| //===- Builders.cpp - MLIR Declarative Linalg Builders --------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/IR/Builders.h" |
| #include "mlir/Dialect/Affine/EDSC/Intrinsics.h" |
| #include "mlir/Dialect/Linalg/EDSC/Builders.h" |
| #include "mlir/Dialect/Linalg/EDSC/Intrinsics.h" |
| #include "mlir/Dialect/SCF/EDSC/Builders.h" |
| #include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h" |
| #include "mlir/Dialect/Utils/StructuredOpsUtils.h" |
| #include "mlir/IR/AffineExpr.h" |
| |
| using namespace mlir; |
| using namespace mlir::edsc; |
| using namespace mlir::edsc::intrinsics; |
| using namespace mlir::linalg; |
| using namespace mlir::scf; |
| |
| Operation *mlir::edsc::makeGenericLinalgOp( |
| ArrayRef<IteratorType> iteratorTypes, ArrayRef<StructuredIndexed> inputs, |
| ArrayRef<StructuredIndexed> outputs, TypeRange resultTensorTypes, |
| function_ref<void(ValueRange)> regionBuilder, ArrayRef<Value> otherValues, |
| ArrayRef<Attribute> otherAttributes) { |
| OpBuilder &builder = edsc::ScopedContext::getBuilderRef(); |
| |
| // Build maps |
| SmallVector<SmallVector<AffineExpr, 4>, 4> exprsList; |
| exprsList.reserve(inputs.size() + outputs.size()); |
| |
| for (auto container : {inputs, outputs}) |
| for (const StructuredIndexed &s : container) |
| exprsList.emplace_back(s.getExprs().begin(), s.getExprs().end()); |
| auto maps = AffineMap::inferFromExprList(exprsList); |
| |
| SmallVector<Value, 4> inputValues, outputValues; |
| inputValues.reserve(inputs.size()); |
| outputValues.reserve(outputs.size()); |
| std::copy(inputs.begin(), inputs.end(), std::back_inserter(inputValues)); |
| std::copy(outputs.begin(), outputs.end(), std::back_inserter(outputValues)); |
| |
| auto iteratorStrTypes = |
| llvm::to_vector<8>(llvm::map_range(iteratorTypes, toString)); |
| // clang-format off |
| auto *op = |
| edsc::ScopedContext::getBuilderRef() |
| .create<linalg::GenericOp>( |
| edsc::ScopedContext::getLocation(), |
| resultTensorTypes, |
| inputValues, |
| outputValues, |
| builder.getAffineMapArrayAttr(maps), |
| builder.getStrArrayAttr(iteratorStrTypes), |
| StringAttr() /*doc*/, |
| StringAttr() /*library_call*/, |
| ArrayAttr() /*sparse*/ |
| /* TODO: other attributes in op */ |
| ) |
| .getOperation(); |
| // clang-format on |
| |
| using namespace edsc; |
| SmallVector<Type, 4> blockTypes; |
| blockTypes.reserve(inputs.size() + outputs.size()); |
| for (auto container : {inputs, outputs}) |
| for (const StructuredIndexed &s : container) |
| blockTypes.push_back(getElementTypeOrSelf(s.getType())); |
| |
| assert(op->getNumRegions() == 1); |
| assert(op->getRegion(0).empty()); |
| OpBuilder opBuilder(op); |
| ScopedContext scope(opBuilder, op->getLoc()); |
| buildInNewBlock(op->getRegion(0), blockTypes, regionBuilder); |
| assert(llvm::hasSingleElement(op->getRegion(0))); |
| return op; |
| } |
| |
| void mlir::edsc::ops::mulRegionBuilder(ValueRange args) { |
| using edsc::op::operator+; |
| using edsc::op::operator*; |
| assert(args.size() == 2 && "expected 2 block arguments"); |
| Value a(args[0]), b(args[1]); |
| linalg_yield(a * b); |
| } |
| |
| void mlir::edsc::ops::macRegionBuilder(ValueRange args) { |
| using edsc::op::operator+; |
| using edsc::op::operator*; |
| assert(args.size() == 3 && "expected 3 block arguments"); |
| Value a(args[0]), b(args[1]), c(args[2]); |
| linalg_yield(c + a * b); |
| } |
| |
| Operation *mlir::edsc::ops::linalg_generic_pointwise( |
| UnaryPointwiseOpBuilder unaryOp, StructuredIndexed I, StructuredIndexed O) { |
| SmallVector<IteratorType, 4> iterTypes(O.getExprs().size(), |
| IteratorType::Parallel); |
| auto fun = [&unaryOp](ValueRange args) { |
| assert(!args.empty() && "expected >= 1 block arguments"); |
| Value a(args[0]); |
| linalg_yield(unaryOp(a)); |
| }; |
| if (O.getType().isa<RankedTensorType>()) |
| return makeGenericLinalgOp(iterTypes, /*inputs=*/{I}, /*outputs=*/{O}, |
| /*resultTensorTypes=*/{O}, fun); |
| return makeGenericLinalgOp(iterTypes, /*inputs=*/{I}, /*outputs=*/{O}, |
| /*resultTensorTypes=*/{}, fun); |
| } |
| |
| Operation *mlir::edsc::ops::linalg_generic_pointwise_tanh(StructuredIndexed I, |
| StructuredIndexed O) { |
| UnaryPointwiseOpBuilder unOp([](Value a) -> Value { return std_tanh(a); }); |
| return linalg_generic_pointwise(unOp, I, O); |
| } |
| |
| /// Binary pointwise operation (with broadcast) entry point. |
| Operation *mlir::edsc::ops::linalg_generic_pointwise( |
| BinaryPointwiseOpBuilder binaryOp, StructuredIndexed I1, |
| StructuredIndexed I2, StructuredIndexed O) { |
| SmallVector<IteratorType, 4> iterTypes(O.getExprs().size(), |
| IteratorType::Parallel); |
| auto fun = [&binaryOp](ValueRange args) { |
| assert(args.size() >= 2 && "expected >= 2 block arguments"); |
| Value a(args[0]), b(args[1]); |
| linalg_yield(binaryOp(a, b)); |
| }; |
| if (O.getType().isa<RankedTensorType>()) |
| return makeGenericLinalgOp(iterTypes, /*inputs=*/{I1, I2}, /*outputs=*/{O}, |
| /*resultTensorTypes=*/{O}, fun); |
| return makeGenericLinalgOp(iterTypes, /*inputs=*/{I1, I2}, |
| /*outputs=*/{O}, /*resultTensorTypes=*/{}, fun); |
| } |
| |
| Operation *mlir::edsc::ops::linalg_generic_pointwise_add(StructuredIndexed I1, |
| StructuredIndexed I2, |
| StructuredIndexed O) { |
| using edsc::op::operator+; |
| BinaryPointwiseOpBuilder binOp( |
| [](Value a, Value b) -> Value { return a + b; }); |
| return linalg_generic_pointwise(binOp, I1, I2, O); |
| } |
| |
| Operation *mlir::edsc::ops::linalg_generic_pointwise_max(StructuredIndexed I1, |
| StructuredIndexed I2, |
| StructuredIndexed O) { |
| BinaryPointwiseOpBuilder binOp([](Value a, Value b) -> Value { |
| using edsc::op::sgt; |
| return std_select(sgt(a, b), a, b); |
| }); |
| return linalg_generic_pointwise(binOp, I1, I2, O); |
| } |
| |
| Operation * |
| mlir::edsc::ops::linalg_generic_matmul(Value vA, Value vB, Value vC, |
| MatmulRegionBuilder regionBuilder) { |
| // clang-format off |
| AffineExpr m, n, k; |
| bindDims(ScopedContext::getContext(), m, n, k); |
| StructuredIndexed A(vA), B(vB), C(vC); |
| return makeGenericLinalgOp( |
| {IteratorType::Parallel, IteratorType::Parallel, IteratorType::Reduction}, |
| /*inputs=*/{A({m, k}), B({k, n})}, |
| /*outputs=*/{C({m, n})}, |
| /*resultTensorTypes=*/{}, |
| regionBuilder); |
| // clang-format on |
| } |
| |
| Operation * |
| mlir::edsc::ops::linalg_generic_matmul(Value vA, Value vB, Value vC, |
| RankedTensorType tD, |
| MatmulRegionBuilder regionBuilder) { |
| // clang-format off |
| AffineExpr m, n, k; |
| bindDims(ScopedContext::getContext(), m, n, k); |
| StructuredIndexed A(vA), B(vB), C(vC), D(tD); |
| return makeGenericLinalgOp( |
| {IteratorType::Parallel, IteratorType::Parallel, IteratorType::Reduction}, |
| /*inputs=*/{A({m, k}), B({k, n})}, |
| /*outputs=*/{C({m, n})}, |
| /*resultTensorTypes=*/{D({m, n})}, |
| regionBuilder); |
| // clang-format on |
| } |
| |
| Operation *mlir::edsc::ops::linalg_generic_conv_nhwc(Value vI, Value vW, |
| Value vO, |
| ArrayRef<int> strides, |
| ArrayRef<int> dilations) { |
| MLIRContext *ctx = ScopedContext::getContext(); |
| // TODO: some template magic to make everything rank-polymorphic. |
| assert((dilations.empty() || dilations.size() == 2) && "only 2-D conv atm"); |
| assert((strides.empty() || strides.size() == 2) && "only 2-D conv atm"); |
| |
| // Some short names. |
| auto par = IteratorType::Parallel; |
| auto red = IteratorType::Reduction; |
| auto s = strides; |
| auto d = dilations; |
| |
| AffineExpr b, f, h, w, kh, kw, c; |
| bindDims(ctx, b, f, h, w, kh, kw, c); |
| unsigned numDims = c.cast<AffineDimExpr>().getPosition() + 1; |
| StructuredIndexed I(vI), W(vW), O(vO); |
| // clang-format off |
| return makeGenericLinalgOp( |
| {par, par, par, par, red, red, red}, |
| /*inputs=*/{ |
| I({b, |
| // Roundtrip to flattened form to serve as canonicalization and ensure |
| // consistent ordering of subexpressions. |
| simplifyAffineExpr(s[0] * h + d[0] * kh, numDims, 0), |
| simplifyAffineExpr(s[1] * w + d[1] * kw, numDims, 0), |
| c}), |
| W({kh, kw, c, f}) }, |
| /*outputs=*/{ O({b, h, w, f}) }, |
| /*resultTensorTypes=*/{}, |
| macRegionBuilder); |
| // clang-format on |
| } |
| |
| Operation *mlir::edsc::ops::linalg_generic_dilated_conv_nhwc( |
| Value vI, Value vW, Value vO, int depth_multiplier, ArrayRef<int> strides, |
| ArrayRef<int> dilations) { |
| MLIRContext *ctx = ScopedContext::getContext(); |
| // TODO: some template magic to make everything rank-polymorphic. |
| assert((dilations.empty() || dilations.size() == 2) && "only 2-D conv atm"); |
| assert((strides.empty() || strides.size() == 2) && "only 2-D conv atm"); |
| |
| // Some short names. |
| auto par = IteratorType::Parallel; |
| auto red = IteratorType::Reduction; |
| auto s = strides; |
| auto d = dilations; |
| |
| // clang-format off |
| AffineExpr b, dm, c, h, w, kh, kw; |
| bindDims(ctx, b, dm, c, h, w, kh, kw); |
| unsigned numDims = kw.cast<AffineDimExpr>().getPosition() + 1; |
| StructuredIndexed I(vI), W(vW), O(vO); |
| return makeGenericLinalgOp( |
| {par, par, par, par, par, red, red}, |
| /*inputs=*/{ |
| I({b, |
| // Roundtrip to flattened form to serve as canonicalization and ensure |
| // consistent ordering of subexpressions. |
| simplifyAffineExpr(s[0] * h + d[0] * kh, numDims, 0), |
| simplifyAffineExpr(s[1] * w + d[1] * kw, numDims, 0), |
| c}), |
| W({kh, kw, c, dm})}, |
| /*outputs=*/{ |
| O({b, h, w, simplifyAffineExpr(c * depth_multiplier + dm, numDims, 0)})}, |
| /*resultTensorTypes=*/{}, |
| macRegionBuilder); |
| // clang-format on |
| } |