| //===- VarLocBasedImpl.cpp - Tracking Debug Value MIs with VarLoc class----===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| /// |
| /// \file VarLocBasedImpl.cpp |
| /// |
| /// LiveDebugValues is an optimistic "available expressions" dataflow |
| /// algorithm. The set of expressions is the set of machine locations |
| /// (registers, spill slots, constants, and target indices) that a variable |
| /// fragment might be located, qualified by a DIExpression and indirect-ness |
| /// flag, while each variable is identified by a DebugVariable object. The |
| /// availability of an expression begins when a DBG_VALUE instruction specifies |
| /// the location of a DebugVariable, and continues until that location is |
| /// clobbered or re-specified by a different DBG_VALUE for the same |
| /// DebugVariable. |
| /// |
| /// The output of LiveDebugValues is additional DBG_VALUE instructions, |
| /// placed to extend variable locations as far they're available. This file |
| /// and the VarLocBasedLDV class is an implementation that explicitly tracks |
| /// locations, using the VarLoc class. |
| /// |
| /// The canonical "available expressions" problem doesn't have expression |
| /// clobbering, instead when a variable is re-assigned, any expressions using |
| /// that variable get invalidated. LiveDebugValues can map onto "available |
| /// expressions" by having every register represented by a variable, which is |
| /// used in an expression that becomes available at a DBG_VALUE instruction. |
| /// When the register is clobbered, its variable is effectively reassigned, and |
| /// expressions computed from it become unavailable. A similar construct is |
| /// needed when a DebugVariable has its location re-specified, to invalidate |
| /// all other locations for that DebugVariable. |
| /// |
| /// Using the dataflow analysis to compute the available expressions, we create |
| /// a DBG_VALUE at the beginning of each block where the expression is |
| /// live-in. This propagates variable locations into every basic block where |
| /// the location can be determined, rather than only having DBG_VALUEs in blocks |
| /// where locations are specified due to an assignment or some optimization. |
| /// Movements of values between registers and spill slots are annotated with |
| /// DBG_VALUEs too to track variable values bewteen locations. All this allows |
| /// DbgEntityHistoryCalculator to focus on only the locations within individual |
| /// blocks, facilitating testing and improving modularity. |
| /// |
| /// We follow an optimisic dataflow approach, with this lattice: |
| /// |
| /// \verbatim |
| /// ┬ "Unknown" |
| /// | |
| /// v |
| /// True |
| /// | |
| /// v |
| /// ⊥ False |
| /// \endverbatim With "True" signifying that the expression is available (and |
| /// thus a DebugVariable's location is the corresponding register), while |
| /// "False" signifies that the expression is unavailable. "Unknown"s never |
| /// survive to the end of the analysis (see below). |
| /// |
| /// Formally, all DebugVariable locations that are live-out of a block are |
| /// initialized to \top. A blocks live-in values take the meet of the lattice |
| /// value for every predecessors live-outs, except for the entry block, where |
| /// all live-ins are \bot. The usual dataflow propagation occurs: the transfer |
| /// function for a block assigns an expression for a DebugVariable to be "True" |
| /// if a DBG_VALUE in the block specifies it; "False" if the location is |
| /// clobbered; or the live-in value if it is unaffected by the block. We |
| /// visit each block in reverse post order until a fixedpoint is reached. The |
| /// solution produced is maximal. |
| /// |
| /// Intuitively, we start by assuming that every expression / variable location |
| /// is at least "True", and then propagate "False" from the entry block and any |
| /// clobbers until there are no more changes to make. This gives us an accurate |
| /// solution because all incorrect locations will have a "False" propagated into |
| /// them. It also gives us a solution that copes well with loops by assuming |
| /// that variable locations are live-through every loop, and then removing those |
| /// that are not through dataflow. |
| /// |
| /// Within LiveDebugValues: each variable location is represented by a |
| /// VarLoc object that identifies the source variable, the set of |
| /// machine-locations that currently describe it (a single location for |
| /// DBG_VALUE or multiple for DBG_VALUE_LIST), and the DBG_VALUE inst that |
| /// specifies the location. Each VarLoc is indexed in the (function-scope) \p |
| /// VarLocMap, giving each VarLoc a set of unique indexes, each of which |
| /// corresponds to one of the VarLoc's machine-locations and can be used to |
| /// lookup the VarLoc in the VarLocMap. Rather than operate directly on machine |
| /// locations, the dataflow analysis in this pass identifies locations by their |
| /// indices in the VarLocMap, meaning all the variable locations in a block can |
| /// be described by a sparse vector of VarLocMap indices. |
| /// |
| /// All the storage for the dataflow analysis is local to the ExtendRanges |
| /// method and passed down to helper methods. "OutLocs" and "InLocs" record the |
| /// in and out lattice values for each block. "OpenRanges" maintains a list of |
| /// variable locations and, with the "process" method, evaluates the transfer |
| /// function of each block. "flushPendingLocs" installs debug value instructions |
| /// for each live-in location at the start of blocks, while "Transfers" records |
| /// transfers of values between machine-locations. |
| /// |
| /// We avoid explicitly representing the "Unknown" (\top) lattice value in the |
| /// implementation. Instead, unvisited blocks implicitly have all lattice |
| /// values set as "Unknown". After being visited, there will be path back to |
| /// the entry block where the lattice value is "False", and as the transfer |
| /// function cannot make new "Unknown" locations, there are no scenarios where |
| /// a block can have an "Unknown" location after being visited. Similarly, we |
| /// don't enumerate all possible variable locations before exploring the |
| /// function: when a new location is discovered, all blocks previously explored |
| /// were implicitly "False" but unrecorded, and become explicitly "False" when |
| /// a new VarLoc is created with its bit not set in predecessor InLocs or |
| /// OutLocs. |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| #include "LiveDebugValues.h" |
| |
| #include "llvm/ADT/CoalescingBitVector.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/PostOrderIterator.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/BinaryFormat/Dwarf.h" |
| #include "llvm/CodeGen/LexicalScopes.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/PseudoSourceValue.h" |
| #include "llvm/CodeGen/TargetFrameLowering.h" |
| #include "llvm/CodeGen/TargetInstrInfo.h" |
| #include "llvm/CodeGen/TargetLowering.h" |
| #include "llvm/CodeGen/TargetPassConfig.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/Config/llvm-config.h" |
| #include "llvm/IR/DebugInfoMetadata.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/MC/MCRegisterInfo.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/TypeSize.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| #include <functional> |
| #include <map> |
| #include <optional> |
| #include <queue> |
| #include <tuple> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "livedebugvalues" |
| |
| STATISTIC(NumInserted, "Number of DBG_VALUE instructions inserted"); |
| |
| /// If \p Op is a stack or frame register return true, otherwise return false. |
| /// This is used to avoid basing the debug entry values on the registers, since |
| /// we do not support it at the moment. |
| static bool isRegOtherThanSPAndFP(const MachineOperand &Op, |
| const MachineInstr &MI, |
| const TargetRegisterInfo *TRI) { |
| if (!Op.isReg()) |
| return false; |
| |
| const MachineFunction *MF = MI.getParent()->getParent(); |
| const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); |
| Register SP = TLI->getStackPointerRegisterToSaveRestore(); |
| Register FP = TRI->getFrameRegister(*MF); |
| Register Reg = Op.getReg(); |
| |
| return Reg && Reg != SP && Reg != FP; |
| } |
| |
| namespace { |
| |
| // Max out the number of statically allocated elements in DefinedRegsSet, as |
| // this prevents fallback to std::set::count() operations. |
| using DefinedRegsSet = SmallSet<Register, 32>; |
| |
| // The IDs in this set correspond to MachineLocs in VarLocs, as well as VarLocs |
| // that represent Entry Values; every VarLoc in the set will also appear |
| // exactly once at Location=0. |
| // As a result, each VarLoc may appear more than once in this "set", but each |
| // range corresponding to a Reg, SpillLoc, or EntryValue type will still be a |
| // "true" set (i.e. each VarLoc may appear only once), and the range Location=0 |
| // is the set of all VarLocs. |
| using VarLocSet = CoalescingBitVector<uint64_t>; |
| |
| /// A type-checked pair of {Register Location (or 0), Index}, used to index |
| /// into a \ref VarLocMap. This can be efficiently converted to a 64-bit int |
| /// for insertion into a \ref VarLocSet, and efficiently converted back. The |
| /// type-checker helps ensure that the conversions aren't lossy. |
| /// |
| /// Why encode a location /into/ the VarLocMap index? This makes it possible |
| /// to find the open VarLocs killed by a register def very quickly. This is a |
| /// performance-critical operation for LiveDebugValues. |
| struct LocIndex { |
| using u32_location_t = uint32_t; |
| using u32_index_t = uint32_t; |
| |
| u32_location_t Location; // Physical registers live in the range [1;2^30) (see |
| // \ref MCRegister), so we have plenty of range left |
| // here to encode non-register locations. |
| u32_index_t Index; |
| |
| /// The location that has an entry for every VarLoc in the map. |
| static constexpr u32_location_t kUniversalLocation = 0; |
| |
| /// The first location that is reserved for VarLocs with locations of kind |
| /// RegisterKind. |
| static constexpr u32_location_t kFirstRegLocation = 1; |
| |
| /// The first location greater than 0 that is not reserved for VarLocs with |
| /// locations of kind RegisterKind. |
| static constexpr u32_location_t kFirstInvalidRegLocation = 1 << 30; |
| |
| /// A special location reserved for VarLocs with locations of kind |
| /// SpillLocKind. |
| static constexpr u32_location_t kSpillLocation = kFirstInvalidRegLocation; |
| |
| /// A special location reserved for VarLocs of kind EntryValueBackupKind and |
| /// EntryValueCopyBackupKind. |
| static constexpr u32_location_t kEntryValueBackupLocation = |
| kFirstInvalidRegLocation + 1; |
| |
| /// A special location reserved for VarLocs with locations of kind |
| /// WasmLocKind. |
| /// TODO Placing all Wasm target index locations in this single kWasmLocation |
| /// may cause slowdown in compilation time in very large functions. Consider |
| /// giving a each target index/offset pair its own u32_location_t if this |
| /// becomes a problem. |
| static constexpr u32_location_t kWasmLocation = kFirstInvalidRegLocation + 2; |
| |
| LocIndex(u32_location_t Location, u32_index_t Index) |
| : Location(Location), Index(Index) {} |
| |
| uint64_t getAsRawInteger() const { |
| return (static_cast<uint64_t>(Location) << 32) | Index; |
| } |
| |
| template<typename IntT> static LocIndex fromRawInteger(IntT ID) { |
| static_assert(std::is_unsigned_v<IntT> && sizeof(ID) == sizeof(uint64_t), |
| "Cannot convert raw integer to LocIndex"); |
| return {static_cast<u32_location_t>(ID >> 32), |
| static_cast<u32_index_t>(ID)}; |
| } |
| |
| /// Get the start of the interval reserved for VarLocs of kind RegisterKind |
| /// which reside in \p Reg. The end is at rawIndexForReg(Reg+1)-1. |
| static uint64_t rawIndexForReg(Register Reg) { |
| return LocIndex(Reg, 0).getAsRawInteger(); |
| } |
| |
| /// Return a range covering all set indices in the interval reserved for |
| /// \p Location in \p Set. |
| static auto indexRangeForLocation(const VarLocSet &Set, |
| u32_location_t Location) { |
| uint64_t Start = LocIndex(Location, 0).getAsRawInteger(); |
| uint64_t End = LocIndex(Location + 1, 0).getAsRawInteger(); |
| return Set.half_open_range(Start, End); |
| } |
| }; |
| |
| // Simple Set for storing all the VarLoc Indices at a Location bucket. |
| using VarLocsInRange = SmallSet<LocIndex::u32_index_t, 32>; |
| // Vector of all `LocIndex`s for a given VarLoc; the same Location should not |
| // appear in any two of these, as each VarLoc appears at most once in any |
| // Location bucket. |
| using LocIndices = SmallVector<LocIndex, 2>; |
| |
| class VarLocBasedLDV : public LDVImpl { |
| private: |
| const TargetRegisterInfo *TRI; |
| const TargetInstrInfo *TII; |
| const TargetFrameLowering *TFI; |
| TargetPassConfig *TPC; |
| BitVector CalleeSavedRegs; |
| LexicalScopes LS; |
| VarLocSet::Allocator Alloc; |
| |
| const MachineInstr *LastNonDbgMI; |
| |
| enum struct TransferKind { TransferCopy, TransferSpill, TransferRestore }; |
| |
| using FragmentInfo = DIExpression::FragmentInfo; |
| using OptFragmentInfo = std::optional<DIExpression::FragmentInfo>; |
| |
| /// A pair of debug variable and value location. |
| struct VarLoc { |
| // The location at which a spilled variable resides. It consists of a |
| // register and an offset. |
| struct SpillLoc { |
| unsigned SpillBase; |
| StackOffset SpillOffset; |
| bool operator==(const SpillLoc &Other) const { |
| return SpillBase == Other.SpillBase && SpillOffset == Other.SpillOffset; |
| } |
| bool operator!=(const SpillLoc &Other) const { |
| return !(*this == Other); |
| } |
| }; |
| |
| // Target indices used for wasm-specific locations. |
| struct WasmLoc { |
| // One of TargetIndex values defined in WebAssembly.h. We deal with |
| // local-related TargetIndex in this analysis (TI_LOCAL and |
| // TI_LOCAL_INDIRECT). Stack operands (TI_OPERAND_STACK) will be handled |
| // separately WebAssemblyDebugFixup pass, and we don't associate debug |
| // info with values in global operands (TI_GLOBAL_RELOC) at the moment. |
| int Index; |
| int64_t Offset; |
| bool operator==(const WasmLoc &Other) const { |
| return Index == Other.Index && Offset == Other.Offset; |
| } |
| bool operator!=(const WasmLoc &Other) const { return !(*this == Other); } |
| }; |
| |
| /// Identity of the variable at this location. |
| const DebugVariable Var; |
| |
| /// The expression applied to this location. |
| const DIExpression *Expr; |
| |
| /// DBG_VALUE to clone var/expr information from if this location |
| /// is moved. |
| const MachineInstr &MI; |
| |
| enum class MachineLocKind { |
| InvalidKind = 0, |
| RegisterKind, |
| SpillLocKind, |
| ImmediateKind, |
| WasmLocKind |
| }; |
| |
| enum class EntryValueLocKind { |
| NonEntryValueKind = 0, |
| EntryValueKind, |
| EntryValueBackupKind, |
| EntryValueCopyBackupKind |
| } EVKind = EntryValueLocKind::NonEntryValueKind; |
| |
| /// The value location. Stored separately to avoid repeatedly |
| /// extracting it from MI. |
| union MachineLocValue { |
| uint64_t RegNo; |
| SpillLoc SpillLocation; |
| uint64_t Hash; |
| int64_t Immediate; |
| const ConstantFP *FPImm; |
| const ConstantInt *CImm; |
| WasmLoc WasmLocation; |
| MachineLocValue() : Hash(0) {} |
| }; |
| |
| /// A single machine location; its Kind is either a register, spill |
| /// location, or immediate value. |
| /// If the VarLoc is not a NonEntryValueKind, then it will use only a |
| /// single MachineLoc of RegisterKind. |
| struct MachineLoc { |
| MachineLocKind Kind; |
| MachineLocValue Value; |
| bool operator==(const MachineLoc &Other) const { |
| if (Kind != Other.Kind) |
| return false; |
| switch (Kind) { |
| case MachineLocKind::SpillLocKind: |
| return Value.SpillLocation == Other.Value.SpillLocation; |
| case MachineLocKind::WasmLocKind: |
| return Value.WasmLocation == Other.Value.WasmLocation; |
| case MachineLocKind::RegisterKind: |
| case MachineLocKind::ImmediateKind: |
| return Value.Hash == Other.Value.Hash; |
| default: |
| llvm_unreachable("Invalid kind"); |
| } |
| } |
| bool operator<(const MachineLoc &Other) const { |
| switch (Kind) { |
| case MachineLocKind::SpillLocKind: |
| return std::make_tuple( |
| Kind, Value.SpillLocation.SpillBase, |
| Value.SpillLocation.SpillOffset.getFixed(), |
| Value.SpillLocation.SpillOffset.getScalable()) < |
| std::make_tuple( |
| Other.Kind, Other.Value.SpillLocation.SpillBase, |
| Other.Value.SpillLocation.SpillOffset.getFixed(), |
| Other.Value.SpillLocation.SpillOffset.getScalable()); |
| case MachineLocKind::WasmLocKind: |
| return std::make_tuple(Kind, Value.WasmLocation.Index, |
| Value.WasmLocation.Offset) < |
| std::make_tuple(Other.Kind, Other.Value.WasmLocation.Index, |
| Other.Value.WasmLocation.Offset); |
| case MachineLocKind::RegisterKind: |
| case MachineLocKind::ImmediateKind: |
| return std::tie(Kind, Value.Hash) < |
| std::tie(Other.Kind, Other.Value.Hash); |
| default: |
| llvm_unreachable("Invalid kind"); |
| } |
| } |
| }; |
| |
| /// The set of machine locations used to determine the variable's value, in |
| /// conjunction with Expr. Initially populated with MI's debug operands, |
| /// but may be transformed independently afterwards. |
| SmallVector<MachineLoc, 8> Locs; |
| /// Used to map the index of each location in Locs back to the index of its |
| /// original debug operand in MI. Used when multiple location operands are |
| /// coalesced and the original MI's operands need to be accessed while |
| /// emitting a debug value. |
| SmallVector<unsigned, 8> OrigLocMap; |
| |
| VarLoc(const MachineInstr &MI) |
| : Var(MI.getDebugVariable(), MI.getDebugExpression(), |
| MI.getDebugLoc()->getInlinedAt()), |
| Expr(MI.getDebugExpression()), MI(MI) { |
| assert(MI.isDebugValue() && "not a DBG_VALUE"); |
| assert((MI.isDebugValueList() || MI.getNumOperands() == 4) && |
| "malformed DBG_VALUE"); |
| for (const MachineOperand &Op : MI.debug_operands()) { |
| MachineLoc ML = GetLocForOp(Op); |
| auto It = find(Locs, ML); |
| if (It == Locs.end()) { |
| Locs.push_back(ML); |
| OrigLocMap.push_back(MI.getDebugOperandIndex(&Op)); |
| } else { |
| // ML duplicates an element in Locs; replace references to Op |
| // with references to the duplicating element. |
| unsigned OpIdx = Locs.size(); |
| unsigned DuplicatingIdx = std::distance(Locs.begin(), It); |
| Expr = DIExpression::replaceArg(Expr, OpIdx, DuplicatingIdx); |
| } |
| } |
| |
| // We create the debug entry values from the factory functions rather |
| // than from this ctor. |
| assert(EVKind != EntryValueLocKind::EntryValueKind && |
| !isEntryBackupLoc()); |
| } |
| |
| static MachineLoc GetLocForOp(const MachineOperand &Op) { |
| MachineLocKind Kind; |
| MachineLocValue Loc; |
| if (Op.isReg()) { |
| Kind = MachineLocKind::RegisterKind; |
| Loc.RegNo = Op.getReg(); |
| } else if (Op.isImm()) { |
| Kind = MachineLocKind::ImmediateKind; |
| Loc.Immediate = Op.getImm(); |
| } else if (Op.isFPImm()) { |
| Kind = MachineLocKind::ImmediateKind; |
| Loc.FPImm = Op.getFPImm(); |
| } else if (Op.isCImm()) { |
| Kind = MachineLocKind::ImmediateKind; |
| Loc.CImm = Op.getCImm(); |
| } else if (Op.isTargetIndex()) { |
| Kind = MachineLocKind::WasmLocKind; |
| Loc.WasmLocation = {Op.getIndex(), Op.getOffset()}; |
| } else |
| llvm_unreachable("Invalid Op kind for MachineLoc."); |
| return {Kind, Loc}; |
| } |
| |
| /// Take the variable and machine-location in DBG_VALUE MI, and build an |
| /// entry location using the given expression. |
| static VarLoc CreateEntryLoc(const MachineInstr &MI, |
| const DIExpression *EntryExpr, Register Reg) { |
| VarLoc VL(MI); |
| assert(VL.Locs.size() == 1 && |
| VL.Locs[0].Kind == MachineLocKind::RegisterKind); |
| VL.EVKind = EntryValueLocKind::EntryValueKind; |
| VL.Expr = EntryExpr; |
| VL.Locs[0].Value.RegNo = Reg; |
| return VL; |
| } |
| |
| /// Take the variable and machine-location from the DBG_VALUE (from the |
| /// function entry), and build an entry value backup location. The backup |
| /// location will turn into the normal location if the backup is valid at |
| /// the time of the primary location clobbering. |
| static VarLoc CreateEntryBackupLoc(const MachineInstr &MI, |
| const DIExpression *EntryExpr) { |
| VarLoc VL(MI); |
| assert(VL.Locs.size() == 1 && |
| VL.Locs[0].Kind == MachineLocKind::RegisterKind); |
| VL.EVKind = EntryValueLocKind::EntryValueBackupKind; |
| VL.Expr = EntryExpr; |
| return VL; |
| } |
| |
| /// Take the variable and machine-location from the DBG_VALUE (from the |
| /// function entry), and build a copy of an entry value backup location by |
| /// setting the register location to NewReg. |
| static VarLoc CreateEntryCopyBackupLoc(const MachineInstr &MI, |
| const DIExpression *EntryExpr, |
| Register NewReg) { |
| VarLoc VL(MI); |
| assert(VL.Locs.size() == 1 && |
| VL.Locs[0].Kind == MachineLocKind::RegisterKind); |
| VL.EVKind = EntryValueLocKind::EntryValueCopyBackupKind; |
| VL.Expr = EntryExpr; |
| VL.Locs[0].Value.RegNo = NewReg; |
| return VL; |
| } |
| |
| /// Copy the register location in DBG_VALUE MI, updating the register to |
| /// be NewReg. |
| static VarLoc CreateCopyLoc(const VarLoc &OldVL, const MachineLoc &OldML, |
| Register NewReg) { |
| VarLoc VL = OldVL; |
| for (MachineLoc &ML : VL.Locs) |
| if (ML == OldML) { |
| ML.Kind = MachineLocKind::RegisterKind; |
| ML.Value.RegNo = NewReg; |
| return VL; |
| } |
| llvm_unreachable("Should have found OldML in new VarLoc."); |
| } |
| |
| /// Take the variable described by DBG_VALUE* MI, and create a VarLoc |
| /// locating it in the specified spill location. |
| static VarLoc CreateSpillLoc(const VarLoc &OldVL, const MachineLoc &OldML, |
| unsigned SpillBase, StackOffset SpillOffset) { |
| VarLoc VL = OldVL; |
| for (MachineLoc &ML : VL.Locs) |
| if (ML == OldML) { |
| ML.Kind = MachineLocKind::SpillLocKind; |
| ML.Value.SpillLocation = {SpillBase, SpillOffset}; |
| return VL; |
| } |
| llvm_unreachable("Should have found OldML in new VarLoc."); |
| } |
| |
| /// Create a DBG_VALUE representing this VarLoc in the given function. |
| /// Copies variable-specific information such as DILocalVariable and |
| /// inlining information from the original DBG_VALUE instruction, which may |
| /// have been several transfers ago. |
| MachineInstr *BuildDbgValue(MachineFunction &MF) const { |
| assert(!isEntryBackupLoc() && |
| "Tried to produce DBG_VALUE for backup VarLoc"); |
| const DebugLoc &DbgLoc = MI.getDebugLoc(); |
| bool Indirect = MI.isIndirectDebugValue(); |
| const auto &IID = MI.getDesc(); |
| const DILocalVariable *Var = MI.getDebugVariable(); |
| NumInserted++; |
| |
| const DIExpression *DIExpr = Expr; |
| SmallVector<MachineOperand, 8> MOs; |
| for (unsigned I = 0, E = Locs.size(); I < E; ++I) { |
| MachineLocKind LocKind = Locs[I].Kind; |
| MachineLocValue Loc = Locs[I].Value; |
| const MachineOperand &Orig = MI.getDebugOperand(OrigLocMap[I]); |
| switch (LocKind) { |
| case MachineLocKind::RegisterKind: |
| // An entry value is a register location -- but with an updated |
| // expression. The register location of such DBG_VALUE is always the |
| // one from the entry DBG_VALUE, it does not matter if the entry value |
| // was copied in to another register due to some optimizations. |
| // Non-entry value register locations are like the source |
| // DBG_VALUE, but with the register number from this VarLoc. |
| MOs.push_back(MachineOperand::CreateReg( |
| EVKind == EntryValueLocKind::EntryValueKind ? Orig.getReg() |
| : Register(Loc.RegNo), |
| false)); |
| break; |
| case MachineLocKind::SpillLocKind: { |
| // Spills are indirect DBG_VALUEs, with a base register and offset. |
| // Use the original DBG_VALUEs expression to build the spilt location |
| // on top of. FIXME: spill locations created before this pass runs |
| // are not recognized, and not handled here. |
| unsigned Base = Loc.SpillLocation.SpillBase; |
| auto *TRI = MF.getSubtarget().getRegisterInfo(); |
| if (MI.isNonListDebugValue()) { |
| auto Deref = Indirect ? DIExpression::DerefAfter : 0; |
| DIExpr = TRI->prependOffsetExpression( |
| DIExpr, DIExpression::ApplyOffset | Deref, |
| Loc.SpillLocation.SpillOffset); |
| Indirect = true; |
| } else { |
| SmallVector<uint64_t, 4> Ops; |
| TRI->getOffsetOpcodes(Loc.SpillLocation.SpillOffset, Ops); |
| Ops.push_back(dwarf::DW_OP_deref); |
| DIExpr = DIExpression::appendOpsToArg(DIExpr, Ops, I); |
| } |
| MOs.push_back(MachineOperand::CreateReg(Base, false)); |
| break; |
| } |
| case MachineLocKind::ImmediateKind: { |
| MOs.push_back(Orig); |
| break; |
| } |
| case MachineLocKind::WasmLocKind: { |
| MOs.push_back(Orig); |
| break; |
| } |
| case MachineLocKind::InvalidKind: |
| llvm_unreachable("Tried to produce DBG_VALUE for invalid VarLoc"); |
| } |
| } |
| return BuildMI(MF, DbgLoc, IID, Indirect, MOs, Var, DIExpr); |
| } |
| |
| /// Is the Loc field a constant or constant object? |
| bool isConstant(MachineLocKind Kind) const { |
| return Kind == MachineLocKind::ImmediateKind; |
| } |
| |
| /// Check if the Loc field is an entry backup location. |
| bool isEntryBackupLoc() const { |
| return EVKind == EntryValueLocKind::EntryValueBackupKind || |
| EVKind == EntryValueLocKind::EntryValueCopyBackupKind; |
| } |
| |
| /// If this variable is described by register \p Reg holding the entry |
| /// value, return true. |
| bool isEntryValueBackupReg(Register Reg) const { |
| return EVKind == EntryValueLocKind::EntryValueBackupKind && usesReg(Reg); |
| } |
| |
| /// If this variable is described by register \p Reg holding a copy of the |
| /// entry value, return true. |
| bool isEntryValueCopyBackupReg(Register Reg) const { |
| return EVKind == EntryValueLocKind::EntryValueCopyBackupKind && |
| usesReg(Reg); |
| } |
| |
| /// If this variable is described in whole or part by \p Reg, return true. |
| bool usesReg(Register Reg) const { |
| MachineLoc RegML; |
| RegML.Kind = MachineLocKind::RegisterKind; |
| RegML.Value.RegNo = Reg; |
| return is_contained(Locs, RegML); |
| } |
| |
| /// If this variable is described in whole or part by \p Reg, return true. |
| unsigned getRegIdx(Register Reg) const { |
| for (unsigned Idx = 0; Idx < Locs.size(); ++Idx) |
| if (Locs[Idx].Kind == MachineLocKind::RegisterKind && |
| Register{static_cast<unsigned>(Locs[Idx].Value.RegNo)} == Reg) |
| return Idx; |
| llvm_unreachable("Could not find given Reg in Locs"); |
| } |
| |
| /// If this variable is described in whole or part by 1 or more registers, |
| /// add each of them to \p Regs and return true. |
| bool getDescribingRegs(SmallVectorImpl<uint32_t> &Regs) const { |
| bool AnyRegs = false; |
| for (const auto &Loc : Locs) |
| if (Loc.Kind == MachineLocKind::RegisterKind) { |
| Regs.push_back(Loc.Value.RegNo); |
| AnyRegs = true; |
| } |
| return AnyRegs; |
| } |
| |
| bool containsSpillLocs() const { |
| return any_of(Locs, [](VarLoc::MachineLoc ML) { |
| return ML.Kind == VarLoc::MachineLocKind::SpillLocKind; |
| }); |
| } |
| |
| /// If this variable is described in whole or part by \p SpillLocation, |
| /// return true. |
| bool usesSpillLoc(SpillLoc SpillLocation) const { |
| MachineLoc SpillML; |
| SpillML.Kind = MachineLocKind::SpillLocKind; |
| SpillML.Value.SpillLocation = SpillLocation; |
| return is_contained(Locs, SpillML); |
| } |
| |
| /// If this variable is described in whole or part by \p SpillLocation, |
| /// return the index . |
| unsigned getSpillLocIdx(SpillLoc SpillLocation) const { |
| for (unsigned Idx = 0; Idx < Locs.size(); ++Idx) |
| if (Locs[Idx].Kind == MachineLocKind::SpillLocKind && |
| Locs[Idx].Value.SpillLocation == SpillLocation) |
| return Idx; |
| llvm_unreachable("Could not find given SpillLoc in Locs"); |
| } |
| |
| bool containsWasmLocs() const { |
| return any_of(Locs, [](VarLoc::MachineLoc ML) { |
| return ML.Kind == VarLoc::MachineLocKind::WasmLocKind; |
| }); |
| } |
| |
| /// If this variable is described in whole or part by \p WasmLocation, |
| /// return true. |
| bool usesWasmLoc(WasmLoc WasmLocation) const { |
| MachineLoc WasmML; |
| WasmML.Kind = MachineLocKind::WasmLocKind; |
| WasmML.Value.WasmLocation = WasmLocation; |
| return is_contained(Locs, WasmML); |
| } |
| |
| /// Determine whether the lexical scope of this value's debug location |
| /// dominates MBB. |
| bool dominates(LexicalScopes &LS, MachineBasicBlock &MBB) const { |
| return LS.dominates(MI.getDebugLoc().get(), &MBB); |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| // TRI and TII can be null. |
| void dump(const TargetRegisterInfo *TRI, const TargetInstrInfo *TII, |
| raw_ostream &Out = dbgs()) const { |
| Out << "VarLoc("; |
| for (const MachineLoc &MLoc : Locs) { |
| if (Locs.begin() != &MLoc) |
| Out << ", "; |
| switch (MLoc.Kind) { |
| case MachineLocKind::RegisterKind: |
| Out << printReg(MLoc.Value.RegNo, TRI); |
| break; |
| case MachineLocKind::SpillLocKind: |
| Out << printReg(MLoc.Value.SpillLocation.SpillBase, TRI); |
| Out << "[" << MLoc.Value.SpillLocation.SpillOffset.getFixed() << " + " |
| << MLoc.Value.SpillLocation.SpillOffset.getScalable() |
| << "x vscale" |
| << "]"; |
| break; |
| case MachineLocKind::ImmediateKind: |
| Out << MLoc.Value.Immediate; |
| break; |
| case MachineLocKind::WasmLocKind: { |
| if (TII) { |
| auto Indices = TII->getSerializableTargetIndices(); |
| auto Found = |
| find_if(Indices, [&](const std::pair<int, const char *> &I) { |
| return I.first == MLoc.Value.WasmLocation.Index; |
| }); |
| assert(Found != Indices.end()); |
| Out << Found->second; |
| if (MLoc.Value.WasmLocation.Offset > 0) |
| Out << " + " << MLoc.Value.WasmLocation.Offset; |
| } else { |
| Out << "WasmLoc"; |
| } |
| break; |
| } |
| case MachineLocKind::InvalidKind: |
| llvm_unreachable("Invalid VarLoc in dump method"); |
| } |
| } |
| |
| Out << ", \"" << Var.getVariable()->getName() << "\", " << *Expr << ", "; |
| if (Var.getInlinedAt()) |
| Out << "!" << Var.getInlinedAt()->getMetadataID() << ")\n"; |
| else |
| Out << "(null))"; |
| |
| if (isEntryBackupLoc()) |
| Out << " (backup loc)\n"; |
| else |
| Out << "\n"; |
| } |
| #endif |
| |
| bool operator==(const VarLoc &Other) const { |
| return std::tie(EVKind, Var, Expr, Locs) == |
| std::tie(Other.EVKind, Other.Var, Other.Expr, Other.Locs); |
| } |
| |
| /// This operator guarantees that VarLocs are sorted by Variable first. |
| bool operator<(const VarLoc &Other) const { |
| return std::tie(Var, EVKind, Locs, Expr) < |
| std::tie(Other.Var, Other.EVKind, Other.Locs, Other.Expr); |
| } |
| }; |
| |
| #ifndef NDEBUG |
| using VarVec = SmallVector<VarLoc, 32>; |
| #endif |
| |
| /// VarLocMap is used for two things: |
| /// 1) Assigning LocIndices to a VarLoc. The LocIndices can be used to |
| /// virtually insert a VarLoc into a VarLocSet. |
| /// 2) Given a LocIndex, look up the unique associated VarLoc. |
| class VarLocMap { |
| /// Map a VarLoc to an index within the vector reserved for its location |
| /// within Loc2Vars. |
| std::map<VarLoc, LocIndices> Var2Indices; |
| |
| /// Map a location to a vector which holds VarLocs which live in that |
| /// location. |
| SmallDenseMap<LocIndex::u32_location_t, std::vector<VarLoc>> Loc2Vars; |
| |
| public: |
| /// Retrieve LocIndices for \p VL. |
| LocIndices insert(const VarLoc &VL) { |
| LocIndices &Indices = Var2Indices[VL]; |
| // If Indices is not empty, VL is already in the map. |
| if (!Indices.empty()) |
| return Indices; |
| SmallVector<LocIndex::u32_location_t, 4> Locations; |
| // LocIndices are determined by EVKind and MLs; each Register has a |
| // unique location, while all SpillLocs use a single bucket, and any EV |
| // VarLocs use only the Backup bucket or none at all (except the |
| // compulsory entry at the universal location index). LocIndices will |
| // always have an index at the universal location index as the last index. |
| if (VL.EVKind == VarLoc::EntryValueLocKind::NonEntryValueKind) { |
| VL.getDescribingRegs(Locations); |
| assert(all_of(Locations, |
| [](auto RegNo) { |
| return RegNo < LocIndex::kFirstInvalidRegLocation; |
| }) && |
| "Physreg out of range?"); |
| if (VL.containsSpillLocs()) |
| Locations.push_back(LocIndex::kSpillLocation); |
| if (VL.containsWasmLocs()) |
| Locations.push_back(LocIndex::kWasmLocation); |
| } else if (VL.EVKind != VarLoc::EntryValueLocKind::EntryValueKind) { |
| LocIndex::u32_location_t Loc = LocIndex::kEntryValueBackupLocation; |
| Locations.push_back(Loc); |
| } |
| Locations.push_back(LocIndex::kUniversalLocation); |
| for (LocIndex::u32_location_t Location : Locations) { |
| auto &Vars = Loc2Vars[Location]; |
| Indices.push_back( |
| {Location, static_cast<LocIndex::u32_index_t>(Vars.size())}); |
| Vars.push_back(VL); |
| } |
| return Indices; |
| } |
| |
| LocIndices getAllIndices(const VarLoc &VL) const { |
| auto IndIt = Var2Indices.find(VL); |
| assert(IndIt != Var2Indices.end() && "VarLoc not tracked"); |
| return IndIt->second; |
| } |
| |
| /// Retrieve the unique VarLoc associated with \p ID. |
| const VarLoc &operator[](LocIndex ID) const { |
| auto LocIt = Loc2Vars.find(ID.Location); |
| assert(LocIt != Loc2Vars.end() && "Location not tracked"); |
| return LocIt->second[ID.Index]; |
| } |
| }; |
| |
| using VarLocInMBB = |
| SmallDenseMap<const MachineBasicBlock *, std::unique_ptr<VarLocSet>>; |
| struct TransferDebugPair { |
| MachineInstr *TransferInst; ///< Instruction where this transfer occurs. |
| LocIndex LocationID; ///< Location number for the transfer dest. |
| }; |
| using TransferMap = SmallVector<TransferDebugPair, 4>; |
| // Types for recording Entry Var Locations emitted by a single MachineInstr, |
| // as well as recording MachineInstr which last defined a register. |
| using InstToEntryLocMap = std::multimap<const MachineInstr *, LocIndex>; |
| using RegDefToInstMap = DenseMap<Register, MachineInstr *>; |
| |
| // Types for recording sets of variable fragments that overlap. For a given |
| // local variable, we record all other fragments of that variable that could |
| // overlap it, to reduce search time. |
| using FragmentOfVar = |
| std::pair<const DILocalVariable *, DIExpression::FragmentInfo>; |
| using OverlapMap = |
| DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>; |
| |
| // Helper while building OverlapMap, a map of all fragments seen for a given |
| // DILocalVariable. |
| using VarToFragments = |
| DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>; |
| |
| /// Collects all VarLocs from \p CollectFrom. Each unique VarLoc is added |
| /// to \p Collected once, in order of insertion into \p VarLocIDs. |
| static void collectAllVarLocs(SmallVectorImpl<VarLoc> &Collected, |
| const VarLocSet &CollectFrom, |
| const VarLocMap &VarLocIDs); |
| |
| /// Get the registers which are used by VarLocs of kind RegisterKind tracked |
| /// by \p CollectFrom. |
| void getUsedRegs(const VarLocSet &CollectFrom, |
| SmallVectorImpl<Register> &UsedRegs) const; |
| |
| /// This holds the working set of currently open ranges. For fast |
| /// access, this is done both as a set of VarLocIDs, and a map of |
| /// DebugVariable to recent VarLocID. Note that a DBG_VALUE ends all |
| /// previous open ranges for the same variable. In addition, we keep |
| /// two different maps (Vars/EntryValuesBackupVars), so erase/insert |
| /// methods act differently depending on whether a VarLoc is primary |
| /// location or backup one. In the case the VarLoc is backup location |
| /// we will erase/insert from the EntryValuesBackupVars map, otherwise |
| /// we perform the operation on the Vars. |
| class OpenRangesSet { |
| VarLocSet::Allocator &Alloc; |
| VarLocSet VarLocs; |
| // Map the DebugVariable to recent primary location ID. |
| SmallDenseMap<DebugVariable, LocIndices, 8> Vars; |
| // Map the DebugVariable to recent backup location ID. |
| SmallDenseMap<DebugVariable, LocIndices, 8> EntryValuesBackupVars; |
| OverlapMap &OverlappingFragments; |
| |
| public: |
| OpenRangesSet(VarLocSet::Allocator &Alloc, OverlapMap &_OLapMap) |
| : Alloc(Alloc), VarLocs(Alloc), OverlappingFragments(_OLapMap) {} |
| |
| const VarLocSet &getVarLocs() const { return VarLocs; } |
| |
| // Fetches all VarLocs in \p VarLocIDs and inserts them into \p Collected. |
| // This method is needed to get every VarLoc once, as each VarLoc may have |
| // multiple indices in a VarLocMap (corresponding to each applicable |
| // location), but all VarLocs appear exactly once at the universal location |
| // index. |
| void getUniqueVarLocs(SmallVectorImpl<VarLoc> &Collected, |
| const VarLocMap &VarLocIDs) const { |
| collectAllVarLocs(Collected, VarLocs, VarLocIDs); |
| } |
| |
| /// Terminate all open ranges for VL.Var by removing it from the set. |
| void erase(const VarLoc &VL); |
| |
| /// Terminate all open ranges listed as indices in \c KillSet with |
| /// \c Location by removing them from the set. |
| void erase(const VarLocsInRange &KillSet, const VarLocMap &VarLocIDs, |
| LocIndex::u32_location_t Location); |
| |
| /// Insert a new range into the set. |
| void insert(LocIndices VarLocIDs, const VarLoc &VL); |
| |
| /// Insert a set of ranges. |
| void insertFromLocSet(const VarLocSet &ToLoad, const VarLocMap &Map); |
| |
| std::optional<LocIndices> getEntryValueBackup(DebugVariable Var); |
| |
| /// Empty the set. |
| void clear() { |
| VarLocs.clear(); |
| Vars.clear(); |
| EntryValuesBackupVars.clear(); |
| } |
| |
| /// Return whether the set is empty or not. |
| bool empty() const { |
| assert(Vars.empty() == EntryValuesBackupVars.empty() && |
| Vars.empty() == VarLocs.empty() && |
| "open ranges are inconsistent"); |
| return VarLocs.empty(); |
| } |
| |
| /// Get an empty range of VarLoc IDs. |
| auto getEmptyVarLocRange() const { |
| return iterator_range<VarLocSet::const_iterator>(getVarLocs().end(), |
| getVarLocs().end()); |
| } |
| |
| /// Get all set IDs for VarLocs with MLs of kind RegisterKind in \p Reg. |
| auto getRegisterVarLocs(Register Reg) const { |
| return LocIndex::indexRangeForLocation(getVarLocs(), Reg); |
| } |
| |
| /// Get all set IDs for VarLocs with MLs of kind SpillLocKind. |
| auto getSpillVarLocs() const { |
| return LocIndex::indexRangeForLocation(getVarLocs(), |
| LocIndex::kSpillLocation); |
| } |
| |
| /// Get all set IDs for VarLocs of EVKind EntryValueBackupKind or |
| /// EntryValueCopyBackupKind. |
| auto getEntryValueBackupVarLocs() const { |
| return LocIndex::indexRangeForLocation( |
| getVarLocs(), LocIndex::kEntryValueBackupLocation); |
| } |
| |
| /// Get all set IDs for VarLocs with MLs of kind WasmLocKind. |
| auto getWasmVarLocs() const { |
| return LocIndex::indexRangeForLocation(getVarLocs(), |
| LocIndex::kWasmLocation); |
| } |
| }; |
| |
| /// Collect all VarLoc IDs from \p CollectFrom for VarLocs with MLs of kind |
| /// RegisterKind which are located in any reg in \p Regs. The IDs for each |
| /// VarLoc correspond to entries in the universal location bucket, which every |
| /// VarLoc has exactly 1 entry for. Insert collected IDs into \p Collected. |
| static void collectIDsForRegs(VarLocsInRange &Collected, |
| const DefinedRegsSet &Regs, |
| const VarLocSet &CollectFrom, |
| const VarLocMap &VarLocIDs); |
| |
| VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB, VarLocInMBB &Locs) { |
| std::unique_ptr<VarLocSet> &VLS = Locs[MBB]; |
| if (!VLS) |
| VLS = std::make_unique<VarLocSet>(Alloc); |
| return *VLS; |
| } |
| |
| const VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB, |
| const VarLocInMBB &Locs) const { |
| auto It = Locs.find(MBB); |
| assert(It != Locs.end() && "MBB not in map"); |
| return *It->second; |
| } |
| |
| /// Tests whether this instruction is a spill to a stack location. |
| bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF); |
| |
| /// Decide if @MI is a spill instruction and return true if it is. We use 2 |
| /// criteria to make this decision: |
| /// - Is this instruction a store to a spill slot? |
| /// - Is there a register operand that is both used and killed? |
| /// TODO: Store optimization can fold spills into other stores (including |
| /// other spills). We do not handle this yet (more than one memory operand). |
| bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF, |
| Register &Reg); |
| |
| /// Returns true if the given machine instruction is a debug value which we |
| /// can emit entry values for. |
| /// |
| /// Currently, we generate debug entry values only for parameters that are |
| /// unmodified throughout the function and located in a register. |
| bool isEntryValueCandidate(const MachineInstr &MI, |
| const DefinedRegsSet &Regs) const; |
| |
| /// If a given instruction is identified as a spill, return the spill location |
| /// and set \p Reg to the spilled register. |
| std::optional<VarLoc::SpillLoc> isRestoreInstruction(const MachineInstr &MI, |
| MachineFunction *MF, |
| Register &Reg); |
| /// Given a spill instruction, extract the register and offset used to |
| /// address the spill location in a target independent way. |
| VarLoc::SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI); |
| void insertTransferDebugPair(MachineInstr &MI, OpenRangesSet &OpenRanges, |
| TransferMap &Transfers, VarLocMap &VarLocIDs, |
| LocIndex OldVarID, TransferKind Kind, |
| const VarLoc::MachineLoc &OldLoc, |
| Register NewReg = Register()); |
| |
| void transferDebugValue(const MachineInstr &MI, OpenRangesSet &OpenRanges, |
| VarLocMap &VarLocIDs, |
| InstToEntryLocMap &EntryValTransfers, |
| RegDefToInstMap &RegSetInstrs); |
| void transferSpillOrRestoreInst(MachineInstr &MI, OpenRangesSet &OpenRanges, |
| VarLocMap &VarLocIDs, TransferMap &Transfers); |
| void cleanupEntryValueTransfers(const MachineInstr *MI, |
| OpenRangesSet &OpenRanges, |
| VarLocMap &VarLocIDs, const VarLoc &EntryVL, |
| InstToEntryLocMap &EntryValTransfers); |
| void removeEntryValue(const MachineInstr &MI, OpenRangesSet &OpenRanges, |
| VarLocMap &VarLocIDs, const VarLoc &EntryVL, |
| InstToEntryLocMap &EntryValTransfers, |
| RegDefToInstMap &RegSetInstrs); |
| void emitEntryValues(MachineInstr &MI, OpenRangesSet &OpenRanges, |
| VarLocMap &VarLocIDs, |
| InstToEntryLocMap &EntryValTransfers, |
| VarLocsInRange &KillSet); |
| void recordEntryValue(const MachineInstr &MI, |
| const DefinedRegsSet &DefinedRegs, |
| OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs); |
| void transferRegisterCopy(MachineInstr &MI, OpenRangesSet &OpenRanges, |
| VarLocMap &VarLocIDs, TransferMap &Transfers); |
| void transferRegisterDef(MachineInstr &MI, OpenRangesSet &OpenRanges, |
| VarLocMap &VarLocIDs, |
| InstToEntryLocMap &EntryValTransfers, |
| RegDefToInstMap &RegSetInstrs); |
| void transferWasmDef(MachineInstr &MI, OpenRangesSet &OpenRanges, |
| VarLocMap &VarLocIDs); |
| bool transferTerminator(MachineBasicBlock *MBB, OpenRangesSet &OpenRanges, |
| VarLocInMBB &OutLocs, const VarLocMap &VarLocIDs); |
| |
| void process(MachineInstr &MI, OpenRangesSet &OpenRanges, |
| VarLocMap &VarLocIDs, TransferMap &Transfers, |
| InstToEntryLocMap &EntryValTransfers, |
| RegDefToInstMap &RegSetInstrs); |
| |
| void accumulateFragmentMap(MachineInstr &MI, VarToFragments &SeenFragments, |
| OverlapMap &OLapMap); |
| |
| bool join(MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs, |
| const VarLocMap &VarLocIDs, |
| SmallPtrSet<const MachineBasicBlock *, 16> &Visited, |
| SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks); |
| |
| /// Create DBG_VALUE insts for inlocs that have been propagated but |
| /// had their instruction creation deferred. |
| void flushPendingLocs(VarLocInMBB &PendingInLocs, VarLocMap &VarLocIDs); |
| |
| bool ExtendRanges(MachineFunction &MF, MachineDominatorTree *DomTree, |
| TargetPassConfig *TPC, unsigned InputBBLimit, |
| unsigned InputDbgValLimit) override; |
| |
| public: |
| /// Default construct and initialize the pass. |
| VarLocBasedLDV(); |
| |
| ~VarLocBasedLDV(); |
| |
| /// Print to ostream with a message. |
| void printVarLocInMBB(const MachineFunction &MF, const VarLocInMBB &V, |
| const VarLocMap &VarLocIDs, const char *msg, |
| raw_ostream &Out) const; |
| }; |
| |
| } // end anonymous namespace |
| |
| //===----------------------------------------------------------------------===// |
| // Implementation |
| //===----------------------------------------------------------------------===// |
| |
| VarLocBasedLDV::VarLocBasedLDV() = default; |
| |
| VarLocBasedLDV::~VarLocBasedLDV() = default; |
| |
| /// Erase a variable from the set of open ranges, and additionally erase any |
| /// fragments that may overlap it. If the VarLoc is a backup location, erase |
| /// the variable from the EntryValuesBackupVars set, indicating we should stop |
| /// tracking its backup entry location. Otherwise, if the VarLoc is primary |
| /// location, erase the variable from the Vars set. |
| void VarLocBasedLDV::OpenRangesSet::erase(const VarLoc &VL) { |
| // Erasure helper. |
| auto DoErase = [&VL, this](DebugVariable VarToErase) { |
| auto *EraseFrom = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars; |
| auto It = EraseFrom->find(VarToErase); |
| if (It != EraseFrom->end()) { |
| LocIndices IDs = It->second; |
| for (LocIndex ID : IDs) |
| VarLocs.reset(ID.getAsRawInteger()); |
| EraseFrom->erase(It); |
| } |
| }; |
| |
| DebugVariable Var = VL.Var; |
| |
| // Erase the variable/fragment that ends here. |
| DoErase(Var); |
| |
| // Extract the fragment. Interpret an empty fragment as one that covers all |
| // possible bits. |
| FragmentInfo ThisFragment = Var.getFragmentOrDefault(); |
| |
| // There may be fragments that overlap the designated fragment. Look them up |
| // in the pre-computed overlap map, and erase them too. |
| auto MapIt = OverlappingFragments.find({Var.getVariable(), ThisFragment}); |
| if (MapIt != OverlappingFragments.end()) { |
| for (auto Fragment : MapIt->second) { |
| VarLocBasedLDV::OptFragmentInfo FragmentHolder; |
| if (!DebugVariable::isDefaultFragment(Fragment)) |
| FragmentHolder = VarLocBasedLDV::OptFragmentInfo(Fragment); |
| DoErase({Var.getVariable(), FragmentHolder, Var.getInlinedAt()}); |
| } |
| } |
| } |
| |
| void VarLocBasedLDV::OpenRangesSet::erase(const VarLocsInRange &KillSet, |
| const VarLocMap &VarLocIDs, |
| LocIndex::u32_location_t Location) { |
| VarLocSet RemoveSet(Alloc); |
| for (LocIndex::u32_index_t ID : KillSet) { |
| const VarLoc &VL = VarLocIDs[LocIndex(Location, ID)]; |
| auto *EraseFrom = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars; |
| EraseFrom->erase(VL.Var); |
| LocIndices VLI = VarLocIDs.getAllIndices(VL); |
| for (LocIndex ID : VLI) |
| RemoveSet.set(ID.getAsRawInteger()); |
| } |
| VarLocs.intersectWithComplement(RemoveSet); |
| } |
| |
| void VarLocBasedLDV::OpenRangesSet::insertFromLocSet(const VarLocSet &ToLoad, |
| const VarLocMap &Map) { |
| VarLocsInRange UniqueVarLocIDs; |
| DefinedRegsSet Regs; |
| Regs.insert(LocIndex::kUniversalLocation); |
| collectIDsForRegs(UniqueVarLocIDs, Regs, ToLoad, Map); |
| for (uint64_t ID : UniqueVarLocIDs) { |
| LocIndex Idx = LocIndex::fromRawInteger(ID); |
| const VarLoc &VarL = Map[Idx]; |
| const LocIndices Indices = Map.getAllIndices(VarL); |
| insert(Indices, VarL); |
| } |
| } |
| |
| void VarLocBasedLDV::OpenRangesSet::insert(LocIndices VarLocIDs, |
| const VarLoc &VL) { |
| auto *InsertInto = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars; |
| for (LocIndex ID : VarLocIDs) |
| VarLocs.set(ID.getAsRawInteger()); |
| InsertInto->insert({VL.Var, VarLocIDs}); |
| } |
| |
| /// Return the Loc ID of an entry value backup location, if it exists for the |
| /// variable. |
| std::optional<LocIndices> |
| VarLocBasedLDV::OpenRangesSet::getEntryValueBackup(DebugVariable Var) { |
| auto It = EntryValuesBackupVars.find(Var); |
| if (It != EntryValuesBackupVars.end()) |
| return It->second; |
| |
| return std::nullopt; |
| } |
| |
| void VarLocBasedLDV::collectIDsForRegs(VarLocsInRange &Collected, |
| const DefinedRegsSet &Regs, |
| const VarLocSet &CollectFrom, |
| const VarLocMap &VarLocIDs) { |
| assert(!Regs.empty() && "Nothing to collect"); |
| SmallVector<Register, 32> SortedRegs; |
| append_range(SortedRegs, Regs); |
| array_pod_sort(SortedRegs.begin(), SortedRegs.end()); |
| auto It = CollectFrom.find(LocIndex::rawIndexForReg(SortedRegs.front())); |
| auto End = CollectFrom.end(); |
| for (Register Reg : SortedRegs) { |
| // The half-open interval [FirstIndexForReg, FirstInvalidIndex) contains |
| // all possible VarLoc IDs for VarLocs with MLs of kind RegisterKind which |
| // live in Reg. |
| uint64_t FirstIndexForReg = LocIndex::rawIndexForReg(Reg); |
| uint64_t FirstInvalidIndex = LocIndex::rawIndexForReg(Reg + 1); |
| It.advanceToLowerBound(FirstIndexForReg); |
| |
| // Iterate through that half-open interval and collect all the set IDs. |
| for (; It != End && *It < FirstInvalidIndex; ++It) { |
| LocIndex ItIdx = LocIndex::fromRawInteger(*It); |
| const VarLoc &VL = VarLocIDs[ItIdx]; |
| LocIndices LI = VarLocIDs.getAllIndices(VL); |
| // For now, the back index is always the universal location index. |
| assert(LI.back().Location == LocIndex::kUniversalLocation && |
| "Unexpected order of LocIndices for VarLoc; was it inserted into " |
| "the VarLocMap correctly?"); |
| Collected.insert(LI.back().Index); |
| } |
| |
| if (It == End) |
| return; |
| } |
| } |
| |
| void VarLocBasedLDV::getUsedRegs(const VarLocSet &CollectFrom, |
| SmallVectorImpl<Register> &UsedRegs) const { |
| // All register-based VarLocs are assigned indices greater than or equal to |
| // FirstRegIndex. |
| uint64_t FirstRegIndex = |
| LocIndex::rawIndexForReg(LocIndex::kFirstRegLocation); |
| uint64_t FirstInvalidIndex = |
| LocIndex::rawIndexForReg(LocIndex::kFirstInvalidRegLocation); |
| for (auto It = CollectFrom.find(FirstRegIndex), |
| End = CollectFrom.find(FirstInvalidIndex); |
| It != End;) { |
| // We found a VarLoc ID for a VarLoc that lives in a register. Figure out |
| // which register and add it to UsedRegs. |
| uint32_t FoundReg = LocIndex::fromRawInteger(*It).Location; |
| assert((UsedRegs.empty() || FoundReg != UsedRegs.back()) && |
| "Duplicate used reg"); |
| UsedRegs.push_back(FoundReg); |
| |
| // Skip to the next /set/ register. Note that this finds a lower bound, so |
| // even if there aren't any VarLocs living in `FoundReg+1`, we're still |
| // guaranteed to move on to the next register (or to end()). |
| uint64_t NextRegIndex = LocIndex::rawIndexForReg(FoundReg + 1); |
| It.advanceToLowerBound(NextRegIndex); |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Debug Range Extension Implementation |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef NDEBUG |
| void VarLocBasedLDV::printVarLocInMBB(const MachineFunction &MF, |
| const VarLocInMBB &V, |
| const VarLocMap &VarLocIDs, |
| const char *msg, |
| raw_ostream &Out) const { |
| Out << '\n' << msg << '\n'; |
| for (const MachineBasicBlock &BB : MF) { |
| if (!V.count(&BB)) |
| continue; |
| const VarLocSet &L = getVarLocsInMBB(&BB, V); |
| if (L.empty()) |
| continue; |
| SmallVector<VarLoc, 32> VarLocs; |
| collectAllVarLocs(VarLocs, L, VarLocIDs); |
| Out << "MBB: " << BB.getNumber() << ":\n"; |
| for (const VarLoc &VL : VarLocs) { |
| Out << " Var: " << VL.Var.getVariable()->getName(); |
| Out << " MI: "; |
| VL.dump(TRI, TII, Out); |
| } |
| } |
| Out << "\n"; |
| } |
| #endif |
| |
| VarLocBasedLDV::VarLoc::SpillLoc |
| VarLocBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) { |
| assert(MI.hasOneMemOperand() && |
| "Spill instruction does not have exactly one memory operand?"); |
| auto MMOI = MI.memoperands_begin(); |
| const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue(); |
| assert(PVal->kind() == PseudoSourceValue::FixedStack && |
| "Inconsistent memory operand in spill instruction"); |
| int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex(); |
| const MachineBasicBlock *MBB = MI.getParent(); |
| Register Reg; |
| StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg); |
| return {Reg, Offset}; |
| } |
| |
| /// Do cleanup of \p EntryValTransfers created by \p TRInst, by removing the |
| /// Transfer, which uses the to-be-deleted \p EntryVL. |
| void VarLocBasedLDV::cleanupEntryValueTransfers( |
| const MachineInstr *TRInst, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, |
| const VarLoc &EntryVL, InstToEntryLocMap &EntryValTransfers) { |
| if (EntryValTransfers.empty() || TRInst == nullptr) |
| return; |
| |
| auto TransRange = EntryValTransfers.equal_range(TRInst); |
| for (auto &TDPair : llvm::make_range(TransRange.first, TransRange.second)) { |
| const VarLoc &EmittedEV = VarLocIDs[TDPair.second]; |
| if (std::tie(EntryVL.Var, EntryVL.Locs[0].Value.RegNo, EntryVL.Expr) == |
| std::tie(EmittedEV.Var, EmittedEV.Locs[0].Value.RegNo, |
| EmittedEV.Expr)) { |
| OpenRanges.erase(EmittedEV); |
| EntryValTransfers.erase(TRInst); |
| break; |
| } |
| } |
| } |
| |
| /// Try to salvage the debug entry value if we encounter a new debug value |
| /// describing the same parameter, otherwise stop tracking the value. Return |
| /// true if we should stop tracking the entry value and do the cleanup of |
| /// emitted Entry Value Transfers, otherwise return false. |
| void VarLocBasedLDV::removeEntryValue(const MachineInstr &MI, |
| OpenRangesSet &OpenRanges, |
| VarLocMap &VarLocIDs, |
| const VarLoc &EntryVL, |
| InstToEntryLocMap &EntryValTransfers, |
| RegDefToInstMap &RegSetInstrs) { |
| // Skip the DBG_VALUE which is the debug entry value itself. |
| if (&MI == &EntryVL.MI) |
| return; |
| |
| // If the parameter's location is not register location, we can not track |
| // the entry value any more. It doesn't have the TransferInst which defines |
| // register, so no Entry Value Transfers have been emitted already. |
| if (!MI.getDebugOperand(0).isReg()) |
| return; |
| |
| // Try to get non-debug instruction responsible for the DBG_VALUE. |
| const MachineInstr *TransferInst = nullptr; |
| Register Reg = MI.getDebugOperand(0).getReg(); |
| if (Reg.isValid() && RegSetInstrs.contains(Reg)) |
| TransferInst = RegSetInstrs.find(Reg)->second; |
| |
| // Case of the parameter's DBG_VALUE at the start of entry MBB. |
| if (!TransferInst && !LastNonDbgMI && MI.getParent()->isEntryBlock()) |
| return; |
| |
| // If the debug expression from the DBG_VALUE is not empty, we can assume the |
| // parameter's value has changed indicating that we should stop tracking its |
| // entry value as well. |
| if (MI.getDebugExpression()->getNumElements() == 0 && TransferInst) { |
| // If the DBG_VALUE comes from a copy instruction that copies the entry |
| // value, it means the parameter's value has not changed and we should be |
| // able to use its entry value. |
| // TODO: Try to keep tracking of an entry value if we encounter a propagated |
| // DBG_VALUE describing the copy of the entry value. (Propagated entry value |
| // does not indicate the parameter modification.) |
| auto DestSrc = TII->isCopyLikeInstr(*TransferInst); |
| if (DestSrc) { |
| const MachineOperand *SrcRegOp, *DestRegOp; |
| SrcRegOp = DestSrc->Source; |
| DestRegOp = DestSrc->Destination; |
| if (Reg == DestRegOp->getReg()) { |
| for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) { |
| const VarLoc &VL = VarLocIDs[LocIndex::fromRawInteger(ID)]; |
| if (VL.isEntryValueCopyBackupReg(Reg) && |
| // Entry Values should not be variadic. |
| VL.MI.getDebugOperand(0).getReg() == SrcRegOp->getReg()) |
| return; |
| } |
| } |
| } |
| } |
| |
| LLVM_DEBUG(dbgs() << "Deleting a DBG entry value because of: "; |
| MI.print(dbgs(), /*IsStandalone*/ false, |
| /*SkipOpers*/ false, /*SkipDebugLoc*/ false, |
| /*AddNewLine*/ true, TII)); |
| cleanupEntryValueTransfers(TransferInst, OpenRanges, VarLocIDs, EntryVL, |
| EntryValTransfers); |
| OpenRanges.erase(EntryVL); |
| } |
| |
| /// End all previous ranges related to @MI and start a new range from @MI |
| /// if it is a DBG_VALUE instr. |
| void VarLocBasedLDV::transferDebugValue(const MachineInstr &MI, |
| OpenRangesSet &OpenRanges, |
| VarLocMap &VarLocIDs, |
| InstToEntryLocMap &EntryValTransfers, |
| RegDefToInstMap &RegSetInstrs) { |
| if (!MI.isDebugValue()) |
| return; |
| const DILocalVariable *Var = MI.getDebugVariable(); |
| const DIExpression *Expr = MI.getDebugExpression(); |
| const DILocation *DebugLoc = MI.getDebugLoc(); |
| const DILocation *InlinedAt = DebugLoc->getInlinedAt(); |
| assert(Var->isValidLocationForIntrinsic(DebugLoc) && |
| "Expected inlined-at fields to agree"); |
| |
| DebugVariable V(Var, Expr, InlinedAt); |
| |
| // Check if this DBG_VALUE indicates a parameter's value changing. |
| // If that is the case, we should stop tracking its entry value. |
| auto EntryValBackupID = OpenRanges.getEntryValueBackup(V); |
| if (Var->isParameter() && EntryValBackupID) { |
| const VarLoc &EntryVL = VarLocIDs[EntryValBackupID->back()]; |
| removeEntryValue(MI, OpenRanges, VarLocIDs, EntryVL, EntryValTransfers, |
| RegSetInstrs); |
| } |
| |
| if (all_of(MI.debug_operands(), [](const MachineOperand &MO) { |
| return (MO.isReg() && MO.getReg()) || MO.isImm() || MO.isFPImm() || |
| MO.isCImm() || MO.isTargetIndex(); |
| })) { |
| // Use normal VarLoc constructor for registers and immediates. |
| VarLoc VL(MI); |
| // End all previous ranges of VL.Var. |
| OpenRanges.erase(VL); |
| |
| LocIndices IDs = VarLocIDs.insert(VL); |
| // Add the VarLoc to OpenRanges from this DBG_VALUE. |
| OpenRanges.insert(IDs, VL); |
| } else if (MI.memoperands().size() > 0) { |
| llvm_unreachable("DBG_VALUE with mem operand encountered after regalloc?"); |
| } else { |
| // This must be an undefined location. If it has an open range, erase it. |
| assert(MI.isUndefDebugValue() && |
| "Unexpected non-undef DBG_VALUE encountered"); |
| VarLoc VL(MI); |
| OpenRanges.erase(VL); |
| } |
| } |
| |
| // This should be removed later, doesn't fit the new design. |
| void VarLocBasedLDV::collectAllVarLocs(SmallVectorImpl<VarLoc> &Collected, |
| const VarLocSet &CollectFrom, |
| const VarLocMap &VarLocIDs) { |
| // The half-open interval [FirstIndexForReg, FirstInvalidIndex) contains all |
| // possible VarLoc IDs for VarLocs with MLs of kind RegisterKind which live |
| // in Reg. |
| uint64_t FirstIndex = LocIndex::rawIndexForReg(LocIndex::kUniversalLocation); |
| uint64_t FirstInvalidIndex = |
| LocIndex::rawIndexForReg(LocIndex::kUniversalLocation + 1); |
| // Iterate through that half-open interval and collect all the set IDs. |
| for (auto It = CollectFrom.find(FirstIndex), End = CollectFrom.end(); |
| It != End && *It < FirstInvalidIndex; ++It) { |
| LocIndex RegIdx = LocIndex::fromRawInteger(*It); |
| Collected.push_back(VarLocIDs[RegIdx]); |
| } |
| } |
| |
| /// Turn the entry value backup locations into primary locations. |
| void VarLocBasedLDV::emitEntryValues(MachineInstr &MI, |
| OpenRangesSet &OpenRanges, |
| VarLocMap &VarLocIDs, |
| InstToEntryLocMap &EntryValTransfers, |
| VarLocsInRange &KillSet) { |
| // Do not insert entry value locations after a terminator. |
| if (MI.isTerminator()) |
| return; |
| |
| for (uint32_t ID : KillSet) { |
| // The KillSet IDs are indices for the universal location bucket. |
| LocIndex Idx = LocIndex(LocIndex::kUniversalLocation, ID); |
| const VarLoc &VL = VarLocIDs[Idx]; |
| if (!VL.Var.getVariable()->isParameter()) |
| continue; |
| |
| auto DebugVar = VL.Var; |
| std::optional<LocIndices> EntryValBackupIDs = |
| OpenRanges.getEntryValueBackup(DebugVar); |
| |
| // If the parameter has the entry value backup, it means we should |
| // be able to use its entry value. |
| if (!EntryValBackupIDs) |
| continue; |
| |
| const VarLoc &EntryVL = VarLocIDs[EntryValBackupIDs->back()]; |
| VarLoc EntryLoc = VarLoc::CreateEntryLoc(EntryVL.MI, EntryVL.Expr, |
| EntryVL.Locs[0].Value.RegNo); |
| LocIndices EntryValueIDs = VarLocIDs.insert(EntryLoc); |
| assert(EntryValueIDs.size() == 1 && |
| "EntryValue loc should not be variadic"); |
| EntryValTransfers.insert({&MI, EntryValueIDs.back()}); |
| OpenRanges.insert(EntryValueIDs, EntryLoc); |
| } |
| } |
| |
| /// Create new TransferDebugPair and insert it in \p Transfers. The VarLoc |
| /// with \p OldVarID should be deleted form \p OpenRanges and replaced with |
| /// new VarLoc. If \p NewReg is different than default zero value then the |
| /// new location will be register location created by the copy like instruction, |
| /// otherwise it is variable's location on the stack. |
| void VarLocBasedLDV::insertTransferDebugPair( |
| MachineInstr &MI, OpenRangesSet &OpenRanges, TransferMap &Transfers, |
| VarLocMap &VarLocIDs, LocIndex OldVarID, TransferKind Kind, |
| const VarLoc::MachineLoc &OldLoc, Register NewReg) { |
| const VarLoc &OldVarLoc = VarLocIDs[OldVarID]; |
| |
| auto ProcessVarLoc = [&MI, &OpenRanges, &Transfers, &VarLocIDs](VarLoc &VL) { |
| LocIndices LocIds = VarLocIDs.insert(VL); |
| |
| // Close this variable's previous location range. |
| OpenRanges.erase(VL); |
| |
| // Record the new location as an open range, and a postponed transfer |
| // inserting a DBG_VALUE for this location. |
| OpenRanges.insert(LocIds, VL); |
| assert(!MI.isTerminator() && "Cannot insert DBG_VALUE after terminator"); |
| TransferDebugPair MIP = {&MI, LocIds.back()}; |
| Transfers.push_back(MIP); |
| }; |
| |
| // End all previous ranges of VL.Var. |
| OpenRanges.erase(VarLocIDs[OldVarID]); |
| switch (Kind) { |
| case TransferKind::TransferCopy: { |
| assert(NewReg && |
| "No register supplied when handling a copy of a debug value"); |
| // Create a DBG_VALUE instruction to describe the Var in its new |
| // register location. |
| VarLoc VL = VarLoc::CreateCopyLoc(OldVarLoc, OldLoc, NewReg); |
| ProcessVarLoc(VL); |
| LLVM_DEBUG({ |
| dbgs() << "Creating VarLoc for register copy:"; |
| VL.dump(TRI, TII); |
| }); |
| return; |
| } |
| case TransferKind::TransferSpill: { |
| // Create a DBG_VALUE instruction to describe the Var in its spilled |
| // location. |
| VarLoc::SpillLoc SpillLocation = extractSpillBaseRegAndOffset(MI); |
| VarLoc VL = VarLoc::CreateSpillLoc( |
| OldVarLoc, OldLoc, SpillLocation.SpillBase, SpillLocation.SpillOffset); |
| ProcessVarLoc(VL); |
| LLVM_DEBUG({ |
| dbgs() << "Creating VarLoc for spill:"; |
| VL.dump(TRI, TII); |
| }); |
| return; |
| } |
| case TransferKind::TransferRestore: { |
| assert(NewReg && |
| "No register supplied when handling a restore of a debug value"); |
| // DebugInstr refers to the pre-spill location, therefore we can reuse |
| // its expression. |
| VarLoc VL = VarLoc::CreateCopyLoc(OldVarLoc, OldLoc, NewReg); |
| ProcessVarLoc(VL); |
| LLVM_DEBUG({ |
| dbgs() << "Creating VarLoc for restore:"; |
| VL.dump(TRI, TII); |
| }); |
| return; |
| } |
| } |
| llvm_unreachable("Invalid transfer kind"); |
| } |
| |
| /// A definition of a register may mark the end of a range. |
| void VarLocBasedLDV::transferRegisterDef(MachineInstr &MI, |
| OpenRangesSet &OpenRanges, |
| VarLocMap &VarLocIDs, |
| InstToEntryLocMap &EntryValTransfers, |
| RegDefToInstMap &RegSetInstrs) { |
| |
| // Meta Instructions do not affect the debug liveness of any register they |
| // define. |
| if (MI.isMetaInstruction()) |
| return; |
| |
| MachineFunction *MF = MI.getMF(); |
| const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); |
| Register SP = TLI->getStackPointerRegisterToSaveRestore(); |
| |
| // Find the regs killed by MI, and find regmasks of preserved regs. |
| DefinedRegsSet DeadRegs; |
| SmallVector<const uint32_t *, 4> RegMasks; |
| for (const MachineOperand &MO : MI.operands()) { |
| // Determine whether the operand is a register def. |
| if (MO.isReg() && MO.isDef() && MO.getReg() && MO.getReg().isPhysical() && |
| !(MI.isCall() && MO.getReg() == SP)) { |
| // Remove ranges of all aliased registers. |
| for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI) |
| // FIXME: Can we break out of this loop early if no insertion occurs? |
| DeadRegs.insert(*RAI); |
| RegSetInstrs.erase(MO.getReg()); |
| RegSetInstrs.insert({MO.getReg(), &MI}); |
| } else if (MO.isRegMask()) { |
| RegMasks.push_back(MO.getRegMask()); |
| } |
| } |
| |
| // Erase VarLocs which reside in one of the dead registers. For performance |
| // reasons, it's critical to not iterate over the full set of open VarLocs. |
| // Iterate over the set of dying/used regs instead. |
| if (!RegMasks.empty()) { |
| SmallVector<Register, 32> UsedRegs; |
| getUsedRegs(OpenRanges.getVarLocs(), UsedRegs); |
| for (Register Reg : UsedRegs) { |
| // Remove ranges of all clobbered registers. Register masks don't usually |
| // list SP as preserved. Assume that call instructions never clobber SP, |
| // because some backends (e.g., AArch64) never list SP in the regmask. |
| // While the debug info may be off for an instruction or two around |
| // callee-cleanup calls, transferring the DEBUG_VALUE across the call is |
| // still a better user experience. |
| if (Reg == SP) |
| continue; |
| bool AnyRegMaskKillsReg = |
| any_of(RegMasks, [Reg](const uint32_t *RegMask) { |
| return MachineOperand::clobbersPhysReg(RegMask, Reg); |
| }); |
| if (AnyRegMaskKillsReg) |
| DeadRegs.insert(Reg); |
| if (AnyRegMaskKillsReg) { |
| RegSetInstrs.erase(Reg); |
| RegSetInstrs.insert({Reg, &MI}); |
| } |
| } |
| } |
| |
| if (DeadRegs.empty()) |
| return; |
| |
| VarLocsInRange KillSet; |
| collectIDsForRegs(KillSet, DeadRegs, OpenRanges.getVarLocs(), VarLocIDs); |
| OpenRanges.erase(KillSet, VarLocIDs, LocIndex::kUniversalLocation); |
| |
| if (TPC) { |
| auto &TM = TPC->getTM<TargetMachine>(); |
| if (TM.Options.ShouldEmitDebugEntryValues()) |
| emitEntryValues(MI, OpenRanges, VarLocIDs, EntryValTransfers, KillSet); |
| } |
| } |
| |
| void VarLocBasedLDV::transferWasmDef(MachineInstr &MI, |
| OpenRangesSet &OpenRanges, |
| VarLocMap &VarLocIDs) { |
| // If this is not a Wasm local.set or local.tee, which sets local values, |
| // return. |
| int Index; |
| int64_t Offset; |
| if (!TII->isExplicitTargetIndexDef(MI, Index, Offset)) |
| return; |
| |
| // Find the target indices killed by MI, and delete those variable locations |
| // from the open range. |
| VarLocsInRange KillSet; |
| VarLoc::WasmLoc Loc{Index, Offset}; |
| for (uint64_t ID : OpenRanges.getWasmVarLocs()) { |
| LocIndex Idx = LocIndex::fromRawInteger(ID); |
| const VarLoc &VL = VarLocIDs[Idx]; |
| assert(VL.containsWasmLocs() && "Broken VarLocSet?"); |
| if (VL.usesWasmLoc(Loc)) |
| KillSet.insert(ID); |
| } |
| OpenRanges.erase(KillSet, VarLocIDs, LocIndex::kWasmLocation); |
| } |
| |
| bool VarLocBasedLDV::isSpillInstruction(const MachineInstr &MI, |
| MachineFunction *MF) { |
| // TODO: Handle multiple stores folded into one. |
| if (!MI.hasOneMemOperand()) |
| return false; |
| |
| if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII)) |
| return false; // This is not a spill instruction, since no valid size was |
| // returned from either function. |
| |
| return true; |
| } |
| |
| bool VarLocBasedLDV::isLocationSpill(const MachineInstr &MI, |
| MachineFunction *MF, Register &Reg) { |
| if (!isSpillInstruction(MI, MF)) |
| return false; |
| |
| auto isKilledReg = [&](const MachineOperand MO, Register &Reg) { |
| if (!MO.isReg() || !MO.isUse()) { |
| Reg = 0; |
| return false; |
| } |
| Reg = MO.getReg(); |
| return MO.isKill(); |
| }; |
| |
| for (const MachineOperand &MO : MI.operands()) { |
| // In a spill instruction generated by the InlineSpiller the spilled |
| // register has its kill flag set. |
| if (isKilledReg(MO, Reg)) |
| return true; |
| if (Reg != 0) { |
| // Check whether next instruction kills the spilled register. |
| // FIXME: Current solution does not cover search for killed register in |
| // bundles and instructions further down the chain. |
| auto NextI = std::next(MI.getIterator()); |
| // Skip next instruction that points to basic block end iterator. |
| if (MI.getParent()->end() == NextI) |
| continue; |
| Register RegNext; |
| for (const MachineOperand &MONext : NextI->operands()) { |
| // Return true if we came across the register from the |
| // previous spill instruction that is killed in NextI. |
| if (isKilledReg(MONext, RegNext) && RegNext == Reg) |
| return true; |
| } |
| } |
| } |
| // Return false if we didn't find spilled register. |
| return false; |
| } |
| |
| std::optional<VarLocBasedLDV::VarLoc::SpillLoc> |
| VarLocBasedLDV::isRestoreInstruction(const MachineInstr &MI, |
| MachineFunction *MF, Register &Reg) { |
| if (!MI.hasOneMemOperand()) |
| return std::nullopt; |
| |
| // FIXME: Handle folded restore instructions with more than one memory |
| // operand. |
| if (MI.getRestoreSize(TII)) { |
| Reg = MI.getOperand(0).getReg(); |
| return extractSpillBaseRegAndOffset(MI); |
| } |
| return std::nullopt; |
| } |
| |
| /// A spilled register may indicate that we have to end the current range of |
| /// a variable and create a new one for the spill location. |
| /// A restored register may indicate the reverse situation. |
| /// We don't want to insert any instructions in process(), so we just create |
| /// the DBG_VALUE without inserting it and keep track of it in \p Transfers. |
| /// It will be inserted into the BB when we're done iterating over the |
| /// instructions. |
| void VarLocBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI, |
| OpenRangesSet &OpenRanges, |
| VarLocMap &VarLocIDs, |
| TransferMap &Transfers) { |
| MachineFunction *MF = MI.getMF(); |
| TransferKind TKind; |
| Register Reg; |
| std::optional<VarLoc::SpillLoc> Loc; |
| |
| LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump();); |
| |
| // First, if there are any DBG_VALUEs pointing at a spill slot that is |
| // written to, then close the variable location. The value in memory |
| // will have changed. |
| VarLocsInRange KillSet; |
| if (isSpillInstruction(MI, MF)) { |
| Loc = extractSpillBaseRegAndOffset(MI); |
| for (uint64_t ID : OpenRanges.getSpillVarLocs()) { |
| LocIndex Idx = LocIndex::fromRawInteger(ID); |
| const VarLoc &VL = VarLocIDs[Idx]; |
| assert(VL.containsSpillLocs() && "Broken VarLocSet?"); |
| if (VL.usesSpillLoc(*Loc)) { |
| // This location is overwritten by the current instruction -- terminate |
| // the open range, and insert an explicit DBG_VALUE $noreg. |
| // |
| // Doing this at a later stage would require re-interpreting all |
| // DBG_VALUes and DIExpressions to identify whether they point at |
| // memory, and then analysing all memory writes to see if they |
| // overwrite that memory, which is expensive. |
| // |
| // At this stage, we already know which DBG_VALUEs are for spills and |
| // where they are located; it's best to fix handle overwrites now. |
| KillSet.insert(ID); |
| unsigned SpillLocIdx = VL.getSpillLocIdx(*Loc); |
| VarLoc::MachineLoc OldLoc = VL.Locs[SpillLocIdx]; |
| VarLoc UndefVL = VarLoc::CreateCopyLoc(VL, OldLoc, 0); |
| LocIndices UndefLocIDs = VarLocIDs.insert(UndefVL); |
| Transfers.push_back({&MI, UndefLocIDs.back()}); |
| } |
| } |
| OpenRanges.erase(KillSet, VarLocIDs, LocIndex::kSpillLocation); |
| } |
| |
| // Try to recognise spill and restore instructions that may create a new |
| // variable location. |
| if (isLocationSpill(MI, MF, Reg)) { |
| TKind = TransferKind::TransferSpill; |
| LLVM_DEBUG(dbgs() << "Recognized as spill: "; MI.dump();); |
| LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI) |
| << "\n"); |
| } else { |
| if (!(Loc = isRestoreInstruction(MI, MF, Reg))) |
| return; |
| TKind = TransferKind::TransferRestore; |
| LLVM_DEBUG(dbgs() << "Recognized as restore: "; MI.dump();); |
| LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI) |
| << "\n"); |
| } |
| // Check if the register or spill location is the location of a debug value. |
| auto TransferCandidates = OpenRanges.getEmptyVarLocRange(); |
| if (TKind == TransferKind::TransferSpill) |
| TransferCandidates = OpenRanges.getRegisterVarLocs(Reg); |
| else if (TKind == TransferKind::TransferRestore) |
| TransferCandidates = OpenRanges.getSpillVarLocs(); |
| for (uint64_t ID : TransferCandidates) { |
| LocIndex Idx = LocIndex::fromRawInteger(ID); |
| const VarLoc &VL = VarLocIDs[Idx]; |
| unsigned LocIdx; |
| if (TKind == TransferKind::TransferSpill) { |
| assert(VL.usesReg(Reg) && "Broken VarLocSet?"); |
| LLVM_DEBUG(dbgs() << "Spilling Register " << printReg(Reg, TRI) << '(' |
| << VL.Var.getVariable()->getName() << ")\n"); |
| LocIdx = VL.getRegIdx(Reg); |
| } else { |
| assert(TKind == TransferKind::TransferRestore && VL.containsSpillLocs() && |
| "Broken VarLocSet?"); |
| if (!VL.usesSpillLoc(*Loc)) |
| // The spill location is not the location of a debug value. |
| continue; |
| LLVM_DEBUG(dbgs() << "Restoring Register " << printReg(Reg, TRI) << '(' |
| << VL.Var.getVariable()->getName() << ")\n"); |
| LocIdx = VL.getSpillLocIdx(*Loc); |
| } |
| VarLoc::MachineLoc MLoc = VL.Locs[LocIdx]; |
| insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, Idx, TKind, |
| MLoc, Reg); |
| // FIXME: A comment should explain why it's correct to return early here, |
| // if that is in fact correct. |
| return; |
| } |
| } |
| |
| /// If \p MI is a register copy instruction, that copies a previously tracked |
| /// value from one register to another register that is callee saved, we |
| /// create new DBG_VALUE instruction described with copy destination register. |
| void VarLocBasedLDV::transferRegisterCopy(MachineInstr &MI, |
| OpenRangesSet &OpenRanges, |
| VarLocMap &VarLocIDs, |
| TransferMap &Transfers) { |
| auto DestSrc = TII->isCopyLikeInstr(MI); |
| if (!DestSrc) |
| return; |
| |
| const MachineOperand *DestRegOp = DestSrc->Destination; |
| const MachineOperand *SrcRegOp = DestSrc->Source; |
| |
| if (!DestRegOp->isDef()) |
| return; |
| |
| auto isCalleeSavedReg = [&](Register Reg) { |
| for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) |
| if (CalleeSavedRegs.test(*RAI)) |
| return true; |
| return false; |
| }; |
| |
| Register SrcReg = SrcRegOp->getReg(); |
| Register DestReg = DestRegOp->getReg(); |
| |
| // We want to recognize instructions where destination register is callee |
| // saved register. If register that could be clobbered by the call is |
| // included, there would be a great chance that it is going to be clobbered |
| // soon. It is more likely that previous register location, which is callee |
| // saved, is going to stay unclobbered longer, even if it is killed. |
| if (!isCalleeSavedReg(DestReg)) |
| return; |
| |
| // Remember an entry value movement. If we encounter a new debug value of |
| // a parameter describing only a moving of the value around, rather then |
| // modifying it, we are still able to use the entry value if needed. |
| if (isRegOtherThanSPAndFP(*DestRegOp, MI, TRI)) { |
| for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) { |
| LocIndex Idx = LocIndex::fromRawInteger(ID); |
| const VarLoc &VL = VarLocIDs[Idx]; |
| if (VL.isEntryValueBackupReg(SrcReg)) { |
| LLVM_DEBUG(dbgs() << "Copy of the entry value: "; MI.dump();); |
| VarLoc EntryValLocCopyBackup = |
| VarLoc::CreateEntryCopyBackupLoc(VL.MI, VL.Expr, DestReg); |
| // Stop tracking the original entry value. |
| OpenRanges.erase(VL); |
| |
| // Start tracking the entry value copy. |
| LocIndices EntryValCopyLocIDs = VarLocIDs.insert(EntryValLocCopyBackup); |
| OpenRanges.insert(EntryValCopyLocIDs, EntryValLocCopyBackup); |
| break; |
| } |
| } |
| } |
| |
| if (!SrcRegOp->isKill()) |
| return; |
| |
| for (uint64_t ID : OpenRanges.getRegisterVarLocs(SrcReg)) { |
| LocIndex Idx = LocIndex::fromRawInteger(ID); |
| assert(VarLocIDs[Idx].usesReg(SrcReg) && "Broken VarLocSet?"); |
| VarLoc::MachineLocValue Loc; |
| Loc.RegNo = SrcReg; |
| VarLoc::MachineLoc MLoc{VarLoc::MachineLocKind::RegisterKind, Loc}; |
| insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, Idx, |
| TransferKind::TransferCopy, MLoc, DestReg); |
| // FIXME: A comment should explain why it's correct to return early here, |
| // if that is in fact correct. |
| return; |
| } |
| } |
| |
| /// Terminate all open ranges at the end of the current basic block. |
| bool VarLocBasedLDV::transferTerminator(MachineBasicBlock *CurMBB, |
| OpenRangesSet &OpenRanges, |
| VarLocInMBB &OutLocs, |
| const VarLocMap &VarLocIDs) { |
| bool Changed = false; |
| LLVM_DEBUG({ |
| VarVec VarLocs; |
| OpenRanges.getUniqueVarLocs(VarLocs, VarLocIDs); |
| for (VarLoc &VL : VarLocs) { |
| // Copy OpenRanges to OutLocs, if not already present. |
| dbgs() << "Add to OutLocs in MBB #" << CurMBB->getNumber() << ": "; |
| VL.dump(TRI, TII); |
| } |
| }); |
| VarLocSet &VLS = getVarLocsInMBB(CurMBB, OutLocs); |
| Changed = VLS != OpenRanges.getVarLocs(); |
| // New OutLocs set may be different due to spill, restore or register |
| // copy instruction processing. |
| if (Changed) |
| VLS = OpenRanges.getVarLocs(); |
| OpenRanges.clear(); |
| return Changed; |
| } |
| |
| /// Accumulate a mapping between each DILocalVariable fragment and other |
| /// fragments of that DILocalVariable which overlap. This reduces work during |
| /// the data-flow stage from "Find any overlapping fragments" to "Check if the |
| /// known-to-overlap fragments are present". |
| /// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for |
| /// fragment usage. |
| /// \param SeenFragments Map from DILocalVariable to all fragments of that |
| /// Variable which are known to exist. |
| /// \param OverlappingFragments The overlap map being constructed, from one |
| /// Var/Fragment pair to a vector of fragments known to overlap. |
| void VarLocBasedLDV::accumulateFragmentMap(MachineInstr &MI, |
| VarToFragments &SeenFragments, |
| OverlapMap &OverlappingFragments) { |
| DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(), |
| MI.getDebugLoc()->getInlinedAt()); |
| FragmentInfo ThisFragment = MIVar.getFragmentOrDefault(); |
| |
| // If this is the first sighting of this variable, then we are guaranteed |
| // there are currently no overlapping fragments either. Initialize the set |
| // of seen fragments, record no overlaps for the current one, and return. |
| auto SeenIt = SeenFragments.find(MIVar.getVariable()); |
| if (SeenIt == SeenFragments.end()) { |
| SmallSet<FragmentInfo, 4> OneFragment; |
| OneFragment.insert(ThisFragment); |
| SeenFragments.insert({MIVar.getVariable(), OneFragment}); |
| |
| OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); |
| return; |
| } |
| |
| // If this particular Variable/Fragment pair already exists in the overlap |
| // map, it has already been accounted for. |
| auto IsInOLapMap = |
| OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); |
| if (!IsInOLapMap.second) |
| return; |
| |
| auto &ThisFragmentsOverlaps = IsInOLapMap.first->second; |
| auto &AllSeenFragments = SeenIt->second; |
| |
| // Otherwise, examine all other seen fragments for this variable, with "this" |
| // fragment being a previously unseen fragment. Record any pair of |
| // overlapping fragments. |
| for (const auto &ASeenFragment : AllSeenFragments) { |
| // Does this previously seen fragment overlap? |
| if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) { |
| // Yes: Mark the current fragment as being overlapped. |
| ThisFragmentsOverlaps.push_back(ASeenFragment); |
| // Mark the previously seen fragment as being overlapped by the current |
| // one. |
| auto ASeenFragmentsOverlaps = |
| OverlappingFragments.find({MIVar.getVariable(), ASeenFragment}); |
| assert(ASeenFragmentsOverlaps != OverlappingFragments.end() && |
| "Previously seen var fragment has no vector of overlaps"); |
| ASeenFragmentsOverlaps->second.push_back(ThisFragment); |
| } |
| } |
| |
| AllSeenFragments.insert(ThisFragment); |
| } |
| |
| /// This routine creates OpenRanges. |
| void VarLocBasedLDV::process(MachineInstr &MI, OpenRangesSet &OpenRanges, |
| VarLocMap &VarLocIDs, TransferMap &Transfers, |
| InstToEntryLocMap &EntryValTransfers, |
| RegDefToInstMap &RegSetInstrs) { |
| if (!MI.isDebugInstr()) |
| LastNonDbgMI = &MI; |
| transferDebugValue(MI, OpenRanges, VarLocIDs, EntryValTransfers, |
| RegSetInstrs); |
| transferRegisterDef(MI, OpenRanges, VarLocIDs, EntryValTransfers, |
| RegSetInstrs); |
| transferWasmDef(MI, OpenRanges, VarLocIDs); |
| transferRegisterCopy(MI, OpenRanges, VarLocIDs, Transfers); |
| transferSpillOrRestoreInst(MI, OpenRanges, VarLocIDs, Transfers); |
| } |
| |
| /// This routine joins the analysis results of all incoming edges in @MBB by |
| /// inserting a new DBG_VALUE instruction at the start of the @MBB - if the same |
| /// source variable in all the predecessors of @MBB reside in the same location. |
| bool VarLocBasedLDV::join( |
| MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs, |
| const VarLocMap &VarLocIDs, |
| SmallPtrSet<const MachineBasicBlock *, 16> &Visited, |
| SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks) { |
| LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n"); |
| |
| VarLocSet InLocsT(Alloc); // Temporary incoming locations. |
| |
| // For all predecessors of this MBB, find the set of VarLocs that |
| // can be joined. |
| int NumVisited = 0; |
| for (auto *p : MBB.predecessors()) { |
| // Ignore backedges if we have not visited the predecessor yet. As the |
| // predecessor hasn't yet had locations propagated into it, most locations |
| // will not yet be valid, so treat them as all being uninitialized and |
| // potentially valid. If a location guessed to be correct here is |
| // invalidated later, we will remove it when we revisit this block. |
| if (!Visited.count(p)) { |
| LLVM_DEBUG(dbgs() << " ignoring unvisited pred MBB: " << p->getNumber() |
| << "\n"); |
| continue; |
| } |
| auto OL = OutLocs.find(p); |
| // Join is null in case of empty OutLocs from any of the pred. |
| if (OL == OutLocs.end()) |
| return false; |
| |
| // Just copy over the Out locs to incoming locs for the first visited |
| // predecessor, and for all other predecessors join the Out locs. |
| VarLocSet &OutLocVLS = *OL->second; |
| if (!NumVisited) |
| InLocsT = OutLocVLS; |
| else |
| InLocsT &= OutLocVLS; |
| |
| LLVM_DEBUG({ |
| if (!InLocsT.empty()) { |
| VarVec VarLocs; |
| collectAllVarLocs(VarLocs, InLocsT, VarLocIDs); |
| for (const VarLoc &VL : VarLocs) |
| dbgs() << " gathered candidate incoming var: " |
| << VL.Var.getVariable()->getName() << "\n"; |
| } |
| }); |
| |
| NumVisited++; |
| } |
| |
| // Filter out DBG_VALUES that are out of scope. |
| VarLocSet KillSet(Alloc); |
| bool IsArtificial = ArtificialBlocks.count(&MBB); |
| if (!IsArtificial) { |
| for (uint64_t ID : InLocsT) { |
| LocIndex Idx = LocIndex::fromRawInteger(ID); |
| if (!VarLocIDs[Idx].dominates(LS, MBB)) { |
| KillSet.set(ID); |
| LLVM_DEBUG({ |
| auto Name = VarLocIDs[Idx].Var.getVariable()->getName(); |
| dbgs() << " killing " << Name << ", it doesn't dominate MBB\n"; |
| }); |
| } |
| } |
| } |
| InLocsT.intersectWithComplement(KillSet); |
| |
| // As we are processing blocks in reverse post-order we |
| // should have processed at least one predecessor, unless it |
| // is the entry block which has no predecessor. |
| assert((NumVisited || MBB.pred_empty()) && |
| "Should have processed at least one predecessor"); |
| |
| VarLocSet &ILS = getVarLocsInMBB(&MBB, InLocs); |
| bool Changed = false; |
| if (ILS != InLocsT) { |
| ILS = InLocsT; |
| Changed = true; |
| } |
| |
| return Changed; |
| } |
| |
| void VarLocBasedLDV::flushPendingLocs(VarLocInMBB &PendingInLocs, |
| VarLocMap &VarLocIDs) { |
| // PendingInLocs records all locations propagated into blocks, which have |
| // not had DBG_VALUE insts created. Go through and create those insts now. |
| for (auto &Iter : PendingInLocs) { |
| // Map is keyed on a constant pointer, unwrap it so we can insert insts. |
| auto &MBB = const_cast<MachineBasicBlock &>(*Iter.first); |
| VarLocSet &Pending = *Iter.second; |
| |
| SmallVector<VarLoc, 32> VarLocs; |
| collectAllVarLocs(VarLocs, Pending, VarLocIDs); |
| |
| for (VarLoc DiffIt : VarLocs) { |
| // The ID location is live-in to MBB -- work out what kind of machine |
| // location it is and create a DBG_VALUE. |
| if (DiffIt.isEntryBackupLoc()) |
| continue; |
| MachineInstr *MI = DiffIt.BuildDbgValue(*MBB.getParent()); |
| MBB.insert(MBB.instr_begin(), MI); |
| |
| (void)MI; |
| LLVM_DEBUG(dbgs() << "Inserted: "; MI->dump();); |
| } |
| } |
| } |
| |
| bool VarLocBasedLDV::isEntryValueCandidate( |
| const MachineInstr &MI, const DefinedRegsSet &DefinedRegs) const { |
| assert(MI.isDebugValue() && "This must be DBG_VALUE."); |
| |
| // TODO: Add support for local variables that are expressed in terms of |
| // parameters entry values. |
| // TODO: Add support for modified arguments that can be expressed |
| // by using its entry value. |
| auto *DIVar = MI.getDebugVariable(); |
| if (!DIVar->isParameter()) |
| return false; |
| |
| // Do not consider parameters that belong to an inlined function. |
| if (MI.getDebugLoc()->getInlinedAt()) |
| return false; |
| |
| // Only consider parameters that are described using registers. Parameters |
| // that are passed on the stack are not yet supported, so ignore debug |
| // values that are described by the frame or stack pointer. |
| if (!isRegOtherThanSPAndFP(MI.getDebugOperand(0), MI, TRI)) |
| return false; |
| |
| // If a parameter's value has been propagated from the caller, then the |
| // parameter's DBG_VALUE may be described using a register defined by some |
| // instruction in the entry block, in which case we shouldn't create an |
| // entry value. |
| if (DefinedRegs.count(MI.getDebugOperand(0).getReg())) |
| return false; |
| |
| // TODO: Add support for parameters that have a pre-existing debug expressions |
| // (e.g. fragments). |
| // A simple deref expression is equivalent to an indirect debug value. |
| const DIExpression *Expr = MI.getDebugExpression(); |
| if (Expr->getNumElements() > 0 && !Expr->isDeref()) |
| return false; |
| |
| return true; |
| } |
| |
| /// Collect all register defines (including aliases) for the given instruction. |
| static void collectRegDefs(const MachineInstr &MI, DefinedRegsSet &Regs, |
| const TargetRegisterInfo *TRI) { |
| for (const MachineOperand &MO : MI.all_defs()) { |
| if (MO.getReg() && MO.getReg().isPhysical()) { |
| Regs.insert(MO.getReg()); |
| for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid(); ++AI) |
| Regs.insert(*AI); |
| } |
| } |
| } |
| |
| /// This routine records the entry values of function parameters. The values |
| /// could be used as backup values. If we loose the track of some unmodified |
| /// parameters, the backup values will be used as a primary locations. |
| void VarLocBasedLDV::recordEntryValue(const MachineInstr &MI, |
| const DefinedRegsSet &DefinedRegs, |
| OpenRangesSet &OpenRanges, |
| VarLocMap &VarLocIDs) { |
| if (TPC) { |
| auto &TM = TPC->getTM<TargetMachine>(); |
| if (!TM.Options.ShouldEmitDebugEntryValues()) |
| return; |
| } |
| |
| DebugVariable V(MI.getDebugVariable(), MI.getDebugExpression(), |
| MI.getDebugLoc()->getInlinedAt()); |
| |
| if (!isEntryValueCandidate(MI, DefinedRegs) || |
| OpenRanges.getEntryValueBackup(V)) |
| return; |
| |
| LLVM_DEBUG(dbgs() << "Creating the backup entry location: "; MI.dump();); |
| |
| // Create the entry value and use it as a backup location until it is |
| // valid. It is valid until a parameter is not changed. |
| DIExpression *NewExpr = |
| DIExpression::prepend(MI.getDebugExpression(), DIExpression::EntryValue); |
| VarLoc EntryValLocAsBackup = VarLoc::CreateEntryBackupLoc(MI, NewExpr); |
| LocIndices EntryValLocIDs = VarLocIDs.insert(EntryValLocAsBackup); |
| OpenRanges.insert(EntryValLocIDs, EntryValLocAsBackup); |
| } |
| |
| /// Calculate the liveness information for the given machine function and |
| /// extend ranges across basic blocks. |
| bool VarLocBasedLDV::ExtendRanges(MachineFunction &MF, |
| MachineDominatorTree *DomTree, |
| TargetPassConfig *TPC, unsigned InputBBLimit, |
| unsigned InputDbgValLimit) { |
| (void)DomTree; |
| LLVM_DEBUG(dbgs() << "\nDebug Range Extension: " << MF.getName() << "\n"); |
| |
| if (!MF.getFunction().getSubprogram()) |
| // VarLocBaseLDV will already have removed all DBG_VALUEs. |
| return false; |
| |
| // Skip functions from NoDebug compilation units. |
| if (MF.getFunction().getSubprogram()->getUnit()->getEmissionKind() == |
| DICompileUnit::NoDebug) |
| return false; |
| |
| TRI = MF.getSubtarget().getRegisterInfo(); |
| TII = MF.getSubtarget().getInstrInfo(); |
| TFI = MF.getSubtarget().getFrameLowering(); |
| TFI->getCalleeSaves(MF, CalleeSavedRegs); |
| this->TPC = TPC; |
| LS.initialize(MF); |
| |
| bool Changed = false; |
| bool OLChanged = false; |
| bool MBBJoined = false; |
| |
| VarLocMap VarLocIDs; // Map VarLoc<>unique ID for use in bitvectors. |
| OverlapMap OverlapFragments; // Map of overlapping variable fragments. |
| OpenRangesSet OpenRanges(Alloc, OverlapFragments); |
| // Ranges that are open until end of bb. |
| VarLocInMBB OutLocs; // Ranges that exist beyond bb. |
| VarLocInMBB InLocs; // Ranges that are incoming after joining. |
| TransferMap Transfers; // DBG_VALUEs associated with transfers (such as |
| // spills, copies and restores). |
| // Map responsible MI to attached Transfer emitted from Backup Entry Value. |
| InstToEntryLocMap EntryValTransfers; |
| // Map a Register to the last MI which clobbered it. |
| RegDefToInstMap RegSetInstrs; |
| |
| VarToFragments SeenFragments; |
| |
| // Blocks which are artificial, i.e. blocks which exclusively contain |
| // instructions without locations, or with line 0 locations. |
| SmallPtrSet<const MachineBasicBlock *, 16> ArtificialBlocks; |
| |
| DenseMap<unsigned int, MachineBasicBlock *> OrderToBB; |
| DenseMap<MachineBasicBlock *, unsigned int> BBToOrder; |
| std::priority_queue<unsigned int, std::vector<unsigned int>, |
| std::greater<unsigned int>> |
| Worklist; |
| std::priority_queue<unsigned int, std::vector<unsigned int>, |
| std::greater<unsigned int>> |
| Pending; |
| |
| // Set of register defines that are seen when traversing the entry block |
| // looking for debug entry value candidates. |
| DefinedRegsSet DefinedRegs; |
| |
| // Only in the case of entry MBB collect DBG_VALUEs representing |
| // function parameters in order to generate debug entry values for them. |
| MachineBasicBlock &First_MBB = *(MF.begin()); |
| for (auto &MI : First_MBB) { |
| collectRegDefs(MI, DefinedRegs, TRI); |
| if (MI.isDebugValue()) |
| recordEntryValue(MI, DefinedRegs, OpenRanges, VarLocIDs); |
| } |
| |
| // Initialize per-block structures and scan for fragment overlaps. |
| for (auto &MBB : MF) |
| for (auto &MI : MBB) |
| if (MI.isDebugValue()) |
| accumulateFragmentMap(MI, SeenFragments, OverlapFragments); |
| |
| auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool { |
| if (const DebugLoc &DL = MI.getDebugLoc()) |
| return DL.getLine() != 0; |
| return false; |
| }; |
| for (auto &MBB : MF) |
| if (none_of(MBB.instrs(), hasNonArtificialLocation)) |
| ArtificialBlocks.insert(&MBB); |
| |
| LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, |
| "OutLocs after initialization", dbgs())); |
| |
| ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); |
| unsigned int RPONumber = 0; |
| for (MachineBasicBlock *MBB : RPOT) { |
| OrderToBB[RPONumber] = MBB; |
| BBToOrder[MBB] = RPONumber; |
| Worklist.push(RPONumber); |
| ++RPONumber; |
| } |
| |
| if (RPONumber > InputBBLimit) { |
| unsigned NumInputDbgValues = 0; |
| for (auto &MBB : MF) |
| for (auto &MI : MBB) |
| if (MI.isDebugValue()) |
| ++NumInputDbgValues; |
| if (NumInputDbgValues > InputDbgValLimit) { |
| LLVM_DEBUG(dbgs() << "Disabling VarLocBasedLDV: " << MF.getName() |
| << " has " << RPONumber << " basic blocks and " |
| << NumInputDbgValues |
| << " input DBG_VALUEs, exceeding limits.\n"); |
| return false; |
| } |
| } |
| |
| // This is a standard "union of predecessor outs" dataflow problem. |
| // To solve it, we perform join() and process() using the two worklist method |
| // until the ranges converge. |
| // Ranges have converged when both worklists are empty. |
| SmallPtrSet<const MachineBasicBlock *, 16> Visited; |
| while (!Worklist.empty() || !Pending.empty()) { |
| // We track what is on the pending worklist to avoid inserting the same |
| // thing twice. We could avoid this with a custom priority queue, but this |
| // is probably not worth it. |
| SmallPtrSet<MachineBasicBlock *, 16> OnPending; |
| LLVM_DEBUG(dbgs() << "Processing Worklist\n"); |
| while (!Worklist.empty()) { |
| MachineBasicBlock *MBB = OrderToBB[Worklist.top()]; |
| Worklist.pop(); |
| MBBJoined = join(*MBB, OutLocs, InLocs, VarLocIDs, Visited, |
| ArtificialBlocks); |
| MBBJoined |= Visited.insert(MBB).second; |
| if (MBBJoined) { |
| MBBJoined = false; |
| Changed = true; |
| // Now that we have started to extend ranges across BBs we need to |
| // examine spill, copy and restore instructions to see whether they |
| // operate with registers that correspond to user variables. |
| // First load any pending inlocs. |
| OpenRanges.insertFromLocSet(getVarLocsInMBB(MBB, InLocs), VarLocIDs); |
| LastNonDbgMI = nullptr; |
| RegSetInstrs.clear(); |
| for (auto &MI : *MBB) |
| process(MI, OpenRanges, VarLocIDs, Transfers, EntryValTransfers, |
| RegSetInstrs); |
| OLChanged |= transferTerminator(MBB, OpenRanges, OutLocs, VarLocIDs); |
| |
| LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, |
| "OutLocs after propagating", dbgs())); |
| LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, |
| "InLocs after propagating", dbgs())); |
| |
| if (OLChanged) { |
| OLChanged = false; |
| for (auto *s : MBB->successors()) |
| if (OnPending.insert(s).second) { |
| Pending.push(BBToOrder[s]); |
| } |
| } |
| } |
| } |
| Worklist.swap(Pending); |
| // At this point, pending must be empty, since it was just the empty |
| // worklist |
| assert(Pending.empty() && "Pending should be empty"); |
| } |
| |
| // Add any DBG_VALUE instructions created by location transfers. |
| for (auto &TR : Transfers) { |
| assert(!TR.TransferInst->isTerminator() && |
| "Cannot insert DBG_VALUE after terminator"); |
| MachineBasicBlock *MBB = TR.TransferInst->getParent(); |
| const VarLoc &VL = VarLocIDs[TR.LocationID]; |
| MachineInstr *MI = VL.BuildDbgValue(MF); |
| MBB->insertAfterBundle(TR.TransferInst->getIterator(), MI); |
| } |
| Transfers.clear(); |
| |
| // Add DBG_VALUEs created using Backup Entry Value location. |
| for (auto &TR : EntryValTransfers) { |
| MachineInstr *TRInst = const_cast<MachineInstr *>(TR.first); |
| assert(!TRInst->isTerminator() && |
| "Cannot insert DBG_VALUE after terminator"); |
| MachineBasicBlock *MBB = TRInst->getParent(); |
| const VarLoc &VL = VarLocIDs[TR.second]; |
| MachineInstr *MI = VL.BuildDbgValue(MF); |
| MBB->insertAfterBundle(TRInst->getIterator(), MI); |
| } |
| EntryValTransfers.clear(); |
| |
| // Deferred inlocs will not have had any DBG_VALUE insts created; do |
| // that now. |
| flushPendingLocs(InLocs, VarLocIDs); |
| |
| LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, "Final OutLocs", dbgs())); |
| LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, "Final InLocs", dbgs())); |
| return Changed; |
| } |
| |
| LDVImpl * |
| llvm::makeVarLocBasedLiveDebugValues() |
| { |
| return new VarLocBasedLDV(); |
| } |