blob: 655983a1ca049437a18a208ce8547878c56f52bc [file] [log] [blame]
//===--- Compiler.cpp - Code generator for expressions ---*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "Compiler.h"
#include "ByteCodeEmitter.h"
#include "Context.h"
#include "Floating.h"
#include "Function.h"
#include "InterpShared.h"
#include "PrimType.h"
#include "Program.h"
#include "clang/AST/Attr.h"
using namespace clang;
using namespace clang::interp;
using APSInt = llvm::APSInt;
namespace clang {
namespace interp {
/// Scope used to handle temporaries in toplevel variable declarations.
template <class Emitter> class DeclScope final : public LocalScope<Emitter> {
public:
DeclScope(Compiler<Emitter> *Ctx, const ValueDecl *VD)
: LocalScope<Emitter>(Ctx, VD), Scope(Ctx->P, VD),
OldInitializingDecl(Ctx->InitializingDecl) {
Ctx->InitializingDecl = VD;
Ctx->InitStack.push_back(InitLink::Decl(VD));
}
void addExtended(const Scope::Local &Local) override {
return this->addLocal(Local);
}
~DeclScope() {
this->Ctx->InitializingDecl = OldInitializingDecl;
this->Ctx->InitStack.pop_back();
}
private:
Program::DeclScope Scope;
const ValueDecl *OldInitializingDecl;
};
/// Scope used to handle initialization methods.
template <class Emitter> class OptionScope final {
public:
/// Root constructor, compiling or discarding primitives.
OptionScope(Compiler<Emitter> *Ctx, bool NewDiscardResult,
bool NewInitializing)
: Ctx(Ctx), OldDiscardResult(Ctx->DiscardResult),
OldInitializing(Ctx->Initializing) {
Ctx->DiscardResult = NewDiscardResult;
Ctx->Initializing = NewInitializing;
}
~OptionScope() {
Ctx->DiscardResult = OldDiscardResult;
Ctx->Initializing = OldInitializing;
}
private:
/// Parent context.
Compiler<Emitter> *Ctx;
/// Old discard flag to restore.
bool OldDiscardResult;
bool OldInitializing;
};
template <class Emitter>
bool InitLink::emit(Compiler<Emitter> *Ctx, const Expr *E) const {
switch (Kind) {
case K_This:
return Ctx->emitThis(E);
case K_Field:
// We're assuming there's a base pointer on the stack already.
return Ctx->emitGetPtrFieldPop(Offset, E);
case K_Temp:
return Ctx->emitGetPtrLocal(Offset, E);
case K_Decl:
return Ctx->visitDeclRef(D, E);
case K_Elem:
if (!Ctx->emitConstUint32(Offset, E))
return false;
return Ctx->emitArrayElemPtrPopUint32(E);
default:
llvm_unreachable("Unhandled InitLink kind");
}
return true;
}
/// Scope managing label targets.
template <class Emitter> class LabelScope {
public:
virtual ~LabelScope() {}
protected:
LabelScope(Compiler<Emitter> *Ctx) : Ctx(Ctx) {}
/// Compiler instance.
Compiler<Emitter> *Ctx;
};
/// Sets the context for break/continue statements.
template <class Emitter> class LoopScope final : public LabelScope<Emitter> {
public:
using LabelTy = typename Compiler<Emitter>::LabelTy;
using OptLabelTy = typename Compiler<Emitter>::OptLabelTy;
LoopScope(Compiler<Emitter> *Ctx, LabelTy BreakLabel, LabelTy ContinueLabel)
: LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel),
OldContinueLabel(Ctx->ContinueLabel) {
this->Ctx->BreakLabel = BreakLabel;
this->Ctx->ContinueLabel = ContinueLabel;
}
~LoopScope() {
this->Ctx->BreakLabel = OldBreakLabel;
this->Ctx->ContinueLabel = OldContinueLabel;
}
private:
OptLabelTy OldBreakLabel;
OptLabelTy OldContinueLabel;
};
// Sets the context for a switch scope, mapping labels.
template <class Emitter> class SwitchScope final : public LabelScope<Emitter> {
public:
using LabelTy = typename Compiler<Emitter>::LabelTy;
using OptLabelTy = typename Compiler<Emitter>::OptLabelTy;
using CaseMap = typename Compiler<Emitter>::CaseMap;
SwitchScope(Compiler<Emitter> *Ctx, CaseMap &&CaseLabels, LabelTy BreakLabel,
OptLabelTy DefaultLabel)
: LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel),
OldDefaultLabel(this->Ctx->DefaultLabel),
OldCaseLabels(std::move(this->Ctx->CaseLabels)) {
this->Ctx->BreakLabel = BreakLabel;
this->Ctx->DefaultLabel = DefaultLabel;
this->Ctx->CaseLabels = std::move(CaseLabels);
}
~SwitchScope() {
this->Ctx->BreakLabel = OldBreakLabel;
this->Ctx->DefaultLabel = OldDefaultLabel;
this->Ctx->CaseLabels = std::move(OldCaseLabels);
}
private:
OptLabelTy OldBreakLabel;
OptLabelTy OldDefaultLabel;
CaseMap OldCaseLabels;
};
template <class Emitter> class StmtExprScope final {
public:
StmtExprScope(Compiler<Emitter> *Ctx) : Ctx(Ctx), OldFlag(Ctx->InStmtExpr) {
Ctx->InStmtExpr = true;
}
~StmtExprScope() { Ctx->InStmtExpr = OldFlag; }
private:
Compiler<Emitter> *Ctx;
bool OldFlag;
};
} // namespace interp
} // namespace clang
template <class Emitter>
bool Compiler<Emitter>::VisitCastExpr(const CastExpr *CE) {
const Expr *SubExpr = CE->getSubExpr();
switch (CE->getCastKind()) {
case CK_LValueToRValue: {
if (DiscardResult)
return this->discard(SubExpr);
std::optional<PrimType> SubExprT = classify(SubExpr->getType());
// Prepare storage for the result.
if (!Initializing && !SubExprT) {
std::optional<unsigned> LocalIndex = allocateLocal(SubExpr);
if (!LocalIndex)
return false;
if (!this->emitGetPtrLocal(*LocalIndex, CE))
return false;
}
if (!this->visit(SubExpr))
return false;
if (SubExprT)
return this->emitLoadPop(*SubExprT, CE);
// If the subexpr type is not primitive, we need to perform a copy here.
// This happens for example in C when dereferencing a pointer of struct
// type.
return this->emitMemcpy(CE);
}
case CK_DerivedToBaseMemberPointer: {
assert(classifyPrim(CE->getType()) == PT_MemberPtr);
assert(classifyPrim(SubExpr->getType()) == PT_MemberPtr);
const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>();
const auto *ToMP = CE->getType()->getAs<MemberPointerType>();
unsigned DerivedOffset = collectBaseOffset(QualType(ToMP->getClass(), 0),
QualType(FromMP->getClass(), 0));
if (!this->delegate(SubExpr))
return false;
return this->emitGetMemberPtrBasePop(DerivedOffset, CE);
}
case CK_BaseToDerivedMemberPointer: {
assert(classifyPrim(CE) == PT_MemberPtr);
assert(classifyPrim(SubExpr) == PT_MemberPtr);
const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>();
const auto *ToMP = CE->getType()->getAs<MemberPointerType>();
unsigned DerivedOffset = collectBaseOffset(QualType(FromMP->getClass(), 0),
QualType(ToMP->getClass(), 0));
if (!this->delegate(SubExpr))
return false;
return this->emitGetMemberPtrBasePop(-DerivedOffset, CE);
}
case CK_UncheckedDerivedToBase:
case CK_DerivedToBase: {
if (!this->delegate(SubExpr))
return false;
const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * {
if (const auto *PT = dyn_cast<PointerType>(Ty))
return PT->getPointeeType()->getAsCXXRecordDecl();
return Ty->getAsCXXRecordDecl();
};
// FIXME: We can express a series of non-virtual casts as a single
// GetPtrBasePop op.
QualType CurType = SubExpr->getType();
for (const CXXBaseSpecifier *B : CE->path()) {
if (B->isVirtual()) {
if (!this->emitGetPtrVirtBasePop(extractRecordDecl(B->getType()), CE))
return false;
CurType = B->getType();
} else {
unsigned DerivedOffset = collectBaseOffset(B->getType(), CurType);
if (!this->emitGetPtrBasePop(DerivedOffset, CE))
return false;
CurType = B->getType();
}
}
return true;
}
case CK_BaseToDerived: {
if (!this->delegate(SubExpr))
return false;
unsigned DerivedOffset =
collectBaseOffset(SubExpr->getType(), CE->getType());
return this->emitGetPtrDerivedPop(DerivedOffset, CE);
}
case CK_FloatingCast: {
// HLSL uses CK_FloatingCast to cast between vectors.
if (!SubExpr->getType()->isFloatingType() ||
!CE->getType()->isFloatingType())
return false;
if (DiscardResult)
return this->discard(SubExpr);
if (!this->visit(SubExpr))
return false;
const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType());
return this->emitCastFP(TargetSemantics, getRoundingMode(CE), CE);
}
case CK_IntegralToFloating: {
if (DiscardResult)
return this->discard(SubExpr);
std::optional<PrimType> FromT = classify(SubExpr->getType());
if (!FromT)
return false;
if (!this->visit(SubExpr))
return false;
const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType());
llvm::RoundingMode RM = getRoundingMode(CE);
return this->emitCastIntegralFloating(*FromT, TargetSemantics, RM, CE);
}
case CK_FloatingToBoolean:
case CK_FloatingToIntegral: {
if (DiscardResult)
return this->discard(SubExpr);
std::optional<PrimType> ToT = classify(CE->getType());
if (!ToT)
return false;
if (!this->visit(SubExpr))
return false;
if (ToT == PT_IntAP)
return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(CE->getType()),
CE);
if (ToT == PT_IntAPS)
return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(CE->getType()),
CE);
return this->emitCastFloatingIntegral(*ToT, CE);
}
case CK_NullToPointer:
case CK_NullToMemberPointer: {
if (!this->discard(SubExpr))
return false;
if (DiscardResult)
return true;
const Descriptor *Desc = nullptr;
const QualType PointeeType = CE->getType()->getPointeeType();
if (!PointeeType.isNull()) {
if (std::optional<PrimType> T = classify(PointeeType))
Desc = P.createDescriptor(SubExpr, *T);
else
Desc = P.createDescriptor(SubExpr, PointeeType.getTypePtr(),
std::nullopt, true, false,
/*IsMutable=*/false, nullptr);
}
return this->emitNull(classifyPrim(CE->getType()), Desc, CE);
}
case CK_PointerToIntegral: {
if (DiscardResult)
return this->discard(SubExpr);
if (!this->visit(SubExpr))
return false;
// If SubExpr doesn't result in a pointer, make it one.
if (PrimType FromT = classifyPrim(SubExpr->getType()); FromT != PT_Ptr) {
assert(isPtrType(FromT));
if (!this->emitDecayPtr(FromT, PT_Ptr, CE))
return false;
}
PrimType T = classifyPrim(CE->getType());
if (T == PT_IntAP)
return this->emitCastPointerIntegralAP(Ctx.getBitWidth(CE->getType()),
CE);
if (T == PT_IntAPS)
return this->emitCastPointerIntegralAPS(Ctx.getBitWidth(CE->getType()),
CE);
return this->emitCastPointerIntegral(T, CE);
}
case CK_ArrayToPointerDecay: {
if (!this->visit(SubExpr))
return false;
if (!this->emitArrayDecay(CE))
return false;
if (DiscardResult)
return this->emitPopPtr(CE);
return true;
}
case CK_IntegralToPointer: {
QualType IntType = SubExpr->getType();
assert(IntType->isIntegralOrEnumerationType());
if (!this->visit(SubExpr))
return false;
// FIXME: I think the discard is wrong since the int->ptr cast might cause a
// diagnostic.
PrimType T = classifyPrim(IntType);
if (DiscardResult)
return this->emitPop(T, CE);
QualType PtrType = CE->getType();
const Descriptor *Desc;
if (std::optional<PrimType> T = classify(PtrType->getPointeeType()))
Desc = P.createDescriptor(SubExpr, *T);
else if (PtrType->getPointeeType()->isVoidType())
Desc = nullptr;
else
Desc = P.createDescriptor(CE, PtrType->getPointeeType().getTypePtr(),
Descriptor::InlineDescMD, true, false,
/*IsMutable=*/false, nullptr);
if (!this->emitGetIntPtr(T, Desc, CE))
return false;
PrimType DestPtrT = classifyPrim(PtrType);
if (DestPtrT == PT_Ptr)
return true;
// In case we're converting the integer to a non-Pointer.
return this->emitDecayPtr(PT_Ptr, DestPtrT, CE);
}
case CK_AtomicToNonAtomic:
case CK_ConstructorConversion:
case CK_FunctionToPointerDecay:
case CK_NonAtomicToAtomic:
case CK_NoOp:
case CK_UserDefinedConversion:
case CK_AddressSpaceConversion:
return this->delegate(SubExpr);
case CK_BitCast: {
// Reject bitcasts to atomic types.
if (CE->getType()->isAtomicType()) {
if (!this->discard(SubExpr))
return false;
return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, CE);
}
if (DiscardResult)
return this->discard(SubExpr);
QualType SubExprTy = SubExpr->getType();
std::optional<PrimType> FromT = classify(SubExprTy);
std::optional<PrimType> ToT = classify(CE->getType());
if (!FromT || !ToT)
return false;
assert(isPtrType(*FromT));
assert(isPtrType(*ToT));
if (FromT == ToT) {
if (CE->getType()->isVoidPointerType())
return this->delegate(SubExpr);
if (!this->visit(SubExpr))
return false;
if (FromT == PT_Ptr)
return this->emitPtrPtrCast(SubExprTy->isVoidPointerType(), CE);
return true;
}
if (!this->visit(SubExpr))
return false;
return this->emitDecayPtr(*FromT, *ToT, CE);
}
case CK_IntegralToBoolean:
case CK_BooleanToSignedIntegral:
case CK_IntegralCast: {
if (DiscardResult)
return this->discard(SubExpr);
std::optional<PrimType> FromT = classify(SubExpr->getType());
std::optional<PrimType> ToT = classify(CE->getType());
if (!FromT || !ToT)
return false;
if (!this->visit(SubExpr))
return false;
// Possibly diagnose casts to enum types if the target type does not
// have a fixed size.
if (Ctx.getLangOpts().CPlusPlus && CE->getType()->isEnumeralType()) {
if (const auto *ET = CE->getType().getCanonicalType()->getAs<EnumType>();
ET && !ET->getDecl()->isFixed()) {
if (!this->emitCheckEnumValue(*FromT, ET->getDecl(), CE))
return false;
}
}
auto maybeNegate = [&]() -> bool {
if (CE->getCastKind() == CK_BooleanToSignedIntegral)
return this->emitNeg(*ToT, CE);
return true;
};
if (ToT == PT_IntAP)
return this->emitCastAP(*FromT, Ctx.getBitWidth(CE->getType()), CE) &&
maybeNegate();
if (ToT == PT_IntAPS)
return this->emitCastAPS(*FromT, Ctx.getBitWidth(CE->getType()), CE) &&
maybeNegate();
if (FromT == ToT)
return true;
if (!this->emitCast(*FromT, *ToT, CE))
return false;
return maybeNegate();
}
case CK_PointerToBoolean:
case CK_MemberPointerToBoolean: {
PrimType PtrT = classifyPrim(SubExpr->getType());
// Just emit p != nullptr for this.
if (!this->visit(SubExpr))
return false;
if (!this->emitNull(PtrT, nullptr, CE))
return false;
return this->emitNE(PtrT, CE);
}
case CK_IntegralComplexToBoolean:
case CK_FloatingComplexToBoolean: {
if (DiscardResult)
return this->discard(SubExpr);
if (!this->visit(SubExpr))
return false;
return this->emitComplexBoolCast(SubExpr);
}
case CK_IntegralComplexToReal:
case CK_FloatingComplexToReal:
return this->emitComplexReal(SubExpr);
case CK_IntegralRealToComplex:
case CK_FloatingRealToComplex: {
// We're creating a complex value here, so we need to
// allocate storage for it.
if (!Initializing) {
unsigned LocalIndex = allocateTemporary(CE);
if (!this->emitGetPtrLocal(LocalIndex, CE))
return false;
}
// Init the complex value to {SubExpr, 0}.
if (!this->visitArrayElemInit(0, SubExpr))
return false;
// Zero-init the second element.
PrimType T = classifyPrim(SubExpr->getType());
if (!this->visitZeroInitializer(T, SubExpr->getType(), SubExpr))
return false;
return this->emitInitElem(T, 1, SubExpr);
}
case CK_IntegralComplexCast:
case CK_FloatingComplexCast:
case CK_IntegralComplexToFloatingComplex:
case CK_FloatingComplexToIntegralComplex: {
assert(CE->getType()->isAnyComplexType());
assert(SubExpr->getType()->isAnyComplexType());
if (DiscardResult)
return this->discard(SubExpr);
if (!Initializing) {
std::optional<unsigned> LocalIndex = allocateLocal(CE);
if (!LocalIndex)
return false;
if (!this->emitGetPtrLocal(*LocalIndex, CE))
return false;
}
// Location for the SubExpr.
// Since SubExpr is of complex type, visiting it results in a pointer
// anyway, so we just create a temporary pointer variable.
unsigned SubExprOffset = allocateLocalPrimitive(
SubExpr, PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false);
if (!this->visit(SubExpr))
return false;
if (!this->emitSetLocal(PT_Ptr, SubExprOffset, CE))
return false;
PrimType SourceElemT = classifyComplexElementType(SubExpr->getType());
QualType DestElemType =
CE->getType()->getAs<ComplexType>()->getElementType();
PrimType DestElemT = classifyPrim(DestElemType);
// Cast both elements individually.
for (unsigned I = 0; I != 2; ++I) {
if (!this->emitGetLocal(PT_Ptr, SubExprOffset, CE))
return false;
if (!this->emitArrayElemPop(SourceElemT, I, CE))
return false;
// Do the cast.
if (!this->emitPrimCast(SourceElemT, DestElemT, DestElemType, CE))
return false;
// Save the value.
if (!this->emitInitElem(DestElemT, I, CE))
return false;
}
return true;
}
case CK_VectorSplat: {
assert(!classify(CE->getType()));
assert(classify(SubExpr->getType()));
assert(CE->getType()->isVectorType());
if (DiscardResult)
return this->discard(SubExpr);
if (!Initializing) {
std::optional<unsigned> LocalIndex = allocateLocal(CE);
if (!LocalIndex)
return false;
if (!this->emitGetPtrLocal(*LocalIndex, CE))
return false;
}
const auto *VT = CE->getType()->getAs<VectorType>();
PrimType ElemT = classifyPrim(SubExpr->getType());
unsigned ElemOffset = allocateLocalPrimitive(
SubExpr, ElemT, /*IsConst=*/true, /*IsExtended=*/false);
// Prepare a local variable for the scalar value.
if (!this->visit(SubExpr))
return false;
if (classifyPrim(SubExpr) == PT_Ptr && !this->emitLoadPop(ElemT, CE))
return false;
if (!this->emitSetLocal(ElemT, ElemOffset, CE))
return false;
for (unsigned I = 0; I != VT->getNumElements(); ++I) {
if (!this->emitGetLocal(ElemT, ElemOffset, CE))
return false;
if (!this->emitInitElem(ElemT, I, CE))
return false;
}
return true;
}
case CK_ToVoid:
return discard(SubExpr);
default:
return this->emitInvalid(CE);
}
llvm_unreachable("Unhandled clang::CastKind enum");
}
template <class Emitter>
bool Compiler<Emitter>::VisitIntegerLiteral(const IntegerLiteral *LE) {
if (DiscardResult)
return true;
return this->emitConst(LE->getValue(), LE);
}
template <class Emitter>
bool Compiler<Emitter>::VisitFloatingLiteral(const FloatingLiteral *E) {
if (DiscardResult)
return true;
return this->emitConstFloat(E->getValue(), E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
assert(E->getType()->isAnyComplexType());
if (DiscardResult)
return true;
if (!Initializing) {
unsigned LocalIndex = allocateTemporary(E);
if (!this->emitGetPtrLocal(LocalIndex, E))
return false;
}
const Expr *SubExpr = E->getSubExpr();
PrimType SubExprT = classifyPrim(SubExpr->getType());
if (!this->visitZeroInitializer(SubExprT, SubExpr->getType(), SubExpr))
return false;
if (!this->emitInitElem(SubExprT, 0, SubExpr))
return false;
return this->visitArrayElemInit(1, SubExpr);
}
template <class Emitter>
bool Compiler<Emitter>::VisitParenExpr(const ParenExpr *E) {
return this->delegate(E->getSubExpr());
}
template <class Emitter>
bool Compiler<Emitter>::VisitBinaryOperator(const BinaryOperator *BO) {
// Need short-circuiting for these.
if (BO->isLogicalOp())
return this->VisitLogicalBinOp(BO);
const Expr *LHS = BO->getLHS();
const Expr *RHS = BO->getRHS();
// Handle comma operators. Just discard the LHS
// and delegate to RHS.
if (BO->isCommaOp()) {
if (!this->discard(LHS))
return false;
if (RHS->getType()->isVoidType())
return this->discard(RHS);
return this->delegate(RHS);
}
if (BO->getType()->isAnyComplexType())
return this->VisitComplexBinOp(BO);
if ((LHS->getType()->isAnyComplexType() ||
RHS->getType()->isAnyComplexType()) &&
BO->isComparisonOp())
return this->emitComplexComparison(LHS, RHS, BO);
if (BO->isPtrMemOp()) {
if (!this->visit(LHS))
return false;
if (!this->visit(RHS))
return false;
if (!this->emitToMemberPtr(BO))
return false;
if (classifyPrim(BO) == PT_MemberPtr)
return true;
if (!this->emitCastMemberPtrPtr(BO))
return false;
return DiscardResult ? this->emitPopPtr(BO) : true;
}
// Typecheck the args.
std::optional<PrimType> LT = classify(LHS);
std::optional<PrimType> RT = classify(RHS);
std::optional<PrimType> T = classify(BO->getType());
// Special case for C++'s three-way/spaceship operator <=>, which
// returns a std::{strong,weak,partial}_ordering (which is a class, so doesn't
// have a PrimType).
if (!T && BO->getOpcode() == BO_Cmp) {
if (DiscardResult)
return true;
const ComparisonCategoryInfo *CmpInfo =
Ctx.getASTContext().CompCategories.lookupInfoForType(BO->getType());
assert(CmpInfo);
// We need a temporary variable holding our return value.
if (!Initializing) {
std::optional<unsigned> ResultIndex = this->allocateLocal(BO);
if (!this->emitGetPtrLocal(*ResultIndex, BO))
return false;
}
if (!visit(LHS) || !visit(RHS))
return false;
return this->emitCMP3(*LT, CmpInfo, BO);
}
if (!LT || !RT || !T)
return false;
// Pointer arithmetic special case.
if (BO->getOpcode() == BO_Add || BO->getOpcode() == BO_Sub) {
if (isPtrType(*T) || (isPtrType(*LT) && isPtrType(*RT)))
return this->VisitPointerArithBinOp(BO);
}
// Assignmentes require us to evalute the RHS first.
if (BO->getOpcode() == BO_Assign) {
if (!visit(RHS) || !visit(LHS))
return false;
if (!this->emitFlip(*LT, *RT, BO))
return false;
} else {
if (!visit(LHS) || !visit(RHS))
return false;
}
// For languages such as C, cast the result of one
// of our comparision opcodes to T (which is usually int).
auto MaybeCastToBool = [this, T, BO](bool Result) {
if (!Result)
return false;
if (DiscardResult)
return this->emitPop(*T, BO);
if (T != PT_Bool)
return this->emitCast(PT_Bool, *T, BO);
return true;
};
auto Discard = [this, T, BO](bool Result) {
if (!Result)
return false;
return DiscardResult ? this->emitPop(*T, BO) : true;
};
switch (BO->getOpcode()) {
case BO_EQ:
return MaybeCastToBool(this->emitEQ(*LT, BO));
case BO_NE:
return MaybeCastToBool(this->emitNE(*LT, BO));
case BO_LT:
return MaybeCastToBool(this->emitLT(*LT, BO));
case BO_LE:
return MaybeCastToBool(this->emitLE(*LT, BO));
case BO_GT:
return MaybeCastToBool(this->emitGT(*LT, BO));
case BO_GE:
return MaybeCastToBool(this->emitGE(*LT, BO));
case BO_Sub:
if (BO->getType()->isFloatingType())
return Discard(this->emitSubf(getRoundingMode(BO), BO));
return Discard(this->emitSub(*T, BO));
case BO_Add:
if (BO->getType()->isFloatingType())
return Discard(this->emitAddf(getRoundingMode(BO), BO));
return Discard(this->emitAdd(*T, BO));
case BO_Mul:
if (BO->getType()->isFloatingType())
return Discard(this->emitMulf(getRoundingMode(BO), BO));
return Discard(this->emitMul(*T, BO));
case BO_Rem:
return Discard(this->emitRem(*T, BO));
case BO_Div:
if (BO->getType()->isFloatingType())
return Discard(this->emitDivf(getRoundingMode(BO), BO));
return Discard(this->emitDiv(*T, BO));
case BO_Assign:
if (DiscardResult)
return LHS->refersToBitField() ? this->emitStoreBitFieldPop(*T, BO)
: this->emitStorePop(*T, BO);
if (LHS->refersToBitField()) {
if (!this->emitStoreBitField(*T, BO))
return false;
} else {
if (!this->emitStore(*T, BO))
return false;
}
// Assignments aren't necessarily lvalues in C.
// Load from them in that case.
if (!BO->isLValue())
return this->emitLoadPop(*T, BO);
return true;
case BO_And:
return Discard(this->emitBitAnd(*T, BO));
case BO_Or:
return Discard(this->emitBitOr(*T, BO));
case BO_Shl:
return Discard(this->emitShl(*LT, *RT, BO));
case BO_Shr:
return Discard(this->emitShr(*LT, *RT, BO));
case BO_Xor:
return Discard(this->emitBitXor(*T, BO));
case BO_LOr:
case BO_LAnd:
llvm_unreachable("Already handled earlier");
default:
return false;
}
llvm_unreachable("Unhandled binary op");
}
/// Perform addition/subtraction of a pointer and an integer or
/// subtraction of two pointers.
template <class Emitter>
bool Compiler<Emitter>::VisitPointerArithBinOp(const BinaryOperator *E) {
BinaryOperatorKind Op = E->getOpcode();
const Expr *LHS = E->getLHS();
const Expr *RHS = E->getRHS();
if ((Op != BO_Add && Op != BO_Sub) ||
(!LHS->getType()->isPointerType() && !RHS->getType()->isPointerType()))
return false;
std::optional<PrimType> LT = classify(LHS);
std::optional<PrimType> RT = classify(RHS);
if (!LT || !RT)
return false;
// Visit the given pointer expression and optionally convert to a PT_Ptr.
auto visitAsPointer = [&](const Expr *E, PrimType T) -> bool {
if (!this->visit(E))
return false;
if (T != PT_Ptr)
return this->emitDecayPtr(T, PT_Ptr, E);
return true;
};
if (LHS->getType()->isPointerType() && RHS->getType()->isPointerType()) {
if (Op != BO_Sub)
return false;
assert(E->getType()->isIntegerType());
if (!visitAsPointer(RHS, *RT) || !visitAsPointer(LHS, *LT))
return false;
return this->emitSubPtr(classifyPrim(E->getType()), E);
}
PrimType OffsetType;
if (LHS->getType()->isIntegerType()) {
if (!visitAsPointer(RHS, *RT))
return false;
if (!this->visit(LHS))
return false;
OffsetType = *LT;
} else if (RHS->getType()->isIntegerType()) {
if (!visitAsPointer(LHS, *LT))
return false;
if (!this->visit(RHS))
return false;
OffsetType = *RT;
} else {
return false;
}
// Do the operation and optionally transform to
// result pointer type.
if (Op == BO_Add) {
if (!this->emitAddOffset(OffsetType, E))
return false;
if (classifyPrim(E) != PT_Ptr)
return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E);
return true;
} else if (Op == BO_Sub) {
if (!this->emitSubOffset(OffsetType, E))
return false;
if (classifyPrim(E) != PT_Ptr)
return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E);
return true;
}
return false;
}
template <class Emitter>
bool Compiler<Emitter>::VisitLogicalBinOp(const BinaryOperator *E) {
assert(E->isLogicalOp());
BinaryOperatorKind Op = E->getOpcode();
const Expr *LHS = E->getLHS();
const Expr *RHS = E->getRHS();
std::optional<PrimType> T = classify(E->getType());
if (Op == BO_LOr) {
// Logical OR. Visit LHS and only evaluate RHS if LHS was FALSE.
LabelTy LabelTrue = this->getLabel();
LabelTy LabelEnd = this->getLabel();
if (!this->visitBool(LHS))
return false;
if (!this->jumpTrue(LabelTrue))
return false;
if (!this->visitBool(RHS))
return false;
if (!this->jump(LabelEnd))
return false;
this->emitLabel(LabelTrue);
this->emitConstBool(true, E);
this->fallthrough(LabelEnd);
this->emitLabel(LabelEnd);
} else {
assert(Op == BO_LAnd);
// Logical AND.
// Visit LHS. Only visit RHS if LHS was TRUE.
LabelTy LabelFalse = this->getLabel();
LabelTy LabelEnd = this->getLabel();
if (!this->visitBool(LHS))
return false;
if (!this->jumpFalse(LabelFalse))
return false;
if (!this->visitBool(RHS))
return false;
if (!this->jump(LabelEnd))
return false;
this->emitLabel(LabelFalse);
this->emitConstBool(false, E);
this->fallthrough(LabelEnd);
this->emitLabel(LabelEnd);
}
if (DiscardResult)
return this->emitPopBool(E);
// For C, cast back to integer type.
assert(T);
if (T != PT_Bool)
return this->emitCast(PT_Bool, *T, E);
return true;
}
template <class Emitter>
bool Compiler<Emitter>::VisitComplexBinOp(const BinaryOperator *E) {
// Prepare storage for result.
if (!Initializing) {
unsigned LocalIndex = allocateTemporary(E);
if (!this->emitGetPtrLocal(LocalIndex, E))
return false;
}
// Both LHS and RHS might _not_ be of complex type, but one of them
// needs to be.
const Expr *LHS = E->getLHS();
const Expr *RHS = E->getRHS();
PrimType ResultElemT = this->classifyComplexElementType(E->getType());
unsigned ResultOffset = ~0u;
if (!DiscardResult)
ResultOffset = this->allocateLocalPrimitive(E, PT_Ptr, true, false);
// Save result pointer in ResultOffset
if (!this->DiscardResult) {
if (!this->emitDupPtr(E))
return false;
if (!this->emitSetLocal(PT_Ptr, ResultOffset, E))
return false;
}
QualType LHSType = LHS->getType();
if (const auto *AT = LHSType->getAs<AtomicType>())
LHSType = AT->getValueType();
QualType RHSType = RHS->getType();
if (const auto *AT = RHSType->getAs<AtomicType>())
RHSType = AT->getValueType();
bool LHSIsComplex = LHSType->isAnyComplexType();
unsigned LHSOffset;
bool RHSIsComplex = RHSType->isAnyComplexType();
// For ComplexComplex Mul, we have special ops to make their implementation
// easier.
BinaryOperatorKind Op = E->getOpcode();
if (Op == BO_Mul && LHSIsComplex && RHSIsComplex) {
assert(classifyPrim(LHSType->getAs<ComplexType>()->getElementType()) ==
classifyPrim(RHSType->getAs<ComplexType>()->getElementType()));
PrimType ElemT =
classifyPrim(LHSType->getAs<ComplexType>()->getElementType());
if (!this->visit(LHS))
return false;
if (!this->visit(RHS))
return false;
return this->emitMulc(ElemT, E);
}
if (Op == BO_Div && RHSIsComplex) {
QualType ElemQT = RHSType->getAs<ComplexType>()->getElementType();
PrimType ElemT = classifyPrim(ElemQT);
// If the LHS is not complex, we still need to do the full complex
// division, so just stub create a complex value and stub it out with
// the LHS and a zero.
if (!LHSIsComplex) {
// This is using the RHS type for the fake-complex LHS.
LHSOffset = allocateTemporary(RHS);
if (!this->emitGetPtrLocal(LHSOffset, E))
return false;
if (!this->visit(LHS))
return false;
// real is LHS
if (!this->emitInitElem(ElemT, 0, E))
return false;
// imag is zero
if (!this->visitZeroInitializer(ElemT, ElemQT, E))
return false;
if (!this->emitInitElem(ElemT, 1, E))
return false;
} else {
if (!this->visit(LHS))
return false;
}
if (!this->visit(RHS))
return false;
return this->emitDivc(ElemT, E);
}
// Evaluate LHS and save value to LHSOffset.
if (LHSType->isAnyComplexType()) {
LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, true, false);
if (!this->visit(LHS))
return false;
if (!this->emitSetLocal(PT_Ptr, LHSOffset, E))
return false;
} else {
PrimType LHST = classifyPrim(LHSType);
LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false);
if (!this->visit(LHS))
return false;
if (!this->emitSetLocal(LHST, LHSOffset, E))
return false;
}
// Same with RHS.
unsigned RHSOffset;
if (RHSType->isAnyComplexType()) {
RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, true, false);
if (!this->visit(RHS))
return false;
if (!this->emitSetLocal(PT_Ptr, RHSOffset, E))
return false;
} else {
PrimType RHST = classifyPrim(RHSType);
RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false);
if (!this->visit(RHS))
return false;
if (!this->emitSetLocal(RHST, RHSOffset, E))
return false;
}
// For both LHS and RHS, either load the value from the complex pointer, or
// directly from the local variable. For index 1 (i.e. the imaginary part),
// just load 0 and do the operation anyway.
auto loadComplexValue = [this](bool IsComplex, bool LoadZero,
unsigned ElemIndex, unsigned Offset,
const Expr *E) -> bool {
if (IsComplex) {
if (!this->emitGetLocal(PT_Ptr, Offset, E))
return false;
return this->emitArrayElemPop(classifyComplexElementType(E->getType()),
ElemIndex, E);
}
if (ElemIndex == 0 || !LoadZero)
return this->emitGetLocal(classifyPrim(E->getType()), Offset, E);
return this->visitZeroInitializer(classifyPrim(E->getType()), E->getType(),
E);
};
// Now we can get pointers to the LHS and RHS from the offsets above.
for (unsigned ElemIndex = 0; ElemIndex != 2; ++ElemIndex) {
// Result pointer for the store later.
if (!this->DiscardResult) {
if (!this->emitGetLocal(PT_Ptr, ResultOffset, E))
return false;
}
// The actual operation.
switch (Op) {
case BO_Add:
if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS))
return false;
if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS))
return false;
if (ResultElemT == PT_Float) {
if (!this->emitAddf(getRoundingMode(E), E))
return false;
} else {
if (!this->emitAdd(ResultElemT, E))
return false;
}
break;
case BO_Sub:
if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS))
return false;
if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS))
return false;
if (ResultElemT == PT_Float) {
if (!this->emitSubf(getRoundingMode(E), E))
return false;
} else {
if (!this->emitSub(ResultElemT, E))
return false;
}
break;
case BO_Mul:
if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS))
return false;
if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS))
return false;
if (ResultElemT == PT_Float) {
if (!this->emitMulf(getRoundingMode(E), E))
return false;
} else {
if (!this->emitMul(ResultElemT, E))
return false;
}
break;
case BO_Div:
assert(!RHSIsComplex);
if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS))
return false;
if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS))
return false;
if (ResultElemT == PT_Float) {
if (!this->emitDivf(getRoundingMode(E), E))
return false;
} else {
if (!this->emitDiv(ResultElemT, E))
return false;
}
break;
default:
return false;
}
if (!this->DiscardResult) {
// Initialize array element with the value we just computed.
if (!this->emitInitElemPop(ResultElemT, ElemIndex, E))
return false;
} else {
if (!this->emitPop(ResultElemT, E))
return false;
}
}
return true;
}
template <class Emitter>
bool Compiler<Emitter>::VisitImplicitValueInitExpr(
const ImplicitValueInitExpr *E) {
QualType QT = E->getType();
if (std::optional<PrimType> T = classify(QT))
return this->visitZeroInitializer(*T, QT, E);
if (QT->isRecordType()) {
const RecordDecl *RD = QT->getAsRecordDecl();
assert(RD);
if (RD->isInvalidDecl())
return false;
if (RD->isUnion()) {
// C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
// object's first non-static named data member is zero-initialized
// FIXME
return false;
}
if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
CXXRD && CXXRD->getNumVBases() > 0) {
// TODO: Diagnose.
return false;
}
const Record *R = getRecord(QT);
if (!R)
return false;
assert(Initializing);
return this->visitZeroRecordInitializer(R, E);
}
if (QT->isIncompleteArrayType())
return true;
if (QT->isArrayType()) {
const ArrayType *AT = QT->getAsArrayTypeUnsafe();
assert(AT);
const auto *CAT = cast<ConstantArrayType>(AT);
size_t NumElems = CAT->getZExtSize();
PrimType ElemT = classifyPrim(CAT->getElementType());
for (size_t I = 0; I != NumElems; ++I) {
if (!this->visitZeroInitializer(ElemT, CAT->getElementType(), E))
return false;
if (!this->emitInitElem(ElemT, I, E))
return false;
}
return true;
}
if (const auto *ComplexTy = E->getType()->getAs<ComplexType>()) {
assert(Initializing);
QualType ElemQT = ComplexTy->getElementType();
PrimType ElemT = classifyPrim(ElemQT);
for (unsigned I = 0; I < 2; ++I) {
if (!this->visitZeroInitializer(ElemT, ElemQT, E))
return false;
if (!this->emitInitElem(ElemT, I, E))
return false;
}
return true;
}
if (const auto *VecT = E->getType()->getAs<VectorType>()) {
unsigned NumVecElements = VecT->getNumElements();
QualType ElemQT = VecT->getElementType();
PrimType ElemT = classifyPrim(ElemQT);
for (unsigned I = 0; I < NumVecElements; ++I) {
if (!this->visitZeroInitializer(ElemT, ElemQT, E))
return false;
if (!this->emitInitElem(ElemT, I, E))
return false;
}
return true;
}
return false;
}
template <class Emitter>
bool Compiler<Emitter>::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
const Expr *LHS = E->getLHS();
const Expr *RHS = E->getRHS();
const Expr *Index = E->getIdx();
if (DiscardResult)
return this->discard(LHS) && this->discard(RHS);
// C++17's rules require us to evaluate the LHS first, regardless of which
// side is the base.
bool Success = true;
for (const Expr *SubExpr : {LHS, RHS}) {
if (!this->visit(SubExpr))
Success = false;
}
if (!Success)
return false;
PrimType IndexT = classifyPrim(Index->getType());
// If the index is first, we need to change that.
if (LHS == Index) {
if (!this->emitFlip(PT_Ptr, IndexT, E))
return false;
}
return this->emitArrayElemPtrPop(IndexT, E);
}
template <class Emitter>
bool Compiler<Emitter>::visitInitList(ArrayRef<const Expr *> Inits,
const Expr *ArrayFiller, const Expr *E) {
// Handle discarding first.
if (DiscardResult) {
for (const Expr *Init : Inits) {
if (!this->discard(Init))
return false;
}
return true;
}
QualType QT = E->getType();
if (const auto *AT = QT->getAs<AtomicType>())
QT = AT->getValueType();
if (QT->isVoidType())
return this->emitInvalid(E);
// Primitive values.
if (std::optional<PrimType> T = classify(QT)) {
assert(!DiscardResult);
if (Inits.size() == 0)
return this->visitZeroInitializer(*T, QT, E);
assert(Inits.size() == 1);
return this->delegate(Inits[0]);
}
if (QT->isRecordType()) {
const Record *R = getRecord(QT);
if (Inits.size() == 1 && E->getType() == Inits[0]->getType())
return this->delegate(Inits[0]);
auto initPrimitiveField = [=](const Record::Field *FieldToInit,
const Expr *Init, PrimType T) -> bool {
InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init));
if (!this->visit(Init))
return false;
if (FieldToInit->isBitField())
return this->emitInitBitField(T, FieldToInit, E);
return this->emitInitField(T, FieldToInit->Offset, E);
};
auto initCompositeField = [=](const Record::Field *FieldToInit,
const Expr *Init) -> bool {
InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init));
InitLinkScope<Emitter> ILS(this, InitLink::Field(FieldToInit->Offset));
// Non-primitive case. Get a pointer to the field-to-initialize
// on the stack and recurse into visitInitializer().
if (!this->emitGetPtrField(FieldToInit->Offset, Init))
return false;
if (!this->visitInitializer(Init))
return false;
return this->emitPopPtr(E);
};
if (R->isUnion()) {
if (Inits.size() == 0) {
if (!this->visitZeroRecordInitializer(R, E))
return false;
} else {
const Expr *Init = Inits[0];
const FieldDecl *FToInit = nullptr;
if (const auto *ILE = dyn_cast<InitListExpr>(E))
FToInit = ILE->getInitializedFieldInUnion();
else
FToInit = cast<CXXParenListInitExpr>(E)->getInitializedFieldInUnion();
const Record::Field *FieldToInit = R->getField(FToInit);
if (std::optional<PrimType> T = classify(Init)) {
if (!initPrimitiveField(FieldToInit, Init, *T))
return false;
} else {
if (!initCompositeField(FieldToInit, Init))
return false;
}
}
return this->emitFinishInit(E);
}
assert(!R->isUnion());
unsigned InitIndex = 0;
for (const Expr *Init : Inits) {
// Skip unnamed bitfields.
while (InitIndex < R->getNumFields() &&
R->getField(InitIndex)->Decl->isUnnamedBitField())
++InitIndex;
if (std::optional<PrimType> T = classify(Init)) {
const Record::Field *FieldToInit = R->getField(InitIndex);
if (!initPrimitiveField(FieldToInit, Init, *T))
return false;
++InitIndex;
} else {
// Initializer for a direct base class.
if (const Record::Base *B = R->getBase(Init->getType())) {
if (!this->emitGetPtrBase(B->Offset, Init))
return false;
if (!this->visitInitializer(Init))
return false;
if (!this->emitFinishInitPop(E))
return false;
// Base initializers don't increase InitIndex, since they don't count
// into the Record's fields.
} else {
const Record::Field *FieldToInit = R->getField(InitIndex);
if (!initCompositeField(FieldToInit, Init))
return false;
++InitIndex;
}
}
}
return this->emitFinishInit(E);
}
if (QT->isArrayType()) {
if (Inits.size() == 1 && QT == Inits[0]->getType())
return this->delegate(Inits[0]);
unsigned ElementIndex = 0;
for (const Expr *Init : Inits) {
if (const auto *EmbedS =
dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) {
PrimType TargetT = classifyPrim(Init->getType());
auto Eval = [&](const Expr *Init, unsigned ElemIndex) {
PrimType InitT = classifyPrim(Init->getType());
if (!this->visit(Init))
return false;
if (InitT != TargetT) {
if (!this->emitCast(InitT, TargetT, E))
return false;
}
return this->emitInitElem(TargetT, ElemIndex, Init);
};
if (!EmbedS->doForEachDataElement(Eval, ElementIndex))
return false;
} else {
if (!this->visitArrayElemInit(ElementIndex, Init))
return false;
++ElementIndex;
}
}
// Expand the filler expression.
// FIXME: This should go away.
if (ArrayFiller) {
const ConstantArrayType *CAT =
Ctx.getASTContext().getAsConstantArrayType(QT);
uint64_t NumElems = CAT->getZExtSize();
for (; ElementIndex != NumElems; ++ElementIndex) {
if (!this->visitArrayElemInit(ElementIndex, ArrayFiller))
return false;
}
}
return this->emitFinishInit(E);
}
if (const auto *ComplexTy = QT->getAs<ComplexType>()) {
unsigned NumInits = Inits.size();
if (NumInits == 1)
return this->delegate(Inits[0]);
QualType ElemQT = ComplexTy->getElementType();
PrimType ElemT = classifyPrim(ElemQT);
if (NumInits == 0) {
// Zero-initialize both elements.
for (unsigned I = 0; I < 2; ++I) {
if (!this->visitZeroInitializer(ElemT, ElemQT, E))
return false;
if (!this->emitInitElem(ElemT, I, E))
return false;
}
} else if (NumInits == 2) {
unsigned InitIndex = 0;
for (const Expr *Init : Inits) {
if (!this->visit(Init))
return false;
if (!this->emitInitElem(ElemT, InitIndex, E))
return false;
++InitIndex;
}
}
return true;
}
if (const auto *VecT = QT->getAs<VectorType>()) {
unsigned NumVecElements = VecT->getNumElements();
assert(NumVecElements >= Inits.size());
QualType ElemQT = VecT->getElementType();
PrimType ElemT = classifyPrim(ElemQT);
// All initializer elements.
unsigned InitIndex = 0;
for (const Expr *Init : Inits) {
if (!this->visit(Init))
return false;
// If the initializer is of vector type itself, we have to deconstruct
// that and initialize all the target fields from the initializer fields.
if (const auto *InitVecT = Init->getType()->getAs<VectorType>()) {
if (!this->emitCopyArray(ElemT, 0, InitIndex,
InitVecT->getNumElements(), E))
return false;
InitIndex += InitVecT->getNumElements();
} else {
if (!this->emitInitElem(ElemT, InitIndex, E))
return false;
++InitIndex;
}
}
assert(InitIndex <= NumVecElements);
// Fill the rest with zeroes.
for (; InitIndex != NumVecElements; ++InitIndex) {
if (!this->visitZeroInitializer(ElemT, ElemQT, E))
return false;
if (!this->emitInitElem(ElemT, InitIndex, E))
return false;
}
return true;
}
return false;
}
/// Pointer to the array(not the element!) must be on the stack when calling
/// this.
template <class Emitter>
bool Compiler<Emitter>::visitArrayElemInit(unsigned ElemIndex,
const Expr *Init) {
if (std::optional<PrimType> T = classify(Init->getType())) {
// Visit the primitive element like normal.
if (!this->visit(Init))
return false;
return this->emitInitElem(*T, ElemIndex, Init);
}
InitLinkScope<Emitter> ILS(this, InitLink::Elem(ElemIndex));
// Advance the pointer currently on the stack to the given
// dimension.
if (!this->emitConstUint32(ElemIndex, Init))
return false;
if (!this->emitArrayElemPtrUint32(Init))
return false;
if (!this->visitInitializer(Init))
return false;
return this->emitFinishInitPop(Init);
}
template <class Emitter>
bool Compiler<Emitter>::VisitInitListExpr(const InitListExpr *E) {
return this->visitInitList(E->inits(), E->getArrayFiller(), E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitCXXParenListInitExpr(
const CXXParenListInitExpr *E) {
return this->visitInitList(E->getInitExprs(), E->getArrayFiller(), E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitSubstNonTypeTemplateParmExpr(
const SubstNonTypeTemplateParmExpr *E) {
return this->delegate(E->getReplacement());
}
template <class Emitter>
bool Compiler<Emitter>::VisitConstantExpr(const ConstantExpr *E) {
std::optional<PrimType> T = classify(E->getType());
if (T && E->hasAPValueResult()) {
// Try to emit the APValue directly, without visiting the subexpr.
// This will only fail if we can't emit the APValue, so won't emit any
// diagnostics or any double values.
if (DiscardResult)
return true;
if (this->visitAPValue(E->getAPValueResult(), *T, E))
return true;
}
return this->delegate(E->getSubExpr());
}
template <class Emitter>
bool Compiler<Emitter>::VisitEmbedExpr(const EmbedExpr *E) {
auto It = E->begin();
return this->visit(*It);
}
static CharUnits AlignOfType(QualType T, const ASTContext &ASTCtx,
UnaryExprOrTypeTrait Kind) {
bool AlignOfReturnsPreferred =
ASTCtx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7;
// C++ [expr.alignof]p3:
// When alignof is applied to a reference type, the result is the
// alignment of the referenced type.
if (const auto *Ref = T->getAs<ReferenceType>())
T = Ref->getPointeeType();
if (T.getQualifiers().hasUnaligned())
return CharUnits::One();
// __alignof is defined to return the preferred alignment.
// Before 8, clang returned the preferred alignment for alignof and
// _Alignof as well.
if (Kind == UETT_PreferredAlignOf || AlignOfReturnsPreferred)
return ASTCtx.toCharUnitsFromBits(ASTCtx.getPreferredTypeAlign(T));
return ASTCtx.getTypeAlignInChars(T);
}
template <class Emitter>
bool Compiler<Emitter>::VisitUnaryExprOrTypeTraitExpr(
const UnaryExprOrTypeTraitExpr *E) {
UnaryExprOrTypeTrait Kind = E->getKind();
const ASTContext &ASTCtx = Ctx.getASTContext();
if (Kind == UETT_SizeOf || Kind == UETT_DataSizeOf) {
QualType ArgType = E->getTypeOfArgument();
// C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
// the result is the size of the referenced type."
if (const auto *Ref = ArgType->getAs<ReferenceType>())
ArgType = Ref->getPointeeType();
CharUnits Size;
if (ArgType->isVoidType() || ArgType->isFunctionType())
Size = CharUnits::One();
else {
if (ArgType->isDependentType() || !ArgType->isConstantSizeType())
return false;
if (Kind == UETT_SizeOf)
Size = ASTCtx.getTypeSizeInChars(ArgType);
else
Size = ASTCtx.getTypeInfoDataSizeInChars(ArgType).Width;
}
if (DiscardResult)
return true;
return this->emitConst(Size.getQuantity(), E);
}
if (Kind == UETT_AlignOf || Kind == UETT_PreferredAlignOf) {
CharUnits Size;
if (E->isArgumentType()) {
QualType ArgType = E->getTypeOfArgument();
Size = AlignOfType(ArgType, ASTCtx, Kind);
} else {
// Argument is an expression, not a type.
const Expr *Arg = E->getArgumentExpr()->IgnoreParens();
// The kinds of expressions that we have special-case logic here for
// should be kept up to date with the special checks for those
// expressions in Sema.
// alignof decl is always accepted, even if it doesn't make sense: we
// default to 1 in those cases.
if (const auto *DRE = dyn_cast<DeclRefExpr>(Arg))
Size = ASTCtx.getDeclAlign(DRE->getDecl(),
/*RefAsPointee*/ true);
else if (const auto *ME = dyn_cast<MemberExpr>(Arg))
Size = ASTCtx.getDeclAlign(ME->getMemberDecl(),
/*RefAsPointee*/ true);
else
Size = AlignOfType(Arg->getType(), ASTCtx, Kind);
}
if (DiscardResult)
return true;
return this->emitConst(Size.getQuantity(), E);
}
if (Kind == UETT_VectorElements) {
if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>())
return this->emitConst(VT->getNumElements(), E);
assert(E->getTypeOfArgument()->isSizelessVectorType());
return this->emitSizelessVectorElementSize(E);
}
if (Kind == UETT_VecStep) {
if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>()) {
unsigned N = VT->getNumElements();
// The vec_step built-in functions that take a 3-component
// vector return 4. (OpenCL 1.1 spec 6.11.12)
if (N == 3)
N = 4;
return this->emitConst(N, E);
}
return this->emitConst(1, E);
}
return false;
}
template <class Emitter>
bool Compiler<Emitter>::VisitMemberExpr(const MemberExpr *E) {
// 'Base.Member'
const Expr *Base = E->getBase();
const ValueDecl *Member = E->getMemberDecl();
if (DiscardResult)
return this->discard(Base);
// MemberExprs are almost always lvalues, in which case we don't need to
// do the load. But sometimes they aren't.
const auto maybeLoadValue = [&]() -> bool {
if (E->isGLValue())
return true;
if (std::optional<PrimType> T = classify(E))
return this->emitLoadPop(*T, E);
return false;
};
if (const auto *VD = dyn_cast<VarDecl>(Member)) {
// I am almost confident in saying that a var decl must be static
// and therefore registered as a global variable. But this will probably
// turn out to be wrong some time in the future, as always.
if (auto GlobalIndex = P.getGlobal(VD))
return this->emitGetPtrGlobal(*GlobalIndex, E) && maybeLoadValue();
return false;
}
if (!isa<FieldDecl>(Member))
return this->discard(Base) && this->visitDeclRef(Member, E);
if (Initializing) {
if (!this->delegate(Base))
return false;
} else {
if (!this->visit(Base))
return false;
}
// Base above gives us a pointer on the stack.
const auto *FD = cast<FieldDecl>(Member);
const RecordDecl *RD = FD->getParent();
const Record *R = getRecord(RD);
if (!R)
return false;
const Record::Field *F = R->getField(FD);
// Leave a pointer to the field on the stack.
if (F->Decl->getType()->isReferenceType())
return this->emitGetFieldPop(PT_Ptr, F->Offset, E) && maybeLoadValue();
return this->emitGetPtrFieldPop(F->Offset, E) && maybeLoadValue();
}
template <class Emitter>
bool Compiler<Emitter>::VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) {
// ArrayIndex might not be set if a ArrayInitIndexExpr is being evaluated
// stand-alone, e.g. via EvaluateAsInt().
if (!ArrayIndex)
return false;
return this->emitConst(*ArrayIndex, E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) {
assert(Initializing);
assert(!DiscardResult);
// We visit the common opaque expression here once so we have its value
// cached.
if (!this->discard(E->getCommonExpr()))
return false;
// TODO: This compiles to quite a lot of bytecode if the array is larger.
// Investigate compiling this to a loop.
const Expr *SubExpr = E->getSubExpr();
size_t Size = E->getArraySize().getZExtValue();
// So, every iteration, we execute an assignment here
// where the LHS is on the stack (the target array)
// and the RHS is our SubExpr.
for (size_t I = 0; I != Size; ++I) {
ArrayIndexScope<Emitter> IndexScope(this, I);
BlockScope<Emitter> BS(this);
if (!this->visitArrayElemInit(I, SubExpr))
return false;
if (!BS.destroyLocals())
return false;
}
return true;
}
template <class Emitter>
bool Compiler<Emitter>::VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
const Expr *SourceExpr = E->getSourceExpr();
if (!SourceExpr)
return false;
if (Initializing)
return this->visitInitializer(SourceExpr);
PrimType SubExprT = classify(SourceExpr).value_or(PT_Ptr);
if (auto It = OpaqueExprs.find(E); It != OpaqueExprs.end())
return this->emitGetLocal(SubExprT, It->second, E);
if (!this->visit(SourceExpr))
return false;
// At this point we either have the evaluated source expression or a pointer
// to an object on the stack. We want to create a local variable that stores
// this value.
unsigned LocalIndex = allocateLocalPrimitive(E, SubExprT, /*IsConst=*/true);
if (!this->emitSetLocal(SubExprT, LocalIndex, E))
return false;
// Here the local variable is created but the value is removed from the stack,
// so we put it back if the caller needs it.
if (!DiscardResult) {
if (!this->emitGetLocal(SubExprT, LocalIndex, E))
return false;
}
// This is cleaned up when the local variable is destroyed.
OpaqueExprs.insert({E, LocalIndex});
return true;
}
template <class Emitter>
bool Compiler<Emitter>::VisitAbstractConditionalOperator(
const AbstractConditionalOperator *E) {
const Expr *Condition = E->getCond();
const Expr *TrueExpr = E->getTrueExpr();
const Expr *FalseExpr = E->getFalseExpr();
LabelTy LabelEnd = this->getLabel(); // Label after the operator.
LabelTy LabelFalse = this->getLabel(); // Label for the false expr.
if (!this->visitBool(Condition))
return false;
if (!this->jumpFalse(LabelFalse))
return false;
{
LocalScope<Emitter> S(this);
if (!this->delegate(TrueExpr))
return false;
if (!S.destroyLocals())
return false;
}
if (!this->jump(LabelEnd))
return false;
this->emitLabel(LabelFalse);
{
LocalScope<Emitter> S(this);
if (!this->delegate(FalseExpr))
return false;
if (!S.destroyLocals())
return false;
}
this->fallthrough(LabelEnd);
this->emitLabel(LabelEnd);
return true;
}
template <class Emitter>
bool Compiler<Emitter>::VisitStringLiteral(const StringLiteral *E) {
if (DiscardResult)
return true;
if (!Initializing) {
unsigned StringIndex = P.createGlobalString(E);
return this->emitGetPtrGlobal(StringIndex, E);
}
// We are initializing an array on the stack.
const ConstantArrayType *CAT =
Ctx.getASTContext().getAsConstantArrayType(E->getType());
assert(CAT && "a string literal that's not a constant array?");
// If the initializer string is too long, a diagnostic has already been
// emitted. Read only the array length from the string literal.
unsigned ArraySize = CAT->getZExtSize();
unsigned N = std::min(ArraySize, E->getLength());
size_t CharWidth = E->getCharByteWidth();
for (unsigned I = 0; I != N; ++I) {
uint32_t CodeUnit = E->getCodeUnit(I);
if (CharWidth == 1) {
this->emitConstSint8(CodeUnit, E);
this->emitInitElemSint8(I, E);
} else if (CharWidth == 2) {
this->emitConstUint16(CodeUnit, E);
this->emitInitElemUint16(I, E);
} else if (CharWidth == 4) {
this->emitConstUint32(CodeUnit, E);
this->emitInitElemUint32(I, E);
} else {
llvm_unreachable("unsupported character width");
}
}
// Fill up the rest of the char array with NUL bytes.
for (unsigned I = N; I != ArraySize; ++I) {
if (CharWidth == 1) {
this->emitConstSint8(0, E);
this->emitInitElemSint8(I, E);
} else if (CharWidth == 2) {
this->emitConstUint16(0, E);
this->emitInitElemUint16(I, E);
} else if (CharWidth == 4) {
this->emitConstUint32(0, E);
this->emitInitElemUint32(I, E);
} else {
llvm_unreachable("unsupported character width");
}
}
return true;
}
template <class Emitter>
bool Compiler<Emitter>::VisitObjCStringLiteral(const ObjCStringLiteral *E) {
return this->delegate(E->getString());
}
template <class Emitter>
bool Compiler<Emitter>::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
auto &A = Ctx.getASTContext();
std::string Str;
A.getObjCEncodingForType(E->getEncodedType(), Str);
StringLiteral *SL =
StringLiteral::Create(A, Str, StringLiteralKind::Ordinary,
/*Pascal=*/false, E->getType(), E->getAtLoc());
return this->delegate(SL);
}
template <class Emitter>
bool Compiler<Emitter>::VisitSYCLUniqueStableNameExpr(
const SYCLUniqueStableNameExpr *E) {
if (DiscardResult)
return true;
assert(!Initializing);
auto &A = Ctx.getASTContext();
std::string ResultStr = E->ComputeName(A);
QualType CharTy = A.CharTy.withConst();
APInt Size(A.getTypeSize(A.getSizeType()), ResultStr.size() + 1);
QualType ArrayTy = A.getConstantArrayType(CharTy, Size, nullptr,
ArraySizeModifier::Normal, 0);
StringLiteral *SL =
StringLiteral::Create(A, ResultStr, StringLiteralKind::Ordinary,
/*Pascal=*/false, ArrayTy, E->getLocation());
unsigned StringIndex = P.createGlobalString(SL);
return this->emitGetPtrGlobal(StringIndex, E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitCharacterLiteral(const CharacterLiteral *E) {
if (DiscardResult)
return true;
return this->emitConst(E->getValue(), E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitFloatCompoundAssignOperator(
const CompoundAssignOperator *E) {
const Expr *LHS = E->getLHS();
const Expr *RHS = E->getRHS();
QualType LHSType = LHS->getType();
QualType LHSComputationType = E->getComputationLHSType();
QualType ResultType = E->getComputationResultType();
std::optional<PrimType> LT = classify(LHSComputationType);
std::optional<PrimType> RT = classify(ResultType);
assert(ResultType->isFloatingType());
if (!LT || !RT)
return false;
PrimType LHST = classifyPrim(LHSType);
// C++17 onwards require that we evaluate the RHS first.
// Compute RHS and save it in a temporary variable so we can
// load it again later.
if (!visit(RHS))
return false;
unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true);
if (!this->emitSetLocal(*RT, TempOffset, E))
return false;
// First, visit LHS.
if (!visit(LHS))
return false;
if (!this->emitLoad(LHST, E))
return false;
// If necessary, convert LHS to its computation type.
if (!this->emitPrimCast(LHST, classifyPrim(LHSComputationType),
LHSComputationType, E))
return false;
// Now load RHS.
if (!this->emitGetLocal(*RT, TempOffset, E))
return false;
llvm::RoundingMode RM = getRoundingMode(E);
switch (E->getOpcode()) {
case BO_AddAssign:
if (!this->emitAddf(RM, E))
return false;
break;
case BO_SubAssign:
if (!this->emitSubf(RM, E))
return false;
break;
case BO_MulAssign:
if (!this->emitMulf(RM, E))
return false;
break;
case BO_DivAssign:
if (!this->emitDivf(RM, E))
return false;
break;
default:
return false;
}
if (!this->emitPrimCast(classifyPrim(ResultType), LHST, LHS->getType(), E))
return false;
if (DiscardResult)
return this->emitStorePop(LHST, E);
return this->emitStore(LHST, E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitPointerCompoundAssignOperator(
const CompoundAssignOperator *E) {
BinaryOperatorKind Op = E->getOpcode();
const Expr *LHS = E->getLHS();
const Expr *RHS = E->getRHS();
std::optional<PrimType> LT = classify(LHS->getType());
std::optional<PrimType> RT = classify(RHS->getType());
if (Op != BO_AddAssign && Op != BO_SubAssign)
return false;
if (!LT || !RT)
return false;
if (!visit(LHS))
return false;
if (!this->emitLoad(*LT, LHS))
return false;
if (!visit(RHS))
return false;
if (Op == BO_AddAssign) {
if (!this->emitAddOffset(*RT, E))
return false;
} else {
if (!this->emitSubOffset(*RT, E))
return false;
}
if (DiscardResult)
return this->emitStorePopPtr(E);
return this->emitStorePtr(E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitCompoundAssignOperator(
const CompoundAssignOperator *E) {
const Expr *LHS = E->getLHS();
const Expr *RHS = E->getRHS();
std::optional<PrimType> LHSComputationT =
classify(E->getComputationLHSType());
std::optional<PrimType> LT = classify(LHS->getType());
std::optional<PrimType> RT = classify(RHS->getType());
std::optional<PrimType> ResultT = classify(E->getType());
if (!Ctx.getLangOpts().CPlusPlus14)
return this->visit(RHS) && this->visit(LHS) && this->emitError(E);
if (!LT || !RT || !ResultT || !LHSComputationT)
return false;
// Handle floating point operations separately here, since they
// require special care.
if (ResultT == PT_Float || RT == PT_Float)
return VisitFloatCompoundAssignOperator(E);
if (E->getType()->isPointerType())
return VisitPointerCompoundAssignOperator(E);
assert(!E->getType()->isPointerType() && "Handled above");
assert(!E->getType()->isFloatingType() && "Handled above");
// C++17 onwards require that we evaluate the RHS first.
// Compute RHS and save it in a temporary variable so we can
// load it again later.
// FIXME: Compound assignments are unsequenced in C, so we might
// have to figure out how to reject them.
if (!visit(RHS))
return false;
unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true);
if (!this->emitSetLocal(*RT, TempOffset, E))
return false;
// Get LHS pointer, load its value and cast it to the
// computation type if necessary.
if (!visit(LHS))
return false;
if (!this->emitLoad(*LT, E))
return false;
if (LT != LHSComputationT) {
if (!this->emitCast(*LT, *LHSComputationT, E))
return false;
}
// Get the RHS value on the stack.
if (!this->emitGetLocal(*RT, TempOffset, E))
return false;
// Perform operation.
switch (E->getOpcode()) {
case BO_AddAssign:
if (!this->emitAdd(*LHSComputationT, E))
return false;
break;
case BO_SubAssign:
if (!this->emitSub(*LHSComputationT, E))
return false;
break;
case BO_MulAssign:
if (!this->emitMul(*LHSComputationT, E))
return false;
break;
case BO_DivAssign:
if (!this->emitDiv(*LHSComputationT, E))
return false;
break;
case BO_RemAssign:
if (!this->emitRem(*LHSComputationT, E))
return false;
break;
case BO_ShlAssign:
if (!this->emitShl(*LHSComputationT, *RT, E))
return false;
break;
case BO_ShrAssign:
if (!this->emitShr(*LHSComputationT, *RT, E))
return false;
break;
case BO_AndAssign:
if (!this->emitBitAnd(*LHSComputationT, E))
return false;
break;
case BO_XorAssign:
if (!this->emitBitXor(*LHSComputationT, E))
return false;
break;
case BO_OrAssign:
if (!this->emitBitOr(*LHSComputationT, E))
return false;
break;
default:
llvm_unreachable("Unimplemented compound assign operator");
}
// And now cast from LHSComputationT to ResultT.
if (ResultT != LHSComputationT) {
if (!this->emitCast(*LHSComputationT, *ResultT, E))
return false;
}
// And store the result in LHS.
if (DiscardResult) {
if (LHS->refersToBitField())
return this->emitStoreBitFieldPop(*ResultT, E);
return this->emitStorePop(*ResultT, E);
}
if (LHS->refersToBitField())
return this->emitStoreBitField(*ResultT, E);
return this->emitStore(*ResultT, E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitExprWithCleanups(const ExprWithCleanups *E) {
LocalScope<Emitter> ES(this);
const Expr *SubExpr = E->getSubExpr();
return this->delegate(SubExpr) && ES.destroyLocals(E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitMaterializeTemporaryExpr(
const MaterializeTemporaryExpr *E) {
const Expr *SubExpr = E->getSubExpr();
if (Initializing) {
// We already have a value, just initialize that.
return this->delegate(SubExpr);
}
// If we don't end up using the materialized temporary anyway, don't
// bother creating it.
if (DiscardResult)
return this->discard(SubExpr);
// When we're initializing a global variable *or* the storage duration of
// the temporary is explicitly static, create a global variable.
std::optional<PrimType> SubExprT = classify(SubExpr);
bool IsStatic = E->getStorageDuration() == SD_Static;
if (IsStatic) {
std::optional<unsigned> GlobalIndex = P.createGlobal(E);
if (!GlobalIndex)
return false;
const LifetimeExtendedTemporaryDecl *TempDecl =
E->getLifetimeExtendedTemporaryDecl();
if (IsStatic)
assert(TempDecl);
if (SubExprT) {
if (!this->visit(SubExpr))
return false;
if (IsStatic) {
if (!this->emitInitGlobalTemp(*SubExprT, *GlobalIndex, TempDecl, E))
return false;
} else {
if (!this->emitInitGlobal(*SubExprT, *GlobalIndex, E))
return false;
}
return this->emitGetPtrGlobal(*GlobalIndex, E);
}
// Non-primitive values.
if (!this->emitGetPtrGlobal(*GlobalIndex, E))
return false;
if (!this->visitInitializer(SubExpr))
return false;
if (IsStatic)
return this->emitInitGlobalTempComp(TempDecl, E);
return true;
}
// For everyhing else, use local variables.
if (SubExprT) {
unsigned LocalIndex = allocateLocalPrimitive(
SubExpr, *SubExprT, /*IsConst=*/true, /*IsExtended=*/true);
if (!this->visit(SubExpr))
return false;
if (!this->emitSetLocal(*SubExprT, LocalIndex, E))
return false;
return this->emitGetPtrLocal(LocalIndex, E);
} else {
const Expr *Inner = E->getSubExpr()->skipRValueSubobjectAdjustments();
if (std::optional<unsigned> LocalIndex =
allocateLocal(Inner, E->getExtendingDecl())) {
InitLinkScope<Emitter> ILS(this, InitLink::Temp(*LocalIndex));
if (!this->emitGetPtrLocal(*LocalIndex, E))
return false;
return this->visitInitializer(SubExpr);
}
}
return false;
}
template <class Emitter>
bool Compiler<Emitter>::VisitCXXBindTemporaryExpr(
const CXXBindTemporaryExpr *E) {
return this->delegate(E->getSubExpr());
}
template <class Emitter>
bool Compiler<Emitter>::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
const Expr *Init = E->getInitializer();
if (DiscardResult)
return this->discard(Init);
if (Initializing) {
// We already have a value, just initialize that.
return this->visitInitializer(Init) && this->emitFinishInit(E);
}
std::optional<PrimType> T = classify(E->getType());
if (E->isFileScope()) {
// Avoid creating a variable if this is a primitive RValue anyway.
if (T && !E->isLValue())
return this->delegate(Init);
if (std::optional<unsigned> GlobalIndex = P.createGlobal(E)) {
if (!this->emitGetPtrGlobal(*GlobalIndex, E))
return false;
if (T) {
if (!this->visit(Init))
return false;
return this->emitInitGlobal(*T, *GlobalIndex, E);
}
return this->visitInitializer(Init) && this->emitFinishInit(E);
}
return false;
}
// Otherwise, use a local variable.
if (T && !E->isLValue()) {
// For primitive types, we just visit the initializer.
return this->delegate(Init);
} else {
unsigned LocalIndex;
if (T)
LocalIndex = this->allocateLocalPrimitive(Init, *T, false, false);
else if (std::optional<unsigned> MaybeIndex = this->allocateLocal(Init))
LocalIndex = *MaybeIndex;
else
return false;
if (!this->emitGetPtrLocal(LocalIndex, E))
return false;
if (T) {
if (!this->visit(Init)) {
return false;
}
return this->emitInit(*T, E);
} else {
if (!this->visitInitializer(Init) || !this->emitFinishInit(E))
return false;
}
return true;
}
return false;
}
template <class Emitter>
bool Compiler<Emitter>::VisitTypeTraitExpr(const TypeTraitExpr *E) {
if (DiscardResult)
return true;
if (E->getType()->isBooleanType())
return this->emitConstBool(E->getValue(), E);
return this->emitConst(E->getValue(), E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
if (DiscardResult)
return true;
return this->emitConst(E->getValue(), E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitLambdaExpr(const LambdaExpr *E) {
if (DiscardResult)
return true;
assert(Initializing);
const Record *R = P.getOrCreateRecord(E->getLambdaClass());
auto *CaptureInitIt = E->capture_init_begin();
// Initialize all fields (which represent lambda captures) of the
// record with their initializers.
for (const Record::Field &F : R->fields()) {
const Expr *Init = *CaptureInitIt;
++CaptureInitIt;
if (!Init)
continue;
if (std::optional<PrimType> T = classify(Init)) {
if (!this->visit(Init))
return false;
if (!this->emitInitField(*T, F.Offset, E))
return false;
} else {
if (!this->emitGetPtrField(F.Offset, E))
return false;
if (!this->visitInitializer(Init))
return false;
if (!this->emitPopPtr(E))
return false;
}
}
return true;
}
template <class Emitter>
bool Compiler<Emitter>::VisitPredefinedExpr(const PredefinedExpr *E) {
if (DiscardResult)
return true;
return this->delegate(E->getFunctionName());
}
template <class Emitter>
bool Compiler<Emitter>::VisitCXXThrowExpr(const CXXThrowExpr *E) {
if (E->getSubExpr() && !this->discard(E->getSubExpr()))
return false;
return this->emitInvalid(E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitCXXReinterpretCastExpr(
const CXXReinterpretCastExpr *E) {
const Expr *SubExpr = E->getSubExpr();
bool TypesMatch = classify(E) == classify(SubExpr);
if (!this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/!TypesMatch, E))
return false;
return this->delegate(SubExpr);
}
template <class Emitter>
bool Compiler<Emitter>::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
assert(E->getType()->isBooleanType());
if (DiscardResult)
return true;
return this->emitConstBool(E->getValue(), E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitCXXConstructExpr(const CXXConstructExpr *E) {
QualType T = E->getType();
assert(!classify(T));
if (T->isRecordType()) {
const CXXConstructorDecl *Ctor = E->getConstructor();
// Trivial copy/move constructor. Avoid copy.
if (Ctor->isDefaulted() && Ctor->isCopyOrMoveConstructor() &&
Ctor->isTrivial() &&
E->getArg(0)->isTemporaryObject(Ctx.getASTContext(),
T->getAsCXXRecordDecl()))
return this->visitInitializer(E->getArg(0));
// If we're discarding a construct expression, we still need
// to allocate a variable and call the constructor and destructor.
if (DiscardResult) {
if (Ctor->isTrivial())
return true;
assert(!Initializing);
std::optional<unsigned> LocalIndex = allocateLocal(E);
if (!LocalIndex)
return false;
if (!this->emitGetPtrLocal(*LocalIndex, E))
return false;
}
// Zero initialization.
if (E->requiresZeroInitialization()) {
const Record *R = getRecord(E->getType());
if (!this->visitZeroRecordInitializer(R, E))
return false;
// If the constructor is trivial anyway, we're done.
if (Ctor->isTrivial())
return true;
}
const Function *Func = getFunction(Ctor);
if (!Func)
return false;
assert(Func->hasThisPointer());
assert(!Func->hasRVO());
// The This pointer is already on the stack because this is an initializer,
// but we need to dup() so the call() below has its own copy.
if (!this->emitDupPtr(E))
return false;
// Constructor arguments.
for (const auto *Arg : E->arguments()) {
if (!this->visit(Arg))
return false;
}
if (Func->isVariadic()) {
uint32_t VarArgSize = 0;
unsigned NumParams = Func->getNumWrittenParams();
for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) {
VarArgSize +=
align(primSize(classify(E->getArg(I)->getType()).value_or(PT_Ptr)));
}
if (!this->emitCallVar(Func, VarArgSize, E))
return false;
} else {
if (!this->emitCall(Func, 0, E))
return false;
}
if (DiscardResult)
return this->emitPopPtr(E);
return this->emitFinishInit(E);
}
if (T->isArrayType()) {
const ConstantArrayType *CAT =
Ctx.getASTContext().getAsConstantArrayType(E->getType());
if (!CAT)
return false;
size_t NumElems = CAT->getZExtSize();
const Function *Func = getFunction(E->getConstructor());
if (!Func || !Func->isConstexpr())
return false;
// FIXME(perf): We're calling the constructor once per array element here,
// in the old intepreter we had a special-case for trivial constructors.
for (size_t I = 0; I != NumElems; ++I) {
if (!this->emitConstUint64(I, E))
return false;
if (!this->emitArrayElemPtrUint64(E))
return false;
// Constructor arguments.
for (const auto *Arg : E->arguments()) {
if (!this->visit(Arg))
return false;
}
if (!this->emitCall(Func, 0, E))
return false;
}
return true;
}
return false;
}
template <class Emitter>
bool Compiler<Emitter>::VisitSourceLocExpr(const SourceLocExpr *E) {
if (DiscardResult)
return true;
const APValue Val =
E->EvaluateInContext(Ctx.getASTContext(), SourceLocDefaultExpr);
// Things like __builtin_LINE().
if (E->getType()->isIntegerType()) {
assert(Val.isInt());
const APSInt &I = Val.getInt();
return this->emitConst(I, E);
}
// Otherwise, the APValue is an LValue, with only one element.
// Theoretically, we don't need the APValue at all of course.
assert(E->getType()->isPointerType());
assert(Val.isLValue());
const APValue::LValueBase &Base = Val.getLValueBase();
if (const Expr *LValueExpr = Base.dyn_cast<const Expr *>())
return this->visit(LValueExpr);
// Otherwise, we have a decl (which is the case for
// __builtin_source_location).
assert(Base.is<const ValueDecl *>());
assert(Val.getLValuePath().size() == 0);
const auto *BaseDecl = Base.dyn_cast<const ValueDecl *>();
assert(BaseDecl);
auto *UGCD = cast<UnnamedGlobalConstantDecl>(BaseDecl);
std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(UGCD);
if (!GlobalIndex)
return false;
if (!this->emitGetPtrGlobal(*GlobalIndex, E))
return false;
const Record *R = getRecord(E->getType());
const APValue &V = UGCD->getValue();
for (unsigned I = 0, N = R->getNumFields(); I != N; ++I) {
const Record::Field *F = R->getField(I);
const APValue &FieldValue = V.getStructField(I);
PrimType FieldT = classifyPrim(F->Decl->getType());
if (!this->visitAPValue(FieldValue, FieldT, E))
return false;
if (!this->emitInitField(FieldT, F->Offset, E))
return false;
}
// Leave the pointer to the global on the stack.
return true;
}
template <class Emitter>
bool Compiler<Emitter>::VisitOffsetOfExpr(const OffsetOfExpr *E) {
unsigned N = E->getNumComponents();
if (N == 0)
return false;
for (unsigned I = 0; I != N; ++I) {
const OffsetOfNode &Node = E->getComponent(I);
if (Node.getKind() == OffsetOfNode::Array) {
const Expr *ArrayIndexExpr = E->getIndexExpr(Node.getArrayExprIndex());
PrimType IndexT = classifyPrim(ArrayIndexExpr->getType());
if (DiscardResult) {
if (!this->discard(ArrayIndexExpr))
return false;
continue;
}
if (!this->visit(ArrayIndexExpr))
return false;
// Cast to Sint64.
if (IndexT != PT_Sint64) {
if (!this->emitCast(IndexT, PT_Sint64, E))
return false;
}
}
}
if (DiscardResult)
return true;
PrimType T = classifyPrim(E->getType());
return this->emitOffsetOf(T, E, E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitCXXScalarValueInitExpr(
const CXXScalarValueInitExpr *E) {
QualType Ty = E->getType();
if (DiscardResult || Ty->isVoidType())
return true;
if (std::optional<PrimType> T = classify(Ty))
return this->visitZeroInitializer(*T, Ty, E);
if (const auto *CT = Ty->getAs<ComplexType>()) {
if (!Initializing) {
std::optional<unsigned> LocalIndex = allocateLocal(E);
if (!LocalIndex)
return false;
if (!this->emitGetPtrLocal(*LocalIndex, E))
return false;
}
// Initialize both fields to 0.
QualType ElemQT = CT->getElementType();
PrimType ElemT = classifyPrim(ElemQT);
for (unsigned I = 0; I != 2; ++I) {
if (!this->visitZeroInitializer(ElemT, ElemQT, E))
return false;
if (!this->emitInitElem(ElemT, I, E))
return false;
}
return true;
}
if (const auto *VT = Ty->getAs<VectorType>()) {
// FIXME: Code duplication with the _Complex case above.
if (!Initializing) {
std::optional<unsigned> LocalIndex = allocateLocal(E);
if (!LocalIndex)
return false;
if (!this->emitGetPtrLocal(*LocalIndex, E))
return false;
}
// Initialize all fields to 0.
QualType ElemQT = VT->getElementType();
PrimType ElemT = classifyPrim(ElemQT);
for (unsigned I = 0, N = VT->getNumElements(); I != N; ++I) {
if (!this->visitZeroInitializer(ElemT, ElemQT, E))
return false;
if (!this->emitInitElem(ElemT, I, E))
return false;
}
return true;
}
return false;
}
template <class Emitter>
bool Compiler<Emitter>::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
return this->emitConst(E->getPackLength(), E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitGenericSelectionExpr(
const GenericSelectionExpr *E) {
return this->delegate(E->getResultExpr());
}
template <class Emitter>
bool Compiler<Emitter>::VisitChooseExpr(const ChooseExpr *E) {
return this->delegate(E->getChosenSubExpr());
}
template <class Emitter>
bool Compiler<Emitter>::VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
if (DiscardResult)
return true;
return this->emitConst(E->getValue(), E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitCXXInheritedCtorInitExpr(
const CXXInheritedCtorInitExpr *E) {
const CXXConstructorDecl *Ctor = E->getConstructor();
assert(!Ctor->isTrivial() &&
"Trivial CXXInheritedCtorInitExpr, implement. (possible?)");
const Function *F = this->getFunction(Ctor);
assert(F);
assert(!F->hasRVO());
assert(F->hasThisPointer());
if (!this->emitDupPtr(SourceInfo{}))
return false;
// Forward all arguments of the current function (which should be a
// constructor itself) to the inherited ctor.
// This is necessary because the calling code has pushed the pointer
// of the correct base for us already, but the arguments need
// to come after.
unsigned Offset = align(primSize(PT_Ptr)); // instance pointer.
for (const ParmVarDecl *PD : Ctor->parameters()) {
PrimType PT = this->classify(PD->getType()).value_or(PT_Ptr);
if (!this->emitGetParam(PT, Offset, E))
return false;
Offset += align(primSize(PT));
}
return this->emitCall(F, 0, E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitCXXNewExpr(const CXXNewExpr *E) {
assert(classifyPrim(E->getType()) == PT_Ptr);
const Expr *Init = E->getInitializer();
QualType ElementType = E->getAllocatedType();
std::optional<PrimType> ElemT = classify(ElementType);
unsigned PlacementArgs = E->getNumPlacementArgs();
bool IsNoThrow = false;
// FIXME: Better diagnostic. diag::note_constexpr_new_placement
if (PlacementArgs != 0) {
// The only new-placement list we support is of the form (std::nothrow).
//
// FIXME: There is no restriction on this, but it's not clear that any
// other form makes any sense. We get here for cases such as:
//
// new (std::align_val_t{N}) X(int)
//
// (which should presumably be valid only if N is a multiple of
// alignof(int), and in any case can't be deallocated unless N is
// alignof(X) and X has new-extended alignment).
if (PlacementArgs != 1 || !E->getPlacementArg(0)->getType()->isNothrowT())
return this->emitInvalid(E);
if (!this->discard(E->getPlacementArg(0)))
return false;
IsNoThrow = true;
}
const Descriptor *Desc;
if (ElemT) {
if (E->isArray())
Desc = nullptr; // We're not going to use it in this case.
else
Desc = P.createDescriptor(E, *ElemT, Descriptor::InlineDescMD,
/*IsConst=*/false, /*IsTemporary=*/false,
/*IsMutable=*/false);
} else {
Desc = P.createDescriptor(
E, ElementType.getTypePtr(),
E->isArray() ? std::nullopt : Descriptor::InlineDescMD,
/*IsConst=*/false, /*IsTemporary=*/false, /*IsMutable=*/false, Init);
}
if (E->isArray()) {
std::optional<const Expr *> ArraySizeExpr = E->getArraySize();
if (!ArraySizeExpr)
return false;
const Expr *Stripped = *ArraySizeExpr;
for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped);
Stripped = ICE->getSubExpr())
if (ICE->getCastKind() != CK_NoOp &&
ICE->getCastKind() != CK_IntegralCast)
break;
PrimType SizeT = classifyPrim(Stripped->getType());
if (!this->visit(Stripped))
return false;
if (ElemT) {
// N primitive elements.
if (!this->emitAllocN(SizeT, *ElemT, E, IsNoThrow, E))
return false;
} else {
// N Composite elements.
if (!this->emitAllocCN(SizeT, Desc, IsNoThrow, E))
return false;
}
if (Init && !this->visitInitializer(Init))
return false;
} else {
// Allocate just one element.
if (!this->emitAlloc(Desc, E))
return false;
if (Init) {
if (ElemT) {
if (!this->visit(Init))
return false;
if (!this->emitInit(*ElemT, E))
return false;
} else {
// Composite.
if (!this->visitInitializer(Init))
return false;
}
}
}
if (DiscardResult)
return this->emitPopPtr(E);
return true;
}
template <class Emitter>
bool Compiler<Emitter>::VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
const Expr *Arg = E->getArgument();
// Arg must be an lvalue.
if (!this->visit(Arg))
return false;
return this->emitFree(E->isArrayForm(), E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitBlockExpr(const BlockExpr *E) {
const Function *Func = nullptr;
if (auto F = Compiler<ByteCodeEmitter>(Ctx, P).compileObjCBlock(E))
Func = F;
if (!Func)
return false;
return this->emitGetFnPtr(Func, E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
assert(Ctx.getLangOpts().CPlusPlus);
return this->emitConstBool(E->getValue(), E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
if (DiscardResult)
return true;
assert(!Initializing);
const MSGuidDecl *GuidDecl = E->getGuidDecl();
const RecordDecl *RD = GuidDecl->getType()->getAsRecordDecl();
assert(RD);
// If the definiton of the result type is incomplete, just return a dummy.
// If (and when) that is read from, we will fail, but not now.
if (!RD->isCompleteDefinition()) {
if (std::optional<unsigned> I = P.getOrCreateDummy(GuidDecl))
return this->emitGetPtrGlobal(*I, E);
return false;
}
std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(GuidDecl);
if (!GlobalIndex)
return false;
if (!this->emitGetPtrGlobal(*GlobalIndex, E))
return false;
assert(this->getRecord(E->getType()));
const APValue &V = GuidDecl->getAsAPValue();
if (V.getKind() == APValue::None)
return true;
assert(V.isStruct());
assert(V.getStructNumBases() == 0);
if (!this->visitAPValueInitializer(V, E))
return false;
return this->emitFinishInit(E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitRequiresExpr(const RequiresExpr *E) {
assert(classifyPrim(E->getType()) == PT_Bool);
if (DiscardResult)
return true;
return this->emitConstBool(E->isSatisfied(), E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitConceptSpecializationExpr(
const ConceptSpecializationExpr *E) {
assert(classifyPrim(E->getType()) == PT_Bool);
if (DiscardResult)
return true;
return this->emitConstBool(E->isSatisfied(), E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitCXXRewrittenBinaryOperator(
const CXXRewrittenBinaryOperator *E) {
return this->delegate(E->getSemanticForm());
}
template <class Emitter>
bool Compiler<Emitter>::VisitPseudoObjectExpr(const PseudoObjectExpr *E) {
for (const Expr *SemE : E->semantics()) {
if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) {
if (SemE == E->getResultExpr())
return false;
if (OVE->isUnique())
continue;
if (!this->discard(OVE))
return false;
} else if (SemE == E->getResultExpr()) {
if (!this->delegate(SemE))
return false;
} else {
if (!this->discard(SemE))
return false;
}
}
return true;
}
template <class Emitter>
bool Compiler<Emitter>::VisitPackIndexingExpr(const PackIndexingExpr *E) {
return this->delegate(E->getSelectedExpr());
}
template <class Emitter>
bool Compiler<Emitter>::VisitRecoveryExpr(const RecoveryExpr *E) {
return this->emitError(E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitAddrLabelExpr(const AddrLabelExpr *E) {
assert(E->getType()->isVoidPointerType());
unsigned Offset = allocateLocalPrimitive(
E->getLabel(), PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false);
return this->emitGetLocal(PT_Ptr, Offset, E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitConvertVectorExpr(const ConvertVectorExpr *E) {
assert(Initializing);
const auto *VT = E->getType()->castAs<VectorType>();
QualType ElemType = VT->getElementType();
PrimType ElemT = classifyPrim(ElemType);
const Expr *Src = E->getSrcExpr();
PrimType SrcElemT =
classifyPrim(Src->getType()->castAs<VectorType>()->getElementType());
unsigned SrcOffset = this->allocateLocalPrimitive(Src, PT_Ptr, true, false);
if (!this->visit(Src))
return false;
if (!this->emitSetLocal(PT_Ptr, SrcOffset, E))
return false;
for (unsigned I = 0; I != VT->getNumElements(); ++I) {
if (!this->emitGetLocal(PT_Ptr, SrcOffset, E))
return false;
if (!this->emitArrayElemPop(SrcElemT, I, E))
return false;
if (SrcElemT != ElemT) {
if (!this->emitPrimCast(SrcElemT, ElemT, ElemType, E))
return false;
}
if (!this->emitInitElem(ElemT, I, E))
return false;
}
return true;
}
template <class Emitter>
bool Compiler<Emitter>::VisitShuffleVectorExpr(const ShuffleVectorExpr *E) {
assert(Initializing);
assert(E->getNumSubExprs() > 2);
const Expr *Vecs[] = {E->getExpr(0), E->getExpr(1)};
const VectorType *VT = Vecs[0]->getType()->castAs<VectorType>();
PrimType ElemT = classifyPrim(VT->getElementType());
unsigned NumInputElems = VT->getNumElements();
unsigned NumOutputElems = E->getNumSubExprs() - 2;
assert(NumOutputElems > 0);
// Save both input vectors to a local variable.
unsigned VectorOffsets[2];
for (unsigned I = 0; I != 2; ++I) {
VectorOffsets[I] = this->allocateLocalPrimitive(
Vecs[I], PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false);
if (!this->visit(Vecs[I]))
return false;
if (!this->emitSetLocal(PT_Ptr, VectorOffsets[I], E))
return false;
}
for (unsigned I = 0; I != NumOutputElems; ++I) {
APSInt ShuffleIndex = E->getShuffleMaskIdx(Ctx.getASTContext(), I);
if (ShuffleIndex == -1)
return this->emitInvalid(E); // FIXME: Better diagnostic.
assert(ShuffleIndex < (NumInputElems * 2));
if (!this->emitGetLocal(PT_Ptr,
VectorOffsets[ShuffleIndex >= NumInputElems], E))
return false;
unsigned InputVectorIndex = ShuffleIndex.getZExtValue() % NumInputElems;
if (!this->emitArrayElemPop(ElemT, InputVectorIndex, E))
return false;
if (!this->emitInitElem(ElemT, I, E))
return false;
}
return true;
}
template <class Emitter>
bool Compiler<Emitter>::VisitExtVectorElementExpr(
const ExtVectorElementExpr *E) {
const Expr *Base = E->getBase();
assert(
Base->getType()->isVectorType() ||
Base->getType()->getAs<PointerType>()->getPointeeType()->isVectorType());
SmallVector<uint32_t, 4> Indices;
E->getEncodedElementAccess(Indices);
if (Indices.size() == 1) {
if (!this->visit(Base))
return false;
if (E->isGLValue()) {
if (!this->emitConstUint32(Indices[0], E))
return false;
return this->emitArrayElemPtrPop(PT_Uint32, E);
}
// Else, also load the value.
return this->emitArrayElemPop(classifyPrim(E->getType()), Indices[0], E);
}
// Create a local variable for the base.
unsigned BaseOffset = allocateLocalPrimitive(Base, PT_Ptr, /*IsConst=*/true,
/*IsExtended=*/false);
if (!this->visit(Base))
return false;
if (!this->emitSetLocal(PT_Ptr, BaseOffset, E))
return false;
// Now the vector variable for the return value.
if (!Initializing) {
std::optional<unsigned> ResultIndex;
ResultIndex = allocateLocal(E);
if (!ResultIndex)
return false;
if (!this->emitGetPtrLocal(*ResultIndex, E))
return false;
}
assert(Indices.size() == E->getType()->getAs<VectorType>()->getNumElements());
PrimType ElemT =
classifyPrim(E->getType()->getAs<VectorType>()->getElementType());
uint32_t DstIndex = 0;
for (uint32_t I : Indices) {
if (!this->emitGetLocal(PT_Ptr, BaseOffset, E))
return false;
if (!this->emitArrayElemPop(ElemT, I, E))
return false;
if (!this->emitInitElem(ElemT, DstIndex, E))
return false;
++DstIndex;
}
// Leave the result pointer on the stack.
assert(!DiscardResult);
return true;
}
template <class Emitter>
bool Compiler<Emitter>::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
const Expr *SubExpr = E->getSubExpr();
if (!E->isExpressibleAsConstantInitializer())
return this->discard(SubExpr) && this->emitInvalid(E);
return this->delegate(SubExpr);
}
template <class Emitter>
bool Compiler<Emitter>::VisitCXXStdInitializerListExpr(
const CXXStdInitializerListExpr *E) {
const Expr *SubExpr = E->getSubExpr();
const ConstantArrayType *ArrayType =
Ctx.getASTContext().getAsConstantArrayType(SubExpr->getType());
const Record *R = getRecord(E->getType());
assert(Initializing);
assert(SubExpr->isGLValue());
if (!this->visit(SubExpr))
return false;
if (!this->emitInitFieldPtr(R->getField(0u)->Offset, E))
return false;
PrimType SecondFieldT = classifyPrim(R->getField(1u)->Decl->getType());
if (isIntegralType(SecondFieldT)) {
if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()),
SecondFieldT, E))
return false;
return this->emitInitField(SecondFieldT, R->getField(1u)->Offset, E);
}
assert(SecondFieldT == PT_Ptr);
if (!this->emitGetFieldPtr(R->getField(0u)->Offset, E))
return false;
if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()), PT_Uint64, E))
return false;
if (!this->emitArrayElemPtrPop(PT_Uint64, E))
return false;
return this->emitInitFieldPtr(R->getField(1u)->Offset, E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitStmtExpr(const StmtExpr *E) {
BlockScope<Emitter> BS(this);
StmtExprScope<Emitter> SS(this);
const CompoundStmt *CS = E->getSubStmt();
const Stmt *Result = CS->getStmtExprResult();
for (const Stmt *S : CS->body()) {
if (S != Result) {
if (!this->visitStmt(S))
return false;
continue;
}
assert(S == Result);
if (const Expr *ResultExpr = dyn_cast<Expr>(S))
return this->delegate(ResultExpr);
return this->emitUnsupported(E);
}
return BS.destroyLocals();
}
template <class Emitter> bool Compiler<Emitter>::discard(const Expr *E) {
OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/true,
/*NewInitializing=*/false);
return this->Visit(E);
}
template <class Emitter> bool Compiler<Emitter>::delegate(const Expr *E) {
if (E->containsErrors())
return this->emitError(E);
// We're basically doing:
// OptionScope<Emitter> Scope(this, DicardResult, Initializing);
// but that's unnecessary of course.
return this->Visit(E);
}
template <class Emitter> bool Compiler<Emitter>::visit(const Expr *E) {
if (E->getType().isNull())
return false;
// Create local variable to hold the return value.
if (!E->getType()->isVoidType() && !E->isGLValue() &&
!E->getType()->isAnyComplexType() && !classify(E->getType())) {
std::optional<unsigned> LocalIndex = allocateLocal(E);
if (!LocalIndex)
return false;
if (!this->emitGetPtrLocal(*LocalIndex, E))
return false;
return this->visitInitializer(E);
}
// Otherwise,we have a primitive return value, produce the value directly
// and push it on the stack.
OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false,
/*NewInitializing=*/false);
return this->Visit(E);
}
template <class Emitter>
bool Compiler<Emitter>::visitInitializer(const Expr *E) {
assert(!classify(E->getType()));
if (E->containsErrors())
return this->emitError(E);
if (!this->checkLiteralType(E))
return false;
OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false,
/*NewInitializing=*/true);
return this->Visit(E);
}
template <class Emitter> bool Compiler<Emitter>::visitBool(const Expr *E) {
std::optional<PrimType> T = classify(E->getType());
if (!T) {
// Convert complex values to bool.
if (E->getType()->isAnyComplexType()) {
if (!this->visit(E))
return false;
return this->emitComplexBoolCast(E);
}
return false;
}
if (!this->visit(E))
return false;
if (T == PT_Bool)
return true;
// Convert pointers to bool.
if (T == PT_Ptr || T == PT_FnPtr) {
if (!this->emitNull(*T, nullptr, E))
return false;
return this->emitNE(*T, E);
}
// Or Floats.
if (T == PT_Float)
return this->emitCastFloatingIntegralBool(E);
// Or anything else we can.
return this->emitCast(*T, PT_Bool, E);
}
template <class Emitter>
bool Compiler<Emitter>::visitZeroInitializer(PrimType T, QualType QT,
const Expr *E) {
switch (T) {
case PT_Bool:
return this->emitZeroBool(E);
case PT_Sint8:
return this->emitZeroSint8(E);
case PT_Uint8:
return this->emitZeroUint8(E);
case PT_Sint16:
return this->emitZeroSint16(E);
case PT_Uint16:
return this->emitZeroUint16(E);
case PT_Sint32:
return this->emitZeroSint32(E);
case PT_Uint32:
return this->emitZeroUint32(E);
case PT_Sint64:
return this->emitZeroSint64(E);
case PT_Uint64:
return this->emitZeroUint64(E);
case PT_IntAP:
return this->emitZeroIntAP(Ctx.getBitWidth(QT), E);
case PT_IntAPS:
return this->emitZeroIntAPS(Ctx.getBitWidth(QT), E);
case PT_Ptr:
return this->emitNullPtr(nullptr, E);
case PT_FnPtr:
return this->emitNullFnPtr(nullptr, E);
case PT_MemberPtr:
return this->emitNullMemberPtr(nullptr, E);
case PT_Float: {
return this->emitConstFloat(APFloat::getZero(Ctx.getFloatSemantics(QT)), E);
}
}
llvm_unreachable("unknown primitive type");
}
template <class Emitter>
bool Compiler<Emitter>::visitZeroRecordInitializer(const Record *R,
const Expr *E) {
assert(E);
assert(R);
// Fields
for (const Record::Field &Field : R->fields()) {
if (Field.Decl->isUnnamedBitField())
continue;
const Descriptor *D = Field.Desc;
if (D->isPrimitive()) {
QualType QT = D->getType();
PrimType T = classifyPrim(D->getType());
if (!this->visitZeroInitializer(T, QT, E))
return false;
if (!this->emitInitField(T, Field.Offset, E))
return false;
if (R->isUnion())
break;
continue;
}
if (!this->emitGetPtrField(Field.Offset, E))
return false;
if (D->isPrimitiveArray()) {
QualType ET = D->getElemQualType();
PrimType T = classifyPrim(ET);
for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) {
if (!this->visitZeroInitializer(T, ET, E))
return false;
if (!this->emitInitElem(T, I, E))
return false;
}
} else if (D->isCompositeArray()) {
const Record *ElemRecord = D->ElemDesc->ElemRecord;
assert(D->ElemDesc->ElemRecord);
for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) {
if (!this->emitConstUint32(I, E))
return false;
if (!this->emitArrayElemPtr(PT_Uint32, E))
return false;
if (!this->visitZeroRecordInitializer(ElemRecord, E))
return false;
if (!this->emitPopPtr(E))
return false;
}
} else if (D->isRecord()) {
if (!this->visitZeroRecordInitializer(D->ElemRecord, E))
return false;
} else {
assert(false);
}
if (!this->emitFinishInitPop(E))
return false;
if (R->isUnion())
break;
}
for (const Record::Base &B : R->bases()) {
if (!this->emitGetPtrBase(B.Offset, E))
return false;
if (!this->visitZeroRecordInitializer(B.R, E))
return false;
if (!this->emitFinishInitPop(E))
return false;
}
// FIXME: Virtual bases.
return true;
}
template <class Emitter>
template <typename T>
bool Compiler<Emitter>::emitConst(T Value, PrimType Ty, const Expr *E) {
switch (Ty) {
case PT_Sint8:
return this->emitConstSint8(Value, E);
case PT_Uint8:
return this->emitConstUint8(Value, E);
case PT_Sint16:
return this->emitConstSint16(Value, E);
case PT_Uint16:
return this->emitConstUint16(Value, E);
case PT_Sint32:
return this->emitConstSint32(Value, E);
case PT_Uint32:
return this->emitConstUint32(Value, E);
case PT_Sint64:
return this->emitConstSint64(Value, E);
case PT_Uint64:
return this->emitConstUint64(Value, E);
case PT_Bool:
return this->emitConstBool(Value, E);
case PT_Ptr:
case PT_FnPtr:
case PT_MemberPtr:
case PT_Float:
case PT_IntAP:
case PT_IntAPS:
llvm_unreachable("Invalid integral type");
break;
}
llvm_unreachable("unknown primitive type");
}
template <class Emitter>
template <typename T>
bool Compiler<Emitter>::emitConst(T Value, const Expr *E) {
return this->emitConst(Value, classifyPrim(E->getType()), E);
}
template <class Emitter>
bool Compiler<Emitter>::emitConst(const APSInt &Value, PrimType Ty,
const Expr *E) {
if (Ty == PT_IntAPS)
return this->emitConstIntAPS(Value, E);
if (Ty == PT_IntAP)
return this->emitConstIntAP(Value, E);
if (Value.isSigned())
return this->emitConst(Value.getSExtValue(), Ty, E);
return this->emitConst(Value.getZExtValue(), Ty, E);
}
template <class Emitter>
bool Compiler<Emitter>::emitConst(const APSInt &Value, const Expr *E) {
return this->emitConst(Value, classifyPrim(E->getType()), E);
}
template <class Emitter>
unsigned Compiler<Emitter>::allocateLocalPrimitive(DeclTy &&Src, PrimType Ty,
bool IsConst,
bool IsExtended) {
// Make sure we don't accidentally register the same decl twice.
if (const auto *VD =
dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
assert(!P.getGlobal(VD));
assert(!Locals.contains(VD));
(void)VD;
}
// FIXME: There are cases where Src.is<Expr*>() is wrong, e.g.
// (int){12} in C. Consider using Expr::isTemporaryObject() instead
// or isa<MaterializeTemporaryExpr>().
Descriptor *D = P.createDescriptor(Src, Ty, Descriptor::InlineDescMD, IsConst,
Src.is<const Expr *>());
Scope::Local Local = this->createLocal(D);
if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>()))
Locals.insert({VD, Local});
VarScope->add(Local, IsExtended);
return Local.Offset;
}
template <class Emitter>
std::optional<unsigned>
Compiler<Emitter>::allocateLocal(DeclTy &&Src, const ValueDecl *ExtendingDecl) {
// Make sure we don't accidentally register the same decl twice.
if ([[maybe_unused]] const auto *VD =
dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
assert(!P.getGlobal(VD));
assert(!Locals.contains(VD));
}
QualType Ty;
const ValueDecl *Key = nullptr;
const Expr *Init = nullptr;
bool IsTemporary = false;
if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
Key = VD;
Ty = VD->getType();
if (const auto *VarD = dyn_cast<VarDecl>(VD))
Init = VarD->getInit();
}
if (auto *E = Src.dyn_cast<const Expr *>()) {
IsTemporary = true;
Ty = E->getType();
}
Descriptor *D = P.createDescriptor(
Src, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(),
IsTemporary, /*IsMutable=*/false, Init);
if (!D)
return std::nullopt;
Scope::Local Local = this->createLocal(D);
if (Key)
Locals.insert({Key, Local});
if (ExtendingDecl)
VarScope->addExtended(Local, ExtendingDecl);
else
VarScope->add(Local, false);
return Local.Offset;
}
template <class Emitter>
unsigned Compiler<Emitter>::allocateTemporary(const Expr *E) {
QualType Ty = E->getType();
assert(!Ty->isRecordType());
Descriptor *D = P.createDescriptor(
E, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(),
/*IsTemporary=*/true, /*IsMutable=*/false, /*Init=*/nullptr);
assert(D);
Scope::Local Local = this->createLocal(D);
VariableScope<Emitter> *S = VarScope;
assert(S);
// Attach to topmost scope.
while (S->getParent())
S = S->getParent();
assert(S && !S->getParent());
S->addLocal(Local);
return Local.Offset;
}
template <class Emitter>
const RecordType *Compiler<Emitter>::getRecordTy(QualType Ty) {
if (const PointerType *PT = dyn_cast<PointerType>(Ty))
return PT->getPointeeType()->getAs<RecordType>();
return Ty->getAs<RecordType>();
}
template <class Emitter> Record *Compiler<Emitter>::getRecord(QualType Ty) {
if (const auto *RecordTy = getRecordTy(Ty))
return getRecord(RecordTy->getDecl());
return nullptr;
}
template <class Emitter>
Record *Compiler<Emitter>::getRecord(const RecordDecl *RD) {
return P.getOrCreateRecord(RD);
}
template <class Emitter>
const Function *Compiler<Emitter>::getFunction(const FunctionDecl *FD) {
return Ctx.getOrCreateFunction(FD);
}
template <class Emitter> bool Compiler<Emitter>::visitExpr(const Expr *E) {
LocalScope<Emitter> RootScope(this);
// Void expressions.
if (E->getType()->isVoidType()) {
if (!visit(E))
return false;
return this->emitRetVoid(E) && RootScope.destroyLocals();
}
// Expressions with a primitive return type.
if (std::optional<PrimType> T = classify(E)) {
if (!visit(E))
return false;
return this->emitRet(*T, E) && RootScope.destroyLocals();
}
// Expressions with a composite return type.
// For us, that means everything we don't
// have a PrimType for.
if (std::optional<unsigned> LocalOffset = this->allocateLocal(E)) {
if (!this->emitGetPtrLocal(*LocalOffset, E))
return false;
if (!visitInitializer(E))
return false;
if (!this->emitFinishInit(E))
return false;
// We are destroying the locals AFTER the Ret op.
// The Ret op needs to copy the (alive) values, but the
// destructors may still turn the entire expression invalid.
return this->emitRetValue(E) && RootScope.destroyLocals();
}
RootScope.destroyLocals();
return false;
}
template <class Emitter>
VarCreationState Compiler<Emitter>::visitDecl(const VarDecl *VD) {
auto R = this->visitVarDecl(VD, /*Toplevel=*/true);
if (R.notCreated())
return R;
if (R)
return true;
if (!R && Context::shouldBeGloballyIndexed(VD)) {
if (auto GlobalIndex = P.getGlobal(VD)) {
Block *GlobalBlock = P.getGlobal(*GlobalIndex);
GlobalInlineDescriptor &GD =
*reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData());
GD.InitState = GlobalInitState::InitializerFailed;
GlobalBlock->invokeDtor();
}
}
return R;
}
/// Toplevel visitDeclAndReturn().
/// We get here from evaluateAsInitializer().
/// We need to evaluate the initializer and return its value.
template <class Emitter>
bool Compiler<Emitter>::visitDeclAndReturn(const VarDecl *VD,
bool ConstantContext) {
std::optional<PrimType> VarT = classify(VD->getType());
// We only create variables if we're evaluating in a constant context.
// Otherwise, just evaluate the initializer and return it.
if (!ConstantContext) {
DeclScope<Emitter> LS(this, VD);
if (!this->visit(VD->getAnyInitializer()))
return false;
return this->emitRet(VarT.value_or(PT_Ptr), VD) && LS.destroyLocals();
}
LocalScope<Emitter> VDScope(this, VD);
if (!this->visitVarDecl(VD, /*Toplevel=*/true))
return false;
if (Context::shouldBeGloballyIndexed(VD)) {
auto GlobalIndex = P.getGlobal(VD);
assert(GlobalIndex); // visitVarDecl() didn't return false.
if (VarT) {
if (!this->emitGetGlobalUnchecked(*VarT, *GlobalIndex, VD))
return false;
} else {
if (!this->emitGetPtrGlobal(*GlobalIndex, VD))
return false;
}
} else {
auto Local = Locals.find(VD);
assert(Local != Locals.end()); // Same here.
if (VarT) {
if (!this->emitGetLocal(*VarT, Local->second.Offset, VD))
return false;
} else {
if (!this->emitGetPtrLocal(Local->second.Offset, VD))
return false;
}
}
// Return the value.
if (!this->emitRet(VarT.value_or(PT_Ptr), VD)) {
// If the Ret above failed and this is a global variable, mark it as
// uninitialized, even everything else succeeded.
if (Context::shouldBeGloballyIndexed(VD)) {
auto GlobalIndex = P.getGlobal(VD);
assert(GlobalIndex);
Block *GlobalBlock = P.getGlobal(*GlobalIndex);
GlobalInlineDescriptor &GD =
*reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData());
GD.InitState = GlobalInitState::InitializerFailed;
GlobalBlock->invokeDtor();
}
return false;
}
return VDScope.destroyLocals();
}
template <class Emitter>
VarCreationState Compiler<Emitter>::visitVarDecl(const VarDecl *VD,
bool Toplevel) {
// We don't know what to do with these, so just return false.
if (VD->getType().isNull())
return false;
// This case is EvalEmitter-only. If we won't create any instructions for the
// initializer anyway, don't bother creating the variable in the first place.
if (!this->isActive())
return VarCreationState::NotCreated();
const Expr *Init = VD->getInit();
std::optional<PrimType> VarT = classify(VD->getType());
if (Init && Init->isValueDependent())
return false;
if (Context::shouldBeGloballyIndexed(VD)) {
auto checkDecl = [&]() -> bool {
bool NeedsOp = !Toplevel && VD->isLocalVarDecl() && VD->isStaticLocal();
return !NeedsOp || this->emitCheckDecl(VD, VD);
};
auto initGlobal = [&](unsigned GlobalIndex) -> bool {
assert(Init);
DeclScope<Emitter> LocalScope(this, VD);
if (VarT) {
if (!this->visit(Init))
return checkDecl() && false;
return checkDecl() && this->emitInitGlobal(*VarT, GlobalIndex, VD);
}
if (!checkDecl())
return false;
if (!this->emitGetPtrGlobal(GlobalIndex, Init))
return false;
if (!visitInitializer(Init))
return false;
if (!this->emitFinishInit(Init))
return false;
return this->emitPopPtr(Init);
};
// We've already seen and initialized this global.
if (std::optional<unsigned> GlobalIndex = P.getGlobal(VD)) {
if (P.getPtrGlobal(*GlobalIndex).isInitialized())
return checkDecl();
// The previous attempt at initialization might've been unsuccessful,
// so let's try this one.
return Init && checkDecl() && initGlobal(*GlobalIndex);
}
std::optional<unsigned> GlobalIndex = P.createGlobal(VD, Init);
if (!GlobalIndex)
return false;
return !Init || (checkDecl() && initGlobal(*GlobalIndex));
} else {
InitLinkScope<Emitter> ILS(this, InitLink::Decl(VD));
if (VarT) {
unsigned Offset = this->allocateLocalPrimitive(
VD, *VarT, VD->getType().isConstQualified());
if (Init) {
// If this is a toplevel declaration, create a scope for the
// initializer.
if (Toplevel) {
LocalScope<Emitter> Scope(this);
if (!this->visit(Init))
return false;
return this->emitSetLocal(*VarT, Offset, VD) && Scope.destroyLocals();
} else {
if (!this->visit(Init))
return false;
return this->emitSetLocal(*VarT, Offset, VD);
}
}
} else {
if (std::optional<unsigned> Offset = this->allocateLocal(VD)) {
if (!Init)
return true;
if (!this->emitGetPtrLocal(*Offset, Init))
return false;
if (!visitInitializer(Init))
return false;
if (!this->emitFinishInit(Init))
return false;
return this->emitPopPtr(Init);
}
return false;
}
return true;
}
return false;
}
template <class Emitter>
bool Compiler<Emitter>::visitAPValue(const APValue &Val, PrimType ValType,
const Expr *E) {
assert(!DiscardResult);
if (Val.isInt())
return this->emitConst(Val.getInt(), ValType, E);
else if (Val.isFloat())
return this->emitConstFloat(Val.getFloat(), E);
if (Val.isLValue()) {
if (Val.isNullPointer())
return this->emitNull(ValType, nullptr, E);
APValue::LValueBase Base = Val.getLValueBase();
if (const Expr *BaseExpr = Base.dyn_cast<const Expr *>())
return this->visit(BaseExpr);
else if (const auto *VD = Base.dyn_cast<const ValueDecl *>()) {
return this->visitDeclRef(VD, E);
}
} else if (Val.isMemberPointer()) {
if (const ValueDecl *MemberDecl = Val.getMemberPointerDecl())
return this->emitGetMemberPtr(MemberDecl, E);
return this->emitNullMemberPtr(nullptr, E);
}
return false;
}
template <class Emitter>
bool Compiler<Emitter>::visitAPValueInitializer(const APValue &Val,
const Expr *E) {
if (Val.isStruct()) {
const Record *R = this->getRecord(E->getType());
assert(R);
for (unsigned I = 0, N = Val.getStructNumFields(); I != N; ++I) {
const APValue &F = Val.getStructField(I);
const Record::Field *RF = R->getField(I);
if (F.isInt() || F.isFloat() || F.isLValue() || F.isMemberPointer()) {
PrimType T = classifyPrim(RF->Decl->getType());
if (!this->visitAPValue(F, T, E))
return false;
if (!this->emitInitField(T, RF->Offset, E))
return false;
} else if (F.isArray()) {
assert(RF->Desc->isPrimitiveArray());
const auto *ArrType = RF->Decl->getType()->getAsArrayTypeUnsafe();
PrimType ElemT = classifyPrim(ArrType->getElementType());
assert(ArrType);
if (!this->emitGetPtrField(RF->Offset, E))
return false;
for (unsigned A = 0, AN = F.getArraySize(); A != AN; ++A) {
if (!this->visitAPValue(F.getArrayInitializedElt(A), ElemT, E))
return false;
if (!this->emitInitElem(ElemT, A, E))
return false;
}
if (!this->emitPopPtr(E))
return false;
} else if (F.isStruct() || F.isUnion()) {
if (!this->emitGetPtrField(RF->Offset, E))
return false;
if (!this->visitAPValueInitializer(F, E))
return false;
if (!this->emitPopPtr(E))
return false;
} else {
assert(false && "I don't think this should be possible");
}
}
return true;
} else if (Val.isUnion()) {
const FieldDecl *UnionField = Val.getUnionField();
const Record *R = this->getRecord(UnionField->getParent());
assert(R);
const APValue &F = Val.getUnionValue();
const Record::Field *RF = R->getField(UnionField);
PrimType T = classifyPrim(RF->Decl->getType());
if (!this->visitAPValue(F, T, E))
return false;
return this->emitInitField(T, RF->Offset, E);
}
// TODO: Other types.
return false;
}
template <class Emitter>
bool Compiler<Emitter>::VisitBuiltinCallExpr(const CallExpr *E) {
const Function *Func = getFunction(E->getDirectCallee());
if (!Func)
return false;
// For these, we're expected to ultimately return an APValue pointing
// to the CallExpr. This is needed to get the correct codegen.
unsigned Builtin = E->getBuiltinCallee();
if (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
Builtin == Builtin::BI__builtin___NSStringMakeConstantString ||
Builtin == Builtin::BI__builtin_ptrauth_sign_constant ||
Builtin == Builtin::BI__builtin_function_start) {
if (std::optional<unsigned> GlobalOffset = P.createGlobal(E)) {
if (!this->emitGetPtrGlobal(*GlobalOffset, E))
return false;
if (PrimType PT = classifyPrim(E); PT != PT_Ptr && isPtrType(PT))
return this->emitDecayPtr(PT_Ptr, PT, E);
return true;
}
return false;
}
QualType ReturnType = E->getType();
std::optional<PrimType> ReturnT = classify(E);
// Non-primitive return type. Prepare storage.
if (!Initializing && !ReturnT && !ReturnType->isVoidType()) {
std::optional<unsigned> LocalIndex = allocateLocal(E);
if (!LocalIndex)
return false;
if (!this->emitGetPtrLocal(*LocalIndex, E))
return false;
}
if (!Func->isUnevaluatedBuiltin()) {
// Put arguments on the stack.
for (const auto *Arg : E->arguments()) {
if (!this->visit(Arg))
return false;
}
}
if (!this->emitCallBI(Func, E, E))
return false;
if (DiscardResult && !ReturnType->isVoidType()) {
assert(ReturnT);
return this->emitPop(*ReturnT, E);
}
return true;
}
template <class Emitter>
bool Compiler<Emitter>::VisitCallExpr(const CallExpr *E) {
if (E->getBuiltinCallee())
return VisitBuiltinCallExpr(E);
QualType ReturnType = E->getCallReturnType(Ctx.getASTContext());
std::optional<PrimType> T = classify(ReturnType);
bool HasRVO = !ReturnType->isVoidType() && !T;
const FunctionDecl *FuncDecl = E->getDirectCallee();
if (HasRVO) {
if (DiscardResult) {
// If we need to discard the return value but the function returns its
// value via an RVO pointer, we need to create one such pointer just
// for this call.
if (std::optional<unsigned> LocalIndex = allocateLocal(E)) {
if (!this->emitGetPtrLocal(*LocalIndex, E))
return false;
}
} else {
// We need the result. Prepare a pointer to return or
// dup the current one.
if (!Initializing) {
if (std::optional<unsigned> LocalIndex = allocateLocal(E)) {
if (!this->emitGetPtrLocal(*LocalIndex, E))
return false;
}
}
if (!this->emitDupPtr(E))
return false;
}
}
SmallVector<const Expr *, 8> Args(
llvm::ArrayRef(E->getArgs(), E->getNumArgs()));
bool IsAssignmentOperatorCall = false;
if (const auto *OCE = dyn_cast<CXXOperatorCallExpr>(E);
OCE && OCE->isAssignmentOp()) {
// Just like with regular assignments, we need to special-case assignment
// operators here and evaluate the RHS (the second arg) before the LHS (the
// first arg. We fix this by using a Flip op later.
assert(Args.size() == 2);
IsAssignmentOperatorCall = true;
std::reverse(Args.begin(), Args.end());
}
// Calling a static operator will still
// pass the instance, but we don't need it.
// Discard it here.
if (isa<CXXOperatorCallExpr>(E)) {
if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(FuncDecl);
MD && MD->isStatic()) {
if (!this->discard(E->getArg(0)))
return false;
// Drop first arg.
Args.erase(Args.begin());
}
}
std::optional<unsigned> CalleeOffset;
// Add the (optional, implicit) This pointer.
if (const auto *MC = dyn_cast<CXXMemberCallExpr>(E)) {
if (!FuncDecl && classifyPrim(E->getCallee()) == PT_MemberPtr) {
// If we end up creating a CallPtr op for this, we need the base of the
// member pointer as the instance pointer, and later extract the function
// decl as the function pointer.
const Expr *Callee = E->getCallee();
CalleeOffset =
this->allocateLocalPrimitive(Callee, PT_MemberPtr, true, false);
if (!this->visit(Callee))
return false;
if (!this->emitSetLocal(PT_MemberPtr, *CalleeOffset, E))
return false;
if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E))
return false;
if (!this->emitGetMemberPtrBase(E))
return false;
} else if (!this->visit(MC->getImplicitObjectArgument())) {
return false;
}
} else if (!FuncDecl) {
const Expr *Callee = E->getCallee();
CalleeOffset = this->allocateLocalPrimitive(Callee, PT_FnPtr, true, false);
if (!this->visit(Callee))
return false;
if (!this->emitSetLocal(PT_FnPtr, *CalleeOffset, E))
return false;
}
llvm::BitVector NonNullArgs = collectNonNullArgs(FuncDecl, Args);
// Put arguments on the stack.
unsigned ArgIndex = 0;
for (const auto *Arg : Args) {
if (!this->visit(Arg))
return false;
// If we know the callee already, check the known parametrs for nullability.
if (FuncDecl && NonNullArgs[ArgIndex]) {
PrimType ArgT = classify(Arg).value_or(PT_Ptr);
if (ArgT == PT_Ptr || ArgT == PT_FnPtr) {
if (!this->emitCheckNonNullArg(ArgT, Arg))
return false;
}
}
++ArgIndex;
}
// Undo the argument reversal we did earlier.
if (IsAssignmentOperatorCall) {
assert(Args.size() == 2);
PrimType Arg1T = classify(Args[0]).value_or(PT_Ptr);
PrimType Arg2T = classify(Args[1]).value_or(PT_Ptr);
if (!this->emitFlip(Arg2T, Arg1T, E))
return false;
}
if (FuncDecl) {
const Function *Func = getFunction(FuncDecl);
if (!Func)
return false;
assert(HasRVO == Func->hasRVO());
bool HasQualifier = false;
if (const auto *ME = dyn_cast<MemberExpr>(E->getCallee()))
HasQualifier = ME->hasQualifier();
bool IsVirtual = false;
if (const auto *MD = dyn_cast<CXXMethodDecl>(FuncDecl))
IsVirtual = MD->isVirtual();
// In any case call the function. The return value will end up on the stack
// and if the function has RVO, we already have the pointer on the stack to
// write the result into.
if (IsVirtual && !HasQualifier) {
uint32_t VarArgSize = 0;
unsigned NumParams =
Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E);
for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I)
VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
if (!this->emitCallVirt(Func, VarArgSize, E))
return false;
} else if (Func->isVariadic()) {
uint32_t VarArgSize = 0;
unsigned NumParams =
Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E);
for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I)
VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
if (!this->emitCallVar(Func, VarArgSize, E))
return false;
} else {
if (!this->emitCall(Func, 0, E))
return false;
}
} else {
// Indirect call. Visit the callee, which will leave a FunctionPointer on
// the stack. Cleanup of the returned value if necessary will be done after
// the function call completed.
// Sum the size of all args from the call expr.
uint32_t ArgSize = 0;
for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I)
ArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
// Get the callee, either from a member pointer or function pointer saved in
// CalleeOffset.
if (isa<CXXMemberCallExpr>(E) && CalleeOffset) {
if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E))
return false;
if (!this->emitGetMemberPtrDecl(E))
return false;
} else {
if (!this->emitGetLocal(PT_FnPtr, *CalleeOffset, E))
return false;
}
if (!this->emitCallPtr(ArgSize, E, E))
return false;
}
// Cleanup for discarded return values.
if (DiscardResult && !ReturnType->isVoidType() && T)
return this->emitPop(*T, E);
return true;
}
template <class Emitter>
bool Compiler<Emitter>::VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
SourceLocScope<Emitter> SLS(this, E);
return this->delegate(E->getExpr());
}
template <class Emitter>
bool Compiler<Emitter>::VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) {
SourceLocScope<Emitter> SLS(this, E);
const Expr *SubExpr = E->getExpr();
if (std::optional<PrimType> T = classify(E->getExpr()))
return this->visit(SubExpr);
assert(Initializing);
return this->visitInitializer(SubExpr);
}
template <class Emitter>
bool Compiler<Emitter>::VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
if (DiscardResult)
return true;
return this->emitConstBool(E->getValue(), E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitCXXNullPtrLiteralExpr(
const CXXNullPtrLiteralExpr *E) {
if (DiscardResult)
return true;
return this->emitNullPtr(nullptr, E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitGNUNullExpr(const GNUNullExpr *E) {
if (DiscardResult)
return true;
assert(E->getType()->isIntegerType());
PrimType T = classifyPrim(E->getType());
return this->emitZero(T, E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitCXXThisExpr(const CXXThisExpr *E) {
if (DiscardResult)
return true;
if (this->LambdaThisCapture.Offset > 0) {
if (this->LambdaThisCapture.IsPtr)
return this->emitGetThisFieldPtr(this->LambdaThisCapture.Offset, E);
return this->emitGetPtrThisField(this->LambdaThisCapture.Offset, E);
}
// In some circumstances, the 'this' pointer does not actually refer to the
// instance pointer of the current function frame, but e.g. to the declaration
// currently being initialized. Here we emit the necessary instruction(s) for
// this scenario.
if (!InitStackActive || !E->isImplicit())
return this->emitThis(E);
if (InitStackActive && !InitStack.empty()) {
unsigned StartIndex = 0;
for (StartIndex = InitStack.size() - 1; StartIndex > 0; --StartIndex) {
if (InitStack[StartIndex].Kind != InitLink::K_Field &&
InitStack[StartIndex].Kind != InitLink::K_Elem)
break;
}
for (unsigned I = StartIndex, N = InitStack.size(); I != N; ++I) {
if (!InitStack[I].template emit<Emitter>(this, E))
return false;
}
return true;
}
return this->emitThis(E);
}
template <class Emitter> bool Compiler<Emitter>::visitStmt(const Stmt *S) {
switch (S->getStmtClass()) {
case Stmt::CompoundStmtClass:
return visitCompoundStmt(cast<CompoundStmt>(S));
case Stmt::DeclStmtClass:
return visitDeclStmt(cast<DeclStmt>(S));
case Stmt::ReturnStmtClass:
return visitReturnStmt(cast<ReturnStmt>(S));
case Stmt::IfStmtClass:
return visitIfStmt(cast<IfStmt>(S));
case Stmt::WhileStmtClass:
return visitWhileStmt(cast<WhileStmt>(S));
case Stmt::DoStmtClass:
return visitDoStmt(cast<DoStmt>(S));
case Stmt::ForStmtClass:
return visitForStmt(cast<ForStmt>(S));
case Stmt::CXXForRangeStmtClass:
return visitCXXForRangeStmt(cast<CXXForRangeStmt>(S));
case Stmt::BreakStmtClass:
return visitBreakStmt(cast<BreakStmt>(S));
case Stmt::ContinueStmtClass:
return visitContinueStmt(cast<ContinueStmt>(S));
case Stmt::SwitchStmtClass:
return visitSwitchStmt(cast<SwitchStmt>(S));
case Stmt::CaseStmtClass:
return visitCaseStmt(cast<CaseStmt>(S));
case Stmt::DefaultStmtClass:
return visitDefaultStmt(cast<DefaultStmt>(S));
case Stmt::AttributedStmtClass:
return visitAttributedStmt(cast<AttributedStmt>(S));
case Stmt::CXXTryStmtClass:
return visitCXXTryStmt(cast<CXXTryStmt>(S));
case Stmt::NullStmtClass:
return true;
// Always invalid statements.
case Stmt::GCCAsmStmtClass:
case Stmt::MSAsmStmtClass:
case Stmt::GotoStmtClass:
return this->emitInvalid(S);
case Stmt::LabelStmtClass:
return this->visitStmt(cast<LabelStmt>(S)->getSubStmt());
default: {
if (const auto *E = dyn_cast<Expr>(S))
return this->discard(E);
return false;
}
}
}
template <class Emitter>
bool Compiler<Emitter>::visitCompoundStmt(const CompoundStmt *S) {
BlockScope<Emitter> Scope(this);
for (const auto *InnerStmt : S->body())
if (!visitStmt(InnerStmt))
return false;
return Scope.destroyLocals();
}
template <class Emitter>
bool Compiler<Emitter>::visitDeclStmt(const DeclStmt *DS) {
for (const auto *D : DS->decls()) {
if (isa<StaticAssertDecl, TagDecl, TypedefNameDecl, UsingEnumDecl,
FunctionDecl>(D))
continue;
const auto *VD = dyn_cast<VarDecl>(D);
if (!VD)
return false;
if (!this->visitVarDecl(VD))
return false;
}
return true;
}
template <class Emitter>
bool Compiler<Emitter>::visitReturnStmt(const ReturnStmt *RS) {
if (this->InStmtExpr)
return this->emitUnsupported(RS);
if (const Expr *RE = RS->getRetValue()) {
LocalScope<Emitter> RetScope(this);
if (ReturnType) {
// Primitive types are simply returned.
if (!this->visit(RE))
return false;
this->emitCleanup();
return this->emitRet(*ReturnType, RS);
} else if (RE->getType()->isVoidType()) {
if (!this->visit(RE))
return false;
} else {
// RVO - construct the value in the return location.
if (!this->emitRVOPtr(RE))
return false;
if (!this->visitInitializer(RE))
return false;
if (!this->emitPopPtr(RE))
return false;
this->emitCleanup();
return this->emitRetVoid(RS);
}
}
// Void return.
this->emitCleanup();
return this->emitRetVoid(RS);
}
template <class Emitter> bool Compiler<Emitter>::visitIfStmt(const IfStmt *IS) {
if (auto *CondInit = IS->getInit())
if (!visitStmt(CondInit))
return false;
if (const DeclStmt *CondDecl = IS->getConditionVariableDeclStmt())
if (!visitDeclStmt(CondDecl))
return false;
// Compile condition.
if (IS->isNonNegatedConsteval()) {
if (!this->emitIsConstantContext(IS))
return false;
} else if (IS->isNegatedConsteval()) {
if (!this->emitIsConstantContext(IS))
return false;
if (!this->emitInv(IS))
return false;
} else {
if (!this->visitBool(IS->getCond()))
return false;
}
if (const Stmt *Else = IS->getElse()) {
LabelTy LabelElse = this->getLabel();
LabelTy LabelEnd = this->getLabel();
if (!this->jumpFalse(LabelElse))
return false;
if (!visitStmt(IS->getThen()))
return false;
if (!this->jump(LabelEnd))
return false;
this->emitLabel(LabelElse);
if (!visitStmt(Else))
return false;
this->emitLabel(LabelEnd);
} else {
LabelTy LabelEnd = this->getLabel();
if (!this->jumpFalse(LabelEnd))
return false;
if (!visitStmt(IS->getThen()))
return false;
this->emitLabel(LabelEnd);
}
return true;
}
template <class Emitter>
bool Compiler<Emitter>::visitWhileStmt(const WhileStmt *S) {
const Expr *Cond = S->getCond();
const Stmt *Body = S->getBody();
LabelTy CondLabel = this->getLabel(); // Label before the condition.
LabelTy EndLabel = this->getLabel(); // Label after the loop.
LoopScope<Emitter> LS(this, EndLabel, CondLabel);
this->fallthrough(CondLabel);
this->emitLabel(CondLabel);
if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
if (!visitDeclStmt(CondDecl))
return false;
if (!this->visitBool(Cond))
return false;
if (!this->jumpFalse(EndLabel))
return false;
if (!this->visitStmt(Body))
return false;
if (!this->jump(CondLabel))
return false;
this->fallthrough(EndLabel);
this->emitLabel(EndLabel);
return true;
}
template <class Emitter> bool Compiler<Emitter>::visitDoStmt(const DoStmt *S) {
const Expr *Cond = S->getCond();
const Stmt *Body = S->getBody();
LabelTy StartLabel = this->getLabel();
LabelTy EndLabel = this->getLabel();
LabelTy CondLabel = this->getLabel();
LoopScope<Emitter> LS(this, EndLabel, CondLabel);
this->fallthrough(StartLabel);
this->emitLabel(StartLabel);
{
if (!this->visitStmt(Body))
return false;
this->fallthrough(CondLabel);
this->emitLabel(CondLabel);
if (!this->visitBool(Cond))
return false;
}
if (!this->jumpTrue(StartLabel))
return false;
this->fallthrough(EndLabel);
this->emitLabel(EndLabel);
return true;
}
template <class Emitter>
bool Compiler<Emitter>::visitForStmt(const ForStmt *S) {
// for (Init; Cond; Inc) { Body }
const Stmt *Init = S->getInit();
const Expr *Cond = S->getCond();
const Expr *Inc = S->getInc();
const Stmt *Body = S->getBody();
LabelTy EndLabel = this->getLabel();
LabelTy CondLabel = this->getLabel();
LabelTy IncLabel = this->getLabel();
LoopScope<Emitter> LS(this, EndLabel, IncLabel);
if (Init && !this->visitStmt(Init))
return false;
this->fallthrough(CondLabel);
this->emitLabel(CondLabel);
if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
if (!visitDeclStmt(CondDecl))
return false;
if (Cond) {
if (!this->visitBool(Cond))
return false;
if (!this->jumpFalse(EndLabel))
return false;
}
{
if (Body && !this->visitStmt(Body))
return false;
this->fallthrough(IncLabel);
this->emitLabel(IncLabel);
if (Inc && !this->discard(Inc))
return false;
}
if (!this->jump(CondLabel))
return false;
this->fallthrough(EndLabel);
this->emitLabel(EndLabel);
return true;
}
template <class Emitter>
bool Compiler<Emitter>::visitCXXForRangeStmt(const CXXForRangeStmt *S) {
const Stmt *Init = S->getInit();
const Expr *Cond = S->getCond();
const Expr *Inc = S->getInc();
const Stmt *Body = S->getBody();
const Stmt *BeginStmt = S->getBeginStmt();
const Stmt *RangeStmt = S->getRangeStmt();
const Stmt *EndStmt = S->getEndStmt();
const VarDecl *LoopVar = S->getLoopVariable();
LabelTy EndLabel = this->getLabel();
LabelTy CondLabel = this->getLabel();
LabelTy IncLabel = this->getLabel();
LoopScope<Emitter> LS(this, EndLabel, IncLabel);
// Emit declarations needed in the loop.
if (Init && !this->visitStmt(Init))
return false;
if (!this->visitStmt(RangeStmt))
return false;
if (!this->visitStmt(BeginStmt))
return false;
if (!this->visitStmt(EndStmt))
return false;
// Now the condition as well as the loop variable assignment.
this->fallthrough(CondLabel);
this->emitLabel(CondLabel);
if (!this->visitBool(Cond))
return false;
if (!this->jumpFalse(EndLabel))
return false;
if (!this->visitVarDecl(LoopVar))
return false;
// Body.
{
if (!this->visitStmt(Body))
return false;
this->fallthrough(IncLabel);
this->emitLabel(IncLabel);
if (!this->discard(Inc))
return false;
}
if (!this->jump(CondLabel))
return false;
this->fallthrough(EndLabel);
this->emitLabel(EndLabel);
return true;
}
template <class Emitter>
bool Compiler<Emitter>::visitBreakStmt(const BreakStmt *S) {
if (!BreakLabel)
return false;
this->emitCleanup();
return this->jump(*BreakLabel);
}
template <class Emitter>
bool Compiler<Emitter>::visitContinueStmt(const ContinueStmt *S) {
if (!ContinueLabel)
return false;
this->emitCleanup();
return this->jump(*ContinueLabel);
}
template <class Emitter>
bool Compiler<Emitter>::visitSwitchStmt(const SwitchStmt *S) {
const Expr *Cond = S->getCond();
PrimType CondT = this->classifyPrim(Cond->getType());
LabelTy EndLabel = this->getLabel();
OptLabelTy DefaultLabel = std::nullopt;
unsigned CondVar = this->allocateLocalPrimitive(Cond, CondT, true, false);
if (const auto *CondInit = S->getInit())
if (!visitStmt(CondInit))
return false;
if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
if (!visitDeclStmt(CondDecl))
return false;
// Initialize condition variable.
if (!this->visit(Cond))
return false;
if (!this->emitSetLocal(CondT, CondVar, S))
return false;
CaseMap CaseLabels;
// Create labels and comparison ops for all case statements.
for (const SwitchCase *SC = S->getSwitchCaseList(); SC;
SC = SC->getNextSwitchCase()) {
if (const auto *CS = dyn_cast<CaseStmt>(SC)) {
// FIXME: Implement ranges.
if (CS->caseStmtIsGNURange())
return false;
CaseLabels[SC] = this->getLabel();
const Expr *Value = CS->getLHS();
PrimType ValueT = this->classifyPrim(Value->getType());
// Compare the case statement's value to the switch condition.
if (!this->emitGetLocal(CondT, CondVar, CS))
return false;
if (!this->visit(Value))
return false;
// Compare and jump to the case label.
if (!this->emitEQ(ValueT, S))
return false;
if (!this->jumpTrue(CaseLabels[CS]))
return false;
} else {
assert(!DefaultLabel);
DefaultLabel = this->getLabel();
}
}
// If none of the conditions above were true, fall through to the default
// statement or jump after the switch statement.
if (DefaultLabel) {
if (!this->jump(*DefaultLabel))
return false;
} else {
if (!this->jump(EndLabel))
return false;
}
SwitchScope<Emitter> SS(this, std::move(CaseLabels), EndLabel, DefaultLabel);
if (!this->visitStmt(S->getBody()))
return false;
this->emitLabel(EndLabel);
return true;
}
template <class Emitter>
bool Compiler<Emitter>::visitCaseStmt(const CaseStmt *S) {
this->emitLabel(CaseLabels[S]);
return this->visitStmt(S->getSubStmt());
}
template <class Emitter>
bool Compiler<Emitter>::visitDefaultStmt(const DefaultStmt *S) {
this->emitLabel(*DefaultLabel);
return this->visitStmt(S->getSubStmt());
}
template <class Emitter>
bool Compiler<Emitter>::visitAttributedStmt(const AttributedStmt *S) {
if (this->Ctx.getLangOpts().CXXAssumptions &&
!this->Ctx.getLangOpts().MSVCCompat) {
for (const Attr *A : S->getAttrs()) {
auto *AA = dyn_cast<CXXAssumeAttr>(A);
if (!AA)
continue;
assert(isa<NullStmt>(S->getSubStmt()));
const Expr *Assumption = AA->getAssumption();
if (Assumption->isValueDependent())
return false;
if (Assumption->HasSideEffects(this->Ctx.getASTContext()))
continue;
// Evaluate assumption.
if (!this->visitBool(Assumption))
return false;
if (!this->emitAssume(Assumption))
return false;
}
}
// Ignore other attributes.
return this->visitStmt(S->getSubStmt());
}
template <class Emitter>
bool Compiler<Emitter>::visitCXXTryStmt(const CXXTryStmt *S) {
// Ignore all handlers.
return this->visitStmt(S->getTryBlock());
}
template <class Emitter>
bool Compiler<Emitter>::emitLambdaStaticInvokerBody(const CXXMethodDecl *MD) {
assert(MD->isLambdaStaticInvoker());
assert(MD->hasBody());
assert(cast<CompoundStmt>(MD->getBody())->body_empty());
const CXXRecordDecl *ClosureClass = MD->getParent();
const CXXMethodDecl *LambdaCallOp = ClosureClass->getLambdaCallOperator();
assert(ClosureClass->captures_begin() == ClosureClass->captures_end());
const Function *Func = this->getFunction(LambdaCallOp);
if (!Func)
return false;
assert(Func->hasThisPointer());
assert(Func->getNumParams() == (MD->getNumParams() + 1 + Func->hasRVO()));
if (Func->hasRVO()) {
if (!this->emitRVOPtr(MD))
return false;
}
// The lambda call operator needs an instance pointer, but we don't have
// one here, and we don't need one either because the lambda cannot have
// any captures, as verified above. Emit a null pointer. This is then
// special-cased when interpreting to not emit any misleading diagnostics.
if (!this->emitNullPtr(nullptr, MD))
return false;
// Forward all arguments from the static invoker to the lambda call operator.
for (const ParmVarDecl *PVD : MD->parameters()) {
auto It = this->Params.find(PVD);
assert(It != this->Params.end());
// We do the lvalue-to-rvalue conversion manually here, so no need
// to care about references.
PrimType ParamType = this->classify(PVD->getType()).value_or(PT_Ptr);
if (!this->emitGetParam(ParamType, It->second.Offset, MD))
return false;
}
if (!this->emitCall(Func, 0, LambdaCallOp))
return false;
this->emitCleanup();
if (ReturnType)
return this->emitRet(*ReturnType, MD);
// Nothing to do, since we emitted the RVO pointer above.
return this->emitRetVoid(MD);
}
template <class Emitter>
bool Compiler<Emitter>::checkLiteralType(const Expr *E) {
if (Ctx.getLangOpts().CPlusPlus23)
return true;
if (!E->isPRValue() || E->getType()->isLiteralType(Ctx.getASTContext()))
return true;
return this->emitCheckLiteralType(E->getType().getTypePtr(), E);
}
template <class Emitter>
bool Compiler<Emitter>::compileConstructor(const CXXConstructorDecl *Ctor) {
assert(!ReturnType);
auto emitFieldInitializer = [&](const Record::Field *F, unsigned FieldOffset,
const Expr *InitExpr) -> bool {
// We don't know what to do with these, so just return false.
if (InitExpr->getType().isNull())
return false;
if (std::optional<PrimType> T = this->classify(InitExpr)) {
if (!this->visit(InitExpr))
return false;
if (F->isBitField())
return this->emitInitThisBitField(*T, F, FieldOffset, InitExpr);
return this->emitInitThisField(*T, FieldOffset, InitExpr);
}
// Non-primitive case. Get a pointer to the field-to-initialize
// on the stack and call visitInitialzer() for it.
InitLinkScope<Emitter> FieldScope(this, InitLink::Field(F->Offset));
if (!this->emitGetPtrThisField(FieldOffset, InitExpr))
return false;
if (!this->visitInitializer(InitExpr))
return false;
return this->emitFinishInitPop(InitExpr);
};
const RecordDecl *RD = Ctor->getParent();
const Record *R = this->getRecord(RD);
if (!R)
return false;
if (R->isUnion() && Ctor->isCopyOrMoveConstructor()) {
// union copy and move ctors are special.
assert(cast<CompoundStmt>(Ctor->getBody())->body_empty());
if (!this->emitThis(Ctor))
return false;
auto PVD = Ctor->getParamDecl(0);
ParamOffset PO = this->Params[PVD]; // Must exist.
if (!this->emitGetParam(PT_Ptr, PO.Offset, Ctor))
return false;
return this->emitMemcpy(Ctor) && this->emitPopPtr(Ctor) &&
this->emitRetVoid(Ctor);
}
InitLinkScope<Emitter> InitScope(this, InitLink::This());
for (const auto *Init : Ctor->inits()) {
// Scope needed for the initializers.
BlockScope<Emitter> Scope(this);
const Expr *InitExpr = Init->getInit();
if (const FieldDecl *Member = Init->getMember()) {
const Record::Field *F = R->getField(Member);
if (!emitFieldInitializer(F, F->Offset, InitExpr))
return false;
} else if (const Type *Base = Init->getBaseClass()) {
const auto *BaseDecl = Base->getAsCXXRecordDecl();
assert(BaseDecl);
if (Init->isBaseVirtual()) {
assert(R->getVirtualBase(BaseDecl));
if (!this->emitGetPtrThisVirtBase(BaseDecl, InitExpr))
return false;
} else {
// Base class initializer.
// Get This Base and call initializer on it.
const Record::Base *B = R->getBase(BaseDecl);
assert(B);
if (!this->emitGetPtrThisBase(B->Offset, InitExpr))
return false;
}
if (!this->visitInitializer(InitExpr))
return false;
if (!this->emitFinishInitPop(InitExpr))
return false;
} else if (const IndirectFieldDecl *IFD = Init->getIndirectMember()) {
assert(IFD->getChainingSize() >= 2);
unsigned NestedFieldOffset = 0;
const Record::Field *NestedField = nullptr;
for (const NamedDecl *ND : IFD->chain()) {
const auto *FD = cast<FieldDecl>(ND);
const Record *FieldRecord = this->P.getOrCreateRecord(FD->getParent());
assert(FieldRecord);
NestedField = FieldRecord->getField(FD);
assert(NestedField);
NestedFieldOffset += NestedField->Offset;
}
assert(NestedField);
if (!emitFieldInitializer(NestedField, NestedFieldOffset, InitExpr))
return false;
} else {
assert(Init->isDelegatingInitializer());
if (!this->emitThis(InitExpr))
return false;
if (!this->visitInitializer(Init->getInit()))
return false;
if (!this->emitPopPtr(InitExpr))
return false;
}
if (!Scope.destroyLocals())
return false;
}
if (const auto *Body = Ctor->getBody())
if (!visitStmt(Body))
return false;
return this->emitRetVoid(SourceInfo{});
}
template <class Emitter>
bool Compiler<Emitter>::compileDestructor(const CXXDestructorDecl *Dtor) {
const RecordDecl *RD = Dtor->getParent();
const Record *R = this->getRecord(RD);
if (!R)
return false;
if (!Dtor->isTrivial() && Dtor->getBody()) {
if (!this->visitStmt(Dtor->getBody()))
return false;
}
if (!this->emitThis(Dtor))
return false;
assert(R);
if (!R->isUnion()) {
// First, destroy all fields.
for (const Record::Field &Field : llvm::reverse(R->fields())) {
const Descriptor *D = Field.Desc;
if (!D->isPrimitive() && !D->isPrimitiveArray()) {
if (!this->emitGetPtrField(Field.Offset, SourceInfo{}))
return false;
if (!this->emitDestruction(D))
return false;
if (!this->emitPopPtr(SourceInfo{}))
return false;
}
}
}
for (const Record::Base &Base : llvm::reverse(R->bases())) {
if (!this->emitGetPtrBase(Base.Offset, SourceInfo{}))
return false;
if (!this->emitRecordDestruction(Base.R))
return false;
if (!this->emitPopPtr(SourceInfo{}))
return false;
}
// FIXME: Virtual bases.
return this->emitPopPtr(Dtor) && this->emitRetVoid(Dtor);
}
template <class Emitter>
bool Compiler<Emitter>::visitFunc(const FunctionDecl *F) {
// Classify the return type.
ReturnType = this->classify(F->getReturnType());
if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(F))
return this->compileConstructor(Ctor);
if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(F))
return this->compileDestructor(Dtor);
// Emit custom code if this is a lambda static invoker.
if (const auto *MD = dyn_cast<CXXMethodDecl>(F);
MD && MD->isLambdaStaticInvoker())
return this->emitLambdaStaticInvokerBody(MD);
// Regular functions.
if (const auto *Body = F->getBody())
if (!visitStmt(Body))
return false;
// Emit a guard return to protect against a code path missing one.
if (F->getReturnType()->isVoidType())
return this->emitRetVoid(SourceInfo{});
return this->emitNoRet(SourceInfo{});
}
template <class Emitter>
bool Compiler<Emitter>::VisitUnaryOperator(const UnaryOperator *E) {
const Expr *SubExpr = E->getSubExpr();
if (SubExpr->getType()->isAnyComplexType())
return this->VisitComplexUnaryOperator(E);
std::optional<PrimType> T = classify(SubExpr->getType());
switch (E->getOpcode()) {
case UO_PostInc: { // x++
if (!Ctx.getLangOpts().CPlusPlus14)
return this->emitInvalid(E);
if (!T)
return this->emitError(E);
if (!this->visit(SubExpr))
return false;
if (T == PT_Ptr || T == PT_FnPtr) {
if (!this->emitIncPtr(E))
return false;
return DiscardResult ? this->emitPopPtr(E) : true;
}
if (T == PT_Float) {
return DiscardResult ? this->emitIncfPop(getRoundingMode(E), E)
: this->emitIncf(getRoundingMode(E), E);
}
return DiscardResult ? this->emitIncPop(*T, E) : this->emitInc(*T, E);
}
case UO_PostDec: { // x--
if (!Ctx.getLangOpts().CPlusPlus14)
return this->emitInvalid(E);
if (!T)
return this->emitError(E);
if (!this->visit(SubExpr))
return false;
if (T == PT_Ptr || T == PT_FnPtr) {
if (!this->emitDecPtr(E))
return false;
return DiscardResult ? this->emitPopPtr(E) : true;
}
if (T == PT_Float) {
return DiscardResult ? this->emitDecfPop(getRoundingMode(E), E)
: this->emitDecf(getRoundingMode(E), E);
}
return DiscardResult ? this->emitDecPop(*T, E) : this->emitDec(*T, E);
}
case UO_PreInc: { // ++x
if (!Ctx.getLangOpts().CPlusPlus14)
return this->emitInvalid(E);
if (!T)
return this->emitError(E);
if (!this->visit(SubExpr))
return false;
if (T == PT_Ptr || T == PT_FnPtr) {
if (!this->emitLoadPtr(E))
return false;
if (!this->emitConstUint8(1, E))
return false;
if (!this->emitAddOffsetUint8(E))
return false;
return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E);
}
// Post-inc and pre-inc are the same if the value is to be discarded.
if (DiscardResult) {
if (T == PT_Float)
return this->emitIncfPop(getRoundingMode(E), E);
return this->emitIncPop(*T, E);
}
if (T == PT_Float) {
const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType());
if (!this->emitLoadFloat(E))
return false;
if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E))
return false;
if (!this->emitAddf(getRoundingMode(E), E))
return false;
if (!this->emitStoreFloat(E))
return false;
} else {
assert(isIntegralType(*T));
if (!this->emitLoad(*T, E))
return false;
if (!this->emitConst(1, E))
return false;
if (!this->emitAdd(*T, E))
return false;
if (!this->emitStore(*T, E))
return false;
}
return E->isGLValue() || this->emitLoadPop(*T, E);
}
case UO_PreDec: { // --x
if (!Ctx.getLangOpts().CPlusPlus14)
return this->emitInvalid(E);
if (!T)
return this->emitError(E);
if (!this->visit(SubExpr))
return false;
if (T == PT_Ptr || T == PT_FnPtr) {
if (!this->emitLoadPtr(E))
return false;
if (!this->emitConstUint8(1, E))
return false;
if (!this->emitSubOffsetUint8(E))
return false;
return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E);
}
// Post-dec and pre-dec are the same if the value is to be discarded.
if (DiscardResult) {
if (T == PT_Float)
return this->emitDecfPop(getRoundingMode(E), E);
return this->emitDecPop(*T, E);
}
if (T == PT_Float) {
const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType());
if (!this->emitLoadFloat(E))
return false;
if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E))
return false;
if (!this->emitSubf(getRoundingMode(E), E))
return false;
if (!this->emitStoreFloat(E))
return false;
} else {
assert(isIntegralType(*T));
if (!this->emitLoad(*T, E))
return false;
if (!this->emitConst(1, E))
return false;
if (!this->emitSub(*T, E))
return false;
if (!this->emitStore(*T, E))
return false;
}
return E->isGLValue() || this->emitLoadPop(*T, E);
}
case UO_LNot: // !x
if (!T)
return this->emitError(E);
if (DiscardResult)
return this->discard(SubExpr);
if (!this->visitBool(SubExpr))
return false;
if (!this->emitInv(E))
return false;
if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool)
return this->emitCast(PT_Bool, ET, E);
return true;
case UO_Minus: // -x
if (!T)
return this->emitError(E);
if (!this->visit(SubExpr))
return false;
return DiscardResult ? this->emitPop(*T, E) : this->emitNeg(*T, E);
case UO_Plus: // +x
if (!T)
return this->emitError(E);
if (!this->visit(SubExpr)) // noop
return false;
return DiscardResult ? this->emitPop(*T, E) : true;
case UO_AddrOf: // &x
if (E->getType()->isMemberPointerType()) {
// C++11 [expr.unary.op]p3 has very strict rules on how the address of a
// member can be formed.
return this->emitGetMemberPtr(cast<DeclRefExpr>(SubExpr)->getDecl(), E);
}
// We should already have a pointer when we get here.
return this->delegate(SubExpr);
case UO_Deref: // *x
if (DiscardResult || E->getType()->isVoidType())
return this->discard(SubExpr);
return this->visit(SubExpr);
case UO_Not: // ~x
if (!T)
return this->emitError(E);
if (!this->visit(SubExpr))
return false;
return DiscardResult ? this->emitPop(*T, E) : this->emitComp(*T, E);
case UO_Real: // __real x
assert(T);
return this->delegate(SubExpr);
case UO_Imag: { // __imag x
assert(T);
if (!this->discard(SubExpr))
return false;
return this->visitZeroInitializer(*T, SubExpr->getType(), SubExpr);
}
case UO_Extension:
return this->delegate(SubExpr);
case UO_Coawait:
assert(false && "Unhandled opcode");
}
return false;
}
template <class Emitter>
bool Compiler<Emitter>::VisitComplexUnaryOperator(const UnaryOperator *E) {
const Expr *SubExpr = E->getSubExpr();
assert(SubExpr->getType()->isAnyComplexType());
if (DiscardResult)
return this->discard(SubExpr);
std::optional<PrimType> ResT = classify(E);
auto prepareResult = [=]() -> bool {
if (!ResT && !Initializing) {
std::optional<unsigned> LocalIndex = allocateLocal(SubExpr);
if (!LocalIndex)
return false;
return this->emitGetPtrLocal(*LocalIndex, E);
}
return true;
};
// The offset of the temporary, if we created one.
unsigned SubExprOffset = ~0u;
auto createTemp = [=, &SubExprOffset]() -> bool {
SubExprOffset = this->allocateLocalPrimitive(SubExpr, PT_Ptr, true, false);
if (!this->visit(SubExpr))
return false;
return this->emitSetLocal(PT_Ptr, SubExprOffset, E);
};
PrimType ElemT = classifyComplexElementType(SubExpr->getType());
auto getElem = [=](unsigned Offset, unsigned Index) -> bool {
if (!this->emitGetLocal(PT_Ptr, Offset, E))
return false;
return this->emitArrayElemPop(ElemT, Index, E);
};
switch (E->getOpcode()) {
case UO_Minus:
if (!prepareResult())
return false;
if (!createTemp())
return false;
for (unsigned I = 0; I != 2; ++I) {
if (!getElem(SubExprOffset, I))
return false;
if (!this->emitNeg(ElemT, E))
return false;
if (!this->emitInitElem(ElemT, I, E))
return false;
}
break;
case UO_Plus: // +x
case UO_AddrOf: // &x
case UO_Deref: // *x
return this->delegate(SubExpr);
case UO_LNot:
if (!this->visit(SubExpr))
return false;
if (!this->emitComplexBoolCast(SubExpr))
return false;
if (!this->emitInv(E))
return false;
if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool)
return this->emitCast(PT_Bool, ET, E);
return true;
case UO_Real:
return this->emitComplexReal(SubExpr);
case UO_Imag:
if (!this->visit(SubExpr))
return false;
if (SubExpr->isLValue()) {
if (!this->emitConstUint8(1, E))
return false;
return this->emitArrayElemPtrPopUint8(E);
}
// Since our _Complex implementation does not map to a primitive type,
// we sometimes have to do the lvalue-to-rvalue conversion here manually.
return this->emitArrayElemPop(classifyPrim(E->getType()), 1, E);
case UO_Not: // ~x
if (!this->visit(SubExpr))
return false;
// Negate the imaginary component.
if (!this->emitArrayElem(ElemT, 1, E))
return false;
if (!this->emitNeg(ElemT, E))
return false;
if (!this->emitInitElem(ElemT, 1, E))
return false;
return DiscardResult ? this->emitPopPtr(E) : true;
case UO_Extension:
return this->delegate(SubExpr);
default:
return this->emitInvalid(E);
}
return true;
}
template <class Emitter>
bool Compiler<Emitter>::visitDeclRef(const ValueDecl *D, const Expr *E) {
if (DiscardResult)
return true;
if (const auto *ECD = dyn_cast<EnumConstantDecl>(D)) {
return this->emitConst(ECD->getInitVal(), E);
} else if (const auto *BD = dyn_cast<BindingDecl>(D)) {
return this->visit(BD->getBinding());
} else if (const auto *FuncDecl = dyn_cast<FunctionDecl>(D)) {
const Function *F = getFunction(FuncDecl);
return F && this->emitGetFnPtr(F, E);
} else if (const auto *TPOD = dyn_cast<TemplateParamObjectDecl>(D)) {
if (std::optional<unsigned> Index = P.getOrCreateGlobal(D)) {
if (!this->emitGetPtrGlobal(*Index, E))
return false;
if (std::optional<PrimType> T = classify(E->getType())) {
if (!this->visitAPValue(TPOD->getValue(), *T, E))
return false;
return this->emitInitGlobal(*T, *Index, E);
}
return this->visitAPValueInitializer(TPOD->getValue(), E);
}
return false;
}
// References are implemented via pointers, so when we see a DeclRefExpr
// pointing to a reference, we need to get its value directly (i.e. the
// pointer to the actual value) instead of a pointer to the pointer to the
// value.
bool IsReference = D->getType()->isReferenceType();
// Check for local/global variables and parameters.
if (auto It = Locals.find(D); It != Locals.end()) {
const unsigned Offset = It->second.Offset;
if (IsReference)
return this->emitGetLocal(PT_Ptr, Offset, E);
return this->emitGetPtrLocal(Offset, E);
} else if (auto GlobalIndex = P.getGlobal(D)) {
if (IsReference) {
if (!Ctx.getLangOpts().CPlusPlus11)
return this->emitGetGlobal(classifyPrim(E), *GlobalIndex, E);
return this->emitGetGlobalUnchecked(classifyPrim(E), *GlobalIndex, E);
}
return this->emitGetPtrGlobal(*GlobalIndex, E);
} else if (const auto *PVD = dyn_cast<ParmVarDecl>(D)) {
if (auto It = this->Params.find(PVD); It != this->Params.end()) {
if (IsReference || !It->second.IsPtr)
return this->emitGetParam(classifyPrim(E), It->second.Offset, E);
return this->emitGetPtrParam(It->second.Offset, E);
}
}
// In case we need to re-visit a declaration.
auto revisit = [&](const VarDecl *VD) -> bool {
auto VarState = this->visitDecl(VD);
if (VarState.notCreated())
return true;
if (!VarState)
return false;
// Retry.
return this->visitDeclRef(D, E);
};
// Handle lambda captures.
if (auto It = this->LambdaCaptures.find(D);
It != this->LambdaCaptures.end()) {
auto [Offset, IsPtr] = It->second;
if (IsPtr)
return this->emitGetThisFieldPtr(Offset, E);
return this->emitGetPtrThisField(Offset, E);
} else if (const auto *DRE = dyn_cast<DeclRefExpr>(E);
DRE && DRE->refersToEnclosingVariableOrCapture()) {
if (const auto *VD = dyn_cast<VarDecl>(D); VD && VD->isInitCapture())
return revisit(VD);
}
if (D != InitializingDecl) {
// Try to lazily visit (or emit dummy pointers for) declarations
// we haven't seen yet.
if (Ctx.getLangOpts().CPlusPlus) {
if (const auto *VD = dyn_cast<VarDecl>(D)) {
const auto typeShouldBeVisited = [&](QualType T) -> bool {
if (T.isConstant(Ctx.getASTContext()))
return true;
if (const auto *RT = T->getAs<ReferenceType>())
return RT->getPointeeType().isConstQualified();
return false;
};
// DecompositionDecls are just proxies for us.
if (isa<DecompositionDecl>(VD))
return revisit(VD);
// Visit local const variables like normal.
if ((VD->hasGlobalStorage() || VD->isLocalVarDecl() ||
VD->isStaticDataMember()) &&
typeShouldBeVisited(VD->getType()))
return revisit(VD);
}
} else {
if (const auto *VD = dyn_cast<VarDecl>(D);
VD && VD->getAnyInitializer() &&
VD->getType().isConstant(Ctx.getASTContext()) && !VD->isWeak())
return revisit(VD);
}
}
if (std::optional<unsigned> I = P.getOrCreateDummy(D)) {
if (!this->emitGetPtrGlobal(*I, E))
return false;
if (E->getType()->isVoidType())
return true;
// Convert the dummy pointer to another pointer type if we have to.
if (PrimType PT = classifyPrim(E); PT != PT_Ptr) {
if (isPtrType(PT))
return this->emitDecayPtr(PT_Ptr, PT, E);
return false;
}
return true;
}
if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
return this->emitInvalidDeclRef(DRE, E);
return false;
}
template <class Emitter>
bool Compiler<Emitter>::VisitDeclRefExpr(const DeclRefExpr *E) {
const auto *D = E->getDecl();
return this->visitDeclRef(D, E);
}
template <class Emitter> void Compiler<Emitter>::emitCleanup() {
for (VariableScope<Emitter> *C = VarScope; C; C = C->getParent())
C->emitDestruction();
}
template <class Emitter>
unsigned Compiler<Emitter>::collectBaseOffset(const QualType BaseType,
const QualType DerivedType) {
const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * {
if (const auto *R = Ty->getPointeeCXXRecordDecl())
return R;
return Ty->getAsCXXRecordDecl();
};
const CXXRecordDecl *BaseDecl = extractRecordDecl(BaseType);
const CXXRecordDecl *DerivedDecl = extractRecordDecl(DerivedType);
return Ctx.collectBaseOffset(BaseDecl, DerivedDecl);
}
/// Emit casts from a PrimType to another PrimType.
template <class Emitter>
bool Compiler<Emitter>::emitPrimCast(PrimType FromT, PrimType ToT,
QualType ToQT, const Expr *E) {
if (FromT == PT_Float) {
// Floating to floating.
if (ToT == PT_Float) {
const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT);
return this->emitCastFP(ToSem, getRoundingMode(E), E);
}
if (ToT == PT_IntAP)
return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(ToQT), E);
if (ToT == PT_IntAPS)
return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(ToQT), E);
// Float to integral.
if (isIntegralType(ToT) || ToT == PT_Bool)
return this->emitCastFloatingIntegral(ToT, E);
}
if (isIntegralType(FromT) || FromT == PT_Bool) {
if (ToT == PT_IntAP)
return this->emitCastAP(FromT, Ctx.getBitWidth(ToQT), E);
if (ToT == PT_IntAPS)
return this->emitCastAPS(FromT, Ctx.getBitWidth(ToQT), E);
// Integral to integral.
if (isIntegralType(ToT) || ToT == PT_Bool)
return FromT != ToT ? this->emitCast(FromT, ToT, E) : true;
if (ToT == PT_Float) {
// Integral to floating.
const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT);
return this->emitCastIntegralFloating(FromT, ToSem, getRoundingMode(E),
E);
}
}
return false;
}
/// Emits __real(SubExpr)
template <class Emitter>
bool Compiler<Emitter>::emitComplexReal(const Expr *SubExpr) {
assert(SubExpr->getType()->isAnyComplexType());
if (DiscardResult)
return this->discard(SubExpr);
if (!this->visit(SubExpr))
return false;
if (SubExpr->isLValue()) {
if (!this->emitConstUint8(0, SubExpr))
return false;
return this->emitArrayElemPtrPopUint8(SubExpr);
}
// Rvalue, load the actual element.
return this->emitArrayElemPop(classifyComplexElementType(SubExpr->getType()),
0, SubExpr);
}
template <class Emitter>
bool Compiler<Emitter>::emitComplexBoolCast(const Expr *E) {
assert(!DiscardResult);
PrimType ElemT = classifyComplexElementType(E->getType());
// We emit the expression (__real(E) != 0 || __imag(E) != 0)
// for us, that means (bool)E[0] || (bool)E[1]
if (!this->emitArrayElem(ElemT, 0, E))
return false;
if (ElemT == PT_Float) {
if (!this->emitCastFloatingIntegral(PT_Bool, E))
return false;
} else {
if (!this->emitCast(ElemT, PT_Bool, E))
return false;
}
// We now have the bool value of E[0] on the stack.
LabelTy LabelTrue = this->getLabel();
if (!this->jumpTrue(LabelTrue))
return false;
if (!this->emitArrayElemPop(ElemT, 1, E))
return false;
if (ElemT == PT_Float) {
if (!this->emitCastFloatingIntegral(PT_Bool, E))
return false;
} else {
if (!this->emitCast(ElemT, PT_Bool, E))
return false;
}
// Leave the boolean value of E[1] on the stack.
LabelTy EndLabel = this->getLabel();
this->jump(EndLabel);
this->emitLabel(LabelTrue);
if (!this->emitPopPtr(E))
return false;
if (!this->emitConstBool(true, E))
return false;
this->fallthrough(EndLabel);
this->emitLabel(EndLabel);
return true;
}
template <class Emitter>
bool Compiler<Emitter>::emitComplexComparison(const Expr *LHS, const Expr *RHS,
const BinaryOperator *E) {
assert(E->isComparisonOp());
assert(!Initializing);
assert(!DiscardResult);
PrimType ElemT;
bool LHSIsComplex;
unsigned LHSOffset;
if (LHS->getType()->isAnyComplexType()) {
LHSIsComplex = true;
ElemT = classifyComplexElementType(LHS->getType());
LHSOffset = allocateLocalPrimitive(LHS, PT_Ptr, /*IsConst=*/true,
/*IsExtended=*/false);
if (!this->visit(LHS))
return false;
if (!this->emitSetLocal(PT_Ptr, LHSOffset, E))
return false;
} else {
LHSIsComplex = false;
PrimType LHST = classifyPrim(LHS->getType());
LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false);
if (!this->visit(LHS))
return false;
if (!this->emitSetLocal(LHST, LHSOffset, E))
return false;
}
bool RHSIsComplex;
unsigned RHSOffset;
if (RHS->getType()->isAnyComplexType()) {
RHSIsComplex = true;
ElemT = classifyComplexElementType(RHS->getType());
RHSOffset = allocateLocalPrimitive(RHS, PT_Ptr, /*IsConst=*/true,
/*IsExtended=*/false);
if (!this->visit(RHS))
return false;
if (!this->emitSetLocal(PT_Ptr, RHSOffset, E))
return false;
} else {
RHSIsComplex = false;
PrimType RHST = classifyPrim(RHS->getType());
RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false);
if (!this->visit(RHS))
return false;
if (!this->emitSetLocal(RHST, RHSOffset, E))
return false;
}
auto getElem = [&](unsigned LocalOffset, unsigned Index,
bool IsComplex) -> bool {
if (IsComplex) {
if (!this->emitGetLocal(PT_Ptr, LocalOffset, E))
return false;
return this->emitArrayElemPop(ElemT, Index, E);
}
return this->emitGetLocal(ElemT, LocalOffset, E);
};
for (unsigned I = 0; I != 2; ++I) {
// Get both values.
if (!getElem(LHSOffset, I, LHSIsComplex))
return false;
if (!getElem(RHSOffset, I, RHSIsComplex))
return false;
// And compare them.
if (!this->emitEQ(ElemT, E))
return false;
if (!this->emitCastBoolUint8(E))
return false;
}
// We now have two bool values on the stack. Compare those.
if (!this->emitAddUint8(E))
return false;
if (!this->emitConstUint8(2, E))
return false;
if (E->getOpcode() == BO_EQ) {
if (!this->emitEQUint8(E))
return false;
} else if (E->getOpcode() == BO_NE) {
if (!this->emitNEUint8(E))
return false;
} else
return false;
// In C, this returns an int.
if (PrimType ResT = classifyPrim(E->getType()); ResT != PT_Bool)
return this->emitCast(PT_Bool, ResT, E);
return true;
}
/// When calling this, we have a pointer of the local-to-destroy
/// on the stack.
/// Emit destruction of record types (or arrays of record types).
template <class Emitter>
bool Compiler<Emitter>::emitRecordDestruction(const Record *R) {
assert(R);
const CXXDestructorDecl *Dtor = R->getDestructor();
if (!Dtor || Dtor->isTrivial())
return true;
assert(Dtor);
const Function *DtorFunc = getFunction(Dtor);
if (!DtorFunc)
return false;
assert(DtorFunc->hasThisPointer());
assert(DtorFunc->getNumParams() == 1);
if (!this->emitDupPtr(SourceInfo{}))
return false;
return this->emitCall(DtorFunc, 0, SourceInfo{});
}
/// When calling this, we have a pointer of the local-to-destroy
/// on the stack.
/// Emit destruction of record types (or arrays of record types).
template <class Emitter>
bool Compiler<Emitter>::emitDestruction(const Descriptor *Desc) {
assert(Desc);
assert(!Desc->isPrimitive());
assert(!Desc->isPrimitiveArray());
// Arrays.
if (Desc->isArray()) {
const Descriptor *ElemDesc = Desc->ElemDesc;
assert(ElemDesc);
// Don't need to do anything for these.
if (ElemDesc->isPrimitiveArray())
return true;
// If this is an array of record types, check if we need
// to call the element destructors at all. If not, try
// to save the work.
if (const Record *ElemRecord = ElemDesc->ElemRecord) {
if (const CXXDestructorDecl *Dtor = ElemRecord->getDestructor();
!Dtor || Dtor->isTrivial())
return true;
}
for (ssize_t I = Desc->getNumElems() - 1; I >= 0; --I) {
if (!this->emitConstUint64(I, SourceInfo{}))
return false;
if (!this->emitArrayElemPtrUint64(SourceInfo{}))
return false;
if (!this->emitDestruction(ElemDesc))
return false;
if (!this->emitPopPtr(SourceInfo{}))
return false;
}
return true;
}
assert(Desc->ElemRecord);
return this->emitRecordDestruction(Desc->ElemRecord);
}
namespace clang {
namespace interp {
template class Compiler<ByteCodeEmitter>;
template class Compiler<EvalEmitter>;
} // namespace interp
} // namespace clang