| //===-- RISCVTargetTransformInfo.cpp - RISC-V specific TTI ----------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "RISCVTargetTransformInfo.h" |
| #include "MCTargetDesc/RISCVMatInt.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/CodeGen/BasicTTIImpl.h" |
| #include "llvm/CodeGen/CostTable.h" |
| #include "llvm/CodeGen/TargetLowering.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include <cmath> |
| #include <optional> |
| using namespace llvm; |
| using namespace llvm::PatternMatch; |
| |
| #define DEBUG_TYPE "riscvtti" |
| |
| static cl::opt<unsigned> RVVRegisterWidthLMUL( |
| "riscv-v-register-bit-width-lmul", |
| cl::desc( |
| "The LMUL to use for getRegisterBitWidth queries. Affects LMUL used " |
| "by autovectorized code. Fractional LMULs are not supported."), |
| cl::init(2), cl::Hidden); |
| |
| static cl::opt<unsigned> SLPMaxVF( |
| "riscv-v-slp-max-vf", |
| cl::desc( |
| "Overrides result used for getMaximumVF query which is used " |
| "exclusively by SLP vectorizer."), |
| cl::Hidden); |
| |
| InstructionCost |
| RISCVTTIImpl::getRISCVInstructionCost(ArrayRef<unsigned> OpCodes, MVT VT, |
| TTI::TargetCostKind CostKind) { |
| // Check if the type is valid for all CostKind |
| if (!VT.isVector()) |
| return InstructionCost::getInvalid(); |
| size_t NumInstr = OpCodes.size(); |
| if (CostKind == TTI::TCK_CodeSize) |
| return NumInstr; |
| InstructionCost LMULCost = TLI->getLMULCost(VT); |
| if ((CostKind != TTI::TCK_RecipThroughput) && (CostKind != TTI::TCK_Latency)) |
| return LMULCost * NumInstr; |
| InstructionCost Cost = 0; |
| for (auto Op : OpCodes) { |
| switch (Op) { |
| case RISCV::VRGATHER_VI: |
| Cost += TLI->getVRGatherVICost(VT); |
| break; |
| case RISCV::VRGATHER_VV: |
| Cost += TLI->getVRGatherVVCost(VT); |
| break; |
| case RISCV::VSLIDEUP_VI: |
| case RISCV::VSLIDEDOWN_VI: |
| Cost += TLI->getVSlideVICost(VT); |
| break; |
| case RISCV::VSLIDEUP_VX: |
| case RISCV::VSLIDEDOWN_VX: |
| Cost += TLI->getVSlideVXCost(VT); |
| break; |
| case RISCV::VREDMAX_VS: |
| case RISCV::VREDMIN_VS: |
| case RISCV::VREDMAXU_VS: |
| case RISCV::VREDMINU_VS: |
| case RISCV::VREDSUM_VS: |
| case RISCV::VREDAND_VS: |
| case RISCV::VREDOR_VS: |
| case RISCV::VREDXOR_VS: |
| case RISCV::VFREDMAX_VS: |
| case RISCV::VFREDMIN_VS: |
| case RISCV::VFREDUSUM_VS: { |
| unsigned VL = VT.getVectorMinNumElements(); |
| if (!VT.isFixedLengthVector()) |
| VL *= *getVScaleForTuning(); |
| Cost += Log2_32_Ceil(VL); |
| break; |
| } |
| case RISCV::VFREDOSUM_VS: { |
| unsigned VL = VT.getVectorMinNumElements(); |
| if (!VT.isFixedLengthVector()) |
| VL *= *getVScaleForTuning(); |
| Cost += VL; |
| break; |
| } |
| case RISCV::VMV_X_S: |
| case RISCV::VMV_S_X: |
| case RISCV::VFMV_F_S: |
| case RISCV::VFMV_S_F: |
| case RISCV::VMOR_MM: |
| case RISCV::VMXOR_MM: |
| case RISCV::VMAND_MM: |
| case RISCV::VMANDN_MM: |
| case RISCV::VMNAND_MM: |
| case RISCV::VCPOP_M: |
| case RISCV::VFIRST_M: |
| Cost += 1; |
| break; |
| default: |
| Cost += LMULCost; |
| } |
| } |
| return Cost; |
| } |
| |
| static InstructionCost getIntImmCostImpl(const DataLayout &DL, |
| const RISCVSubtarget *ST, |
| const APInt &Imm, Type *Ty, |
| TTI::TargetCostKind CostKind, |
| bool FreeZeroes) { |
| assert(Ty->isIntegerTy() && |
| "getIntImmCost can only estimate cost of materialising integers"); |
| |
| // We have a Zero register, so 0 is always free. |
| if (Imm == 0) |
| return TTI::TCC_Free; |
| |
| // Otherwise, we check how many instructions it will take to materialise. |
| return RISCVMatInt::getIntMatCost(Imm, DL.getTypeSizeInBits(Ty), *ST, |
| /*CompressionCost=*/false, FreeZeroes); |
| } |
| |
| InstructionCost RISCVTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty, |
| TTI::TargetCostKind CostKind) { |
| return getIntImmCostImpl(getDataLayout(), getST(), Imm, Ty, CostKind, false); |
| } |
| |
| // Look for patterns of shift followed by AND that can be turned into a pair of |
| // shifts. We won't need to materialize an immediate for the AND so these can |
| // be considered free. |
| static bool canUseShiftPair(Instruction *Inst, const APInt &Imm) { |
| uint64_t Mask = Imm.getZExtValue(); |
| auto *BO = dyn_cast<BinaryOperator>(Inst->getOperand(0)); |
| if (!BO || !BO->hasOneUse()) |
| return false; |
| |
| if (BO->getOpcode() != Instruction::Shl) |
| return false; |
| |
| if (!isa<ConstantInt>(BO->getOperand(1))) |
| return false; |
| |
| unsigned ShAmt = cast<ConstantInt>(BO->getOperand(1))->getZExtValue(); |
| // (and (shl x, c2), c1) will be matched to (srli (slli x, c2+c3), c3) if c1 |
| // is a mask shifted by c2 bits with c3 leading zeros. |
| if (isShiftedMask_64(Mask)) { |
| unsigned Trailing = llvm::countr_zero(Mask); |
| if (ShAmt == Trailing) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| InstructionCost RISCVTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, |
| const APInt &Imm, Type *Ty, |
| TTI::TargetCostKind CostKind, |
| Instruction *Inst) { |
| assert(Ty->isIntegerTy() && |
| "getIntImmCost can only estimate cost of materialising integers"); |
| |
| // We have a Zero register, so 0 is always free. |
| if (Imm == 0) |
| return TTI::TCC_Free; |
| |
| // Some instructions in RISC-V can take a 12-bit immediate. Some of these are |
| // commutative, in others the immediate comes from a specific argument index. |
| bool Takes12BitImm = false; |
| unsigned ImmArgIdx = ~0U; |
| |
| switch (Opcode) { |
| case Instruction::GetElementPtr: |
| // Never hoist any arguments to a GetElementPtr. CodeGenPrepare will |
| // split up large offsets in GEP into better parts than ConstantHoisting |
| // can. |
| return TTI::TCC_Free; |
| case Instruction::Store: { |
| // Use the materialization cost regardless of if it's the address or the |
| // value that is constant, except for if the store is misaligned and |
| // misaligned accesses are not legal (experience shows constant hoisting |
| // can sometimes be harmful in such cases). |
| if (Idx == 1 || !Inst) |
| return getIntImmCostImpl(getDataLayout(), getST(), Imm, Ty, CostKind, |
| /*FreeZeroes=*/true); |
| |
| StoreInst *ST = cast<StoreInst>(Inst); |
| if (!getTLI()->allowsMemoryAccessForAlignment( |
| Ty->getContext(), DL, getTLI()->getValueType(DL, Ty), |
| ST->getPointerAddressSpace(), ST->getAlign())) |
| return TTI::TCC_Free; |
| |
| return getIntImmCostImpl(getDataLayout(), getST(), Imm, Ty, CostKind, |
| /*FreeZeroes=*/true); |
| } |
| case Instruction::Load: |
| // If the address is a constant, use the materialization cost. |
| return getIntImmCost(Imm, Ty, CostKind); |
| case Instruction::And: |
| // zext.h |
| if (Imm == UINT64_C(0xffff) && ST->hasStdExtZbb()) |
| return TTI::TCC_Free; |
| // zext.w |
| if (Imm == UINT64_C(0xffffffff) && ST->hasStdExtZba()) |
| return TTI::TCC_Free; |
| // bclri |
| if (ST->hasStdExtZbs() && (~Imm).isPowerOf2()) |
| return TTI::TCC_Free; |
| if (Inst && Idx == 1 && Imm.getBitWidth() <= ST->getXLen() && |
| canUseShiftPair(Inst, Imm)) |
| return TTI::TCC_Free; |
| Takes12BitImm = true; |
| break; |
| case Instruction::Add: |
| Takes12BitImm = true; |
| break; |
| case Instruction::Or: |
| case Instruction::Xor: |
| // bseti/binvi |
| if (ST->hasStdExtZbs() && Imm.isPowerOf2()) |
| return TTI::TCC_Free; |
| Takes12BitImm = true; |
| break; |
| case Instruction::Mul: |
| // Power of 2 is a shift. Negated power of 2 is a shift and a negate. |
| if (Imm.isPowerOf2() || Imm.isNegatedPowerOf2()) |
| return TTI::TCC_Free; |
| // One more or less than a power of 2 can use SLLI+ADD/SUB. |
| if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2()) |
| return TTI::TCC_Free; |
| // FIXME: There is no MULI instruction. |
| Takes12BitImm = true; |
| break; |
| case Instruction::Sub: |
| case Instruction::Shl: |
| case Instruction::LShr: |
| case Instruction::AShr: |
| Takes12BitImm = true; |
| ImmArgIdx = 1; |
| break; |
| default: |
| break; |
| } |
| |
| if (Takes12BitImm) { |
| // Check immediate is the correct argument... |
| if (Instruction::isCommutative(Opcode) || Idx == ImmArgIdx) { |
| // ... and fits into the 12-bit immediate. |
| if (Imm.getSignificantBits() <= 64 && |
| getTLI()->isLegalAddImmediate(Imm.getSExtValue())) { |
| return TTI::TCC_Free; |
| } |
| } |
| |
| // Otherwise, use the full materialisation cost. |
| return getIntImmCost(Imm, Ty, CostKind); |
| } |
| |
| // By default, prevent hoisting. |
| return TTI::TCC_Free; |
| } |
| |
| InstructionCost |
| RISCVTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, |
| const APInt &Imm, Type *Ty, |
| TTI::TargetCostKind CostKind) { |
| // Prevent hoisting in unknown cases. |
| return TTI::TCC_Free; |
| } |
| |
| bool RISCVTTIImpl::hasActiveVectorLength(unsigned, Type *DataTy, Align) const { |
| return ST->hasVInstructions(); |
| } |
| |
| TargetTransformInfo::PopcntSupportKind |
| RISCVTTIImpl::getPopcntSupport(unsigned TyWidth) { |
| assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2"); |
| return ST->hasStdExtZbb() || (ST->hasVendorXCVbitmanip() && !ST->is64Bit()) |
| ? TTI::PSK_FastHardware |
| : TTI::PSK_Software; |
| } |
| |
| bool RISCVTTIImpl::shouldExpandReduction(const IntrinsicInst *II) const { |
| // Currently, the ExpandReductions pass can't expand scalable-vector |
| // reductions, but we still request expansion as RVV doesn't support certain |
| // reductions and the SelectionDAG can't legalize them either. |
| switch (II->getIntrinsicID()) { |
| default: |
| return false; |
| // These reductions have no equivalent in RVV |
| case Intrinsic::vector_reduce_mul: |
| case Intrinsic::vector_reduce_fmul: |
| return true; |
| } |
| } |
| |
| std::optional<unsigned> RISCVTTIImpl::getMaxVScale() const { |
| if (ST->hasVInstructions()) |
| return ST->getRealMaxVLen() / RISCV::RVVBitsPerBlock; |
| return BaseT::getMaxVScale(); |
| } |
| |
| std::optional<unsigned> RISCVTTIImpl::getVScaleForTuning() const { |
| if (ST->hasVInstructions()) |
| if (unsigned MinVLen = ST->getRealMinVLen(); |
| MinVLen >= RISCV::RVVBitsPerBlock) |
| return MinVLen / RISCV::RVVBitsPerBlock; |
| return BaseT::getVScaleForTuning(); |
| } |
| |
| TypeSize |
| RISCVTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const { |
| unsigned LMUL = |
| llvm::bit_floor(std::clamp<unsigned>(RVVRegisterWidthLMUL, 1, 8)); |
| switch (K) { |
| case TargetTransformInfo::RGK_Scalar: |
| return TypeSize::getFixed(ST->getXLen()); |
| case TargetTransformInfo::RGK_FixedWidthVector: |
| return TypeSize::getFixed( |
| ST->useRVVForFixedLengthVectors() ? LMUL * ST->getRealMinVLen() : 0); |
| case TargetTransformInfo::RGK_ScalableVector: |
| return TypeSize::getScalable( |
| (ST->hasVInstructions() && |
| ST->getRealMinVLen() >= RISCV::RVVBitsPerBlock) |
| ? LMUL * RISCV::RVVBitsPerBlock |
| : 0); |
| } |
| |
| llvm_unreachable("Unsupported register kind"); |
| } |
| |
| InstructionCost |
| RISCVTTIImpl::getConstantPoolLoadCost(Type *Ty, TTI::TargetCostKind CostKind) { |
| // Add a cost of address generation + the cost of the load. The address |
| // is expected to be a PC relative offset to a constant pool entry |
| // using auipc/addi. |
| return 2 + getMemoryOpCost(Instruction::Load, Ty, DL.getABITypeAlign(Ty), |
| /*AddressSpace=*/0, CostKind); |
| } |
| |
| static VectorType *getVRGatherIndexType(MVT DataVT, const RISCVSubtarget &ST, |
| LLVMContext &C) { |
| assert((DataVT.getScalarSizeInBits() != 8 || |
| DataVT.getVectorNumElements() <= 256) && "unhandled case in lowering"); |
| MVT IndexVT = DataVT.changeTypeToInteger(); |
| if (IndexVT.getScalarType().bitsGT(ST.getXLenVT())) |
| IndexVT = IndexVT.changeVectorElementType(MVT::i16); |
| return cast<VectorType>(EVT(IndexVT).getTypeForEVT(C)); |
| } |
| |
| InstructionCost RISCVTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, |
| VectorType *Tp, ArrayRef<int> Mask, |
| TTI::TargetCostKind CostKind, |
| int Index, VectorType *SubTp, |
| ArrayRef<const Value *> Args, |
| const Instruction *CxtI) { |
| Kind = improveShuffleKindFromMask(Kind, Mask, Tp, Index, SubTp); |
| |
| std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp); |
| |
| // First, handle cases where having a fixed length vector enables us to |
| // give a more accurate cost than falling back to generic scalable codegen. |
| // TODO: Each of these cases hints at a modeling gap around scalable vectors. |
| if (isa<FixedVectorType>(Tp)) { |
| switch (Kind) { |
| default: |
| break; |
| case TTI::SK_PermuteSingleSrc: { |
| if (Mask.size() >= 2 && LT.second.isFixedLengthVector()) { |
| MVT EltTp = LT.second.getVectorElementType(); |
| // If the size of the element is < ELEN then shuffles of interleaves and |
| // deinterleaves of 2 vectors can be lowered into the following |
| // sequences |
| if (EltTp.getScalarSizeInBits() < ST->getELen()) { |
| // Example sequence: |
| // vsetivli zero, 4, e8, mf4, ta, ma (ignored) |
| // vwaddu.vv v10, v8, v9 |
| // li a0, -1 (ignored) |
| // vwmaccu.vx v10, a0, v9 |
| if (ShuffleVectorInst::isInterleaveMask(Mask, 2, Mask.size())) |
| return 2 * LT.first * TLI->getLMULCost(LT.second); |
| |
| if (Mask[0] == 0 || Mask[0] == 1) { |
| auto DeinterleaveMask = createStrideMask(Mask[0], 2, Mask.size()); |
| // Example sequence: |
| // vnsrl.wi v10, v8, 0 |
| if (equal(DeinterleaveMask, Mask)) |
| return LT.first * getRISCVInstructionCost(RISCV::VNSRL_WI, |
| LT.second, CostKind); |
| } |
| } |
| } |
| // vrgather + cost of generating the mask constant. |
| // We model this for an unknown mask with a single vrgather. |
| if (LT.second.isFixedLengthVector() && LT.first == 1 && |
| (LT.second.getScalarSizeInBits() != 8 || |
| LT.second.getVectorNumElements() <= 256)) { |
| VectorType *IdxTy = getVRGatherIndexType(LT.second, *ST, Tp->getContext()); |
| InstructionCost IndexCost = getConstantPoolLoadCost(IdxTy, CostKind); |
| return IndexCost + |
| getRISCVInstructionCost(RISCV::VRGATHER_VV, LT.second, CostKind); |
| } |
| [[fallthrough]]; |
| } |
| case TTI::SK_Transpose: |
| case TTI::SK_PermuteTwoSrc: { |
| // 2 x (vrgather + cost of generating the mask constant) + cost of mask |
| // register for the second vrgather. We model this for an unknown |
| // (shuffle) mask. |
| if (LT.second.isFixedLengthVector() && LT.first == 1 && |
| (LT.second.getScalarSizeInBits() != 8 || |
| LT.second.getVectorNumElements() <= 256)) { |
| auto &C = Tp->getContext(); |
| auto EC = Tp->getElementCount(); |
| VectorType *IdxTy = getVRGatherIndexType(LT.second, *ST, C); |
| VectorType *MaskTy = VectorType::get(IntegerType::getInt1Ty(C), EC); |
| InstructionCost IndexCost = getConstantPoolLoadCost(IdxTy, CostKind); |
| InstructionCost MaskCost = getConstantPoolLoadCost(MaskTy, CostKind); |
| return 2 * IndexCost + |
| getRISCVInstructionCost({RISCV::VRGATHER_VV, RISCV::VRGATHER_VV}, |
| LT.second, CostKind) + |
| MaskCost; |
| } |
| [[fallthrough]]; |
| } |
| case TTI::SK_Select: { |
| // We are going to permute multiple sources and the result will be in |
| // multiple destinations. Providing an accurate cost only for splits where |
| // the element type remains the same. |
| if (!Mask.empty() && LT.first.isValid() && LT.first != 1 && |
| LT.second.isFixedLengthVector() && |
| LT.second.getVectorElementType().getSizeInBits() == |
| Tp->getElementType()->getPrimitiveSizeInBits() && |
| LT.second.getVectorNumElements() < |
| cast<FixedVectorType>(Tp)->getNumElements() && |
| divideCeil(Mask.size(), |
| cast<FixedVectorType>(Tp)->getNumElements()) == |
| static_cast<unsigned>(*LT.first.getValue())) { |
| unsigned NumRegs = *LT.first.getValue(); |
| unsigned VF = cast<FixedVectorType>(Tp)->getNumElements(); |
| unsigned SubVF = PowerOf2Ceil(VF / NumRegs); |
| auto *SubVecTy = FixedVectorType::get(Tp->getElementType(), SubVF); |
| |
| InstructionCost Cost = 0; |
| for (unsigned I = 0; I < NumRegs; ++I) { |
| bool IsSingleVector = true; |
| SmallVector<int> SubMask(SubVF, PoisonMaskElem); |
| transform(Mask.slice(I * SubVF, |
| I == NumRegs - 1 ? Mask.size() % SubVF : SubVF), |
| SubMask.begin(), [&](int I) { |
| bool SingleSubVector = I / VF == 0; |
| IsSingleVector &= SingleSubVector; |
| return (SingleSubVector ? 0 : 1) * SubVF + I % VF; |
| }); |
| Cost += getShuffleCost(IsSingleVector ? TTI::SK_PermuteSingleSrc |
| : TTI::SK_PermuteTwoSrc, |
| SubVecTy, SubMask, CostKind, 0, nullptr); |
| return Cost; |
| } |
| } |
| break; |
| } |
| } |
| }; |
| |
| // Handle scalable vectors (and fixed vectors legalized to scalable vectors). |
| switch (Kind) { |
| default: |
| // Fallthrough to generic handling. |
| // TODO: Most of these cases will return getInvalid in generic code, and |
| // must be implemented here. |
| break; |
| case TTI::SK_ExtractSubvector: |
| // Extract at zero is always a subregister extract |
| if (Index == 0) |
| return TTI::TCC_Free; |
| |
| // If we're extracting a subvector of at most m1 size at a sub-register |
| // boundary - which unfortunately we need exact vlen to identify - this is |
| // a subregister extract at worst and thus won't require a vslidedown. |
| // TODO: Extend for aligned m2, m4 subvector extracts |
| // TODO: Extend for misalgined (but contained) extracts |
| // TODO: Extend for scalable subvector types |
| if (std::pair<InstructionCost, MVT> SubLT = getTypeLegalizationCost(SubTp); |
| SubLT.second.isValid() && SubLT.second.isFixedLengthVector()) { |
| const unsigned MinVLen = ST->getRealMinVLen(); |
| const unsigned MaxVLen = ST->getRealMaxVLen(); |
| if (MinVLen == MaxVLen && |
| SubLT.second.getScalarSizeInBits() * Index % MinVLen == 0 && |
| SubLT.second.getSizeInBits() <= MinVLen) |
| return TTI::TCC_Free; |
| } |
| |
| // Example sequence: |
| // vsetivli zero, 4, e8, mf2, tu, ma (ignored) |
| // vslidedown.vi v8, v9, 2 |
| return LT.first * |
| getRISCVInstructionCost(RISCV::VSLIDEDOWN_VI, LT.second, CostKind); |
| case TTI::SK_InsertSubvector: |
| // Example sequence: |
| // vsetivli zero, 4, e8, mf2, tu, ma (ignored) |
| // vslideup.vi v8, v9, 2 |
| return LT.first * |
| getRISCVInstructionCost(RISCV::VSLIDEUP_VI, LT.second, CostKind); |
| case TTI::SK_Select: { |
| // Example sequence: |
| // li a0, 90 |
| // vsetivli zero, 8, e8, mf2, ta, ma (ignored) |
| // vmv.s.x v0, a0 |
| // vmerge.vvm v8, v9, v8, v0 |
| // We use 2 for the cost of the mask materialization as this is the true |
| // cost for small masks and most shuffles are small. At worst, this cost |
| // should be a very small constant for the constant pool load. As such, |
| // we may bias towards large selects slightly more than truely warranted. |
| return LT.first * |
| (1 + getRISCVInstructionCost({RISCV::VMV_S_X, RISCV::VMERGE_VVM}, |
| LT.second, CostKind)); |
| } |
| case TTI::SK_Broadcast: { |
| bool HasScalar = (Args.size() > 0) && (Operator::getOpcode(Args[0]) == |
| Instruction::InsertElement); |
| if (LT.second.getScalarSizeInBits() == 1) { |
| if (HasScalar) { |
| // Example sequence: |
| // andi a0, a0, 1 |
| // vsetivli zero, 2, e8, mf8, ta, ma (ignored) |
| // vmv.v.x v8, a0 |
| // vmsne.vi v0, v8, 0 |
| return LT.first * |
| (1 + getRISCVInstructionCost({RISCV::VMV_V_X, RISCV::VMSNE_VI}, |
| LT.second, CostKind)); |
| } |
| // Example sequence: |
| // vsetivli zero, 2, e8, mf8, ta, mu (ignored) |
| // vmv.v.i v8, 0 |
| // vmerge.vim v8, v8, 1, v0 |
| // vmv.x.s a0, v8 |
| // andi a0, a0, 1 |
| // vmv.v.x v8, a0 |
| // vmsne.vi v0, v8, 0 |
| |
| return LT.first * |
| (1 + getRISCVInstructionCost({RISCV::VMV_V_I, RISCV::VMERGE_VIM, |
| RISCV::VMV_X_S, RISCV::VMV_V_X, |
| RISCV::VMSNE_VI}, |
| LT.second, CostKind)); |
| } |
| |
| if (HasScalar) { |
| // Example sequence: |
| // vmv.v.x v8, a0 |
| return LT.first * |
| getRISCVInstructionCost(RISCV::VMV_V_X, LT.second, CostKind); |
| } |
| |
| // Example sequence: |
| // vrgather.vi v9, v8, 0 |
| return LT.first * |
| getRISCVInstructionCost(RISCV::VRGATHER_VI, LT.second, CostKind); |
| } |
| case TTI::SK_Splice: { |
| // vslidedown+vslideup. |
| // TODO: Multiplying by LT.first implies this legalizes into multiple copies |
| // of similar code, but I think we expand through memory. |
| unsigned Opcodes[2] = {RISCV::VSLIDEDOWN_VX, RISCV::VSLIDEUP_VX}; |
| if (Index >= 0 && Index < 32) |
| Opcodes[0] = RISCV::VSLIDEDOWN_VI; |
| else if (Index < 0 && Index > -32) |
| Opcodes[1] = RISCV::VSLIDEUP_VI; |
| return LT.first * getRISCVInstructionCost(Opcodes, LT.second, CostKind); |
| } |
| case TTI::SK_Reverse: { |
| // TODO: Cases to improve here: |
| // * Illegal vector types |
| // * i64 on RV32 |
| // * i1 vector |
| // At low LMUL, most of the cost is producing the vrgather index register. |
| // At high LMUL, the cost of the vrgather itself will dominate. |
| // Example sequence: |
| // csrr a0, vlenb |
| // srli a0, a0, 3 |
| // addi a0, a0, -1 |
| // vsetvli a1, zero, e8, mf8, ta, mu (ignored) |
| // vid.v v9 |
| // vrsub.vx v10, v9, a0 |
| // vrgather.vv v9, v8, v10 |
| InstructionCost LenCost = 3; |
| if (LT.second.isFixedLengthVector()) |
| // vrsub.vi has a 5 bit immediate field, otherwise an li suffices |
| LenCost = isInt<5>(LT.second.getVectorNumElements() - 1) ? 0 : 1; |
| unsigned Opcodes[] = {RISCV::VID_V, RISCV::VRSUB_VX, RISCV::VRGATHER_VV}; |
| if (LT.second.isFixedLengthVector() && |
| isInt<5>(LT.second.getVectorNumElements() - 1)) |
| Opcodes[1] = RISCV::VRSUB_VI; |
| InstructionCost GatherCost = |
| getRISCVInstructionCost(Opcodes, LT.second, CostKind); |
| // Mask operation additionally required extend and truncate |
| InstructionCost ExtendCost = Tp->getElementType()->isIntegerTy(1) ? 3 : 0; |
| return LT.first * (LenCost + GatherCost + ExtendCost); |
| } |
| } |
| return BaseT::getShuffleCost(Kind, Tp, Mask, CostKind, Index, SubTp); |
| } |
| |
| InstructionCost |
| RISCVTTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, |
| unsigned AddressSpace, |
| TTI::TargetCostKind CostKind) { |
| if (!isLegalMaskedLoadStore(Src, Alignment) || |
| CostKind != TTI::TCK_RecipThroughput) |
| return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace, |
| CostKind); |
| |
| return getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind); |
| } |
| |
| InstructionCost RISCVTTIImpl::getInterleavedMemoryOpCost( |
| unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, |
| Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, |
| bool UseMaskForCond, bool UseMaskForGaps) { |
| if (isa<ScalableVectorType>(VecTy) && Factor != 2) |
| return InstructionCost::getInvalid(); |
| |
| // The interleaved memory access pass will lower interleaved memory ops (i.e |
| // a load and store followed by a specific shuffle) to vlseg/vsseg |
| // intrinsics. In those cases then we can treat it as if it's just one (legal) |
| // memory op |
| if (!UseMaskForCond && !UseMaskForGaps && |
| Factor <= TLI->getMaxSupportedInterleaveFactor()) { |
| auto *VTy = cast<VectorType>(VecTy); |
| std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(VTy); |
| // Need to make sure type has't been scalarized |
| if (LT.second.isVector()) { |
| auto *SubVecTy = |
| VectorType::get(VTy->getElementType(), |
| VTy->getElementCount().divideCoefficientBy(Factor)); |
| |
| if (VTy->getElementCount().isKnownMultipleOf(Factor) && |
| TLI->isLegalInterleavedAccessType(SubVecTy, Factor, Alignment, |
| AddressSpace, DL)) { |
| // FIXME: We use the memory op cost of the *legalized* type here, |
| // because it's getMemoryOpCost returns a really expensive cost for |
| // types like <6 x i8>, which show up when doing interleaves of |
| // Factor=3 etc. Should the memory op cost of these be cheaper? |
| auto *LegalVTy = VectorType::get(VTy->getElementType(), |
| LT.second.getVectorElementCount()); |
| InstructionCost LegalMemCost = getMemoryOpCost( |
| Opcode, LegalVTy, Alignment, AddressSpace, CostKind); |
| return LT.first + LegalMemCost; |
| } |
| } |
| } |
| |
| // TODO: Return the cost of interleaved accesses for scalable vector when |
| // unable to convert to segment accesses instructions. |
| if (isa<ScalableVectorType>(VecTy)) |
| return InstructionCost::getInvalid(); |
| |
| auto *FVTy = cast<FixedVectorType>(VecTy); |
| InstructionCost MemCost = |
| getMemoryOpCost(Opcode, VecTy, Alignment, AddressSpace, CostKind); |
| unsigned VF = FVTy->getNumElements() / Factor; |
| |
| // An interleaved load will look like this for Factor=3: |
| // %wide.vec = load <12 x i32>, ptr %3, align 4 |
| // %strided.vec = shufflevector %wide.vec, poison, <4 x i32> <stride mask> |
| // %strided.vec1 = shufflevector %wide.vec, poison, <4 x i32> <stride mask> |
| // %strided.vec2 = shufflevector %wide.vec, poison, <4 x i32> <stride mask> |
| if (Opcode == Instruction::Load) { |
| InstructionCost Cost = MemCost; |
| for (unsigned Index : Indices) { |
| FixedVectorType *SubVecTy = |
| FixedVectorType::get(FVTy->getElementType(), VF * Factor); |
| auto Mask = createStrideMask(Index, Factor, VF); |
| InstructionCost ShuffleCost = |
| getShuffleCost(TTI::ShuffleKind::SK_PermuteSingleSrc, SubVecTy, Mask, |
| CostKind, 0, nullptr, {}); |
| Cost += ShuffleCost; |
| } |
| return Cost; |
| } |
| |
| // TODO: Model for NF > 2 |
| // We'll need to enhance getShuffleCost to model shuffles that are just |
| // inserts and extracts into subvectors, since they won't have the full cost |
| // of a vrgather. |
| // An interleaved store for 3 vectors of 4 lanes will look like |
| // %11 = shufflevector <4 x i32> %4, <4 x i32> %6, <8 x i32> <0...7> |
| // %12 = shufflevector <4 x i32> %9, <4 x i32> poison, <8 x i32> <0...3> |
| // %13 = shufflevector <8 x i32> %11, <8 x i32> %12, <12 x i32> <0...11> |
| // %interleaved.vec = shufflevector %13, poison, <12 x i32> <interleave mask> |
| // store <12 x i32> %interleaved.vec, ptr %10, align 4 |
| if (Factor != 2) |
| return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, |
| Alignment, AddressSpace, CostKind, |
| UseMaskForCond, UseMaskForGaps); |
| |
| assert(Opcode == Instruction::Store && "Opcode must be a store"); |
| // For an interleaving store of 2 vectors, we perform one large interleaving |
| // shuffle that goes into the wide store |
| auto Mask = createInterleaveMask(VF, Factor); |
| InstructionCost ShuffleCost = |
| getShuffleCost(TTI::ShuffleKind::SK_PermuteSingleSrc, FVTy, Mask, |
| CostKind, 0, nullptr, {}); |
| return MemCost + ShuffleCost; |
| } |
| |
| InstructionCost RISCVTTIImpl::getGatherScatterOpCost( |
| unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, |
| Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) { |
| if (CostKind != TTI::TCK_RecipThroughput) |
| return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, |
| Alignment, CostKind, I); |
| |
| if ((Opcode == Instruction::Load && |
| !isLegalMaskedGather(DataTy, Align(Alignment))) || |
| (Opcode == Instruction::Store && |
| !isLegalMaskedScatter(DataTy, Align(Alignment)))) |
| return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, |
| Alignment, CostKind, I); |
| |
| // Cost is proportional to the number of memory operations implied. For |
| // scalable vectors, we use an estimate on that number since we don't |
| // know exactly what VL will be. |
| auto &VTy = *cast<VectorType>(DataTy); |
| InstructionCost MemOpCost = |
| getMemoryOpCost(Opcode, VTy.getElementType(), Alignment, 0, CostKind, |
| {TTI::OK_AnyValue, TTI::OP_None}, I); |
| unsigned NumLoads = getEstimatedVLFor(&VTy); |
| return NumLoads * MemOpCost; |
| } |
| |
| InstructionCost RISCVTTIImpl::getStridedMemoryOpCost( |
| unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, |
| Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) { |
| if (((Opcode == Instruction::Load || Opcode == Instruction::Store) && |
| !isLegalStridedLoadStore(DataTy, Alignment)) || |
| (Opcode != Instruction::Load && Opcode != Instruction::Store)) |
| return BaseT::getStridedMemoryOpCost(Opcode, DataTy, Ptr, VariableMask, |
| Alignment, CostKind, I); |
| |
| if (CostKind == TTI::TCK_CodeSize) |
| return TTI::TCC_Basic; |
| |
| // Cost is proportional to the number of memory operations implied. For |
| // scalable vectors, we use an estimate on that number since we don't |
| // know exactly what VL will be. |
| auto &VTy = *cast<VectorType>(DataTy); |
| InstructionCost MemOpCost = |
| getMemoryOpCost(Opcode, VTy.getElementType(), Alignment, 0, CostKind, |
| {TTI::OK_AnyValue, TTI::OP_None}, I); |
| unsigned NumLoads = getEstimatedVLFor(&VTy); |
| return NumLoads * MemOpCost; |
| } |
| |
| // Currently, these represent both throughput and codesize costs |
| // for the respective intrinsics. The costs in this table are simply |
| // instruction counts with the following adjustments made: |
| // * One vsetvli is considered free. |
| static const CostTblEntry VectorIntrinsicCostTable[]{ |
| {Intrinsic::floor, MVT::f32, 9}, |
| {Intrinsic::floor, MVT::f64, 9}, |
| {Intrinsic::ceil, MVT::f32, 9}, |
| {Intrinsic::ceil, MVT::f64, 9}, |
| {Intrinsic::trunc, MVT::f32, 7}, |
| {Intrinsic::trunc, MVT::f64, 7}, |
| {Intrinsic::round, MVT::f32, 9}, |
| {Intrinsic::round, MVT::f64, 9}, |
| {Intrinsic::roundeven, MVT::f32, 9}, |
| {Intrinsic::roundeven, MVT::f64, 9}, |
| {Intrinsic::rint, MVT::f32, 7}, |
| {Intrinsic::rint, MVT::f64, 7}, |
| {Intrinsic::lrint, MVT::i32, 1}, |
| {Intrinsic::lrint, MVT::i64, 1}, |
| {Intrinsic::llrint, MVT::i64, 1}, |
| {Intrinsic::nearbyint, MVT::f32, 9}, |
| {Intrinsic::nearbyint, MVT::f64, 9}, |
| {Intrinsic::bswap, MVT::i16, 3}, |
| {Intrinsic::bswap, MVT::i32, 12}, |
| {Intrinsic::bswap, MVT::i64, 31}, |
| {Intrinsic::vp_bswap, MVT::i16, 3}, |
| {Intrinsic::vp_bswap, MVT::i32, 12}, |
| {Intrinsic::vp_bswap, MVT::i64, 31}, |
| {Intrinsic::vp_fshl, MVT::i8, 7}, |
| {Intrinsic::vp_fshl, MVT::i16, 7}, |
| {Intrinsic::vp_fshl, MVT::i32, 7}, |
| {Intrinsic::vp_fshl, MVT::i64, 7}, |
| {Intrinsic::vp_fshr, MVT::i8, 7}, |
| {Intrinsic::vp_fshr, MVT::i16, 7}, |
| {Intrinsic::vp_fshr, MVT::i32, 7}, |
| {Intrinsic::vp_fshr, MVT::i64, 7}, |
| {Intrinsic::bitreverse, MVT::i8, 17}, |
| {Intrinsic::bitreverse, MVT::i16, 24}, |
| {Intrinsic::bitreverse, MVT::i32, 33}, |
| {Intrinsic::bitreverse, MVT::i64, 52}, |
| {Intrinsic::vp_bitreverse, MVT::i8, 17}, |
| {Intrinsic::vp_bitreverse, MVT::i16, 24}, |
| {Intrinsic::vp_bitreverse, MVT::i32, 33}, |
| {Intrinsic::vp_bitreverse, MVT::i64, 52}, |
| {Intrinsic::ctpop, MVT::i8, 12}, |
| {Intrinsic::ctpop, MVT::i16, 19}, |
| {Intrinsic::ctpop, MVT::i32, 20}, |
| {Intrinsic::ctpop, MVT::i64, 21}, |
| {Intrinsic::vp_ctpop, MVT::i8, 12}, |
| {Intrinsic::vp_ctpop, MVT::i16, 19}, |
| {Intrinsic::vp_ctpop, MVT::i32, 20}, |
| {Intrinsic::vp_ctpop, MVT::i64, 21}, |
| {Intrinsic::vp_ctlz, MVT::i8, 19}, |
| {Intrinsic::vp_ctlz, MVT::i16, 28}, |
| {Intrinsic::vp_ctlz, MVT::i32, 31}, |
| {Intrinsic::vp_ctlz, MVT::i64, 35}, |
| {Intrinsic::vp_cttz, MVT::i8, 16}, |
| {Intrinsic::vp_cttz, MVT::i16, 23}, |
| {Intrinsic::vp_cttz, MVT::i32, 24}, |
| {Intrinsic::vp_cttz, MVT::i64, 25}, |
| }; |
| |
| static unsigned getISDForVPIntrinsicID(Intrinsic::ID ID) { |
| switch (ID) { |
| #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \ |
| case Intrinsic::VPID: \ |
| return ISD::VPSD; |
| #include "llvm/IR/VPIntrinsics.def" |
| #undef HELPER_MAP_VPID_TO_VPSD |
| } |
| return ISD::DELETED_NODE; |
| } |
| |
| InstructionCost |
| RISCVTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, |
| TTI::TargetCostKind CostKind) { |
| auto *RetTy = ICA.getReturnType(); |
| switch (ICA.getID()) { |
| case Intrinsic::ceil: |
| case Intrinsic::floor: |
| case Intrinsic::trunc: |
| case Intrinsic::rint: |
| case Intrinsic::lrint: |
| case Intrinsic::llrint: |
| case Intrinsic::round: |
| case Intrinsic::roundeven: { |
| // These all use the same code. |
| auto LT = getTypeLegalizationCost(RetTy); |
| if (!LT.second.isVector() && TLI->isOperationCustom(ISD::FCEIL, LT.second)) |
| return LT.first * 8; |
| break; |
| } |
| case Intrinsic::umin: |
| case Intrinsic::umax: |
| case Intrinsic::smin: |
| case Intrinsic::smax: { |
| auto LT = getTypeLegalizationCost(RetTy); |
| if (LT.second.isScalarInteger() && ST->hasStdExtZbb()) |
| return LT.first; |
| |
| if (ST->hasVInstructions() && LT.second.isVector()) { |
| unsigned Op; |
| switch (ICA.getID()) { |
| case Intrinsic::umin: |
| Op = RISCV::VMINU_VV; |
| break; |
| case Intrinsic::umax: |
| Op = RISCV::VMAXU_VV; |
| break; |
| case Intrinsic::smin: |
| Op = RISCV::VMIN_VV; |
| break; |
| case Intrinsic::smax: |
| Op = RISCV::VMAX_VV; |
| break; |
| } |
| return LT.first * getRISCVInstructionCost(Op, LT.second, CostKind); |
| } |
| break; |
| } |
| case Intrinsic::sadd_sat: |
| case Intrinsic::ssub_sat: |
| case Intrinsic::uadd_sat: |
| case Intrinsic::usub_sat: |
| case Intrinsic::fabs: |
| case Intrinsic::sqrt: { |
| auto LT = getTypeLegalizationCost(RetTy); |
| if (ST->hasVInstructions() && LT.second.isVector()) |
| return LT.first; |
| break; |
| } |
| case Intrinsic::ctpop: { |
| auto LT = getTypeLegalizationCost(RetTy); |
| if (ST->hasVInstructions() && ST->hasStdExtZvbb() && LT.second.isVector()) |
| return LT.first; |
| break; |
| } |
| case Intrinsic::abs: { |
| auto LT = getTypeLegalizationCost(RetTy); |
| if (ST->hasVInstructions() && LT.second.isVector()) { |
| // vrsub.vi v10, v8, 0 |
| // vmax.vv v8, v8, v10 |
| return LT.first * 2; |
| } |
| break; |
| } |
| case Intrinsic::get_active_lane_mask: { |
| if (ST->hasVInstructions()) { |
| Type *ExpRetTy = VectorType::get( |
| ICA.getArgTypes()[0], cast<VectorType>(RetTy)->getElementCount()); |
| auto LT = getTypeLegalizationCost(ExpRetTy); |
| |
| // vid.v v8 // considered hoisted |
| // vsaddu.vx v8, v8, a0 |
| // vmsltu.vx v0, v8, a1 |
| return LT.first * |
| getRISCVInstructionCost({RISCV::VSADDU_VX, RISCV::VMSLTU_VX}, |
| LT.second, CostKind); |
| } |
| break; |
| } |
| // TODO: add more intrinsic |
| case Intrinsic::experimental_stepvector: { |
| auto LT = getTypeLegalizationCost(RetTy); |
| // Legalisation of illegal types involves an `index' instruction plus |
| // (LT.first - 1) vector adds. |
| if (ST->hasVInstructions()) |
| return getRISCVInstructionCost(RISCV::VID_V, LT.second, CostKind) + |
| (LT.first - 1) * |
| getRISCVInstructionCost(RISCV::VADD_VX, LT.second, CostKind); |
| return 1 + (LT.first - 1); |
| } |
| case Intrinsic::experimental_cttz_elts: { |
| Type *ArgTy = ICA.getArgTypes()[0]; |
| EVT ArgType = TLI->getValueType(DL, ArgTy, true); |
| if (getTLI()->shouldExpandCttzElements(ArgType)) |
| break; |
| InstructionCost Cost = getRISCVInstructionCost( |
| RISCV::VFIRST_M, getTypeLegalizationCost(ArgTy).second, CostKind); |
| |
| // If zero_is_poison is false, then we will generate additional |
| // cmp + select instructions to convert -1 to EVL. |
| Type *BoolTy = Type::getInt1Ty(RetTy->getContext()); |
| if (ICA.getArgs().size() > 1 && |
| cast<ConstantInt>(ICA.getArgs()[1])->isZero()) |
| Cost += getCmpSelInstrCost(Instruction::ICmp, BoolTy, RetTy, |
| CmpInst::ICMP_SLT, CostKind) + |
| getCmpSelInstrCost(Instruction::Select, RetTy, BoolTy, |
| CmpInst::BAD_ICMP_PREDICATE, CostKind); |
| |
| return Cost; |
| } |
| case Intrinsic::vp_rint: { |
| // RISC-V target uses at least 5 instructions to lower rounding intrinsics. |
| unsigned Cost = 5; |
| auto LT = getTypeLegalizationCost(RetTy); |
| if (TLI->isOperationCustom(ISD::VP_FRINT, LT.second)) |
| return Cost * LT.first; |
| break; |
| } |
| case Intrinsic::vp_nearbyint: { |
| // More one read and one write for fflags than vp_rint. |
| unsigned Cost = 7; |
| auto LT = getTypeLegalizationCost(RetTy); |
| if (TLI->isOperationCustom(ISD::VP_FRINT, LT.second)) |
| return Cost * LT.first; |
| break; |
| } |
| case Intrinsic::vp_ceil: |
| case Intrinsic::vp_floor: |
| case Intrinsic::vp_round: |
| case Intrinsic::vp_roundeven: |
| case Intrinsic::vp_roundtozero: { |
| // Rounding with static rounding mode needs two more instructions to |
| // swap/write FRM than vp_rint. |
| unsigned Cost = 7; |
| auto LT = getTypeLegalizationCost(RetTy); |
| unsigned VPISD = getISDForVPIntrinsicID(ICA.getID()); |
| if (TLI->isOperationCustom(VPISD, LT.second)) |
| return Cost * LT.first; |
| break; |
| } |
| // vp integer arithmetic ops. |
| case Intrinsic::vp_add: |
| case Intrinsic::vp_and: |
| case Intrinsic::vp_ashr: |
| case Intrinsic::vp_lshr: |
| case Intrinsic::vp_mul: |
| case Intrinsic::vp_or: |
| case Intrinsic::vp_sdiv: |
| case Intrinsic::vp_shl: |
| case Intrinsic::vp_srem: |
| case Intrinsic::vp_sub: |
| case Intrinsic::vp_udiv: |
| case Intrinsic::vp_urem: |
| case Intrinsic::vp_xor: |
| // vp float arithmetic ops. |
| case Intrinsic::vp_fadd: |
| case Intrinsic::vp_fsub: |
| case Intrinsic::vp_fmul: |
| case Intrinsic::vp_fdiv: |
| case Intrinsic::vp_frem: { |
| std::optional<unsigned> FOp = |
| VPIntrinsic::getFunctionalOpcodeForVP(ICA.getID()); |
| if (FOp) |
| return getArithmeticInstrCost(*FOp, ICA.getReturnType(), CostKind); |
| break; |
| } |
| } |
| |
| if (ST->hasVInstructions() && RetTy->isVectorTy()) { |
| if (auto LT = getTypeLegalizationCost(RetTy); |
| LT.second.isVector()) { |
| MVT EltTy = LT.second.getVectorElementType(); |
| if (const auto *Entry = CostTableLookup(VectorIntrinsicCostTable, |
| ICA.getID(), EltTy)) |
| return LT.first * Entry->Cost; |
| } |
| } |
| |
| return BaseT::getIntrinsicInstrCost(ICA, CostKind); |
| } |
| |
| InstructionCost RISCVTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, |
| Type *Src, |
| TTI::CastContextHint CCH, |
| TTI::TargetCostKind CostKind, |
| const Instruction *I) { |
| bool IsVectorType = isa<VectorType>(Dst) && isa<VectorType>(Src); |
| if (!IsVectorType) |
| return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I); |
| |
| // FIXME: Need to compute legalizing cost for illegal types. The current |
| // code handles only legal types and those which can be trivially |
| // promoted to legal. |
| if (!ST->hasVInstructions() || Src->getScalarSizeInBits() > ST->getELen() || |
| Dst->getScalarSizeInBits() > ST->getELen()) |
| return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I); |
| |
| std::pair<InstructionCost, MVT> SrcLT = getTypeLegalizationCost(Src); |
| std::pair<InstructionCost, MVT> DstLT = getTypeLegalizationCost(Dst); |
| |
| // Our actual lowering for the case where a wider legal type is available |
| // uses promotion to the wider type. This is reflected in the result of |
| // getTypeLegalizationCost, but BasicTTI assumes the widened cases are |
| // scalarized if the legalized Src and Dst are not equal sized. |
| const DataLayout &DL = this->getDataLayout(); |
| if (!SrcLT.second.isVector() || !DstLT.second.isVector() || |
| !TypeSize::isKnownLE(DL.getTypeSizeInBits(Src), |
| SrcLT.second.getSizeInBits()) || |
| !TypeSize::isKnownLE(DL.getTypeSizeInBits(Dst), |
| DstLT.second.getSizeInBits())) |
| return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I); |
| |
| int ISD = TLI->InstructionOpcodeToISD(Opcode); |
| assert(ISD && "Invalid opcode"); |
| |
| int PowDiff = (int)Log2_32(Dst->getScalarSizeInBits()) - |
| (int)Log2_32(Src->getScalarSizeInBits()); |
| switch (ISD) { |
| case ISD::SIGN_EXTEND: |
| case ISD::ZERO_EXTEND: { |
| const unsigned SrcEltSize = Src->getScalarSizeInBits(); |
| if (SrcEltSize == 1) { |
| // We do not use vsext/vzext to extend from mask vector. |
| // Instead we use the following instructions to extend from mask vector: |
| // vmv.v.i v8, 0 |
| // vmerge.vim v8, v8, -1, v0 |
| return getRISCVInstructionCost({RISCV::VMV_V_I, RISCV::VMERGE_VIM}, |
| DstLT.second, CostKind); |
| } |
| if ((PowDiff < 1) || (PowDiff > 3)) |
| return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I); |
| unsigned SExtOp[] = {RISCV::VSEXT_VF2, RISCV::VSEXT_VF4, RISCV::VSEXT_VF8}; |
| unsigned ZExtOp[] = {RISCV::VZEXT_VF2, RISCV::VZEXT_VF4, RISCV::VZEXT_VF8}; |
| unsigned Op = |
| (ISD == ISD::SIGN_EXTEND) ? SExtOp[PowDiff - 1] : ZExtOp[PowDiff - 1]; |
| return getRISCVInstructionCost(Op, DstLT.second, CostKind); |
| } |
| case ISD::TRUNCATE: |
| if (Dst->getScalarSizeInBits() == 1) { |
| // We do not use several vncvt to truncate to mask vector. So we could |
| // not use PowDiff to calculate it. |
| // Instead we use the following instructions to truncate to mask vector: |
| // vand.vi v8, v8, 1 |
| // vmsne.vi v0, v8, 0 |
| return getRISCVInstructionCost({RISCV::VAND_VI, RISCV::VMSNE_VI}, |
| SrcLT.second, CostKind); |
| } |
| [[fallthrough]]; |
| case ISD::FP_EXTEND: |
| case ISD::FP_ROUND: { |
| // Counts of narrow/widen instructions. |
| unsigned SrcEltSize = Src->getScalarSizeInBits(); |
| unsigned DstEltSize = Dst->getScalarSizeInBits(); |
| |
| unsigned Op = (ISD == ISD::TRUNCATE) ? RISCV::VNSRL_WI |
| : (ISD == ISD::FP_EXTEND) ? RISCV::VFWCVT_F_F_V |
| : RISCV::VFNCVT_F_F_W; |
| InstructionCost Cost = 0; |
| for (; SrcEltSize != DstEltSize;) { |
| MVT ElementMVT = (ISD == ISD::TRUNCATE) |
| ? MVT::getIntegerVT(DstEltSize) |
| : MVT::getFloatingPointVT(DstEltSize); |
| MVT DstMVT = DstLT.second.changeVectorElementType(ElementMVT); |
| DstEltSize = |
| (DstEltSize > SrcEltSize) ? DstEltSize >> 1 : DstEltSize << 1; |
| Cost += getRISCVInstructionCost(Op, DstMVT, CostKind); |
| } |
| return Cost; |
| } |
| case ISD::FP_TO_SINT: |
| case ISD::FP_TO_UINT: |
| // For fp vector to mask, we use: |
| // vfncvt.rtz.x.f.w v9, v8 |
| // vand.vi v8, v9, 1 |
| // vmsne.vi v0, v8, 0 |
| if (Dst->getScalarSizeInBits() == 1) |
| return 3; |
| |
| if (std::abs(PowDiff) <= 1) |
| return 1; |
| |
| // Counts of narrow/widen instructions. |
| return std::abs(PowDiff); |
| |
| case ISD::SINT_TO_FP: |
| case ISD::UINT_TO_FP: |
| // For mask vector to fp, we should use the following instructions: |
| // vmv.v.i v8, 0 |
| // vmerge.vim v8, v8, -1, v0 |
| // vfcvt.f.x.v v8, v8 |
| if (Src->getScalarSizeInBits() == 1) |
| return 3; |
| |
| if (std::abs(PowDiff) <= 1) |
| return 1; |
| // Backend could lower (v[sz]ext i8 to double) to vfcvt(v[sz]ext.f8 i8), |
| // so it only need two conversion. |
| return 2; |
| } |
| return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I); |
| } |
| |
| unsigned RISCVTTIImpl::getEstimatedVLFor(VectorType *Ty) { |
| if (isa<ScalableVectorType>(Ty)) { |
| const unsigned EltSize = DL.getTypeSizeInBits(Ty->getElementType()); |
| const unsigned MinSize = DL.getTypeSizeInBits(Ty).getKnownMinValue(); |
| const unsigned VectorBits = *getVScaleForTuning() * RISCV::RVVBitsPerBlock; |
| return RISCVTargetLowering::computeVLMAX(VectorBits, EltSize, MinSize); |
| } |
| return cast<FixedVectorType>(Ty)->getNumElements(); |
| } |
| |
| InstructionCost |
| RISCVTTIImpl::getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty, |
| FastMathFlags FMF, |
| TTI::TargetCostKind CostKind) { |
| if (isa<FixedVectorType>(Ty) && !ST->useRVVForFixedLengthVectors()) |
| return BaseT::getMinMaxReductionCost(IID, Ty, FMF, CostKind); |
| |
| // Skip if scalar size of Ty is bigger than ELEN. |
| if (Ty->getScalarSizeInBits() > ST->getELen()) |
| return BaseT::getMinMaxReductionCost(IID, Ty, FMF, CostKind); |
| |
| std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty); |
| if (Ty->getElementType()->isIntegerTy(1)) { |
| // SelectionDAGBuilder does following transforms: |
| // vector_reduce_{smin,umax}(<n x i1>) --> vector_reduce_or(<n x i1>) |
| // vector_reduce_{smax,umin}(<n x i1>) --> vector_reduce_and(<n x i1>) |
| if (IID == Intrinsic::umax || IID == Intrinsic::smin) |
| return getArithmeticReductionCost(Instruction::Or, Ty, FMF, CostKind); |
| else |
| return getArithmeticReductionCost(Instruction::And, Ty, FMF, CostKind); |
| } |
| |
| if (IID == Intrinsic::maximum || IID == Intrinsic::minimum) { |
| SmallVector<unsigned, 3> Opcodes; |
| InstructionCost ExtraCost = 0; |
| switch (IID) { |
| case Intrinsic::maximum: |
| if (FMF.noNaNs()) { |
| Opcodes = {RISCV::VFREDMAX_VS, RISCV::VFMV_F_S}; |
| } else { |
| Opcodes = {RISCV::VMFNE_VV, RISCV::VCPOP_M, RISCV::VFREDMAX_VS, |
| RISCV::VFMV_F_S}; |
| // Cost of Canonical Nan + branch |
| // lui a0, 523264 |
| // fmv.w.x fa0, a0 |
| Type *DstTy = Ty->getScalarType(); |
| const unsigned EltTyBits = DstTy->getScalarSizeInBits(); |
| Type *SrcTy = IntegerType::getIntNTy(DstTy->getContext(), EltTyBits); |
| ExtraCost = 1 + |
| getCastInstrCost(Instruction::UIToFP, DstTy, SrcTy, |
| TTI::CastContextHint::None, CostKind) + |
| getCFInstrCost(Instruction::Br, CostKind); |
| } |
| break; |
| |
| case Intrinsic::minimum: |
| if (FMF.noNaNs()) { |
| Opcodes = {RISCV::VFREDMIN_VS, RISCV::VFMV_F_S}; |
| } else { |
| Opcodes = {RISCV::VMFNE_VV, RISCV::VCPOP_M, RISCV::VFREDMIN_VS, |
| RISCV::VFMV_F_S}; |
| // Cost of Canonical Nan + branch |
| // lui a0, 523264 |
| // fmv.w.x fa0, a0 |
| Type *DstTy = Ty->getScalarType(); |
| const unsigned EltTyBits = DL.getTypeSizeInBits(DstTy); |
| Type *SrcTy = IntegerType::getIntNTy(DstTy->getContext(), EltTyBits); |
| ExtraCost = 1 + |
| getCastInstrCost(Instruction::UIToFP, DstTy, SrcTy, |
| TTI::CastContextHint::None, CostKind) + |
| getCFInstrCost(Instruction::Br, CostKind); |
| } |
| break; |
| } |
| return ExtraCost + getRISCVInstructionCost(Opcodes, LT.second, CostKind); |
| } |
| |
| // IR Reduction is composed by two vmv and one rvv reduction instruction. |
| unsigned SplitOp; |
| SmallVector<unsigned, 3> Opcodes; |
| switch (IID) { |
| default: |
| llvm_unreachable("Unsupported intrinsic"); |
| case Intrinsic::smax: |
| SplitOp = RISCV::VMAX_VV; |
| Opcodes = {RISCV::VMV_S_X, RISCV::VREDMAX_VS, RISCV::VMV_X_S}; |
| break; |
| case Intrinsic::smin: |
| SplitOp = RISCV::VMIN_VV; |
| Opcodes = {RISCV::VMV_S_X, RISCV::VREDMIN_VS, RISCV::VMV_X_S}; |
| break; |
| case Intrinsic::umax: |
| SplitOp = RISCV::VMAXU_VV; |
| Opcodes = {RISCV::VMV_S_X, RISCV::VREDMAXU_VS, RISCV::VMV_X_S}; |
| break; |
| case Intrinsic::umin: |
| SplitOp = RISCV::VMINU_VV; |
| Opcodes = {RISCV::VMV_S_X, RISCV::VREDMINU_VS, RISCV::VMV_X_S}; |
| break; |
| case Intrinsic::maxnum: |
| SplitOp = RISCV::VFMAX_VV; |
| Opcodes = {RISCV::VFMV_S_F, RISCV::VFREDMAX_VS, RISCV::VFMV_F_S}; |
| break; |
| case Intrinsic::minnum: |
| SplitOp = RISCV::VFMIN_VV; |
| Opcodes = {RISCV::VFMV_S_F, RISCV::VFREDMIN_VS, RISCV::VFMV_F_S}; |
| break; |
| } |
| // Add a cost for data larger than LMUL8 |
| InstructionCost SplitCost = |
| (LT.first > 1) ? (LT.first - 1) * |
| getRISCVInstructionCost(SplitOp, LT.second, CostKind) |
| : 0; |
| return SplitCost + getRISCVInstructionCost(Opcodes, LT.second, CostKind); |
| } |
| |
| InstructionCost |
| RISCVTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, |
| std::optional<FastMathFlags> FMF, |
| TTI::TargetCostKind CostKind) { |
| if (isa<FixedVectorType>(Ty) && !ST->useRVVForFixedLengthVectors()) |
| return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind); |
| |
| // Skip if scalar size of Ty is bigger than ELEN. |
| if (Ty->getScalarSizeInBits() > ST->getELen()) |
| return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind); |
| |
| int ISD = TLI->InstructionOpcodeToISD(Opcode); |
| assert(ISD && "Invalid opcode"); |
| |
| if (ISD != ISD::ADD && ISD != ISD::OR && ISD != ISD::XOR && ISD != ISD::AND && |
| ISD != ISD::FADD) |
| return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind); |
| |
| std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty); |
| SmallVector<unsigned, 3> Opcodes; |
| Type *ElementTy = Ty->getElementType(); |
| if (ElementTy->isIntegerTy(1)) { |
| if (ISD == ISD::AND) { |
| // Example sequences: |
| // vsetvli a0, zero, e8, mf8, ta, ma |
| // vmnot.m v8, v0 |
| // vcpop.m a0, v8 |
| // seqz a0, a0 |
| Opcodes = {RISCV::VMNAND_MM, RISCV::VCPOP_M}; |
| return (LT.first - 1) + |
| getRISCVInstructionCost(Opcodes, LT.second, CostKind) + |
| getCmpSelInstrCost(Instruction::ICmp, ElementTy, ElementTy, |
| CmpInst::ICMP_EQ, CostKind); |
| } else { |
| // Example sequences: |
| // vsetvli a0, zero, e8, mf8, ta, ma |
| // vcpop.m a0, v0 |
| // snez a0, a0 |
| Opcodes = {RISCV::VCPOP_M}; |
| return (LT.first - 1) + |
| getRISCVInstructionCost(Opcodes, LT.second, CostKind) + |
| getCmpSelInstrCost(Instruction::ICmp, ElementTy, ElementTy, |
| CmpInst::ICMP_NE, CostKind); |
| } |
| } |
| |
| // IR Reduction is composed by two vmv and one rvv reduction instruction. |
| if (TTI::requiresOrderedReduction(FMF)) { |
| Opcodes.push_back(RISCV::VFMV_S_F); |
| for (unsigned i = 0; i < LT.first.getValue(); i++) |
| Opcodes.push_back(RISCV::VFREDOSUM_VS); |
| Opcodes.push_back(RISCV::VFMV_F_S); |
| return getRISCVInstructionCost(Opcodes, LT.second, CostKind); |
| } |
| unsigned SplitOp; |
| switch (ISD) { |
| case ISD::ADD: |
| SplitOp = RISCV::VADD_VV; |
| Opcodes = {RISCV::VMV_S_X, RISCV::VREDSUM_VS, RISCV::VMV_X_S}; |
| break; |
| case ISD::OR: |
| SplitOp = RISCV::VOR_VV; |
| Opcodes = {RISCV::VMV_S_X, RISCV::VREDOR_VS, RISCV::VMV_X_S}; |
| break; |
| case ISD::XOR: |
| SplitOp = RISCV::VXOR_VV; |
| Opcodes = {RISCV::VMV_S_X, RISCV::VREDXOR_VS, RISCV::VMV_X_S}; |
| break; |
| case ISD::AND: |
| SplitOp = RISCV::VAND_VV; |
| Opcodes = {RISCV::VMV_S_X, RISCV::VREDAND_VS, RISCV::VMV_X_S}; |
| break; |
| case ISD::FADD: |
| SplitOp = RISCV::VFADD_VV; |
| Opcodes = {RISCV::VFMV_S_F, RISCV::VFREDUSUM_VS, RISCV::VFMV_F_S}; |
| break; |
| } |
| // Add a cost for data larger than LMUL8 |
| InstructionCost SplitCost = |
| (LT.first > 1) ? (LT.first - 1) * |
| getRISCVInstructionCost(SplitOp, LT.second, CostKind) |
| : 0; |
| return SplitCost + getRISCVInstructionCost(Opcodes, LT.second, CostKind); |
| } |
| |
| InstructionCost RISCVTTIImpl::getExtendedReductionCost( |
| unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *ValTy, |
| FastMathFlags FMF, TTI::TargetCostKind CostKind) { |
| if (isa<FixedVectorType>(ValTy) && !ST->useRVVForFixedLengthVectors()) |
| return BaseT::getExtendedReductionCost(Opcode, IsUnsigned, ResTy, ValTy, |
| FMF, CostKind); |
| |
| // Skip if scalar size of ResTy is bigger than ELEN. |
| if (ResTy->getScalarSizeInBits() > ST->getELen()) |
| return BaseT::getExtendedReductionCost(Opcode, IsUnsigned, ResTy, ValTy, |
| FMF, CostKind); |
| |
| if (Opcode != Instruction::Add && Opcode != Instruction::FAdd) |
| return BaseT::getExtendedReductionCost(Opcode, IsUnsigned, ResTy, ValTy, |
| FMF, CostKind); |
| |
| std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy); |
| |
| if (ResTy->getScalarSizeInBits() != 2 * LT.second.getScalarSizeInBits()) |
| return BaseT::getExtendedReductionCost(Opcode, IsUnsigned, ResTy, ValTy, |
| FMF, CostKind); |
| |
| return (LT.first - 1) + |
| getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind); |
| } |
| |
| InstructionCost RISCVTTIImpl::getStoreImmCost(Type *Ty, |
| TTI::OperandValueInfo OpInfo, |
| TTI::TargetCostKind CostKind) { |
| assert(OpInfo.isConstant() && "non constant operand?"); |
| if (!isa<VectorType>(Ty)) |
| // FIXME: We need to account for immediate materialization here, but doing |
| // a decent job requires more knowledge about the immediate than we |
| // currently have here. |
| return 0; |
| |
| if (OpInfo.isUniform()) |
| // vmv.x.i, vmv.v.x, or vfmv.v.f |
| // We ignore the cost of the scalar constant materialization to be consistent |
| // with how we treat scalar constants themselves just above. |
| return 1; |
| |
| return getConstantPoolLoadCost(Ty, CostKind); |
| } |
| |
| |
| InstructionCost RISCVTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, |
| MaybeAlign Alignment, |
| unsigned AddressSpace, |
| TTI::TargetCostKind CostKind, |
| TTI::OperandValueInfo OpInfo, |
| const Instruction *I) { |
| EVT VT = TLI->getValueType(DL, Src, true); |
| // Type legalization can't handle structs |
| if (VT == MVT::Other) |
| return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, |
| CostKind, OpInfo, I); |
| |
| InstructionCost Cost = 0; |
| if (Opcode == Instruction::Store && OpInfo.isConstant()) |
| Cost += getStoreImmCost(Src, OpInfo, CostKind); |
| |
| std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Src); |
| |
| InstructionCost BaseCost = [&]() { |
| InstructionCost Cost = LT.first; |
| if (CostKind != TTI::TCK_RecipThroughput) |
| return Cost; |
| |
| // Our actual lowering for the case where a wider legal type is available |
| // uses the a VL predicated load on the wider type. This is reflected in |
| // the result of getTypeLegalizationCost, but BasicTTI assumes the |
| // widened cases are scalarized. |
| const DataLayout &DL = this->getDataLayout(); |
| if (Src->isVectorTy() && LT.second.isVector() && |
| TypeSize::isKnownLT(DL.getTypeStoreSizeInBits(Src), |
| LT.second.getSizeInBits())) |
| return Cost; |
| |
| return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, |
| CostKind, OpInfo, I); |
| }(); |
| |
| // Assume memory ops cost scale with the number of vector registers |
| // possible accessed by the instruction. Note that BasicTTI already |
| // handles the LT.first term for us. |
| if (LT.second.isVector() && CostKind != TTI::TCK_CodeSize) |
| BaseCost *= TLI->getLMULCost(LT.second); |
| return Cost + BaseCost; |
| |
| } |
| |
| InstructionCost RISCVTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, |
| Type *CondTy, |
| CmpInst::Predicate VecPred, |
| TTI::TargetCostKind CostKind, |
| const Instruction *I) { |
| if (CostKind != TTI::TCK_RecipThroughput) |
| return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, |
| I); |
| |
| if (isa<FixedVectorType>(ValTy) && !ST->useRVVForFixedLengthVectors()) |
| return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, |
| I); |
| |
| // Skip if scalar size of ValTy is bigger than ELEN. |
| if (ValTy->isVectorTy() && ValTy->getScalarSizeInBits() > ST->getELen()) |
| return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, |
| I); |
| |
| std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy); |
| if (Opcode == Instruction::Select && ValTy->isVectorTy()) { |
| if (CondTy->isVectorTy()) { |
| if (ValTy->getScalarSizeInBits() == 1) { |
| // vmandn.mm v8, v8, v9 |
| // vmand.mm v9, v0, v9 |
| // vmor.mm v0, v9, v8 |
| return LT.first * |
| getRISCVInstructionCost( |
| {RISCV::VMANDN_MM, RISCV::VMAND_MM, RISCV::VMOR_MM}, |
| LT.second, CostKind); |
| } |
| // vselect and max/min are supported natively. |
| return LT.first * |
| getRISCVInstructionCost(RISCV::VMERGE_VVM, LT.second, CostKind); |
| } |
| |
| if (ValTy->getScalarSizeInBits() == 1) { |
| // vmv.v.x v9, a0 |
| // vmsne.vi v9, v9, 0 |
| // vmandn.mm v8, v8, v9 |
| // vmand.mm v9, v0, v9 |
| // vmor.mm v0, v9, v8 |
| MVT InterimVT = LT.second.changeVectorElementType(MVT::i8); |
| return LT.first * |
| getRISCVInstructionCost({RISCV::VMV_V_X, RISCV::VMSNE_VI}, |
| InterimVT, CostKind) + |
| LT.first * getRISCVInstructionCost( |
| {RISCV::VMANDN_MM, RISCV::VMAND_MM, RISCV::VMOR_MM}, |
| LT.second, CostKind); |
| } |
| |
| // vmv.v.x v10, a0 |
| // vmsne.vi v0, v10, 0 |
| // vmerge.vvm v8, v9, v8, v0 |
| return LT.first * getRISCVInstructionCost( |
| {RISCV::VMV_V_X, RISCV::VMSNE_VI, RISCV::VMERGE_VVM}, |
| LT.second, CostKind); |
| } |
| |
| if ((Opcode == Instruction::ICmp) && ValTy->isVectorTy() && |
| CmpInst::isIntPredicate(VecPred)) { |
| // Use VMSLT_VV to represent VMSEQ, VMSNE, VMSLTU, VMSLEU, VMSLT, VMSLE |
| // provided they incur the same cost across all implementations |
| return LT.first * |
| getRISCVInstructionCost(RISCV::VMSLT_VV, LT.second, CostKind); |
| } |
| |
| if ((Opcode == Instruction::FCmp) && ValTy->isVectorTy() && |
| CmpInst::isFPPredicate(VecPred)) { |
| |
| // Use VMXOR_MM and VMXNOR_MM to generate all true/false mask |
| if ((VecPred == CmpInst::FCMP_FALSE) || (VecPred == CmpInst::FCMP_TRUE)) |
| return getRISCVInstructionCost(RISCV::VMXOR_MM, LT.second, CostKind); |
| |
| // If we do not support the input floating point vector type, use the base |
| // one which will calculate as: |
| // ScalarizeCost + Num * Cost for fixed vector, |
| // InvalidCost for scalable vector. |
| if ((ValTy->getScalarSizeInBits() == 16 && !ST->hasVInstructionsF16()) || |
| (ValTy->getScalarSizeInBits() == 32 && !ST->hasVInstructionsF32()) || |
| (ValTy->getScalarSizeInBits() == 64 && !ST->hasVInstructionsF64())) |
| return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, |
| I); |
| |
| // Assuming vector fp compare and mask instructions are all the same cost |
| // until a need arises to differentiate them. |
| switch (VecPred) { |
| case CmpInst::FCMP_ONE: // vmflt.vv + vmflt.vv + vmor.mm |
| case CmpInst::FCMP_ORD: // vmfeq.vv + vmfeq.vv + vmand.mm |
| case CmpInst::FCMP_UNO: // vmfne.vv + vmfne.vv + vmor.mm |
| case CmpInst::FCMP_UEQ: // vmflt.vv + vmflt.vv + vmnor.mm |
| return LT.first * getRISCVInstructionCost( |
| {RISCV::VMFLT_VV, RISCV::VMFLT_VV, RISCV::VMOR_MM}, |
| LT.second, CostKind); |
| |
| case CmpInst::FCMP_UGT: // vmfle.vv + vmnot.m |
| case CmpInst::FCMP_UGE: // vmflt.vv + vmnot.m |
| case CmpInst::FCMP_ULT: // vmfle.vv + vmnot.m |
| case CmpInst::FCMP_ULE: // vmflt.vv + vmnot.m |
| return LT.first * |
| getRISCVInstructionCost({RISCV::VMFLT_VV, RISCV::VMNAND_MM}, |
| LT.second, CostKind); |
| |
| case CmpInst::FCMP_OEQ: // vmfeq.vv |
| case CmpInst::FCMP_OGT: // vmflt.vv |
| case CmpInst::FCMP_OGE: // vmfle.vv |
| case CmpInst::FCMP_OLT: // vmflt.vv |
| case CmpInst::FCMP_OLE: // vmfle.vv |
| case CmpInst::FCMP_UNE: // vmfne.vv |
| return LT.first * |
| getRISCVInstructionCost(RISCV::VMFLT_VV, LT.second, CostKind); |
| default: |
| break; |
| } |
| } |
| |
| // With ShortForwardBranchOpt or ConditionalMoveFusion, scalar icmp + select |
| // instructions will lower to SELECT_CC and lower to PseudoCCMOVGPR which will |
| // generate a conditional branch + mv. The cost of scalar (icmp + select) will |
| // be (0 + select instr cost). |
| if (ST->hasConditionalMoveFusion() && I && isa<ICmpInst>(I) && |
| ValTy->isIntegerTy() && !I->user_empty()) { |
| if (all_of(I->users(), [&](const User *U) { |
| return match(U, m_Select(m_Specific(I), m_Value(), m_Value())) && |
| U->getType()->isIntegerTy() && |
| !isa<ConstantData>(U->getOperand(1)) && |
| !isa<ConstantData>(U->getOperand(2)); |
| })) |
| return 0; |
| } |
| |
| // TODO: Add cost for scalar type. |
| |
| return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I); |
| } |
| |
| InstructionCost RISCVTTIImpl::getCFInstrCost(unsigned Opcode, |
| TTI::TargetCostKind CostKind, |
| const Instruction *I) { |
| if (CostKind != TTI::TCK_RecipThroughput) |
| return Opcode == Instruction::PHI ? 0 : 1; |
| // Branches are assumed to be predicted. |
| return 0; |
| } |
| |
| InstructionCost RISCVTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, |
| TTI::TargetCostKind CostKind, |
| unsigned Index, Value *Op0, |
| Value *Op1) { |
| assert(Val->isVectorTy() && "This must be a vector type"); |
| |
| if (Opcode != Instruction::ExtractElement && |
| Opcode != Instruction::InsertElement) |
| return BaseT::getVectorInstrCost(Opcode, Val, CostKind, Index, Op0, Op1); |
| |
| // Legalize the type. |
| std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Val); |
| |
| // This type is legalized to a scalar type. |
| if (!LT.second.isVector()) { |
| auto *FixedVecTy = cast<FixedVectorType>(Val); |
| // If Index is a known constant, cost is zero. |
| if (Index != -1U) |
| return 0; |
| // Extract/InsertElement with non-constant index is very costly when |
| // scalarized; estimate cost of loads/stores sequence via the stack: |
| // ExtractElement cost: store vector to stack, load scalar; |
| // InsertElement cost: store vector to stack, store scalar, load vector. |
| Type *ElemTy = FixedVecTy->getElementType(); |
| auto NumElems = FixedVecTy->getNumElements(); |
| auto Align = DL.getPrefTypeAlign(ElemTy); |
| InstructionCost LoadCost = |
| getMemoryOpCost(Instruction::Load, ElemTy, Align, 0, CostKind); |
| InstructionCost StoreCost = |
| getMemoryOpCost(Instruction::Store, ElemTy, Align, 0, CostKind); |
| return Opcode == Instruction::ExtractElement |
| ? StoreCost * NumElems + LoadCost |
| : (StoreCost + LoadCost) * NumElems + StoreCost; |
| } |
| |
| // For unsupported scalable vector. |
| if (LT.second.isScalableVector() && !LT.first.isValid()) |
| return LT.first; |
| |
| if (!isTypeLegal(Val)) |
| return BaseT::getVectorInstrCost(Opcode, Val, CostKind, Index, Op0, Op1); |
| |
| // Mask vector extract/insert is expanded via e8. |
| if (Val->getScalarSizeInBits() == 1) { |
| VectorType *WideTy = |
| VectorType::get(IntegerType::get(Val->getContext(), 8), |
| cast<VectorType>(Val)->getElementCount()); |
| if (Opcode == Instruction::ExtractElement) { |
| InstructionCost ExtendCost |
| = getCastInstrCost(Instruction::ZExt, WideTy, Val, |
| TTI::CastContextHint::None, CostKind); |
| InstructionCost ExtractCost |
| = getVectorInstrCost(Opcode, WideTy, CostKind, Index, nullptr, nullptr); |
| return ExtendCost + ExtractCost; |
| } |
| InstructionCost ExtendCost |
| = getCastInstrCost(Instruction::ZExt, WideTy, Val, |
| TTI::CastContextHint::None, CostKind); |
| InstructionCost InsertCost |
| = getVectorInstrCost(Opcode, WideTy, CostKind, Index, nullptr, nullptr); |
| InstructionCost TruncCost |
| = getCastInstrCost(Instruction::Trunc, Val, WideTy, |
| TTI::CastContextHint::None, CostKind); |
| return ExtendCost + InsertCost + TruncCost; |
| } |
| |
| |
| // In RVV, we could use vslidedown + vmv.x.s to extract element from vector |
| // and vslideup + vmv.s.x to insert element to vector. |
| unsigned BaseCost = 1; |
| // When insertelement we should add the index with 1 as the input of vslideup. |
| unsigned SlideCost = Opcode == Instruction::InsertElement ? 2 : 1; |
| |
| if (Index != -1U) { |
| // The type may be split. For fixed-width vectors we can normalize the |
| // index to the new type. |
| if (LT.second.isFixedLengthVector()) { |
| unsigned Width = LT.second.getVectorNumElements(); |
| Index = Index % Width; |
| } |
| |
| // We could extract/insert the first element without vslidedown/vslideup. |
| if (Index == 0) |
| SlideCost = 0; |
| else if (Opcode == Instruction::InsertElement) |
| SlideCost = 1; // With a constant index, we do not need to use addi. |
| } |
| |
| // Extract i64 in the target that has XLEN=32 need more instruction. |
| if (Val->getScalarType()->isIntegerTy() && |
| ST->getXLen() < Val->getScalarSizeInBits()) { |
| // For extractelement, we need the following instructions: |
| // vsetivli zero, 1, e64, m1, ta, mu (not count) |
| // vslidedown.vx v8, v8, a0 |
| // vmv.x.s a0, v8 |
| // li a1, 32 |
| // vsrl.vx v8, v8, a1 |
| // vmv.x.s a1, v8 |
| |
| // For insertelement, we need the following instructions: |
| // vsetivli zero, 2, e32, m4, ta, mu (not count) |
| // vmv.v.i v12, 0 |
| // vslide1up.vx v16, v12, a1 |
| // vslide1up.vx v12, v16, a0 |
| // addi a0, a2, 1 |
| // vsetvli zero, a0, e64, m4, tu, mu (not count) |
| // vslideup.vx v8, v12, a2 |
| |
| // TODO: should we count these special vsetvlis? |
| BaseCost = Opcode == Instruction::InsertElement ? 3 : 4; |
| } |
| return BaseCost + SlideCost; |
| } |
| |
| InstructionCost RISCVTTIImpl::getArithmeticInstrCost( |
| unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, |
| TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info, |
| ArrayRef<const Value *> Args, const Instruction *CxtI) { |
| |
| // TODO: Handle more cost kinds. |
| if (CostKind != TTI::TCK_RecipThroughput) |
| return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info, |
| Args, CxtI); |
| |
| if (isa<FixedVectorType>(Ty) && !ST->useRVVForFixedLengthVectors()) |
| return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info, |
| Args, CxtI); |
| |
| // Skip if scalar size of Ty is bigger than ELEN. |
| if (isa<VectorType>(Ty) && Ty->getScalarSizeInBits() > ST->getELen()) |
| return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info, |
| Args, CxtI); |
| |
| // Legalize the type. |
| std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty); |
| |
| // TODO: Handle scalar type. |
| if (!LT.second.isVector()) |
| return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info, |
| Args, CxtI); |
| |
| auto getConstantMatCost = |
| [&](unsigned Operand, TTI::OperandValueInfo OpInfo) -> InstructionCost { |
| if (OpInfo.isUniform() && TLI->canSplatOperand(Opcode, Operand)) |
| // Two sub-cases: |
| // * Has a 5 bit immediate operand which can be splatted. |
| // * Has a larger immediate which must be materialized in scalar register |
| // We return 0 for both as we currently ignore the cost of materializing |
| // scalar constants in GPRs. |
| return 0; |
| |
| return getConstantPoolLoadCost(Ty, CostKind); |
| }; |
| |
| // Add the cost of materializing any constant vectors required. |
| InstructionCost ConstantMatCost = 0; |
| if (Op1Info.isConstant()) |
| ConstantMatCost += getConstantMatCost(0, Op1Info); |
| if (Op2Info.isConstant()) |
| ConstantMatCost += getConstantMatCost(1, Op2Info); |
| |
| unsigned Op; |
| switch (TLI->InstructionOpcodeToISD(Opcode)) { |
| case ISD::ADD: |
| case ISD::SUB: |
| Op = RISCV::VADD_VV; |
| break; |
| case ISD::SHL: |
| case ISD::SRL: |
| case ISD::SRA: |
| Op = RISCV::VSLL_VV; |
| break; |
| case ISD::AND: |
| case ISD::OR: |
| case ISD::XOR: |
| Op = (Ty->getScalarSizeInBits() == 1) ? RISCV::VMAND_MM : RISCV::VAND_VV; |
| break; |
| case ISD::MUL: |
| case ISD::MULHS: |
| case ISD::MULHU: |
| Op = RISCV::VMUL_VV; |
| break; |
| case ISD::SDIV: |
| case ISD::UDIV: |
| Op = RISCV::VDIV_VV; |
| break; |
| case ISD::SREM: |
| case ISD::UREM: |
| Op = RISCV::VREM_VV; |
| break; |
| case ISD::FADD: |
| case ISD::FSUB: |
| // TODO: Address FP16 with VFHMIN |
| Op = RISCV::VFADD_VV; |
| break; |
| case ISD::FMUL: |
| // TODO: Address FP16 with VFHMIN |
| Op = RISCV::VFMUL_VV; |
| break; |
| case ISD::FDIV: |
| Op = RISCV::VFDIV_VV; |
| break; |
| case ISD::FNEG: |
| Op = RISCV::VFSGNJN_VV; |
| break; |
| default: |
| // Assuming all other instructions have the same cost until a need arises to |
| // differentiate them. |
| return ConstantMatCost + BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, |
| Op1Info, Op2Info, |
| Args, CxtI); |
| } |
| |
| InstructionCost InstrCost = getRISCVInstructionCost(Op, LT.second, CostKind); |
| // We use BasicTTIImpl to calculate scalar costs, which assumes floating point |
| // ops are twice as expensive as integer ops. Do the same for vectors so |
| // scalar floating point ops aren't cheaper than their vector equivalents. |
| if (Ty->isFPOrFPVectorTy()) |
| InstrCost *= 2; |
| return ConstantMatCost + LT.first * InstrCost; |
| } |
| |
| // TODO: Deduplicate from TargetTransformInfoImplCRTPBase. |
| InstructionCost RISCVTTIImpl::getPointersChainCost( |
| ArrayRef<const Value *> Ptrs, const Value *Base, |
| const TTI::PointersChainInfo &Info, Type *AccessTy, |
| TTI::TargetCostKind CostKind) { |
| InstructionCost Cost = TTI::TCC_Free; |
| // In the basic model we take into account GEP instructions only |
| // (although here can come alloca instruction, a value, constants and/or |
| // constant expressions, PHIs, bitcasts ... whatever allowed to be used as a |
| // pointer). Typically, if Base is a not a GEP-instruction and all the |
| // pointers are relative to the same base address, all the rest are |
| // either GEP instructions, PHIs, bitcasts or constants. When we have same |
| // base, we just calculate cost of each non-Base GEP as an ADD operation if |
| // any their index is a non-const. |
| // If no known dependecies between the pointers cost is calculated as a sum |
| // of costs of GEP instructions. |
| for (auto [I, V] : enumerate(Ptrs)) { |
| const auto *GEP = dyn_cast<GetElementPtrInst>(V); |
| if (!GEP) |
| continue; |
| if (Info.isSameBase() && V != Base) { |
| if (GEP->hasAllConstantIndices()) |
| continue; |
| // If the chain is unit-stride and BaseReg + stride*i is a legal |
| // addressing mode, then presume the base GEP is sitting around in a |
| // register somewhere and check if we can fold the offset relative to |
| // it. |
| unsigned Stride = DL.getTypeStoreSize(AccessTy); |
| if (Info.isUnitStride() && |
| isLegalAddressingMode(AccessTy, |
| /* BaseGV */ nullptr, |
| /* BaseOffset */ Stride * I, |
| /* HasBaseReg */ true, |
| /* Scale */ 0, |
| GEP->getType()->getPointerAddressSpace())) |
| continue; |
| Cost += getArithmeticInstrCost(Instruction::Add, GEP->getType(), CostKind, |
| {TTI::OK_AnyValue, TTI::OP_None}, |
| {TTI::OK_AnyValue, TTI::OP_None}, |
| std::nullopt); |
| } else { |
| SmallVector<const Value *> Indices(GEP->indices()); |
| Cost += getGEPCost(GEP->getSourceElementType(), GEP->getPointerOperand(), |
| Indices, AccessTy, CostKind); |
| } |
| } |
| return Cost; |
| } |
| |
| void RISCVTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, |
| TTI::UnrollingPreferences &UP, |
| OptimizationRemarkEmitter *ORE) { |
| // TODO: More tuning on benchmarks and metrics with changes as needed |
| // would apply to all settings below to enable performance. |
| |
| |
| if (ST->enableDefaultUnroll()) |
| return BasicTTIImplBase::getUnrollingPreferences(L, SE, UP, ORE); |
| |
| // Enable Upper bound unrolling universally, not dependant upon the conditions |
| // below. |
| UP.UpperBound = true; |
| |
| // Disable loop unrolling for Oz and Os. |
| UP.OptSizeThreshold = 0; |
| UP.PartialOptSizeThreshold = 0; |
| if (L->getHeader()->getParent()->hasOptSize()) |
| return; |
| |
| SmallVector<BasicBlock *, 4> ExitingBlocks; |
| L->getExitingBlocks(ExitingBlocks); |
| LLVM_DEBUG(dbgs() << "Loop has:\n" |
| << "Blocks: " << L->getNumBlocks() << "\n" |
| << "Exit blocks: " << ExitingBlocks.size() << "\n"); |
| |
| // Only allow another exit other than the latch. This acts as an early exit |
| // as it mirrors the profitability calculation of the runtime unroller. |
| if (ExitingBlocks.size() > 2) |
| return; |
| |
| // Limit the CFG of the loop body for targets with a branch predictor. |
| // Allowing 4 blocks permits if-then-else diamonds in the body. |
| if (L->getNumBlocks() > 4) |
| return; |
| |
| // Don't unroll vectorized loops, including the remainder loop |
| if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized")) |
| return; |
| |
| // Scan the loop: don't unroll loops with calls as this could prevent |
| // inlining. |
| InstructionCost Cost = 0; |
| for (auto *BB : L->getBlocks()) { |
| for (auto &I : *BB) { |
| // Initial setting - Don't unroll loops containing vectorized |
| // instructions. |
| if (I.getType()->isVectorTy()) |
| return; |
| |
| if (isa<CallInst>(I) || isa<InvokeInst>(I)) { |
| if (const Function *F = cast<CallBase>(I).getCalledFunction()) { |
| if (!isLoweredToCall(F)) |
| continue; |
| } |
| return; |
| } |
| |
| SmallVector<const Value *> Operands(I.operand_values()); |
| Cost += getInstructionCost(&I, Operands, |
| TargetTransformInfo::TCK_SizeAndLatency); |
| } |
| } |
| |
| LLVM_DEBUG(dbgs() << "Cost of loop: " << Cost << "\n"); |
| |
| UP.Partial = true; |
| UP.Runtime = true; |
| UP.UnrollRemainder = true; |
| UP.UnrollAndJam = true; |
| UP.UnrollAndJamInnerLoopThreshold = 60; |
| |
| // Force unrolling small loops can be very useful because of the branch |
| // taken cost of the backedge. |
| if (Cost < 12) |
| UP.Force = true; |
| } |
| |
| void RISCVTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, |
| TTI::PeelingPreferences &PP) { |
| BaseT::getPeelingPreferences(L, SE, PP); |
| } |
| |
| unsigned RISCVTTIImpl::getRegUsageForType(Type *Ty) { |
| TypeSize Size = DL.getTypeSizeInBits(Ty); |
| if (Ty->isVectorTy()) { |
| if (Size.isScalable() && ST->hasVInstructions()) |
| return divideCeil(Size.getKnownMinValue(), RISCV::RVVBitsPerBlock); |
| |
| if (ST->useRVVForFixedLengthVectors()) |
| return divideCeil(Size, ST->getRealMinVLen()); |
| } |
| |
| return BaseT::getRegUsageForType(Ty); |
| } |
| |
| unsigned RISCVTTIImpl::getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { |
| if (SLPMaxVF.getNumOccurrences()) |
| return SLPMaxVF; |
| |
| // Return how many elements can fit in getRegisterBitwidth. This is the |
| // same routine as used in LoopVectorizer. We should probably be |
| // accounting for whether we actually have instructions with the right |
| // lane type, but we don't have enough information to do that without |
| // some additional plumbing which hasn't been justified yet. |
| TypeSize RegWidth = |
| getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector); |
| // If no vector registers, or absurd element widths, disable |
| // vectorization by returning 1. |
| return std::max<unsigned>(1U, RegWidth.getFixedValue() / ElemWidth); |
| } |
| |
| bool RISCVTTIImpl::isLSRCostLess(const TargetTransformInfo::LSRCost &C1, |
| const TargetTransformInfo::LSRCost &C2) { |
| // RISC-V specific here are "instruction number 1st priority". |
| // If we need to emit adds inside the loop to add up base registers, then |
| // we need at least one extra temporary register. |
| unsigned C1NumRegs = C1.NumRegs + (C1.NumBaseAdds != 0); |
| unsigned C2NumRegs = C2.NumRegs + (C2.NumBaseAdds != 0); |
| return std::tie(C1.Insns, C1NumRegs, C1.AddRecCost, |
| C1.NumIVMuls, C1.NumBaseAdds, |
| C1.ScaleCost, C1.ImmCost, C1.SetupCost) < |
| std::tie(C2.Insns, C2NumRegs, C2.AddRecCost, |
| C2.NumIVMuls, C2.NumBaseAdds, |
| C2.ScaleCost, C2.ImmCost, C2.SetupCost); |
| } |
| |
| bool RISCVTTIImpl::isLegalMaskedCompressStore(Type *DataTy, Align Alignment) { |
| auto *VTy = dyn_cast<VectorType>(DataTy); |
| if (!VTy || VTy->isScalableTy()) |
| return false; |
| |
| if (!isLegalMaskedLoadStore(DataTy, Alignment)) |
| return false; |
| return true; |
| } |
| |
| bool RISCVTTIImpl::areInlineCompatible(const Function *Caller, |
| const Function *Callee) const { |
| const TargetMachine &TM = getTLI()->getTargetMachine(); |
| |
| const FeatureBitset &CallerBits = |
| TM.getSubtargetImpl(*Caller)->getFeatureBits(); |
| const FeatureBitset &CalleeBits = |
| TM.getSubtargetImpl(*Callee)->getFeatureBits(); |
| |
| // Inline a callee if its target-features are a subset of the callers |
| // target-features. |
| return (CallerBits & CalleeBits) == CalleeBits; |
| } |
| |
| /// See if \p I should be considered for address type promotion. We check if \p |
| /// I is a sext with right type and used in memory accesses. If it used in a |
| /// "complex" getelementptr, we allow it to be promoted without finding other |
| /// sext instructions that sign extended the same initial value. A getelementptr |
| /// is considered as "complex" if it has more than 2 operands. |
| bool RISCVTTIImpl::shouldConsiderAddressTypePromotion( |
| const Instruction &I, bool &AllowPromotionWithoutCommonHeader) { |
| bool Considerable = false; |
| AllowPromotionWithoutCommonHeader = false; |
| if (!isa<SExtInst>(&I)) |
| return false; |
| Type *ConsideredSExtType = |
| Type::getInt64Ty(I.getParent()->getParent()->getContext()); |
| if (I.getType() != ConsideredSExtType) |
| return false; |
| // See if the sext is the one with the right type and used in at least one |
| // GetElementPtrInst. |
| for (const User *U : I.users()) { |
| if (const GetElementPtrInst *GEPInst = dyn_cast<GetElementPtrInst>(U)) { |
| Considerable = true; |
| // A getelementptr is considered as "complex" if it has more than 2 |
| // operands. We will promote a SExt used in such complex GEP as we |
| // expect some computation to be merged if they are done on 64 bits. |
| if (GEPInst->getNumOperands() > 2) { |
| AllowPromotionWithoutCommonHeader = true; |
| break; |
| } |
| } |
| } |
| return Considerable; |
| } |