blob: 781e3d7929aa43cdea0568b8f1a99bd49460490d [file] [log] [blame]
//===-- RISCVTargetTransformInfo.cpp - RISC-V specific TTI ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "RISCVTargetTransformInfo.h"
#include "MCTargetDesc/RISCVMatInt.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/BasicTTIImpl.h"
#include "llvm/CodeGen/CostTable.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/PatternMatch.h"
#include <cmath>
#include <optional>
using namespace llvm;
using namespace llvm::PatternMatch;
#define DEBUG_TYPE "riscvtti"
static cl::opt<unsigned> RVVRegisterWidthLMUL(
"riscv-v-register-bit-width-lmul",
cl::desc(
"The LMUL to use for getRegisterBitWidth queries. Affects LMUL used "
"by autovectorized code. Fractional LMULs are not supported."),
cl::init(2), cl::Hidden);
static cl::opt<unsigned> SLPMaxVF(
"riscv-v-slp-max-vf",
cl::desc(
"Overrides result used for getMaximumVF query which is used "
"exclusively by SLP vectorizer."),
cl::Hidden);
InstructionCost
RISCVTTIImpl::getRISCVInstructionCost(ArrayRef<unsigned> OpCodes, MVT VT,
TTI::TargetCostKind CostKind) {
// Check if the type is valid for all CostKind
if (!VT.isVector())
return InstructionCost::getInvalid();
size_t NumInstr = OpCodes.size();
if (CostKind == TTI::TCK_CodeSize)
return NumInstr;
InstructionCost LMULCost = TLI->getLMULCost(VT);
if ((CostKind != TTI::TCK_RecipThroughput) && (CostKind != TTI::TCK_Latency))
return LMULCost * NumInstr;
InstructionCost Cost = 0;
for (auto Op : OpCodes) {
switch (Op) {
case RISCV::VRGATHER_VI:
Cost += TLI->getVRGatherVICost(VT);
break;
case RISCV::VRGATHER_VV:
Cost += TLI->getVRGatherVVCost(VT);
break;
case RISCV::VSLIDEUP_VI:
case RISCV::VSLIDEDOWN_VI:
Cost += TLI->getVSlideVICost(VT);
break;
case RISCV::VSLIDEUP_VX:
case RISCV::VSLIDEDOWN_VX:
Cost += TLI->getVSlideVXCost(VT);
break;
case RISCV::VREDMAX_VS:
case RISCV::VREDMIN_VS:
case RISCV::VREDMAXU_VS:
case RISCV::VREDMINU_VS:
case RISCV::VREDSUM_VS:
case RISCV::VREDAND_VS:
case RISCV::VREDOR_VS:
case RISCV::VREDXOR_VS:
case RISCV::VFREDMAX_VS:
case RISCV::VFREDMIN_VS:
case RISCV::VFREDUSUM_VS: {
unsigned VL = VT.getVectorMinNumElements();
if (!VT.isFixedLengthVector())
VL *= *getVScaleForTuning();
Cost += Log2_32_Ceil(VL);
break;
}
case RISCV::VFREDOSUM_VS: {
unsigned VL = VT.getVectorMinNumElements();
if (!VT.isFixedLengthVector())
VL *= *getVScaleForTuning();
Cost += VL;
break;
}
case RISCV::VMV_X_S:
case RISCV::VMV_S_X:
case RISCV::VFMV_F_S:
case RISCV::VFMV_S_F:
case RISCV::VMOR_MM:
case RISCV::VMXOR_MM:
case RISCV::VMAND_MM:
case RISCV::VMANDN_MM:
case RISCV::VMNAND_MM:
case RISCV::VCPOP_M:
case RISCV::VFIRST_M:
Cost += 1;
break;
default:
Cost += LMULCost;
}
}
return Cost;
}
static InstructionCost getIntImmCostImpl(const DataLayout &DL,
const RISCVSubtarget *ST,
const APInt &Imm, Type *Ty,
TTI::TargetCostKind CostKind,
bool FreeZeroes) {
assert(Ty->isIntegerTy() &&
"getIntImmCost can only estimate cost of materialising integers");
// We have a Zero register, so 0 is always free.
if (Imm == 0)
return TTI::TCC_Free;
// Otherwise, we check how many instructions it will take to materialise.
return RISCVMatInt::getIntMatCost(Imm, DL.getTypeSizeInBits(Ty), *ST,
/*CompressionCost=*/false, FreeZeroes);
}
InstructionCost RISCVTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
TTI::TargetCostKind CostKind) {
return getIntImmCostImpl(getDataLayout(), getST(), Imm, Ty, CostKind, false);
}
// Look for patterns of shift followed by AND that can be turned into a pair of
// shifts. We won't need to materialize an immediate for the AND so these can
// be considered free.
static bool canUseShiftPair(Instruction *Inst, const APInt &Imm) {
uint64_t Mask = Imm.getZExtValue();
auto *BO = dyn_cast<BinaryOperator>(Inst->getOperand(0));
if (!BO || !BO->hasOneUse())
return false;
if (BO->getOpcode() != Instruction::Shl)
return false;
if (!isa<ConstantInt>(BO->getOperand(1)))
return false;
unsigned ShAmt = cast<ConstantInt>(BO->getOperand(1))->getZExtValue();
// (and (shl x, c2), c1) will be matched to (srli (slli x, c2+c3), c3) if c1
// is a mask shifted by c2 bits with c3 leading zeros.
if (isShiftedMask_64(Mask)) {
unsigned Trailing = llvm::countr_zero(Mask);
if (ShAmt == Trailing)
return true;
}
return false;
}
InstructionCost RISCVTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
const APInt &Imm, Type *Ty,
TTI::TargetCostKind CostKind,
Instruction *Inst) {
assert(Ty->isIntegerTy() &&
"getIntImmCost can only estimate cost of materialising integers");
// We have a Zero register, so 0 is always free.
if (Imm == 0)
return TTI::TCC_Free;
// Some instructions in RISC-V can take a 12-bit immediate. Some of these are
// commutative, in others the immediate comes from a specific argument index.
bool Takes12BitImm = false;
unsigned ImmArgIdx = ~0U;
switch (Opcode) {
case Instruction::GetElementPtr:
// Never hoist any arguments to a GetElementPtr. CodeGenPrepare will
// split up large offsets in GEP into better parts than ConstantHoisting
// can.
return TTI::TCC_Free;
case Instruction::Store: {
// Use the materialization cost regardless of if it's the address or the
// value that is constant, except for if the store is misaligned and
// misaligned accesses are not legal (experience shows constant hoisting
// can sometimes be harmful in such cases).
if (Idx == 1 || !Inst)
return getIntImmCostImpl(getDataLayout(), getST(), Imm, Ty, CostKind,
/*FreeZeroes=*/true);
StoreInst *ST = cast<StoreInst>(Inst);
if (!getTLI()->allowsMemoryAccessForAlignment(
Ty->getContext(), DL, getTLI()->getValueType(DL, Ty),
ST->getPointerAddressSpace(), ST->getAlign()))
return TTI::TCC_Free;
return getIntImmCostImpl(getDataLayout(), getST(), Imm, Ty, CostKind,
/*FreeZeroes=*/true);
}
case Instruction::Load:
// If the address is a constant, use the materialization cost.
return getIntImmCost(Imm, Ty, CostKind);
case Instruction::And:
// zext.h
if (Imm == UINT64_C(0xffff) && ST->hasStdExtZbb())
return TTI::TCC_Free;
// zext.w
if (Imm == UINT64_C(0xffffffff) && ST->hasStdExtZba())
return TTI::TCC_Free;
// bclri
if (ST->hasStdExtZbs() && (~Imm).isPowerOf2())
return TTI::TCC_Free;
if (Inst && Idx == 1 && Imm.getBitWidth() <= ST->getXLen() &&
canUseShiftPair(Inst, Imm))
return TTI::TCC_Free;
Takes12BitImm = true;
break;
case Instruction::Add:
Takes12BitImm = true;
break;
case Instruction::Or:
case Instruction::Xor:
// bseti/binvi
if (ST->hasStdExtZbs() && Imm.isPowerOf2())
return TTI::TCC_Free;
Takes12BitImm = true;
break;
case Instruction::Mul:
// Power of 2 is a shift. Negated power of 2 is a shift and a negate.
if (Imm.isPowerOf2() || Imm.isNegatedPowerOf2())
return TTI::TCC_Free;
// One more or less than a power of 2 can use SLLI+ADD/SUB.
if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2())
return TTI::TCC_Free;
// FIXME: There is no MULI instruction.
Takes12BitImm = true;
break;
case Instruction::Sub:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
Takes12BitImm = true;
ImmArgIdx = 1;
break;
default:
break;
}
if (Takes12BitImm) {
// Check immediate is the correct argument...
if (Instruction::isCommutative(Opcode) || Idx == ImmArgIdx) {
// ... and fits into the 12-bit immediate.
if (Imm.getSignificantBits() <= 64 &&
getTLI()->isLegalAddImmediate(Imm.getSExtValue())) {
return TTI::TCC_Free;
}
}
// Otherwise, use the full materialisation cost.
return getIntImmCost(Imm, Ty, CostKind);
}
// By default, prevent hoisting.
return TTI::TCC_Free;
}
InstructionCost
RISCVTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
const APInt &Imm, Type *Ty,
TTI::TargetCostKind CostKind) {
// Prevent hoisting in unknown cases.
return TTI::TCC_Free;
}
bool RISCVTTIImpl::hasActiveVectorLength(unsigned, Type *DataTy, Align) const {
return ST->hasVInstructions();
}
TargetTransformInfo::PopcntSupportKind
RISCVTTIImpl::getPopcntSupport(unsigned TyWidth) {
assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
return ST->hasStdExtZbb() || (ST->hasVendorXCVbitmanip() && !ST->is64Bit())
? TTI::PSK_FastHardware
: TTI::PSK_Software;
}
bool RISCVTTIImpl::shouldExpandReduction(const IntrinsicInst *II) const {
// Currently, the ExpandReductions pass can't expand scalable-vector
// reductions, but we still request expansion as RVV doesn't support certain
// reductions and the SelectionDAG can't legalize them either.
switch (II->getIntrinsicID()) {
default:
return false;
// These reductions have no equivalent in RVV
case Intrinsic::vector_reduce_mul:
case Intrinsic::vector_reduce_fmul:
return true;
}
}
std::optional<unsigned> RISCVTTIImpl::getMaxVScale() const {
if (ST->hasVInstructions())
return ST->getRealMaxVLen() / RISCV::RVVBitsPerBlock;
return BaseT::getMaxVScale();
}
std::optional<unsigned> RISCVTTIImpl::getVScaleForTuning() const {
if (ST->hasVInstructions())
if (unsigned MinVLen = ST->getRealMinVLen();
MinVLen >= RISCV::RVVBitsPerBlock)
return MinVLen / RISCV::RVVBitsPerBlock;
return BaseT::getVScaleForTuning();
}
TypeSize
RISCVTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
unsigned LMUL =
llvm::bit_floor(std::clamp<unsigned>(RVVRegisterWidthLMUL, 1, 8));
switch (K) {
case TargetTransformInfo::RGK_Scalar:
return TypeSize::getFixed(ST->getXLen());
case TargetTransformInfo::RGK_FixedWidthVector:
return TypeSize::getFixed(
ST->useRVVForFixedLengthVectors() ? LMUL * ST->getRealMinVLen() : 0);
case TargetTransformInfo::RGK_ScalableVector:
return TypeSize::getScalable(
(ST->hasVInstructions() &&
ST->getRealMinVLen() >= RISCV::RVVBitsPerBlock)
? LMUL * RISCV::RVVBitsPerBlock
: 0);
}
llvm_unreachable("Unsupported register kind");
}
InstructionCost
RISCVTTIImpl::getConstantPoolLoadCost(Type *Ty, TTI::TargetCostKind CostKind) {
// Add a cost of address generation + the cost of the load. The address
// is expected to be a PC relative offset to a constant pool entry
// using auipc/addi.
return 2 + getMemoryOpCost(Instruction::Load, Ty, DL.getABITypeAlign(Ty),
/*AddressSpace=*/0, CostKind);
}
static VectorType *getVRGatherIndexType(MVT DataVT, const RISCVSubtarget &ST,
LLVMContext &C) {
assert((DataVT.getScalarSizeInBits() != 8 ||
DataVT.getVectorNumElements() <= 256) && "unhandled case in lowering");
MVT IndexVT = DataVT.changeTypeToInteger();
if (IndexVT.getScalarType().bitsGT(ST.getXLenVT()))
IndexVT = IndexVT.changeVectorElementType(MVT::i16);
return cast<VectorType>(EVT(IndexVT).getTypeForEVT(C));
}
InstructionCost RISCVTTIImpl::getShuffleCost(TTI::ShuffleKind Kind,
VectorType *Tp, ArrayRef<int> Mask,
TTI::TargetCostKind CostKind,
int Index, VectorType *SubTp,
ArrayRef<const Value *> Args,
const Instruction *CxtI) {
Kind = improveShuffleKindFromMask(Kind, Mask, Tp, Index, SubTp);
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp);
// First, handle cases where having a fixed length vector enables us to
// give a more accurate cost than falling back to generic scalable codegen.
// TODO: Each of these cases hints at a modeling gap around scalable vectors.
if (isa<FixedVectorType>(Tp)) {
switch (Kind) {
default:
break;
case TTI::SK_PermuteSingleSrc: {
if (Mask.size() >= 2 && LT.second.isFixedLengthVector()) {
MVT EltTp = LT.second.getVectorElementType();
// If the size of the element is < ELEN then shuffles of interleaves and
// deinterleaves of 2 vectors can be lowered into the following
// sequences
if (EltTp.getScalarSizeInBits() < ST->getELen()) {
// Example sequence:
// vsetivli zero, 4, e8, mf4, ta, ma (ignored)
// vwaddu.vv v10, v8, v9
// li a0, -1 (ignored)
// vwmaccu.vx v10, a0, v9
if (ShuffleVectorInst::isInterleaveMask(Mask, 2, Mask.size()))
return 2 * LT.first * TLI->getLMULCost(LT.second);
if (Mask[0] == 0 || Mask[0] == 1) {
auto DeinterleaveMask = createStrideMask(Mask[0], 2, Mask.size());
// Example sequence:
// vnsrl.wi v10, v8, 0
if (equal(DeinterleaveMask, Mask))
return LT.first * getRISCVInstructionCost(RISCV::VNSRL_WI,
LT.second, CostKind);
}
}
}
// vrgather + cost of generating the mask constant.
// We model this for an unknown mask with a single vrgather.
if (LT.second.isFixedLengthVector() && LT.first == 1 &&
(LT.second.getScalarSizeInBits() != 8 ||
LT.second.getVectorNumElements() <= 256)) {
VectorType *IdxTy = getVRGatherIndexType(LT.second, *ST, Tp->getContext());
InstructionCost IndexCost = getConstantPoolLoadCost(IdxTy, CostKind);
return IndexCost +
getRISCVInstructionCost(RISCV::VRGATHER_VV, LT.second, CostKind);
}
[[fallthrough]];
}
case TTI::SK_Transpose:
case TTI::SK_PermuteTwoSrc: {
// 2 x (vrgather + cost of generating the mask constant) + cost of mask
// register for the second vrgather. We model this for an unknown
// (shuffle) mask.
if (LT.second.isFixedLengthVector() && LT.first == 1 &&
(LT.second.getScalarSizeInBits() != 8 ||
LT.second.getVectorNumElements() <= 256)) {
auto &C = Tp->getContext();
auto EC = Tp->getElementCount();
VectorType *IdxTy = getVRGatherIndexType(LT.second, *ST, C);
VectorType *MaskTy = VectorType::get(IntegerType::getInt1Ty(C), EC);
InstructionCost IndexCost = getConstantPoolLoadCost(IdxTy, CostKind);
InstructionCost MaskCost = getConstantPoolLoadCost(MaskTy, CostKind);
return 2 * IndexCost +
getRISCVInstructionCost({RISCV::VRGATHER_VV, RISCV::VRGATHER_VV},
LT.second, CostKind) +
MaskCost;
}
[[fallthrough]];
}
case TTI::SK_Select: {
// We are going to permute multiple sources and the result will be in
// multiple destinations. Providing an accurate cost only for splits where
// the element type remains the same.
if (!Mask.empty() && LT.first.isValid() && LT.first != 1 &&
LT.second.isFixedLengthVector() &&
LT.second.getVectorElementType().getSizeInBits() ==
Tp->getElementType()->getPrimitiveSizeInBits() &&
LT.second.getVectorNumElements() <
cast<FixedVectorType>(Tp)->getNumElements() &&
divideCeil(Mask.size(),
cast<FixedVectorType>(Tp)->getNumElements()) ==
static_cast<unsigned>(*LT.first.getValue())) {
unsigned NumRegs = *LT.first.getValue();
unsigned VF = cast<FixedVectorType>(Tp)->getNumElements();
unsigned SubVF = PowerOf2Ceil(VF / NumRegs);
auto *SubVecTy = FixedVectorType::get(Tp->getElementType(), SubVF);
InstructionCost Cost = 0;
for (unsigned I = 0; I < NumRegs; ++I) {
bool IsSingleVector = true;
SmallVector<int> SubMask(SubVF, PoisonMaskElem);
transform(Mask.slice(I * SubVF,
I == NumRegs - 1 ? Mask.size() % SubVF : SubVF),
SubMask.begin(), [&](int I) {
bool SingleSubVector = I / VF == 0;
IsSingleVector &= SingleSubVector;
return (SingleSubVector ? 0 : 1) * SubVF + I % VF;
});
Cost += getShuffleCost(IsSingleVector ? TTI::SK_PermuteSingleSrc
: TTI::SK_PermuteTwoSrc,
SubVecTy, SubMask, CostKind, 0, nullptr);
return Cost;
}
}
break;
}
}
};
// Handle scalable vectors (and fixed vectors legalized to scalable vectors).
switch (Kind) {
default:
// Fallthrough to generic handling.
// TODO: Most of these cases will return getInvalid in generic code, and
// must be implemented here.
break;
case TTI::SK_ExtractSubvector:
// Extract at zero is always a subregister extract
if (Index == 0)
return TTI::TCC_Free;
// If we're extracting a subvector of at most m1 size at a sub-register
// boundary - which unfortunately we need exact vlen to identify - this is
// a subregister extract at worst and thus won't require a vslidedown.
// TODO: Extend for aligned m2, m4 subvector extracts
// TODO: Extend for misalgined (but contained) extracts
// TODO: Extend for scalable subvector types
if (std::pair<InstructionCost, MVT> SubLT = getTypeLegalizationCost(SubTp);
SubLT.second.isValid() && SubLT.second.isFixedLengthVector()) {
const unsigned MinVLen = ST->getRealMinVLen();
const unsigned MaxVLen = ST->getRealMaxVLen();
if (MinVLen == MaxVLen &&
SubLT.second.getScalarSizeInBits() * Index % MinVLen == 0 &&
SubLT.second.getSizeInBits() <= MinVLen)
return TTI::TCC_Free;
}
// Example sequence:
// vsetivli zero, 4, e8, mf2, tu, ma (ignored)
// vslidedown.vi v8, v9, 2
return LT.first *
getRISCVInstructionCost(RISCV::VSLIDEDOWN_VI, LT.second, CostKind);
case TTI::SK_InsertSubvector:
// Example sequence:
// vsetivli zero, 4, e8, mf2, tu, ma (ignored)
// vslideup.vi v8, v9, 2
return LT.first *
getRISCVInstructionCost(RISCV::VSLIDEUP_VI, LT.second, CostKind);
case TTI::SK_Select: {
// Example sequence:
// li a0, 90
// vsetivli zero, 8, e8, mf2, ta, ma (ignored)
// vmv.s.x v0, a0
// vmerge.vvm v8, v9, v8, v0
// We use 2 for the cost of the mask materialization as this is the true
// cost for small masks and most shuffles are small. At worst, this cost
// should be a very small constant for the constant pool load. As such,
// we may bias towards large selects slightly more than truely warranted.
return LT.first *
(1 + getRISCVInstructionCost({RISCV::VMV_S_X, RISCV::VMERGE_VVM},
LT.second, CostKind));
}
case TTI::SK_Broadcast: {
bool HasScalar = (Args.size() > 0) && (Operator::getOpcode(Args[0]) ==
Instruction::InsertElement);
if (LT.second.getScalarSizeInBits() == 1) {
if (HasScalar) {
// Example sequence:
// andi a0, a0, 1
// vsetivli zero, 2, e8, mf8, ta, ma (ignored)
// vmv.v.x v8, a0
// vmsne.vi v0, v8, 0
return LT.first *
(1 + getRISCVInstructionCost({RISCV::VMV_V_X, RISCV::VMSNE_VI},
LT.second, CostKind));
}
// Example sequence:
// vsetivli zero, 2, e8, mf8, ta, mu (ignored)
// vmv.v.i v8, 0
// vmerge.vim v8, v8, 1, v0
// vmv.x.s a0, v8
// andi a0, a0, 1
// vmv.v.x v8, a0
// vmsne.vi v0, v8, 0
return LT.first *
(1 + getRISCVInstructionCost({RISCV::VMV_V_I, RISCV::VMERGE_VIM,
RISCV::VMV_X_S, RISCV::VMV_V_X,
RISCV::VMSNE_VI},
LT.second, CostKind));
}
if (HasScalar) {
// Example sequence:
// vmv.v.x v8, a0
return LT.first *
getRISCVInstructionCost(RISCV::VMV_V_X, LT.second, CostKind);
}
// Example sequence:
// vrgather.vi v9, v8, 0
return LT.first *
getRISCVInstructionCost(RISCV::VRGATHER_VI, LT.second, CostKind);
}
case TTI::SK_Splice: {
// vslidedown+vslideup.
// TODO: Multiplying by LT.first implies this legalizes into multiple copies
// of similar code, but I think we expand through memory.
unsigned Opcodes[2] = {RISCV::VSLIDEDOWN_VX, RISCV::VSLIDEUP_VX};
if (Index >= 0 && Index < 32)
Opcodes[0] = RISCV::VSLIDEDOWN_VI;
else if (Index < 0 && Index > -32)
Opcodes[1] = RISCV::VSLIDEUP_VI;
return LT.first * getRISCVInstructionCost(Opcodes, LT.second, CostKind);
}
case TTI::SK_Reverse: {
// TODO: Cases to improve here:
// * Illegal vector types
// * i64 on RV32
// * i1 vector
// At low LMUL, most of the cost is producing the vrgather index register.
// At high LMUL, the cost of the vrgather itself will dominate.
// Example sequence:
// csrr a0, vlenb
// srli a0, a0, 3
// addi a0, a0, -1
// vsetvli a1, zero, e8, mf8, ta, mu (ignored)
// vid.v v9
// vrsub.vx v10, v9, a0
// vrgather.vv v9, v8, v10
InstructionCost LenCost = 3;
if (LT.second.isFixedLengthVector())
// vrsub.vi has a 5 bit immediate field, otherwise an li suffices
LenCost = isInt<5>(LT.second.getVectorNumElements() - 1) ? 0 : 1;
unsigned Opcodes[] = {RISCV::VID_V, RISCV::VRSUB_VX, RISCV::VRGATHER_VV};
if (LT.second.isFixedLengthVector() &&
isInt<5>(LT.second.getVectorNumElements() - 1))
Opcodes[1] = RISCV::VRSUB_VI;
InstructionCost GatherCost =
getRISCVInstructionCost(Opcodes, LT.second, CostKind);
// Mask operation additionally required extend and truncate
InstructionCost ExtendCost = Tp->getElementType()->isIntegerTy(1) ? 3 : 0;
return LT.first * (LenCost + GatherCost + ExtendCost);
}
}
return BaseT::getShuffleCost(Kind, Tp, Mask, CostKind, Index, SubTp);
}
InstructionCost
RISCVTTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
unsigned AddressSpace,
TTI::TargetCostKind CostKind) {
if (!isLegalMaskedLoadStore(Src, Alignment) ||
CostKind != TTI::TCK_RecipThroughput)
return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
CostKind);
return getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind);
}
InstructionCost RISCVTTIImpl::getInterleavedMemoryOpCost(
unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
bool UseMaskForCond, bool UseMaskForGaps) {
if (isa<ScalableVectorType>(VecTy) && Factor != 2)
return InstructionCost::getInvalid();
// The interleaved memory access pass will lower interleaved memory ops (i.e
// a load and store followed by a specific shuffle) to vlseg/vsseg
// intrinsics. In those cases then we can treat it as if it's just one (legal)
// memory op
if (!UseMaskForCond && !UseMaskForGaps &&
Factor <= TLI->getMaxSupportedInterleaveFactor()) {
auto *VTy = cast<VectorType>(VecTy);
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(VTy);
// Need to make sure type has't been scalarized
if (LT.second.isVector()) {
auto *SubVecTy =
VectorType::get(VTy->getElementType(),
VTy->getElementCount().divideCoefficientBy(Factor));
if (VTy->getElementCount().isKnownMultipleOf(Factor) &&
TLI->isLegalInterleavedAccessType(SubVecTy, Factor, Alignment,
AddressSpace, DL)) {
// FIXME: We use the memory op cost of the *legalized* type here,
// because it's getMemoryOpCost returns a really expensive cost for
// types like <6 x i8>, which show up when doing interleaves of
// Factor=3 etc. Should the memory op cost of these be cheaper?
auto *LegalVTy = VectorType::get(VTy->getElementType(),
LT.second.getVectorElementCount());
InstructionCost LegalMemCost = getMemoryOpCost(
Opcode, LegalVTy, Alignment, AddressSpace, CostKind);
return LT.first + LegalMemCost;
}
}
}
// TODO: Return the cost of interleaved accesses for scalable vector when
// unable to convert to segment accesses instructions.
if (isa<ScalableVectorType>(VecTy))
return InstructionCost::getInvalid();
auto *FVTy = cast<FixedVectorType>(VecTy);
InstructionCost MemCost =
getMemoryOpCost(Opcode, VecTy, Alignment, AddressSpace, CostKind);
unsigned VF = FVTy->getNumElements() / Factor;
// An interleaved load will look like this for Factor=3:
// %wide.vec = load <12 x i32>, ptr %3, align 4
// %strided.vec = shufflevector %wide.vec, poison, <4 x i32> <stride mask>
// %strided.vec1 = shufflevector %wide.vec, poison, <4 x i32> <stride mask>
// %strided.vec2 = shufflevector %wide.vec, poison, <4 x i32> <stride mask>
if (Opcode == Instruction::Load) {
InstructionCost Cost = MemCost;
for (unsigned Index : Indices) {
FixedVectorType *SubVecTy =
FixedVectorType::get(FVTy->getElementType(), VF * Factor);
auto Mask = createStrideMask(Index, Factor, VF);
InstructionCost ShuffleCost =
getShuffleCost(TTI::ShuffleKind::SK_PermuteSingleSrc, SubVecTy, Mask,
CostKind, 0, nullptr, {});
Cost += ShuffleCost;
}
return Cost;
}
// TODO: Model for NF > 2
// We'll need to enhance getShuffleCost to model shuffles that are just
// inserts and extracts into subvectors, since they won't have the full cost
// of a vrgather.
// An interleaved store for 3 vectors of 4 lanes will look like
// %11 = shufflevector <4 x i32> %4, <4 x i32> %6, <8 x i32> <0...7>
// %12 = shufflevector <4 x i32> %9, <4 x i32> poison, <8 x i32> <0...3>
// %13 = shufflevector <8 x i32> %11, <8 x i32> %12, <12 x i32> <0...11>
// %interleaved.vec = shufflevector %13, poison, <12 x i32> <interleave mask>
// store <12 x i32> %interleaved.vec, ptr %10, align 4
if (Factor != 2)
return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
Alignment, AddressSpace, CostKind,
UseMaskForCond, UseMaskForGaps);
assert(Opcode == Instruction::Store && "Opcode must be a store");
// For an interleaving store of 2 vectors, we perform one large interleaving
// shuffle that goes into the wide store
auto Mask = createInterleaveMask(VF, Factor);
InstructionCost ShuffleCost =
getShuffleCost(TTI::ShuffleKind::SK_PermuteSingleSrc, FVTy, Mask,
CostKind, 0, nullptr, {});
return MemCost + ShuffleCost;
}
InstructionCost RISCVTTIImpl::getGatherScatterOpCost(
unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) {
if (CostKind != TTI::TCK_RecipThroughput)
return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
Alignment, CostKind, I);
if ((Opcode == Instruction::Load &&
!isLegalMaskedGather(DataTy, Align(Alignment))) ||
(Opcode == Instruction::Store &&
!isLegalMaskedScatter(DataTy, Align(Alignment))))
return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
Alignment, CostKind, I);
// Cost is proportional to the number of memory operations implied. For
// scalable vectors, we use an estimate on that number since we don't
// know exactly what VL will be.
auto &VTy = *cast<VectorType>(DataTy);
InstructionCost MemOpCost =
getMemoryOpCost(Opcode, VTy.getElementType(), Alignment, 0, CostKind,
{TTI::OK_AnyValue, TTI::OP_None}, I);
unsigned NumLoads = getEstimatedVLFor(&VTy);
return NumLoads * MemOpCost;
}
InstructionCost RISCVTTIImpl::getStridedMemoryOpCost(
unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) {
if (((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
!isLegalStridedLoadStore(DataTy, Alignment)) ||
(Opcode != Instruction::Load && Opcode != Instruction::Store))
return BaseT::getStridedMemoryOpCost(Opcode, DataTy, Ptr, VariableMask,
Alignment, CostKind, I);
if (CostKind == TTI::TCK_CodeSize)
return TTI::TCC_Basic;
// Cost is proportional to the number of memory operations implied. For
// scalable vectors, we use an estimate on that number since we don't
// know exactly what VL will be.
auto &VTy = *cast<VectorType>(DataTy);
InstructionCost MemOpCost =
getMemoryOpCost(Opcode, VTy.getElementType(), Alignment, 0, CostKind,
{TTI::OK_AnyValue, TTI::OP_None}, I);
unsigned NumLoads = getEstimatedVLFor(&VTy);
return NumLoads * MemOpCost;
}
// Currently, these represent both throughput and codesize costs
// for the respective intrinsics. The costs in this table are simply
// instruction counts with the following adjustments made:
// * One vsetvli is considered free.
static const CostTblEntry VectorIntrinsicCostTable[]{
{Intrinsic::floor, MVT::f32, 9},
{Intrinsic::floor, MVT::f64, 9},
{Intrinsic::ceil, MVT::f32, 9},
{Intrinsic::ceil, MVT::f64, 9},
{Intrinsic::trunc, MVT::f32, 7},
{Intrinsic::trunc, MVT::f64, 7},
{Intrinsic::round, MVT::f32, 9},
{Intrinsic::round, MVT::f64, 9},
{Intrinsic::roundeven, MVT::f32, 9},
{Intrinsic::roundeven, MVT::f64, 9},
{Intrinsic::rint, MVT::f32, 7},
{Intrinsic::rint, MVT::f64, 7},
{Intrinsic::lrint, MVT::i32, 1},
{Intrinsic::lrint, MVT::i64, 1},
{Intrinsic::llrint, MVT::i64, 1},
{Intrinsic::nearbyint, MVT::f32, 9},
{Intrinsic::nearbyint, MVT::f64, 9},
{Intrinsic::bswap, MVT::i16, 3},
{Intrinsic::bswap, MVT::i32, 12},
{Intrinsic::bswap, MVT::i64, 31},
{Intrinsic::vp_bswap, MVT::i16, 3},
{Intrinsic::vp_bswap, MVT::i32, 12},
{Intrinsic::vp_bswap, MVT::i64, 31},
{Intrinsic::vp_fshl, MVT::i8, 7},
{Intrinsic::vp_fshl, MVT::i16, 7},
{Intrinsic::vp_fshl, MVT::i32, 7},
{Intrinsic::vp_fshl, MVT::i64, 7},
{Intrinsic::vp_fshr, MVT::i8, 7},
{Intrinsic::vp_fshr, MVT::i16, 7},
{Intrinsic::vp_fshr, MVT::i32, 7},
{Intrinsic::vp_fshr, MVT::i64, 7},
{Intrinsic::bitreverse, MVT::i8, 17},
{Intrinsic::bitreverse, MVT::i16, 24},
{Intrinsic::bitreverse, MVT::i32, 33},
{Intrinsic::bitreverse, MVT::i64, 52},
{Intrinsic::vp_bitreverse, MVT::i8, 17},
{Intrinsic::vp_bitreverse, MVT::i16, 24},
{Intrinsic::vp_bitreverse, MVT::i32, 33},
{Intrinsic::vp_bitreverse, MVT::i64, 52},
{Intrinsic::ctpop, MVT::i8, 12},
{Intrinsic::ctpop, MVT::i16, 19},
{Intrinsic::ctpop, MVT::i32, 20},
{Intrinsic::ctpop, MVT::i64, 21},
{Intrinsic::vp_ctpop, MVT::i8, 12},
{Intrinsic::vp_ctpop, MVT::i16, 19},
{Intrinsic::vp_ctpop, MVT::i32, 20},
{Intrinsic::vp_ctpop, MVT::i64, 21},
{Intrinsic::vp_ctlz, MVT::i8, 19},
{Intrinsic::vp_ctlz, MVT::i16, 28},
{Intrinsic::vp_ctlz, MVT::i32, 31},
{Intrinsic::vp_ctlz, MVT::i64, 35},
{Intrinsic::vp_cttz, MVT::i8, 16},
{Intrinsic::vp_cttz, MVT::i16, 23},
{Intrinsic::vp_cttz, MVT::i32, 24},
{Intrinsic::vp_cttz, MVT::i64, 25},
};
static unsigned getISDForVPIntrinsicID(Intrinsic::ID ID) {
switch (ID) {
#define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \
case Intrinsic::VPID: \
return ISD::VPSD;
#include "llvm/IR/VPIntrinsics.def"
#undef HELPER_MAP_VPID_TO_VPSD
}
return ISD::DELETED_NODE;
}
InstructionCost
RISCVTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
TTI::TargetCostKind CostKind) {
auto *RetTy = ICA.getReturnType();
switch (ICA.getID()) {
case Intrinsic::ceil:
case Intrinsic::floor:
case Intrinsic::trunc:
case Intrinsic::rint:
case Intrinsic::lrint:
case Intrinsic::llrint:
case Intrinsic::round:
case Intrinsic::roundeven: {
// These all use the same code.
auto LT = getTypeLegalizationCost(RetTy);
if (!LT.second.isVector() && TLI->isOperationCustom(ISD::FCEIL, LT.second))
return LT.first * 8;
break;
}
case Intrinsic::umin:
case Intrinsic::umax:
case Intrinsic::smin:
case Intrinsic::smax: {
auto LT = getTypeLegalizationCost(RetTy);
if (LT.second.isScalarInteger() && ST->hasStdExtZbb())
return LT.first;
if (ST->hasVInstructions() && LT.second.isVector()) {
unsigned Op;
switch (ICA.getID()) {
case Intrinsic::umin:
Op = RISCV::VMINU_VV;
break;
case Intrinsic::umax:
Op = RISCV::VMAXU_VV;
break;
case Intrinsic::smin:
Op = RISCV::VMIN_VV;
break;
case Intrinsic::smax:
Op = RISCV::VMAX_VV;
break;
}
return LT.first * getRISCVInstructionCost(Op, LT.second, CostKind);
}
break;
}
case Intrinsic::sadd_sat:
case Intrinsic::ssub_sat:
case Intrinsic::uadd_sat:
case Intrinsic::usub_sat:
case Intrinsic::fabs:
case Intrinsic::sqrt: {
auto LT = getTypeLegalizationCost(RetTy);
if (ST->hasVInstructions() && LT.second.isVector())
return LT.first;
break;
}
case Intrinsic::ctpop: {
auto LT = getTypeLegalizationCost(RetTy);
if (ST->hasVInstructions() && ST->hasStdExtZvbb() && LT.second.isVector())
return LT.first;
break;
}
case Intrinsic::abs: {
auto LT = getTypeLegalizationCost(RetTy);
if (ST->hasVInstructions() && LT.second.isVector()) {
// vrsub.vi v10, v8, 0
// vmax.vv v8, v8, v10
return LT.first * 2;
}
break;
}
case Intrinsic::get_active_lane_mask: {
if (ST->hasVInstructions()) {
Type *ExpRetTy = VectorType::get(
ICA.getArgTypes()[0], cast<VectorType>(RetTy)->getElementCount());
auto LT = getTypeLegalizationCost(ExpRetTy);
// vid.v v8 // considered hoisted
// vsaddu.vx v8, v8, a0
// vmsltu.vx v0, v8, a1
return LT.first *
getRISCVInstructionCost({RISCV::VSADDU_VX, RISCV::VMSLTU_VX},
LT.second, CostKind);
}
break;
}
// TODO: add more intrinsic
case Intrinsic::experimental_stepvector: {
auto LT = getTypeLegalizationCost(RetTy);
// Legalisation of illegal types involves an `index' instruction plus
// (LT.first - 1) vector adds.
if (ST->hasVInstructions())
return getRISCVInstructionCost(RISCV::VID_V, LT.second, CostKind) +
(LT.first - 1) *
getRISCVInstructionCost(RISCV::VADD_VX, LT.second, CostKind);
return 1 + (LT.first - 1);
}
case Intrinsic::experimental_cttz_elts: {
Type *ArgTy = ICA.getArgTypes()[0];
EVT ArgType = TLI->getValueType(DL, ArgTy, true);
if (getTLI()->shouldExpandCttzElements(ArgType))
break;
InstructionCost Cost = getRISCVInstructionCost(
RISCV::VFIRST_M, getTypeLegalizationCost(ArgTy).second, CostKind);
// If zero_is_poison is false, then we will generate additional
// cmp + select instructions to convert -1 to EVL.
Type *BoolTy = Type::getInt1Ty(RetTy->getContext());
if (ICA.getArgs().size() > 1 &&
cast<ConstantInt>(ICA.getArgs()[1])->isZero())
Cost += getCmpSelInstrCost(Instruction::ICmp, BoolTy, RetTy,
CmpInst::ICMP_SLT, CostKind) +
getCmpSelInstrCost(Instruction::Select, RetTy, BoolTy,
CmpInst::BAD_ICMP_PREDICATE, CostKind);
return Cost;
}
case Intrinsic::vp_rint: {
// RISC-V target uses at least 5 instructions to lower rounding intrinsics.
unsigned Cost = 5;
auto LT = getTypeLegalizationCost(RetTy);
if (TLI->isOperationCustom(ISD::VP_FRINT, LT.second))
return Cost * LT.first;
break;
}
case Intrinsic::vp_nearbyint: {
// More one read and one write for fflags than vp_rint.
unsigned Cost = 7;
auto LT = getTypeLegalizationCost(RetTy);
if (TLI->isOperationCustom(ISD::VP_FRINT, LT.second))
return Cost * LT.first;
break;
}
case Intrinsic::vp_ceil:
case Intrinsic::vp_floor:
case Intrinsic::vp_round:
case Intrinsic::vp_roundeven:
case Intrinsic::vp_roundtozero: {
// Rounding with static rounding mode needs two more instructions to
// swap/write FRM than vp_rint.
unsigned Cost = 7;
auto LT = getTypeLegalizationCost(RetTy);
unsigned VPISD = getISDForVPIntrinsicID(ICA.getID());
if (TLI->isOperationCustom(VPISD, LT.second))
return Cost * LT.first;
break;
}
// vp integer arithmetic ops.
case Intrinsic::vp_add:
case Intrinsic::vp_and:
case Intrinsic::vp_ashr:
case Intrinsic::vp_lshr:
case Intrinsic::vp_mul:
case Intrinsic::vp_or:
case Intrinsic::vp_sdiv:
case Intrinsic::vp_shl:
case Intrinsic::vp_srem:
case Intrinsic::vp_sub:
case Intrinsic::vp_udiv:
case Intrinsic::vp_urem:
case Intrinsic::vp_xor:
// vp float arithmetic ops.
case Intrinsic::vp_fadd:
case Intrinsic::vp_fsub:
case Intrinsic::vp_fmul:
case Intrinsic::vp_fdiv:
case Intrinsic::vp_frem: {
std::optional<unsigned> FOp =
VPIntrinsic::getFunctionalOpcodeForVP(ICA.getID());
if (FOp)
return getArithmeticInstrCost(*FOp, ICA.getReturnType(), CostKind);
break;
}
}
if (ST->hasVInstructions() && RetTy->isVectorTy()) {
if (auto LT = getTypeLegalizationCost(RetTy);
LT.second.isVector()) {
MVT EltTy = LT.second.getVectorElementType();
if (const auto *Entry = CostTableLookup(VectorIntrinsicCostTable,
ICA.getID(), EltTy))
return LT.first * Entry->Cost;
}
}
return BaseT::getIntrinsicInstrCost(ICA, CostKind);
}
InstructionCost RISCVTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
Type *Src,
TTI::CastContextHint CCH,
TTI::TargetCostKind CostKind,
const Instruction *I) {
bool IsVectorType = isa<VectorType>(Dst) && isa<VectorType>(Src);
if (!IsVectorType)
return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
// FIXME: Need to compute legalizing cost for illegal types. The current
// code handles only legal types and those which can be trivially
// promoted to legal.
if (!ST->hasVInstructions() || Src->getScalarSizeInBits() > ST->getELen() ||
Dst->getScalarSizeInBits() > ST->getELen())
return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
std::pair<InstructionCost, MVT> SrcLT = getTypeLegalizationCost(Src);
std::pair<InstructionCost, MVT> DstLT = getTypeLegalizationCost(Dst);
// Our actual lowering for the case where a wider legal type is available
// uses promotion to the wider type. This is reflected in the result of
// getTypeLegalizationCost, but BasicTTI assumes the widened cases are
// scalarized if the legalized Src and Dst are not equal sized.
const DataLayout &DL = this->getDataLayout();
if (!SrcLT.second.isVector() || !DstLT.second.isVector() ||
!TypeSize::isKnownLE(DL.getTypeSizeInBits(Src),
SrcLT.second.getSizeInBits()) ||
!TypeSize::isKnownLE(DL.getTypeSizeInBits(Dst),
DstLT.second.getSizeInBits()))
return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
int ISD = TLI->InstructionOpcodeToISD(Opcode);
assert(ISD && "Invalid opcode");
int PowDiff = (int)Log2_32(Dst->getScalarSizeInBits()) -
(int)Log2_32(Src->getScalarSizeInBits());
switch (ISD) {
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND: {
const unsigned SrcEltSize = Src->getScalarSizeInBits();
if (SrcEltSize == 1) {
// We do not use vsext/vzext to extend from mask vector.
// Instead we use the following instructions to extend from mask vector:
// vmv.v.i v8, 0
// vmerge.vim v8, v8, -1, v0
return getRISCVInstructionCost({RISCV::VMV_V_I, RISCV::VMERGE_VIM},
DstLT.second, CostKind);
}
if ((PowDiff < 1) || (PowDiff > 3))
return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
unsigned SExtOp[] = {RISCV::VSEXT_VF2, RISCV::VSEXT_VF4, RISCV::VSEXT_VF8};
unsigned ZExtOp[] = {RISCV::VZEXT_VF2, RISCV::VZEXT_VF4, RISCV::VZEXT_VF8};
unsigned Op =
(ISD == ISD::SIGN_EXTEND) ? SExtOp[PowDiff - 1] : ZExtOp[PowDiff - 1];
return getRISCVInstructionCost(Op, DstLT.second, CostKind);
}
case ISD::TRUNCATE:
if (Dst->getScalarSizeInBits() == 1) {
// We do not use several vncvt to truncate to mask vector. So we could
// not use PowDiff to calculate it.
// Instead we use the following instructions to truncate to mask vector:
// vand.vi v8, v8, 1
// vmsne.vi v0, v8, 0
return getRISCVInstructionCost({RISCV::VAND_VI, RISCV::VMSNE_VI},
SrcLT.second, CostKind);
}
[[fallthrough]];
case ISD::FP_EXTEND:
case ISD::FP_ROUND: {
// Counts of narrow/widen instructions.
unsigned SrcEltSize = Src->getScalarSizeInBits();
unsigned DstEltSize = Dst->getScalarSizeInBits();
unsigned Op = (ISD == ISD::TRUNCATE) ? RISCV::VNSRL_WI
: (ISD == ISD::FP_EXTEND) ? RISCV::VFWCVT_F_F_V
: RISCV::VFNCVT_F_F_W;
InstructionCost Cost = 0;
for (; SrcEltSize != DstEltSize;) {
MVT ElementMVT = (ISD == ISD::TRUNCATE)
? MVT::getIntegerVT(DstEltSize)
: MVT::getFloatingPointVT(DstEltSize);
MVT DstMVT = DstLT.second.changeVectorElementType(ElementMVT);
DstEltSize =
(DstEltSize > SrcEltSize) ? DstEltSize >> 1 : DstEltSize << 1;
Cost += getRISCVInstructionCost(Op, DstMVT, CostKind);
}
return Cost;
}
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT:
// For fp vector to mask, we use:
// vfncvt.rtz.x.f.w v9, v8
// vand.vi v8, v9, 1
// vmsne.vi v0, v8, 0
if (Dst->getScalarSizeInBits() == 1)
return 3;
if (std::abs(PowDiff) <= 1)
return 1;
// Counts of narrow/widen instructions.
return std::abs(PowDiff);
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP:
// For mask vector to fp, we should use the following instructions:
// vmv.v.i v8, 0
// vmerge.vim v8, v8, -1, v0
// vfcvt.f.x.v v8, v8
if (Src->getScalarSizeInBits() == 1)
return 3;
if (std::abs(PowDiff) <= 1)
return 1;
// Backend could lower (v[sz]ext i8 to double) to vfcvt(v[sz]ext.f8 i8),
// so it only need two conversion.
return 2;
}
return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
}
unsigned RISCVTTIImpl::getEstimatedVLFor(VectorType *Ty) {
if (isa<ScalableVectorType>(Ty)) {
const unsigned EltSize = DL.getTypeSizeInBits(Ty->getElementType());
const unsigned MinSize = DL.getTypeSizeInBits(Ty).getKnownMinValue();
const unsigned VectorBits = *getVScaleForTuning() * RISCV::RVVBitsPerBlock;
return RISCVTargetLowering::computeVLMAX(VectorBits, EltSize, MinSize);
}
return cast<FixedVectorType>(Ty)->getNumElements();
}
InstructionCost
RISCVTTIImpl::getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty,
FastMathFlags FMF,
TTI::TargetCostKind CostKind) {
if (isa<FixedVectorType>(Ty) && !ST->useRVVForFixedLengthVectors())
return BaseT::getMinMaxReductionCost(IID, Ty, FMF, CostKind);
// Skip if scalar size of Ty is bigger than ELEN.
if (Ty->getScalarSizeInBits() > ST->getELen())
return BaseT::getMinMaxReductionCost(IID, Ty, FMF, CostKind);
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
if (Ty->getElementType()->isIntegerTy(1)) {
// SelectionDAGBuilder does following transforms:
// vector_reduce_{smin,umax}(<n x i1>) --> vector_reduce_or(<n x i1>)
// vector_reduce_{smax,umin}(<n x i1>) --> vector_reduce_and(<n x i1>)
if (IID == Intrinsic::umax || IID == Intrinsic::smin)
return getArithmeticReductionCost(Instruction::Or, Ty, FMF, CostKind);
else
return getArithmeticReductionCost(Instruction::And, Ty, FMF, CostKind);
}
if (IID == Intrinsic::maximum || IID == Intrinsic::minimum) {
SmallVector<unsigned, 3> Opcodes;
InstructionCost ExtraCost = 0;
switch (IID) {
case Intrinsic::maximum:
if (FMF.noNaNs()) {
Opcodes = {RISCV::VFREDMAX_VS, RISCV::VFMV_F_S};
} else {
Opcodes = {RISCV::VMFNE_VV, RISCV::VCPOP_M, RISCV::VFREDMAX_VS,
RISCV::VFMV_F_S};
// Cost of Canonical Nan + branch
// lui a0, 523264
// fmv.w.x fa0, a0
Type *DstTy = Ty->getScalarType();
const unsigned EltTyBits = DstTy->getScalarSizeInBits();
Type *SrcTy = IntegerType::getIntNTy(DstTy->getContext(), EltTyBits);
ExtraCost = 1 +
getCastInstrCost(Instruction::UIToFP, DstTy, SrcTy,
TTI::CastContextHint::None, CostKind) +
getCFInstrCost(Instruction::Br, CostKind);
}
break;
case Intrinsic::minimum:
if (FMF.noNaNs()) {
Opcodes = {RISCV::VFREDMIN_VS, RISCV::VFMV_F_S};
} else {
Opcodes = {RISCV::VMFNE_VV, RISCV::VCPOP_M, RISCV::VFREDMIN_VS,
RISCV::VFMV_F_S};
// Cost of Canonical Nan + branch
// lui a0, 523264
// fmv.w.x fa0, a0
Type *DstTy = Ty->getScalarType();
const unsigned EltTyBits = DL.getTypeSizeInBits(DstTy);
Type *SrcTy = IntegerType::getIntNTy(DstTy->getContext(), EltTyBits);
ExtraCost = 1 +
getCastInstrCost(Instruction::UIToFP, DstTy, SrcTy,
TTI::CastContextHint::None, CostKind) +
getCFInstrCost(Instruction::Br, CostKind);
}
break;
}
return ExtraCost + getRISCVInstructionCost(Opcodes, LT.second, CostKind);
}
// IR Reduction is composed by two vmv and one rvv reduction instruction.
unsigned SplitOp;
SmallVector<unsigned, 3> Opcodes;
switch (IID) {
default:
llvm_unreachable("Unsupported intrinsic");
case Intrinsic::smax:
SplitOp = RISCV::VMAX_VV;
Opcodes = {RISCV::VMV_S_X, RISCV::VREDMAX_VS, RISCV::VMV_X_S};
break;
case Intrinsic::smin:
SplitOp = RISCV::VMIN_VV;
Opcodes = {RISCV::VMV_S_X, RISCV::VREDMIN_VS, RISCV::VMV_X_S};
break;
case Intrinsic::umax:
SplitOp = RISCV::VMAXU_VV;
Opcodes = {RISCV::VMV_S_X, RISCV::VREDMAXU_VS, RISCV::VMV_X_S};
break;
case Intrinsic::umin:
SplitOp = RISCV::VMINU_VV;
Opcodes = {RISCV::VMV_S_X, RISCV::VREDMINU_VS, RISCV::VMV_X_S};
break;
case Intrinsic::maxnum:
SplitOp = RISCV::VFMAX_VV;
Opcodes = {RISCV::VFMV_S_F, RISCV::VFREDMAX_VS, RISCV::VFMV_F_S};
break;
case Intrinsic::minnum:
SplitOp = RISCV::VFMIN_VV;
Opcodes = {RISCV::VFMV_S_F, RISCV::VFREDMIN_VS, RISCV::VFMV_F_S};
break;
}
// Add a cost for data larger than LMUL8
InstructionCost SplitCost =
(LT.first > 1) ? (LT.first - 1) *
getRISCVInstructionCost(SplitOp, LT.second, CostKind)
: 0;
return SplitCost + getRISCVInstructionCost(Opcodes, LT.second, CostKind);
}
InstructionCost
RISCVTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
std::optional<FastMathFlags> FMF,
TTI::TargetCostKind CostKind) {
if (isa<FixedVectorType>(Ty) && !ST->useRVVForFixedLengthVectors())
return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
// Skip if scalar size of Ty is bigger than ELEN.
if (Ty->getScalarSizeInBits() > ST->getELen())
return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
int ISD = TLI->InstructionOpcodeToISD(Opcode);
assert(ISD && "Invalid opcode");
if (ISD != ISD::ADD && ISD != ISD::OR && ISD != ISD::XOR && ISD != ISD::AND &&
ISD != ISD::FADD)
return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
SmallVector<unsigned, 3> Opcodes;
Type *ElementTy = Ty->getElementType();
if (ElementTy->isIntegerTy(1)) {
if (ISD == ISD::AND) {
// Example sequences:
// vsetvli a0, zero, e8, mf8, ta, ma
// vmnot.m v8, v0
// vcpop.m a0, v8
// seqz a0, a0
Opcodes = {RISCV::VMNAND_MM, RISCV::VCPOP_M};
return (LT.first - 1) +
getRISCVInstructionCost(Opcodes, LT.second, CostKind) +
getCmpSelInstrCost(Instruction::ICmp, ElementTy, ElementTy,
CmpInst::ICMP_EQ, CostKind);
} else {
// Example sequences:
// vsetvli a0, zero, e8, mf8, ta, ma
// vcpop.m a0, v0
// snez a0, a0
Opcodes = {RISCV::VCPOP_M};
return (LT.first - 1) +
getRISCVInstructionCost(Opcodes, LT.second, CostKind) +
getCmpSelInstrCost(Instruction::ICmp, ElementTy, ElementTy,
CmpInst::ICMP_NE, CostKind);
}
}
// IR Reduction is composed by two vmv and one rvv reduction instruction.
if (TTI::requiresOrderedReduction(FMF)) {
Opcodes.push_back(RISCV::VFMV_S_F);
for (unsigned i = 0; i < LT.first.getValue(); i++)
Opcodes.push_back(RISCV::VFREDOSUM_VS);
Opcodes.push_back(RISCV::VFMV_F_S);
return getRISCVInstructionCost(Opcodes, LT.second, CostKind);
}
unsigned SplitOp;
switch (ISD) {
case ISD::ADD:
SplitOp = RISCV::VADD_VV;
Opcodes = {RISCV::VMV_S_X, RISCV::VREDSUM_VS, RISCV::VMV_X_S};
break;
case ISD::OR:
SplitOp = RISCV::VOR_VV;
Opcodes = {RISCV::VMV_S_X, RISCV::VREDOR_VS, RISCV::VMV_X_S};
break;
case ISD::XOR:
SplitOp = RISCV::VXOR_VV;
Opcodes = {RISCV::VMV_S_X, RISCV::VREDXOR_VS, RISCV::VMV_X_S};
break;
case ISD::AND:
SplitOp = RISCV::VAND_VV;
Opcodes = {RISCV::VMV_S_X, RISCV::VREDAND_VS, RISCV::VMV_X_S};
break;
case ISD::FADD:
SplitOp = RISCV::VFADD_VV;
Opcodes = {RISCV::VFMV_S_F, RISCV::VFREDUSUM_VS, RISCV::VFMV_F_S};
break;
}
// Add a cost for data larger than LMUL8
InstructionCost SplitCost =
(LT.first > 1) ? (LT.first - 1) *
getRISCVInstructionCost(SplitOp, LT.second, CostKind)
: 0;
return SplitCost + getRISCVInstructionCost(Opcodes, LT.second, CostKind);
}
InstructionCost RISCVTTIImpl::getExtendedReductionCost(
unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *ValTy,
FastMathFlags FMF, TTI::TargetCostKind CostKind) {
if (isa<FixedVectorType>(ValTy) && !ST->useRVVForFixedLengthVectors())
return BaseT::getExtendedReductionCost(Opcode, IsUnsigned, ResTy, ValTy,
FMF, CostKind);
// Skip if scalar size of ResTy is bigger than ELEN.
if (ResTy->getScalarSizeInBits() > ST->getELen())
return BaseT::getExtendedReductionCost(Opcode, IsUnsigned, ResTy, ValTy,
FMF, CostKind);
if (Opcode != Instruction::Add && Opcode != Instruction::FAdd)
return BaseT::getExtendedReductionCost(Opcode, IsUnsigned, ResTy, ValTy,
FMF, CostKind);
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);
if (ResTy->getScalarSizeInBits() != 2 * LT.second.getScalarSizeInBits())
return BaseT::getExtendedReductionCost(Opcode, IsUnsigned, ResTy, ValTy,
FMF, CostKind);
return (LT.first - 1) +
getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
}
InstructionCost RISCVTTIImpl::getStoreImmCost(Type *Ty,
TTI::OperandValueInfo OpInfo,
TTI::TargetCostKind CostKind) {
assert(OpInfo.isConstant() && "non constant operand?");
if (!isa<VectorType>(Ty))
// FIXME: We need to account for immediate materialization here, but doing
// a decent job requires more knowledge about the immediate than we
// currently have here.
return 0;
if (OpInfo.isUniform())
// vmv.x.i, vmv.v.x, or vfmv.v.f
// We ignore the cost of the scalar constant materialization to be consistent
// with how we treat scalar constants themselves just above.
return 1;
return getConstantPoolLoadCost(Ty, CostKind);
}
InstructionCost RISCVTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
MaybeAlign Alignment,
unsigned AddressSpace,
TTI::TargetCostKind CostKind,
TTI::OperandValueInfo OpInfo,
const Instruction *I) {
EVT VT = TLI->getValueType(DL, Src, true);
// Type legalization can't handle structs
if (VT == MVT::Other)
return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
CostKind, OpInfo, I);
InstructionCost Cost = 0;
if (Opcode == Instruction::Store && OpInfo.isConstant())
Cost += getStoreImmCost(Src, OpInfo, CostKind);
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Src);
InstructionCost BaseCost = [&]() {
InstructionCost Cost = LT.first;
if (CostKind != TTI::TCK_RecipThroughput)
return Cost;
// Our actual lowering for the case where a wider legal type is available
// uses the a VL predicated load on the wider type. This is reflected in
// the result of getTypeLegalizationCost, but BasicTTI assumes the
// widened cases are scalarized.
const DataLayout &DL = this->getDataLayout();
if (Src->isVectorTy() && LT.second.isVector() &&
TypeSize::isKnownLT(DL.getTypeStoreSizeInBits(Src),
LT.second.getSizeInBits()))
return Cost;
return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
CostKind, OpInfo, I);
}();
// Assume memory ops cost scale with the number of vector registers
// possible accessed by the instruction. Note that BasicTTI already
// handles the LT.first term for us.
if (LT.second.isVector() && CostKind != TTI::TCK_CodeSize)
BaseCost *= TLI->getLMULCost(LT.second);
return Cost + BaseCost;
}
InstructionCost RISCVTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
Type *CondTy,
CmpInst::Predicate VecPred,
TTI::TargetCostKind CostKind,
const Instruction *I) {
if (CostKind != TTI::TCK_RecipThroughput)
return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
I);
if (isa<FixedVectorType>(ValTy) && !ST->useRVVForFixedLengthVectors())
return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
I);
// Skip if scalar size of ValTy is bigger than ELEN.
if (ValTy->isVectorTy() && ValTy->getScalarSizeInBits() > ST->getELen())
return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
I);
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);
if (Opcode == Instruction::Select && ValTy->isVectorTy()) {
if (CondTy->isVectorTy()) {
if (ValTy->getScalarSizeInBits() == 1) {
// vmandn.mm v8, v8, v9
// vmand.mm v9, v0, v9
// vmor.mm v0, v9, v8
return LT.first *
getRISCVInstructionCost(
{RISCV::VMANDN_MM, RISCV::VMAND_MM, RISCV::VMOR_MM},
LT.second, CostKind);
}
// vselect and max/min are supported natively.
return LT.first *
getRISCVInstructionCost(RISCV::VMERGE_VVM, LT.second, CostKind);
}
if (ValTy->getScalarSizeInBits() == 1) {
// vmv.v.x v9, a0
// vmsne.vi v9, v9, 0
// vmandn.mm v8, v8, v9
// vmand.mm v9, v0, v9
// vmor.mm v0, v9, v8
MVT InterimVT = LT.second.changeVectorElementType(MVT::i8);
return LT.first *
getRISCVInstructionCost({RISCV::VMV_V_X, RISCV::VMSNE_VI},
InterimVT, CostKind) +
LT.first * getRISCVInstructionCost(
{RISCV::VMANDN_MM, RISCV::VMAND_MM, RISCV::VMOR_MM},
LT.second, CostKind);
}
// vmv.v.x v10, a0
// vmsne.vi v0, v10, 0
// vmerge.vvm v8, v9, v8, v0
return LT.first * getRISCVInstructionCost(
{RISCV::VMV_V_X, RISCV::VMSNE_VI, RISCV::VMERGE_VVM},
LT.second, CostKind);
}
if ((Opcode == Instruction::ICmp) && ValTy->isVectorTy() &&
CmpInst::isIntPredicate(VecPred)) {
// Use VMSLT_VV to represent VMSEQ, VMSNE, VMSLTU, VMSLEU, VMSLT, VMSLE
// provided they incur the same cost across all implementations
return LT.first *
getRISCVInstructionCost(RISCV::VMSLT_VV, LT.second, CostKind);
}
if ((Opcode == Instruction::FCmp) && ValTy->isVectorTy() &&
CmpInst::isFPPredicate(VecPred)) {
// Use VMXOR_MM and VMXNOR_MM to generate all true/false mask
if ((VecPred == CmpInst::FCMP_FALSE) || (VecPred == CmpInst::FCMP_TRUE))
return getRISCVInstructionCost(RISCV::VMXOR_MM, LT.second, CostKind);
// If we do not support the input floating point vector type, use the base
// one which will calculate as:
// ScalarizeCost + Num * Cost for fixed vector,
// InvalidCost for scalable vector.
if ((ValTy->getScalarSizeInBits() == 16 && !ST->hasVInstructionsF16()) ||
(ValTy->getScalarSizeInBits() == 32 && !ST->hasVInstructionsF32()) ||
(ValTy->getScalarSizeInBits() == 64 && !ST->hasVInstructionsF64()))
return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
I);
// Assuming vector fp compare and mask instructions are all the same cost
// until a need arises to differentiate them.
switch (VecPred) {
case CmpInst::FCMP_ONE: // vmflt.vv + vmflt.vv + vmor.mm
case CmpInst::FCMP_ORD: // vmfeq.vv + vmfeq.vv + vmand.mm
case CmpInst::FCMP_UNO: // vmfne.vv + vmfne.vv + vmor.mm
case CmpInst::FCMP_UEQ: // vmflt.vv + vmflt.vv + vmnor.mm
return LT.first * getRISCVInstructionCost(
{RISCV::VMFLT_VV, RISCV::VMFLT_VV, RISCV::VMOR_MM},
LT.second, CostKind);
case CmpInst::FCMP_UGT: // vmfle.vv + vmnot.m
case CmpInst::FCMP_UGE: // vmflt.vv + vmnot.m
case CmpInst::FCMP_ULT: // vmfle.vv + vmnot.m
case CmpInst::FCMP_ULE: // vmflt.vv + vmnot.m
return LT.first *
getRISCVInstructionCost({RISCV::VMFLT_VV, RISCV::VMNAND_MM},
LT.second, CostKind);
case CmpInst::FCMP_OEQ: // vmfeq.vv
case CmpInst::FCMP_OGT: // vmflt.vv
case CmpInst::FCMP_OGE: // vmfle.vv
case CmpInst::FCMP_OLT: // vmflt.vv
case CmpInst::FCMP_OLE: // vmfle.vv
case CmpInst::FCMP_UNE: // vmfne.vv
return LT.first *
getRISCVInstructionCost(RISCV::VMFLT_VV, LT.second, CostKind);
default:
break;
}
}
// With ShortForwardBranchOpt or ConditionalMoveFusion, scalar icmp + select
// instructions will lower to SELECT_CC and lower to PseudoCCMOVGPR which will
// generate a conditional branch + mv. The cost of scalar (icmp + select) will
// be (0 + select instr cost).
if (ST->hasConditionalMoveFusion() && I && isa<ICmpInst>(I) &&
ValTy->isIntegerTy() && !I->user_empty()) {
if (all_of(I->users(), [&](const User *U) {
return match(U, m_Select(m_Specific(I), m_Value(), m_Value())) &&
U->getType()->isIntegerTy() &&
!isa<ConstantData>(U->getOperand(1)) &&
!isa<ConstantData>(U->getOperand(2));
}))
return 0;
}
// TODO: Add cost for scalar type.
return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
}
InstructionCost RISCVTTIImpl::getCFInstrCost(unsigned Opcode,
TTI::TargetCostKind CostKind,
const Instruction *I) {
if (CostKind != TTI::TCK_RecipThroughput)
return Opcode == Instruction::PHI ? 0 : 1;
// Branches are assumed to be predicted.
return 0;
}
InstructionCost RISCVTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
TTI::TargetCostKind CostKind,
unsigned Index, Value *Op0,
Value *Op1) {
assert(Val->isVectorTy() && "This must be a vector type");
if (Opcode != Instruction::ExtractElement &&
Opcode != Instruction::InsertElement)
return BaseT::getVectorInstrCost(Opcode, Val, CostKind, Index, Op0, Op1);
// Legalize the type.
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Val);
// This type is legalized to a scalar type.
if (!LT.second.isVector()) {
auto *FixedVecTy = cast<FixedVectorType>(Val);
// If Index is a known constant, cost is zero.
if (Index != -1U)
return 0;
// Extract/InsertElement with non-constant index is very costly when
// scalarized; estimate cost of loads/stores sequence via the stack:
// ExtractElement cost: store vector to stack, load scalar;
// InsertElement cost: store vector to stack, store scalar, load vector.
Type *ElemTy = FixedVecTy->getElementType();
auto NumElems = FixedVecTy->getNumElements();
auto Align = DL.getPrefTypeAlign(ElemTy);
InstructionCost LoadCost =
getMemoryOpCost(Instruction::Load, ElemTy, Align, 0, CostKind);
InstructionCost StoreCost =
getMemoryOpCost(Instruction::Store, ElemTy, Align, 0, CostKind);
return Opcode == Instruction::ExtractElement
? StoreCost * NumElems + LoadCost
: (StoreCost + LoadCost) * NumElems + StoreCost;
}
// For unsupported scalable vector.
if (LT.second.isScalableVector() && !LT.first.isValid())
return LT.first;
if (!isTypeLegal(Val))
return BaseT::getVectorInstrCost(Opcode, Val, CostKind, Index, Op0, Op1);
// Mask vector extract/insert is expanded via e8.
if (Val->getScalarSizeInBits() == 1) {
VectorType *WideTy =
VectorType::get(IntegerType::get(Val->getContext(), 8),
cast<VectorType>(Val)->getElementCount());
if (Opcode == Instruction::ExtractElement) {
InstructionCost ExtendCost
= getCastInstrCost(Instruction::ZExt, WideTy, Val,
TTI::CastContextHint::None, CostKind);
InstructionCost ExtractCost
= getVectorInstrCost(Opcode, WideTy, CostKind, Index, nullptr, nullptr);
return ExtendCost + ExtractCost;
}
InstructionCost ExtendCost
= getCastInstrCost(Instruction::ZExt, WideTy, Val,
TTI::CastContextHint::None, CostKind);
InstructionCost InsertCost
= getVectorInstrCost(Opcode, WideTy, CostKind, Index, nullptr, nullptr);
InstructionCost TruncCost
= getCastInstrCost(Instruction::Trunc, Val, WideTy,
TTI::CastContextHint::None, CostKind);
return ExtendCost + InsertCost + TruncCost;
}
// In RVV, we could use vslidedown + vmv.x.s to extract element from vector
// and vslideup + vmv.s.x to insert element to vector.
unsigned BaseCost = 1;
// When insertelement we should add the index with 1 as the input of vslideup.
unsigned SlideCost = Opcode == Instruction::InsertElement ? 2 : 1;
if (Index != -1U) {
// The type may be split. For fixed-width vectors we can normalize the
// index to the new type.
if (LT.second.isFixedLengthVector()) {
unsigned Width = LT.second.getVectorNumElements();
Index = Index % Width;
}
// We could extract/insert the first element without vslidedown/vslideup.
if (Index == 0)
SlideCost = 0;
else if (Opcode == Instruction::InsertElement)
SlideCost = 1; // With a constant index, we do not need to use addi.
}
// Extract i64 in the target that has XLEN=32 need more instruction.
if (Val->getScalarType()->isIntegerTy() &&
ST->getXLen() < Val->getScalarSizeInBits()) {
// For extractelement, we need the following instructions:
// vsetivli zero, 1, e64, m1, ta, mu (not count)
// vslidedown.vx v8, v8, a0
// vmv.x.s a0, v8
// li a1, 32
// vsrl.vx v8, v8, a1
// vmv.x.s a1, v8
// For insertelement, we need the following instructions:
// vsetivli zero, 2, e32, m4, ta, mu (not count)
// vmv.v.i v12, 0
// vslide1up.vx v16, v12, a1
// vslide1up.vx v12, v16, a0
// addi a0, a2, 1
// vsetvli zero, a0, e64, m4, tu, mu (not count)
// vslideup.vx v8, v12, a2
// TODO: should we count these special vsetvlis?
BaseCost = Opcode == Instruction::InsertElement ? 3 : 4;
}
return BaseCost + SlideCost;
}
InstructionCost RISCVTTIImpl::getArithmeticInstrCost(
unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info,
ArrayRef<const Value *> Args, const Instruction *CxtI) {
// TODO: Handle more cost kinds.
if (CostKind != TTI::TCK_RecipThroughput)
return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info,
Args, CxtI);
if (isa<FixedVectorType>(Ty) && !ST->useRVVForFixedLengthVectors())
return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info,
Args, CxtI);
// Skip if scalar size of Ty is bigger than ELEN.
if (isa<VectorType>(Ty) && Ty->getScalarSizeInBits() > ST->getELen())
return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info,
Args, CxtI);
// Legalize the type.
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
// TODO: Handle scalar type.
if (!LT.second.isVector())
return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info,
Args, CxtI);
auto getConstantMatCost =
[&](unsigned Operand, TTI::OperandValueInfo OpInfo) -> InstructionCost {
if (OpInfo.isUniform() && TLI->canSplatOperand(Opcode, Operand))
// Two sub-cases:
// * Has a 5 bit immediate operand which can be splatted.
// * Has a larger immediate which must be materialized in scalar register
// We return 0 for both as we currently ignore the cost of materializing
// scalar constants in GPRs.
return 0;
return getConstantPoolLoadCost(Ty, CostKind);
};
// Add the cost of materializing any constant vectors required.
InstructionCost ConstantMatCost = 0;
if (Op1Info.isConstant())
ConstantMatCost += getConstantMatCost(0, Op1Info);
if (Op2Info.isConstant())
ConstantMatCost += getConstantMatCost(1, Op2Info);
unsigned Op;
switch (TLI->InstructionOpcodeToISD(Opcode)) {
case ISD::ADD:
case ISD::SUB:
Op = RISCV::VADD_VV;
break;
case ISD::SHL:
case ISD::SRL:
case ISD::SRA:
Op = RISCV::VSLL_VV;
break;
case ISD::AND:
case ISD::OR:
case ISD::XOR:
Op = (Ty->getScalarSizeInBits() == 1) ? RISCV::VMAND_MM : RISCV::VAND_VV;
break;
case ISD::MUL:
case ISD::MULHS:
case ISD::MULHU:
Op = RISCV::VMUL_VV;
break;
case ISD::SDIV:
case ISD::UDIV:
Op = RISCV::VDIV_VV;
break;
case ISD::SREM:
case ISD::UREM:
Op = RISCV::VREM_VV;
break;
case ISD::FADD:
case ISD::FSUB:
// TODO: Address FP16 with VFHMIN
Op = RISCV::VFADD_VV;
break;
case ISD::FMUL:
// TODO: Address FP16 with VFHMIN
Op = RISCV::VFMUL_VV;
break;
case ISD::FDIV:
Op = RISCV::VFDIV_VV;
break;
case ISD::FNEG:
Op = RISCV::VFSGNJN_VV;
break;
default:
// Assuming all other instructions have the same cost until a need arises to
// differentiate them.
return ConstantMatCost + BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind,
Op1Info, Op2Info,
Args, CxtI);
}
InstructionCost InstrCost = getRISCVInstructionCost(Op, LT.second, CostKind);
// We use BasicTTIImpl to calculate scalar costs, which assumes floating point
// ops are twice as expensive as integer ops. Do the same for vectors so
// scalar floating point ops aren't cheaper than their vector equivalents.
if (Ty->isFPOrFPVectorTy())
InstrCost *= 2;
return ConstantMatCost + LT.first * InstrCost;
}
// TODO: Deduplicate from TargetTransformInfoImplCRTPBase.
InstructionCost RISCVTTIImpl::getPointersChainCost(
ArrayRef<const Value *> Ptrs, const Value *Base,
const TTI::PointersChainInfo &Info, Type *AccessTy,
TTI::TargetCostKind CostKind) {
InstructionCost Cost = TTI::TCC_Free;
// In the basic model we take into account GEP instructions only
// (although here can come alloca instruction, a value, constants and/or
// constant expressions, PHIs, bitcasts ... whatever allowed to be used as a
// pointer). Typically, if Base is a not a GEP-instruction and all the
// pointers are relative to the same base address, all the rest are
// either GEP instructions, PHIs, bitcasts or constants. When we have same
// base, we just calculate cost of each non-Base GEP as an ADD operation if
// any their index is a non-const.
// If no known dependecies between the pointers cost is calculated as a sum
// of costs of GEP instructions.
for (auto [I, V] : enumerate(Ptrs)) {
const auto *GEP = dyn_cast<GetElementPtrInst>(V);
if (!GEP)
continue;
if (Info.isSameBase() && V != Base) {
if (GEP->hasAllConstantIndices())
continue;
// If the chain is unit-stride and BaseReg + stride*i is a legal
// addressing mode, then presume the base GEP is sitting around in a
// register somewhere and check if we can fold the offset relative to
// it.
unsigned Stride = DL.getTypeStoreSize(AccessTy);
if (Info.isUnitStride() &&
isLegalAddressingMode(AccessTy,
/* BaseGV */ nullptr,
/* BaseOffset */ Stride * I,
/* HasBaseReg */ true,
/* Scale */ 0,
GEP->getType()->getPointerAddressSpace()))
continue;
Cost += getArithmeticInstrCost(Instruction::Add, GEP->getType(), CostKind,
{TTI::OK_AnyValue, TTI::OP_None},
{TTI::OK_AnyValue, TTI::OP_None},
std::nullopt);
} else {
SmallVector<const Value *> Indices(GEP->indices());
Cost += getGEPCost(GEP->getSourceElementType(), GEP->getPointerOperand(),
Indices, AccessTy, CostKind);
}
}
return Cost;
}
void RISCVTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
TTI::UnrollingPreferences &UP,
OptimizationRemarkEmitter *ORE) {
// TODO: More tuning on benchmarks and metrics with changes as needed
// would apply to all settings below to enable performance.
if (ST->enableDefaultUnroll())
return BasicTTIImplBase::getUnrollingPreferences(L, SE, UP, ORE);
// Enable Upper bound unrolling universally, not dependant upon the conditions
// below.
UP.UpperBound = true;
// Disable loop unrolling for Oz and Os.
UP.OptSizeThreshold = 0;
UP.PartialOptSizeThreshold = 0;
if (L->getHeader()->getParent()->hasOptSize())
return;
SmallVector<BasicBlock *, 4> ExitingBlocks;
L->getExitingBlocks(ExitingBlocks);
LLVM_DEBUG(dbgs() << "Loop has:\n"
<< "Blocks: " << L->getNumBlocks() << "\n"
<< "Exit blocks: " << ExitingBlocks.size() << "\n");
// Only allow another exit other than the latch. This acts as an early exit
// as it mirrors the profitability calculation of the runtime unroller.
if (ExitingBlocks.size() > 2)
return;
// Limit the CFG of the loop body for targets with a branch predictor.
// Allowing 4 blocks permits if-then-else diamonds in the body.
if (L->getNumBlocks() > 4)
return;
// Don't unroll vectorized loops, including the remainder loop
if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
return;
// Scan the loop: don't unroll loops with calls as this could prevent
// inlining.
InstructionCost Cost = 0;
for (auto *BB : L->getBlocks()) {
for (auto &I : *BB) {
// Initial setting - Don't unroll loops containing vectorized
// instructions.
if (I.getType()->isVectorTy())
return;
if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
if (const Function *F = cast<CallBase>(I).getCalledFunction()) {
if (!isLoweredToCall(F))
continue;
}
return;
}
SmallVector<const Value *> Operands(I.operand_values());
Cost += getInstructionCost(&I, Operands,
TargetTransformInfo::TCK_SizeAndLatency);
}
}
LLVM_DEBUG(dbgs() << "Cost of loop: " << Cost << "\n");
UP.Partial = true;
UP.Runtime = true;
UP.UnrollRemainder = true;
UP.UnrollAndJam = true;
UP.UnrollAndJamInnerLoopThreshold = 60;
// Force unrolling small loops can be very useful because of the branch
// taken cost of the backedge.
if (Cost < 12)
UP.Force = true;
}
void RISCVTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
TTI::PeelingPreferences &PP) {
BaseT::getPeelingPreferences(L, SE, PP);
}
unsigned RISCVTTIImpl::getRegUsageForType(Type *Ty) {
TypeSize Size = DL.getTypeSizeInBits(Ty);
if (Ty->isVectorTy()) {
if (Size.isScalable() && ST->hasVInstructions())
return divideCeil(Size.getKnownMinValue(), RISCV::RVVBitsPerBlock);
if (ST->useRVVForFixedLengthVectors())
return divideCeil(Size, ST->getRealMinVLen());
}
return BaseT::getRegUsageForType(Ty);
}
unsigned RISCVTTIImpl::getMaximumVF(unsigned ElemWidth, unsigned Opcode) const {
if (SLPMaxVF.getNumOccurrences())
return SLPMaxVF;
// Return how many elements can fit in getRegisterBitwidth. This is the
// same routine as used in LoopVectorizer. We should probably be
// accounting for whether we actually have instructions with the right
// lane type, but we don't have enough information to do that without
// some additional plumbing which hasn't been justified yet.
TypeSize RegWidth =
getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector);
// If no vector registers, or absurd element widths, disable
// vectorization by returning 1.
return std::max<unsigned>(1U, RegWidth.getFixedValue() / ElemWidth);
}
bool RISCVTTIImpl::isLSRCostLess(const TargetTransformInfo::LSRCost &C1,
const TargetTransformInfo::LSRCost &C2) {
// RISC-V specific here are "instruction number 1st priority".
// If we need to emit adds inside the loop to add up base registers, then
// we need at least one extra temporary register.
unsigned C1NumRegs = C1.NumRegs + (C1.NumBaseAdds != 0);
unsigned C2NumRegs = C2.NumRegs + (C2.NumBaseAdds != 0);
return std::tie(C1.Insns, C1NumRegs, C1.AddRecCost,
C1.NumIVMuls, C1.NumBaseAdds,
C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
std::tie(C2.Insns, C2NumRegs, C2.AddRecCost,
C2.NumIVMuls, C2.NumBaseAdds,
C2.ScaleCost, C2.ImmCost, C2.SetupCost);
}
bool RISCVTTIImpl::isLegalMaskedCompressStore(Type *DataTy, Align Alignment) {
auto *VTy = dyn_cast<VectorType>(DataTy);
if (!VTy || VTy->isScalableTy())
return false;
if (!isLegalMaskedLoadStore(DataTy, Alignment))
return false;
return true;
}
bool RISCVTTIImpl::areInlineCompatible(const Function *Caller,
const Function *Callee) const {
const TargetMachine &TM = getTLI()->getTargetMachine();
const FeatureBitset &CallerBits =
TM.getSubtargetImpl(*Caller)->getFeatureBits();
const FeatureBitset &CalleeBits =
TM.getSubtargetImpl(*Callee)->getFeatureBits();
// Inline a callee if its target-features are a subset of the callers
// target-features.
return (CallerBits & CalleeBits) == CalleeBits;
}
/// See if \p I should be considered for address type promotion. We check if \p
/// I is a sext with right type and used in memory accesses. If it used in a
/// "complex" getelementptr, we allow it to be promoted without finding other
/// sext instructions that sign extended the same initial value. A getelementptr
/// is considered as "complex" if it has more than 2 operands.
bool RISCVTTIImpl::shouldConsiderAddressTypePromotion(
const Instruction &I, bool &AllowPromotionWithoutCommonHeader) {
bool Considerable = false;
AllowPromotionWithoutCommonHeader = false;
if (!isa<SExtInst>(&I))
return false;
Type *ConsideredSExtType =
Type::getInt64Ty(I.getParent()->getParent()->getContext());
if (I.getType() != ConsideredSExtType)
return false;
// See if the sext is the one with the right type and used in at least one
// GetElementPtrInst.
for (const User *U : I.users()) {
if (const GetElementPtrInst *GEPInst = dyn_cast<GetElementPtrInst>(U)) {
Considerable = true;
// A getelementptr is considered as "complex" if it has more than 2
// operands. We will promote a SExt used in such complex GEP as we
// expect some computation to be merged if they are done on 64 bits.
if (GEPInst->getNumOperands() > 2) {
AllowPromotionWithoutCommonHeader = true;
break;
}
}
}
return Considerable;
}