| ; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py |
| ; RUN: llc -mtriple=aarch64-none-linux-gnu < %s | FileCheck %s |
| |
| ; First, a simple example from Clang. The registers could plausibly be |
| ; different, but probably won't be. |
| |
| %struct.foo = type { i8, [2 x i8], i8 } |
| |
| define [1 x i64] @from_clang([1 x i64] %f.coerce, i32 %n) nounwind readnone { |
| ; CHECK-LABEL: from_clang: |
| ; CHECK: // %bb.0: // %entry |
| ; CHECK-NEXT: mov w8, #135 // =0x87 |
| ; CHECK-NEXT: and x9, x0, #0xffffff00 |
| ; CHECK-NEXT: and w8, w0, w8 |
| ; CHECK-NEXT: bfi w8, w1, #3, #4 |
| ; CHECK-NEXT: orr x0, x8, x9 |
| ; CHECK-NEXT: ret |
| entry: |
| %f.coerce.fca.0.extract = extractvalue [1 x i64] %f.coerce, 0 |
| %tmp.sroa.0.0.extract.trunc = trunc i64 %f.coerce.fca.0.extract to i32 |
| %bf.value = shl i32 %n, 3 |
| %0 = and i32 %bf.value, 120 |
| %f.sroa.0.0.insert.ext.masked = and i32 %tmp.sroa.0.0.extract.trunc, 135 |
| %1 = or i32 %f.sroa.0.0.insert.ext.masked, %0 |
| %f.sroa.0.0.extract.trunc = zext i32 %1 to i64 |
| %tmp1.sroa.1.1.insert.insert = and i64 %f.coerce.fca.0.extract, 4294967040 |
| %tmp1.sroa.0.0.insert.insert = or i64 %f.sroa.0.0.extract.trunc, %tmp1.sroa.1.1.insert.insert |
| %.fca.0.insert = insertvalue [1 x i64] undef, i64 %tmp1.sroa.0.0.insert.insert, 0 |
| ret [1 x i64] %.fca.0.insert |
| } |
| |
| define void @test_whole32(ptr %existing, ptr %new) { |
| ; CHECK-LABEL: test_whole32: |
| ; CHECK: // %bb.0: |
| ; CHECK-NEXT: ldr w8, [x0] |
| ; CHECK-NEXT: ldr w9, [x1] |
| ; CHECK-NEXT: bfi w8, w9, #26, #5 |
| ; CHECK-NEXT: str w8, [x0] |
| ; CHECK-NEXT: ret |
| %oldval = load volatile i32, ptr %existing |
| %oldval_keep = and i32 %oldval, 2214592511 ; =0x83ffffff |
| |
| %newval = load volatile i32, ptr %new |
| %newval_shifted = shl i32 %newval, 26 |
| %newval_masked = and i32 %newval_shifted, 2080374784 ; = 0x7c000000 |
| |
| %combined = or i32 %oldval_keep, %newval_masked |
| store volatile i32 %combined, ptr %existing |
| |
| ret void |
| } |
| |
| define void @test_whole64(ptr %existing, ptr %new) { |
| ; CHECK-LABEL: test_whole64: |
| ; CHECK: // %bb.0: |
| ; CHECK-NEXT: ldr x8, [x0] |
| ; CHECK-NEXT: ldr x9, [x1] |
| ; CHECK-NEXT: bfi x8, x9, #26, #14 |
| ; CHECK-NEXT: str x8, [x0] |
| ; CHECK-NEXT: ret |
| %oldval = load volatile i64, ptr %existing |
| %oldval_keep = and i64 %oldval, 18446742974265032703 ; = 0xffffff0003ffffffL |
| |
| %newval = load volatile i64, ptr %new |
| %newval_shifted = shl i64 %newval, 26 |
| %newval_masked = and i64 %newval_shifted, 1099444518912 ; = 0xfffc000000 |
| |
| %combined = or i64 %oldval_keep, %newval_masked |
| store volatile i64 %combined, ptr %existing |
| |
| ret void |
| } |
| |
| define void @test_whole32_from64(ptr %existing, ptr %new) { |
| ; CHECK-LABEL: test_whole32_from64: |
| ; CHECK: // %bb.0: |
| ; CHECK-NEXT: ldr x8, [x0] |
| ; CHECK-NEXT: ldr x9, [x1] |
| ; CHECK-NEXT: and x8, x8, #0xffff0000 |
| ; CHECK-NEXT: bfxil x8, x9, #0, #16 |
| ; CHECK-NEXT: str x8, [x0] |
| ; CHECK-NEXT: ret |
| %oldval = load volatile i64, ptr %existing |
| %oldval_keep = and i64 %oldval, 4294901760 ; = 0xffff0000 |
| |
| %newval = load volatile i64, ptr %new |
| %newval_masked = and i64 %newval, 65535 ; = 0xffff |
| |
| %combined = or i64 %oldval_keep, %newval_masked |
| store volatile i64 %combined, ptr %existing |
| |
| ret void |
| } |
| |
| define void @test_32bit_masked(ptr %existing, ptr %new) { |
| ; CHECK-LABEL: test_32bit_masked: |
| ; CHECK: // %bb.0: |
| ; CHECK-NEXT: ldr w9, [x0] |
| ; CHECK-NEXT: mov w8, #135 // =0x87 |
| ; CHECK-NEXT: ldr w10, [x1] |
| ; CHECK-NEXT: and w8, w9, w8 |
| ; CHECK-NEXT: bfi w8, w10, #3, #4 |
| ; CHECK-NEXT: str w8, [x0] |
| ; CHECK-NEXT: ret |
| %oldval = load volatile i32, ptr %existing |
| %oldval_keep = and i32 %oldval, 135 ; = 0x87 |
| |
| %newval = load volatile i32, ptr %new |
| %newval_shifted = shl i32 %newval, 3 |
| %newval_masked = and i32 %newval_shifted, 120 ; = 0x78 |
| |
| %combined = or i32 %oldval_keep, %newval_masked |
| store volatile i32 %combined, ptr %existing |
| |
| ret void |
| } |
| |
| define void @test_64bit_masked(ptr %existing, ptr %new) { |
| ; CHECK-LABEL: test_64bit_masked: |
| ; CHECK: // %bb.0: |
| ; CHECK-NEXT: ldr x8, [x0] |
| ; CHECK-NEXT: ldr x9, [x1] |
| ; CHECK-NEXT: and x8, x8, #0xff00000000 |
| ; CHECK-NEXT: bfi x8, x9, #40, #8 |
| ; CHECK-NEXT: str x8, [x0] |
| ; CHECK-NEXT: ret |
| %oldval = load volatile i64, ptr %existing |
| %oldval_keep = and i64 %oldval, 1095216660480 ; = 0xff_0000_0000 |
| |
| %newval = load volatile i64, ptr %new |
| %newval_shifted = shl i64 %newval, 40 |
| %newval_masked = and i64 %newval_shifted, 280375465082880 ; = 0xff00_0000_0000 |
| |
| %combined = or i64 %newval_masked, %oldval_keep |
| store volatile i64 %combined, ptr %existing |
| |
| ret void |
| } |
| |
| ; Mask is too complicated for literal ANDwwi, make sure other avenues are tried. |
| define void @test_32bit_complexmask(ptr %existing, ptr %new) { |
| ; CHECK-LABEL: test_32bit_complexmask: |
| ; CHECK: // %bb.0: |
| ; CHECK-NEXT: ldr w9, [x0] |
| ; CHECK-NEXT: mov w8, #647 // =0x287 |
| ; CHECK-NEXT: ldr w10, [x1] |
| ; CHECK-NEXT: and w8, w9, w8 |
| ; CHECK-NEXT: bfi w8, w10, #3, #4 |
| ; CHECK-NEXT: str w8, [x0] |
| ; CHECK-NEXT: ret |
| %oldval = load volatile i32, ptr %existing |
| %oldval_keep = and i32 %oldval, 647 ; = 0x287 |
| |
| %newval = load volatile i32, ptr %new |
| %newval_shifted = shl i32 %newval, 3 |
| %newval_masked = and i32 %newval_shifted, 120 ; = 0x278 |
| |
| %combined = or i32 %oldval_keep, %newval_masked |
| store volatile i32 %combined, ptr %existing |
| |
| ret void |
| } |
| |
| ; Neither mask is a contiguous set of 1s. BFI can't be used |
| define void @test_32bit_badmask(ptr %existing, ptr %new) { |
| ; CHECK-LABEL: test_32bit_badmask: |
| ; CHECK: // %bb.0: |
| ; CHECK-NEXT: ldr w8, [x0] |
| ; CHECK-NEXT: ldr w9, [x1] |
| ; CHECK-NEXT: mov w10, #632 // =0x278 |
| ; CHECK-NEXT: mov w11, #135 // =0x87 |
| ; CHECK-NEXT: and w9, w10, w9, lsl #3 |
| ; CHECK-NEXT: and w8, w8, w11 |
| ; CHECK-NEXT: orr w8, w8, w9 |
| ; CHECK-NEXT: str w8, [x0] |
| ; CHECK-NEXT: ret |
| %oldval = load volatile i32, ptr %existing |
| %oldval_keep = and i32 %oldval, 135 ; = 0x87 |
| |
| %newval = load volatile i32, ptr %new |
| %newval_shifted = shl i32 %newval, 3 |
| %newval_masked = and i32 %newval_shifted, 632 ; = 0x278 |
| |
| %combined = or i32 %oldval_keep, %newval_masked |
| store volatile i32 %combined, ptr %existing |
| |
| ret void |
| } |
| |
| ; Ditto |
| define void @test_64bit_badmask(ptr %existing, ptr %new) { |
| ; CHECK-LABEL: test_64bit_badmask: |
| ; CHECK: // %bb.0: |
| ; CHECK-NEXT: ldr x8, [x0] |
| ; CHECK-NEXT: ldr x9, [x1] |
| ; CHECK-NEXT: mov w10, #664 // =0x298 |
| ; CHECK-NEXT: mov w11, #135 // =0x87 |
| ; CHECK-NEXT: and x9, x10, x9, lsl #3 |
| ; CHECK-NEXT: and x8, x8, x11 |
| ; CHECK-NEXT: orr x8, x8, x9 |
| ; CHECK-NEXT: str x8, [x0] |
| ; CHECK-NEXT: ret |
| %oldval = load volatile i64, ptr %existing |
| %oldval_keep = and i64 %oldval, 135 ; = 0x87 |
| |
| %newval = load volatile i64, ptr %new |
| %newval_shifted = shl i64 %newval, 3 |
| %newval_masked = and i64 %newval_shifted, 664 ; = 0x278 |
| |
| %combined = or i64 %oldval_keep, %newval_masked |
| store volatile i64 %combined, ptr %existing |
| |
| ret void |
| } |
| |
| ; Bitfield insert where there's a left-over shr needed at the beginning |
| ; (e.g. result of str.bf1 = str.bf2) |
| define void @test_32bit_with_shr(ptr %existing, ptr %new) { |
| ; CHECK-LABEL: test_32bit_with_shr: |
| ; CHECK: // %bb.0: |
| ; CHECK-NEXT: ldr w8, [x0] |
| ; CHECK-NEXT: ldr w9, [x1] |
| ; CHECK-NEXT: lsr w9, w9, #14 |
| ; CHECK-NEXT: bfi w8, w9, #26, #5 |
| ; CHECK-NEXT: str w8, [x0] |
| ; CHECK-NEXT: ret |
| %oldval = load volatile i32, ptr %existing |
| %oldval_keep = and i32 %oldval, 2214592511 ; =0x83ffffff |
| |
| %newval = load i32, ptr %new |
| %newval_shifted = shl i32 %newval, 12 |
| %newval_masked = and i32 %newval_shifted, 2080374784 ; = 0x7c000000 |
| |
| %combined = or i32 %oldval_keep, %newval_masked |
| store volatile i32 %combined, ptr %existing |
| |
| ret void |
| } |
| |
| ; Bitfield insert where the second or operand is a better match to be folded into the BFM |
| define void @test_32bit_opnd1_better(ptr %existing, ptr %new) { |
| ; CHECK-LABEL: test_32bit_opnd1_better: |
| ; CHECK: // %bb.0: |
| ; CHECK-NEXT: ldr w8, [x0] |
| ; CHECK-NEXT: ldr w9, [x1] |
| ; CHECK-NEXT: and w8, w8, #0xffff |
| ; CHECK-NEXT: bfi w8, w9, #16, #8 |
| ; CHECK-NEXT: str w8, [x0] |
| ; CHECK-NEXT: ret |
| %oldval = load volatile i32, ptr %existing |
| %oldval_keep = and i32 %oldval, 65535 ; 0x0000ffff |
| |
| %newval = load i32, ptr %new |
| %newval_shifted = shl i32 %newval, 16 |
| %newval_masked = and i32 %newval_shifted, 16711680 ; 0x00ff0000 |
| |
| %combined = or i32 %oldval_keep, %newval_masked |
| store volatile i32 %combined, ptr %existing |
| |
| ret void |
| } |
| |
| ; Tests when all the bits from one operand are not useful |
| define i32 @test_nouseful_bits(i8 %a, i32 %b) { |
| ; CHECK-LABEL: test_nouseful_bits: |
| ; CHECK: // %bb.0: |
| ; CHECK-NEXT: and w8, w0, #0xff |
| ; CHECK-NEXT: lsl w8, w8, #8 |
| ; CHECK-NEXT: mov w9, w8 |
| ; CHECK-NEXT: bfxil w9, w0, #0, #8 |
| ; CHECK-NEXT: orr w0, w8, w9, lsl #16 |
| ; CHECK-NEXT: ret |
| %conv = zext i8 %a to i32 ; 0 0 0 A |
| %shl = shl i32 %b, 8 ; B2 B1 B0 0 |
| %or = or i32 %conv, %shl ; B2 B1 B0 A |
| %shl.1 = shl i32 %or, 8 ; B1 B0 A 0 |
| %or.1 = or i32 %conv, %shl.1 ; B1 B0 A A |
| %shl.2 = shl i32 %or.1, 8 ; B0 A A 0 |
| %or.2 = or i32 %conv, %shl.2 ; B0 A A A |
| %shl.3 = shl i32 %or.2, 8 ; A A A 0 |
| %or.3 = or i32 %conv, %shl.3 ; A A A A |
| %shl.4 = shl i32 %or.3, 8 ; A A A 0 |
| ret i32 %shl.4 |
| } |
| |
| define void @test_nouseful_strb(ptr %ptr32, ptr %ptr8, i32 %x) { |
| ; CHECK-LABEL: test_nouseful_strb: |
| ; CHECK: // %bb.0: // %entry |
| ; CHECK-NEXT: ldr w8, [x0] |
| ; CHECK-NEXT: bfxil w8, w2, #16, #3 |
| ; CHECK-NEXT: strb w8, [x1] |
| ; CHECK-NEXT: ret |
| entry: |
| %0 = load i32, ptr %ptr32, align 8 |
| %and = and i32 %0, -8 |
| %shr = lshr i32 %x, 16 |
| %and1 = and i32 %shr, 7 |
| %or = or i32 %and, %and1 |
| %trunc = trunc i32 %or to i8 |
| store i8 %trunc, ptr %ptr8 |
| ret void |
| } |
| |
| define void @test_nouseful_strh(ptr %ptr32, ptr %ptr16, i32 %x) { |
| ; CHECK-LABEL: test_nouseful_strh: |
| ; CHECK: // %bb.0: // %entry |
| ; CHECK-NEXT: ldr w8, [x0] |
| ; CHECK-NEXT: bfxil w8, w2, #16, #4 |
| ; CHECK-NEXT: strh w8, [x1] |
| ; CHECK-NEXT: ret |
| entry: |
| %0 = load i32, ptr %ptr32, align 8 |
| %and = and i32 %0, -16 |
| %shr = lshr i32 %x, 16 |
| %and1 = and i32 %shr, 15 |
| %or = or i32 %and, %and1 |
| %trunc = trunc i32 %or to i16 |
| store i16 %trunc, ptr %ptr16 |
| ret void |
| } |
| |
| define void @test_nouseful_sturb(ptr %ptr32, ptr %ptr8, i32 %x) { |
| ; CHECK-LABEL: test_nouseful_sturb: |
| ; CHECK: // %bb.0: // %entry |
| ; CHECK-NEXT: ldr w8, [x0] |
| ; CHECK-NEXT: bfxil w8, w2, #16, #3 |
| ; CHECK-NEXT: sturb w8, [x1, #-1] |
| ; CHECK-NEXT: ret |
| entry: |
| %0 = load i32, ptr %ptr32, align 8 |
| %and = and i32 %0, -8 |
| %shr = lshr i32 %x, 16 |
| %and1 = and i32 %shr, 7 |
| %or = or i32 %and, %and1 |
| %trunc = trunc i32 %or to i8 |
| %gep = getelementptr i8, ptr %ptr8, i64 -1 |
| store i8 %trunc, ptr %gep |
| ret void |
| } |
| |
| define void @test_nouseful_sturh(ptr %ptr32, ptr %ptr16, i32 %x) { |
| ; CHECK-LABEL: test_nouseful_sturh: |
| ; CHECK: // %bb.0: // %entry |
| ; CHECK-NEXT: ldr w8, [x0] |
| ; CHECK-NEXT: bfxil w8, w2, #16, #4 |
| ; CHECK-NEXT: sturh w8, [x1, #-2] |
| ; CHECK-NEXT: ret |
| entry: |
| %0 = load i32, ptr %ptr32, align 8 |
| %and = and i32 %0, -16 |
| %shr = lshr i32 %x, 16 |
| %and1 = and i32 %shr, 15 |
| %or = or i32 %and, %and1 |
| %trunc = trunc i32 %or to i16 |
| %gep = getelementptr i16, ptr %ptr16, i64 -1 |
| store i16 %trunc, ptr %gep |
| ret void |
| } |
| |
| ; The next set of tests generate a BFXIL from 'or (and X, Mask0Imm), |
| ; (and Y, Mask1Imm)' iff Mask0Imm and ~Mask1Imm are equivalent and one of the |
| ; MaskImms is a shifted mask (e.g., 0x000ffff0). |
| |
| define i32 @test_or_and_and1(i32 %a, i32 %b) { |
| ; CHECK-LABEL: test_or_and_and1: |
| ; CHECK: // %bb.0: // %entry |
| ; CHECK-NEXT: lsr w8, w1, #4 |
| ; CHECK-NEXT: bfi w0, w8, #4, #12 |
| ; CHECK-NEXT: ret |
| entry: |
| %and = and i32 %a, -65521 ; 0xffff000f |
| %and1 = and i32 %b, 65520 ; 0x0000fff0 |
| %or = or i32 %and1, %and |
| ret i32 %or |
| } |
| |
| define i32 @test_or_and_and2(i32 %a, i32 %b) { |
| ; CHECK-LABEL: test_or_and_and2: |
| ; CHECK: // %bb.0: // %entry |
| ; CHECK-NEXT: lsr w8, w0, #4 |
| ; CHECK-NEXT: mov w0, w1 |
| ; CHECK-NEXT: bfi w0, w8, #4, #12 |
| ; CHECK-NEXT: ret |
| entry: |
| %and = and i32 %a, 65520 ; 0x0000fff0 |
| %and1 = and i32 %b, -65521 ; 0xffff000f |
| %or = or i32 %and1, %and |
| ret i32 %or |
| } |
| |
| define i64 @test_or_and_and3(i64 %a, i64 %b) { |
| ; CHECK-LABEL: test_or_and_and3: |
| ; CHECK: // %bb.0: // %entry |
| ; CHECK-NEXT: lsr x8, x1, #16 |
| ; CHECK-NEXT: bfi x0, x8, #16, #32 |
| ; CHECK-NEXT: ret |
| entry: |
| %and = and i64 %a, -281474976645121 ; 0xffff00000000ffff |
| %and1 = and i64 %b, 281474976645120 ; 0x0000ffffffff0000 |
| %or = or i64 %and1, %and |
| ret i64 %or |
| } |
| |
| ; Don't convert 'and' with multiple uses. |
| define i32 @test_or_and_and4(i32 %a, i32 %b, ptr %ptr) { |
| ; CHECK-LABEL: test_or_and_and4: |
| ; CHECK: // %bb.0: // %entry |
| ; CHECK-NEXT: and w8, w0, #0xffff000f |
| ; CHECK-NEXT: and w9, w1, #0xfff0 |
| ; CHECK-NEXT: orr w0, w9, w8 |
| ; CHECK-NEXT: str w8, [x2] |
| ; CHECK-NEXT: ret |
| entry: |
| %and = and i32 %a, -65521 |
| store i32 %and, ptr %ptr, align 4 |
| %and2 = and i32 %b, 65520 |
| %or = or i32 %and2, %and |
| ret i32 %or |
| } |
| |
| ; Don't convert 'and' with multiple uses. |
| define i32 @test_or_and_and5(i32 %a, i32 %b, ptr %ptr) { |
| ; CHECK-LABEL: test_or_and_and5: |
| ; CHECK: // %bb.0: // %entry |
| ; CHECK-NEXT: and w8, w1, #0xfff0 |
| ; CHECK-NEXT: and w9, w0, #0xffff000f |
| ; CHECK-NEXT: orr w0, w8, w9 |
| ; CHECK-NEXT: str w8, [x2] |
| ; CHECK-NEXT: ret |
| entry: |
| %and = and i32 %b, 65520 |
| store i32 %and, ptr %ptr, align 4 |
| %and1 = and i32 %a, -65521 |
| %or = or i32 %and, %and1 |
| ret i32 %or |
| } |
| |
| define i32 @test1(i32 %a) { |
| ; CHECK-LABEL: test1: |
| ; CHECK: // %bb.0: |
| ; CHECK-NEXT: mov w8, #5 // =0x5 |
| ; CHECK-NEXT: bfxil w0, w8, #0, #4 |
| ; CHECK-NEXT: ret |
| %1 = and i32 %a, -16 ; 0xfffffff0 |
| %2 = or i32 %1, 5 ; 0x00000005 |
| ret i32 %2 |
| } |
| |
| define i32 @test2(i32 %a) { |
| ; CHECK-LABEL: test2: |
| ; CHECK: // %bb.0: |
| ; CHECK-NEXT: mov w8, #10 // =0xa |
| ; CHECK-NEXT: bfi w0, w8, #22, #4 |
| ; CHECK-NEXT: ret |
| %1 = and i32 %a, -62914561 ; 0xfc3fffff |
| %2 = or i32 %1, 41943040 ; 0x06400000 |
| ret i32 %2 |
| } |
| |
| define i64 @test3(i64 %a) { |
| ; CHECK-LABEL: test3: |
| ; CHECK: // %bb.0: |
| ; CHECK-NEXT: mov x8, #5 // =0x5 |
| ; CHECK-NEXT: bfxil x0, x8, #0, #3 |
| ; CHECK-NEXT: ret |
| %1 = and i64 %a, -8 ; 0xfffffffffffffff8 |
| %2 = or i64 %1, 5 ; 0x0000000000000005 |
| ret i64 %2 |
| } |
| |
| define i64 @test4(i64 %a) { |
| ; CHECK-LABEL: test4: |
| ; CHECK: // %bb.0: |
| ; CHECK-NEXT: mov x8, #9 // =0x9 |
| ; CHECK-NEXT: bfi x0, x8, #1, #7 |
| ; CHECK-NEXT: ret |
| %1 = and i64 %a, -255 ; 0xffffffffffffff01 |
| %2 = or i64 %1, 18 ; 0x0000000000000012 |
| ret i64 %2 |
| } |
| |
| ; Don't generate BFI/BFXIL if the immediate can be encoded in the ORR. |
| define i32 @test5(i32 %a) { |
| ; CHECK-LABEL: test5: |
| ; CHECK: // %bb.0: |
| ; CHECK-NEXT: and w8, w0, #0xfffffff0 |
| ; CHECK-NEXT: orr w0, w8, #0x6 |
| ; CHECK-NEXT: ret |
| %1 = and i32 %a, 4294967280 ; 0xfffffff0 |
| %2 = or i32 %1, 6 ; 0x00000006 |
| ret i32 %2 |
| } |
| |
| ; BFXIL will use the same constant as the ORR, so we don't care how the constant |
| ; is materialized (it's an equal cost either way). |
| define i32 @test6(i32 %a) { |
| ; CHECK-LABEL: test6: |
| ; CHECK: // %bb.0: |
| ; CHECK-NEXT: mov w8, #23250 // =0x5ad2 |
| ; CHECK-NEXT: movk w8, #11, lsl #16 |
| ; CHECK-NEXT: bfxil w0, w8, #0, #20 |
| ; CHECK-NEXT: ret |
| %1 = and i32 %a, 4293918720 ; 0xfff00000 |
| %2 = or i32 %1, 744146 ; 0x000b5ad2 |
| ret i32 %2 |
| } |
| |
| ; BFIs that require the same number of instruction to materialize the constant |
| ; as the original ORR are okay. |
| define i32 @test7(i32 %a) { |
| ; CHECK-LABEL: test7: |
| ; CHECK: // %bb.0: |
| ; CHECK-NEXT: mov w8, #44393 // =0xad69 |
| ; CHECK-NEXT: movk w8, #5, lsl #16 |
| ; CHECK-NEXT: bfi w0, w8, #1, #19 |
| ; CHECK-NEXT: ret |
| %1 = and i32 %a, 4293918721 ; 0xfff00001 |
| %2 = or i32 %1, 744146 ; 0x000b5ad2 |
| ret i32 %2 |
| } |
| |
| ; BFIs that require more instructions to materialize the constant as compared |
| ; to the original ORR are not okay. In this case we would be replacing the |
| ; 'and' with a 'movk', which would decrease ILP while using the same number of |
| ; instructions. |
| define i64 @test8(i64 %a) { |
| ; CHECK-LABEL: test8: |
| ; CHECK: // %bb.0: |
| ; CHECK-NEXT: mov x8, #2035482624 // =0x79530000 |
| ; CHECK-NEXT: and x9, x0, #0xff000000000000ff |
| ; CHECK-NEXT: movk x8, #36694, lsl #32 |
| ; CHECK-NEXT: orr x0, x9, x8 |
| ; CHECK-NEXT: ret |
| %1 = and i64 %a, -72057594037927681 ; 0xff000000000000ff |
| %2 = or i64 %1, 157601565442048 ; 0x00008f5679530000 |
| ret i64 %2 |
| } |
| |
| ; This test exposed an issue with an overly aggressive assert. The bit of code |
| ; that is expected to catch this case is unable to deal with the trunc, which |
| ; results in a failing check due to a mismatch between the BFI opcode and |
| ; the expected value type of the OR. |
| define i32 @test9(i64 %b, i32 %e) { |
| ; CHECK-LABEL: test9: |
| ; CHECK: // %bb.0: |
| ; CHECK-NEXT: lsr x0, x0, #12 |
| ; CHECK-NEXT: lsr w8, w1, #23 |
| ; CHECK-NEXT: bfi w0, w8, #23, #9 |
| ; CHECK-NEXT: // kill: def $w0 killed $w0 killed $x0 |
| ; CHECK-NEXT: ret |
| %c = lshr i64 %b, 12 |
| %d = trunc i64 %c to i32 |
| %f = and i32 %d, 8388607 |
| %g = and i32 %e, -8388608 |
| %h = or i32 %g, %f |
| ret i32 %h |
| } |
| |
| define <2 x i32> @test_complex_type(ptr %addr, i64 %in, ptr %bf ) { |
| ; CHECK-LABEL: test_complex_type: |
| ; CHECK: // %bb.0: |
| ; CHECK-NEXT: ldr d0, [x0], #8 |
| ; CHECK-NEXT: orr x8, x0, x1, lsl #32 |
| ; CHECK-NEXT: str x8, [x2] |
| ; CHECK-NEXT: ret |
| %vec = load <2 x i32>, ptr %addr |
| |
| %vec.next = getelementptr <2 x i32>, ptr %addr, i32 1 |
| %lo = ptrtoint ptr %vec.next to i64 |
| |
| %hi = shl i64 %in, 32 |
| %both = or i64 %lo, %hi |
| store i64 %both, ptr %bf |
| |
| ret <2 x i32> %vec |
| } |
| |
| define i64 @test_truncated_shift(i64 %x, i64 %y) { |
| ; CHECK-LABEL: test_truncated_shift: |
| ; CHECK: // %bb.0: // %entry |
| ; CHECK-NEXT: bfi x0, x1, #25, #5 |
| ; CHECK-NEXT: ret |
| entry: |
| %and = and i64 %x, -1040187393 |
| %shl4 = shl i64 %y, 25 |
| %and5 = and i64 %shl4, 1040187392 |
| %or = or i64 %and5, %and |
| ret i64 %or |
| } |
| |
| define i64 @test_and_extended_shift_with_imm(i64 %0) { |
| ; CHECK-LABEL: test_and_extended_shift_with_imm: |
| ; CHECK: // %bb.0: |
| ; CHECK-NEXT: ubfiz x0, x0, #7, #8 |
| ; CHECK-NEXT: ret |
| %2 = shl i64 %0, 7 |
| %3 = and i64 %2, 32640 ; #0x7f80 |
| ret i64 %3 |
| } |
| |
| ; orr with left-shifted operand is better than bfi, since it improves data |
| ; dependency, and orr has a smaller latency and higher throughput than bfm on |
| ; some AArch64 processors (for the rest, orr is at least as good as bfm) |
| ; |
| ; ubfx x8, x0, #8, #7 |
| ; and x9, x0, #0x7f |
| ; orr x0, x9, x8, lsl #7 |
| define i64 @test_orr_not_bfxil_i64(i64 %0) { |
| ; CHECK-LABEL: test_orr_not_bfxil_i64: |
| ; CHECK: // %bb.0: |
| ; CHECK-NEXT: ubfx x8, x0, #8, #7 |
| ; CHECK-NEXT: and x9, x0, #0x7f |
| ; CHECK-NEXT: orr x0, x9, x8, lsl #7 |
| ; CHECK-NEXT: ret |
| %2 = and i64 %0, 127 |
| %3 = lshr i64 %0, 1 |
| %4 = and i64 %3, 16256 ; 0x3f80 |
| %5 = or i64 %4, %2 |
| ret i64 %5 |
| } |
| |
| ; The 32-bit test for `test_orr_not_bfxil_i64`. |
| define i32 @test_orr_not_bfxil_i32(i32 %0) { |
| ; CHECK-LABEL: test_orr_not_bfxil_i32: |
| ; CHECK: // %bb.0: |
| ; CHECK-NEXT: ubfx w8, w0, #8, #7 |
| ; CHECK-NEXT: and w9, w0, #0x7f |
| ; CHECK-NEXT: orr w0, w9, w8, lsl #7 |
| ; CHECK-NEXT: ret |
| %2 = and i32 %0, 127 |
| %3 = lshr i32 %0, 1 |
| %4 = and i32 %3, 16256 ; 0x3f80 |
| %5 = or i32 %4, %2 |
| ret i32 %5 |
| } |
| |
| ; For or operation, one operand is a left shift of another operand. |
| ; So orr with a left-shifted operand is generated (not bfi). |
| define i64 @test_orr_not_bfi_i64(i64 %0) { |
| ; CHECK-LABEL: test_orr_not_bfi_i64: |
| ; CHECK: // %bb.0: |
| ; CHECK-NEXT: and x8, x0, #0xff |
| ; CHECK-NEXT: orr x0, x8, x8, lsl #8 |
| ; CHECK-NEXT: ret |
| %2 = and i64 %0, 255 |
| %3 = shl i64 %2, 8 |
| %4 = or i64 %2, %3 |
| ret i64 %4 |
| } |
| |
| ; bfi is better than orr, since it would simplify away two instructions |
| ; (%mask and %bit-field-pos-op). |
| define i32 @test_bfi_not_orr_i32(i32 %0, i32 %1) { |
| ; CHECK-LABEL: test_bfi_not_orr_i32: |
| ; CHECK: // %bb.0: |
| ; CHECK-NEXT: and w8, w1, #0xff |
| ; CHECK-NEXT: bfi w8, w0, #8, #8 |
| ; CHECK-NEXT: mov w0, w8 |
| ; CHECK-NEXT: ret |
| %bfi_dst = and i32 %1, 255 |
| %mask = and i32 %0, 255 |
| %bit-field-pos-op = shl i32 %mask, 8 |
| %or_res = or i32 %bit-field-pos-op, %bfi_dst |
| ret i32 %or_res |
| } |
| |
| ; orr is generated (not bfi), since both simplify away one instruction (%3) |
| ; while orr has shorter latency and higher throughput. |
| define i32 @test_orr_not_bfi_i32(i32 %0) { |
| ; CHECK-LABEL: test_orr_not_bfi_i32: |
| ; CHECK: // %bb.0: |
| ; CHECK-NEXT: and w8, w0, #0xff |
| ; CHECK-NEXT: orr w0, w8, w8, lsl #8 |
| ; CHECK-NEXT: ret |
| %2 = and i32 %0, 255 |
| %3 = shl i32 %2, 8 |
| %4 = or i32 %2, %3 |
| ret i32 %4 |
| } |
| |
| ; bfxil is better than orr, since it would simplify away two instructions |
| ; (%mask and %bit-field-extract-op). |
| define i64 @test_bfxil_not_orr_i64(i64 %0, i64 %1) { |
| ; CHECK-LABEL: test_bfxil_not_orr_i64: |
| ; CHECK: // %bb.0: |
| ; CHECK-NEXT: and x0, x0, #0xff000 |
| ; CHECK-NEXT: bfxil x0, x1, #12, #8 |
| ; CHECK-NEXT: ret |
| %shifted-mask = and i64 %1, 1044480 |
| %bfi-dst = and i64 %0, 1044480 |
| %bit-field-extract-op = lshr i64 %shifted-mask, 12 |
| %or_res = or i64 %bit-field-extract-op, %bfi-dst |
| ret i64 %or_res |
| } |
| |
| ; orr is generated (not bfxil), since one operand is the right shift of another |
| ; operand. |
| define i64 @orr_not_bfxil_test2_i64(i64 %0) { |
| ; CHECK-LABEL: orr_not_bfxil_test2_i64: |
| ; CHECK: // %bb.0: |
| ; CHECK-NEXT: and x8, x0, #0xff000 |
| ; CHECK-NEXT: orr x0, x8, x8, lsr #12 |
| ; CHECK-NEXT: ret |
| %2 = and i64 %0, 1044480 ; 0xff000 |
| %3 = lshr i64 %2, 12 |
| %4 = or i64 %2, %3 |
| ret i64 %4 |
| } |
| |
| ; bfxil simplifies away two instructions (that computes %shifted-mask and |
| ; %bit-field-extract-op respectively), so it's better than orr (which |
| ; simplifies away at most one shift). |
| define i32 @test_bfxil_not_orr_i32(i32 %0, i32 %1) { |
| ; CHECK-LABEL: test_bfxil_not_orr_i32: |
| ; CHECK: // %bb.0: |
| ; CHECK-NEXT: and w0, w0, #0xff000 |
| ; CHECK-NEXT: bfxil w0, w1, #12, #8 |
| ; CHECK-NEXT: ret |
| %shifted-mask = and i32 %1, 1044480 |
| %bfxil-dst = and i32 %0, 1044480 |
| %bit-field-extract-op = lshr i32 %shifted-mask, 12 |
| %or_res = or i32 %bit-field-extract-op, %bfxil-dst |
| ret i32 %or_res |
| } |
| |
| ; one operand is the shift of another operand, so orr is generated (not bfxil). |
| define i32 @orr_not_bfxil_test2_i32(i32 %0) { |
| ; CHECK-LABEL: orr_not_bfxil_test2_i32: |
| ; CHECK: // %bb.0: |
| ; CHECK-NEXT: and w8, w0, #0xff000 |
| ; CHECK-NEXT: orr w0, w8, w8, lsr #12 |
| ; CHECK-NEXT: ret |
| %2 = and i32 %0, 1044480 ; 0xff000 |
| %3 = lshr i32 %2, 12 |
| %4 = or i32 %2, %3 |
| ret i32 %4 |
| } |