| //===- ConstantRangeTest.cpp - ConstantRange tests ------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/IR/ConstantRange.h" |
| #include "llvm/ADT/BitVector.h" |
| #include "llvm/ADT/Sequence.h" |
| #include "llvm/ADT/SmallBitVector.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/Support/KnownBits.h" |
| #include "gtest/gtest.h" |
| |
| using namespace llvm; |
| |
| namespace { |
| |
| class ConstantRangeTest : public ::testing::Test { |
| protected: |
| static ConstantRange Full; |
| static ConstantRange Empty; |
| static ConstantRange One; |
| static ConstantRange Some; |
| static ConstantRange Wrap; |
| }; |
| |
| template<typename Fn> |
| static void EnumerateAPInts(unsigned Bits, Fn TestFn) { |
| APInt N(Bits, 0); |
| do { |
| TestFn(N); |
| } while (++N != 0); |
| } |
| |
| template<typename Fn> |
| static void EnumerateConstantRanges(unsigned Bits, Fn TestFn) { |
| unsigned Max = 1 << Bits; |
| for (unsigned Lo = 0; Lo < Max; Lo++) { |
| for (unsigned Hi = 0; Hi < Max; Hi++) { |
| // Enforce ConstantRange invariant. |
| if (Lo == Hi && Lo != 0 && Lo != Max - 1) |
| continue; |
| |
| ConstantRange CR(APInt(Bits, Lo), APInt(Bits, Hi)); |
| TestFn(CR); |
| } |
| } |
| } |
| |
| template <typename Fn> |
| static void EnumerateInterestingConstantRanges(Fn TestFn) { |
| // Check 1 bit ranges, because they may have special cases. |
| EnumerateConstantRanges(/* Bits */ 1, TestFn); |
| // Check 4 bit ranges to have decent coverage without being too slow. |
| EnumerateConstantRanges(/* Bits */ 4, TestFn); |
| } |
| |
| template <typename Fn> |
| static void EnumerateTwoInterestingConstantRanges(Fn TestFn) { |
| for (unsigned Bits : {1, 4}) { |
| EnumerateConstantRanges(Bits, [&](const ConstantRange &CR1) { |
| EnumerateConstantRanges( |
| Bits, [&](const ConstantRange &CR2) { TestFn(CR1, CR2); }); |
| }); |
| } |
| } |
| |
| template <typename Fn> |
| static void ForeachNumInConstantRange(const ConstantRange &CR, Fn TestFn) { |
| if (!CR.isEmptySet()) { |
| APInt N = CR.getLower(); |
| do TestFn(N); |
| while (++N != CR.getUpper()); |
| } |
| } |
| |
| using PreferFn = llvm::function_ref<bool(const ConstantRange &, |
| const ConstantRange &)>; |
| |
| bool PreferSmallest(const ConstantRange &CR1, const ConstantRange &CR2) { |
| return CR1.isSizeStrictlySmallerThan(CR2); |
| } |
| |
| bool PreferSmallestUnsigned(const ConstantRange &CR1, |
| const ConstantRange &CR2) { |
| if (CR1.isWrappedSet() != CR2.isWrappedSet()) |
| return CR1.isWrappedSet() < CR2.isWrappedSet(); |
| return PreferSmallest(CR1, CR2); |
| } |
| |
| bool PreferSmallestSigned(const ConstantRange &CR1, const ConstantRange &CR2) { |
| if (CR1.isSignWrappedSet() != CR2.isSignWrappedSet()) |
| return CR1.isSignWrappedSet() < CR2.isSignWrappedSet(); |
| return PreferSmallest(CR1, CR2); |
| } |
| |
| bool PreferSmallestNonFullUnsigned(const ConstantRange &CR1, |
| const ConstantRange &CR2) { |
| if (CR1.isFullSet() != CR2.isFullSet()) |
| return CR1.isFullSet() < CR2.isFullSet(); |
| return PreferSmallestUnsigned(CR1, CR2); |
| } |
| |
| bool PreferSmallestNonFullSigned(const ConstantRange &CR1, |
| const ConstantRange &CR2) { |
| if (CR1.isFullSet() != CR2.isFullSet()) |
| return CR1.isFullSet() < CR2.isFullSet(); |
| return PreferSmallestSigned(CR1, CR2); |
| } |
| |
| testing::AssertionResult rangeContains(const ConstantRange &CR, const APInt &N, |
| ArrayRef<ConstantRange> Inputs) { |
| if (CR.contains(N)) |
| return testing::AssertionSuccess(); |
| |
| testing::AssertionResult Result = testing::AssertionFailure(); |
| Result << CR << " does not contain " << N << " for inputs: "; |
| for (const ConstantRange &Input : Inputs) |
| Result << Input << ", "; |
| return Result; |
| } |
| |
| // Check whether constant range CR is an optimal approximation of the set |
| // Elems under the given PreferenceFn. The preference function should return |
| // true if the first range argument is strictly preferred to the second one. |
| static void TestRange(const ConstantRange &CR, const SmallBitVector &Elems, |
| PreferFn PreferenceFn, ArrayRef<ConstantRange> Inputs, |
| bool CheckOptimality = true) { |
| unsigned BitWidth = CR.getBitWidth(); |
| |
| // Check conservative correctness. |
| for (unsigned Elem : Elems.set_bits()) { |
| EXPECT_TRUE(rangeContains(CR, APInt(BitWidth, Elem), Inputs)); |
| } |
| |
| if (!CheckOptimality) |
| return; |
| |
| // Make sure we have at least one element for the code below. |
| if (Elems.none()) { |
| EXPECT_TRUE(CR.isEmptySet()); |
| return; |
| } |
| |
| auto NotPreferred = [&](const ConstantRange &PossibleCR) { |
| if (!PreferenceFn(PossibleCR, CR)) |
| return testing::AssertionSuccess(); |
| |
| testing::AssertionResult Result = testing::AssertionFailure(); |
| Result << "Inputs = "; |
| for (const ConstantRange &Input : Inputs) |
| Result << Input << ", "; |
| Result << "CR = " << CR << ", BetterCR = " << PossibleCR; |
| return Result; |
| }; |
| |
| // Look at all pairs of adjacent elements and the slack-free ranges |
| // [Elem, PrevElem] they imply. Check that none of the ranges are strictly |
| // preferred over the computed range (they may have equal preference). |
| int FirstElem = Elems.find_first(); |
| int PrevElem = FirstElem, Elem; |
| do { |
| Elem = Elems.find_next(PrevElem); |
| if (Elem < 0) |
| Elem = FirstElem; // Wrap around to first element. |
| |
| ConstantRange PossibleCR = |
| ConstantRange::getNonEmpty(APInt(BitWidth, Elem), |
| APInt(BitWidth, PrevElem) + 1); |
| // We get a full range any time PrevElem and Elem are adjacent. Avoid |
| // repeated checks by skipping here, and explicitly checking below instead. |
| if (!PossibleCR.isFullSet()) { |
| EXPECT_TRUE(NotPreferred(PossibleCR)); |
| } |
| |
| PrevElem = Elem; |
| } while (Elem != FirstElem); |
| |
| EXPECT_TRUE(NotPreferred(ConstantRange::getFull(BitWidth))); |
| } |
| |
| using UnaryRangeFn = llvm::function_ref<ConstantRange(const ConstantRange &)>; |
| using UnaryIntFn = llvm::function_ref<std::optional<APInt>(const APInt &)>; |
| |
| static void TestUnaryOpExhaustive(UnaryRangeFn RangeFn, UnaryIntFn IntFn, |
| PreferFn PreferenceFn = PreferSmallest) { |
| EnumerateInterestingConstantRanges([&](const ConstantRange &CR) { |
| SmallBitVector Elems(1 << CR.getBitWidth()); |
| ForeachNumInConstantRange(CR, [&](const APInt &N) { |
| if (std::optional<APInt> ResultN = IntFn(N)) |
| Elems.set(ResultN->getZExtValue()); |
| }); |
| TestRange(RangeFn(CR), Elems, PreferenceFn, {CR}); |
| }); |
| } |
| |
| using BinaryRangeFn = llvm::function_ref<ConstantRange(const ConstantRange &, |
| const ConstantRange &)>; |
| using BinaryIntFn = |
| llvm::function_ref<std::optional<APInt>(const APInt &, const APInt &)>; |
| using BinaryCheckFn = llvm::function_ref<bool(const ConstantRange &, |
| const ConstantRange &)>; |
| |
| static bool CheckAll(const ConstantRange &, const ConstantRange &) { |
| return true; |
| } |
| |
| static bool CheckCorrectnessOnly(const ConstantRange &, const ConstantRange &) { |
| return false; |
| } |
| |
| static bool CheckSingleElementsOnly(const ConstantRange &CR1, |
| const ConstantRange &CR2) { |
| return CR1.isSingleElement() && CR2.isSingleElement(); |
| } |
| |
| static bool CheckNonWrappedOnly(const ConstantRange &CR1, |
| const ConstantRange &CR2) { |
| return !CR1.isWrappedSet() && !CR2.isWrappedSet(); |
| } |
| |
| static bool CheckNonSignWrappedOnly(const ConstantRange &CR1, |
| const ConstantRange &CR2) { |
| return !CR1.isSignWrappedSet() && !CR2.isSignWrappedSet(); |
| } |
| |
| static bool |
| CheckNoSignedWrappedLHSAndNoWrappedRHSOnly(const ConstantRange &CR1, |
| const ConstantRange &CR2) { |
| return !CR1.isSignWrappedSet() && !CR2.isWrappedSet(); |
| } |
| |
| static bool CheckNonWrappedOrSignWrappedOnly(const ConstantRange &CR1, |
| const ConstantRange &CR2) { |
| return !CR1.isWrappedSet() && !CR1.isSignWrappedSet() && |
| !CR2.isWrappedSet() && !CR2.isSignWrappedSet(); |
| } |
| |
| // CheckFn determines whether optimality is checked for a given range pair. |
| // Correctness is always checked. |
| static void TestBinaryOpExhaustive(BinaryRangeFn RangeFn, BinaryIntFn IntFn, |
| PreferFn PreferenceFn = PreferSmallest, |
| BinaryCheckFn CheckFn = CheckAll) { |
| EnumerateTwoInterestingConstantRanges( |
| [&](const ConstantRange &CR1, const ConstantRange &CR2) { |
| SmallBitVector Elems(1 << CR1.getBitWidth()); |
| ForeachNumInConstantRange(CR1, [&](const APInt &N1) { |
| ForeachNumInConstantRange(CR2, [&](const APInt &N2) { |
| if (std::optional<APInt> ResultN = IntFn(N1, N2)) |
| Elems.set(ResultN->getZExtValue()); |
| }); |
| }); |
| TestRange(RangeFn(CR1, CR2), Elems, PreferenceFn, {CR1, CR2}, |
| CheckFn(CR1, CR2)); |
| }); |
| } |
| |
| ConstantRange ConstantRangeTest::Full(16, true); |
| ConstantRange ConstantRangeTest::Empty(16, false); |
| ConstantRange ConstantRangeTest::One(APInt(16, 0xa)); |
| ConstantRange ConstantRangeTest::Some(APInt(16, 0xa), APInt(16, 0xaaa)); |
| ConstantRange ConstantRangeTest::Wrap(APInt(16, 0xaaa), APInt(16, 0xa)); |
| |
| TEST_F(ConstantRangeTest, Basics) { |
| EXPECT_TRUE(Full.isFullSet()); |
| EXPECT_FALSE(Full.isEmptySet()); |
| EXPECT_TRUE(Full.inverse().isEmptySet()); |
| EXPECT_FALSE(Full.isWrappedSet()); |
| EXPECT_TRUE(Full.contains(APInt(16, 0x0))); |
| EXPECT_TRUE(Full.contains(APInt(16, 0x9))); |
| EXPECT_TRUE(Full.contains(APInt(16, 0xa))); |
| EXPECT_TRUE(Full.contains(APInt(16, 0xaa9))); |
| EXPECT_TRUE(Full.contains(APInt(16, 0xaaa))); |
| |
| EXPECT_FALSE(Empty.isFullSet()); |
| EXPECT_TRUE(Empty.isEmptySet()); |
| EXPECT_TRUE(Empty.inverse().isFullSet()); |
| EXPECT_FALSE(Empty.isWrappedSet()); |
| EXPECT_FALSE(Empty.contains(APInt(16, 0x0))); |
| EXPECT_FALSE(Empty.contains(APInt(16, 0x9))); |
| EXPECT_FALSE(Empty.contains(APInt(16, 0xa))); |
| EXPECT_FALSE(Empty.contains(APInt(16, 0xaa9))); |
| EXPECT_FALSE(Empty.contains(APInt(16, 0xaaa))); |
| |
| EXPECT_FALSE(One.isFullSet()); |
| EXPECT_FALSE(One.isEmptySet()); |
| EXPECT_FALSE(One.isWrappedSet()); |
| EXPECT_FALSE(One.contains(APInt(16, 0x0))); |
| EXPECT_FALSE(One.contains(APInt(16, 0x9))); |
| EXPECT_TRUE(One.contains(APInt(16, 0xa))); |
| EXPECT_FALSE(One.contains(APInt(16, 0xaa9))); |
| EXPECT_FALSE(One.contains(APInt(16, 0xaaa))); |
| EXPECT_FALSE(One.inverse().contains(APInt(16, 0xa))); |
| |
| EXPECT_FALSE(Some.isFullSet()); |
| EXPECT_FALSE(Some.isEmptySet()); |
| EXPECT_FALSE(Some.isWrappedSet()); |
| EXPECT_FALSE(Some.contains(APInt(16, 0x0))); |
| EXPECT_FALSE(Some.contains(APInt(16, 0x9))); |
| EXPECT_TRUE(Some.contains(APInt(16, 0xa))); |
| EXPECT_TRUE(Some.contains(APInt(16, 0xaa9))); |
| EXPECT_FALSE(Some.contains(APInt(16, 0xaaa))); |
| |
| EXPECT_FALSE(Wrap.isFullSet()); |
| EXPECT_FALSE(Wrap.isEmptySet()); |
| EXPECT_TRUE(Wrap.isWrappedSet()); |
| EXPECT_TRUE(Wrap.contains(APInt(16, 0x0))); |
| EXPECT_TRUE(Wrap.contains(APInt(16, 0x9))); |
| EXPECT_FALSE(Wrap.contains(APInt(16, 0xa))); |
| EXPECT_FALSE(Wrap.contains(APInt(16, 0xaa9))); |
| EXPECT_TRUE(Wrap.contains(APInt(16, 0xaaa))); |
| } |
| |
| TEST_F(ConstantRangeTest, Equality) { |
| EXPECT_EQ(Full, Full); |
| EXPECT_EQ(Empty, Empty); |
| EXPECT_EQ(One, One); |
| EXPECT_EQ(Some, Some); |
| EXPECT_EQ(Wrap, Wrap); |
| EXPECT_NE(Full, Empty); |
| EXPECT_NE(Full, One); |
| EXPECT_NE(Full, Some); |
| EXPECT_NE(Full, Wrap); |
| EXPECT_NE(Empty, One); |
| EXPECT_NE(Empty, Some); |
| EXPECT_NE(Empty, Wrap); |
| EXPECT_NE(One, Some); |
| EXPECT_NE(One, Wrap); |
| EXPECT_NE(Some, Wrap); |
| } |
| |
| TEST_F(ConstantRangeTest, SingleElement) { |
| EXPECT_EQ(Full.getSingleElement(), static_cast<APInt *>(nullptr)); |
| EXPECT_EQ(Empty.getSingleElement(), static_cast<APInt *>(nullptr)); |
| EXPECT_EQ(Full.getSingleMissingElement(), static_cast<APInt *>(nullptr)); |
| EXPECT_EQ(Empty.getSingleMissingElement(), static_cast<APInt *>(nullptr)); |
| |
| EXPECT_EQ(*One.getSingleElement(), APInt(16, 0xa)); |
| EXPECT_EQ(Some.getSingleElement(), static_cast<APInt *>(nullptr)); |
| EXPECT_EQ(Wrap.getSingleElement(), static_cast<APInt *>(nullptr)); |
| |
| EXPECT_EQ(One.getSingleMissingElement(), static_cast<APInt *>(nullptr)); |
| EXPECT_EQ(Some.getSingleMissingElement(), static_cast<APInt *>(nullptr)); |
| |
| ConstantRange OneInverse = One.inverse(); |
| EXPECT_EQ(*OneInverse.getSingleMissingElement(), *One.getSingleElement()); |
| |
| EXPECT_FALSE(Full.isSingleElement()); |
| EXPECT_FALSE(Empty.isSingleElement()); |
| EXPECT_TRUE(One.isSingleElement()); |
| EXPECT_FALSE(Some.isSingleElement()); |
| EXPECT_FALSE(Wrap.isSingleElement()); |
| } |
| |
| TEST_F(ConstantRangeTest, GetMinsAndMaxes) { |
| EXPECT_EQ(Full.getUnsignedMax(), APInt(16, UINT16_MAX)); |
| EXPECT_EQ(One.getUnsignedMax(), APInt(16, 0xa)); |
| EXPECT_EQ(Some.getUnsignedMax(), APInt(16, 0xaa9)); |
| EXPECT_EQ(Wrap.getUnsignedMax(), APInt(16, UINT16_MAX)); |
| |
| EXPECT_EQ(Full.getUnsignedMin(), APInt(16, 0)); |
| EXPECT_EQ(One.getUnsignedMin(), APInt(16, 0xa)); |
| EXPECT_EQ(Some.getUnsignedMin(), APInt(16, 0xa)); |
| EXPECT_EQ(Wrap.getUnsignedMin(), APInt(16, 0)); |
| |
| EXPECT_EQ(Full.getSignedMax(), APInt(16, INT16_MAX)); |
| EXPECT_EQ(One.getSignedMax(), APInt(16, 0xa)); |
| EXPECT_EQ(Some.getSignedMax(), APInt(16, 0xaa9)); |
| EXPECT_EQ(Wrap.getSignedMax(), APInt(16, INT16_MAX)); |
| |
| EXPECT_EQ(Full.getSignedMin(), APInt(16, (uint64_t)INT16_MIN)); |
| EXPECT_EQ(One.getSignedMin(), APInt(16, 0xa)); |
| EXPECT_EQ(Some.getSignedMin(), APInt(16, 0xa)); |
| EXPECT_EQ(Wrap.getSignedMin(), APInt(16, (uint64_t)INT16_MIN)); |
| |
| // Found by Klee |
| EXPECT_EQ(ConstantRange(APInt(4, 7), APInt(4, 0)).getSignedMax(), |
| APInt(4, 7)); |
| } |
| |
| TEST_F(ConstantRangeTest, SignWrapped) { |
| EXPECT_FALSE(Full.isSignWrappedSet()); |
| EXPECT_FALSE(Empty.isSignWrappedSet()); |
| EXPECT_FALSE(One.isSignWrappedSet()); |
| EXPECT_FALSE(Some.isSignWrappedSet()); |
| EXPECT_TRUE(Wrap.isSignWrappedSet()); |
| |
| EXPECT_FALSE(ConstantRange(APInt(8, 127), APInt(8, 128)).isSignWrappedSet()); |
| EXPECT_TRUE(ConstantRange(APInt(8, 127), APInt(8, 129)).isSignWrappedSet()); |
| EXPECT_FALSE(ConstantRange(APInt(8, 128), APInt(8, 129)).isSignWrappedSet()); |
| EXPECT_TRUE(ConstantRange(APInt(8, 10), APInt(8, 9)).isSignWrappedSet()); |
| EXPECT_TRUE(ConstantRange(APInt(8, 10), APInt(8, 250)).isSignWrappedSet()); |
| EXPECT_FALSE(ConstantRange(APInt(8, 250), APInt(8, 10)).isSignWrappedSet()); |
| EXPECT_FALSE(ConstantRange(APInt(8, 250), APInt(8, 251)).isSignWrappedSet()); |
| } |
| |
| TEST_F(ConstantRangeTest, UpperWrapped) { |
| // The behavior here is the same as for isWrappedSet() / isSignWrappedSet(). |
| EXPECT_FALSE(Full.isUpperWrapped()); |
| EXPECT_FALSE(Empty.isUpperWrapped()); |
| EXPECT_FALSE(One.isUpperWrapped()); |
| EXPECT_FALSE(Some.isUpperWrapped()); |
| EXPECT_TRUE(Wrap.isUpperWrapped()); |
| EXPECT_FALSE(Full.isUpperSignWrapped()); |
| EXPECT_FALSE(Empty.isUpperSignWrapped()); |
| EXPECT_FALSE(One.isUpperSignWrapped()); |
| EXPECT_FALSE(Some.isUpperSignWrapped()); |
| EXPECT_TRUE(Wrap.isUpperSignWrapped()); |
| |
| // The behavior differs if Upper is the Min/SignedMin value. |
| ConstantRange CR1(APInt(8, 42), APInt::getMinValue(8)); |
| EXPECT_FALSE(CR1.isWrappedSet()); |
| EXPECT_TRUE(CR1.isUpperWrapped()); |
| |
| ConstantRange CR2(APInt(8, 42), APInt::getSignedMinValue(8)); |
| EXPECT_FALSE(CR2.isSignWrappedSet()); |
| EXPECT_TRUE(CR2.isUpperSignWrapped()); |
| } |
| |
| TEST_F(ConstantRangeTest, Trunc) { |
| ConstantRange TFull = Full.truncate(10); |
| ConstantRange TEmpty = Empty.truncate(10); |
| ConstantRange TOne = One.truncate(10); |
| ConstantRange TSome = Some.truncate(10); |
| ConstantRange TWrap = Wrap.truncate(10); |
| EXPECT_TRUE(TFull.isFullSet()); |
| EXPECT_TRUE(TEmpty.isEmptySet()); |
| EXPECT_EQ(TOne, ConstantRange(One.getLower().trunc(10), |
| One.getUpper().trunc(10))); |
| EXPECT_TRUE(TSome.isFullSet()); |
| EXPECT_TRUE(TWrap.isFullSet()); |
| |
| // trunc([2, 5), 3->2) = [2, 1) |
| ConstantRange TwoFive(APInt(3, 2), APInt(3, 5)); |
| EXPECT_EQ(TwoFive.truncate(2), ConstantRange(APInt(2, 2), APInt(2, 1))); |
| |
| // trunc([2, 6), 3->2) = full |
| ConstantRange TwoSix(APInt(3, 2), APInt(3, 6)); |
| EXPECT_TRUE(TwoSix.truncate(2).isFullSet()); |
| |
| // trunc([5, 7), 3->2) = [1, 3) |
| ConstantRange FiveSeven(APInt(3, 5), APInt(3, 7)); |
| EXPECT_EQ(FiveSeven.truncate(2), ConstantRange(APInt(2, 1), APInt(2, 3))); |
| |
| // trunc([7, 1), 3->2) = [3, 1) |
| ConstantRange SevenOne(APInt(3, 7), APInt(3, 1)); |
| EXPECT_EQ(SevenOne.truncate(2), ConstantRange(APInt(2, 3), APInt(2, 1))); |
| } |
| |
| TEST_F(ConstantRangeTest, ZExt) { |
| ConstantRange ZFull = Full.zeroExtend(20); |
| ConstantRange ZEmpty = Empty.zeroExtend(20); |
| ConstantRange ZOne = One.zeroExtend(20); |
| ConstantRange ZSome = Some.zeroExtend(20); |
| ConstantRange ZWrap = Wrap.zeroExtend(20); |
| EXPECT_EQ(ZFull, ConstantRange(APInt(20, 0), APInt(20, 0x10000))); |
| EXPECT_TRUE(ZEmpty.isEmptySet()); |
| EXPECT_EQ(ZOne, ConstantRange(One.getLower().zext(20), |
| One.getUpper().zext(20))); |
| EXPECT_EQ(ZSome, ConstantRange(Some.getLower().zext(20), |
| Some.getUpper().zext(20))); |
| EXPECT_EQ(ZWrap, ConstantRange(APInt(20, 0), APInt(20, 0x10000))); |
| |
| // zext([5, 0), 3->7) = [5, 8) |
| ConstantRange FiveZero(APInt(3, 5), APInt(3, 0)); |
| EXPECT_EQ(FiveZero.zeroExtend(7), ConstantRange(APInt(7, 5), APInt(7, 8))); |
| } |
| |
| TEST_F(ConstantRangeTest, SExt) { |
| ConstantRange SFull = Full.signExtend(20); |
| ConstantRange SEmpty = Empty.signExtend(20); |
| ConstantRange SOne = One.signExtend(20); |
| ConstantRange SSome = Some.signExtend(20); |
| ConstantRange SWrap = Wrap.signExtend(20); |
| EXPECT_EQ(SFull, ConstantRange(APInt(20, (uint64_t)INT16_MIN, true), |
| APInt(20, INT16_MAX + 1, true))); |
| EXPECT_TRUE(SEmpty.isEmptySet()); |
| EXPECT_EQ(SOne, ConstantRange(One.getLower().sext(20), |
| One.getUpper().sext(20))); |
| EXPECT_EQ(SSome, ConstantRange(Some.getLower().sext(20), |
| Some.getUpper().sext(20))); |
| EXPECT_EQ(SWrap, ConstantRange(APInt(20, (uint64_t)INT16_MIN, true), |
| APInt(20, INT16_MAX + 1, true))); |
| |
| EXPECT_EQ(ConstantRange(APInt(8, 120), APInt(8, 140)).signExtend(16), |
| ConstantRange(APInt(16, -128), APInt(16, 128))); |
| |
| EXPECT_EQ(ConstantRange(APInt(16, 0x0200), APInt(16, 0x8000)).signExtend(19), |
| ConstantRange(APInt(19, 0x0200), APInt(19, 0x8000))); |
| } |
| |
| TEST_F(ConstantRangeTest, IntersectWith) { |
| EXPECT_EQ(Empty.intersectWith(Full), Empty); |
| EXPECT_EQ(Empty.intersectWith(Empty), Empty); |
| EXPECT_EQ(Empty.intersectWith(One), Empty); |
| EXPECT_EQ(Empty.intersectWith(Some), Empty); |
| EXPECT_EQ(Empty.intersectWith(Wrap), Empty); |
| EXPECT_EQ(Full.intersectWith(Full), Full); |
| EXPECT_EQ(Some.intersectWith(Some), Some); |
| EXPECT_EQ(Some.intersectWith(One), One); |
| EXPECT_EQ(Full.intersectWith(One), One); |
| EXPECT_EQ(Full.intersectWith(Some), Some); |
| EXPECT_EQ(Some.intersectWith(Wrap), Empty); |
| EXPECT_EQ(One.intersectWith(Wrap), Empty); |
| EXPECT_EQ(One.intersectWith(Wrap), Wrap.intersectWith(One)); |
| |
| // Klee generated testcase from PR4545. |
| // The intersection of i16 [4, 2) and [6, 5) is disjoint, looking like |
| // 01..4.6789ABCDEF where the dots represent values not in the intersection. |
| ConstantRange LHS(APInt(16, 4), APInt(16, 2)); |
| ConstantRange RHS(APInt(16, 6), APInt(16, 5)); |
| EXPECT_TRUE(LHS.intersectWith(RHS) == LHS); |
| |
| // previous bug: intersection of [min, 3) and [2, max) should be 2 |
| LHS = ConstantRange(APInt(32, -2147483646), APInt(32, 3)); |
| RHS = ConstantRange(APInt(32, 2), APInt(32, 2147483646)); |
| EXPECT_EQ(LHS.intersectWith(RHS), ConstantRange(APInt(32, 2))); |
| |
| // [2, 0) /\ [4, 3) = [2, 0) |
| LHS = ConstantRange(APInt(32, 2), APInt(32, 0)); |
| RHS = ConstantRange(APInt(32, 4), APInt(32, 3)); |
| EXPECT_EQ(LHS.intersectWith(RHS), ConstantRange(APInt(32, 2), APInt(32, 0))); |
| |
| // [2, 0) /\ [4, 2) = [4, 0) |
| LHS = ConstantRange(APInt(32, 2), APInt(32, 0)); |
| RHS = ConstantRange(APInt(32, 4), APInt(32, 2)); |
| EXPECT_EQ(LHS.intersectWith(RHS), ConstantRange(APInt(32, 4), APInt(32, 0))); |
| |
| // [4, 2) /\ [5, 1) = [5, 1) |
| LHS = ConstantRange(APInt(32, 4), APInt(32, 2)); |
| RHS = ConstantRange(APInt(32, 5), APInt(32, 1)); |
| EXPECT_EQ(LHS.intersectWith(RHS), ConstantRange(APInt(32, 5), APInt(32, 1))); |
| |
| // [2, 0) /\ [7, 4) = [7, 4) |
| LHS = ConstantRange(APInt(32, 2), APInt(32, 0)); |
| RHS = ConstantRange(APInt(32, 7), APInt(32, 4)); |
| EXPECT_EQ(LHS.intersectWith(RHS), ConstantRange(APInt(32, 7), APInt(32, 4))); |
| |
| // [4, 2) /\ [1, 0) = [1, 0) |
| LHS = ConstantRange(APInt(32, 4), APInt(32, 2)); |
| RHS = ConstantRange(APInt(32, 1), APInt(32, 0)); |
| EXPECT_EQ(LHS.intersectWith(RHS), ConstantRange(APInt(32, 4), APInt(32, 2))); |
| |
| // [15, 0) /\ [7, 6) = [15, 0) |
| LHS = ConstantRange(APInt(32, 15), APInt(32, 0)); |
| RHS = ConstantRange(APInt(32, 7), APInt(32, 6)); |
| EXPECT_EQ(LHS.intersectWith(RHS), ConstantRange(APInt(32, 15), APInt(32, 0))); |
| } |
| |
| template <typename Fn1, typename Fn2, typename Fn3> |
| void testBinarySetOperationExhaustive(Fn1 OpFn, Fn2 ExactOpFn, Fn3 InResultFn) { |
| EnumerateTwoInterestingConstantRanges( |
| [=](const ConstantRange &CR1, const ConstantRange &CR2) { |
| unsigned Bits = CR1.getBitWidth(); |
| SmallBitVector Elems(1 << Bits); |
| APInt Num(Bits, 0); |
| for (unsigned I = 0, Limit = 1 << Bits; I < Limit; ++I, ++Num) |
| if (InResultFn(CR1, CR2, Num)) |
| Elems.set(Num.getZExtValue()); |
| |
| ConstantRange SmallestCR = OpFn(CR1, CR2, ConstantRange::Smallest); |
| TestRange(SmallestCR, Elems, PreferSmallest, {CR1, CR2}); |
| |
| ConstantRange UnsignedCR = OpFn(CR1, CR2, ConstantRange::Unsigned); |
| TestRange(UnsignedCR, Elems, PreferSmallestNonFullUnsigned, {CR1, CR2}); |
| |
| ConstantRange SignedCR = OpFn(CR1, CR2, ConstantRange::Signed); |
| TestRange(SignedCR, Elems, PreferSmallestNonFullSigned, {CR1, CR2}); |
| |
| std::optional<ConstantRange> ExactCR = ExactOpFn(CR1, CR2); |
| if (SmallestCR.isSizeLargerThan(Elems.count())) { |
| EXPECT_TRUE(!ExactCR); |
| } else { |
| EXPECT_EQ(SmallestCR, *ExactCR); |
| } |
| }); |
| } |
| |
| TEST_F(ConstantRangeTest, IntersectWithExhaustive) { |
| testBinarySetOperationExhaustive( |
| [](const ConstantRange &CR1, const ConstantRange &CR2, |
| ConstantRange::PreferredRangeType Type) { |
| return CR1.intersectWith(CR2, Type); |
| }, |
| [](const ConstantRange &CR1, const ConstantRange &CR2) { |
| return CR1.exactIntersectWith(CR2); |
| }, |
| [](const ConstantRange &CR1, const ConstantRange &CR2, const APInt &N) { |
| return CR1.contains(N) && CR2.contains(N); |
| }); |
| } |
| |
| TEST_F(ConstantRangeTest, UnionWithExhaustive) { |
| testBinarySetOperationExhaustive( |
| [](const ConstantRange &CR1, const ConstantRange &CR2, |
| ConstantRange::PreferredRangeType Type) { |
| return CR1.unionWith(CR2, Type); |
| }, |
| [](const ConstantRange &CR1, const ConstantRange &CR2) { |
| return CR1.exactUnionWith(CR2); |
| }, |
| [](const ConstantRange &CR1, const ConstantRange &CR2, const APInt &N) { |
| return CR1.contains(N) || CR2.contains(N); |
| }); |
| } |
| |
| TEST_F(ConstantRangeTest, UnionWith) { |
| EXPECT_EQ(Wrap.unionWith(One), |
| ConstantRange(APInt(16, 0xaaa), APInt(16, 0xb))); |
| EXPECT_EQ(One.unionWith(Wrap), Wrap.unionWith(One)); |
| EXPECT_EQ(Empty.unionWith(Empty), Empty); |
| EXPECT_EQ(Full.unionWith(Full), Full); |
| EXPECT_EQ(Some.unionWith(Wrap), Full); |
| |
| // PR4545 |
| EXPECT_EQ(ConstantRange(APInt(16, 14), APInt(16, 1)).unionWith( |
| ConstantRange(APInt(16, 0), APInt(16, 8))), |
| ConstantRange(APInt(16, 14), APInt(16, 8))); |
| EXPECT_EQ(ConstantRange(APInt(16, 6), APInt(16, 4)).unionWith( |
| ConstantRange(APInt(16, 4), APInt(16, 0))), |
| ConstantRange::getFull(16)); |
| EXPECT_EQ(ConstantRange(APInt(16, 1), APInt(16, 0)).unionWith( |
| ConstantRange(APInt(16, 2), APInt(16, 1))), |
| ConstantRange::getFull(16)); |
| } |
| |
| TEST_F(ConstantRangeTest, SetDifference) { |
| EXPECT_EQ(Full.difference(Empty), Full); |
| EXPECT_EQ(Full.difference(Full), Empty); |
| EXPECT_EQ(Empty.difference(Empty), Empty); |
| EXPECT_EQ(Empty.difference(Full), Empty); |
| |
| ConstantRange A(APInt(16, 3), APInt(16, 7)); |
| ConstantRange B(APInt(16, 5), APInt(16, 9)); |
| ConstantRange C(APInt(16, 3), APInt(16, 5)); |
| ConstantRange D(APInt(16, 7), APInt(16, 9)); |
| ConstantRange E(APInt(16, 5), APInt(16, 4)); |
| ConstantRange F(APInt(16, 7), APInt(16, 3)); |
| EXPECT_EQ(A.difference(B), C); |
| EXPECT_EQ(B.difference(A), D); |
| EXPECT_EQ(E.difference(A), F); |
| } |
| |
| TEST_F(ConstantRangeTest, getActiveBits) { |
| EnumerateInterestingConstantRanges([&](const ConstantRange &CR) { |
| unsigned Exact = 0; |
| ForeachNumInConstantRange(CR, [&](const APInt &N) { |
| Exact = std::max(Exact, N.getActiveBits()); |
| }); |
| |
| unsigned ResultCR = CR.getActiveBits(); |
| EXPECT_EQ(Exact, ResultCR); |
| }); |
| } |
| TEST_F(ConstantRangeTest, losslessUnsignedTruncationZeroext) { |
| EnumerateInterestingConstantRanges([&](const ConstantRange &CR) { |
| unsigned Bits = CR.getBitWidth(); |
| unsigned MinBitWidth = CR.getActiveBits(); |
| if (MinBitWidth == 0) { |
| EXPECT_TRUE(CR.isEmptySet() || |
| (CR.isSingleElement() && CR.getSingleElement()->isZero())); |
| return; |
| } |
| if (MinBitWidth == Bits) |
| return; |
| EXPECT_EQ(CR, CR.truncate(MinBitWidth).zeroExtend(Bits)); |
| }); |
| } |
| |
| TEST_F(ConstantRangeTest, getMinSignedBits) { |
| EnumerateInterestingConstantRanges([&](const ConstantRange &CR) { |
| unsigned Exact = 0; |
| ForeachNumInConstantRange(CR, [&](const APInt &N) { |
| Exact = std::max(Exact, N.getSignificantBits()); |
| }); |
| |
| unsigned ResultCR = CR.getMinSignedBits(); |
| EXPECT_EQ(Exact, ResultCR); |
| }); |
| } |
| TEST_F(ConstantRangeTest, losslessSignedTruncationSignext) { |
| EnumerateInterestingConstantRanges([&](const ConstantRange &CR) { |
| unsigned Bits = CR.getBitWidth(); |
| unsigned MinBitWidth = CR.getMinSignedBits(); |
| if (MinBitWidth == 0) { |
| EXPECT_TRUE(CR.isEmptySet()); |
| return; |
| } |
| if (MinBitWidth == Bits) |
| return; |
| EXPECT_EQ(CR, CR.truncate(MinBitWidth).signExtend(Bits)); |
| }); |
| } |
| |
| TEST_F(ConstantRangeTest, SubtractAPInt) { |
| EXPECT_EQ(Full.subtract(APInt(16, 4)), Full); |
| EXPECT_EQ(Empty.subtract(APInt(16, 4)), Empty); |
| EXPECT_EQ(Some.subtract(APInt(16, 4)), |
| ConstantRange(APInt(16, 0x6), APInt(16, 0xaa6))); |
| EXPECT_EQ(Wrap.subtract(APInt(16, 4)), |
| ConstantRange(APInt(16, 0xaa6), APInt(16, 0x6))); |
| EXPECT_EQ(One.subtract(APInt(16, 4)), |
| ConstantRange(APInt(16, 0x6))); |
| } |
| |
| TEST_F(ConstantRangeTest, Add) { |
| EXPECT_EQ(Full.add(APInt(16, 4)), Full); |
| EXPECT_EQ(Full.add(Full), Full); |
| EXPECT_EQ(Full.add(Empty), Empty); |
| EXPECT_EQ(Full.add(One), Full); |
| EXPECT_EQ(Full.add(Some), Full); |
| EXPECT_EQ(Full.add(Wrap), Full); |
| EXPECT_EQ(Empty.add(Empty), Empty); |
| EXPECT_EQ(Empty.add(One), Empty); |
| EXPECT_EQ(Empty.add(Some), Empty); |
| EXPECT_EQ(Empty.add(Wrap), Empty); |
| EXPECT_EQ(Empty.add(APInt(16, 4)), Empty); |
| EXPECT_EQ(Some.add(APInt(16, 4)), |
| ConstantRange(APInt(16, 0xe), APInt(16, 0xaae))); |
| EXPECT_EQ(Wrap.add(APInt(16, 4)), |
| ConstantRange(APInt(16, 0xaae), APInt(16, 0xe))); |
| EXPECT_EQ(One.add(APInt(16, 4)), |
| ConstantRange(APInt(16, 0xe))); |
| |
| TestBinaryOpExhaustive( |
| [](const ConstantRange &CR1, const ConstantRange &CR2) { |
| return CR1.add(CR2); |
| }, |
| [](const APInt &N1, const APInt &N2) { |
| return N1 + N2; |
| }); |
| } |
| |
| TEST_F(ConstantRangeTest, AddWithNoWrap) { |
| typedef OverflowingBinaryOperator OBO; |
| EXPECT_EQ(Empty.addWithNoWrap(Some, OBO::NoSignedWrap), Empty); |
| EXPECT_EQ(Some.addWithNoWrap(Empty, OBO::NoSignedWrap), Empty); |
| EXPECT_EQ(Full.addWithNoWrap(Full, OBO::NoSignedWrap), Full); |
| EXPECT_NE(Full.addWithNoWrap(Some, OBO::NoSignedWrap), Full); |
| EXPECT_NE(Some.addWithNoWrap(Full, OBO::NoSignedWrap), Full); |
| EXPECT_EQ(Full.addWithNoWrap(ConstantRange(APInt(16, 1), APInt(16, 2)), |
| OBO::NoSignedWrap), |
| ConstantRange(APInt(16, INT16_MIN + 1), APInt(16, INT16_MIN))); |
| EXPECT_EQ(ConstantRange(APInt(16, 1), APInt(16, 2)) |
| .addWithNoWrap(Full, OBO::NoSignedWrap), |
| ConstantRange(APInt(16, INT16_MIN + 1), APInt(16, INT16_MIN))); |
| EXPECT_EQ(Full.addWithNoWrap(ConstantRange(APInt(16, -1), APInt(16, 0)), |
| OBO::NoSignedWrap), |
| ConstantRange(APInt(16, INT16_MIN), APInt(16, INT16_MAX))); |
| EXPECT_EQ(ConstantRange(APInt(8, 100), APInt(8, 120)) |
| .addWithNoWrap(ConstantRange(APInt(8, 120), APInt(8, 123)), |
| OBO::NoSignedWrap), |
| ConstantRange(8, false)); |
| EXPECT_EQ(ConstantRange(APInt(8, -120), APInt(8, -100)) |
| .addWithNoWrap(ConstantRange(APInt(8, -110), APInt(8, -100)), |
| OBO::NoSignedWrap), |
| ConstantRange(8, false)); |
| EXPECT_EQ(ConstantRange(APInt(8, 0), APInt(8, 101)) |
| .addWithNoWrap(ConstantRange(APInt(8, -128), APInt(8, 28)), |
| OBO::NoSignedWrap), |
| ConstantRange(8, true)); |
| EXPECT_EQ(ConstantRange(APInt(8, 0), APInt(8, 101)) |
| .addWithNoWrap(ConstantRange(APInt(8, -120), APInt(8, 29)), |
| OBO::NoSignedWrap), |
| ConstantRange(APInt(8, -120), APInt(8, -128))); |
| EXPECT_EQ(ConstantRange(APInt(8, -50), APInt(8, 50)) |
| .addWithNoWrap(ConstantRange(APInt(8, 10), APInt(8, 20)), |
| OBO::NoSignedWrap), |
| ConstantRange(APInt(8, -40), APInt(8, 69))); |
| EXPECT_EQ(ConstantRange(APInt(8, 10), APInt(8, 20)) |
| .addWithNoWrap(ConstantRange(APInt(8, -50), APInt(8, 50)), |
| OBO::NoSignedWrap), |
| ConstantRange(APInt(8, -40), APInt(8, 69))); |
| EXPECT_EQ(ConstantRange(APInt(8, 120), APInt(8, -10)) |
| .addWithNoWrap(ConstantRange(APInt(8, 5), APInt(8, 20)), |
| OBO::NoSignedWrap), |
| ConstantRange(APInt(8, 125), APInt(8, 9))); |
| EXPECT_EQ(ConstantRange(APInt(8, 5), APInt(8, 20)) |
| .addWithNoWrap(ConstantRange(APInt(8, 120), APInt(8, -10)), |
| OBO::NoSignedWrap), |
| ConstantRange(APInt(8, 125), APInt(8, 9))); |
| |
| TestBinaryOpExhaustive( |
| [](const ConstantRange &CR1, const ConstantRange &CR2) { |
| return CR1.addWithNoWrap(CR2, OBO::NoSignedWrap); |
| }, |
| [](const APInt &N1, const APInt &N2) -> std::optional<APInt> { |
| bool IsOverflow; |
| APInt Res = N1.sadd_ov(N2, IsOverflow); |
| if (IsOverflow) |
| return std::nullopt; |
| return Res; |
| }, |
| PreferSmallest, CheckNonSignWrappedOnly); |
| |
| EXPECT_EQ(Empty.addWithNoWrap(Some, OBO::NoUnsignedWrap), Empty); |
| EXPECT_EQ(Some.addWithNoWrap(Empty, OBO::NoUnsignedWrap), Empty); |
| EXPECT_EQ(Full.addWithNoWrap(Full, OBO::NoUnsignedWrap), Full); |
| EXPECT_NE(Full.addWithNoWrap(Some, OBO::NoUnsignedWrap), Full); |
| EXPECT_NE(Some.addWithNoWrap(Full, OBO::NoUnsignedWrap), Full); |
| EXPECT_EQ(Full.addWithNoWrap(ConstantRange(APInt(16, 1), APInt(16, 2)), |
| OBO::NoUnsignedWrap), |
| ConstantRange(APInt(16, 1), APInt(16, 0))); |
| EXPECT_EQ(ConstantRange(APInt(16, 1), APInt(16, 2)) |
| .addWithNoWrap(Full, OBO::NoUnsignedWrap), |
| ConstantRange(APInt(16, 1), APInt(16, 0))); |
| EXPECT_EQ(ConstantRange(APInt(8, 200), APInt(8, 220)) |
| .addWithNoWrap(ConstantRange(APInt(8, 100), APInt(8, 123)), |
| OBO::NoUnsignedWrap), |
| ConstantRange(8, false)); |
| EXPECT_EQ(ConstantRange(APInt(8, 0), APInt(8, 101)) |
| .addWithNoWrap(ConstantRange(APInt(8, 0), APInt(8, 156)), |
| OBO::NoUnsignedWrap), |
| ConstantRange(8, true)); |
| EXPECT_EQ(ConstantRange(APInt(8, 0), APInt(8, 101)) |
| .addWithNoWrap(ConstantRange(APInt(8, 10), APInt(8, 29)), |
| OBO::NoUnsignedWrap), |
| ConstantRange(APInt(8, 10), APInt(8, 129))); |
| EXPECT_EQ(ConstantRange(APInt(8, 20), APInt(8, 10)) |
| .addWithNoWrap(ConstantRange(APInt(8, 50), APInt(8, 200)), |
| OBO::NoUnsignedWrap), |
| ConstantRange(APInt(8, 50), APInt(8, 0))); |
| EXPECT_EQ(ConstantRange(APInt(8, 10), APInt(8, 20)) |
| .addWithNoWrap(ConstantRange(APInt(8, 50), APInt(8, 200)), |
| OBO::NoUnsignedWrap), |
| ConstantRange(APInt(8, 60), APInt(8, -37))); |
| EXPECT_EQ(ConstantRange(APInt(8, 20), APInt(8, -30)) |
| .addWithNoWrap(ConstantRange(APInt(8, 5), APInt(8, 20)), |
| OBO::NoUnsignedWrap), |
| ConstantRange(APInt(8, 25), APInt(8, -11))); |
| EXPECT_EQ(ConstantRange(APInt(8, 5), APInt(8, 20)) |
| .addWithNoWrap(ConstantRange(APInt(8, 20), APInt(8, -30)), |
| OBO::NoUnsignedWrap), |
| ConstantRange(APInt(8, 25), APInt(8, -11))); |
| |
| TestBinaryOpExhaustive( |
| [](const ConstantRange &CR1, const ConstantRange &CR2) { |
| return CR1.addWithNoWrap(CR2, OBO::NoUnsignedWrap); |
| }, |
| [](const APInt &N1, const APInt &N2) -> std::optional<APInt> { |
| bool IsOverflow; |
| APInt Res = N1.uadd_ov(N2, IsOverflow); |
| if (IsOverflow) |
| return std::nullopt; |
| return Res; |
| }, |
| PreferSmallest, CheckNonWrappedOnly); |
| |
| EXPECT_EQ(ConstantRange(APInt(8, 50), APInt(8, 100)) |
| .addWithNoWrap(ConstantRange(APInt(8, 20), APInt(8, 70)), |
| OBO::NoSignedWrap), |
| ConstantRange(APInt(8, 70), APInt(8, -128))); |
| EXPECT_EQ(ConstantRange(APInt(8, 50), APInt(8, 100)) |
| .addWithNoWrap(ConstantRange(APInt(8, 20), APInt(8, 70)), |
| OBO::NoUnsignedWrap), |
| ConstantRange(APInt(8, 70), APInt(8, 169))); |
| EXPECT_EQ(ConstantRange(APInt(8, 50), APInt(8, 100)) |
| .addWithNoWrap(ConstantRange(APInt(8, 20), APInt(8, 70)), |
| OBO::NoUnsignedWrap | OBO::NoSignedWrap), |
| ConstantRange(APInt(8, 70), APInt(8, -128))); |
| |
| EXPECT_EQ(ConstantRange(APInt(8, -100), APInt(8, -50)) |
| .addWithNoWrap(ConstantRange(APInt(8, 20), APInt(8, 30)), |
| OBO::NoSignedWrap), |
| ConstantRange(APInt(8, -80), APInt(8, -21))); |
| EXPECT_EQ(ConstantRange(APInt(8, -100), APInt(8, -50)) |
| .addWithNoWrap(ConstantRange(APInt(8, 20), APInt(8, 30)), |
| OBO::NoUnsignedWrap), |
| ConstantRange(APInt(8, 176), APInt(8, 235))); |
| EXPECT_EQ(ConstantRange(APInt(8, -100), APInt(8, -50)) |
| .addWithNoWrap(ConstantRange(APInt(8, 20), APInt(8, 30)), |
| OBO::NoUnsignedWrap | OBO::NoSignedWrap), |
| ConstantRange(APInt(8, 176), APInt(8, 235))); |
| |
| TestBinaryOpExhaustive( |
| [](const ConstantRange &CR1, const ConstantRange &CR2) { |
| return CR1.addWithNoWrap(CR2, OBO::NoUnsignedWrap | OBO::NoSignedWrap); |
| }, |
| [](const APInt &N1, const APInt &N2) -> std::optional<APInt> { |
| bool IsOverflow1, IsOverflow2; |
| APInt Res1 = N1.uadd_ov(N2, IsOverflow1); |
| APInt Res2 = N1.sadd_ov(N2, IsOverflow2); |
| if (IsOverflow1 || IsOverflow2) |
| return std::nullopt; |
| assert(Res1 == Res2 && "Addition results differ?"); |
| return Res1; |
| }, |
| PreferSmallest, CheckNonWrappedOrSignWrappedOnly); |
| } |
| |
| TEST_F(ConstantRangeTest, Sub) { |
| EXPECT_EQ(Full.sub(APInt(16, 4)), Full); |
| EXPECT_EQ(Full.sub(Full), Full); |
| EXPECT_EQ(Full.sub(Empty), Empty); |
| EXPECT_EQ(Full.sub(One), Full); |
| EXPECT_EQ(Full.sub(Some), Full); |
| EXPECT_EQ(Full.sub(Wrap), Full); |
| EXPECT_EQ(Empty.sub(Empty), Empty); |
| EXPECT_EQ(Empty.sub(One), Empty); |
| EXPECT_EQ(Empty.sub(Some), Empty); |
| EXPECT_EQ(Empty.sub(Wrap), Empty); |
| EXPECT_EQ(Empty.sub(APInt(16, 4)), Empty); |
| EXPECT_EQ(Some.sub(APInt(16, 4)), |
| ConstantRange(APInt(16, 0x6), APInt(16, 0xaa6))); |
| EXPECT_EQ(Some.sub(Some), |
| ConstantRange(APInt(16, 0xf561), APInt(16, 0xaa0))); |
| EXPECT_EQ(Wrap.sub(APInt(16, 4)), |
| ConstantRange(APInt(16, 0xaa6), APInt(16, 0x6))); |
| EXPECT_EQ(One.sub(APInt(16, 4)), |
| ConstantRange(APInt(16, 0x6))); |
| |
| TestBinaryOpExhaustive( |
| [](const ConstantRange &CR1, const ConstantRange &CR2) { |
| return CR1.sub(CR2); |
| }, |
| [](const APInt &N1, const APInt &N2) { |
| return N1 - N2; |
| }); |
| } |
| |
| TEST_F(ConstantRangeTest, SubWithNoWrap) { |
| typedef OverflowingBinaryOperator OBO; |
| TestBinaryOpExhaustive( |
| [](const ConstantRange &CR1, const ConstantRange &CR2) { |
| return CR1.subWithNoWrap(CR2, OBO::NoSignedWrap); |
| }, |
| [](const APInt &N1, const APInt &N2) -> std::optional<APInt> { |
| bool IsOverflow; |
| APInt Res = N1.ssub_ov(N2, IsOverflow); |
| if (IsOverflow) |
| return std::nullopt; |
| return Res; |
| }, |
| PreferSmallest, CheckNonSignWrappedOnly); |
| TestBinaryOpExhaustive( |
| [](const ConstantRange &CR1, const ConstantRange &CR2) { |
| return CR1.subWithNoWrap(CR2, OBO::NoUnsignedWrap); |
| }, |
| [](const APInt &N1, const APInt &N2) -> std::optional<APInt> { |
| bool IsOverflow; |
| APInt Res = N1.usub_ov(N2, IsOverflow); |
| if (IsOverflow) |
| return std::nullopt; |
| return Res; |
| }, |
| PreferSmallest, CheckNonWrappedOnly); |
| TestBinaryOpExhaustive( |
| [](const ConstantRange &CR1, const ConstantRange &CR2) { |
| return CR1.subWithNoWrap(CR2, OBO::NoUnsignedWrap | OBO::NoSignedWrap); |
| }, |
| [](const APInt &N1, const APInt &N2) -> std::optional<APInt> { |
| bool IsOverflow1, IsOverflow2; |
| APInt Res1 = N1.usub_ov(N2, IsOverflow1); |
| APInt Res2 = N1.ssub_ov(N2, IsOverflow2); |
| if (IsOverflow1 || IsOverflow2) |
| return std::nullopt; |
| assert(Res1 == Res2 && "Subtraction results differ?"); |
| return Res1; |
| }, |
| PreferSmallest, CheckNonWrappedOrSignWrappedOnly); |
| } |
| |
| TEST_F(ConstantRangeTest, Multiply) { |
| EXPECT_EQ(Full.multiply(Full), Full); |
| EXPECT_EQ(Full.multiply(Empty), Empty); |
| EXPECT_EQ(Full.multiply(One), Full); |
| EXPECT_EQ(Full.multiply(Some), Full); |
| EXPECT_EQ(Full.multiply(Wrap), Full); |
| EXPECT_EQ(Empty.multiply(Empty), Empty); |
| EXPECT_EQ(Empty.multiply(One), Empty); |
| EXPECT_EQ(Empty.multiply(Some), Empty); |
| EXPECT_EQ(Empty.multiply(Wrap), Empty); |
| EXPECT_EQ(One.multiply(One), ConstantRange(APInt(16, 0xa*0xa), |
| APInt(16, 0xa*0xa + 1))); |
| EXPECT_EQ(One.multiply(Some), ConstantRange(APInt(16, 0xa*0xa), |
| APInt(16, 0xa*0xaa9 + 1))); |
| EXPECT_EQ(One.multiply(Wrap), Full); |
| EXPECT_EQ(Some.multiply(Some), Full); |
| EXPECT_EQ(Some.multiply(Wrap), Full); |
| EXPECT_EQ(Wrap.multiply(Wrap), Full); |
| |
| ConstantRange Zero(APInt(16, 0)); |
| EXPECT_EQ(Zero.multiply(Full), Zero); |
| EXPECT_EQ(Zero.multiply(Some), Zero); |
| EXPECT_EQ(Zero.multiply(Wrap), Zero); |
| EXPECT_EQ(Full.multiply(Zero), Zero); |
| EXPECT_EQ(Some.multiply(Zero), Zero); |
| EXPECT_EQ(Wrap.multiply(Zero), Zero); |
| |
| // http://llvm.org/PR4545 |
| EXPECT_EQ(ConstantRange(APInt(4, 1), APInt(4, 6)).multiply( |
| ConstantRange(APInt(4, 6), APInt(4, 2))), |
| ConstantRange(4, /*isFullSet=*/true)); |
| |
| EXPECT_EQ(ConstantRange(APInt(8, 254), APInt(8, 0)).multiply( |
| ConstantRange(APInt(8, 252), APInt(8, 4))), |
| ConstantRange(APInt(8, 250), APInt(8, 9))); |
| EXPECT_EQ(ConstantRange(APInt(8, 254), APInt(8, 255)).multiply( |
| ConstantRange(APInt(8, 2), APInt(8, 4))), |
| ConstantRange(APInt(8, 250), APInt(8, 253))); |
| |
| // TODO: This should be return [-2, 0] |
| EXPECT_EQ(ConstantRange(APInt(8, -2)).multiply( |
| ConstantRange(APInt(8, 0), APInt(8, 2))), |
| ConstantRange(APInt(8, -2), APInt(8, 1))); |
| |
| // Multiplication by -1 should give precise results. |
| EXPECT_EQ(ConstantRange(APInt(8, 3), APInt(8, -11)) |
| .multiply(ConstantRange(APInt(8, -1))), |
| ConstantRange(APInt(8, 12), APInt(8, -2))); |
| EXPECT_EQ(ConstantRange(APInt(8, -1)) |
| .multiply(ConstantRange(APInt(8, 3), APInt(8, -11))), |
| ConstantRange(APInt(8, 12), APInt(8, -2))); |
| |
| TestBinaryOpExhaustive( |
| [](const ConstantRange &CR1, const ConstantRange &CR2) { |
| return CR1.multiply(CR2); |
| }, |
| [](const APInt &N1, const APInt &N2) { |
| return N1 * N2; |
| }, |
| PreferSmallest, |
| [](const ConstantRange &, const ConstantRange &) { |
| return false; // Check correctness only. |
| }); |
| } |
| |
| TEST_F(ConstantRangeTest, MultiplyWithNoWrap) { |
| using OBO = OverflowingBinaryOperator; |
| |
| EXPECT_EQ(Empty.multiplyWithNoWrap(Some, OBO::NoUnsignedWrap), Empty); |
| EXPECT_EQ(Some.multiplyWithNoWrap(Empty, OBO::NoUnsignedWrap), Empty); |
| EXPECT_EQ(Full.multiplyWithNoWrap(Full, OBO::NoUnsignedWrap), Full); |
| EXPECT_EQ(Full.multiplyWithNoWrap(Some, OBO::NoUnsignedWrap), Full); |
| EXPECT_EQ(Some.multiplyWithNoWrap(Full, OBO::NoUnsignedWrap), Full); |
| EXPECT_EQ(ConstantRange(APInt(4, 0), APInt(4, 2)) |
| .multiplyWithNoWrap(ConstantRange(APInt(4, 2), APInt(4, 0)), |
| OBO::NoUnsignedWrap), |
| ConstantRange::getFull(4)); |
| EXPECT_EQ(ConstantRange(APInt(4, 1), APInt(4, 5)) |
| .multiplyWithNoWrap(ConstantRange(APInt(4, 1), APInt(4, 5)), |
| OBO::NoUnsignedWrap), |
| ConstantRange(APInt(4, 1), APInt(4, 0))); |
| EXPECT_EQ(ConstantRange(APInt(8, 254), APInt(8, 0)) |
| .multiplyWithNoWrap(ConstantRange(APInt(8, 252), APInt(8, 4)), |
| OBO::NoUnsignedWrap), |
| ConstantRange(APInt(8, 250), APInt(8, 9))); |
| EXPECT_EQ(ConstantRange(APInt(8, 254), APInt(8, 255)) |
| .multiplyWithNoWrap(ConstantRange(APInt(8, 2), APInt(8, 4)), |
| OBO::NoUnsignedWrap), |
| ConstantRange::getEmpty(8)); |
| |
| EXPECT_EQ(Empty.multiplyWithNoWrap(Some, OBO::NoSignedWrap), Empty); |
| EXPECT_EQ(Some.multiplyWithNoWrap(Empty, OBO::NoSignedWrap), Empty); |
| EXPECT_EQ(Full.multiplyWithNoWrap(Full, OBO::NoSignedWrap), Full); |
| EXPECT_EQ(Full.multiplyWithNoWrap(Some, OBO::NoSignedWrap), Full); |
| EXPECT_EQ(Some.multiplyWithNoWrap(Full, OBO::NoSignedWrap), Full); |
| EXPECT_EQ( |
| ConstantRange(APInt(4, 0), APInt(4, 4)) |
| .multiplyWithNoWrap(ConstantRange(APInt(4, -5, true), APInt(4, 4)), |
| OBO::NoSignedWrap), |
| ConstantRange::getFull(4)); |
| EXPECT_EQ(ConstantRange(APInt(4, 0), APInt(4, 3)) |
| .multiplyWithNoWrap(ConstantRange(APInt(4, 0), APInt(4, 5)), |
| OBO::NoSignedWrap), |
| ConstantRange(APInt(4, 0), APInt(4, -8, true))); |
| EXPECT_EQ(ConstantRange(APInt(8, 3), APInt(8, -11, true)) |
| .multiplyWithNoWrap(ConstantRange(APInt(8, -1, true)), |
| OBO::NoSignedWrap), |
| ConstantRange(APInt(8, 12), APInt(8, -2, true))); |
| EXPECT_EQ(ConstantRange(APInt(8, 254), APInt(8, 255)) |
| .multiplyWithNoWrap(ConstantRange(APInt(8, 100), APInt(8, 121)), |
| OBO::NoSignedWrap), |
| ConstantRange::getEmpty(8)); |
| EXPECT_TRUE(ConstantRange::getFull(8) |
| .multiplyWithNoWrap(ConstantRange(APInt(8, 2), APInt(8, 128)), |
| OBO::NoUnsignedWrap | OBO::NoSignedWrap) |
| .isAllNonNegative()); |
| EXPECT_TRUE(ConstantRange(APInt(8, 2), APInt(8, 128)) |
| .multiplyWithNoWrap(ConstantRange::getFull(8), |
| OBO::NoUnsignedWrap | OBO::NoSignedWrap) |
| .isAllNonNegative()); |
| EXPECT_FALSE( |
| ConstantRange::getFull(8) |
| .multiplyWithNoWrap(ConstantRange(APInt(8, 1), APInt(8, 128)), |
| OBO::NoUnsignedWrap | OBO::NoSignedWrap) |
| .isAllNonNegative()); |
| EXPECT_FALSE( |
| ConstantRange::getFull(8) |
| .multiplyWithNoWrap(ConstantRange(APInt(8, 2), APInt(8, 128)), |
| OBO::NoSignedWrap) |
| .isAllNonNegative()); |
| |
| TestBinaryOpExhaustive( |
| [](const ConstantRange &CR1, const ConstantRange &CR2) { |
| return CR1.multiplyWithNoWrap(CR2, OBO::NoUnsignedWrap); |
| }, |
| [](const APInt &N1, const APInt &N2) -> std::optional<APInt> { |
| bool IsOverflow; |
| APInt Res = N1.umul_ov(N2, IsOverflow); |
| if (IsOverflow) |
| return std::nullopt; |
| return Res; |
| }, |
| PreferSmallest, CheckCorrectnessOnly); |
| TestBinaryOpExhaustive( |
| [](const ConstantRange &CR1, const ConstantRange &CR2) { |
| return CR1.multiplyWithNoWrap(CR2, OBO::NoSignedWrap); |
| }, |
| [](const APInt &N1, const APInt &N2) -> std::optional<APInt> { |
| bool IsOverflow; |
| APInt Res = N1.smul_ov(N2, IsOverflow); |
| if (IsOverflow) |
| return std::nullopt; |
| return Res; |
| }, |
| PreferSmallest, CheckCorrectnessOnly); |
| TestBinaryOpExhaustive( |
| [](const ConstantRange &CR1, const ConstantRange &CR2) { |
| return CR1.multiplyWithNoWrap(CR2, |
| OBO::NoUnsignedWrap | OBO::NoSignedWrap); |
| }, |
| [](const APInt &N1, const APInt &N2) -> std::optional<APInt> { |
| bool IsOverflow1, IsOverflow2; |
| APInt Res1 = N1.umul_ov(N2, IsOverflow1); |
| APInt Res2 = N1.smul_ov(N2, IsOverflow2); |
| if (IsOverflow1 || IsOverflow2) |
| return std::nullopt; |
| assert(Res1 == Res2 && "Multiplication results differ?"); |
| return Res1; |
| }, |
| PreferSmallest, CheckCorrectnessOnly); |
| } |
| |
| TEST_F(ConstantRangeTest, smul_fast) { |
| TestBinaryOpExhaustive( |
| [](const ConstantRange &CR1, const ConstantRange &CR2) { |
| return CR1.smul_fast(CR2); |
| }, |
| [](const APInt &N1, const APInt &N2) { return N1 * N2; }, PreferSmallest, |
| CheckCorrectnessOnly); |
| } |
| |
| TEST_F(ConstantRangeTest, UMax) { |
| EXPECT_EQ(Full.umax(Full), Full); |
| EXPECT_EQ(Full.umax(Empty), Empty); |
| EXPECT_EQ(Full.umax(Some), ConstantRange(APInt(16, 0xa), APInt(16, 0))); |
| EXPECT_EQ(Full.umax(Wrap), Full); |
| EXPECT_EQ(Full.umax(Some), ConstantRange(APInt(16, 0xa), APInt(16, 0))); |
| EXPECT_EQ(Empty.umax(Empty), Empty); |
| EXPECT_EQ(Empty.umax(Some), Empty); |
| EXPECT_EQ(Empty.umax(Wrap), Empty); |
| EXPECT_EQ(Empty.umax(One), Empty); |
| EXPECT_EQ(Some.umax(Some), Some); |
| EXPECT_EQ(Some.umax(Wrap), ConstantRange(APInt(16, 0xa), APInt(16, 0))); |
| EXPECT_EQ(Some.umax(One), Some); |
| EXPECT_EQ(Wrap.umax(Wrap), Wrap); |
| EXPECT_EQ(Wrap.umax(One), ConstantRange(APInt(16, 0xa), APInt(16, 0))); |
| EXPECT_EQ(One.umax(One), One); |
| |
| TestBinaryOpExhaustive( |
| [](const ConstantRange &CR1, const ConstantRange &CR2) { |
| return CR1.umax(CR2); |
| }, |
| [](const APInt &N1, const APInt &N2) { |
| return APIntOps::umax(N1, N2); |
| }, |
| PreferSmallestNonFullUnsigned); |
| } |
| |
| TEST_F(ConstantRangeTest, SMax) { |
| EXPECT_EQ(Full.smax(Full), Full); |
| EXPECT_EQ(Full.smax(Empty), Empty); |
| EXPECT_EQ(Full.smax(Some), ConstantRange(APInt(16, 0xa), |
| APInt::getSignedMinValue(16))); |
| EXPECT_EQ(Full.smax(Wrap), Full); |
| EXPECT_EQ(Full.smax(One), ConstantRange(APInt(16, 0xa), |
| APInt::getSignedMinValue(16))); |
| EXPECT_EQ(Empty.smax(Empty), Empty); |
| EXPECT_EQ(Empty.smax(Some), Empty); |
| EXPECT_EQ(Empty.smax(Wrap), Empty); |
| EXPECT_EQ(Empty.smax(One), Empty); |
| EXPECT_EQ(Some.smax(Some), Some); |
| EXPECT_EQ(Some.smax(Wrap), ConstantRange(APInt(16, 0xa), |
| APInt(16, (uint64_t)INT16_MIN))); |
| EXPECT_EQ(Some.smax(One), Some); |
| EXPECT_EQ(Wrap.smax(One), ConstantRange(APInt(16, 0xa), |
| APInt(16, (uint64_t)INT16_MIN))); |
| EXPECT_EQ(One.smax(One), One); |
| |
| TestBinaryOpExhaustive( |
| [](const ConstantRange &CR1, const ConstantRange &CR2) { |
| return CR1.smax(CR2); |
| }, |
| [](const APInt &N1, const APInt &N2) { |
| return APIntOps::smax(N1, N2); |
| }, |
| PreferSmallestNonFullSigned); |
| } |
| |
| TEST_F(ConstantRangeTest, UMin) { |
| EXPECT_EQ(Full.umin(Full), Full); |
| EXPECT_EQ(Full.umin(Empty), Empty); |
| EXPECT_EQ(Full.umin(Some), ConstantRange(APInt(16, 0), APInt(16, 0xaaa))); |
| EXPECT_EQ(Full.umin(Wrap), Full); |
| EXPECT_EQ(Empty.umin(Empty), Empty); |
| EXPECT_EQ(Empty.umin(Some), Empty); |
| EXPECT_EQ(Empty.umin(Wrap), Empty); |
| EXPECT_EQ(Empty.umin(One), Empty); |
| EXPECT_EQ(Some.umin(Some), Some); |
| EXPECT_EQ(Some.umin(Wrap), ConstantRange(APInt(16, 0), APInt(16, 0xaaa))); |
| EXPECT_EQ(Some.umin(One), One); |
| EXPECT_EQ(Wrap.umin(Wrap), Wrap); |
| EXPECT_EQ(Wrap.umin(One), ConstantRange(APInt(16, 0), APInt(16, 0xb))); |
| EXPECT_EQ(One.umin(One), One); |
| |
| TestBinaryOpExhaustive( |
| [](const ConstantRange &CR1, const ConstantRange &CR2) { |
| return CR1.umin(CR2); |
| }, |
| [](const APInt &N1, const APInt &N2) { |
| return APIntOps::umin(N1, N2); |
| }, |
| PreferSmallestNonFullUnsigned); |
| } |
| |
| TEST_F(ConstantRangeTest, SMin) { |
| EXPECT_EQ(Full.smin(Full), Full); |
| EXPECT_EQ(Full.smin(Empty), Empty); |
| EXPECT_EQ(Full.smin(Some), ConstantRange(APInt(16, (uint64_t)INT16_MIN), |
| APInt(16, 0xaaa))); |
| EXPECT_EQ(Full.smin(Wrap), Full); |
| EXPECT_EQ(Empty.smin(Empty), Empty); |
| EXPECT_EQ(Empty.smin(Some), Empty); |
| EXPECT_EQ(Empty.smin(Wrap), Empty); |
| EXPECT_EQ(Empty.smin(One), Empty); |
| EXPECT_EQ(Some.smin(Some), Some); |
| EXPECT_EQ(Some.smin(Wrap), ConstantRange(APInt(16, (uint64_t)INT16_MIN), |
| APInt(16, 0xaaa))); |
| EXPECT_EQ(Some.smin(One), One); |
| EXPECT_EQ(Wrap.smin(Wrap), Wrap); |
| EXPECT_EQ(Wrap.smin(One), ConstantRange(APInt(16, (uint64_t)INT16_MIN), |
| APInt(16, 0xb))); |
| EXPECT_EQ(One.smin(One), One); |
| |
| TestBinaryOpExhaustive( |
| [](const ConstantRange &CR1, const ConstantRange &CR2) { |
| return CR1.smin(CR2); |
| }, |
| [](const APInt &N1, const APInt &N2) { |
| return APIntOps::smin(N1, N2); |
| }, |
| PreferSmallestNonFullSigned); |
| } |
| |
| TEST_F(ConstantRangeTest, UDiv) { |
| EXPECT_EQ(Full.udiv(Full), Full); |
| EXPECT_EQ(Full.udiv(Empty), Empty); |
| EXPECT_EQ(Full.udiv(One), ConstantRange(APInt(16, 0), |
| APInt(16, 0xffff / 0xa + 1))); |
| EXPECT_EQ(Full.udiv(Some), ConstantRange(APInt(16, 0), |
| APInt(16, 0xffff / 0xa + 1))); |
| EXPECT_EQ(Full.udiv(Wrap), Full); |
| EXPECT_EQ(Empty.udiv(Empty), Empty); |
| EXPECT_EQ(Empty.udiv(One), Empty); |
| EXPECT_EQ(Empty.udiv(Some), Empty); |
| EXPECT_EQ(Empty.udiv(Wrap), Empty); |
| EXPECT_EQ(One.udiv(One), ConstantRange(APInt(16, 1))); |
| EXPECT_EQ(One.udiv(Some), ConstantRange(APInt(16, 0), APInt(16, 2))); |
| EXPECT_EQ(One.udiv(Wrap), ConstantRange(APInt(16, 0), APInt(16, 0xb))); |
| EXPECT_EQ(Some.udiv(Some), ConstantRange(APInt(16, 0), APInt(16, 0x111))); |
| EXPECT_EQ(Some.udiv(Wrap), ConstantRange(APInt(16, 0), APInt(16, 0xaaa))); |
| EXPECT_EQ(Wrap.udiv(Wrap), Full); |
| |
| |
| ConstantRange Zero(APInt(16, 0)); |
| EXPECT_EQ(Zero.udiv(One), Zero); |
| EXPECT_EQ(Zero.udiv(Full), Zero); |
| |
| EXPECT_EQ(ConstantRange(APInt(16, 0), APInt(16, 99)).udiv(Full), |
| ConstantRange(APInt(16, 0), APInt(16, 99))); |
| EXPECT_EQ(ConstantRange(APInt(16, 10), APInt(16, 99)).udiv(Full), |
| ConstantRange(APInt(16, 0), APInt(16, 99))); |
| } |
| |
| TEST_F(ConstantRangeTest, SDiv) { |
| ConstantRange OneBit = ConstantRange::getFull(1); |
| EXPECT_EQ(OneBit.sdiv(OneBit), ConstantRange(APInt(1, 0))); |
| |
| EnumerateTwoInterestingConstantRanges([&](const ConstantRange &CR1, |
| const ConstantRange &CR2) { |
| // Collect possible results in a bit vector. We store the signed value plus |
| // a bias to make it unsigned. |
| unsigned Bits = CR1.getBitWidth(); |
| int Bias = 1 << (Bits - 1); |
| BitVector Results(1 << Bits); |
| ForeachNumInConstantRange(CR1, [&](const APInt &N1) { |
| ForeachNumInConstantRange(CR2, [&](const APInt &N2) { |
| // Division by zero is UB. |
| if (N2 == 0) |
| return; |
| |
| // SignedMin / -1 is UB. |
| if (N1.isMinSignedValue() && N2.isAllOnes()) |
| return; |
| |
| APInt N = N1.sdiv(N2); |
| Results.set(N.getSExtValue() + Bias); |
| }); |
| }); |
| |
| ConstantRange CR = CR1.sdiv(CR2); |
| if (Results.none()) { |
| EXPECT_TRUE(CR.isEmptySet()); |
| return; |
| } |
| |
| // If there is a non-full signed envelope, that should be the result. |
| APInt SMin(Bits, Results.find_first() - Bias); |
| APInt SMax(Bits, Results.find_last() - Bias); |
| ConstantRange Envelope = ConstantRange::getNonEmpty(SMin, SMax + 1); |
| if (!Envelope.isFullSet()) { |
| EXPECT_EQ(Envelope, CR); |
| return; |
| } |
| |
| // If the signed envelope is a full set, try to find a smaller sign wrapped |
| // set that is separated in negative and positive components (or one which |
| // can also additionally contain zero). |
| int LastNeg = Results.find_last_in(0, Bias) - Bias; |
| int LastPos = Results.find_next(Bias) - Bias; |
| if (Results[Bias]) { |
| if (LastNeg == -1) |
| ++LastNeg; |
| else if (LastPos == 1) |
| --LastPos; |
| } |
| |
| APInt WMax(Bits, LastNeg); |
| APInt WMin(Bits, LastPos); |
| ConstantRange Wrapped = ConstantRange::getNonEmpty(WMin, WMax + 1); |
| EXPECT_EQ(Wrapped, CR); |
| }); |
| } |
| |
| TEST_F(ConstantRangeTest, URem) { |
| EXPECT_EQ(Full.urem(Empty), Empty); |
| EXPECT_EQ(Empty.urem(Full), Empty); |
| // urem by zero is poison. |
| EXPECT_EQ(Full.urem(ConstantRange(APInt(16, 0))), Empty); |
| // urem by full range doesn't contain MaxValue. |
| EXPECT_EQ(Full.urem(Full), ConstantRange(APInt(16, 0), APInt(16, 0xffff))); |
| // urem is upper bounded by maximum RHS minus one. |
| EXPECT_EQ(Full.urem(ConstantRange(APInt(16, 0), APInt(16, 123))), |
| ConstantRange(APInt(16, 0), APInt(16, 122))); |
| // urem is upper bounded by maximum LHS. |
| EXPECT_EQ(ConstantRange(APInt(16, 0), APInt(16, 123)).urem(Full), |
| ConstantRange(APInt(16, 0), APInt(16, 123))); |
| // If the LHS is always lower than the RHS, the result is the LHS. |
| EXPECT_EQ(ConstantRange(APInt(16, 10), APInt(16, 20)) |
| .urem(ConstantRange(APInt(16, 20), APInt(16, 30))), |
| ConstantRange(APInt(16, 10), APInt(16, 20))); |
| // It has to be strictly lower, otherwise the top value may wrap to zero. |
| EXPECT_EQ(ConstantRange(APInt(16, 10), APInt(16, 20)) |
| .urem(ConstantRange(APInt(16, 19), APInt(16, 30))), |
| ConstantRange(APInt(16, 0), APInt(16, 20))); |
| // [12, 14] % 10 is [2, 4], but we conservatively compute [0, 9]. |
| EXPECT_EQ(ConstantRange(APInt(16, 12), APInt(16, 15)) |
| .urem(ConstantRange(APInt(16, 10))), |
| ConstantRange(APInt(16, 0), APInt(16, 10))); |
| |
| TestBinaryOpExhaustive( |
| [](const ConstantRange &CR1, const ConstantRange &CR2) { |
| return CR1.urem(CR2); |
| }, |
| [](const APInt &N1, const APInt &N2) -> std::optional<APInt> { |
| if (N2.isZero()) |
| return std::nullopt; |
| return N1.urem(N2); |
| }, |
| PreferSmallest, CheckSingleElementsOnly); |
| } |
| |
| TEST_F(ConstantRangeTest, SRem) { |
| EXPECT_EQ(Full.srem(Empty), Empty); |
| EXPECT_EQ(Empty.srem(Full), Empty); |
| // srem by zero is UB. |
| EXPECT_EQ(Full.srem(ConstantRange(APInt(16, 0))), Empty); |
| // srem by full range doesn't contain SignedMinValue. |
| EXPECT_EQ(Full.srem(Full), ConstantRange(APInt::getSignedMinValue(16) + 1, |
| APInt::getSignedMinValue(16))); |
| |
| ConstantRange PosMod(APInt(16, 10), APInt(16, 21)); // [10, 20] |
| ConstantRange NegMod(APInt(16, -20), APInt(16, -9)); // [-20, -10] |
| ConstantRange IntMinMod(APInt::getSignedMinValue(16)); |
| |
| ConstantRange Expected(16, true); |
| |
| // srem is bounded by abs(RHS) minus one. |
| ConstantRange PosLargeLHS(APInt(16, 0), APInt(16, 41)); |
| Expected = ConstantRange(APInt(16, 0), APInt(16, 20)); |
| EXPECT_EQ(PosLargeLHS.srem(PosMod), Expected); |
| EXPECT_EQ(PosLargeLHS.srem(NegMod), Expected); |
| ConstantRange NegLargeLHS(APInt(16, -40), APInt(16, 1)); |
| Expected = ConstantRange(APInt(16, -19), APInt(16, 1)); |
| EXPECT_EQ(NegLargeLHS.srem(PosMod), Expected); |
| EXPECT_EQ(NegLargeLHS.srem(NegMod), Expected); |
| ConstantRange PosNegLargeLHS(APInt(16, -32), APInt(16, 38)); |
| Expected = ConstantRange(APInt(16, -19), APInt(16, 20)); |
| EXPECT_EQ(PosNegLargeLHS.srem(PosMod), Expected); |
| EXPECT_EQ(PosNegLargeLHS.srem(NegMod), Expected); |
| |
| // srem is bounded by LHS. |
| ConstantRange PosLHS(APInt(16, 0), APInt(16, 16)); |
| EXPECT_EQ(PosLHS.srem(PosMod), PosLHS); |
| EXPECT_EQ(PosLHS.srem(NegMod), PosLHS); |
| EXPECT_EQ(PosLHS.srem(IntMinMod), PosLHS); |
| ConstantRange NegLHS(APInt(16, -15), APInt(16, 1)); |
| EXPECT_EQ(NegLHS.srem(PosMod), NegLHS); |
| EXPECT_EQ(NegLHS.srem(NegMod), NegLHS); |
| EXPECT_EQ(NegLHS.srem(IntMinMod), NegLHS); |
| ConstantRange PosNegLHS(APInt(16, -12), APInt(16, 18)); |
| EXPECT_EQ(PosNegLHS.srem(PosMod), PosNegLHS); |
| EXPECT_EQ(PosNegLHS.srem(NegMod), PosNegLHS); |
| EXPECT_EQ(PosNegLHS.srem(IntMinMod), PosNegLHS); |
| |
| // srem is LHS if it is smaller than RHS. |
| ConstantRange PosSmallLHS(APInt(16, 3), APInt(16, 8)); |
| EXPECT_EQ(PosSmallLHS.srem(PosMod), PosSmallLHS); |
| EXPECT_EQ(PosSmallLHS.srem(NegMod), PosSmallLHS); |
| EXPECT_EQ(PosSmallLHS.srem(IntMinMod), PosSmallLHS); |
| ConstantRange NegSmallLHS(APInt(16, -7), APInt(16, -2)); |
| EXPECT_EQ(NegSmallLHS.srem(PosMod), NegSmallLHS); |
| EXPECT_EQ(NegSmallLHS.srem(NegMod), NegSmallLHS); |
| EXPECT_EQ(NegSmallLHS.srem(IntMinMod), NegSmallLHS); |
| ConstantRange PosNegSmallLHS(APInt(16, -3), APInt(16, 8)); |
| EXPECT_EQ(PosNegSmallLHS.srem(PosMod), PosNegSmallLHS); |
| EXPECT_EQ(PosNegSmallLHS.srem(NegMod), PosNegSmallLHS); |
| EXPECT_EQ(PosNegSmallLHS.srem(IntMinMod), PosNegSmallLHS); |
| |
| // Example of a suboptimal result: |
| // [12, 14] srem 10 is [2, 4], but we conservatively compute [0, 9]. |
| EXPECT_EQ(ConstantRange(APInt(16, 12), APInt(16, 15)) |
| .srem(ConstantRange(APInt(16, 10))), |
| ConstantRange(APInt(16, 0), APInt(16, 10))); |
| |
| TestBinaryOpExhaustive( |
| [](const ConstantRange &CR1, const ConstantRange &CR2) { |
| return CR1.srem(CR2); |
| }, |
| [](const APInt &N1, const APInt &N2) -> std::optional<APInt> { |
| if (N2.isZero()) |
| return std::nullopt; |
| return N1.srem(N2); |
| }, |
| PreferSmallest, CheckSingleElementsOnly); |
| } |
| |
| TEST_F(ConstantRangeTest, Shl) { |
| ConstantRange Some2(APInt(16, 0xfff), APInt(16, 0x8000)); |
| ConstantRange WrapNullMax(APInt(16, 0x1), APInt(16, 0x0)); |
| EXPECT_EQ(Full.shl(Full), Full); |
| EXPECT_EQ(Full.shl(Empty), Empty); |
| EXPECT_EQ(Full.shl(One), ConstantRange(APInt(16, 0), |
| APInt(16, 0xfc00) + 1)); |
| EXPECT_EQ(Full.shl(Some), Full); // TODO: [0, (-1 << 0xa) + 1) |
| EXPECT_EQ(Full.shl(Wrap), Full); |
| EXPECT_EQ(Empty.shl(Empty), Empty); |
| EXPECT_EQ(Empty.shl(One), Empty); |
| EXPECT_EQ(Empty.shl(Some), Empty); |
| EXPECT_EQ(Empty.shl(Wrap), Empty); |
| EXPECT_EQ(One.shl(One), ConstantRange(APInt(16, 0xa << 0xa), |
| APInt(16, (0xa << 0xa) + 1))); |
| EXPECT_EQ(One.shl(Some), Full); // TODO: [0xa << 0xa, 0) |
| EXPECT_EQ(One.shl(Wrap), Full); // TODO: [0xa, 0xa << 14 + 1) |
| EXPECT_EQ(Some.shl(Some), Full); // TODO: [0xa << 0xa, 0xfc01) |
| EXPECT_EQ(Some.shl(Wrap), Full); // TODO: [0xa, 0x7ff << 0x5 + 1) |
| EXPECT_EQ(Wrap.shl(Wrap), Full); |
| EXPECT_EQ( |
| Some2.shl(ConstantRange(APInt(16, 0x1))), |
| ConstantRange(APInt(16, 0xfff << 0x1), APInt(16, 0x7fff << 0x1) + 1)); |
| EXPECT_EQ(One.shl(WrapNullMax), Full); |
| |
| ConstantRange NegOne(APInt(16, 0xffff)); |
| EXPECT_EQ(NegOne.shl(ConstantRange(APInt(16, 0), APInt(16, 5))), |
| ConstantRange(APInt(16, 0xfff0), APInt(16, 0))); |
| EXPECT_EQ(ConstantRange(APInt(16, 0xfffe), APInt(16, 0)) |
| .shl(ConstantRange(APInt(16, 0), APInt(16, 5))), |
| ConstantRange(APInt(16, 0xffe0), APInt(16, 0))); |
| |
| TestBinaryOpExhaustive( |
| [](const ConstantRange &CR1, const ConstantRange &CR2) { |
| return CR1.shl(CR2); |
| }, |
| [](const APInt &N1, const APInt &N2) -> std::optional<APInt> { |
| if (N2.uge(N2.getBitWidth())) |
| return std::nullopt; |
| return N1.shl(N2); |
| }, |
| PreferSmallestUnsigned, |
| [](const ConstantRange &, const ConstantRange &CR2) { |
| // We currently only produce precise results for single element RHS. |
| return CR2.isSingleElement(); |
| }); |
| } |
| |
| TEST_F(ConstantRangeTest, ShlWithNoWrap) { |
| using OBO = OverflowingBinaryOperator; |
| TestBinaryOpExhaustive( |
| [](const ConstantRange &CR1, const ConstantRange &CR2) { |
| ConstantRange Res = CR1.shlWithNoWrap(CR2, OBO::NoUnsignedWrap); |
| EXPECT_TRUE(CR1.shl(CR2).contains(Res)); |
| return Res; |
| }, |
| [](const APInt &N1, const APInt &N2) -> std::optional<APInt> { |
| bool IsOverflow; |
| APInt Res = N1.ushl_ov(N2, IsOverflow); |
| if (IsOverflow) |
| return std::nullopt; |
| return Res; |
| }, |
| PreferSmallest, CheckNonWrappedOnly); |
| TestBinaryOpExhaustive( |
| [](const ConstantRange &CR1, const ConstantRange &CR2) { |
| return CR1.shlWithNoWrap(CR2, OBO::NoSignedWrap); |
| }, |
| [](const APInt &N1, const APInt &N2) -> std::optional<APInt> { |
| bool IsOverflow; |
| APInt Res = N1.sshl_ov(N2, IsOverflow); |
| if (IsOverflow) |
| return std::nullopt; |
| return Res; |
| }, |
| PreferSmallestSigned, CheckNoSignedWrappedLHSAndNoWrappedRHSOnly); |
| TestBinaryOpExhaustive( |
| [](const ConstantRange &CR1, const ConstantRange &CR2) { |
| return CR1.shlWithNoWrap(CR2, OBO::NoUnsignedWrap | OBO::NoSignedWrap); |
| }, |
| [](const APInt &N1, const APInt &N2) -> std::optional<APInt> { |
| bool IsOverflow1, IsOverflow2; |
| APInt Res1 = N1.ushl_ov(N2, IsOverflow1); |
| APInt Res2 = N1.sshl_ov(N2, IsOverflow2); |
| if (IsOverflow1 || IsOverflow2) |
| return std::nullopt; |
| assert(Res1 == Res2 && "Left shift results differ?"); |
| return Res1; |
| }, |
| PreferSmallest, CheckCorrectnessOnly); |
| |
| EXPECT_EQ(One.shlWithNoWrap(Full, OBO::NoSignedWrap), |
| ConstantRange(APInt(16, 10), APInt(16, 20481))); |
| EXPECT_EQ(One.shlWithNoWrap(Full, OBO::NoUnsignedWrap), |
| ConstantRange(APInt(16, 10), APInt(16, -24575))); |
| EXPECT_EQ(One.shlWithNoWrap(Full, OBO::NoSignedWrap | OBO::NoUnsignedWrap), |
| ConstantRange(APInt(16, 10), APInt(16, 20481))); |
| ConstantRange NegOne(APInt(16, 0xffff)); |
| EXPECT_EQ(NegOne.shlWithNoWrap(Full, OBO::NoSignedWrap), |
| ConstantRange(APInt(16, -32768), APInt(16, 0))); |
| EXPECT_EQ(NegOne.shlWithNoWrap(Full, OBO::NoUnsignedWrap), NegOne); |
| EXPECT_EQ(ConstantRange(APInt(16, 768)) |
| .shlWithNoWrap(Full, OBO::NoSignedWrap | OBO::NoUnsignedWrap), |
| ConstantRange(APInt(16, 768), APInt(16, 24577))); |
| EXPECT_EQ(Full.shlWithNoWrap(ConstantRange(APInt(16, 1), APInt(16, 16)), |
| OBO::NoUnsignedWrap), |
| ConstantRange(APInt(16, 0), APInt(16, -1))); |
| EXPECT_EQ(ConstantRange(APInt(4, 3), APInt(4, -8)) |
| .shlWithNoWrap(ConstantRange(APInt(4, 0), APInt(4, 4)), |
| OBO::NoSignedWrap), |
| ConstantRange(APInt(4, 3), APInt(4, -8))); |
| EXPECT_EQ(ConstantRange(APInt(4, -1), APInt(4, 0)) |
| .shlWithNoWrap(ConstantRange(APInt(4, 1), APInt(4, 4)), |
| OBO::NoSignedWrap), |
| ConstantRange(APInt(4, -8), APInt(4, -1))); |
| } |
| |
| TEST_F(ConstantRangeTest, Lshr) { |
| EXPECT_EQ(Full.lshr(Full), Full); |
| EXPECT_EQ(Full.lshr(Empty), Empty); |
| EXPECT_EQ(Full.lshr(One), ConstantRange(APInt(16, 0), |
| APInt(16, (0xffff >> 0xa) + 1))); |
| EXPECT_EQ(Full.lshr(Some), ConstantRange(APInt(16, 0), |
| APInt(16, (0xffff >> 0xa) + 1))); |
| EXPECT_EQ(Full.lshr(Wrap), Full); |
| EXPECT_EQ(Empty.lshr(Empty), Empty); |
| EXPECT_EQ(Empty.lshr(One), Empty); |
| EXPECT_EQ(Empty.lshr(Some), Empty); |
| EXPECT_EQ(Empty.lshr(Wrap), Empty); |
| EXPECT_EQ(One.lshr(One), ConstantRange(APInt(16, 0))); |
| EXPECT_EQ(One.lshr(Some), ConstantRange(APInt(16, 0))); |
| EXPECT_EQ(One.lshr(Wrap), ConstantRange(APInt(16, 0), APInt(16, 0xb))); |
| EXPECT_EQ(Some.lshr(Some), ConstantRange(APInt(16, 0), |
| APInt(16, (0xaaa >> 0xa) + 1))); |
| EXPECT_EQ(Some.lshr(Wrap), ConstantRange(APInt(16, 0), APInt(16, 0xaaa))); |
| EXPECT_EQ(Wrap.lshr(Wrap), Full); |
| } |
| |
| TEST_F(ConstantRangeTest, Ashr) { |
| EXPECT_EQ(Full.ashr(Full), Full); |
| EXPECT_EQ(Full.ashr(Empty), Empty); |
| EXPECT_EQ(Full.ashr(One), ConstantRange(APInt(16, 0xffe0), |
| APInt(16, (0x7fff >> 0xa) + 1 ))); |
| ConstantRange Small(APInt(16, 0xa), APInt(16, 0xb)); |
| EXPECT_EQ(Full.ashr(Small), ConstantRange(APInt(16, 0xffe0), |
| APInt(16, (0x7fff >> 0xa) + 1 ))); |
| EXPECT_EQ(Full.ashr(Some), ConstantRange(APInt(16, 0xffe0), |
| APInt(16, (0x7fff >> 0xa) + 1 ))); |
| EXPECT_EQ(Full.ashr(Wrap), Full); |
| EXPECT_EQ(Empty.ashr(Empty), Empty); |
| EXPECT_EQ(Empty.ashr(One), Empty); |
| EXPECT_EQ(Empty.ashr(Some), Empty); |
| EXPECT_EQ(Empty.ashr(Wrap), Empty); |
| EXPECT_EQ(One.ashr(One), ConstantRange(APInt(16, 0))); |
| EXPECT_EQ(One.ashr(Some), ConstantRange(APInt(16, 0))); |
| EXPECT_EQ(One.ashr(Wrap), ConstantRange(APInt(16, 0), APInt(16, 0xb))); |
| EXPECT_EQ(Some.ashr(Some), ConstantRange(APInt(16, 0), |
| APInt(16, (0xaaa >> 0xa) + 1))); |
| EXPECT_EQ(Some.ashr(Wrap), ConstantRange(APInt(16, 0), APInt(16, 0xaaa))); |
| EXPECT_EQ(Wrap.ashr(Wrap), Full); |
| ConstantRange Neg(APInt(16, 0xf3f0, true), APInt(16, 0xf7f8, true)); |
| EXPECT_EQ(Neg.ashr(Small), ConstantRange(APInt(16, 0xfffc, true), |
| APInt(16, 0xfffe, true))); |
| } |
| |
| TEST(ConstantRange, MakeAllowedICmpRegion) { |
| // PR8250 |
| ConstantRange SMax = ConstantRange(APInt::getSignedMaxValue(32)); |
| EXPECT_TRUE(ConstantRange::makeAllowedICmpRegion(ICmpInst::ICMP_SGT, SMax) |
| .isEmptySet()); |
| } |
| |
| TEST(ConstantRange, MakeSatisfyingICmpRegion) { |
| ConstantRange LowHalf(APInt(8, 0), APInt(8, 128)); |
| ConstantRange HighHalf(APInt(8, 128), APInt(8, 0)); |
| ConstantRange EmptySet(8, /* isFullSet = */ false); |
| |
| EXPECT_EQ(ConstantRange::makeSatisfyingICmpRegion(ICmpInst::ICMP_NE, LowHalf), |
| HighHalf); |
| |
| EXPECT_EQ( |
| ConstantRange::makeSatisfyingICmpRegion(ICmpInst::ICMP_NE, HighHalf), |
| LowHalf); |
| |
| EXPECT_TRUE(ConstantRange::makeSatisfyingICmpRegion(ICmpInst::ICMP_EQ, |
| HighHalf).isEmptySet()); |
| |
| ConstantRange UnsignedSample(APInt(8, 5), APInt(8, 200)); |
| |
| EXPECT_EQ(ConstantRange::makeSatisfyingICmpRegion(ICmpInst::ICMP_ULT, |
| UnsignedSample), |
| ConstantRange(APInt(8, 0), APInt(8, 5))); |
| |
| EXPECT_EQ(ConstantRange::makeSatisfyingICmpRegion(ICmpInst::ICMP_ULE, |
| UnsignedSample), |
| ConstantRange(APInt(8, 0), APInt(8, 6))); |
| |
| EXPECT_EQ(ConstantRange::makeSatisfyingICmpRegion(ICmpInst::ICMP_UGT, |
| UnsignedSample), |
| ConstantRange(APInt(8, 200), APInt(8, 0))); |
| |
| EXPECT_EQ(ConstantRange::makeSatisfyingICmpRegion(ICmpInst::ICMP_UGE, |
| UnsignedSample), |
| ConstantRange(APInt(8, 199), APInt(8, 0))); |
| |
| ConstantRange SignedSample(APInt(8, -5), APInt(8, 5)); |
| |
| EXPECT_EQ( |
| ConstantRange::makeSatisfyingICmpRegion(ICmpInst::ICMP_SLT, SignedSample), |
| ConstantRange(APInt(8, -128), APInt(8, -5))); |
| |
| EXPECT_EQ( |
| ConstantRange::makeSatisfyingICmpRegion(ICmpInst::ICMP_SLE, SignedSample), |
| ConstantRange(APInt(8, -128), APInt(8, -4))); |
| |
| EXPECT_EQ( |
| ConstantRange::makeSatisfyingICmpRegion(ICmpInst::ICMP_SGT, SignedSample), |
| ConstantRange(APInt(8, 5), APInt(8, -128))); |
| |
| EXPECT_EQ( |
| ConstantRange::makeSatisfyingICmpRegion(ICmpInst::ICMP_SGE, SignedSample), |
| ConstantRange(APInt(8, 4), APInt(8, -128))); |
| } |
| |
| void ICmpTestImpl(CmpInst::Predicate Pred) { |
| EnumerateTwoInterestingConstantRanges( |
| [&](const ConstantRange &CR1, const ConstantRange &CR2) { |
| bool Exhaustive = true; |
| ForeachNumInConstantRange(CR1, [&](const APInt &N1) { |
| ForeachNumInConstantRange(CR2, [&](const APInt &N2) { |
| Exhaustive &= ICmpInst::compare(N1, N2, Pred); |
| }); |
| }); |
| EXPECT_EQ(CR1.icmp(Pred, CR2), Exhaustive); |
| }); |
| } |
| |
| TEST(ConstantRange, ICmp) { |
| for (auto Pred : ICmpInst::predicates()) |
| ICmpTestImpl(Pred); |
| } |
| |
| TEST(ConstantRange, MakeGuaranteedNoWrapRegion) { |
| const int IntMin4Bits = 8; |
| const int IntMax4Bits = 7; |
| typedef OverflowingBinaryOperator OBO; |
| |
| for (int Const : {0, -1, -2, 1, 2, IntMin4Bits, IntMax4Bits}) { |
| APInt C(4, Const, true /* = isSigned */); |
| |
| auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( |
| Instruction::Add, C, OBO::NoUnsignedWrap); |
| |
| EXPECT_FALSE(NUWRegion.isEmptySet()); |
| |
| auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( |
| Instruction::Add, C, OBO::NoSignedWrap); |
| |
| EXPECT_FALSE(NSWRegion.isEmptySet()); |
| |
| for (APInt I = NUWRegion.getLower(), E = NUWRegion.getUpper(); I != E; |
| ++I) { |
| bool Overflow = false; |
| (void)I.uadd_ov(C, Overflow); |
| EXPECT_FALSE(Overflow); |
| } |
| |
| for (APInt I = NSWRegion.getLower(), E = NSWRegion.getUpper(); I != E; |
| ++I) { |
| bool Overflow = false; |
| (void)I.sadd_ov(C, Overflow); |
| EXPECT_FALSE(Overflow); |
| } |
| } |
| |
| for (int Const : {0, -1, -2, 1, 2, IntMin4Bits, IntMax4Bits}) { |
| APInt C(4, Const, true /* = isSigned */); |
| |
| auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( |
| Instruction::Sub, C, OBO::NoUnsignedWrap); |
| |
| EXPECT_FALSE(NUWRegion.isEmptySet()); |
| |
| auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( |
| Instruction::Sub, C, OBO::NoSignedWrap); |
| |
| EXPECT_FALSE(NSWRegion.isEmptySet()); |
| |
| for (APInt I = NUWRegion.getLower(), E = NUWRegion.getUpper(); I != E; |
| ++I) { |
| bool Overflow = false; |
| (void)I.usub_ov(C, Overflow); |
| EXPECT_FALSE(Overflow); |
| } |
| |
| for (APInt I = NSWRegion.getLower(), E = NSWRegion.getUpper(); I != E; |
| ++I) { |
| bool Overflow = false; |
| (void)I.ssub_ov(C, Overflow); |
| EXPECT_FALSE(Overflow); |
| } |
| } |
| |
| auto NSWForAllValues = ConstantRange::makeGuaranteedNoWrapRegion( |
| Instruction::Add, ConstantRange(32, /* isFullSet = */ true), |
| OBO::NoSignedWrap); |
| EXPECT_TRUE(NSWForAllValues.isSingleElement() && |
| NSWForAllValues.getSingleElement()->isMinValue()); |
| |
| NSWForAllValues = ConstantRange::makeGuaranteedNoWrapRegion( |
| Instruction::Sub, ConstantRange(32, /* isFullSet = */ true), |
| OBO::NoSignedWrap); |
| EXPECT_TRUE(NSWForAllValues.isSingleElement() && |
| NSWForAllValues.getSingleElement()->isMaxValue()); |
| |
| auto NUWForAllValues = ConstantRange::makeGuaranteedNoWrapRegion( |
| Instruction::Add, ConstantRange(32, /* isFullSet = */ true), |
| OBO::NoUnsignedWrap); |
| EXPECT_TRUE(NUWForAllValues.isSingleElement() && |
| NUWForAllValues.getSingleElement()->isMinValue()); |
| |
| NUWForAllValues = ConstantRange::makeGuaranteedNoWrapRegion( |
| Instruction::Sub, ConstantRange(32, /* isFullSet = */ true), |
| OBO::NoUnsignedWrap); |
| EXPECT_TRUE(NUWForAllValues.isSingleElement() && |
| NUWForAllValues.getSingleElement()->isMaxValue()); |
| |
| EXPECT_TRUE(ConstantRange::makeGuaranteedNoWrapRegion( |
| Instruction::Add, APInt(32, 0), OBO::NoUnsignedWrap).isFullSet()); |
| EXPECT_TRUE(ConstantRange::makeGuaranteedNoWrapRegion( |
| Instruction::Add, APInt(32, 0), OBO::NoSignedWrap).isFullSet()); |
| EXPECT_TRUE(ConstantRange::makeGuaranteedNoWrapRegion( |
| Instruction::Sub, APInt(32, 0), OBO::NoUnsignedWrap).isFullSet()); |
| EXPECT_TRUE(ConstantRange::makeGuaranteedNoWrapRegion( |
| Instruction::Sub, APInt(32, 0), OBO::NoSignedWrap).isFullSet()); |
| |
| ConstantRange OneToFive(APInt(32, 1), APInt(32, 6)); |
| EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion( |
| Instruction::Add, OneToFive, OBO::NoSignedWrap), |
| ConstantRange(APInt::getSignedMinValue(32), |
| APInt::getSignedMaxValue(32) - 4)); |
| EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion( |
| Instruction::Add, OneToFive, OBO::NoUnsignedWrap), |
| ConstantRange(APInt::getMinValue(32), APInt::getMinValue(32) - 5)); |
| EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion( |
| Instruction::Sub, OneToFive, OBO::NoSignedWrap), |
| ConstantRange(APInt::getSignedMinValue(32) + 5, |
| APInt::getSignedMinValue(32))); |
| EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion( |
| Instruction::Sub, OneToFive, OBO::NoUnsignedWrap), |
| ConstantRange(APInt::getMinValue(32) + 5, APInt::getMinValue(32))); |
| |
| ConstantRange MinusFiveToMinusTwo(APInt(32, -5), APInt(32, -1)); |
| EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion( |
| Instruction::Add, MinusFiveToMinusTwo, OBO::NoSignedWrap), |
| ConstantRange(APInt::getSignedMinValue(32) + 5, |
| APInt::getSignedMinValue(32))); |
| EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion( |
| Instruction::Add, MinusFiveToMinusTwo, OBO::NoUnsignedWrap), |
| ConstantRange(APInt(32, 0), APInt(32, 2))); |
| EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion( |
| Instruction::Sub, MinusFiveToMinusTwo, OBO::NoSignedWrap), |
| ConstantRange(APInt::getSignedMinValue(32), |
| APInt::getSignedMaxValue(32) - 4)); |
| EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion( |
| Instruction::Sub, MinusFiveToMinusTwo, OBO::NoUnsignedWrap), |
| ConstantRange(APInt::getMaxValue(32) - 1, |
| APInt::getMinValue(32))); |
| |
| ConstantRange MinusOneToOne(APInt(32, -1), APInt(32, 2)); |
| EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion( |
| Instruction::Add, MinusOneToOne, OBO::NoSignedWrap), |
| ConstantRange(APInt::getSignedMinValue(32) + 1, |
| APInt::getSignedMinValue(32) - 1)); |
| EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion( |
| Instruction::Add, MinusOneToOne, OBO::NoUnsignedWrap), |
| ConstantRange(APInt(32, 0), APInt(32, 1))); |
| EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion( |
| Instruction::Sub, MinusOneToOne, OBO::NoSignedWrap), |
| ConstantRange(APInt::getSignedMinValue(32) + 1, |
| APInt::getSignedMinValue(32) - 1)); |
| EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion( |
| Instruction::Sub, MinusOneToOne, OBO::NoUnsignedWrap), |
| ConstantRange(APInt::getMaxValue(32), |
| APInt::getMinValue(32))); |
| |
| ConstantRange One(APInt(32, 1), APInt(32, 2)); |
| EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion( |
| Instruction::Add, One, OBO::NoSignedWrap), |
| ConstantRange(APInt::getSignedMinValue(32), |
| APInt::getSignedMaxValue(32))); |
| EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion( |
| Instruction::Add, One, OBO::NoUnsignedWrap), |
| ConstantRange(APInt::getMinValue(32), APInt::getMaxValue(32))); |
| EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion( |
| Instruction::Sub, One, OBO::NoSignedWrap), |
| ConstantRange(APInt::getSignedMinValue(32) + 1, |
| APInt::getSignedMinValue(32))); |
| EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion( |
| Instruction::Sub, One, OBO::NoUnsignedWrap), |
| ConstantRange(APInt::getMinValue(32) + 1, APInt::getMinValue(32))); |
| |
| ConstantRange OneLessThanBitWidth(APInt(32, 0), APInt(32, 31) + 1); |
| ConstantRange UpToBitWidth(APInt(32, 0), APInt(32, 32) + 1); |
| EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion( |
| Instruction::Shl, UpToBitWidth, OBO::NoUnsignedWrap), |
| ConstantRange::makeGuaranteedNoWrapRegion( |
| Instruction::Shl, OneLessThanBitWidth, OBO::NoUnsignedWrap)); |
| EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion( |
| Instruction::Shl, UpToBitWidth, OBO::NoSignedWrap), |
| ConstantRange::makeGuaranteedNoWrapRegion( |
| Instruction::Shl, OneLessThanBitWidth, OBO::NoSignedWrap)); |
| EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion( |
| Instruction::Shl, UpToBitWidth, OBO::NoUnsignedWrap), |
| ConstantRange(APInt(32, 0), APInt(32, 1) + 1)); |
| EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion( |
| Instruction::Shl, UpToBitWidth, OBO::NoSignedWrap), |
| ConstantRange(APInt(32, -1), APInt(32, 0) + 1)); |
| |
| EXPECT_EQ( |
| ConstantRange::makeGuaranteedNoWrapRegion( |
| Instruction::Shl, ConstantRange::getFull(32), OBO::NoUnsignedWrap), |
| ConstantRange::makeGuaranteedNoWrapRegion( |
| Instruction::Shl, OneLessThanBitWidth, OBO::NoUnsignedWrap)); |
| EXPECT_EQ( |
| ConstantRange::makeGuaranteedNoWrapRegion( |
| Instruction::Shl, ConstantRange::getFull(32), OBO::NoSignedWrap), |
| ConstantRange::makeGuaranteedNoWrapRegion( |
| Instruction::Shl, OneLessThanBitWidth, OBO::NoSignedWrap)); |
| |
| ConstantRange IllegalShAmt(APInt(32, 32), APInt(32, 0) + 1); |
| EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion( |
| Instruction::Shl, IllegalShAmt, OBO::NoUnsignedWrap), |
| ConstantRange::getFull(32)); |
| EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion( |
| Instruction::Shl, IllegalShAmt, OBO::NoSignedWrap), |
| ConstantRange::getFull(32)); |
| |
| EXPECT_EQ( |
| ConstantRange::makeGuaranteedNoWrapRegion( |
| Instruction::Shl, ConstantRange(APInt(32, -32), APInt(32, 16) + 1), |
| OBO::NoUnsignedWrap), |
| ConstantRange::makeGuaranteedNoWrapRegion( |
| Instruction::Shl, ConstantRange(APInt(32, 0), APInt(32, 16) + 1), |
| OBO::NoUnsignedWrap)); |
| EXPECT_EQ( |
| ConstantRange::makeGuaranteedNoWrapRegion( |
| Instruction::Shl, ConstantRange(APInt(32, -32), APInt(32, 16) + 1), |
| OBO::NoSignedWrap), |
| ConstantRange::makeGuaranteedNoWrapRegion( |
| Instruction::Shl, ConstantRange(APInt(32, 0), APInt(32, 16) + 1), |
| OBO::NoSignedWrap)); |
| |
| EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion( |
| Instruction::Shl, |
| ConstantRange(APInt(32, -32), APInt(32, 16) + 1), |
| OBO::NoUnsignedWrap), |
| ConstantRange(APInt(32, 0), APInt(32, 65535) + 1)); |
| EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion( |
| Instruction::Shl, |
| ConstantRange(APInt(32, -32), APInt(32, 16) + 1), |
| OBO::NoSignedWrap), |
| ConstantRange(APInt(32, -32768), APInt(32, 32767) + 1)); |
| } |
| |
| template<typename Fn> |
| void TestNoWrapRegionExhaustive(Instruction::BinaryOps BinOp, |
| unsigned NoWrapKind, Fn OverflowFn) { |
| for (unsigned Bits : {1, 5}) { |
| EnumerateConstantRanges(Bits, [&](const ConstantRange &CR) { |
| if (CR.isEmptySet()) |
| return; |
| if (Instruction::isShift(BinOp) && CR.getUnsignedMax().uge(Bits)) |
| return; |
| |
| ConstantRange NoWrap = |
| ConstantRange::makeGuaranteedNoWrapRegion(BinOp, CR, NoWrapKind); |
| EnumerateAPInts(Bits, [&](const APInt &N1) { |
| bool NoOverflow = true; |
| bool Overflow = true; |
| ForeachNumInConstantRange(CR, [&](const APInt &N2) { |
| if (OverflowFn(N1, N2)) |
| NoOverflow = false; |
| else |
| Overflow = false; |
| }); |
| EXPECT_EQ(NoOverflow, NoWrap.contains(N1)); |
| |
| // The no-wrap range is exact for single-element ranges. |
| if (CR.isSingleElement()) { |
| EXPECT_EQ(Overflow, !NoWrap.contains(N1)); |
| } |
| }); |
| }); |
| } |
| } |
| |
| // Show that makeGuaranteedNoWrapRegion() is maximal, and for single-element |
| // ranges also exact. |
| TEST(ConstantRange, NoWrapRegionExhaustive) { |
| TestNoWrapRegionExhaustive( |
| Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap, |
| [](const APInt &N1, const APInt &N2) { |
| bool Overflow; |
| (void) N1.uadd_ov(N2, Overflow); |
| return Overflow; |
| }); |
| TestNoWrapRegionExhaustive( |
| Instruction::Add, OverflowingBinaryOperator::NoSignedWrap, |
| [](const APInt &N1, const APInt &N2) { |
| bool Overflow; |
| (void) N1.sadd_ov(N2, Overflow); |
| return Overflow; |
| }); |
| TestNoWrapRegionExhaustive( |
| Instruction::Sub, OverflowingBinaryOperator::NoUnsignedWrap, |
| [](const APInt &N1, const APInt &N2) { |
| bool Overflow; |
| (void) N1.usub_ov(N2, Overflow); |
| return Overflow; |
| }); |
| TestNoWrapRegionExhaustive( |
| Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap, |
| [](const APInt &N1, const APInt &N2) { |
| bool Overflow; |
| (void) N1.ssub_ov(N2, Overflow); |
| return Overflow; |
| }); |
| TestNoWrapRegionExhaustive( |
| Instruction::Mul, OverflowingBinaryOperator::NoUnsignedWrap, |
| [](const APInt &N1, const APInt &N2) { |
| bool Overflow; |
| (void) N1.umul_ov(N2, Overflow); |
| return Overflow; |
| }); |
| TestNoWrapRegionExhaustive( |
| Instruction::Mul, OverflowingBinaryOperator::NoSignedWrap, |
| [](const APInt &N1, const APInt &N2) { |
| bool Overflow; |
| (void) N1.smul_ov(N2, Overflow); |
| return Overflow; |
| }); |
| TestNoWrapRegionExhaustive(Instruction::Shl, |
| OverflowingBinaryOperator::NoUnsignedWrap, |
| [](const APInt &N1, const APInt &N2) { |
| bool Overflow; |
| (void)N1.ushl_ov(N2, Overflow); |
| return Overflow; |
| }); |
| TestNoWrapRegionExhaustive(Instruction::Shl, |
| OverflowingBinaryOperator::NoSignedWrap, |
| [](const APInt &N1, const APInt &N2) { |
| bool Overflow; |
| (void)N1.sshl_ov(N2, Overflow); |
| return Overflow; |
| }); |
| } |
| |
| TEST(ConstantRange, GetEquivalentICmp) { |
| APInt RHS; |
| CmpInst::Predicate Pred; |
| |
| EXPECT_TRUE(ConstantRange(APInt::getMinValue(32), APInt(32, 100)) |
| .getEquivalentICmp(Pred, RHS)); |
| EXPECT_EQ(Pred, CmpInst::ICMP_ULT); |
| EXPECT_EQ(RHS, APInt(32, 100)); |
| |
| EXPECT_TRUE(ConstantRange(APInt::getSignedMinValue(32), APInt(32, 100)) |
| .getEquivalentICmp(Pred, RHS)); |
| EXPECT_EQ(Pred, CmpInst::ICMP_SLT); |
| EXPECT_EQ(RHS, APInt(32, 100)); |
| |
| EXPECT_TRUE(ConstantRange(APInt(32, 100), APInt::getMinValue(32)) |
| .getEquivalentICmp(Pred, RHS)); |
| EXPECT_EQ(Pred, CmpInst::ICMP_UGE); |
| EXPECT_EQ(RHS, APInt(32, 100)); |
| |
| EXPECT_TRUE(ConstantRange(APInt(32, 100), APInt::getSignedMinValue(32)) |
| .getEquivalentICmp(Pred, RHS)); |
| EXPECT_EQ(Pred, CmpInst::ICMP_SGE); |
| EXPECT_EQ(RHS, APInt(32, 100)); |
| |
| EXPECT_TRUE( |
| ConstantRange(32, /*isFullSet=*/true).getEquivalentICmp(Pred, RHS)); |
| EXPECT_EQ(Pred, CmpInst::ICMP_UGE); |
| EXPECT_EQ(RHS, APInt(32, 0)); |
| |
| EXPECT_TRUE( |
| ConstantRange(32, /*isFullSet=*/false).getEquivalentICmp(Pred, RHS)); |
| EXPECT_EQ(Pred, CmpInst::ICMP_ULT); |
| EXPECT_EQ(RHS, APInt(32, 0)); |
| |
| EXPECT_FALSE(ConstantRange(APInt(32, 100), APInt(32, 200)) |
| .getEquivalentICmp(Pred, RHS)); |
| |
| EXPECT_FALSE(ConstantRange(APInt::getSignedMinValue(32) - APInt(32, 100), |
| APInt::getSignedMinValue(32) + APInt(32, 100)) |
| .getEquivalentICmp(Pred, RHS)); |
| |
| EXPECT_FALSE(ConstantRange(APInt::getMinValue(32) - APInt(32, 100), |
| APInt::getMinValue(32) + APInt(32, 100)) |
| .getEquivalentICmp(Pred, RHS)); |
| |
| EXPECT_TRUE(ConstantRange(APInt(32, 100)).getEquivalentICmp(Pred, RHS)); |
| EXPECT_EQ(Pred, CmpInst::ICMP_EQ); |
| EXPECT_EQ(RHS, APInt(32, 100)); |
| |
| EXPECT_TRUE( |
| ConstantRange(APInt(32, 100)).inverse().getEquivalentICmp(Pred, RHS)); |
| EXPECT_EQ(Pred, CmpInst::ICMP_NE); |
| EXPECT_EQ(RHS, APInt(32, 100)); |
| |
| EXPECT_TRUE( |
| ConstantRange(APInt(512, 100)).inverse().getEquivalentICmp(Pred, RHS)); |
| EXPECT_EQ(Pred, CmpInst::ICMP_NE); |
| EXPECT_EQ(RHS, APInt(512, 100)); |
| |
| // NB! It would be correct for the following four calls to getEquivalentICmp |
| // to return ordered predicates like CmpInst::ICMP_ULT or CmpInst::ICMP_UGT. |
| // However, that's not the case today. |
| |
| EXPECT_TRUE(ConstantRange(APInt(32, 0)).getEquivalentICmp(Pred, RHS)); |
| EXPECT_EQ(Pred, CmpInst::ICMP_EQ); |
| EXPECT_EQ(RHS, APInt(32, 0)); |
| |
| EXPECT_TRUE( |
| ConstantRange(APInt(32, 0)).inverse().getEquivalentICmp(Pred, RHS)); |
| EXPECT_EQ(Pred, CmpInst::ICMP_NE); |
| EXPECT_EQ(RHS, APInt(32, 0)); |
| |
| EXPECT_TRUE(ConstantRange(APInt(32, -1)).getEquivalentICmp(Pred, RHS)); |
| EXPECT_EQ(Pred, CmpInst::ICMP_EQ); |
| EXPECT_EQ(RHS, APInt(32, -1)); |
| |
| EXPECT_TRUE( |
| ConstantRange(APInt(32, -1)).inverse().getEquivalentICmp(Pred, RHS)); |
| EXPECT_EQ(Pred, CmpInst::ICMP_NE); |
| EXPECT_EQ(RHS, APInt(32, -1)); |
| |
| EnumerateInterestingConstantRanges([](const ConstantRange &CR) { |
| unsigned Bits = CR.getBitWidth(); |
| CmpInst::Predicate Pred; |
| APInt RHS, Offset; |
| CR.getEquivalentICmp(Pred, RHS, Offset); |
| EnumerateAPInts(Bits, [&](const APInt &N) { |
| bool Result = ICmpInst::compare(N + Offset, RHS, Pred); |
| EXPECT_EQ(CR.contains(N), Result); |
| }); |
| |
| if (CR.getEquivalentICmp(Pred, RHS)) { |
| EnumerateAPInts(Bits, [&](const APInt &N) { |
| bool Result = ICmpInst::compare(N, RHS, Pred); |
| EXPECT_EQ(CR.contains(N), Result); |
| }); |
| } |
| }); |
| } |
| |
| #define EXPECT_MAY_OVERFLOW(op) \ |
| EXPECT_EQ(ConstantRange::OverflowResult::MayOverflow, (op)) |
| #define EXPECT_ALWAYS_OVERFLOWS_LOW(op) \ |
| EXPECT_EQ(ConstantRange::OverflowResult::AlwaysOverflowsLow, (op)) |
| #define EXPECT_ALWAYS_OVERFLOWS_HIGH(op) \ |
| EXPECT_EQ(ConstantRange::OverflowResult::AlwaysOverflowsHigh, (op)) |
| #define EXPECT_NEVER_OVERFLOWS(op) \ |
| EXPECT_EQ(ConstantRange::OverflowResult::NeverOverflows, (op)) |
| |
| TEST_F(ConstantRangeTest, UnsignedAddOverflow) { |
| // Ill-defined - may overflow is a conservative result. |
| EXPECT_MAY_OVERFLOW(Some.unsignedAddMayOverflow(Empty)); |
| EXPECT_MAY_OVERFLOW(Empty.unsignedAddMayOverflow(Some)); |
| |
| // Never overflow despite one full/wrap set. |
| ConstantRange Zero(APInt::getZero(16)); |
| EXPECT_NEVER_OVERFLOWS(Full.unsignedAddMayOverflow(Zero)); |
| EXPECT_NEVER_OVERFLOWS(Wrap.unsignedAddMayOverflow(Zero)); |
| EXPECT_NEVER_OVERFLOWS(Zero.unsignedAddMayOverflow(Full)); |
| EXPECT_NEVER_OVERFLOWS(Zero.unsignedAddMayOverflow(Wrap)); |
| |
| // But usually full/wrap always may overflow. |
| EXPECT_MAY_OVERFLOW(Full.unsignedAddMayOverflow(One)); |
| EXPECT_MAY_OVERFLOW(Wrap.unsignedAddMayOverflow(One)); |
| EXPECT_MAY_OVERFLOW(One.unsignedAddMayOverflow(Full)); |
| EXPECT_MAY_OVERFLOW(One.unsignedAddMayOverflow(Wrap)); |
| |
| ConstantRange A(APInt(16, 0xfd00), APInt(16, 0xfe00)); |
| ConstantRange B1(APInt(16, 0x0100), APInt(16, 0x0201)); |
| ConstantRange B2(APInt(16, 0x0100), APInt(16, 0x0202)); |
| EXPECT_NEVER_OVERFLOWS(A.unsignedAddMayOverflow(B1)); |
| EXPECT_MAY_OVERFLOW(A.unsignedAddMayOverflow(B2)); |
| EXPECT_NEVER_OVERFLOWS(B1.unsignedAddMayOverflow(A)); |
| EXPECT_MAY_OVERFLOW(B2.unsignedAddMayOverflow(A)); |
| |
| ConstantRange C1(APInt(16, 0x0299), APInt(16, 0x0400)); |
| ConstantRange C2(APInt(16, 0x0300), APInt(16, 0x0400)); |
| EXPECT_MAY_OVERFLOW(A.unsignedAddMayOverflow(C1)); |
| EXPECT_ALWAYS_OVERFLOWS_HIGH(A.unsignedAddMayOverflow(C2)); |
| EXPECT_MAY_OVERFLOW(C1.unsignedAddMayOverflow(A)); |
| EXPECT_ALWAYS_OVERFLOWS_HIGH(C2.unsignedAddMayOverflow(A)); |
| } |
| |
| TEST_F(ConstantRangeTest, UnsignedSubOverflow) { |
| // Ill-defined - may overflow is a conservative result. |
| EXPECT_MAY_OVERFLOW(Some.unsignedSubMayOverflow(Empty)); |
| EXPECT_MAY_OVERFLOW(Empty.unsignedSubMayOverflow(Some)); |
| |
| // Never overflow despite one full/wrap set. |
| ConstantRange Zero(APInt::getZero(16)); |
| ConstantRange Max(APInt::getAllOnes(16)); |
| EXPECT_NEVER_OVERFLOWS(Full.unsignedSubMayOverflow(Zero)); |
| EXPECT_NEVER_OVERFLOWS(Wrap.unsignedSubMayOverflow(Zero)); |
| EXPECT_NEVER_OVERFLOWS(Max.unsignedSubMayOverflow(Full)); |
| EXPECT_NEVER_OVERFLOWS(Max.unsignedSubMayOverflow(Wrap)); |
| |
| // But usually full/wrap always may overflow. |
| EXPECT_MAY_OVERFLOW(Full.unsignedSubMayOverflow(One)); |
| EXPECT_MAY_OVERFLOW(Wrap.unsignedSubMayOverflow(One)); |
| EXPECT_MAY_OVERFLOW(One.unsignedSubMayOverflow(Full)); |
| EXPECT_MAY_OVERFLOW(One.unsignedSubMayOverflow(Wrap)); |
| |
| ConstantRange A(APInt(16, 0x0000), APInt(16, 0x0100)); |
| ConstantRange B(APInt(16, 0x0100), APInt(16, 0x0200)); |
| EXPECT_NEVER_OVERFLOWS(B.unsignedSubMayOverflow(A)); |
| EXPECT_ALWAYS_OVERFLOWS_LOW(A.unsignedSubMayOverflow(B)); |
| |
| ConstantRange A1(APInt(16, 0x0000), APInt(16, 0x0101)); |
| ConstantRange B1(APInt(16, 0x0100), APInt(16, 0x0201)); |
| EXPECT_NEVER_OVERFLOWS(B1.unsignedSubMayOverflow(A1)); |
| EXPECT_MAY_OVERFLOW(A1.unsignedSubMayOverflow(B1)); |
| |
| ConstantRange A2(APInt(16, 0x0000), APInt(16, 0x0102)); |
| ConstantRange B2(APInt(16, 0x0100), APInt(16, 0x0202)); |
| EXPECT_MAY_OVERFLOW(B2.unsignedSubMayOverflow(A2)); |
| EXPECT_MAY_OVERFLOW(A2.unsignedSubMayOverflow(B2)); |
| } |
| |
| TEST_F(ConstantRangeTest, SignedAddOverflow) { |
| // Ill-defined - may overflow is a conservative result. |
| EXPECT_MAY_OVERFLOW(Some.signedAddMayOverflow(Empty)); |
| EXPECT_MAY_OVERFLOW(Empty.signedAddMayOverflow(Some)); |
| |
| // Never overflow despite one full/wrap set. |
| ConstantRange Zero(APInt::getZero(16)); |
| EXPECT_NEVER_OVERFLOWS(Full.signedAddMayOverflow(Zero)); |
| EXPECT_NEVER_OVERFLOWS(Wrap.signedAddMayOverflow(Zero)); |
| EXPECT_NEVER_OVERFLOWS(Zero.signedAddMayOverflow(Full)); |
| EXPECT_NEVER_OVERFLOWS(Zero.signedAddMayOverflow(Wrap)); |
| |
| // But usually full/wrap always may overflow. |
| EXPECT_MAY_OVERFLOW(Full.signedAddMayOverflow(One)); |
| EXPECT_MAY_OVERFLOW(Wrap.signedAddMayOverflow(One)); |
| EXPECT_MAY_OVERFLOW(One.signedAddMayOverflow(Full)); |
| EXPECT_MAY_OVERFLOW(One.signedAddMayOverflow(Wrap)); |
| |
| ConstantRange A(APInt(16, 0x7d00), APInt(16, 0x7e00)); |
| ConstantRange B1(APInt(16, 0x0100), APInt(16, 0x0201)); |
| ConstantRange B2(APInt(16, 0x0100), APInt(16, 0x0202)); |
| EXPECT_NEVER_OVERFLOWS(A.signedAddMayOverflow(B1)); |
| EXPECT_MAY_OVERFLOW(A.signedAddMayOverflow(B2)); |
| ConstantRange B3(APInt(16, 0x8000), APInt(16, 0x0201)); |
| ConstantRange B4(APInt(16, 0x8000), APInt(16, 0x0202)); |
| EXPECT_NEVER_OVERFLOWS(A.signedAddMayOverflow(B3)); |
| EXPECT_MAY_OVERFLOW(A.signedAddMayOverflow(B4)); |
| ConstantRange B5(APInt(16, 0x0299), APInt(16, 0x0400)); |
| ConstantRange B6(APInt(16, 0x0300), APInt(16, 0x0400)); |
| EXPECT_MAY_OVERFLOW(A.signedAddMayOverflow(B5)); |
| EXPECT_ALWAYS_OVERFLOWS_HIGH(A.signedAddMayOverflow(B6)); |
| |
| ConstantRange C(APInt(16, 0x8200), APInt(16, 0x8300)); |
| ConstantRange D1(APInt(16, 0xfe00), APInt(16, 0xff00)); |
| ConstantRange D2(APInt(16, 0xfd99), APInt(16, 0xff00)); |
| EXPECT_NEVER_OVERFLOWS(C.signedAddMayOverflow(D1)); |
| EXPECT_MAY_OVERFLOW(C.signedAddMayOverflow(D2)); |
| ConstantRange D3(APInt(16, 0xfe00), APInt(16, 0x8000)); |
| ConstantRange D4(APInt(16, 0xfd99), APInt(16, 0x8000)); |
| EXPECT_NEVER_OVERFLOWS(C.signedAddMayOverflow(D3)); |
| EXPECT_MAY_OVERFLOW(C.signedAddMayOverflow(D4)); |
| ConstantRange D5(APInt(16, 0xfc00), APInt(16, 0xfd02)); |
| ConstantRange D6(APInt(16, 0xfc00), APInt(16, 0xfd01)); |
| EXPECT_MAY_OVERFLOW(C.signedAddMayOverflow(D5)); |
| EXPECT_ALWAYS_OVERFLOWS_LOW(C.signedAddMayOverflow(D6)); |
| |
| ConstantRange E(APInt(16, 0xff00), APInt(16, 0x0100)); |
| EXPECT_NEVER_OVERFLOWS(E.signedAddMayOverflow(E)); |
| ConstantRange F(APInt(16, 0xf000), APInt(16, 0x7000)); |
| EXPECT_MAY_OVERFLOW(F.signedAddMayOverflow(F)); |
| } |
| |
| TEST_F(ConstantRangeTest, SignedSubOverflow) { |
| // Ill-defined - may overflow is a conservative result. |
| EXPECT_MAY_OVERFLOW(Some.signedSubMayOverflow(Empty)); |
| EXPECT_MAY_OVERFLOW(Empty.signedSubMayOverflow(Some)); |
| |
| // Never overflow despite one full/wrap set. |
| ConstantRange Zero(APInt::getZero(16)); |
| EXPECT_NEVER_OVERFLOWS(Full.signedSubMayOverflow(Zero)); |
| EXPECT_NEVER_OVERFLOWS(Wrap.signedSubMayOverflow(Zero)); |
| |
| // But usually full/wrap always may overflow. |
| EXPECT_MAY_OVERFLOW(Full.signedSubMayOverflow(One)); |
| EXPECT_MAY_OVERFLOW(Wrap.signedSubMayOverflow(One)); |
| EXPECT_MAY_OVERFLOW(One.signedSubMayOverflow(Full)); |
| EXPECT_MAY_OVERFLOW(One.signedSubMayOverflow(Wrap)); |
| |
| ConstantRange A(APInt(16, 0x7d00), APInt(16, 0x7e00)); |
| ConstantRange B1(APInt(16, 0xfe00), APInt(16, 0xff00)); |
| ConstantRange B2(APInt(16, 0xfd99), APInt(16, 0xff00)); |
| EXPECT_NEVER_OVERFLOWS(A.signedSubMayOverflow(B1)); |
| EXPECT_MAY_OVERFLOW(A.signedSubMayOverflow(B2)); |
| ConstantRange B3(APInt(16, 0xfc00), APInt(16, 0xfd02)); |
| ConstantRange B4(APInt(16, 0xfc00), APInt(16, 0xfd01)); |
| EXPECT_MAY_OVERFLOW(A.signedSubMayOverflow(B3)); |
| EXPECT_ALWAYS_OVERFLOWS_HIGH(A.signedSubMayOverflow(B4)); |
| |
| ConstantRange C(APInt(16, 0x8200), APInt(16, 0x8300)); |
| ConstantRange D1(APInt(16, 0x0100), APInt(16, 0x0201)); |
| ConstantRange D2(APInt(16, 0x0100), APInt(16, 0x0202)); |
| EXPECT_NEVER_OVERFLOWS(C.signedSubMayOverflow(D1)); |
| EXPECT_MAY_OVERFLOW(C.signedSubMayOverflow(D2)); |
| ConstantRange D3(APInt(16, 0x0299), APInt(16, 0x0400)); |
| ConstantRange D4(APInt(16, 0x0300), APInt(16, 0x0400)); |
| EXPECT_MAY_OVERFLOW(C.signedSubMayOverflow(D3)); |
| EXPECT_ALWAYS_OVERFLOWS_LOW(C.signedSubMayOverflow(D4)); |
| |
| ConstantRange E(APInt(16, 0xff00), APInt(16, 0x0100)); |
| EXPECT_NEVER_OVERFLOWS(E.signedSubMayOverflow(E)); |
| ConstantRange F(APInt(16, 0xf000), APInt(16, 0x7001)); |
| EXPECT_MAY_OVERFLOW(F.signedSubMayOverflow(F)); |
| } |
| |
| template <typename Fn1, typename Fn2> |
| static void TestOverflowExhaustive(Fn1 OverflowFn, Fn2 MayOverflowFn) { |
| // Constant range overflow checks are tested exhaustively on 4-bit numbers. |
| EnumerateTwoInterestingConstantRanges([=](const ConstantRange &CR1, |
| const ConstantRange &CR2) { |
| // Loop over all N1 in CR1 and N2 in CR2 and check whether any of the |
| // operations have overflow / have no overflow. |
| bool RangeHasOverflowLow = false; |
| bool RangeHasOverflowHigh = false; |
| bool RangeHasNoOverflow = false; |
| ForeachNumInConstantRange(CR1, [&](const APInt &N1) { |
| ForeachNumInConstantRange(CR2, [&](const APInt &N2) { |
| bool IsOverflowHigh; |
| if (!OverflowFn(IsOverflowHigh, N1, N2)) { |
| RangeHasNoOverflow = true; |
| return; |
| } |
| |
| if (IsOverflowHigh) |
| RangeHasOverflowHigh = true; |
| else |
| RangeHasOverflowLow = true; |
| }); |
| }); |
| |
| ConstantRange::OverflowResult OR = MayOverflowFn(CR1, CR2); |
| switch (OR) { |
| case ConstantRange::OverflowResult::AlwaysOverflowsLow: |
| EXPECT_TRUE(RangeHasOverflowLow); |
| EXPECT_FALSE(RangeHasOverflowHigh); |
| EXPECT_FALSE(RangeHasNoOverflow); |
| break; |
| case ConstantRange::OverflowResult::AlwaysOverflowsHigh: |
| EXPECT_TRUE(RangeHasOverflowHigh); |
| EXPECT_FALSE(RangeHasOverflowLow); |
| EXPECT_FALSE(RangeHasNoOverflow); |
| break; |
| case ConstantRange::OverflowResult::NeverOverflows: |
| EXPECT_FALSE(RangeHasOverflowLow); |
| EXPECT_FALSE(RangeHasOverflowHigh); |
| EXPECT_TRUE(RangeHasNoOverflow); |
| break; |
| case ConstantRange::OverflowResult::MayOverflow: |
| // We return MayOverflow for empty sets as a conservative result, |
| // but of course neither the RangeHasOverflow nor the |
| // RangeHasNoOverflow flags will be set. |
| if (CR1.isEmptySet() || CR2.isEmptySet()) |
| break; |
| |
| EXPECT_TRUE(RangeHasOverflowLow || RangeHasOverflowHigh); |
| EXPECT_TRUE(RangeHasNoOverflow); |
| break; |
| } |
| }); |
| } |
| |
| TEST_F(ConstantRangeTest, UnsignedAddOverflowExhaustive) { |
| TestOverflowExhaustive( |
| [](bool &IsOverflowHigh, const APInt &N1, const APInt &N2) { |
| bool Overflow; |
| (void) N1.uadd_ov(N2, Overflow); |
| IsOverflowHigh = true; |
| return Overflow; |
| }, |
| [](const ConstantRange &CR1, const ConstantRange &CR2) { |
| return CR1.unsignedAddMayOverflow(CR2); |
| }); |
| } |
| |
| TEST_F(ConstantRangeTest, UnsignedSubOverflowExhaustive) { |
| TestOverflowExhaustive( |
| [](bool &IsOverflowHigh, const APInt &N1, const APInt &N2) { |
| bool Overflow; |
| (void) N1.usub_ov(N2, Overflow); |
| IsOverflowHigh = false; |
| return Overflow; |
| }, |
| [](const ConstantRange &CR1, const ConstantRange &CR2) { |
| return CR1.unsignedSubMayOverflow(CR2); |
| }); |
| } |
| |
| TEST_F(ConstantRangeTest, UnsignedMulOverflowExhaustive) { |
| TestOverflowExhaustive( |
| [](bool &IsOverflowHigh, const APInt &N1, const APInt &N2) { |
| bool Overflow; |
| (void) N1.umul_ov(N2, Overflow); |
| IsOverflowHigh = true; |
| return Overflow; |
| }, |
| [](const ConstantRange &CR1, const ConstantRange &CR2) { |
| return CR1.unsignedMulMayOverflow(CR2); |
| }); |
| } |
| |
| TEST_F(ConstantRangeTest, SignedAddOverflowExhaustive) { |
| TestOverflowExhaustive( |
| [](bool &IsOverflowHigh, const APInt &N1, const APInt &N2) { |
| bool Overflow; |
| (void) N1.sadd_ov(N2, Overflow); |
| IsOverflowHigh = N1.isNonNegative(); |
| return Overflow; |
| }, |
| [](const ConstantRange &CR1, const ConstantRange &CR2) { |
| return CR1.signedAddMayOverflow(CR2); |
| }); |
| } |
| |
| TEST_F(ConstantRangeTest, SignedSubOverflowExhaustive) { |
| TestOverflowExhaustive( |
| [](bool &IsOverflowHigh, const APInt &N1, const APInt &N2) { |
| bool Overflow; |
| (void) N1.ssub_ov(N2, Overflow); |
| IsOverflowHigh = N1.isNonNegative(); |
| return Overflow; |
| }, |
| [](const ConstantRange &CR1, const ConstantRange &CR2) { |
| return CR1.signedSubMayOverflow(CR2); |
| }); |
| } |
| |
| TEST_F(ConstantRangeTest, FromKnownBits) { |
| KnownBits Unknown(16); |
| EXPECT_EQ(Full, ConstantRange::fromKnownBits(Unknown, /*signed*/false)); |
| EXPECT_EQ(Full, ConstantRange::fromKnownBits(Unknown, /*signed*/true)); |
| |
| // .10..01. -> unsigned 01000010 (66) to 11011011 (219) |
| // -> signed 11000010 (194) to 01011011 (91) |
| KnownBits Known(8); |
| Known.Zero = 36; |
| Known.One = 66; |
| ConstantRange Unsigned(APInt(8, 66), APInt(8, 219 + 1)); |
| ConstantRange Signed(APInt(8, 194), APInt(8, 91 + 1)); |
| EXPECT_EQ(Unsigned, ConstantRange::fromKnownBits(Known, /*signed*/false)); |
| EXPECT_EQ(Signed, ConstantRange::fromKnownBits(Known, /*signed*/true)); |
| |
| // 1.10.10. -> 10100100 (164) to 11101101 (237) |
| Known.Zero = 18; |
| Known.One = 164; |
| ConstantRange CR1(APInt(8, 164), APInt(8, 237 + 1)); |
| EXPECT_EQ(CR1, ConstantRange::fromKnownBits(Known, /*signed*/false)); |
| EXPECT_EQ(CR1, ConstantRange::fromKnownBits(Known, /*signed*/true)); |
| |
| // 01.0.1.0 -> 01000100 (68) to 01101110 (110) |
| Known.Zero = 145; |
| Known.One = 68; |
| ConstantRange CR2(APInt(8, 68), APInt(8, 110 + 1)); |
| EXPECT_EQ(CR2, ConstantRange::fromKnownBits(Known, /*signed*/false)); |
| EXPECT_EQ(CR2, ConstantRange::fromKnownBits(Known, /*signed*/true)); |
| } |
| |
| TEST_F(ConstantRangeTest, FromKnownBitsExhaustive) { |
| unsigned Bits = 4; |
| unsigned Max = 1 << Bits; |
| KnownBits Known(Bits); |
| for (unsigned Zero = 0; Zero < Max; ++Zero) { |
| for (unsigned One = 0; One < Max; ++One) { |
| Known.Zero = Zero; |
| Known.One = One; |
| if (Known.hasConflict() || Known.isUnknown()) |
| continue; |
| |
| SmallBitVector Elems(1 << Bits); |
| for (unsigned N = 0; N < Max; ++N) { |
| APInt Num(Bits, N); |
| if ((Num & Known.Zero) != 0 || (~Num & Known.One) != 0) |
| continue; |
| Elems.set(Num.getZExtValue()); |
| } |
| |
| TestRange(ConstantRange::fromKnownBits(Known, false), |
| Elems, PreferSmallestUnsigned, {}); |
| TestRange(ConstantRange::fromKnownBits(Known, true), |
| Elems, PreferSmallestSigned, {}); |
| } |
| } |
| } |
| |
| TEST_F(ConstantRangeTest, ToKnownBits) { |
| EnumerateInterestingConstantRanges([&](const ConstantRange &CR) { |
| KnownBits Known = CR.toKnownBits(); |
| KnownBits ExpectedKnown(CR.getBitWidth()); |
| ExpectedKnown.Zero.setAllBits(); |
| ExpectedKnown.One.setAllBits(); |
| ForeachNumInConstantRange(CR, [&](const APInt &N) { |
| ExpectedKnown.One &= N; |
| ExpectedKnown.Zero &= ~N; |
| }); |
| // For an empty CR any result would be legal. |
| if (!CR.isEmptySet()) { |
| EXPECT_EQ(ExpectedKnown, Known); |
| } |
| }); |
| } |
| |
| TEST_F(ConstantRangeTest, Negative) { |
| // All elements in an empty set (of which there are none) are both negative |
| // and non-negative. Empty & full sets checked explicitly for clarity, but |
| // they are also covered by the exhaustive test below. |
| EXPECT_TRUE(Empty.isAllNegative()); |
| EXPECT_TRUE(Empty.isAllNonNegative()); |
| EXPECT_TRUE(Empty.isAllPositive()); |
| EXPECT_FALSE(Full.isAllNegative()); |
| EXPECT_FALSE(Full.isAllNonNegative()); |
| EXPECT_FALSE(Full.isAllPositive()); |
| |
| EnumerateInterestingConstantRanges([](const ConstantRange &CR) { |
| bool AllNegative = true; |
| bool AllNonNegative = true; |
| bool AllPositive = true; |
| ForeachNumInConstantRange(CR, [&](const APInt &N) { |
| if (!N.isNegative()) |
| AllNegative = false; |
| if (!N.isNonNegative()) |
| AllNonNegative = false; |
| if (!N.isStrictlyPositive()) |
| AllPositive = false; |
| }); |
| assert( |
| (CR.isEmptySet() || !AllNegative || !AllNonNegative || !AllPositive) && |
| "Only empty set can be all negative, all non-negative, and all " |
| "positive"); |
| |
| EXPECT_EQ(AllNegative, CR.isAllNegative()); |
| EXPECT_EQ(AllNonNegative, CR.isAllNonNegative()); |
| EXPECT_EQ(AllPositive, CR.isAllPositive()); |
| }); |
| } |
| |
| TEST_F(ConstantRangeTest, UAddSat) { |
| TestBinaryOpExhaustive( |
| [](const ConstantRange &CR1, const ConstantRange &CR2) { |
| return CR1.uadd_sat(CR2); |
| }, |
| [](const APInt &N1, const APInt &N2) { |
| return N1.uadd_sat(N2); |
| }, |
| PreferSmallestUnsigned); |
| } |
| |
| TEST_F(ConstantRangeTest, USubSat) { |
| TestBinaryOpExhaustive( |
| [](const ConstantRange &CR1, const ConstantRange &CR2) { |
| return CR1.usub_sat(CR2); |
| }, |
| [](const APInt &N1, const APInt &N2) { |
| return N1.usub_sat(N2); |
| }, |
| PreferSmallestUnsigned); |
| } |
| |
| TEST_F(ConstantRangeTest, UMulSat) { |
| TestBinaryOpExhaustive( |
| [](const ConstantRange &CR1, const ConstantRange &CR2) { |
| return CR1.umul_sat(CR2); |
| }, |
| [](const APInt &N1, const APInt &N2) { return N1.umul_sat(N2); }, |
| PreferSmallestUnsigned); |
| } |
| |
| TEST_F(ConstantRangeTest, UShlSat) { |
| TestBinaryOpExhaustive( |
| [](const ConstantRange &CR1, const ConstantRange &CR2) { |
| return CR1.ushl_sat(CR2); |
| }, |
| [](const APInt &N1, const APInt &N2) { return N1.ushl_sat(N2); }, |
| PreferSmallestUnsigned); |
| } |
| |
| TEST_F(ConstantRangeTest, SAddSat) { |
| TestBinaryOpExhaustive( |
| [](const ConstantRange &CR1, const ConstantRange &CR2) { |
| return CR1.sadd_sat(CR2); |
| }, |
| [](const APInt &N1, const APInt &N2) { |
| return N1.sadd_sat(N2); |
| }, |
| PreferSmallestSigned); |
| } |
| |
| TEST_F(ConstantRangeTest, SSubSat) { |
| TestBinaryOpExhaustive( |
| [](const ConstantRange &CR1, const ConstantRange &CR2) { |
| return CR1.ssub_sat(CR2); |
| }, |
| [](const APInt &N1, const APInt &N2) { |
| return N1.ssub_sat(N2); |
| }, |
| PreferSmallestSigned); |
| } |
| |
| TEST_F(ConstantRangeTest, SMulSat) { |
| TestBinaryOpExhaustive( |
| [](const ConstantRange &CR1, const ConstantRange &CR2) { |
| return CR1.smul_sat(CR2); |
| }, |
| [](const APInt &N1, const APInt &N2) { return N1.smul_sat(N2); }, |
| PreferSmallestSigned); |
| } |
| |
| TEST_F(ConstantRangeTest, SShlSat) { |
| TestBinaryOpExhaustive( |
| [](const ConstantRange &CR1, const ConstantRange &CR2) { |
| return CR1.sshl_sat(CR2); |
| }, |
| [](const APInt &N1, const APInt &N2) { return N1.sshl_sat(N2); }, |
| PreferSmallestSigned); |
| } |
| |
| TEST_F(ConstantRangeTest, Abs) { |
| TestUnaryOpExhaustive( |
| [](const ConstantRange &CR) { return CR.abs(); }, |
| [](const APInt &N) { return N.abs(); }); |
| |
| TestUnaryOpExhaustive( |
| [](const ConstantRange &CR) { return CR.abs(/*IntMinIsPoison=*/true); }, |
| [](const APInt &N) -> std::optional<APInt> { |
| if (N.isMinSignedValue()) |
| return std::nullopt; |
| return N.abs(); |
| }); |
| } |
| |
| TEST_F(ConstantRangeTest, Ctlz) { |
| TestUnaryOpExhaustive( |
| [](const ConstantRange &CR) { return CR.ctlz(); }, |
| [](const APInt &N) { return APInt(N.getBitWidth(), N.countl_zero()); }); |
| |
| TestUnaryOpExhaustive( |
| [](const ConstantRange &CR) { return CR.ctlz(/*ZeroIsPoison=*/true); }, |
| [](const APInt &N) -> std::optional<APInt> { |
| if (N.isZero()) |
| return std::nullopt; |
| return APInt(N.getBitWidth(), N.countl_zero()); |
| }); |
| } |
| |
| TEST_F(ConstantRangeTest, Cttz) { |
| TestUnaryOpExhaustive( |
| [](const ConstantRange &CR) { return CR.cttz(); }, |
| [](const APInt &N) { return APInt(N.getBitWidth(), N.countr_zero()); }); |
| |
| TestUnaryOpExhaustive( |
| [](const ConstantRange &CR) { return CR.cttz(/*ZeroIsPoison=*/true); }, |
| [](const APInt &N) -> std::optional<APInt> { |
| if (N.isZero()) |
| return std::nullopt; |
| return APInt(N.getBitWidth(), N.countr_zero()); |
| }); |
| } |
| |
| TEST_F(ConstantRangeTest, Ctpop) { |
| TestUnaryOpExhaustive( |
| [](const ConstantRange &CR) { return CR.ctpop(); }, |
| [](const APInt &N) { return APInt(N.getBitWidth(), N.popcount()); }); |
| } |
| |
| TEST_F(ConstantRangeTest, castOps) { |
| ConstantRange A(APInt(16, 66), APInt(16, 128)); |
| ConstantRange FpToI8 = A.castOp(Instruction::FPToSI, 8); |
| EXPECT_EQ(8u, FpToI8.getBitWidth()); |
| EXPECT_TRUE(FpToI8.isFullSet()); |
| |
| ConstantRange FpToI16 = A.castOp(Instruction::FPToSI, 16); |
| EXPECT_EQ(16u, FpToI16.getBitWidth()); |
| EXPECT_EQ(A, FpToI16); |
| |
| ConstantRange FPExtToDouble = A.castOp(Instruction::FPExt, 64); |
| EXPECT_EQ(64u, FPExtToDouble.getBitWidth()); |
| EXPECT_TRUE(FPExtToDouble.isFullSet()); |
| |
| ConstantRange PtrToInt = A.castOp(Instruction::PtrToInt, 64); |
| EXPECT_EQ(64u, PtrToInt.getBitWidth()); |
| EXPECT_TRUE(PtrToInt.isFullSet()); |
| |
| ConstantRange IntToPtr = A.castOp(Instruction::IntToPtr, 64); |
| EXPECT_EQ(64u, IntToPtr.getBitWidth()); |
| EXPECT_TRUE(IntToPtr.isFullSet()); |
| |
| ConstantRange UIToFP = A.castOp(Instruction::UIToFP, 16); |
| EXPECT_EQ(16u, UIToFP.getBitWidth()); |
| EXPECT_TRUE(UIToFP.isFullSet()); |
| |
| ConstantRange UIToFP2 = A.castOp(Instruction::UIToFP, 64); |
| ConstantRange B(APInt(64, 0), APInt(64, 65536)); |
| EXPECT_EQ(64u, UIToFP2.getBitWidth()); |
| EXPECT_EQ(B, UIToFP2); |
| |
| ConstantRange SIToFP = A.castOp(Instruction::SIToFP, 16); |
| EXPECT_EQ(16u, SIToFP.getBitWidth()); |
| EXPECT_TRUE(SIToFP.isFullSet()); |
| |
| ConstantRange SIToFP2 = A.castOp(Instruction::SIToFP, 64); |
| ConstantRange C(APInt(64, -32768), APInt(64, 32768)); |
| EXPECT_EQ(64u, SIToFP2.getBitWidth()); |
| EXPECT_EQ(C, SIToFP2); |
| } |
| |
| TEST_F(ConstantRangeTest, binaryAnd) { |
| // Single element ranges. |
| ConstantRange R16(APInt(8, 16)); |
| ConstantRange R20(APInt(8, 20)); |
| EXPECT_EQ(*R16.binaryAnd(R16).getSingleElement(), APInt(8, 16)); |
| EXPECT_EQ(*R16.binaryAnd(R20).getSingleElement(), APInt(8, 16 & 20)); |
| |
| ConstantRange R16_32(APInt(8, 16), APInt(8, 32)); |
| // 'And' with a high bits mask. |
| ConstantRange R32(APInt(8, 32)); |
| EXPECT_TRUE(R16_32.binaryAnd(R32).getSingleElement()->isZero()); |
| EXPECT_TRUE(R32.binaryAnd(R16_32).getSingleElement()->isZero()); |
| // 'And' with a low bits mask. Handled conservatively for now. |
| ConstantRange R4(APInt(8, 4)); |
| ConstantRange R0_5(APInt(8, 0), APInt(8, 5)); |
| EXPECT_EQ(R16_32.binaryAnd(R4), R0_5); |
| EXPECT_EQ(R4.binaryAnd(R16_32), R0_5); |
| |
| // Ranges with more than one element. Handled conservatively for now. |
| ConstantRange R0_99(APInt(8, 0), APInt(8, 99)); |
| ConstantRange R0_32(APInt(8, 0), APInt(8, 32)); |
| EXPECT_EQ(R16_32.binaryAnd(R0_99), R0_32); |
| EXPECT_EQ(R0_99.binaryAnd(R16_32), R0_32); |
| |
| TestBinaryOpExhaustive( |
| [](const ConstantRange &CR1, const ConstantRange &CR2) { |
| return CR1.binaryAnd(CR2); |
| }, |
| [](const APInt &N1, const APInt &N2) { return N1 & N2; }, PreferSmallest, |
| CheckSingleElementsOnly); |
| } |
| |
| TEST_F(ConstantRangeTest, binaryOr) { |
| // Single element ranges. |
| ConstantRange R16(APInt(8, 16)); |
| ConstantRange R20(APInt(8, 20)); |
| EXPECT_EQ(*R16.binaryOr(R16).getSingleElement(), APInt(8, 16)); |
| EXPECT_EQ(*R16.binaryOr(R20).getSingleElement(), APInt(8, 16 | 20)); |
| |
| ConstantRange R16_32(APInt(8, 16), APInt(8, 32)); |
| // 'Or' with a high bits mask. |
| // KnownBits estimate is important, otherwise the maximum included element |
| // would be 2^8 - 1. |
| ConstantRange R32(APInt(8, 32)); |
| ConstantRange R48_64(APInt(8, 48), APInt(8, 64)); |
| EXPECT_EQ(R16_32.binaryOr(R32), R48_64); |
| EXPECT_EQ(R32.binaryOr(R16_32), R48_64); |
| // 'Or' with a low bits mask. |
| ConstantRange R4(APInt(8, 4)); |
| ConstantRange R0_16(APInt(8, 0), APInt(8, 16)); |
| ConstantRange R4_16(APInt(8, 4), APInt(8, 16)); |
| EXPECT_EQ(R0_16.binaryOr(R4), R4_16); |
| EXPECT_EQ(R4.binaryOr(R0_16), R4_16); |
| |
| // Ranges with more than one element. Handled conservatively for now. |
| // UMaxUMin estimate is important, otherwise the lower bound would be zero. |
| ConstantRange R0_64(APInt(8, 0), APInt(8, 64)); |
| ConstantRange R5_32(APInt(8, 5), APInt(8, 32)); |
| ConstantRange R5_64(APInt(8, 5), APInt(8, 64)); |
| EXPECT_EQ(R0_64.binaryOr(R5_32), R5_64); |
| EXPECT_EQ(R5_32.binaryOr(R0_64), R5_64); |
| |
| TestBinaryOpExhaustive( |
| [](const ConstantRange &CR1, const ConstantRange &CR2) { |
| return CR1.binaryOr(CR2); |
| }, |
| [](const APInt &N1, const APInt &N2) { return N1 | N2; }, PreferSmallest, |
| CheckSingleElementsOnly); |
| } |
| |
| TEST_F(ConstantRangeTest, binaryXor) { |
| // Single element ranges. |
| ConstantRange R16(APInt(8, 16)); |
| ConstantRange R20(APInt(8, 20)); |
| EXPECT_EQ(*R16.binaryXor(R16).getSingleElement(), APInt(8, 0)); |
| EXPECT_EQ(*R16.binaryXor(R20).getSingleElement(), APInt(8, 16 ^ 20)); |
| |
| // Ranges with more than a single element. |
| ConstantRange R16_35(APInt(8, 16), APInt(8, 35)); |
| ConstantRange R0_99(APInt(8, 0), APInt(8, 99)); |
| EXPECT_EQ(R16_35.binaryXor(R16_35), ConstantRange(APInt(8, 0), APInt(8, 64))); |
| EXPECT_EQ(R16_35.binaryXor(R0_99), ConstantRange(APInt(8, 0), APInt(8, 128))); |
| EXPECT_EQ(R0_99.binaryXor(R16_35), ConstantRange(APInt(8, 0), APInt(8, 128))); |
| |
| // Treat xor A, B as sub nsw nuw A, B |
| ConstantRange R0_51(APInt(8, 0), APInt(8, 51)); |
| ConstantRange R63(APInt(8, 63)); |
| EXPECT_EQ(R0_51.binaryXor(R63), ConstantRange(APInt(8, 13), APInt(8, 64))); |
| EXPECT_EQ(R63.binaryXor(R0_51), ConstantRange(APInt(8, 13), APInt(8, 64))); |
| |
| TestBinaryOpExhaustive( |
| [](const ConstantRange &CR1, const ConstantRange &CR2) { |
| return CR1.binaryXor(CR2); |
| }, |
| [](const APInt &N1, const APInt &N2) { |
| return N1 ^ N2; |
| }, |
| PreferSmallest, |
| CheckSingleElementsOnly); |
| } |
| |
| TEST_F(ConstantRangeTest, binaryNot) { |
| TestUnaryOpExhaustive( |
| [](const ConstantRange &CR) { return CR.binaryNot(); }, |
| [](const APInt &N) { return ~N; }, |
| PreferSmallest); |
| TestUnaryOpExhaustive( |
| [](const ConstantRange &CR) { |
| return CR.binaryXor(ConstantRange(APInt::getAllOnes(CR.getBitWidth()))); |
| }, |
| [](const APInt &N) { return ~N; }, PreferSmallest); |
| TestUnaryOpExhaustive( |
| [](const ConstantRange &CR) { |
| return ConstantRange(APInt::getAllOnes(CR.getBitWidth())).binaryXor(CR); |
| }, |
| [](const APInt &N) { return ~N; }, PreferSmallest); |
| } |
| |
| template <typename T> |
| void testConstantRangeICmpPredEquivalence(ICmpInst::Predicate SrcPred, T Func) { |
| EnumerateTwoInterestingConstantRanges( |
| [&](const ConstantRange &CR1, const ConstantRange &CR2) { |
| ICmpInst::Predicate TgtPred; |
| bool ExpectedEquivalent; |
| std::tie(TgtPred, ExpectedEquivalent) = Func(CR1, CR2); |
| if (TgtPred == CmpInst::Predicate::BAD_ICMP_PREDICATE) |
| return; |
| bool TrulyEquivalent = true; |
| ForeachNumInConstantRange(CR1, [&](const APInt &N1) { |
| if (!TrulyEquivalent) |
| return; |
| ForeachNumInConstantRange(CR2, [&](const APInt &N2) { |
| if (!TrulyEquivalent) |
| return; |
| TrulyEquivalent &= ICmpInst::compare(N1, N2, SrcPred) == |
| ICmpInst::compare(N1, N2, TgtPred); |
| }); |
| }); |
| ASSERT_EQ(TrulyEquivalent, ExpectedEquivalent); |
| }); |
| } |
| |
| TEST_F(ConstantRangeTest, areInsensitiveToSignednessOfICmpPredicate) { |
| for (auto Pred : ICmpInst::predicates()) { |
| if (ICmpInst::isEquality(Pred)) |
| continue; |
| ICmpInst::Predicate FlippedSignednessPred = |
| ICmpInst::getFlippedSignednessPredicate(Pred); |
| testConstantRangeICmpPredEquivalence(Pred, [FlippedSignednessPred]( |
| const ConstantRange &CR1, |
| const ConstantRange &CR2) { |
| return std::make_pair( |
| FlippedSignednessPred, |
| ConstantRange::areInsensitiveToSignednessOfICmpPredicate(CR1, CR2)); |
| }); |
| } |
| } |
| |
| TEST_F(ConstantRangeTest, areInsensitiveToSignednessOfInvertedICmpPredicate) { |
| for (auto Pred : ICmpInst::predicates()) { |
| if (ICmpInst::isEquality(Pred)) |
| continue; |
| ICmpInst::Predicate InvertedFlippedSignednessPred = |
| ICmpInst::getInversePredicate( |
| ICmpInst::getFlippedSignednessPredicate(Pred)); |
| testConstantRangeICmpPredEquivalence( |
| Pred, [InvertedFlippedSignednessPred](const ConstantRange &CR1, |
| const ConstantRange &CR2) { |
| return std::make_pair( |
| InvertedFlippedSignednessPred, |
| ConstantRange::areInsensitiveToSignednessOfInvertedICmpPredicate( |
| CR1, CR2)); |
| }); |
| } |
| } |
| |
| TEST_F(ConstantRangeTest, getEquivalentPredWithFlippedSignedness) { |
| for (auto Pred : ICmpInst::predicates()) { |
| if (ICmpInst::isEquality(Pred)) |
| continue; |
| testConstantRangeICmpPredEquivalence( |
| Pred, [Pred](const ConstantRange &CR1, const ConstantRange &CR2) { |
| return std::make_pair( |
| ConstantRange::getEquivalentPredWithFlippedSignedness(Pred, CR1, |
| CR2), |
| /*ExpectedEquivalent=*/true); |
| }); |
| } |
| } |
| |
| TEST_F(ConstantRangeTest, isSizeLargerThan) { |
| EXPECT_FALSE(Empty.isSizeLargerThan(0)); |
| |
| EXPECT_TRUE(Full.isSizeLargerThan(0)); |
| EXPECT_TRUE(Full.isSizeLargerThan(65535)); |
| EXPECT_FALSE(Full.isSizeLargerThan(65536)); |
| |
| EXPECT_TRUE(One.isSizeLargerThan(0)); |
| EXPECT_FALSE(One.isSizeLargerThan(1)); |
| } |
| |
| TEST_F(ConstantRangeTest, MakeMaskNotEqualRange) { |
| // Mask: 0b0001, C: 0b0001. MMNE() = [2, 1) |
| ConstantRange CR(APInt(4, 2), APInt(4, 1)); |
| EXPECT_EQ(CR, ConstantRange::makeMaskNotEqualRange(APInt(4, 1), APInt(4, 1))); |
| EXPECT_NE(CR, ConstantRange::makeMaskNotEqualRange(APInt(4, 0), |
| APInt(4, -1, true))); |
| EXPECT_TRUE(CR.contains(APInt(4, 7))); |
| EXPECT_TRUE(CR.contains(APInt(4, 15))); |
| |
| // Mask: 0b0100, C: 0b0100. MMNE() = [-8, 4) |
| ConstantRange CR2(APInt(4, -8, true), APInt(4, 4)); |
| auto MMNE = ConstantRange::makeMaskNotEqualRange(APInt(4, 4), APInt(4, 4)); |
| EXPECT_EQ(CR2, MMNE); |
| EXPECT_NE(ConstantRange::getNonEmpty(APInt(4, 0), APInt(4, -4, true)), MMNE); |
| |
| // CR: [-16, -8). MMNE() = [-8, -16) |
| ConstantRange CR3(APInt(8, 240), APInt(8, 248)); |
| EXPECT_EQ(CR3.inverse(), |
| ConstantRange::makeMaskNotEqualRange(APInt(8, 248), APInt(8, 240))); |
| |
| // Mask: 0, C: 0b1111: unsatisfiable. |
| EXPECT_EQ(ConstantRange::getFull(4), |
| ConstantRange::makeMaskNotEqualRange(APInt(4, 0), APInt(4, 15))); |
| } |
| |
| TEST_F(ConstantRangeTest, MakeMaskNotEqualRangeExhaustive) { |
| unsigned Bits = 4; |
| unsigned Max = 1 << Bits; |
| |
| EnumerateAPInts(Bits, [&](const APInt &Mask) { |
| EnumerateAPInts(Bits, [&](const APInt &C) { |
| SmallBitVector Elems(Max); |
| for (unsigned N = 0; N < Max; ++N) { |
| APInt Num(Bits, N); |
| if ((Num & Mask) == C) |
| continue; |
| Elems.set(Num.getZExtValue()); |
| } |
| |
| // Only test optimality with PreferSmallest. E.g., given Mask = 0b0001, C |
| // = 0b0001, a possible better range would be [0, 15) when preferring the |
| // smallest unsigned, however we conservatively return [2, 1). |
| TestRange(ConstantRange::makeMaskNotEqualRange(Mask, C), Elems, |
| PreferSmallest, {}); |
| }); |
| }); |
| } |
| |
| } // anonymous namespace |