| //===- InstrRefBasedImpl.h - Tracking Debug Value MIs ---------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H |
| #define LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H |
| |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/IndexedMap.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/UniqueVector.h" |
| #include "llvm/CodeGen/LexicalScopes.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/IR/DebugInfoMetadata.h" |
| #include <optional> |
| |
| #include "LiveDebugValues.h" |
| |
| class TransferTracker; |
| |
| // Forward dec of unit test class, so that we can peer into the LDV object. |
| class InstrRefLDVTest; |
| |
| namespace LiveDebugValues { |
| |
| class MLocTracker; |
| class DbgOpIDMap; |
| |
| using namespace llvm; |
| |
| using DebugVariableID = unsigned; |
| using VarAndLoc = std::pair<DebugVariable, const DILocation *>; |
| |
| /// Mapping from DebugVariable to/from a unique identifying number. Each |
| /// DebugVariable consists of three pointers, and after a small amount of |
| /// work to identify overlapping fragments of variables we mostly only use |
| /// DebugVariables as identities of variables. It's much more compile-time |
| /// efficient to use an ID number instead, which this class provides. |
| class DebugVariableMap { |
| DenseMap<DebugVariable, unsigned> VarToIdx; |
| SmallVector<VarAndLoc> IdxToVar; |
| |
| public: |
| DebugVariableID getDVID(const DebugVariable &Var) const { |
| auto It = VarToIdx.find(Var); |
| assert(It != VarToIdx.end()); |
| return It->second; |
| } |
| |
| DebugVariableID insertDVID(DebugVariable &Var, const DILocation *Loc) { |
| unsigned Size = VarToIdx.size(); |
| auto ItPair = VarToIdx.insert({Var, Size}); |
| if (ItPair.second) { |
| IdxToVar.push_back({Var, Loc}); |
| return Size; |
| } |
| |
| return ItPair.first->second; |
| } |
| |
| const VarAndLoc &lookupDVID(DebugVariableID ID) const { return IdxToVar[ID]; } |
| |
| void clear() { |
| VarToIdx.clear(); |
| IdxToVar.clear(); |
| } |
| }; |
| |
| /// Handle-class for a particular "location". This value-type uniquely |
| /// symbolises a register or stack location, allowing manipulation of locations |
| /// without concern for where that location is. Practically, this allows us to |
| /// treat the state of the machine at a particular point as an array of values, |
| /// rather than a map of values. |
| class LocIdx { |
| unsigned Location; |
| |
| // Default constructor is private, initializing to an illegal location number. |
| // Use only for "not an entry" elements in IndexedMaps. |
| LocIdx() : Location(UINT_MAX) {} |
| |
| public: |
| #define NUM_LOC_BITS 24 |
| LocIdx(unsigned L) : Location(L) { |
| assert(L < (1 << NUM_LOC_BITS) && "Machine locations must fit in 24 bits"); |
| } |
| |
| static LocIdx MakeIllegalLoc() { return LocIdx(); } |
| static LocIdx MakeTombstoneLoc() { |
| LocIdx L = LocIdx(); |
| --L.Location; |
| return L; |
| } |
| |
| bool isIllegal() const { return Location == UINT_MAX; } |
| |
| uint64_t asU64() const { return Location; } |
| |
| bool operator==(unsigned L) const { return Location == L; } |
| |
| bool operator==(const LocIdx &L) const { return Location == L.Location; } |
| |
| bool operator!=(unsigned L) const { return !(*this == L); } |
| |
| bool operator!=(const LocIdx &L) const { return !(*this == L); } |
| |
| bool operator<(const LocIdx &Other) const { |
| return Location < Other.Location; |
| } |
| }; |
| |
| // The location at which a spilled value resides. It consists of a register and |
| // an offset. |
| struct SpillLoc { |
| unsigned SpillBase; |
| StackOffset SpillOffset; |
| bool operator==(const SpillLoc &Other) const { |
| return std::make_pair(SpillBase, SpillOffset) == |
| std::make_pair(Other.SpillBase, Other.SpillOffset); |
| } |
| bool operator<(const SpillLoc &Other) const { |
| return std::make_tuple(SpillBase, SpillOffset.getFixed(), |
| SpillOffset.getScalable()) < |
| std::make_tuple(Other.SpillBase, Other.SpillOffset.getFixed(), |
| Other.SpillOffset.getScalable()); |
| } |
| }; |
| |
| /// Unique identifier for a value defined by an instruction, as a value type. |
| /// Casts back and forth to a uint64_t. Probably replacable with something less |
| /// bit-constrained. Each value identifies the instruction and machine location |
| /// where the value is defined, although there may be no corresponding machine |
| /// operand for it (ex: regmasks clobbering values). The instructions are |
| /// one-based, and definitions that are PHIs have instruction number zero. |
| /// |
| /// The obvious limits of a 1M block function or 1M instruction blocks are |
| /// problematic; but by that point we should probably have bailed out of |
| /// trying to analyse the function. |
| class ValueIDNum { |
| union { |
| struct { |
| uint64_t BlockNo : 20; /// The block where the def happens. |
| uint64_t InstNo : 20; /// The Instruction where the def happens. |
| /// One based, is distance from start of block. |
| uint64_t LocNo |
| : NUM_LOC_BITS; /// The machine location where the def happens. |
| } s; |
| uint64_t Value; |
| } u; |
| |
| static_assert(sizeof(u) == 8, "Badly packed ValueIDNum?"); |
| |
| public: |
| // Default-initialize to EmptyValue. This is necessary to make IndexedMaps |
| // of values to work. |
| ValueIDNum() { u.Value = EmptyValue.asU64(); } |
| |
| ValueIDNum(uint64_t Block, uint64_t Inst, uint64_t Loc) { |
| u.s = {Block, Inst, Loc}; |
| } |
| |
| ValueIDNum(uint64_t Block, uint64_t Inst, LocIdx Loc) { |
| u.s = {Block, Inst, Loc.asU64()}; |
| } |
| |
| uint64_t getBlock() const { return u.s.BlockNo; } |
| uint64_t getInst() const { return u.s.InstNo; } |
| uint64_t getLoc() const { return u.s.LocNo; } |
| bool isPHI() const { return u.s.InstNo == 0; } |
| |
| uint64_t asU64() const { return u.Value; } |
| |
| static ValueIDNum fromU64(uint64_t v) { |
| ValueIDNum Val; |
| Val.u.Value = v; |
| return Val; |
| } |
| |
| bool operator<(const ValueIDNum &Other) const { |
| return asU64() < Other.asU64(); |
| } |
| |
| bool operator==(const ValueIDNum &Other) const { |
| return u.Value == Other.u.Value; |
| } |
| |
| bool operator!=(const ValueIDNum &Other) const { return !(*this == Other); } |
| |
| std::string asString(const std::string &mlocname) const { |
| return Twine("Value{bb: ") |
| .concat(Twine(u.s.BlockNo) |
| .concat(Twine(", inst: ") |
| .concat((u.s.InstNo ? Twine(u.s.InstNo) |
| : Twine("live-in")) |
| .concat(Twine(", loc: ").concat( |
| Twine(mlocname))) |
| .concat(Twine("}"))))) |
| .str(); |
| } |
| |
| static ValueIDNum EmptyValue; |
| static ValueIDNum TombstoneValue; |
| }; |
| |
| } // End namespace LiveDebugValues |
| |
| namespace llvm { |
| using namespace LiveDebugValues; |
| |
| template <> struct DenseMapInfo<LocIdx> { |
| static inline LocIdx getEmptyKey() { return LocIdx::MakeIllegalLoc(); } |
| static inline LocIdx getTombstoneKey() { return LocIdx::MakeTombstoneLoc(); } |
| |
| static unsigned getHashValue(const LocIdx &Loc) { return Loc.asU64(); } |
| |
| static bool isEqual(const LocIdx &A, const LocIdx &B) { return A == B; } |
| }; |
| |
| template <> struct DenseMapInfo<ValueIDNum> { |
| static inline ValueIDNum getEmptyKey() { return ValueIDNum::EmptyValue; } |
| static inline ValueIDNum getTombstoneKey() { |
| return ValueIDNum::TombstoneValue; |
| } |
| |
| static unsigned getHashValue(const ValueIDNum &Val) { |
| return hash_value(Val.asU64()); |
| } |
| |
| static bool isEqual(const ValueIDNum &A, const ValueIDNum &B) { |
| return A == B; |
| } |
| }; |
| |
| } // end namespace llvm |
| |
| namespace LiveDebugValues { |
| using namespace llvm; |
| |
| /// Type for a table of values in a block. |
| using ValueTable = SmallVector<ValueIDNum, 0>; |
| |
| /// A collection of ValueTables, one per BB in a function, with convenient |
| /// accessor methods. |
| struct FuncValueTable { |
| FuncValueTable(int NumBBs, int NumLocs) { |
| Storage.reserve(NumBBs); |
| for (int i = 0; i != NumBBs; ++i) |
| Storage.push_back( |
| std::make_unique<ValueTable>(NumLocs, ValueIDNum::EmptyValue)); |
| } |
| |
| /// Returns the ValueTable associated with MBB. |
| ValueTable &operator[](const MachineBasicBlock &MBB) const { |
| return (*this)[MBB.getNumber()]; |
| } |
| |
| /// Returns the ValueTable associated with the MachineBasicBlock whose number |
| /// is MBBNum. |
| ValueTable &operator[](int MBBNum) const { |
| auto &TablePtr = Storage[MBBNum]; |
| assert(TablePtr && "Trying to access a deleted table"); |
| return *TablePtr; |
| } |
| |
| /// Returns the ValueTable associated with the entry MachineBasicBlock. |
| ValueTable &tableForEntryMBB() const { return (*this)[0]; } |
| |
| /// Returns true if the ValueTable associated with MBB has not been freed. |
| bool hasTableFor(MachineBasicBlock &MBB) const { |
| return Storage[MBB.getNumber()] != nullptr; |
| } |
| |
| /// Frees the memory of the ValueTable associated with MBB. |
| void ejectTableForBlock(const MachineBasicBlock &MBB) { |
| Storage[MBB.getNumber()].reset(); |
| } |
| |
| private: |
| /// ValueTables are stored as unique_ptrs to allow for deallocation during |
| /// LDV; this was measured to have a significant impact on compiler memory |
| /// usage. |
| SmallVector<std::unique_ptr<ValueTable>, 0> Storage; |
| }; |
| |
| /// Thin wrapper around an integer -- designed to give more type safety to |
| /// spill location numbers. |
| class SpillLocationNo { |
| public: |
| explicit SpillLocationNo(unsigned SpillNo) : SpillNo(SpillNo) {} |
| unsigned SpillNo; |
| unsigned id() const { return SpillNo; } |
| |
| bool operator<(const SpillLocationNo &Other) const { |
| return SpillNo < Other.SpillNo; |
| } |
| |
| bool operator==(const SpillLocationNo &Other) const { |
| return SpillNo == Other.SpillNo; |
| } |
| bool operator!=(const SpillLocationNo &Other) const { |
| return !(*this == Other); |
| } |
| }; |
| |
| /// Meta qualifiers for a value. Pair of whatever expression is used to qualify |
| /// the value, and Boolean of whether or not it's indirect. |
| class DbgValueProperties { |
| public: |
| DbgValueProperties(const DIExpression *DIExpr, bool Indirect, bool IsVariadic) |
| : DIExpr(DIExpr), Indirect(Indirect), IsVariadic(IsVariadic) {} |
| |
| /// Extract properties from an existing DBG_VALUE instruction. |
| DbgValueProperties(const MachineInstr &MI) { |
| assert(MI.isDebugValue()); |
| assert(MI.getDebugExpression()->getNumLocationOperands() == 0 || |
| MI.isDebugValueList() || MI.isUndefDebugValue()); |
| IsVariadic = MI.isDebugValueList(); |
| DIExpr = MI.getDebugExpression(); |
| Indirect = MI.isDebugOffsetImm(); |
| } |
| |
| bool isJoinable(const DbgValueProperties &Other) const { |
| return DIExpression::isEqualExpression(DIExpr, Indirect, Other.DIExpr, |
| Other.Indirect); |
| } |
| |
| bool operator==(const DbgValueProperties &Other) const { |
| return std::tie(DIExpr, Indirect, IsVariadic) == |
| std::tie(Other.DIExpr, Other.Indirect, Other.IsVariadic); |
| } |
| |
| bool operator!=(const DbgValueProperties &Other) const { |
| return !(*this == Other); |
| } |
| |
| unsigned getLocationOpCount() const { |
| return IsVariadic ? DIExpr->getNumLocationOperands() : 1; |
| } |
| |
| const DIExpression *DIExpr; |
| bool Indirect; |
| bool IsVariadic; |
| }; |
| |
| /// TODO: Might pack better if we changed this to a Struct of Arrays, since |
| /// MachineOperand is width 32, making this struct width 33. We could also |
| /// potentially avoid storing the whole MachineOperand (sizeof=32), instead |
| /// choosing to store just the contents portion (sizeof=8) and a Kind enum, |
| /// since we already know it is some type of immediate value. |
| /// Stores a single debug operand, which can either be a MachineOperand for |
| /// directly storing immediate values, or a ValueIDNum representing some value |
| /// computed at some point in the program. IsConst is used as a discriminator. |
| struct DbgOp { |
| union { |
| ValueIDNum ID; |
| MachineOperand MO; |
| }; |
| bool IsConst; |
| |
| DbgOp() : ID(ValueIDNum::EmptyValue), IsConst(false) {} |
| DbgOp(ValueIDNum ID) : ID(ID), IsConst(false) {} |
| DbgOp(MachineOperand MO) : MO(MO), IsConst(true) {} |
| |
| bool isUndef() const { return !IsConst && ID == ValueIDNum::EmptyValue; } |
| |
| #ifndef NDEBUG |
| void dump(const MLocTracker *MTrack) const; |
| #endif |
| }; |
| |
| /// A DbgOp whose ID (if any) has resolved to an actual location, LocIdx. Used |
| /// when working with concrete debug values, i.e. when joining MLocs and VLocs |
| /// in the TransferTracker or emitting DBG_VALUE/DBG_VALUE_LIST instructions in |
| /// the MLocTracker. |
| struct ResolvedDbgOp { |
| union { |
| LocIdx Loc; |
| MachineOperand MO; |
| }; |
| bool IsConst; |
| |
| ResolvedDbgOp(LocIdx Loc) : Loc(Loc), IsConst(false) {} |
| ResolvedDbgOp(MachineOperand MO) : MO(MO), IsConst(true) {} |
| |
| bool operator==(const ResolvedDbgOp &Other) const { |
| if (IsConst != Other.IsConst) |
| return false; |
| if (IsConst) |
| return MO.isIdenticalTo(Other.MO); |
| return Loc == Other.Loc; |
| } |
| |
| #ifndef NDEBUG |
| void dump(const MLocTracker *MTrack) const; |
| #endif |
| }; |
| |
| /// An ID used in the DbgOpIDMap (below) to lookup a stored DbgOp. This is used |
| /// in place of actual DbgOps inside of a DbgValue to reduce its size, as |
| /// DbgValue is very frequently used and passed around, and the actual DbgOp is |
| /// over 8x larger than this class, due to storing a MachineOperand. This ID |
| /// should be equal for all equal DbgOps, and also encodes whether the mapped |
| /// DbgOp is a constant, meaning that for simple equality or const-ness checks |
| /// it is not necessary to lookup this ID. |
| struct DbgOpID { |
| struct IsConstIndexPair { |
| uint32_t IsConst : 1; |
| uint32_t Index : 31; |
| }; |
| |
| union { |
| struct IsConstIndexPair ID; |
| uint32_t RawID; |
| }; |
| |
| DbgOpID() : RawID(UndefID.RawID) { |
| static_assert(sizeof(DbgOpID) == 4, "DbgOpID should fit within 4 bytes."); |
| } |
| DbgOpID(uint32_t RawID) : RawID(RawID) {} |
| DbgOpID(bool IsConst, uint32_t Index) : ID({IsConst, Index}) {} |
| |
| static DbgOpID UndefID; |
| |
| bool operator==(const DbgOpID &Other) const { return RawID == Other.RawID; } |
| bool operator!=(const DbgOpID &Other) const { return !(*this == Other); } |
| |
| uint32_t asU32() const { return RawID; } |
| |
| bool isUndef() const { return *this == UndefID; } |
| bool isConst() const { return ID.IsConst && !isUndef(); } |
| uint32_t getIndex() const { return ID.Index; } |
| |
| #ifndef NDEBUG |
| void dump(const MLocTracker *MTrack, const DbgOpIDMap *OpStore) const; |
| #endif |
| }; |
| |
| /// Class storing the complete set of values that are observed by DbgValues |
| /// within the current function. Allows 2-way lookup, with `find` returning the |
| /// Op for a given ID and `insert` returning the ID for a given Op (creating one |
| /// if none exists). |
| class DbgOpIDMap { |
| |
| SmallVector<ValueIDNum, 0> ValueOps; |
| SmallVector<MachineOperand, 0> ConstOps; |
| |
| DenseMap<ValueIDNum, DbgOpID> ValueOpToID; |
| DenseMap<MachineOperand, DbgOpID> ConstOpToID; |
| |
| public: |
| /// If \p Op does not already exist in this map, it is inserted and the |
| /// corresponding DbgOpID is returned. If Op already exists in this map, then |
| /// no change is made and the existing ID for Op is returned. |
| /// Calling this with the undef DbgOp will always return DbgOpID::UndefID. |
| DbgOpID insert(DbgOp Op) { |
| if (Op.isUndef()) |
| return DbgOpID::UndefID; |
| if (Op.IsConst) |
| return insertConstOp(Op.MO); |
| return insertValueOp(Op.ID); |
| } |
| /// Returns the DbgOp associated with \p ID. Should only be used for IDs |
| /// returned from calling `insert` from this map or DbgOpID::UndefID. |
| DbgOp find(DbgOpID ID) const { |
| if (ID == DbgOpID::UndefID) |
| return DbgOp(); |
| if (ID.isConst()) |
| return DbgOp(ConstOps[ID.getIndex()]); |
| return DbgOp(ValueOps[ID.getIndex()]); |
| } |
| |
| void clear() { |
| ValueOps.clear(); |
| ConstOps.clear(); |
| ValueOpToID.clear(); |
| ConstOpToID.clear(); |
| } |
| |
| private: |
| DbgOpID insertConstOp(MachineOperand &MO) { |
| auto ExistingIt = ConstOpToID.find(MO); |
| if (ExistingIt != ConstOpToID.end()) |
| return ExistingIt->second; |
| DbgOpID ID(true, ConstOps.size()); |
| ConstOpToID.insert(std::make_pair(MO, ID)); |
| ConstOps.push_back(MO); |
| return ID; |
| } |
| DbgOpID insertValueOp(ValueIDNum VID) { |
| auto ExistingIt = ValueOpToID.find(VID); |
| if (ExistingIt != ValueOpToID.end()) |
| return ExistingIt->second; |
| DbgOpID ID(false, ValueOps.size()); |
| ValueOpToID.insert(std::make_pair(VID, ID)); |
| ValueOps.push_back(VID); |
| return ID; |
| } |
| }; |
| |
| // We set the maximum number of operands that we will handle to keep DbgValue |
| // within a reasonable size (64 bytes), as we store and pass a lot of them |
| // around. |
| #define MAX_DBG_OPS 8 |
| |
| /// Class recording the (high level) _value_ of a variable. Identifies the value |
| /// of the variable as a list of ValueIDNums and constant MachineOperands, or as |
| /// an empty list for undef debug values or VPHI values which we have not found |
| /// valid locations for. |
| /// This class also stores meta-information about how the value is qualified. |
| /// Used to reason about variable values when performing the second |
| /// (DebugVariable specific) dataflow analysis. |
| class DbgValue { |
| private: |
| /// If Kind is Def or VPHI, the set of IDs corresponding to the DbgOps that |
| /// are used. VPHIs set every ID to EmptyID when we have not found a valid |
| /// machine-value for every operand, and sets them to the corresponding |
| /// machine-values when we have found all of them. |
| DbgOpID DbgOps[MAX_DBG_OPS]; |
| unsigned OpCount; |
| |
| public: |
| /// For a NoVal or VPHI DbgValue, which block it was generated in. |
| int BlockNo; |
| |
| /// Qualifiers for the ValueIDNum above. |
| DbgValueProperties Properties; |
| |
| typedef enum { |
| Undef, // Represents a DBG_VALUE $noreg in the transfer function only. |
| Def, // This value is defined by some combination of constants, |
| // instructions, or PHI values. |
| VPHI, // Incoming values to BlockNo differ, those values must be joined by |
| // a PHI in this block. |
| NoVal, // Empty DbgValue indicating an unknown value. Used as initializer, |
| // before dominating blocks values are propagated in. |
| } KindT; |
| /// Discriminator for whether this is a constant or an in-program value. |
| KindT Kind; |
| |
| DbgValue(ArrayRef<DbgOpID> DbgOps, const DbgValueProperties &Prop) |
| : OpCount(DbgOps.size()), BlockNo(0), Properties(Prop), Kind(Def) { |
| static_assert(sizeof(DbgValue) <= 64, |
| "DbgValue should fit within 64 bytes."); |
| assert(DbgOps.size() == Prop.getLocationOpCount()); |
| if (DbgOps.size() > MAX_DBG_OPS || |
| any_of(DbgOps, [](DbgOpID ID) { return ID.isUndef(); })) { |
| Kind = Undef; |
| OpCount = 0; |
| #define DEBUG_TYPE "LiveDebugValues" |
| if (DbgOps.size() > MAX_DBG_OPS) { |
| LLVM_DEBUG(dbgs() << "Found DbgValue with more than maximum allowed " |
| "operands.\n"); |
| } |
| #undef DEBUG_TYPE |
| } else { |
| for (unsigned Idx = 0; Idx < DbgOps.size(); ++Idx) |
| this->DbgOps[Idx] = DbgOps[Idx]; |
| } |
| } |
| |
| DbgValue(unsigned BlockNo, const DbgValueProperties &Prop, KindT Kind) |
| : OpCount(0), BlockNo(BlockNo), Properties(Prop), Kind(Kind) { |
| assert(Kind == NoVal || Kind == VPHI); |
| } |
| |
| DbgValue(const DbgValueProperties &Prop, KindT Kind) |
| : OpCount(0), BlockNo(0), Properties(Prop), Kind(Kind) { |
| assert(Kind == Undef && |
| "Empty DbgValue constructor must pass in Undef kind"); |
| } |
| |
| #ifndef NDEBUG |
| void dump(const MLocTracker *MTrack = nullptr, |
| const DbgOpIDMap *OpStore = nullptr) const; |
| #endif |
| |
| bool operator==(const DbgValue &Other) const { |
| if (std::tie(Kind, Properties) != std::tie(Other.Kind, Other.Properties)) |
| return false; |
| else if (Kind == Def && !equal(getDbgOpIDs(), Other.getDbgOpIDs())) |
| return false; |
| else if (Kind == NoVal && BlockNo != Other.BlockNo) |
| return false; |
| else if (Kind == VPHI && BlockNo != Other.BlockNo) |
| return false; |
| else if (Kind == VPHI && !equal(getDbgOpIDs(), Other.getDbgOpIDs())) |
| return false; |
| |
| return true; |
| } |
| |
| bool operator!=(const DbgValue &Other) const { return !(*this == Other); } |
| |
| // Returns an array of all the machine values used to calculate this variable |
| // value, or an empty list for an Undef or unjoined VPHI. |
| ArrayRef<DbgOpID> getDbgOpIDs() const { return {DbgOps, OpCount}; } |
| |
| // Returns either DbgOps[Index] if this DbgValue has Debug Operands, or |
| // the ID for ValueIDNum::EmptyValue otherwise (i.e. if this is an Undef, |
| // NoVal, or an unjoined VPHI). |
| DbgOpID getDbgOpID(unsigned Index) const { |
| if (!OpCount) |
| return DbgOpID::UndefID; |
| assert(Index < OpCount); |
| return DbgOps[Index]; |
| } |
| // Replaces this DbgValue's existing DbgOpIDs (if any) with the contents of |
| // \p NewIDs. The number of DbgOpIDs passed must be equal to the number of |
| // arguments expected by this DbgValue's properties (the return value of |
| // `getLocationOpCount()`). |
| void setDbgOpIDs(ArrayRef<DbgOpID> NewIDs) { |
| // We can go from no ops to some ops, but not from some ops to no ops. |
| assert(NewIDs.size() == getLocationOpCount() && |
| "Incorrect number of Debug Operands for this DbgValue."); |
| OpCount = NewIDs.size(); |
| for (unsigned Idx = 0; Idx < NewIDs.size(); ++Idx) |
| DbgOps[Idx] = NewIDs[Idx]; |
| } |
| |
| // The number of debug operands expected by this DbgValue's expression. |
| // getDbgOpIDs() should return an array of this length, unless this is an |
| // Undef or an unjoined VPHI. |
| unsigned getLocationOpCount() const { |
| return Properties.getLocationOpCount(); |
| } |
| |
| // Returns true if this or Other are unjoined PHIs, which do not have defined |
| // Loc Ops, or if the `n`th Loc Op for this has a different constness to the |
| // `n`th Loc Op for Other. |
| bool hasJoinableLocOps(const DbgValue &Other) const { |
| if (isUnjoinedPHI() || Other.isUnjoinedPHI()) |
| return true; |
| for (unsigned Idx = 0; Idx < getLocationOpCount(); ++Idx) { |
| if (getDbgOpID(Idx).isConst() != Other.getDbgOpID(Idx).isConst()) |
| return false; |
| } |
| return true; |
| } |
| |
| bool isUnjoinedPHI() const { return Kind == VPHI && OpCount == 0; } |
| |
| bool hasIdenticalValidLocOps(const DbgValue &Other) const { |
| if (!OpCount) |
| return false; |
| return equal(getDbgOpIDs(), Other.getDbgOpIDs()); |
| } |
| }; |
| |
| class LocIdxToIndexFunctor { |
| public: |
| using argument_type = LocIdx; |
| unsigned operator()(const LocIdx &L) const { return L.asU64(); } |
| }; |
| |
| /// Tracker for what values are in machine locations. Listens to the Things |
| /// being Done by various instructions, and maintains a table of what machine |
| /// locations have what values (as defined by a ValueIDNum). |
| /// |
| /// There are potentially a much larger number of machine locations on the |
| /// target machine than the actual working-set size of the function. On x86 for |
| /// example, we're extremely unlikely to want to track values through control |
| /// or debug registers. To avoid doing so, MLocTracker has several layers of |
| /// indirection going on, described below, to avoid unnecessarily tracking |
| /// any location. |
| /// |
| /// Here's a sort of diagram of the indexes, read from the bottom up: |
| /// |
| /// Size on stack Offset on stack |
| /// \ / |
| /// Stack Idx (Where in slot is this?) |
| /// / |
| /// / |
| /// Slot Num (%stack.0) / |
| /// FrameIdx => SpillNum / |
| /// \ / |
| /// SpillID (int) Register number (int) |
| /// \ / |
| /// LocationID => LocIdx |
| /// | |
| /// LocIdx => ValueIDNum |
| /// |
| /// The aim here is that the LocIdx => ValueIDNum vector is just an array of |
| /// values in numbered locations, so that later analyses can ignore whether the |
| /// location is a register or otherwise. To map a register / spill location to |
| /// a LocIdx, you have to use the (sparse) LocationID => LocIdx map. And to |
| /// build a LocationID for a stack slot, you need to combine identifiers for |
| /// which stack slot it is and where within that slot is being described. |
| /// |
| /// Register mask operands cause trouble by technically defining every register; |
| /// various hacks are used to avoid tracking registers that are never read and |
| /// only written by regmasks. |
| class MLocTracker { |
| public: |
| MachineFunction &MF; |
| const TargetInstrInfo &TII; |
| const TargetRegisterInfo &TRI; |
| const TargetLowering &TLI; |
| |
| /// IndexedMap type, mapping from LocIdx to ValueIDNum. |
| using LocToValueType = IndexedMap<ValueIDNum, LocIdxToIndexFunctor>; |
| |
| /// Map of LocIdxes to the ValueIDNums that they store. This is tightly |
| /// packed, entries only exist for locations that are being tracked. |
| LocToValueType LocIdxToIDNum; |
| |
| /// "Map" of machine location IDs (i.e., raw register or spill number) to the |
| /// LocIdx key / number for that location. There are always at least as many |
| /// as the number of registers on the target -- if the value in the register |
| /// is not being tracked, then the LocIdx value will be zero. New entries are |
| /// appended if a new spill slot begins being tracked. |
| /// This, and the corresponding reverse map persist for the analysis of the |
| /// whole function, and is necessarying for decoding various vectors of |
| /// values. |
| std::vector<LocIdx> LocIDToLocIdx; |
| |
| /// Inverse map of LocIDToLocIdx. |
| IndexedMap<unsigned, LocIdxToIndexFunctor> LocIdxToLocID; |
| |
| /// When clobbering register masks, we chose to not believe the machine model |
| /// and don't clobber SP. Do the same for SP aliases, and for efficiency, |
| /// keep a set of them here. |
| SmallSet<Register, 8> SPAliases; |
| |
| /// Unique-ification of spill. Used to number them -- their LocID number is |
| /// the index in SpillLocs minus one plus NumRegs. |
| UniqueVector<SpillLoc> SpillLocs; |
| |
| // If we discover a new machine location, assign it an mphi with this |
| // block number. |
| unsigned CurBB = -1; |
| |
| /// Cached local copy of the number of registers the target has. |
| unsigned NumRegs; |
| |
| /// Number of slot indexes the target has -- distinct segments of a stack |
| /// slot that can take on the value of a subregister, when a super-register |
| /// is written to the stack. |
| unsigned NumSlotIdxes; |
| |
| /// Collection of register mask operands that have been observed. Second part |
| /// of pair indicates the instruction that they happened in. Used to |
| /// reconstruct where defs happened if we start tracking a location later |
| /// on. |
| SmallVector<std::pair<const MachineOperand *, unsigned>, 32> Masks; |
| |
| /// Pair for describing a position within a stack slot -- first the size in |
| /// bits, then the offset. |
| typedef std::pair<unsigned short, unsigned short> StackSlotPos; |
| |
| /// Map from a size/offset pair describing a position in a stack slot, to a |
| /// numeric identifier for that position. Allows easier identification of |
| /// individual positions. |
| DenseMap<StackSlotPos, unsigned> StackSlotIdxes; |
| |
| /// Inverse of StackSlotIdxes. |
| DenseMap<unsigned, StackSlotPos> StackIdxesToPos; |
| |
| /// Iterator for locations and the values they contain. Dereferencing |
| /// produces a struct/pair containing the LocIdx key for this location, |
| /// and a reference to the value currently stored. Simplifies the process |
| /// of seeking a particular location. |
| class MLocIterator { |
| LocToValueType &ValueMap; |
| LocIdx Idx; |
| |
| public: |
| class value_type { |
| public: |
| value_type(LocIdx Idx, ValueIDNum &Value) : Idx(Idx), Value(Value) {} |
| const LocIdx Idx; /// Read-only index of this location. |
| ValueIDNum &Value; /// Reference to the stored value at this location. |
| }; |
| |
| MLocIterator(LocToValueType &ValueMap, LocIdx Idx) |
| : ValueMap(ValueMap), Idx(Idx) {} |
| |
| bool operator==(const MLocIterator &Other) const { |
| assert(&ValueMap == &Other.ValueMap); |
| return Idx == Other.Idx; |
| } |
| |
| bool operator!=(const MLocIterator &Other) const { |
| return !(*this == Other); |
| } |
| |
| void operator++() { Idx = LocIdx(Idx.asU64() + 1); } |
| |
| value_type operator*() { return value_type(Idx, ValueMap[LocIdx(Idx)]); } |
| }; |
| |
| MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII, |
| const TargetRegisterInfo &TRI, const TargetLowering &TLI); |
| |
| /// Produce location ID number for a Register. Provides some small amount of |
| /// type safety. |
| /// \param Reg The register we're looking up. |
| unsigned getLocID(Register Reg) { return Reg.id(); } |
| |
| /// Produce location ID number for a spill position. |
| /// \param Spill The number of the spill we're fetching the location for. |
| /// \param SpillSubReg Subregister within the spill we're addressing. |
| unsigned getLocID(SpillLocationNo Spill, unsigned SpillSubReg) { |
| unsigned short Size = TRI.getSubRegIdxSize(SpillSubReg); |
| unsigned short Offs = TRI.getSubRegIdxOffset(SpillSubReg); |
| return getLocID(Spill, {Size, Offs}); |
| } |
| |
| /// Produce location ID number for a spill position. |
| /// \param Spill The number of the spill we're fetching the location for. |
| /// \apram SpillIdx size/offset within the spill slot to be addressed. |
| unsigned getLocID(SpillLocationNo Spill, StackSlotPos Idx) { |
| unsigned SlotNo = Spill.id() - 1; |
| SlotNo *= NumSlotIdxes; |
| assert(StackSlotIdxes.contains(Idx)); |
| SlotNo += StackSlotIdxes[Idx]; |
| SlotNo += NumRegs; |
| return SlotNo; |
| } |
| |
| /// Given a spill number, and a slot within the spill, calculate the ID number |
| /// for that location. |
| unsigned getSpillIDWithIdx(SpillLocationNo Spill, unsigned Idx) { |
| unsigned SlotNo = Spill.id() - 1; |
| SlotNo *= NumSlotIdxes; |
| SlotNo += Idx; |
| SlotNo += NumRegs; |
| return SlotNo; |
| } |
| |
| /// Return the spill number that a location ID corresponds to. |
| SpillLocationNo locIDToSpill(unsigned ID) const { |
| assert(ID >= NumRegs); |
| ID -= NumRegs; |
| // Truncate away the index part, leaving only the spill number. |
| ID /= NumSlotIdxes; |
| return SpillLocationNo(ID + 1); // The UniqueVector is one-based. |
| } |
| |
| /// Returns the spill-slot size/offs that a location ID corresponds to. |
| StackSlotPos locIDToSpillIdx(unsigned ID) const { |
| assert(ID >= NumRegs); |
| ID -= NumRegs; |
| unsigned Idx = ID % NumSlotIdxes; |
| return StackIdxesToPos.find(Idx)->second; |
| } |
| |
| unsigned getNumLocs() const { return LocIdxToIDNum.size(); } |
| |
| /// Reset all locations to contain a PHI value at the designated block. Used |
| /// sometimes for actual PHI values, othertimes to indicate the block entry |
| /// value (before any more information is known). |
| void setMPhis(unsigned NewCurBB) { |
| CurBB = NewCurBB; |
| for (auto Location : locations()) |
| Location.Value = {CurBB, 0, Location.Idx}; |
| } |
| |
| /// Load values for each location from array of ValueIDNums. Take current |
| /// bbnum just in case we read a value from a hitherto untouched register. |
| void loadFromArray(ValueTable &Locs, unsigned NewCurBB) { |
| CurBB = NewCurBB; |
| // Iterate over all tracked locations, and load each locations live-in |
| // value into our local index. |
| for (auto Location : locations()) |
| Location.Value = Locs[Location.Idx.asU64()]; |
| } |
| |
| /// Wipe any un-necessary location records after traversing a block. |
| void reset() { |
| // We could reset all the location values too; however either loadFromArray |
| // or setMPhis should be called before this object is re-used. Just |
| // clear Masks, they're definitely not needed. |
| Masks.clear(); |
| } |
| |
| /// Clear all data. Destroys the LocID <=> LocIdx map, which makes most of |
| /// the information in this pass uninterpretable. |
| void clear() { |
| reset(); |
| LocIDToLocIdx.clear(); |
| LocIdxToLocID.clear(); |
| LocIdxToIDNum.clear(); |
| // SpillLocs.reset(); XXX UniqueVector::reset assumes a SpillLoc casts from |
| // 0 |
| SpillLocs = decltype(SpillLocs)(); |
| StackSlotIdxes.clear(); |
| StackIdxesToPos.clear(); |
| |
| LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc()); |
| } |
| |
| /// Set a locaiton to a certain value. |
| void setMLoc(LocIdx L, ValueIDNum Num) { |
| assert(L.asU64() < LocIdxToIDNum.size()); |
| LocIdxToIDNum[L] = Num; |
| } |
| |
| /// Read the value of a particular location |
| ValueIDNum readMLoc(LocIdx L) { |
| assert(L.asU64() < LocIdxToIDNum.size()); |
| return LocIdxToIDNum[L]; |
| } |
| |
| /// Create a LocIdx for an untracked register ID. Initialize it to either an |
| /// mphi value representing a live-in, or a recent register mask clobber. |
| LocIdx trackRegister(unsigned ID); |
| |
| LocIdx lookupOrTrackRegister(unsigned ID) { |
| LocIdx &Index = LocIDToLocIdx[ID]; |
| if (Index.isIllegal()) |
| Index = trackRegister(ID); |
| return Index; |
| } |
| |
| /// Is register R currently tracked by MLocTracker? |
| bool isRegisterTracked(Register R) { |
| LocIdx &Index = LocIDToLocIdx[R]; |
| return !Index.isIllegal(); |
| } |
| |
| /// Record a definition of the specified register at the given block / inst. |
| /// This doesn't take a ValueIDNum, because the definition and its location |
| /// are synonymous. |
| void defReg(Register R, unsigned BB, unsigned Inst) { |
| unsigned ID = getLocID(R); |
| LocIdx Idx = lookupOrTrackRegister(ID); |
| ValueIDNum ValueID = {BB, Inst, Idx}; |
| LocIdxToIDNum[Idx] = ValueID; |
| } |
| |
| /// Set a register to a value number. To be used if the value number is |
| /// known in advance. |
| void setReg(Register R, ValueIDNum ValueID) { |
| unsigned ID = getLocID(R); |
| LocIdx Idx = lookupOrTrackRegister(ID); |
| LocIdxToIDNum[Idx] = ValueID; |
| } |
| |
| ValueIDNum readReg(Register R) { |
| unsigned ID = getLocID(R); |
| LocIdx Idx = lookupOrTrackRegister(ID); |
| return LocIdxToIDNum[Idx]; |
| } |
| |
| /// Reset a register value to zero / empty. Needed to replicate the |
| /// VarLoc implementation where a copy to/from a register effectively |
| /// clears the contents of the source register. (Values can only have one |
| /// machine location in VarLocBasedImpl). |
| void wipeRegister(Register R) { |
| unsigned ID = getLocID(R); |
| LocIdx Idx = LocIDToLocIdx[ID]; |
| LocIdxToIDNum[Idx] = ValueIDNum::EmptyValue; |
| } |
| |
| /// Determine the LocIdx of an existing register. |
| LocIdx getRegMLoc(Register R) { |
| unsigned ID = getLocID(R); |
| assert(ID < LocIDToLocIdx.size()); |
| assert(LocIDToLocIdx[ID] != UINT_MAX); // Sentinel for IndexedMap. |
| return LocIDToLocIdx[ID]; |
| } |
| |
| /// Record a RegMask operand being executed. Defs any register we currently |
| /// track, stores a pointer to the mask in case we have to account for it |
| /// later. |
| void writeRegMask(const MachineOperand *MO, unsigned CurBB, unsigned InstID); |
| |
| /// Find LocIdx for SpillLoc \p L, creating a new one if it's not tracked. |
| /// Returns std::nullopt when in scenarios where a spill slot could be |
| /// tracked, but we would likely run into resource limitations. |
| std::optional<SpillLocationNo> getOrTrackSpillLoc(SpillLoc L); |
| |
| // Get LocIdx of a spill ID. |
| LocIdx getSpillMLoc(unsigned SpillID) { |
| assert(LocIDToLocIdx[SpillID] != UINT_MAX); // Sentinel for IndexedMap. |
| return LocIDToLocIdx[SpillID]; |
| } |
| |
| /// Return true if Idx is a spill machine location. |
| bool isSpill(LocIdx Idx) const { return LocIdxToLocID[Idx] >= NumRegs; } |
| |
| /// How large is this location (aka, how wide is a value defined there?). |
| unsigned getLocSizeInBits(LocIdx L) const { |
| unsigned ID = LocIdxToLocID[L]; |
| if (!isSpill(L)) { |
| return TRI.getRegSizeInBits(Register(ID), MF.getRegInfo()); |
| } else { |
| // The slot location on the stack is uninteresting, we care about the |
| // position of the value within the slot (which comes with a size). |
| StackSlotPos Pos = locIDToSpillIdx(ID); |
| return Pos.first; |
| } |
| } |
| |
| MLocIterator begin() { return MLocIterator(LocIdxToIDNum, 0); } |
| |
| MLocIterator end() { |
| return MLocIterator(LocIdxToIDNum, LocIdxToIDNum.size()); |
| } |
| |
| /// Return a range over all locations currently tracked. |
| iterator_range<MLocIterator> locations() { |
| return llvm::make_range(begin(), end()); |
| } |
| |
| std::string LocIdxToName(LocIdx Idx) const; |
| |
| std::string IDAsString(const ValueIDNum &Num) const; |
| |
| #ifndef NDEBUG |
| LLVM_DUMP_METHOD void dump(); |
| |
| LLVM_DUMP_METHOD void dump_mloc_map(); |
| #endif |
| |
| /// Create a DBG_VALUE based on debug operands \p DbgOps. Qualify it with the |
| /// information in \pProperties, for variable Var. Don't insert it anywhere, |
| /// just return the builder for it. |
| MachineInstrBuilder emitLoc(const SmallVectorImpl<ResolvedDbgOp> &DbgOps, |
| const DebugVariable &Var, const DILocation *DILoc, |
| const DbgValueProperties &Properties); |
| }; |
| |
| /// Types for recording sets of variable fragments that overlap. For a given |
| /// local variable, we record all other fragments of that variable that could |
| /// overlap it, to reduce search time. |
| using FragmentOfVar = |
| std::pair<const DILocalVariable *, DIExpression::FragmentInfo>; |
| using OverlapMap = |
| DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>; |
| |
| /// Collection of DBG_VALUEs observed when traversing a block. Records each |
| /// variable and the value the DBG_VALUE refers to. Requires the machine value |
| /// location dataflow algorithm to have run already, so that values can be |
| /// identified. |
| class VLocTracker { |
| public: |
| /// Ref to function-wide map of DebugVariable <=> ID-numbers. |
| DebugVariableMap &DVMap; |
| /// Map DebugVariable to the latest Value it's defined to have. |
| /// Needs to be a MapVector because we determine order-in-the-input-MIR from |
| /// the order in this container. (FIXME: likely no longer true as the ordering |
| /// is now provided by DebugVariableMap). |
| /// We only retain the last DbgValue in each block for each variable, to |
| /// determine the blocks live-out variable value. The Vars container forms the |
| /// transfer function for this block, as part of the dataflow analysis. The |
| /// movement of values between locations inside of a block is handled at a |
| /// much later stage, in the TransferTracker class. |
| MapVector<DebugVariableID, DbgValue> Vars; |
| SmallDenseMap<DebugVariableID, const DILocation *, 8> Scopes; |
| MachineBasicBlock *MBB = nullptr; |
| const OverlapMap &OverlappingFragments; |
| DbgValueProperties EmptyProperties; |
| |
| public: |
| VLocTracker(DebugVariableMap &DVMap, const OverlapMap &O, |
| const DIExpression *EmptyExpr) |
| : DVMap(DVMap), OverlappingFragments(O), |
| EmptyProperties(EmptyExpr, false, false) {} |
| |
| void defVar(const MachineInstr &MI, const DbgValueProperties &Properties, |
| const SmallVectorImpl<DbgOpID> &DebugOps) { |
| assert(MI.isDebugValueLike()); |
| DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), |
| MI.getDebugLoc()->getInlinedAt()); |
| // Either insert or fetch an ID number for this variable. |
| DebugVariableID VarID = DVMap.insertDVID(Var, MI.getDebugLoc().get()); |
| DbgValue Rec = (DebugOps.size() > 0) |
| ? DbgValue(DebugOps, Properties) |
| : DbgValue(Properties, DbgValue::Undef); |
| |
| // Attempt insertion; overwrite if it's already mapped. |
| auto Result = Vars.insert(std::make_pair(VarID, Rec)); |
| if (!Result.second) |
| Result.first->second = Rec; |
| Scopes[VarID] = MI.getDebugLoc().get(); |
| |
| considerOverlaps(Var, MI.getDebugLoc().get()); |
| } |
| |
| void considerOverlaps(const DebugVariable &Var, const DILocation *Loc) { |
| auto Overlaps = OverlappingFragments.find( |
| {Var.getVariable(), Var.getFragmentOrDefault()}); |
| if (Overlaps == OverlappingFragments.end()) |
| return; |
| |
| // Otherwise: terminate any overlapped variable locations. |
| for (auto FragmentInfo : Overlaps->second) { |
| // The "empty" fragment is stored as DebugVariable::DefaultFragment, so |
| // that it overlaps with everything, however its cannonical representation |
| // in a DebugVariable is as "None". |
| std::optional<DIExpression::FragmentInfo> OptFragmentInfo = FragmentInfo; |
| if (DebugVariable::isDefaultFragment(FragmentInfo)) |
| OptFragmentInfo = std::nullopt; |
| |
| DebugVariable Overlapped(Var.getVariable(), OptFragmentInfo, |
| Var.getInlinedAt()); |
| // Produce an ID number for this overlapping fragment of a variable. |
| DebugVariableID OverlappedID = DVMap.insertDVID(Overlapped, Loc); |
| DbgValue Rec = DbgValue(EmptyProperties, DbgValue::Undef); |
| |
| // Attempt insertion; overwrite if it's already mapped. |
| auto Result = Vars.insert(std::make_pair(OverlappedID, Rec)); |
| if (!Result.second) |
| Result.first->second = Rec; |
| Scopes[OverlappedID] = Loc; |
| } |
| } |
| |
| void clear() { |
| Vars.clear(); |
| Scopes.clear(); |
| } |
| }; |
| |
| // XXX XXX docs |
| class InstrRefBasedLDV : public LDVImpl { |
| public: |
| friend class ::InstrRefLDVTest; |
| |
| using FragmentInfo = DIExpression::FragmentInfo; |
| using OptFragmentInfo = std::optional<DIExpression::FragmentInfo>; |
| |
| // Helper while building OverlapMap, a map of all fragments seen for a given |
| // DILocalVariable. |
| using VarToFragments = |
| DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>; |
| |
| /// Machine location/value transfer function, a mapping of which locations |
| /// are assigned which new values. |
| using MLocTransferMap = SmallDenseMap<LocIdx, ValueIDNum>; |
| |
| /// Live in/out structure for the variable values: a per-block map of |
| /// variables to their values. |
| using LiveIdxT = DenseMap<const MachineBasicBlock *, DbgValue *>; |
| |
| using VarAndLoc = std::pair<DebugVariableID, DbgValue>; |
| |
| /// Type for a live-in value: the predecessor block, and its value. |
| using InValueT = std::pair<MachineBasicBlock *, DbgValue *>; |
| |
| /// Vector (per block) of a collection (inner smallvector) of live-ins. |
| /// Used as the result type for the variable value dataflow problem. |
| using LiveInsT = SmallVector<SmallVector<VarAndLoc, 8>, 8>; |
| |
| /// Mapping from lexical scopes to a DILocation in that scope. |
| using ScopeToDILocT = DenseMap<const LexicalScope *, const DILocation *>; |
| |
| /// Mapping from lexical scopes to variables in that scope. |
| using ScopeToVarsT = |
| DenseMap<const LexicalScope *, SmallSet<DebugVariableID, 4>>; |
| |
| /// Mapping from lexical scopes to blocks where variables in that scope are |
| /// assigned. Such blocks aren't necessarily "in" the lexical scope, it's |
| /// just a block where an assignment happens. |
| using ScopeToAssignBlocksT = DenseMap<const LexicalScope *, SmallPtrSet<MachineBasicBlock *, 4>>; |
| |
| private: |
| MachineDominatorTree *DomTree; |
| const TargetRegisterInfo *TRI; |
| const MachineRegisterInfo *MRI; |
| const TargetInstrInfo *TII; |
| const TargetFrameLowering *TFI; |
| const MachineFrameInfo *MFI; |
| BitVector CalleeSavedRegs; |
| LexicalScopes LS; |
| TargetPassConfig *TPC; |
| |
| // An empty DIExpression. Used default / placeholder DbgValueProperties |
| // objects, as we can't have null expressions. |
| const DIExpression *EmptyExpr; |
| |
| /// Object to track machine locations as we step through a block. Could |
| /// probably be a field rather than a pointer, as it's always used. |
| MLocTracker *MTracker = nullptr; |
| |
| /// Number of the current block LiveDebugValues is stepping through. |
| unsigned CurBB = -1; |
| |
| /// Number of the current instruction LiveDebugValues is evaluating. |
| unsigned CurInst; |
| |
| /// Variable tracker -- listens to DBG_VALUEs occurring as InstrRefBasedImpl |
| /// steps through a block. Reads the values at each location from the |
| /// MLocTracker object. |
| VLocTracker *VTracker = nullptr; |
| |
| /// Tracker for transfers, listens to DBG_VALUEs and transfers of values |
| /// between locations during stepping, creates new DBG_VALUEs when values move |
| /// location. |
| TransferTracker *TTracker = nullptr; |
| |
| /// Blocks which are artificial, i.e. blocks which exclusively contain |
| /// instructions without DebugLocs, or with line 0 locations. |
| SmallPtrSet<MachineBasicBlock *, 16> ArtificialBlocks; |
| |
| // Mapping of blocks to and from their RPOT order. |
| SmallVector<MachineBasicBlock *> OrderToBB; |
| DenseMap<const MachineBasicBlock *, unsigned int> BBToOrder; |
| DenseMap<unsigned, unsigned> BBNumToRPO; |
| |
| /// Pair of MachineInstr, and its 1-based offset into the containing block. |
| using InstAndNum = std::pair<const MachineInstr *, unsigned>; |
| /// Map from debug instruction number to the MachineInstr labelled with that |
| /// number, and its location within the function. Used to transform |
| /// instruction numbers in DBG_INSTR_REFs into machine value numbers. |
| std::map<uint64_t, InstAndNum> DebugInstrNumToInstr; |
| |
| /// Record of where we observed a DBG_PHI instruction. |
| class DebugPHIRecord { |
| public: |
| /// Instruction number of this DBG_PHI. |
| uint64_t InstrNum; |
| /// Block where DBG_PHI occurred. |
| MachineBasicBlock *MBB; |
| /// The value number read by the DBG_PHI -- or std::nullopt if it didn't |
| /// refer to a value. |
| std::optional<ValueIDNum> ValueRead; |
| /// Register/Stack location the DBG_PHI reads -- or std::nullopt if it |
| /// referred to something unexpected. |
| std::optional<LocIdx> ReadLoc; |
| |
| operator unsigned() const { return InstrNum; } |
| }; |
| |
| /// Map from instruction numbers defined by DBG_PHIs to a record of what that |
| /// DBG_PHI read and where. Populated and edited during the machine value |
| /// location problem -- we use LLVMs SSA Updater to fix changes by |
| /// optimizations that destroy PHI instructions. |
| SmallVector<DebugPHIRecord, 32> DebugPHINumToValue; |
| |
| // Map of overlapping variable fragments. |
| OverlapMap OverlapFragments; |
| VarToFragments SeenFragments; |
| |
| /// Mapping of DBG_INSTR_REF instructions to their values, for those |
| /// DBG_INSTR_REFs that call resolveDbgPHIs. These variable references solve |
| /// a mini SSA problem caused by DBG_PHIs being cloned, this collection caches |
| /// the result. |
| DenseMap<std::pair<MachineInstr *, unsigned>, std::optional<ValueIDNum>> |
| SeenDbgPHIs; |
| |
| DbgOpIDMap DbgOpStore; |
| |
| /// Mapping between DebugVariables and unique ID numbers. This is a more |
| /// efficient way to represent the identity of a variable, versus a plain |
| /// DebugVariable. |
| DebugVariableMap DVMap; |
| |
| /// True if we need to examine call instructions for stack clobbers. We |
| /// normally assume that they don't clobber SP, but stack probes on Windows |
| /// do. |
| bool AdjustsStackInCalls = false; |
| |
| /// If AdjustsStackInCalls is true, this holds the name of the target's stack |
| /// probe function, which is the function we expect will alter the stack |
| /// pointer. |
| StringRef StackProbeSymbolName; |
| |
| /// Tests whether this instruction is a spill to a stack slot. |
| std::optional<SpillLocationNo> isSpillInstruction(const MachineInstr &MI, |
| MachineFunction *MF); |
| |
| /// Decide if @MI is a spill instruction and return true if it is. We use 2 |
| /// criteria to make this decision: |
| /// - Is this instruction a store to a spill slot? |
| /// - Is there a register operand that is both used and killed? |
| /// TODO: Store optimization can fold spills into other stores (including |
| /// other spills). We do not handle this yet (more than one memory operand). |
| bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF, |
| unsigned &Reg); |
| |
| /// If a given instruction is identified as a spill, return the spill slot |
| /// and set \p Reg to the spilled register. |
| std::optional<SpillLocationNo> isRestoreInstruction(const MachineInstr &MI, |
| MachineFunction *MF, |
| unsigned &Reg); |
| |
| /// Given a spill instruction, extract the spill slot information, ensure it's |
| /// tracked, and return the spill number. |
| std::optional<SpillLocationNo> |
| extractSpillBaseRegAndOffset(const MachineInstr &MI); |
| |
| /// For an instruction reference given by \p InstNo and \p OpNo in instruction |
| /// \p MI returns the Value pointed to by that instruction reference if any |
| /// exists, otherwise returns std::nullopt. |
| std::optional<ValueIDNum> getValueForInstrRef(unsigned InstNo, unsigned OpNo, |
| MachineInstr &MI, |
| const FuncValueTable *MLiveOuts, |
| const FuncValueTable *MLiveIns); |
| |
| /// Observe a single instruction while stepping through a block. |
| void process(MachineInstr &MI, const FuncValueTable *MLiveOuts, |
| const FuncValueTable *MLiveIns); |
| |
| /// Examines whether \p MI is a DBG_VALUE and notifies trackers. |
| /// \returns true if MI was recognized and processed. |
| bool transferDebugValue(const MachineInstr &MI); |
| |
| /// Examines whether \p MI is a DBG_INSTR_REF and notifies trackers. |
| /// \returns true if MI was recognized and processed. |
| bool transferDebugInstrRef(MachineInstr &MI, const FuncValueTable *MLiveOuts, |
| const FuncValueTable *MLiveIns); |
| |
| /// Stores value-information about where this PHI occurred, and what |
| /// instruction number is associated with it. |
| /// \returns true if MI was recognized and processed. |
| bool transferDebugPHI(MachineInstr &MI); |
| |
| /// Examines whether \p MI is copy instruction, and notifies trackers. |
| /// \returns true if MI was recognized and processed. |
| bool transferRegisterCopy(MachineInstr &MI); |
| |
| /// Examines whether \p MI is stack spill or restore instruction, and |
| /// notifies trackers. \returns true if MI was recognized and processed. |
| bool transferSpillOrRestoreInst(MachineInstr &MI); |
| |
| /// Examines \p MI for any registers that it defines, and notifies trackers. |
| void transferRegisterDef(MachineInstr &MI); |
| |
| /// Copy one location to the other, accounting for movement of subregisters |
| /// too. |
| void performCopy(Register Src, Register Dst); |
| |
| void accumulateFragmentMap(MachineInstr &MI); |
| |
| /// Determine the machine value number referred to by (potentially several) |
| /// DBG_PHI instructions. Block duplication and tail folding can duplicate |
| /// DBG_PHIs, shifting the position where values in registers merge, and |
| /// forming another mini-ssa problem to solve. |
| /// \p Here the position of a DBG_INSTR_REF seeking a machine value number |
| /// \p InstrNum Debug instruction number defined by DBG_PHI instructions. |
| /// \returns The machine value number at position Here, or std::nullopt. |
| std::optional<ValueIDNum> resolveDbgPHIs(MachineFunction &MF, |
| const FuncValueTable &MLiveOuts, |
| const FuncValueTable &MLiveIns, |
| MachineInstr &Here, |
| uint64_t InstrNum); |
| |
| std::optional<ValueIDNum> resolveDbgPHIsImpl(MachineFunction &MF, |
| const FuncValueTable &MLiveOuts, |
| const FuncValueTable &MLiveIns, |
| MachineInstr &Here, |
| uint64_t InstrNum); |
| |
| /// Step through the function, recording register definitions and movements |
| /// in an MLocTracker. Convert the observations into a per-block transfer |
| /// function in \p MLocTransfer, suitable for using with the machine value |
| /// location dataflow problem. |
| void |
| produceMLocTransferFunction(MachineFunction &MF, |
| SmallVectorImpl<MLocTransferMap> &MLocTransfer, |
| unsigned MaxNumBlocks); |
| |
| /// Solve the machine value location dataflow problem. Takes as input the |
| /// transfer functions in \p MLocTransfer. Writes the output live-in and |
| /// live-out arrays to the (initialized to zero) multidimensional arrays in |
| /// \p MInLocs and \p MOutLocs. The outer dimension is indexed by block |
| /// number, the inner by LocIdx. |
| void buildMLocValueMap(MachineFunction &MF, FuncValueTable &MInLocs, |
| FuncValueTable &MOutLocs, |
| SmallVectorImpl<MLocTransferMap> &MLocTransfer); |
| |
| /// Examine the stack indexes (i.e. offsets within the stack) to find the |
| /// basic units of interference -- like reg units, but for the stack. |
| void findStackIndexInterference(SmallVectorImpl<unsigned> &Slots); |
| |
| /// Install PHI values into the live-in array for each block, according to |
| /// the IDF of each register. |
| void placeMLocPHIs(MachineFunction &MF, |
| SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks, |
| FuncValueTable &MInLocs, |
| SmallVectorImpl<MLocTransferMap> &MLocTransfer); |
| |
| /// Propagate variable values to blocks in the common case where there's |
| /// only one value assigned to the variable. This function has better |
| /// performance as it doesn't have to find the dominance frontier between |
| /// different assignments. |
| void placePHIsForSingleVarDefinition( |
| const SmallPtrSetImpl<MachineBasicBlock *> &InScopeBlocks, |
| MachineBasicBlock *MBB, SmallVectorImpl<VLocTracker> &AllTheVLocs, |
| DebugVariableID Var, LiveInsT &Output); |
| |
| /// Calculate the iterated-dominance-frontier for a set of defs, using the |
| /// existing LLVM facilities for this. Works for a single "value" or |
| /// machine/variable location. |
| /// \p AllBlocks Set of blocks where we might consume the value. |
| /// \p DefBlocks Set of blocks where the value/location is defined. |
| /// \p PHIBlocks Output set of blocks where PHIs must be placed. |
| void BlockPHIPlacement(const SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks, |
| const SmallPtrSetImpl<MachineBasicBlock *> &DefBlocks, |
| SmallVectorImpl<MachineBasicBlock *> &PHIBlocks); |
| |
| /// Perform a control flow join (lattice value meet) of the values in machine |
| /// locations at \p MBB. Follows the algorithm described in the file-comment, |
| /// reading live-outs of predecessors from \p OutLocs, the current live ins |
| /// from \p InLocs, and assigning the newly computed live ins back into |
| /// \p InLocs. \returns two bools -- the first indicates whether a change |
| /// was made, the second whether a lattice downgrade occurred. If the latter |
| /// is true, revisiting this block is necessary. |
| bool mlocJoin(MachineBasicBlock &MBB, |
| SmallPtrSet<const MachineBasicBlock *, 16> &Visited, |
| FuncValueTable &OutLocs, ValueTable &InLocs); |
| |
| /// Produce a set of blocks that are in the current lexical scope. This means |
| /// those blocks that contain instructions "in" the scope, blocks where |
| /// assignments to variables in scope occur, and artificial blocks that are |
| /// successors to any of the earlier blocks. See https://llvm.org/PR48091 for |
| /// more commentry on what "in scope" means. |
| /// \p DILoc A location in the scope that we're fetching blocks for. |
| /// \p Output Set to put in-scope-blocks into. |
| /// \p AssignBlocks Blocks known to contain assignments of variables in scope. |
| void |
| getBlocksForScope(const DILocation *DILoc, |
| SmallPtrSetImpl<const MachineBasicBlock *> &Output, |
| const SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks); |
| |
| /// Solve the variable value dataflow problem, for a single lexical scope. |
| /// Uses the algorithm from the file comment to resolve control flow joins |
| /// using PHI placement and value propagation. Reads the locations of machine |
| /// values from the \p MInLocs and \p MOutLocs arrays (see buildMLocValueMap) |
| /// and reads the variable values transfer function from \p AllTheVlocs. |
| /// Live-in and Live-out variable values are stored locally, with the live-ins |
| /// permanently stored to \p Output once a fixedpoint is reached. |
| /// \p VarsWeCareAbout contains a collection of the variables in \p Scope |
| /// that we should be tracking. |
| /// \p AssignBlocks contains the set of blocks that aren't in \p DILoc's |
| /// scope, but which do contain DBG_VALUEs, which VarLocBasedImpl tracks |
| /// locations through. |
| void buildVLocValueMap(const DILocation *DILoc, |
| const SmallSet<DebugVariableID, 4> &VarsWeCareAbout, |
| SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, |
| LiveInsT &Output, FuncValueTable &MOutLocs, |
| FuncValueTable &MInLocs, |
| SmallVectorImpl<VLocTracker> &AllTheVLocs); |
| |
| /// Attempt to eliminate un-necessary PHIs on entry to a block. Examines the |
| /// live-in values coming from predecessors live-outs, and replaces any PHIs |
| /// already present in this blocks live-ins with a live-through value if the |
| /// PHI isn't needed. |
| /// \p LiveIn Old live-in value, overwritten with new one if live-in changes. |
| /// \returns true if any live-ins change value, either from value propagation |
| /// or PHI elimination. |
| bool vlocJoin(MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs, |
| SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore, |
| DbgValue &LiveIn); |
| |
| /// For the given block and live-outs feeding into it, try to find |
| /// machine locations for each debug operand where all the values feeding |
| /// into that operand join together. |
| /// \returns true if a joined location was found for every value that needed |
| /// to be joined. |
| bool |
| pickVPHILoc(SmallVectorImpl<DbgOpID> &OutValues, const MachineBasicBlock &MBB, |
| const LiveIdxT &LiveOuts, FuncValueTable &MOutLocs, |
| const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders); |
| |
| std::optional<ValueIDNum> pickOperandPHILoc( |
| unsigned DbgOpIdx, const MachineBasicBlock &MBB, const LiveIdxT &LiveOuts, |
| FuncValueTable &MOutLocs, |
| const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders); |
| |
| /// Take collections of DBG_VALUE instructions stored in TTracker, and |
| /// install them into their output blocks. |
| bool emitTransfers(); |
| |
| /// Boilerplate computation of some initial sets, artifical blocks and |
| /// RPOT block ordering. |
| void initialSetup(MachineFunction &MF); |
| |
| /// Produce a map of the last lexical scope that uses a block, using the |
| /// scopes DFSOut number. Mapping is block-number to DFSOut. |
| /// \p EjectionMap Pre-allocated vector in which to install the built ma. |
| /// \p ScopeToDILocation Mapping of LexicalScopes to their DILocations. |
| /// \p AssignBlocks Map of blocks where assignments happen for a scope. |
| void makeDepthFirstEjectionMap(SmallVectorImpl<unsigned> &EjectionMap, |
| const ScopeToDILocT &ScopeToDILocation, |
| ScopeToAssignBlocksT &AssignBlocks); |
| |
| /// When determining per-block variable values and emitting to DBG_VALUEs, |
| /// this function explores by lexical scope depth. Doing so means that per |
| /// block information can be fully computed before exploration finishes, |
| /// allowing us to emit it and free data structures earlier than otherwise. |
| /// It's also good for locality. |
| bool depthFirstVLocAndEmit(unsigned MaxNumBlocks, |
| const ScopeToDILocT &ScopeToDILocation, |
| const ScopeToVarsT &ScopeToVars, |
| ScopeToAssignBlocksT &ScopeToBlocks, |
| LiveInsT &Output, FuncValueTable &MOutLocs, |
| FuncValueTable &MInLocs, |
| SmallVectorImpl<VLocTracker> &AllTheVLocs, |
| MachineFunction &MF, const TargetPassConfig &TPC); |
| |
| bool ExtendRanges(MachineFunction &MF, MachineDominatorTree *DomTree, |
| TargetPassConfig *TPC, unsigned InputBBLimit, |
| unsigned InputDbgValLimit) override; |
| |
| public: |
| /// Default construct and initialize the pass. |
| InstrRefBasedLDV(); |
| |
| LLVM_DUMP_METHOD |
| void dump_mloc_transfer(const MLocTransferMap &mloc_transfer) const; |
| |
| bool isCalleeSaved(LocIdx L) const; |
| bool isCalleeSavedReg(Register R) const; |
| |
| bool hasFoldedStackStore(const MachineInstr &MI) { |
| // Instruction must have a memory operand that's a stack slot, and isn't |
| // aliased, meaning it's a spill from regalloc instead of a variable. |
| // If it's aliased, we can't guarantee its value. |
| if (!MI.hasOneMemOperand()) |
| return false; |
| auto *MemOperand = *MI.memoperands_begin(); |
| return MemOperand->isStore() && |
| MemOperand->getPseudoValue() && |
| MemOperand->getPseudoValue()->kind() == PseudoSourceValue::FixedStack |
| && !MemOperand->getPseudoValue()->isAliased(MFI); |
| } |
| |
| std::optional<LocIdx> findLocationForMemOperand(const MachineInstr &MI); |
| |
| // Utility for unit testing, don't use directly. |
| DebugVariableMap &getDVMap() { |
| return DVMap; |
| } |
| }; |
| |
| } // namespace LiveDebugValues |
| |
| #endif /* LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H */ |