulated_wavefront_sgpr_count)
GEN_HAS_MEMBER(priority)
GEN_HAS_MEMBER(float_mode)
GEN_HAS_MEMBER(priv)
GEN_HAS_MEMBER(enable_dx10_clamp)
GEN_HAS_MEMBER(debug_mode)
GEN_HAS_MEMBER(enable_ieee_mode)
GEN_HAS_MEMBER(enable_wgp_mode)
GEN_HAS_MEMBER(enable_mem_ordered)
GEN_HAS_MEMBER(enable_fwd_progress)
GEN_HAS_MEMBER(enable_sgpr_private_segment_wave_byte_offset)
GEN_HAS_MEMBER(user_sgpr_count)
GEN_HAS_MEMBER(enable_trap_handler)
GEN_HAS_MEMBER(enable_sgpr_workgroup_id_x)
GEN_HAS_MEMBER(enable_sgpr_workgroup_id_y)
GEN_HAS_MEMBER(enable_sgpr_workgroup_id_z)
GEN_HAS_MEMBER(enable_sgpr_workgroup_info)
GEN_HAS_MEMBER(enable_vgpr_workitem_id)
GEN_HAS_MEMBER(enable_exception_msb)
GEN_HAS_MEMBER(granulated_lds_size)
GEN_HAS_MEMBER(enable_exception)
GEN_HAS_MEMBER(enable_sgpr_private_segment_buffer)
GEN_HAS_MEMBER(enable_sgpr_dispatch_ptr)
GEN_HAS_MEMBER(enable_sgpr_queue_ptr)
GEN_HAS_MEMBER(enable_sgpr_kernarg_segment_ptr)
GEN_HAS_MEMBER(enable_sgpr_dispatch_id)
GEN_HAS_MEMBER(enable_sgpr_flat_scratch_init)
GEN_HAS_MEMBER(enable_sgpr_private_segment_size)
GEN_HAS_MEMBER(enable_sgpr_grid_workgroup_count_x)
GEN_HAS_MEMBER(enable_sgpr_grid_workgroup_count_y)
GEN_HAS_MEMBER(enable_sgpr_grid_workgroup_count_z)
GEN_HAS_MEMBER(enable_wavefront_size32)
GEN_HAS_MEMBER(enable_ordered_append_gds)
GEN_HAS_MEMBER(private_element_size)
GEN_HAS_MEMBER(is_ptr64)
GEN_HAS_MEMBER(is_dynamic_callstack)
GEN_HAS_MEMBER(is_debug_enabled)
GEN_HAS_MEMBER(is_xnack_enabled)
GEN_HAS_MEMBER(workitem_private_segment_byte_size)
GEN_HAS_MEMBER(workgroup_group_segment_byte_size)
GEN_HAS_MEMBER(gds_segment_byte_size)
GEN_HAS_MEMBER(kernarg_segment_byte_size)
GEN_HAS_MEMBER(workgroup_fbarrier_count)
GEN_HAS_MEMBER(wavefront_sgpr_count)
GEN_HAS_MEMBER(workitem_vgpr_count)
GEN_HAS_MEMBER(reserved_vgpr_first)
GEN_HAS_MEMBER(reserved_vgpr_count)
GEN_HAS_MEMBER(reserved_sgpr_first)
GEN_HAS_MEMBER(reserved_sgpr_count)
GEN_HAS_MEMBER(debug_wavefront_private_segment_offset_sgpr)
GEN_HAS_MEMBER(debug_private_segment_buffer_sgpr)
GEN_HAS_MEMBER(kernarg_segment_alignment)
GEN_HAS_MEMBER(group_segment_alignment)
GEN_HAS_MEMBER(private_segment_alignment)
GEN_HAS_MEMBER(wavefront_size)
GEN_HAS_MEMBER(call_convention)
GEN_HAS_MEMBER(runtime_loader_kernel_symbol)
static ArrayRef<StringLiteral> get_amd_kernel_code_t_FldNames() {
static constexpr StringLiteral const Table[] = {
"", // not found placeholder
#define RECORD(name, altName, print, parse) #name
#include "Utils/AMDKernelCodeTInfo.h"
#undef RECORD
};
return ArrayRef(Table);
}
static ArrayRef<StringLiteral> get_amd_kernel_code_t_FldAltNames() {
static constexpr StringLiteral const Table[] = {
"", // not found placeholder
#define RECORD(name, altName, print, parse) #altName
#include "Utils/AMDKernelCodeTInfo.h"
#undef RECORD
};
return ArrayRef(Table);
}
static ArrayRef<bool> hasMCExprVersionTable() {
static bool const Table[] = {
#define RECORD(name, altName, print, parse) (IsMCExpr##name::RESULT)
#include "Utils/AMDKernelCodeTInfo.h"
#undef RECORD
};
return ArrayRef(Table);
}
using RetrieveFx = const MCExpr *&(*)(AMDGPUMCKernelCodeT &);
static ArrayRef<RetrieveFx> getMCExprIndexTable() {
static const RetrieveFx Table[] = {
#define RECORD(name, altName, print, parse) GetMember##name::Get
#include "Utils/AMDKernelCodeTInfo.h"
#undef RECORD
};
return ArrayRef(Table);
}
static StringMap<int> createIndexMap(ArrayRef<StringLiteral> names,
ArrayRef<StringLiteral> altNames) {
StringMap<int> map;
assert(names.size() == altNames.size());
for (unsigned i = 0; i < names.size(); ++i) {
map.insert(std::pair(names[i], i));
map.insert(std::pair(altNames[i], i));
}
return map;
}
static int get_amd_kernel_code_t_FieldIndex(StringRef name) {
static const auto map = createIndexMap(get_amd_kernel_code_t_FldNames(),
get_amd_kernel_code_t_FldAltNames());
return map.lookup(name) - 1; // returns -1 if not found
}
class PrintField {
public:
template <typename T, T AMDGPUMCKernelCodeT::*ptr,
typename std::enable_if_t<!std::is_integral_v<T>, T> * = nullptr>
static void printField(StringRef Name, const AMDGPUMCKernelCodeT &C,
raw_ostream &OS, MCContext &Ctx,
AMDGPUMCKernelCodeT::PrintHelper Helper) {
OS << Name << " = ";
const MCExpr *Value = C.*ptr;
Helper(Value, OS, Ctx.getAsmInfo());
}
template <typename T, T AMDGPUMCKernelCodeT::*ptr,
typename std::enable_if_t<std::is_integral_v<T>, T> * = nullptr>
static void printField(StringRef Name, const AMDGPUMCKernelCodeT &C,
raw_ostream &OS, MCContext &,
AMDGPUMCKernelCodeT::PrintHelper) {
OS << Name << " = " << (int)(C.*ptr);
}
};
template <typename T, T AMDGPUMCKernelCodeT::*ptr, int shift, int width = 1>
static void printBitField(StringRef Name, const AMDGPUMCKernelCodeT &C,
raw_ostream &OS, MCContext &,
AMDGPUMCKernelCodeT::PrintHelper) {
const auto Mask = (static_cast<T>(1) << width) - 1;
OS << Name << " = " << (int)((C.*ptr >> shift) & Mask);
}
using PrintFx = void (*)(StringRef, const AMDGPUMCKernelCodeT &, raw_ostream &,
MCContext &, AMDGPUMCKernelCodeT::PrintHelper Helper);
static ArrayRef<PrintFx>
getPrinterTable(AMDGPUMCKernelCodeT::PrintHelper Helper) {
static const PrintFx Table[] = {
#define COMPPGM1(name, aname, AccMacro) \
COMPPGM(name, aname, C_00B848_##AccMacro, S_00B848_##AccMacro, 0)
#define COMPPGM2(name, aname, AccMacro) \
COMPPGM(name, aname, C_00B84C_##AccMacro, S_00B84C_##AccMacro, 32)
#define PRINTFIELD(sname, aname, name) PrintField::printField<FLD_T(name)>
#define PRINTCOMP(Complement, PGMType) \
[](StringRef Name, const AMDGPUMCKernelCodeT &C, raw_ostream &OS, \
MCContext &Ctx, AMDGPUMCKernelCodeT::PrintHelper Helper) { \
OS << Name << " = "; \
auto [Shift, Mask] = getShiftMask(Complement); \
const MCExpr *Value; \
if (PGMType == 0) { \
Value = \
maskShiftGet(C.compute_pgm_resource1_registers, Mask, Shift, Ctx); \
} else { \
Value = \
maskShiftGet(C.compute_pgm_resource2_registers, Mask, Shift, Ctx); \
} \
Helper(Value, OS, Ctx.getAsmInfo()); \
}
#define RECORD(name, altName, print, parse) print
#include "Utils/AMDKernelCodeTInfo.h"
#undef RECORD
};
return ArrayRef(Table);
}
static bool expectAbsExpression(MCAsmParser &MCParser, int64_t &Value,
raw_ostream &Err) {
if (MCParser.getLexer().isNot(AsmToken::Equal)) {
Err << "expected '='";
return false;
}
MCParser.getLexer().Lex();
if (MCParser.parseAbsoluteExpression(Value)) {
Err << "integer absolute expression expected";
return false;
}
return true;
}
template <typename T, T AMDGPUMCKernelCodeT::*ptr>
static bool parseField(AMDGPUMCKernelCodeT &C, MCAsmParser &MCParser,
raw_ostream &Err) {
int64_t Value = 0;
if (!expectAbsExpression(MCParser, Value, Err))
return false;
C.*ptr = (T)Value;
return true;
}
template <typename T, T AMDGPUMCKernelCodeT::*ptr, int shift, int width = 1>
static bool parseBitField(AMDGPUMCKernelCodeT &C, MCAsmParser &MCParser,
raw_ostream &Err) {
int64_t Value = 0;
if (!expectAbsExpression(MCParser, Value, Err))
return false;
const uint64_t Mask = ((UINT64_C(1) << width) - 1) << shift;
C.*ptr &= (T)~Mask;
C.*ptr |= (T)((Value << shift) & Mask);
return true;
}
static bool parseExpr(MCAsmParser &MCParser, const MCExpr *&Value,
raw_ostream &Err) {
if (MCParser.getLexer().isNot(AsmToken::Equal)) {
Err << "expected '='";
return false;
}
MCParser.getLexer().Lex();
if (MCParser.parseExpression(Value)) {
Err << "Could not parse expression";
return false;
}
return true;
}
using ParseFx = bool (*)(AMDGPUMCKernelCodeT &, MCAsmParser &, raw_ostream &);
static ArrayRef<ParseFx> getParserTable() {
static const ParseFx Table[] = {
#define COMPPGM1(name, aname, AccMacro) \
COMPPGM(name, aname, G_00B848_##AccMacro, C_00B848_##AccMacro, 0)
#define COMPPGM2(name, aname, AccMacro) \
COMPPGM(name, aname, G_00B84C_##AccMacro, C_00B84C_##AccMacro, 32)
#define PARSECOMP(Complement, PGMType) \
[](AMDGPUMCKernelCodeT &C, MCAsmParser &MCParser, \
raw_ostream &Err) -> bool { \
MCContext &Ctx = MCParser.getContext(); \
const MCExpr *Value; \
if (!parseExpr(MCParser, Value, Err)) \
return false; \
auto [Shift, Mask] = getShiftMask(Complement); \
Value = maskShiftSet(Value, Mask, Shift, Ctx); \
const MCExpr *Compl = MCConstantExpr::create(Complement, Ctx); \
if (PGMType == 0) { \
C.compute_pgm_resource1_registers = MCBinaryExpr::createAnd( \
C.compute_pgm_resource1_registers, Compl, Ctx); \
C.compute_pgm_resource1_registers = MCBinaryExpr::createOr( \
C.compute_pgm_resource1_registers, Value, Ctx); \
} else { \
C.compute_pgm_resource2_registers = MCBinaryExpr::createAnd( \
C.compute_pgm_resource2_registers, Compl, Ctx); \
C.compute_pgm_resource2_registers = MCBinaryExpr::createOr( \
C.compute_pgm_resource2_registers, Value, Ctx); \
} \
return true; \
}
#define RECORD(name, altName, print, parse) parse
#include "Utils/AMDKernelCodeTInfo.h"
#undef RECORD
};
return ArrayRef(Table);
}
static void printAmdKernelCodeField(const AMDGPUMCKernelCodeT &C, int FldIndex,
raw_ostream &OS, MCContext &Ctx,
AMDGPUMCKernelCodeT::PrintHelper Helper) {
auto Printer = getPrinterTable(Helper)[FldIndex];
if (Printer)
Printer(get_amd_kernel_code_t_FldNames()[FldIndex + 1], C, OS, Ctx, Helper);
}
void AMDGPUMCKernelCodeT::initDefault(const MCSubtargetInfo *STI,
MCContext &Ctx, bool InitMCExpr) {
AMDGPUMCKernelCodeT();
AMDGPU::initDefaultAMDKernelCodeT(*this, STI);
if (InitMCExpr) {
const MCExpr *ZeroExpr = MCConstantExpr::create(0, Ctx);
compute_pgm_resource1_registers =
MCConstantExpr::create(Lo_32(compute_pgm_resource_registers), Ctx);
compute_pgm_resource2_registers =
MCConstantExpr::create(Hi_32(compute_pgm_resource_registers), Ctx);
is_dynamic_callstack = ZeroExpr;
wavefront_sgpr_count = ZeroExpr;
workitem_vgpr_count = ZeroExpr;
workitem_private_segment_byte_size = ZeroExpr;
}
}
void AMDGPUMCKernelCodeT::validate(const MCSubtargetInfo *STI, MCContext &Ctx) {
int64_t Value;
if (!compute_pgm_resource1_registers->evaluateAsAbsolute(Value))
return;
if (G_00B848_DX10_CLAMP(Value) && AMDGPU::isGFX12Plus(*STI)) {
Ctx.reportError({}, "enable_dx10_clamp=1 is not allowed on GFX12+");
return;
}
if (G_00B848_IEEE_MODE(Value) && AMDGPU::isGFX12Plus(*STI)) {
Ctx.reportError({}, "enable_ieee_mode=1 is not allowed on GFX12+");
return;
}
if (G_00B848_WGP_MODE(Value) && !AMDGPU::isGFX10Plus(*STI)) {
Ctx.reportError({}, "enable_wgp_mode=1 is only allowed on GFX10+");
return;
}
if (G_00B848_MEM_ORDERED(Value) && !AMDGPU::isGFX10Plus(*STI)) {
Ctx.reportError({}, "enable_mem_ordered=1 is only allowed on GFX10+");
return;
}
if (G_00B848_FWD_PROGRESS(Value) && !AMDGPU::isGFX10Plus(*STI)) {
Ctx.reportError({}, "enable_fwd_progress=1 is only allowed on GFX10+");
return;
}
}
const MCExpr *&AMDGPUMCKernelCodeT::getMCExprForIndex(int Index) {
static const auto IndexTable = getMCExprIndexTable();
return IndexTable[Index](*this);
}
bool AMDGPUMCKernelCodeT::ParseKernelCodeT(StringRef ID, MCAsmParser &MCParser,
raw_ostream &Err) {
const int Idx = get_amd_kernel_code_t_FieldIndex(ID);
if (Idx < 0) {
Err << "unexpected amd_kernel_code_t field name " << ID;
return false;
}
if (hasMCExprVersionTable()[Idx]) {
const MCExpr *Value;
if (!parseExpr(MCParser, Value, Err))
return false;
getMCExprForIndex(Idx) = Value;
return true;
}
auto Parser = getParserTable()[Idx];
return Parser ? Parser(*this, MCParser, Err) : false;
}
void AMDGPUMCKernelCodeT::EmitKernelCodeT(raw_ostream &OS, MCContext &Ctx,
PrintHelper Helper) {
const int Size = hasMCExprVersionTable().size();
for (int i = 0; i < Size; ++i) {
OS << "\t\t";
if (hasMCExprVersionTable()[i]) {
OS << get_amd_kernel_code_t_FldNames()[i + 1] << " = ";
const MCExpr *Value = getMCExprForIndex(i);
Helper(Value, OS, Ctx.getAsmInfo());
} else {
printAmdKernelCodeField(*this, i, OS, Ctx, Helper);
}
OS << '\n';
}
}
void AMDGPUMCKernelCodeT::EmitKernelCodeT(MCStreamer &OS, MCContext &Ctx) {
OS.emitIntValue(amd_kernel_code_version_major, /*Size=*/4);
OS.emitIntValue(amd_kernel_code_version_minor, /*Size=*/4);
OS.emitIntValue(amd_machine_kind, /*Size=*/2);
OS.emitIntValue(amd_machine_version_major, /*Size=*/2);
OS.emitIntValue(amd_machine_version_minor, /*Size=*/2);
OS.emitIntValue(amd_machine_version_stepping, /*Size=*/2);
OS.emitIntValue(kernel_code_entry_byte_offset, /*Size=*/8);
OS.emitIntValue(kernel_code_prefetch_byte_offset, /*Size=*/8);
OS.emitIntValue(kernel_code_prefetch_byte_size, /*Size=*/8);
OS.emitIntValue(reserved0, /*Size=*/8);
if (compute_pgm_resource1_registers != nullptr)
OS.emitValue(compute_pgm_resource1_registers, /*Size=*/4);
else
OS.emitIntValue(Lo_32(compute_pgm_resource_registers),
/*Size=*/4);
if (compute_pgm_resource2_registers != nullptr)
OS.emitValue(compute_pgm_resource2_registers, /*Size=*/4);
else
OS.emitIntValue(Hi_32(compute_pgm_resource_registers),
/*Size=*/4);
if (is_dynamic_callstack != nullptr) {
const MCExpr *CodeProps = MCConstantExpr::create(code_properties, Ctx);
CodeProps = MCBinaryExpr::createOr(
CodeProps,
maskShiftSet(is_dynamic_callstack,
(1 << AMD_CODE_PROPERTY_IS_DYNAMIC_CALLSTACK_WIDTH) - 1,
AMD_CODE_PROPERTY_IS_DYNAMIC_CALLSTACK_SHIFT, Ctx),
Ctx);
OS.emitValue(CodeProps, /*Size=*/4);
} else
OS.emitIntValue(code_properties, /*Size=*/4);
if (workitem_private_segment_byte_size != nullptr)
OS.emitValue(workitem_private_segment_byte_size, /*Size=*/4);
else
OS.emitIntValue(0, /*Size=*/4);
OS.emitIntValue(workgroup_group_segment_byte_size, /*Size=*/4);
OS.emitIntValue(gds_segment_byte_size, /*Size=*/4);
OS.emitIntValue(kernarg_segment_byte_size, /*Size=*/8);
OS.emitIntValue(workgroup_fbarrier_count, /*Size=*/4);
if (wavefront_sgpr_count != nullptr)
OS.emitValue(wavefront_sgpr_count, /*Size=*/2);
else
OS.emitIntValue(0, /*Size=*/2);
if (workitem_vgpr_count != nullptr)
OS.emitValue(workitem_vgpr_count, /*Size=*/2);
else
OS.emitIntValue(0, /*Size=*/2);
OS.emitIntValue(reserved_vgpr_first, /*Size=*/2);
OS.emitIntValue(reserved_vgpr_count, /*Size=*/2);
OS.emitIntValue(reserved_sgpr_first, /*Size=*/2);
OS.emitIntValue(reserved_sgpr_count, /*Size=*/2);
OS.emitIntValue(debug_wavefront_private_segment_offset_sgpr,
/*Size=*/2);
OS.emitIntValue(debug_private_segment_buffer_sgpr, /*Size=*/2);
OS.emitIntValue(kernarg_segment_alignment, /*Size=*/1);
OS.emitIntValue(group_segment_alignment, /*Size=*/1);
OS.emitIntValue(private_segment_alignment, /*Size=*/1);
OS.emitIntValue(wavefront_size, /*Size=*/1);
OS.emitIntValue(call_convention, /*Size=*/4);
OS.emitBytes(StringRef((const char *)reserved3, /*Size=*/12));
OS.emitIntValue(runtime_loader_kernel_symbol, /*Size=*/8);
OS.emitBytes(StringRef((const char *)control_directives, /*Size=*/16 * 8));
}