blob: 3c3b2777d6c14941d819e4220a1c55e9578308a9 [file] [log] [blame]
//===- Builders.cpp - MLIR Declarative Linalg Builders --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/IR/Builders.h"
#include "mlir/Dialect/Affine/EDSC/Intrinsics.h"
#include "mlir/Dialect/Linalg/EDSC/Builders.h"
#include "mlir/Dialect/Linalg/EDSC/Intrinsics.h"
#include "mlir/Dialect/SCF/EDSC/Builders.h"
#include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h"
#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
#include "mlir/IR/AffineExpr.h"
using namespace mlir;
using namespace mlir::edsc;
using namespace mlir::edsc::intrinsics;
using namespace mlir::linalg;
using namespace mlir::scf;
Operation *mlir::edsc::makeGenericLinalgOp(
ArrayRef<IteratorType> iteratorTypes, ArrayRef<StructuredIndexed> inputs,
ArrayRef<StructuredIndexed> outputs, TypeRange resultTensorTypes,
function_ref<void(ValueRange)> regionBuilder, ArrayRef<Value> otherValues,
ArrayRef<Attribute> otherAttributes) {
OpBuilder &builder = edsc::ScopedContext::getBuilderRef();
// Build maps
SmallVector<SmallVector<AffineExpr, 4>, 4> exprsList;
exprsList.reserve(inputs.size() + outputs.size());
for (auto container : {inputs, outputs})
for (const StructuredIndexed &s : container)
exprsList.emplace_back(s.getExprs().begin(), s.getExprs().end());
auto maps = AffineMap::inferFromExprList(exprsList);
SmallVector<Value, 4> inputValues, outputValues;
inputValues.reserve(inputs.size());
outputValues.reserve(outputs.size());
std::copy(inputs.begin(), inputs.end(), std::back_inserter(inputValues));
std::copy(outputs.begin(), outputs.end(), std::back_inserter(outputValues));
auto iteratorStrTypes =
llvm::to_vector<8>(llvm::map_range(iteratorTypes, toString));
// clang-format off
auto *op =
edsc::ScopedContext::getBuilderRef()
.create<linalg::GenericOp>(
edsc::ScopedContext::getLocation(),
resultTensorTypes,
inputValues,
outputValues,
builder.getAffineMapArrayAttr(maps),
builder.getStrArrayAttr(iteratorStrTypes),
StringAttr() /*doc*/,
StringAttr() /*library_call*/,
ArrayAttr() /*sparse*/
/* TODO: other attributes in op */
)
.getOperation();
// clang-format on
using namespace edsc;
SmallVector<Type, 4> blockTypes;
blockTypes.reserve(inputs.size() + outputs.size());
for (auto container : {inputs, outputs})
for (const StructuredIndexed &s : container)
blockTypes.push_back(getElementTypeOrSelf(s.getType()));
assert(op->getNumRegions() == 1);
assert(op->getRegion(0).empty());
OpBuilder opBuilder(op);
ScopedContext scope(opBuilder, op->getLoc());
buildInNewBlock(op->getRegion(0), blockTypes, regionBuilder);
assert(llvm::hasSingleElement(op->getRegion(0)));
return op;
}
void mlir::edsc::ops::mulRegionBuilder(ValueRange args) {
using edsc::op::operator+;
using edsc::op::operator*;
assert(args.size() == 2 && "expected 2 block arguments");
Value a(args[0]), b(args[1]);
linalg_yield(a * b);
}
void mlir::edsc::ops::macRegionBuilder(ValueRange args) {
using edsc::op::operator+;
using edsc::op::operator*;
assert(args.size() == 3 && "expected 3 block arguments");
Value a(args[0]), b(args[1]), c(args[2]);
linalg_yield(c + a * b);
}
Operation *mlir::edsc::ops::linalg_generic_pointwise(
UnaryPointwiseOpBuilder unaryOp, StructuredIndexed I, StructuredIndexed O) {
SmallVector<IteratorType, 4> iterTypes(O.getExprs().size(),
IteratorType::Parallel);
auto fun = [&unaryOp](ValueRange args) {
assert(!args.empty() && "expected >= 1 block arguments");
Value a(args[0]);
linalg_yield(unaryOp(a));
};
if (O.getType().isa<RankedTensorType>())
return makeGenericLinalgOp(iterTypes, /*inputs=*/{I}, /*outputs=*/{O},
/*resultTensorTypes=*/{O}, fun);
return makeGenericLinalgOp(iterTypes, /*inputs=*/{I}, /*outputs=*/{O},
/*resultTensorTypes=*/{}, fun);
}
Operation *mlir::edsc::ops::linalg_generic_pointwise_tanh(StructuredIndexed I,
StructuredIndexed O) {
UnaryPointwiseOpBuilder unOp([](Value a) -> Value { return std_tanh(a); });
return linalg_generic_pointwise(unOp, I, O);
}
/// Binary pointwise operation (with broadcast) entry point.
Operation *mlir::edsc::ops::linalg_generic_pointwise(
BinaryPointwiseOpBuilder binaryOp, StructuredIndexed I1,
StructuredIndexed I2, StructuredIndexed O) {
SmallVector<IteratorType, 4> iterTypes(O.getExprs().size(),
IteratorType::Parallel);
auto fun = [&binaryOp](ValueRange args) {
assert(args.size() >= 2 && "expected >= 2 block arguments");
Value a(args[0]), b(args[1]);
linalg_yield(binaryOp(a, b));
};
if (O.getType().isa<RankedTensorType>())
return makeGenericLinalgOp(iterTypes, /*inputs=*/{I1, I2}, /*outputs=*/{O},
/*resultTensorTypes=*/{O}, fun);
return makeGenericLinalgOp(iterTypes, /*inputs=*/{I1, I2},
/*outputs=*/{O}, /*resultTensorTypes=*/{}, fun);
}
Operation *mlir::edsc::ops::linalg_generic_pointwise_add(StructuredIndexed I1,
StructuredIndexed I2,
StructuredIndexed O) {
using edsc::op::operator+;
BinaryPointwiseOpBuilder binOp(
[](Value a, Value b) -> Value { return a + b; });
return linalg_generic_pointwise(binOp, I1, I2, O);
}
Operation *mlir::edsc::ops::linalg_generic_pointwise_max(StructuredIndexed I1,
StructuredIndexed I2,
StructuredIndexed O) {
BinaryPointwiseOpBuilder binOp([](Value a, Value b) -> Value {
using edsc::op::sgt;
return std_select(sgt(a, b), a, b);
});
return linalg_generic_pointwise(binOp, I1, I2, O);
}
Operation *
mlir::edsc::ops::linalg_generic_matmul(Value vA, Value vB, Value vC,
MatmulRegionBuilder regionBuilder) {
// clang-format off
AffineExpr m, n, k;
bindDims(ScopedContext::getContext(), m, n, k);
StructuredIndexed A(vA), B(vB), C(vC);
return makeGenericLinalgOp(
{IteratorType::Parallel, IteratorType::Parallel, IteratorType::Reduction},
/*inputs=*/{A({m, k}), B({k, n})},
/*outputs=*/{C({m, n})},
/*resultTensorTypes=*/{},
regionBuilder);
// clang-format on
}
Operation *
mlir::edsc::ops::linalg_generic_matmul(Value vA, Value vB, Value vC,
RankedTensorType tD,
MatmulRegionBuilder regionBuilder) {
// clang-format off
AffineExpr m, n, k;
bindDims(ScopedContext::getContext(), m, n, k);
StructuredIndexed A(vA), B(vB), C(vC), D(tD);
return makeGenericLinalgOp(
{IteratorType::Parallel, IteratorType::Parallel, IteratorType::Reduction},
/*inputs=*/{A({m, k}), B({k, n})},
/*outputs=*/{C({m, n})},
/*resultTensorTypes=*/{D({m, n})},
regionBuilder);
// clang-format on
}
Operation *mlir::edsc::ops::linalg_generic_conv_nhwc(Value vI, Value vW,
Value vO,
ArrayRef<int> strides,
ArrayRef<int> dilations) {
MLIRContext *ctx = ScopedContext::getContext();
// TODO: some template magic to make everything rank-polymorphic.
assert((dilations.empty() || dilations.size() == 2) && "only 2-D conv atm");
assert((strides.empty() || strides.size() == 2) && "only 2-D conv atm");
// Some short names.
auto par = IteratorType::Parallel;
auto red = IteratorType::Reduction;
auto s = strides;
auto d = dilations;
AffineExpr b, f, h, w, kh, kw, c;
bindDims(ctx, b, f, h, w, kh, kw, c);
unsigned numDims = c.cast<AffineDimExpr>().getPosition() + 1;
StructuredIndexed I(vI), W(vW), O(vO);
// clang-format off
return makeGenericLinalgOp(
{par, par, par, par, red, red, red},
/*inputs=*/{
I({b,
// Roundtrip to flattened form to serve as canonicalization and ensure
// consistent ordering of subexpressions.
simplifyAffineExpr(s[0] * h + d[0] * kh, numDims, 0),
simplifyAffineExpr(s[1] * w + d[1] * kw, numDims, 0),
c}),
W({kh, kw, c, f}) },
/*outputs=*/{ O({b, h, w, f}) },
/*resultTensorTypes=*/{},
macRegionBuilder);
// clang-format on
}
Operation *mlir::edsc::ops::linalg_generic_dilated_conv_nhwc(
Value vI, Value vW, Value vO, int depth_multiplier, ArrayRef<int> strides,
ArrayRef<int> dilations) {
MLIRContext *ctx = ScopedContext::getContext();
// TODO: some template magic to make everything rank-polymorphic.
assert((dilations.empty() || dilations.size() == 2) && "only 2-D conv atm");
assert((strides.empty() || strides.size() == 2) && "only 2-D conv atm");
// Some short names.
auto par = IteratorType::Parallel;
auto red = IteratorType::Reduction;
auto s = strides;
auto d = dilations;
// clang-format off
AffineExpr b, dm, c, h, w, kh, kw;
bindDims(ctx, b, dm, c, h, w, kh, kw);
unsigned numDims = kw.cast<AffineDimExpr>().getPosition() + 1;
StructuredIndexed I(vI), W(vW), O(vO);
return makeGenericLinalgOp(
{par, par, par, par, par, red, red},
/*inputs=*/{
I({b,
// Roundtrip to flattened form to serve as canonicalization and ensure
// consistent ordering of subexpressions.
simplifyAffineExpr(s[0] * h + d[0] * kh, numDims, 0),
simplifyAffineExpr(s[1] * w + d[1] * kw, numDims, 0),
c}),
W({kh, kw, c, dm})},
/*outputs=*/{
O({b, h, w, simplifyAffineExpr(c * depth_multiplier + dm, numDims, 0)})},
/*resultTensorTypes=*/{},
macRegionBuilder);
// clang-format on
}