| //===--- Compiler.cpp - Code generator for expressions ---*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "Compiler.h" |
| #include "ByteCodeEmitter.h" |
| #include "Context.h" |
| #include "Floating.h" |
| #include "Function.h" |
| #include "InterpShared.h" |
| #include "PrimType.h" |
| #include "Program.h" |
| #include "clang/AST/Attr.h" |
| |
| using namespace clang; |
| using namespace clang::interp; |
| |
| using APSInt = llvm::APSInt; |
| |
| namespace clang { |
| namespace interp { |
| |
| /// Scope used to handle temporaries in toplevel variable declarations. |
| template <class Emitter> class DeclScope final : public LocalScope<Emitter> { |
| public: |
| DeclScope(Compiler<Emitter> *Ctx, const ValueDecl *VD) |
| : LocalScope<Emitter>(Ctx, VD), Scope(Ctx->P, VD), |
| OldInitializingDecl(Ctx->InitializingDecl) { |
| Ctx->InitializingDecl = VD; |
| Ctx->InitStack.push_back(InitLink::Decl(VD)); |
| } |
| |
| void addExtended(const Scope::Local &Local) override { |
| return this->addLocal(Local); |
| } |
| |
| ~DeclScope() { |
| this->Ctx->InitializingDecl = OldInitializingDecl; |
| this->Ctx->InitStack.pop_back(); |
| } |
| |
| private: |
| Program::DeclScope Scope; |
| const ValueDecl *OldInitializingDecl; |
| }; |
| |
| /// Scope used to handle initialization methods. |
| template <class Emitter> class OptionScope final { |
| public: |
| /// Root constructor, compiling or discarding primitives. |
| OptionScope(Compiler<Emitter> *Ctx, bool NewDiscardResult, |
| bool NewInitializing) |
| : Ctx(Ctx), OldDiscardResult(Ctx->DiscardResult), |
| OldInitializing(Ctx->Initializing) { |
| Ctx->DiscardResult = NewDiscardResult; |
| Ctx->Initializing = NewInitializing; |
| } |
| |
| ~OptionScope() { |
| Ctx->DiscardResult = OldDiscardResult; |
| Ctx->Initializing = OldInitializing; |
| } |
| |
| private: |
| /// Parent context. |
| Compiler<Emitter> *Ctx; |
| /// Old discard flag to restore. |
| bool OldDiscardResult; |
| bool OldInitializing; |
| }; |
| |
| template <class Emitter> |
| bool InitLink::emit(Compiler<Emitter> *Ctx, const Expr *E) const { |
| switch (Kind) { |
| case K_This: |
| return Ctx->emitThis(E); |
| case K_Field: |
| // We're assuming there's a base pointer on the stack already. |
| return Ctx->emitGetPtrFieldPop(Offset, E); |
| case K_Temp: |
| return Ctx->emitGetPtrLocal(Offset, E); |
| case K_Decl: |
| return Ctx->visitDeclRef(D, E); |
| case K_Elem: |
| if (!Ctx->emitConstUint32(Offset, E)) |
| return false; |
| return Ctx->emitArrayElemPtrPopUint32(E); |
| default: |
| llvm_unreachable("Unhandled InitLink kind"); |
| } |
| return true; |
| } |
| |
| /// Scope managing label targets. |
| template <class Emitter> class LabelScope { |
| public: |
| virtual ~LabelScope() {} |
| |
| protected: |
| LabelScope(Compiler<Emitter> *Ctx) : Ctx(Ctx) {} |
| /// Compiler instance. |
| Compiler<Emitter> *Ctx; |
| }; |
| |
| /// Sets the context for break/continue statements. |
| template <class Emitter> class LoopScope final : public LabelScope<Emitter> { |
| public: |
| using LabelTy = typename Compiler<Emitter>::LabelTy; |
| using OptLabelTy = typename Compiler<Emitter>::OptLabelTy; |
| |
| LoopScope(Compiler<Emitter> *Ctx, LabelTy BreakLabel, LabelTy ContinueLabel) |
| : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel), |
| OldContinueLabel(Ctx->ContinueLabel) { |
| this->Ctx->BreakLabel = BreakLabel; |
| this->Ctx->ContinueLabel = ContinueLabel; |
| } |
| |
| ~LoopScope() { |
| this->Ctx->BreakLabel = OldBreakLabel; |
| this->Ctx->ContinueLabel = OldContinueLabel; |
| } |
| |
| private: |
| OptLabelTy OldBreakLabel; |
| OptLabelTy OldContinueLabel; |
| }; |
| |
| // Sets the context for a switch scope, mapping labels. |
| template <class Emitter> class SwitchScope final : public LabelScope<Emitter> { |
| public: |
| using LabelTy = typename Compiler<Emitter>::LabelTy; |
| using OptLabelTy = typename Compiler<Emitter>::OptLabelTy; |
| using CaseMap = typename Compiler<Emitter>::CaseMap; |
| |
| SwitchScope(Compiler<Emitter> *Ctx, CaseMap &&CaseLabels, LabelTy BreakLabel, |
| OptLabelTy DefaultLabel) |
| : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel), |
| OldDefaultLabel(this->Ctx->DefaultLabel), |
| OldCaseLabels(std::move(this->Ctx->CaseLabels)) { |
| this->Ctx->BreakLabel = BreakLabel; |
| this->Ctx->DefaultLabel = DefaultLabel; |
| this->Ctx->CaseLabels = std::move(CaseLabels); |
| } |
| |
| ~SwitchScope() { |
| this->Ctx->BreakLabel = OldBreakLabel; |
| this->Ctx->DefaultLabel = OldDefaultLabel; |
| this->Ctx->CaseLabels = std::move(OldCaseLabels); |
| } |
| |
| private: |
| OptLabelTy OldBreakLabel; |
| OptLabelTy OldDefaultLabel; |
| CaseMap OldCaseLabels; |
| }; |
| |
| template <class Emitter> class StmtExprScope final { |
| public: |
| StmtExprScope(Compiler<Emitter> *Ctx) : Ctx(Ctx), OldFlag(Ctx->InStmtExpr) { |
| Ctx->InStmtExpr = true; |
| } |
| |
| ~StmtExprScope() { Ctx->InStmtExpr = OldFlag; } |
| |
| private: |
| Compiler<Emitter> *Ctx; |
| bool OldFlag; |
| }; |
| |
| } // namespace interp |
| } // namespace clang |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitCastExpr(const CastExpr *CE) { |
| const Expr *SubExpr = CE->getSubExpr(); |
| switch (CE->getCastKind()) { |
| |
| case CK_LValueToRValue: { |
| if (DiscardResult) |
| return this->discard(SubExpr); |
| |
| std::optional<PrimType> SubExprT = classify(SubExpr->getType()); |
| // Prepare storage for the result. |
| if (!Initializing && !SubExprT) { |
| std::optional<unsigned> LocalIndex = allocateLocal(SubExpr); |
| if (!LocalIndex) |
| return false; |
| if (!this->emitGetPtrLocal(*LocalIndex, CE)) |
| return false; |
| } |
| |
| if (!this->visit(SubExpr)) |
| return false; |
| |
| if (SubExprT) |
| return this->emitLoadPop(*SubExprT, CE); |
| |
| // If the subexpr type is not primitive, we need to perform a copy here. |
| // This happens for example in C when dereferencing a pointer of struct |
| // type. |
| return this->emitMemcpy(CE); |
| } |
| |
| case CK_DerivedToBaseMemberPointer: { |
| assert(classifyPrim(CE->getType()) == PT_MemberPtr); |
| assert(classifyPrim(SubExpr->getType()) == PT_MemberPtr); |
| const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>(); |
| const auto *ToMP = CE->getType()->getAs<MemberPointerType>(); |
| |
| unsigned DerivedOffset = collectBaseOffset(QualType(ToMP->getClass(), 0), |
| QualType(FromMP->getClass(), 0)); |
| |
| if (!this->delegate(SubExpr)) |
| return false; |
| |
| return this->emitGetMemberPtrBasePop(DerivedOffset, CE); |
| } |
| |
| case CK_BaseToDerivedMemberPointer: { |
| assert(classifyPrim(CE) == PT_MemberPtr); |
| assert(classifyPrim(SubExpr) == PT_MemberPtr); |
| const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>(); |
| const auto *ToMP = CE->getType()->getAs<MemberPointerType>(); |
| |
| unsigned DerivedOffset = collectBaseOffset(QualType(FromMP->getClass(), 0), |
| QualType(ToMP->getClass(), 0)); |
| |
| if (!this->delegate(SubExpr)) |
| return false; |
| return this->emitGetMemberPtrBasePop(-DerivedOffset, CE); |
| } |
| |
| case CK_UncheckedDerivedToBase: |
| case CK_DerivedToBase: { |
| if (!this->delegate(SubExpr)) |
| return false; |
| |
| const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * { |
| if (const auto *PT = dyn_cast<PointerType>(Ty)) |
| return PT->getPointeeType()->getAsCXXRecordDecl(); |
| return Ty->getAsCXXRecordDecl(); |
| }; |
| |
| // FIXME: We can express a series of non-virtual casts as a single |
| // GetPtrBasePop op. |
| QualType CurType = SubExpr->getType(); |
| for (const CXXBaseSpecifier *B : CE->path()) { |
| if (B->isVirtual()) { |
| if (!this->emitGetPtrVirtBasePop(extractRecordDecl(B->getType()), CE)) |
| return false; |
| CurType = B->getType(); |
| } else { |
| unsigned DerivedOffset = collectBaseOffset(B->getType(), CurType); |
| if (!this->emitGetPtrBasePop(DerivedOffset, CE)) |
| return false; |
| CurType = B->getType(); |
| } |
| } |
| |
| return true; |
| } |
| |
| case CK_BaseToDerived: { |
| if (!this->delegate(SubExpr)) |
| return false; |
| |
| unsigned DerivedOffset = |
| collectBaseOffset(SubExpr->getType(), CE->getType()); |
| |
| return this->emitGetPtrDerivedPop(DerivedOffset, CE); |
| } |
| |
| case CK_FloatingCast: { |
| // HLSL uses CK_FloatingCast to cast between vectors. |
| if (!SubExpr->getType()->isFloatingType() || |
| !CE->getType()->isFloatingType()) |
| return false; |
| if (DiscardResult) |
| return this->discard(SubExpr); |
| if (!this->visit(SubExpr)) |
| return false; |
| const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType()); |
| return this->emitCastFP(TargetSemantics, getRoundingMode(CE), CE); |
| } |
| |
| case CK_IntegralToFloating: { |
| if (DiscardResult) |
| return this->discard(SubExpr); |
| std::optional<PrimType> FromT = classify(SubExpr->getType()); |
| if (!FromT) |
| return false; |
| |
| if (!this->visit(SubExpr)) |
| return false; |
| |
| const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType()); |
| llvm::RoundingMode RM = getRoundingMode(CE); |
| return this->emitCastIntegralFloating(*FromT, TargetSemantics, RM, CE); |
| } |
| |
| case CK_FloatingToBoolean: |
| case CK_FloatingToIntegral: { |
| if (DiscardResult) |
| return this->discard(SubExpr); |
| |
| std::optional<PrimType> ToT = classify(CE->getType()); |
| |
| if (!ToT) |
| return false; |
| |
| if (!this->visit(SubExpr)) |
| return false; |
| |
| if (ToT == PT_IntAP) |
| return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(CE->getType()), |
| CE); |
| if (ToT == PT_IntAPS) |
| return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(CE->getType()), |
| CE); |
| |
| return this->emitCastFloatingIntegral(*ToT, CE); |
| } |
| |
| case CK_NullToPointer: |
| case CK_NullToMemberPointer: { |
| if (!this->discard(SubExpr)) |
| return false; |
| if (DiscardResult) |
| return true; |
| |
| const Descriptor *Desc = nullptr; |
| const QualType PointeeType = CE->getType()->getPointeeType(); |
| if (!PointeeType.isNull()) { |
| if (std::optional<PrimType> T = classify(PointeeType)) |
| Desc = P.createDescriptor(SubExpr, *T); |
| else |
| Desc = P.createDescriptor(SubExpr, PointeeType.getTypePtr(), |
| std::nullopt, true, false, |
| /*IsMutable=*/false, nullptr); |
| } |
| return this->emitNull(classifyPrim(CE->getType()), Desc, CE); |
| } |
| |
| case CK_PointerToIntegral: { |
| if (DiscardResult) |
| return this->discard(SubExpr); |
| |
| if (!this->visit(SubExpr)) |
| return false; |
| |
| // If SubExpr doesn't result in a pointer, make it one. |
| if (PrimType FromT = classifyPrim(SubExpr->getType()); FromT != PT_Ptr) { |
| assert(isPtrType(FromT)); |
| if (!this->emitDecayPtr(FromT, PT_Ptr, CE)) |
| return false; |
| } |
| |
| PrimType T = classifyPrim(CE->getType()); |
| if (T == PT_IntAP) |
| return this->emitCastPointerIntegralAP(Ctx.getBitWidth(CE->getType()), |
| CE); |
| if (T == PT_IntAPS) |
| return this->emitCastPointerIntegralAPS(Ctx.getBitWidth(CE->getType()), |
| CE); |
| return this->emitCastPointerIntegral(T, CE); |
| } |
| |
| case CK_ArrayToPointerDecay: { |
| if (!this->visit(SubExpr)) |
| return false; |
| if (!this->emitArrayDecay(CE)) |
| return false; |
| if (DiscardResult) |
| return this->emitPopPtr(CE); |
| return true; |
| } |
| |
| case CK_IntegralToPointer: { |
| QualType IntType = SubExpr->getType(); |
| assert(IntType->isIntegralOrEnumerationType()); |
| if (!this->visit(SubExpr)) |
| return false; |
| // FIXME: I think the discard is wrong since the int->ptr cast might cause a |
| // diagnostic. |
| PrimType T = classifyPrim(IntType); |
| if (DiscardResult) |
| return this->emitPop(T, CE); |
| |
| QualType PtrType = CE->getType(); |
| const Descriptor *Desc; |
| if (std::optional<PrimType> T = classify(PtrType->getPointeeType())) |
| Desc = P.createDescriptor(SubExpr, *T); |
| else if (PtrType->getPointeeType()->isVoidType()) |
| Desc = nullptr; |
| else |
| Desc = P.createDescriptor(CE, PtrType->getPointeeType().getTypePtr(), |
| Descriptor::InlineDescMD, true, false, |
| /*IsMutable=*/false, nullptr); |
| |
| if (!this->emitGetIntPtr(T, Desc, CE)) |
| return false; |
| |
| PrimType DestPtrT = classifyPrim(PtrType); |
| if (DestPtrT == PT_Ptr) |
| return true; |
| |
| // In case we're converting the integer to a non-Pointer. |
| return this->emitDecayPtr(PT_Ptr, DestPtrT, CE); |
| } |
| |
| case CK_AtomicToNonAtomic: |
| case CK_ConstructorConversion: |
| case CK_FunctionToPointerDecay: |
| case CK_NonAtomicToAtomic: |
| case CK_NoOp: |
| case CK_UserDefinedConversion: |
| case CK_AddressSpaceConversion: |
| return this->delegate(SubExpr); |
| |
| case CK_BitCast: { |
| // Reject bitcasts to atomic types. |
| if (CE->getType()->isAtomicType()) { |
| if (!this->discard(SubExpr)) |
| return false; |
| return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, CE); |
| } |
| |
| if (DiscardResult) |
| return this->discard(SubExpr); |
| |
| QualType SubExprTy = SubExpr->getType(); |
| std::optional<PrimType> FromT = classify(SubExprTy); |
| std::optional<PrimType> ToT = classify(CE->getType()); |
| if (!FromT || !ToT) |
| return false; |
| |
| assert(isPtrType(*FromT)); |
| assert(isPtrType(*ToT)); |
| if (FromT == ToT) { |
| if (CE->getType()->isVoidPointerType()) |
| return this->delegate(SubExpr); |
| |
| if (!this->visit(SubExpr)) |
| return false; |
| if (FromT == PT_Ptr) |
| return this->emitPtrPtrCast(SubExprTy->isVoidPointerType(), CE); |
| return true; |
| } |
| |
| if (!this->visit(SubExpr)) |
| return false; |
| return this->emitDecayPtr(*FromT, *ToT, CE); |
| } |
| |
| case CK_IntegralToBoolean: |
| case CK_BooleanToSignedIntegral: |
| case CK_IntegralCast: { |
| if (DiscardResult) |
| return this->discard(SubExpr); |
| std::optional<PrimType> FromT = classify(SubExpr->getType()); |
| std::optional<PrimType> ToT = classify(CE->getType()); |
| |
| if (!FromT || !ToT) |
| return false; |
| |
| if (!this->visit(SubExpr)) |
| return false; |
| |
| // Possibly diagnose casts to enum types if the target type does not |
| // have a fixed size. |
| if (Ctx.getLangOpts().CPlusPlus && CE->getType()->isEnumeralType()) { |
| if (const auto *ET = CE->getType().getCanonicalType()->getAs<EnumType>(); |
| ET && !ET->getDecl()->isFixed()) { |
| if (!this->emitCheckEnumValue(*FromT, ET->getDecl(), CE)) |
| return false; |
| } |
| } |
| |
| auto maybeNegate = [&]() -> bool { |
| if (CE->getCastKind() == CK_BooleanToSignedIntegral) |
| return this->emitNeg(*ToT, CE); |
| return true; |
| }; |
| |
| if (ToT == PT_IntAP) |
| return this->emitCastAP(*FromT, Ctx.getBitWidth(CE->getType()), CE) && |
| maybeNegate(); |
| if (ToT == PT_IntAPS) |
| return this->emitCastAPS(*FromT, Ctx.getBitWidth(CE->getType()), CE) && |
| maybeNegate(); |
| |
| if (FromT == ToT) |
| return true; |
| if (!this->emitCast(*FromT, *ToT, CE)) |
| return false; |
| |
| return maybeNegate(); |
| } |
| |
| case CK_PointerToBoolean: |
| case CK_MemberPointerToBoolean: { |
| PrimType PtrT = classifyPrim(SubExpr->getType()); |
| |
| // Just emit p != nullptr for this. |
| if (!this->visit(SubExpr)) |
| return false; |
| |
| if (!this->emitNull(PtrT, nullptr, CE)) |
| return false; |
| |
| return this->emitNE(PtrT, CE); |
| } |
| |
| case CK_IntegralComplexToBoolean: |
| case CK_FloatingComplexToBoolean: { |
| if (DiscardResult) |
| return this->discard(SubExpr); |
| if (!this->visit(SubExpr)) |
| return false; |
| return this->emitComplexBoolCast(SubExpr); |
| } |
| |
| case CK_IntegralComplexToReal: |
| case CK_FloatingComplexToReal: |
| return this->emitComplexReal(SubExpr); |
| |
| case CK_IntegralRealToComplex: |
| case CK_FloatingRealToComplex: { |
| // We're creating a complex value here, so we need to |
| // allocate storage for it. |
| if (!Initializing) { |
| unsigned LocalIndex = allocateTemporary(CE); |
| if (!this->emitGetPtrLocal(LocalIndex, CE)) |
| return false; |
| } |
| |
| // Init the complex value to {SubExpr, 0}. |
| if (!this->visitArrayElemInit(0, SubExpr)) |
| return false; |
| // Zero-init the second element. |
| PrimType T = classifyPrim(SubExpr->getType()); |
| if (!this->visitZeroInitializer(T, SubExpr->getType(), SubExpr)) |
| return false; |
| return this->emitInitElem(T, 1, SubExpr); |
| } |
| |
| case CK_IntegralComplexCast: |
| case CK_FloatingComplexCast: |
| case CK_IntegralComplexToFloatingComplex: |
| case CK_FloatingComplexToIntegralComplex: { |
| assert(CE->getType()->isAnyComplexType()); |
| assert(SubExpr->getType()->isAnyComplexType()); |
| if (DiscardResult) |
| return this->discard(SubExpr); |
| |
| if (!Initializing) { |
| std::optional<unsigned> LocalIndex = allocateLocal(CE); |
| if (!LocalIndex) |
| return false; |
| if (!this->emitGetPtrLocal(*LocalIndex, CE)) |
| return false; |
| } |
| |
| // Location for the SubExpr. |
| // Since SubExpr is of complex type, visiting it results in a pointer |
| // anyway, so we just create a temporary pointer variable. |
| unsigned SubExprOffset = allocateLocalPrimitive( |
| SubExpr, PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false); |
| if (!this->visit(SubExpr)) |
| return false; |
| if (!this->emitSetLocal(PT_Ptr, SubExprOffset, CE)) |
| return false; |
| |
| PrimType SourceElemT = classifyComplexElementType(SubExpr->getType()); |
| QualType DestElemType = |
| CE->getType()->getAs<ComplexType>()->getElementType(); |
| PrimType DestElemT = classifyPrim(DestElemType); |
| // Cast both elements individually. |
| for (unsigned I = 0; I != 2; ++I) { |
| if (!this->emitGetLocal(PT_Ptr, SubExprOffset, CE)) |
| return false; |
| if (!this->emitArrayElemPop(SourceElemT, I, CE)) |
| return false; |
| |
| // Do the cast. |
| if (!this->emitPrimCast(SourceElemT, DestElemT, DestElemType, CE)) |
| return false; |
| |
| // Save the value. |
| if (!this->emitInitElem(DestElemT, I, CE)) |
| return false; |
| } |
| return true; |
| } |
| |
| case CK_VectorSplat: { |
| assert(!classify(CE->getType())); |
| assert(classify(SubExpr->getType())); |
| assert(CE->getType()->isVectorType()); |
| |
| if (DiscardResult) |
| return this->discard(SubExpr); |
| |
| if (!Initializing) { |
| std::optional<unsigned> LocalIndex = allocateLocal(CE); |
| if (!LocalIndex) |
| return false; |
| if (!this->emitGetPtrLocal(*LocalIndex, CE)) |
| return false; |
| } |
| |
| const auto *VT = CE->getType()->getAs<VectorType>(); |
| PrimType ElemT = classifyPrim(SubExpr->getType()); |
| unsigned ElemOffset = allocateLocalPrimitive( |
| SubExpr, ElemT, /*IsConst=*/true, /*IsExtended=*/false); |
| |
| // Prepare a local variable for the scalar value. |
| if (!this->visit(SubExpr)) |
| return false; |
| if (classifyPrim(SubExpr) == PT_Ptr && !this->emitLoadPop(ElemT, CE)) |
| return false; |
| |
| if (!this->emitSetLocal(ElemT, ElemOffset, CE)) |
| return false; |
| |
| for (unsigned I = 0; I != VT->getNumElements(); ++I) { |
| if (!this->emitGetLocal(ElemT, ElemOffset, CE)) |
| return false; |
| if (!this->emitInitElem(ElemT, I, CE)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| case CK_ToVoid: |
| return discard(SubExpr); |
| |
| default: |
| return this->emitInvalid(CE); |
| } |
| llvm_unreachable("Unhandled clang::CastKind enum"); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitIntegerLiteral(const IntegerLiteral *LE) { |
| if (DiscardResult) |
| return true; |
| |
| return this->emitConst(LE->getValue(), LE); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitFloatingLiteral(const FloatingLiteral *E) { |
| if (DiscardResult) |
| return true; |
| |
| return this->emitConstFloat(E->getValue(), E); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitImaginaryLiteral(const ImaginaryLiteral *E) { |
| assert(E->getType()->isAnyComplexType()); |
| if (DiscardResult) |
| return true; |
| |
| if (!Initializing) { |
| unsigned LocalIndex = allocateTemporary(E); |
| if (!this->emitGetPtrLocal(LocalIndex, E)) |
| return false; |
| } |
| |
| const Expr *SubExpr = E->getSubExpr(); |
| PrimType SubExprT = classifyPrim(SubExpr->getType()); |
| |
| if (!this->visitZeroInitializer(SubExprT, SubExpr->getType(), SubExpr)) |
| return false; |
| if (!this->emitInitElem(SubExprT, 0, SubExpr)) |
| return false; |
| return this->visitArrayElemInit(1, SubExpr); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitParenExpr(const ParenExpr *E) { |
| return this->delegate(E->getSubExpr()); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitBinaryOperator(const BinaryOperator *BO) { |
| // Need short-circuiting for these. |
| if (BO->isLogicalOp()) |
| return this->VisitLogicalBinOp(BO); |
| |
| const Expr *LHS = BO->getLHS(); |
| const Expr *RHS = BO->getRHS(); |
| |
| // Handle comma operators. Just discard the LHS |
| // and delegate to RHS. |
| if (BO->isCommaOp()) { |
| if (!this->discard(LHS)) |
| return false; |
| if (RHS->getType()->isVoidType()) |
| return this->discard(RHS); |
| |
| return this->delegate(RHS); |
| } |
| |
| if (BO->getType()->isAnyComplexType()) |
| return this->VisitComplexBinOp(BO); |
| if ((LHS->getType()->isAnyComplexType() || |
| RHS->getType()->isAnyComplexType()) && |
| BO->isComparisonOp()) |
| return this->emitComplexComparison(LHS, RHS, BO); |
| |
| if (BO->isPtrMemOp()) { |
| if (!this->visit(LHS)) |
| return false; |
| |
| if (!this->visit(RHS)) |
| return false; |
| |
| if (!this->emitToMemberPtr(BO)) |
| return false; |
| |
| if (classifyPrim(BO) == PT_MemberPtr) |
| return true; |
| |
| if (!this->emitCastMemberPtrPtr(BO)) |
| return false; |
| return DiscardResult ? this->emitPopPtr(BO) : true; |
| } |
| |
| // Typecheck the args. |
| std::optional<PrimType> LT = classify(LHS); |
| std::optional<PrimType> RT = classify(RHS); |
| std::optional<PrimType> T = classify(BO->getType()); |
| |
| // Special case for C++'s three-way/spaceship operator <=>, which |
| // returns a std::{strong,weak,partial}_ordering (which is a class, so doesn't |
| // have a PrimType). |
| if (!T && BO->getOpcode() == BO_Cmp) { |
| if (DiscardResult) |
| return true; |
| const ComparisonCategoryInfo *CmpInfo = |
| Ctx.getASTContext().CompCategories.lookupInfoForType(BO->getType()); |
| assert(CmpInfo); |
| |
| // We need a temporary variable holding our return value. |
| if (!Initializing) { |
| std::optional<unsigned> ResultIndex = this->allocateLocal(BO); |
| if (!this->emitGetPtrLocal(*ResultIndex, BO)) |
| return false; |
| } |
| |
| if (!visit(LHS) || !visit(RHS)) |
| return false; |
| |
| return this->emitCMP3(*LT, CmpInfo, BO); |
| } |
| |
| if (!LT || !RT || !T) |
| return false; |
| |
| // Pointer arithmetic special case. |
| if (BO->getOpcode() == BO_Add || BO->getOpcode() == BO_Sub) { |
| if (isPtrType(*T) || (isPtrType(*LT) && isPtrType(*RT))) |
| return this->VisitPointerArithBinOp(BO); |
| } |
| |
| // Assignmentes require us to evalute the RHS first. |
| if (BO->getOpcode() == BO_Assign) { |
| if (!visit(RHS) || !visit(LHS)) |
| return false; |
| if (!this->emitFlip(*LT, *RT, BO)) |
| return false; |
| } else { |
| if (!visit(LHS) || !visit(RHS)) |
| return false; |
| } |
| |
| // For languages such as C, cast the result of one |
| // of our comparision opcodes to T (which is usually int). |
| auto MaybeCastToBool = [this, T, BO](bool Result) { |
| if (!Result) |
| return false; |
| if (DiscardResult) |
| return this->emitPop(*T, BO); |
| if (T != PT_Bool) |
| return this->emitCast(PT_Bool, *T, BO); |
| return true; |
| }; |
| |
| auto Discard = [this, T, BO](bool Result) { |
| if (!Result) |
| return false; |
| return DiscardResult ? this->emitPop(*T, BO) : true; |
| }; |
| |
| switch (BO->getOpcode()) { |
| case BO_EQ: |
| return MaybeCastToBool(this->emitEQ(*LT, BO)); |
| case BO_NE: |
| return MaybeCastToBool(this->emitNE(*LT, BO)); |
| case BO_LT: |
| return MaybeCastToBool(this->emitLT(*LT, BO)); |
| case BO_LE: |
| return MaybeCastToBool(this->emitLE(*LT, BO)); |
| case BO_GT: |
| return MaybeCastToBool(this->emitGT(*LT, BO)); |
| case BO_GE: |
| return MaybeCastToBool(this->emitGE(*LT, BO)); |
| case BO_Sub: |
| if (BO->getType()->isFloatingType()) |
| return Discard(this->emitSubf(getRoundingMode(BO), BO)); |
| return Discard(this->emitSub(*T, BO)); |
| case BO_Add: |
| if (BO->getType()->isFloatingType()) |
| return Discard(this->emitAddf(getRoundingMode(BO), BO)); |
| return Discard(this->emitAdd(*T, BO)); |
| case BO_Mul: |
| if (BO->getType()->isFloatingType()) |
| return Discard(this->emitMulf(getRoundingMode(BO), BO)); |
| return Discard(this->emitMul(*T, BO)); |
| case BO_Rem: |
| return Discard(this->emitRem(*T, BO)); |
| case BO_Div: |
| if (BO->getType()->isFloatingType()) |
| return Discard(this->emitDivf(getRoundingMode(BO), BO)); |
| return Discard(this->emitDiv(*T, BO)); |
| case BO_Assign: |
| if (DiscardResult) |
| return LHS->refersToBitField() ? this->emitStoreBitFieldPop(*T, BO) |
| : this->emitStorePop(*T, BO); |
| if (LHS->refersToBitField()) { |
| if (!this->emitStoreBitField(*T, BO)) |
| return false; |
| } else { |
| if (!this->emitStore(*T, BO)) |
| return false; |
| } |
| // Assignments aren't necessarily lvalues in C. |
| // Load from them in that case. |
| if (!BO->isLValue()) |
| return this->emitLoadPop(*T, BO); |
| return true; |
| case BO_And: |
| return Discard(this->emitBitAnd(*T, BO)); |
| case BO_Or: |
| return Discard(this->emitBitOr(*T, BO)); |
| case BO_Shl: |
| return Discard(this->emitShl(*LT, *RT, BO)); |
| case BO_Shr: |
| return Discard(this->emitShr(*LT, *RT, BO)); |
| case BO_Xor: |
| return Discard(this->emitBitXor(*T, BO)); |
| case BO_LOr: |
| case BO_LAnd: |
| llvm_unreachable("Already handled earlier"); |
| default: |
| return false; |
| } |
| |
| llvm_unreachable("Unhandled binary op"); |
| } |
| |
| /// Perform addition/subtraction of a pointer and an integer or |
| /// subtraction of two pointers. |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitPointerArithBinOp(const BinaryOperator *E) { |
| BinaryOperatorKind Op = E->getOpcode(); |
| const Expr *LHS = E->getLHS(); |
| const Expr *RHS = E->getRHS(); |
| |
| if ((Op != BO_Add && Op != BO_Sub) || |
| (!LHS->getType()->isPointerType() && !RHS->getType()->isPointerType())) |
| return false; |
| |
| std::optional<PrimType> LT = classify(LHS); |
| std::optional<PrimType> RT = classify(RHS); |
| |
| if (!LT || !RT) |
| return false; |
| |
| // Visit the given pointer expression and optionally convert to a PT_Ptr. |
| auto visitAsPointer = [&](const Expr *E, PrimType T) -> bool { |
| if (!this->visit(E)) |
| return false; |
| if (T != PT_Ptr) |
| return this->emitDecayPtr(T, PT_Ptr, E); |
| return true; |
| }; |
| |
| if (LHS->getType()->isPointerType() && RHS->getType()->isPointerType()) { |
| if (Op != BO_Sub) |
| return false; |
| |
| assert(E->getType()->isIntegerType()); |
| if (!visitAsPointer(RHS, *RT) || !visitAsPointer(LHS, *LT)) |
| return false; |
| |
| return this->emitSubPtr(classifyPrim(E->getType()), E); |
| } |
| |
| PrimType OffsetType; |
| if (LHS->getType()->isIntegerType()) { |
| if (!visitAsPointer(RHS, *RT)) |
| return false; |
| if (!this->visit(LHS)) |
| return false; |
| OffsetType = *LT; |
| } else if (RHS->getType()->isIntegerType()) { |
| if (!visitAsPointer(LHS, *LT)) |
| return false; |
| if (!this->visit(RHS)) |
| return false; |
| OffsetType = *RT; |
| } else { |
| return false; |
| } |
| |
| // Do the operation and optionally transform to |
| // result pointer type. |
| if (Op == BO_Add) { |
| if (!this->emitAddOffset(OffsetType, E)) |
| return false; |
| |
| if (classifyPrim(E) != PT_Ptr) |
| return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E); |
| return true; |
| } else if (Op == BO_Sub) { |
| if (!this->emitSubOffset(OffsetType, E)) |
| return false; |
| |
| if (classifyPrim(E) != PT_Ptr) |
| return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitLogicalBinOp(const BinaryOperator *E) { |
| assert(E->isLogicalOp()); |
| BinaryOperatorKind Op = E->getOpcode(); |
| const Expr *LHS = E->getLHS(); |
| const Expr *RHS = E->getRHS(); |
| std::optional<PrimType> T = classify(E->getType()); |
| |
| if (Op == BO_LOr) { |
| // Logical OR. Visit LHS and only evaluate RHS if LHS was FALSE. |
| LabelTy LabelTrue = this->getLabel(); |
| LabelTy LabelEnd = this->getLabel(); |
| |
| if (!this->visitBool(LHS)) |
| return false; |
| if (!this->jumpTrue(LabelTrue)) |
| return false; |
| |
| if (!this->visitBool(RHS)) |
| return false; |
| if (!this->jump(LabelEnd)) |
| return false; |
| |
| this->emitLabel(LabelTrue); |
| this->emitConstBool(true, E); |
| this->fallthrough(LabelEnd); |
| this->emitLabel(LabelEnd); |
| |
| } else { |
| assert(Op == BO_LAnd); |
| // Logical AND. |
| // Visit LHS. Only visit RHS if LHS was TRUE. |
| LabelTy LabelFalse = this->getLabel(); |
| LabelTy LabelEnd = this->getLabel(); |
| |
| if (!this->visitBool(LHS)) |
| return false; |
| if (!this->jumpFalse(LabelFalse)) |
| return false; |
| |
| if (!this->visitBool(RHS)) |
| return false; |
| if (!this->jump(LabelEnd)) |
| return false; |
| |
| this->emitLabel(LabelFalse); |
| this->emitConstBool(false, E); |
| this->fallthrough(LabelEnd); |
| this->emitLabel(LabelEnd); |
| } |
| |
| if (DiscardResult) |
| return this->emitPopBool(E); |
| |
| // For C, cast back to integer type. |
| assert(T); |
| if (T != PT_Bool) |
| return this->emitCast(PT_Bool, *T, E); |
| return true; |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitComplexBinOp(const BinaryOperator *E) { |
| // Prepare storage for result. |
| if (!Initializing) { |
| unsigned LocalIndex = allocateTemporary(E); |
| if (!this->emitGetPtrLocal(LocalIndex, E)) |
| return false; |
| } |
| |
| // Both LHS and RHS might _not_ be of complex type, but one of them |
| // needs to be. |
| const Expr *LHS = E->getLHS(); |
| const Expr *RHS = E->getRHS(); |
| |
| PrimType ResultElemT = this->classifyComplexElementType(E->getType()); |
| unsigned ResultOffset = ~0u; |
| if (!DiscardResult) |
| ResultOffset = this->allocateLocalPrimitive(E, PT_Ptr, true, false); |
| |
| // Save result pointer in ResultOffset |
| if (!this->DiscardResult) { |
| if (!this->emitDupPtr(E)) |
| return false; |
| if (!this->emitSetLocal(PT_Ptr, ResultOffset, E)) |
| return false; |
| } |
| QualType LHSType = LHS->getType(); |
| if (const auto *AT = LHSType->getAs<AtomicType>()) |
| LHSType = AT->getValueType(); |
| QualType RHSType = RHS->getType(); |
| if (const auto *AT = RHSType->getAs<AtomicType>()) |
| RHSType = AT->getValueType(); |
| |
| bool LHSIsComplex = LHSType->isAnyComplexType(); |
| unsigned LHSOffset; |
| bool RHSIsComplex = RHSType->isAnyComplexType(); |
| |
| // For ComplexComplex Mul, we have special ops to make their implementation |
| // easier. |
| BinaryOperatorKind Op = E->getOpcode(); |
| if (Op == BO_Mul && LHSIsComplex && RHSIsComplex) { |
| assert(classifyPrim(LHSType->getAs<ComplexType>()->getElementType()) == |
| classifyPrim(RHSType->getAs<ComplexType>()->getElementType())); |
| PrimType ElemT = |
| classifyPrim(LHSType->getAs<ComplexType>()->getElementType()); |
| if (!this->visit(LHS)) |
| return false; |
| if (!this->visit(RHS)) |
| return false; |
| return this->emitMulc(ElemT, E); |
| } |
| |
| if (Op == BO_Div && RHSIsComplex) { |
| QualType ElemQT = RHSType->getAs<ComplexType>()->getElementType(); |
| PrimType ElemT = classifyPrim(ElemQT); |
| // If the LHS is not complex, we still need to do the full complex |
| // division, so just stub create a complex value and stub it out with |
| // the LHS and a zero. |
| |
| if (!LHSIsComplex) { |
| // This is using the RHS type for the fake-complex LHS. |
| LHSOffset = allocateTemporary(RHS); |
| |
| if (!this->emitGetPtrLocal(LHSOffset, E)) |
| return false; |
| |
| if (!this->visit(LHS)) |
| return false; |
| // real is LHS |
| if (!this->emitInitElem(ElemT, 0, E)) |
| return false; |
| // imag is zero |
| if (!this->visitZeroInitializer(ElemT, ElemQT, E)) |
| return false; |
| if (!this->emitInitElem(ElemT, 1, E)) |
| return false; |
| } else { |
| if (!this->visit(LHS)) |
| return false; |
| } |
| |
| if (!this->visit(RHS)) |
| return false; |
| return this->emitDivc(ElemT, E); |
| } |
| |
| // Evaluate LHS and save value to LHSOffset. |
| if (LHSType->isAnyComplexType()) { |
| LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, true, false); |
| if (!this->visit(LHS)) |
| return false; |
| if (!this->emitSetLocal(PT_Ptr, LHSOffset, E)) |
| return false; |
| } else { |
| PrimType LHST = classifyPrim(LHSType); |
| LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false); |
| if (!this->visit(LHS)) |
| return false; |
| if (!this->emitSetLocal(LHST, LHSOffset, E)) |
| return false; |
| } |
| |
| // Same with RHS. |
| unsigned RHSOffset; |
| if (RHSType->isAnyComplexType()) { |
| RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, true, false); |
| if (!this->visit(RHS)) |
| return false; |
| if (!this->emitSetLocal(PT_Ptr, RHSOffset, E)) |
| return false; |
| } else { |
| PrimType RHST = classifyPrim(RHSType); |
| RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false); |
| if (!this->visit(RHS)) |
| return false; |
| if (!this->emitSetLocal(RHST, RHSOffset, E)) |
| return false; |
| } |
| |
| // For both LHS and RHS, either load the value from the complex pointer, or |
| // directly from the local variable. For index 1 (i.e. the imaginary part), |
| // just load 0 and do the operation anyway. |
| auto loadComplexValue = [this](bool IsComplex, bool LoadZero, |
| unsigned ElemIndex, unsigned Offset, |
| const Expr *E) -> bool { |
| if (IsComplex) { |
| if (!this->emitGetLocal(PT_Ptr, Offset, E)) |
| return false; |
| return this->emitArrayElemPop(classifyComplexElementType(E->getType()), |
| ElemIndex, E); |
| } |
| if (ElemIndex == 0 || !LoadZero) |
| return this->emitGetLocal(classifyPrim(E->getType()), Offset, E); |
| return this->visitZeroInitializer(classifyPrim(E->getType()), E->getType(), |
| E); |
| }; |
| |
| // Now we can get pointers to the LHS and RHS from the offsets above. |
| for (unsigned ElemIndex = 0; ElemIndex != 2; ++ElemIndex) { |
| // Result pointer for the store later. |
| if (!this->DiscardResult) { |
| if (!this->emitGetLocal(PT_Ptr, ResultOffset, E)) |
| return false; |
| } |
| |
| // The actual operation. |
| switch (Op) { |
| case BO_Add: |
| if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS)) |
| return false; |
| |
| if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS)) |
| return false; |
| if (ResultElemT == PT_Float) { |
| if (!this->emitAddf(getRoundingMode(E), E)) |
| return false; |
| } else { |
| if (!this->emitAdd(ResultElemT, E)) |
| return false; |
| } |
| break; |
| case BO_Sub: |
| if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS)) |
| return false; |
| |
| if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS)) |
| return false; |
| if (ResultElemT == PT_Float) { |
| if (!this->emitSubf(getRoundingMode(E), E)) |
| return false; |
| } else { |
| if (!this->emitSub(ResultElemT, E)) |
| return false; |
| } |
| break; |
| case BO_Mul: |
| if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS)) |
| return false; |
| |
| if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS)) |
| return false; |
| |
| if (ResultElemT == PT_Float) { |
| if (!this->emitMulf(getRoundingMode(E), E)) |
| return false; |
| } else { |
| if (!this->emitMul(ResultElemT, E)) |
| return false; |
| } |
| break; |
| case BO_Div: |
| assert(!RHSIsComplex); |
| if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS)) |
| return false; |
| |
| if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS)) |
| return false; |
| |
| if (ResultElemT == PT_Float) { |
| if (!this->emitDivf(getRoundingMode(E), E)) |
| return false; |
| } else { |
| if (!this->emitDiv(ResultElemT, E)) |
| return false; |
| } |
| break; |
| |
| default: |
| return false; |
| } |
| |
| if (!this->DiscardResult) { |
| // Initialize array element with the value we just computed. |
| if (!this->emitInitElemPop(ResultElemT, ElemIndex, E)) |
| return false; |
| } else { |
| if (!this->emitPop(ResultElemT, E)) |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitImplicitValueInitExpr( |
| const ImplicitValueInitExpr *E) { |
| QualType QT = E->getType(); |
| |
| if (std::optional<PrimType> T = classify(QT)) |
| return this->visitZeroInitializer(*T, QT, E); |
| |
| if (QT->isRecordType()) { |
| const RecordDecl *RD = QT->getAsRecordDecl(); |
| assert(RD); |
| if (RD->isInvalidDecl()) |
| return false; |
| if (RD->isUnion()) { |
| // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the |
| // object's first non-static named data member is zero-initialized |
| // FIXME |
| return false; |
| } |
| |
| if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD); |
| CXXRD && CXXRD->getNumVBases() > 0) { |
| // TODO: Diagnose. |
| return false; |
| } |
| |
| const Record *R = getRecord(QT); |
| if (!R) |
| return false; |
| |
| assert(Initializing); |
| return this->visitZeroRecordInitializer(R, E); |
| } |
| |
| if (QT->isIncompleteArrayType()) |
| return true; |
| |
| if (QT->isArrayType()) { |
| const ArrayType *AT = QT->getAsArrayTypeUnsafe(); |
| assert(AT); |
| const auto *CAT = cast<ConstantArrayType>(AT); |
| size_t NumElems = CAT->getZExtSize(); |
| PrimType ElemT = classifyPrim(CAT->getElementType()); |
| |
| for (size_t I = 0; I != NumElems; ++I) { |
| if (!this->visitZeroInitializer(ElemT, CAT->getElementType(), E)) |
| return false; |
| if (!this->emitInitElem(ElemT, I, E)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| if (const auto *ComplexTy = E->getType()->getAs<ComplexType>()) { |
| assert(Initializing); |
| QualType ElemQT = ComplexTy->getElementType(); |
| PrimType ElemT = classifyPrim(ElemQT); |
| for (unsigned I = 0; I < 2; ++I) { |
| if (!this->visitZeroInitializer(ElemT, ElemQT, E)) |
| return false; |
| if (!this->emitInitElem(ElemT, I, E)) |
| return false; |
| } |
| return true; |
| } |
| |
| if (const auto *VecT = E->getType()->getAs<VectorType>()) { |
| unsigned NumVecElements = VecT->getNumElements(); |
| QualType ElemQT = VecT->getElementType(); |
| PrimType ElemT = classifyPrim(ElemQT); |
| |
| for (unsigned I = 0; I < NumVecElements; ++I) { |
| if (!this->visitZeroInitializer(ElemT, ElemQT, E)) |
| return false; |
| if (!this->emitInitElem(ElemT, I, E)) |
| return false; |
| } |
| return true; |
| } |
| |
| return false; |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) { |
| const Expr *LHS = E->getLHS(); |
| const Expr *RHS = E->getRHS(); |
| const Expr *Index = E->getIdx(); |
| |
| if (DiscardResult) |
| return this->discard(LHS) && this->discard(RHS); |
| |
| // C++17's rules require us to evaluate the LHS first, regardless of which |
| // side is the base. |
| bool Success = true; |
| for (const Expr *SubExpr : {LHS, RHS}) { |
| if (!this->visit(SubExpr)) |
| Success = false; |
| } |
| |
| if (!Success) |
| return false; |
| |
| PrimType IndexT = classifyPrim(Index->getType()); |
| // If the index is first, we need to change that. |
| if (LHS == Index) { |
| if (!this->emitFlip(PT_Ptr, IndexT, E)) |
| return false; |
| } |
| |
| return this->emitArrayElemPtrPop(IndexT, E); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::visitInitList(ArrayRef<const Expr *> Inits, |
| const Expr *ArrayFiller, const Expr *E) { |
| // Handle discarding first. |
| if (DiscardResult) { |
| for (const Expr *Init : Inits) { |
| if (!this->discard(Init)) |
| return false; |
| } |
| return true; |
| } |
| |
| QualType QT = E->getType(); |
| if (const auto *AT = QT->getAs<AtomicType>()) |
| QT = AT->getValueType(); |
| |
| if (QT->isVoidType()) |
| return this->emitInvalid(E); |
| |
| // Primitive values. |
| if (std::optional<PrimType> T = classify(QT)) { |
| assert(!DiscardResult); |
| if (Inits.size() == 0) |
| return this->visitZeroInitializer(*T, QT, E); |
| assert(Inits.size() == 1); |
| return this->delegate(Inits[0]); |
| } |
| |
| if (QT->isRecordType()) { |
| const Record *R = getRecord(QT); |
| |
| if (Inits.size() == 1 && E->getType() == Inits[0]->getType()) |
| return this->delegate(Inits[0]); |
| |
| auto initPrimitiveField = [=](const Record::Field *FieldToInit, |
| const Expr *Init, PrimType T) -> bool { |
| InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init)); |
| if (!this->visit(Init)) |
| return false; |
| |
| if (FieldToInit->isBitField()) |
| return this->emitInitBitField(T, FieldToInit, E); |
| return this->emitInitField(T, FieldToInit->Offset, E); |
| }; |
| |
| auto initCompositeField = [=](const Record::Field *FieldToInit, |
| const Expr *Init) -> bool { |
| InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init)); |
| InitLinkScope<Emitter> ILS(this, InitLink::Field(FieldToInit->Offset)); |
| // Non-primitive case. Get a pointer to the field-to-initialize |
| // on the stack and recurse into visitInitializer(). |
| if (!this->emitGetPtrField(FieldToInit->Offset, Init)) |
| return false; |
| if (!this->visitInitializer(Init)) |
| return false; |
| return this->emitPopPtr(E); |
| }; |
| |
| if (R->isUnion()) { |
| if (Inits.size() == 0) { |
| if (!this->visitZeroRecordInitializer(R, E)) |
| return false; |
| } else { |
| const Expr *Init = Inits[0]; |
| const FieldDecl *FToInit = nullptr; |
| if (const auto *ILE = dyn_cast<InitListExpr>(E)) |
| FToInit = ILE->getInitializedFieldInUnion(); |
| else |
| FToInit = cast<CXXParenListInitExpr>(E)->getInitializedFieldInUnion(); |
| |
| const Record::Field *FieldToInit = R->getField(FToInit); |
| if (std::optional<PrimType> T = classify(Init)) { |
| if (!initPrimitiveField(FieldToInit, Init, *T)) |
| return false; |
| } else { |
| if (!initCompositeField(FieldToInit, Init)) |
| return false; |
| } |
| } |
| return this->emitFinishInit(E); |
| } |
| |
| assert(!R->isUnion()); |
| unsigned InitIndex = 0; |
| for (const Expr *Init : Inits) { |
| // Skip unnamed bitfields. |
| while (InitIndex < R->getNumFields() && |
| R->getField(InitIndex)->Decl->isUnnamedBitField()) |
| ++InitIndex; |
| |
| if (std::optional<PrimType> T = classify(Init)) { |
| const Record::Field *FieldToInit = R->getField(InitIndex); |
| if (!initPrimitiveField(FieldToInit, Init, *T)) |
| return false; |
| ++InitIndex; |
| } else { |
| // Initializer for a direct base class. |
| if (const Record::Base *B = R->getBase(Init->getType())) { |
| if (!this->emitGetPtrBase(B->Offset, Init)) |
| return false; |
| |
| if (!this->visitInitializer(Init)) |
| return false; |
| |
| if (!this->emitFinishInitPop(E)) |
| return false; |
| // Base initializers don't increase InitIndex, since they don't count |
| // into the Record's fields. |
| } else { |
| const Record::Field *FieldToInit = R->getField(InitIndex); |
| if (!initCompositeField(FieldToInit, Init)) |
| return false; |
| ++InitIndex; |
| } |
| } |
| } |
| return this->emitFinishInit(E); |
| } |
| |
| if (QT->isArrayType()) { |
| if (Inits.size() == 1 && QT == Inits[0]->getType()) |
| return this->delegate(Inits[0]); |
| |
| unsigned ElementIndex = 0; |
| for (const Expr *Init : Inits) { |
| if (const auto *EmbedS = |
| dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) { |
| PrimType TargetT = classifyPrim(Init->getType()); |
| |
| auto Eval = [&](const Expr *Init, unsigned ElemIndex) { |
| PrimType InitT = classifyPrim(Init->getType()); |
| if (!this->visit(Init)) |
| return false; |
| if (InitT != TargetT) { |
| if (!this->emitCast(InitT, TargetT, E)) |
| return false; |
| } |
| return this->emitInitElem(TargetT, ElemIndex, Init); |
| }; |
| if (!EmbedS->doForEachDataElement(Eval, ElementIndex)) |
| return false; |
| } else { |
| if (!this->visitArrayElemInit(ElementIndex, Init)) |
| return false; |
| ++ElementIndex; |
| } |
| } |
| |
| // Expand the filler expression. |
| // FIXME: This should go away. |
| if (ArrayFiller) { |
| const ConstantArrayType *CAT = |
| Ctx.getASTContext().getAsConstantArrayType(QT); |
| uint64_t NumElems = CAT->getZExtSize(); |
| |
| for (; ElementIndex != NumElems; ++ElementIndex) { |
| if (!this->visitArrayElemInit(ElementIndex, ArrayFiller)) |
| return false; |
| } |
| } |
| |
| return this->emitFinishInit(E); |
| } |
| |
| if (const auto *ComplexTy = QT->getAs<ComplexType>()) { |
| unsigned NumInits = Inits.size(); |
| |
| if (NumInits == 1) |
| return this->delegate(Inits[0]); |
| |
| QualType ElemQT = ComplexTy->getElementType(); |
| PrimType ElemT = classifyPrim(ElemQT); |
| if (NumInits == 0) { |
| // Zero-initialize both elements. |
| for (unsigned I = 0; I < 2; ++I) { |
| if (!this->visitZeroInitializer(ElemT, ElemQT, E)) |
| return false; |
| if (!this->emitInitElem(ElemT, I, E)) |
| return false; |
| } |
| } else if (NumInits == 2) { |
| unsigned InitIndex = 0; |
| for (const Expr *Init : Inits) { |
| if (!this->visit(Init)) |
| return false; |
| |
| if (!this->emitInitElem(ElemT, InitIndex, E)) |
| return false; |
| ++InitIndex; |
| } |
| } |
| return true; |
| } |
| |
| if (const auto *VecT = QT->getAs<VectorType>()) { |
| unsigned NumVecElements = VecT->getNumElements(); |
| assert(NumVecElements >= Inits.size()); |
| |
| QualType ElemQT = VecT->getElementType(); |
| PrimType ElemT = classifyPrim(ElemQT); |
| |
| // All initializer elements. |
| unsigned InitIndex = 0; |
| for (const Expr *Init : Inits) { |
| if (!this->visit(Init)) |
| return false; |
| |
| // If the initializer is of vector type itself, we have to deconstruct |
| // that and initialize all the target fields from the initializer fields. |
| if (const auto *InitVecT = Init->getType()->getAs<VectorType>()) { |
| if (!this->emitCopyArray(ElemT, 0, InitIndex, |
| InitVecT->getNumElements(), E)) |
| return false; |
| InitIndex += InitVecT->getNumElements(); |
| } else { |
| if (!this->emitInitElem(ElemT, InitIndex, E)) |
| return false; |
| ++InitIndex; |
| } |
| } |
| |
| assert(InitIndex <= NumVecElements); |
| |
| // Fill the rest with zeroes. |
| for (; InitIndex != NumVecElements; ++InitIndex) { |
| if (!this->visitZeroInitializer(ElemT, ElemQT, E)) |
| return false; |
| if (!this->emitInitElem(ElemT, InitIndex, E)) |
| return false; |
| } |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// Pointer to the array(not the element!) must be on the stack when calling |
| /// this. |
| template <class Emitter> |
| bool Compiler<Emitter>::visitArrayElemInit(unsigned ElemIndex, |
| const Expr *Init) { |
| if (std::optional<PrimType> T = classify(Init->getType())) { |
| // Visit the primitive element like normal. |
| if (!this->visit(Init)) |
| return false; |
| return this->emitInitElem(*T, ElemIndex, Init); |
| } |
| |
| InitLinkScope<Emitter> ILS(this, InitLink::Elem(ElemIndex)); |
| // Advance the pointer currently on the stack to the given |
| // dimension. |
| if (!this->emitConstUint32(ElemIndex, Init)) |
| return false; |
| if (!this->emitArrayElemPtrUint32(Init)) |
| return false; |
| if (!this->visitInitializer(Init)) |
| return false; |
| return this->emitFinishInitPop(Init); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitInitListExpr(const InitListExpr *E) { |
| return this->visitInitList(E->inits(), E->getArrayFiller(), E); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitCXXParenListInitExpr( |
| const CXXParenListInitExpr *E) { |
| return this->visitInitList(E->getInitExprs(), E->getArrayFiller(), E); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitSubstNonTypeTemplateParmExpr( |
| const SubstNonTypeTemplateParmExpr *E) { |
| return this->delegate(E->getReplacement()); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitConstantExpr(const ConstantExpr *E) { |
| std::optional<PrimType> T = classify(E->getType()); |
| if (T && E->hasAPValueResult()) { |
| // Try to emit the APValue directly, without visiting the subexpr. |
| // This will only fail if we can't emit the APValue, so won't emit any |
| // diagnostics or any double values. |
| if (DiscardResult) |
| return true; |
| |
| if (this->visitAPValue(E->getAPValueResult(), *T, E)) |
| return true; |
| } |
| return this->delegate(E->getSubExpr()); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitEmbedExpr(const EmbedExpr *E) { |
| auto It = E->begin(); |
| return this->visit(*It); |
| } |
| |
| static CharUnits AlignOfType(QualType T, const ASTContext &ASTCtx, |
| UnaryExprOrTypeTrait Kind) { |
| bool AlignOfReturnsPreferred = |
| ASTCtx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7; |
| |
| // C++ [expr.alignof]p3: |
| // When alignof is applied to a reference type, the result is the |
| // alignment of the referenced type. |
| if (const auto *Ref = T->getAs<ReferenceType>()) |
| T = Ref->getPointeeType(); |
| |
| if (T.getQualifiers().hasUnaligned()) |
| return CharUnits::One(); |
| |
| // __alignof is defined to return the preferred alignment. |
| // Before 8, clang returned the preferred alignment for alignof and |
| // _Alignof as well. |
| if (Kind == UETT_PreferredAlignOf || AlignOfReturnsPreferred) |
| return ASTCtx.toCharUnitsFromBits(ASTCtx.getPreferredTypeAlign(T)); |
| |
| return ASTCtx.getTypeAlignInChars(T); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitUnaryExprOrTypeTraitExpr( |
| const UnaryExprOrTypeTraitExpr *E) { |
| UnaryExprOrTypeTrait Kind = E->getKind(); |
| const ASTContext &ASTCtx = Ctx.getASTContext(); |
| |
| if (Kind == UETT_SizeOf || Kind == UETT_DataSizeOf) { |
| QualType ArgType = E->getTypeOfArgument(); |
| |
| // C++ [expr.sizeof]p2: "When applied to a reference or a reference type, |
| // the result is the size of the referenced type." |
| if (const auto *Ref = ArgType->getAs<ReferenceType>()) |
| ArgType = Ref->getPointeeType(); |
| |
| CharUnits Size; |
| if (ArgType->isVoidType() || ArgType->isFunctionType()) |
| Size = CharUnits::One(); |
| else { |
| if (ArgType->isDependentType() || !ArgType->isConstantSizeType()) |
| return false; |
| |
| if (Kind == UETT_SizeOf) |
| Size = ASTCtx.getTypeSizeInChars(ArgType); |
| else |
| Size = ASTCtx.getTypeInfoDataSizeInChars(ArgType).Width; |
| } |
| |
| if (DiscardResult) |
| return true; |
| |
| return this->emitConst(Size.getQuantity(), E); |
| } |
| |
| if (Kind == UETT_AlignOf || Kind == UETT_PreferredAlignOf) { |
| CharUnits Size; |
| |
| if (E->isArgumentType()) { |
| QualType ArgType = E->getTypeOfArgument(); |
| |
| Size = AlignOfType(ArgType, ASTCtx, Kind); |
| } else { |
| // Argument is an expression, not a type. |
| const Expr *Arg = E->getArgumentExpr()->IgnoreParens(); |
| |
| // The kinds of expressions that we have special-case logic here for |
| // should be kept up to date with the special checks for those |
| // expressions in Sema. |
| |
| // alignof decl is always accepted, even if it doesn't make sense: we |
| // default to 1 in those cases. |
| if (const auto *DRE = dyn_cast<DeclRefExpr>(Arg)) |
| Size = ASTCtx.getDeclAlign(DRE->getDecl(), |
| /*RefAsPointee*/ true); |
| else if (const auto *ME = dyn_cast<MemberExpr>(Arg)) |
| Size = ASTCtx.getDeclAlign(ME->getMemberDecl(), |
| /*RefAsPointee*/ true); |
| else |
| Size = AlignOfType(Arg->getType(), ASTCtx, Kind); |
| } |
| |
| if (DiscardResult) |
| return true; |
| |
| return this->emitConst(Size.getQuantity(), E); |
| } |
| |
| if (Kind == UETT_VectorElements) { |
| if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>()) |
| return this->emitConst(VT->getNumElements(), E); |
| assert(E->getTypeOfArgument()->isSizelessVectorType()); |
| return this->emitSizelessVectorElementSize(E); |
| } |
| |
| if (Kind == UETT_VecStep) { |
| if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>()) { |
| unsigned N = VT->getNumElements(); |
| |
| // The vec_step built-in functions that take a 3-component |
| // vector return 4. (OpenCL 1.1 spec 6.11.12) |
| if (N == 3) |
| N = 4; |
| |
| return this->emitConst(N, E); |
| } |
| return this->emitConst(1, E); |
| } |
| |
| return false; |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitMemberExpr(const MemberExpr *E) { |
| // 'Base.Member' |
| const Expr *Base = E->getBase(); |
| const ValueDecl *Member = E->getMemberDecl(); |
| |
| if (DiscardResult) |
| return this->discard(Base); |
| |
| // MemberExprs are almost always lvalues, in which case we don't need to |
| // do the load. But sometimes they aren't. |
| const auto maybeLoadValue = [&]() -> bool { |
| if (E->isGLValue()) |
| return true; |
| if (std::optional<PrimType> T = classify(E)) |
| return this->emitLoadPop(*T, E); |
| return false; |
| }; |
| |
| if (const auto *VD = dyn_cast<VarDecl>(Member)) { |
| // I am almost confident in saying that a var decl must be static |
| // and therefore registered as a global variable. But this will probably |
| // turn out to be wrong some time in the future, as always. |
| if (auto GlobalIndex = P.getGlobal(VD)) |
| return this->emitGetPtrGlobal(*GlobalIndex, E) && maybeLoadValue(); |
| return false; |
| } |
| |
| if (!isa<FieldDecl>(Member)) |
| return this->discard(Base) && this->visitDeclRef(Member, E); |
| |
| if (Initializing) { |
| if (!this->delegate(Base)) |
| return false; |
| } else { |
| if (!this->visit(Base)) |
| return false; |
| } |
| |
| // Base above gives us a pointer on the stack. |
| const auto *FD = cast<FieldDecl>(Member); |
| const RecordDecl *RD = FD->getParent(); |
| const Record *R = getRecord(RD); |
| if (!R) |
| return false; |
| const Record::Field *F = R->getField(FD); |
| // Leave a pointer to the field on the stack. |
| if (F->Decl->getType()->isReferenceType()) |
| return this->emitGetFieldPop(PT_Ptr, F->Offset, E) && maybeLoadValue(); |
| return this->emitGetPtrFieldPop(F->Offset, E) && maybeLoadValue(); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) { |
| // ArrayIndex might not be set if a ArrayInitIndexExpr is being evaluated |
| // stand-alone, e.g. via EvaluateAsInt(). |
| if (!ArrayIndex) |
| return false; |
| return this->emitConst(*ArrayIndex, E); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) { |
| assert(Initializing); |
| assert(!DiscardResult); |
| |
| // We visit the common opaque expression here once so we have its value |
| // cached. |
| if (!this->discard(E->getCommonExpr())) |
| return false; |
| |
| // TODO: This compiles to quite a lot of bytecode if the array is larger. |
| // Investigate compiling this to a loop. |
| const Expr *SubExpr = E->getSubExpr(); |
| size_t Size = E->getArraySize().getZExtValue(); |
| |
| // So, every iteration, we execute an assignment here |
| // where the LHS is on the stack (the target array) |
| // and the RHS is our SubExpr. |
| for (size_t I = 0; I != Size; ++I) { |
| ArrayIndexScope<Emitter> IndexScope(this, I); |
| BlockScope<Emitter> BS(this); |
| |
| if (!this->visitArrayElemInit(I, SubExpr)) |
| return false; |
| if (!BS.destroyLocals()) |
| return false; |
| } |
| return true; |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitOpaqueValueExpr(const OpaqueValueExpr *E) { |
| const Expr *SourceExpr = E->getSourceExpr(); |
| if (!SourceExpr) |
| return false; |
| |
| if (Initializing) |
| return this->visitInitializer(SourceExpr); |
| |
| PrimType SubExprT = classify(SourceExpr).value_or(PT_Ptr); |
| if (auto It = OpaqueExprs.find(E); It != OpaqueExprs.end()) |
| return this->emitGetLocal(SubExprT, It->second, E); |
| |
| if (!this->visit(SourceExpr)) |
| return false; |
| |
| // At this point we either have the evaluated source expression or a pointer |
| // to an object on the stack. We want to create a local variable that stores |
| // this value. |
| unsigned LocalIndex = allocateLocalPrimitive(E, SubExprT, /*IsConst=*/true); |
| if (!this->emitSetLocal(SubExprT, LocalIndex, E)) |
| return false; |
| |
| // Here the local variable is created but the value is removed from the stack, |
| // so we put it back if the caller needs it. |
| if (!DiscardResult) { |
| if (!this->emitGetLocal(SubExprT, LocalIndex, E)) |
| return false; |
| } |
| |
| // This is cleaned up when the local variable is destroyed. |
| OpaqueExprs.insert({E, LocalIndex}); |
| |
| return true; |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitAbstractConditionalOperator( |
| const AbstractConditionalOperator *E) { |
| const Expr *Condition = E->getCond(); |
| const Expr *TrueExpr = E->getTrueExpr(); |
| const Expr *FalseExpr = E->getFalseExpr(); |
| |
| LabelTy LabelEnd = this->getLabel(); // Label after the operator. |
| LabelTy LabelFalse = this->getLabel(); // Label for the false expr. |
| |
| if (!this->visitBool(Condition)) |
| return false; |
| |
| if (!this->jumpFalse(LabelFalse)) |
| return false; |
| |
| { |
| LocalScope<Emitter> S(this); |
| if (!this->delegate(TrueExpr)) |
| return false; |
| if (!S.destroyLocals()) |
| return false; |
| } |
| |
| if (!this->jump(LabelEnd)) |
| return false; |
| |
| this->emitLabel(LabelFalse); |
| |
| { |
| LocalScope<Emitter> S(this); |
| if (!this->delegate(FalseExpr)) |
| return false; |
| if (!S.destroyLocals()) |
| return false; |
| } |
| |
| this->fallthrough(LabelEnd); |
| this->emitLabel(LabelEnd); |
| |
| return true; |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitStringLiteral(const StringLiteral *E) { |
| if (DiscardResult) |
| return true; |
| |
| if (!Initializing) { |
| unsigned StringIndex = P.createGlobalString(E); |
| return this->emitGetPtrGlobal(StringIndex, E); |
| } |
| |
| // We are initializing an array on the stack. |
| const ConstantArrayType *CAT = |
| Ctx.getASTContext().getAsConstantArrayType(E->getType()); |
| assert(CAT && "a string literal that's not a constant array?"); |
| |
| // If the initializer string is too long, a diagnostic has already been |
| // emitted. Read only the array length from the string literal. |
| unsigned ArraySize = CAT->getZExtSize(); |
| unsigned N = std::min(ArraySize, E->getLength()); |
| size_t CharWidth = E->getCharByteWidth(); |
| |
| for (unsigned I = 0; I != N; ++I) { |
| uint32_t CodeUnit = E->getCodeUnit(I); |
| |
| if (CharWidth == 1) { |
| this->emitConstSint8(CodeUnit, E); |
| this->emitInitElemSint8(I, E); |
| } else if (CharWidth == 2) { |
| this->emitConstUint16(CodeUnit, E); |
| this->emitInitElemUint16(I, E); |
| } else if (CharWidth == 4) { |
| this->emitConstUint32(CodeUnit, E); |
| this->emitInitElemUint32(I, E); |
| } else { |
| llvm_unreachable("unsupported character width"); |
| } |
| } |
| |
| // Fill up the rest of the char array with NUL bytes. |
| for (unsigned I = N; I != ArraySize; ++I) { |
| if (CharWidth == 1) { |
| this->emitConstSint8(0, E); |
| this->emitInitElemSint8(I, E); |
| } else if (CharWidth == 2) { |
| this->emitConstUint16(0, E); |
| this->emitInitElemUint16(I, E); |
| } else if (CharWidth == 4) { |
| this->emitConstUint32(0, E); |
| this->emitInitElemUint32(I, E); |
| } else { |
| llvm_unreachable("unsupported character width"); |
| } |
| } |
| |
| return true; |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitObjCStringLiteral(const ObjCStringLiteral *E) { |
| return this->delegate(E->getString()); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { |
| auto &A = Ctx.getASTContext(); |
| std::string Str; |
| A.getObjCEncodingForType(E->getEncodedType(), Str); |
| StringLiteral *SL = |
| StringLiteral::Create(A, Str, StringLiteralKind::Ordinary, |
| /*Pascal=*/false, E->getType(), E->getAtLoc()); |
| return this->delegate(SL); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitSYCLUniqueStableNameExpr( |
| const SYCLUniqueStableNameExpr *E) { |
| if (DiscardResult) |
| return true; |
| |
| assert(!Initializing); |
| |
| auto &A = Ctx.getASTContext(); |
| std::string ResultStr = E->ComputeName(A); |
| |
| QualType CharTy = A.CharTy.withConst(); |
| APInt Size(A.getTypeSize(A.getSizeType()), ResultStr.size() + 1); |
| QualType ArrayTy = A.getConstantArrayType(CharTy, Size, nullptr, |
| ArraySizeModifier::Normal, 0); |
| |
| StringLiteral *SL = |
| StringLiteral::Create(A, ResultStr, StringLiteralKind::Ordinary, |
| /*Pascal=*/false, ArrayTy, E->getLocation()); |
| |
| unsigned StringIndex = P.createGlobalString(SL); |
| return this->emitGetPtrGlobal(StringIndex, E); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitCharacterLiteral(const CharacterLiteral *E) { |
| if (DiscardResult) |
| return true; |
| return this->emitConst(E->getValue(), E); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitFloatCompoundAssignOperator( |
| const CompoundAssignOperator *E) { |
| |
| const Expr *LHS = E->getLHS(); |
| const Expr *RHS = E->getRHS(); |
| QualType LHSType = LHS->getType(); |
| QualType LHSComputationType = E->getComputationLHSType(); |
| QualType ResultType = E->getComputationResultType(); |
| std::optional<PrimType> LT = classify(LHSComputationType); |
| std::optional<PrimType> RT = classify(ResultType); |
| |
| assert(ResultType->isFloatingType()); |
| |
| if (!LT || !RT) |
| return false; |
| |
| PrimType LHST = classifyPrim(LHSType); |
| |
| // C++17 onwards require that we evaluate the RHS first. |
| // Compute RHS and save it in a temporary variable so we can |
| // load it again later. |
| if (!visit(RHS)) |
| return false; |
| |
| unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true); |
| if (!this->emitSetLocal(*RT, TempOffset, E)) |
| return false; |
| |
| // First, visit LHS. |
| if (!visit(LHS)) |
| return false; |
| if (!this->emitLoad(LHST, E)) |
| return false; |
| |
| // If necessary, convert LHS to its computation type. |
| if (!this->emitPrimCast(LHST, classifyPrim(LHSComputationType), |
| LHSComputationType, E)) |
| return false; |
| |
| // Now load RHS. |
| if (!this->emitGetLocal(*RT, TempOffset, E)) |
| return false; |
| |
| llvm::RoundingMode RM = getRoundingMode(E); |
| switch (E->getOpcode()) { |
| case BO_AddAssign: |
| if (!this->emitAddf(RM, E)) |
| return false; |
| break; |
| case BO_SubAssign: |
| if (!this->emitSubf(RM, E)) |
| return false; |
| break; |
| case BO_MulAssign: |
| if (!this->emitMulf(RM, E)) |
| return false; |
| break; |
| case BO_DivAssign: |
| if (!this->emitDivf(RM, E)) |
| return false; |
| break; |
| default: |
| return false; |
| } |
| |
| if (!this->emitPrimCast(classifyPrim(ResultType), LHST, LHS->getType(), E)) |
| return false; |
| |
| if (DiscardResult) |
| return this->emitStorePop(LHST, E); |
| return this->emitStore(LHST, E); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitPointerCompoundAssignOperator( |
| const CompoundAssignOperator *E) { |
| BinaryOperatorKind Op = E->getOpcode(); |
| const Expr *LHS = E->getLHS(); |
| const Expr *RHS = E->getRHS(); |
| std::optional<PrimType> LT = classify(LHS->getType()); |
| std::optional<PrimType> RT = classify(RHS->getType()); |
| |
| if (Op != BO_AddAssign && Op != BO_SubAssign) |
| return false; |
| |
| if (!LT || !RT) |
| return false; |
| |
| if (!visit(LHS)) |
| return false; |
| |
| if (!this->emitLoad(*LT, LHS)) |
| return false; |
| |
| if (!visit(RHS)) |
| return false; |
| |
| if (Op == BO_AddAssign) { |
| if (!this->emitAddOffset(*RT, E)) |
| return false; |
| } else { |
| if (!this->emitSubOffset(*RT, E)) |
| return false; |
| } |
| |
| if (DiscardResult) |
| return this->emitStorePopPtr(E); |
| return this->emitStorePtr(E); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitCompoundAssignOperator( |
| const CompoundAssignOperator *E) { |
| |
| const Expr *LHS = E->getLHS(); |
| const Expr *RHS = E->getRHS(); |
| std::optional<PrimType> LHSComputationT = |
| classify(E->getComputationLHSType()); |
| std::optional<PrimType> LT = classify(LHS->getType()); |
| std::optional<PrimType> RT = classify(RHS->getType()); |
| std::optional<PrimType> ResultT = classify(E->getType()); |
| |
| if (!Ctx.getLangOpts().CPlusPlus14) |
| return this->visit(RHS) && this->visit(LHS) && this->emitError(E); |
| |
| if (!LT || !RT || !ResultT || !LHSComputationT) |
| return false; |
| |
| // Handle floating point operations separately here, since they |
| // require special care. |
| |
| if (ResultT == PT_Float || RT == PT_Float) |
| return VisitFloatCompoundAssignOperator(E); |
| |
| if (E->getType()->isPointerType()) |
| return VisitPointerCompoundAssignOperator(E); |
| |
| assert(!E->getType()->isPointerType() && "Handled above"); |
| assert(!E->getType()->isFloatingType() && "Handled above"); |
| |
| // C++17 onwards require that we evaluate the RHS first. |
| // Compute RHS and save it in a temporary variable so we can |
| // load it again later. |
| // FIXME: Compound assignments are unsequenced in C, so we might |
| // have to figure out how to reject them. |
| if (!visit(RHS)) |
| return false; |
| |
| unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true); |
| |
| if (!this->emitSetLocal(*RT, TempOffset, E)) |
| return false; |
| |
| // Get LHS pointer, load its value and cast it to the |
| // computation type if necessary. |
| if (!visit(LHS)) |
| return false; |
| if (!this->emitLoad(*LT, E)) |
| return false; |
| if (LT != LHSComputationT) { |
| if (!this->emitCast(*LT, *LHSComputationT, E)) |
| return false; |
| } |
| |
| // Get the RHS value on the stack. |
| if (!this->emitGetLocal(*RT, TempOffset, E)) |
| return false; |
| |
| // Perform operation. |
| switch (E->getOpcode()) { |
| case BO_AddAssign: |
| if (!this->emitAdd(*LHSComputationT, E)) |
| return false; |
| break; |
| case BO_SubAssign: |
| if (!this->emitSub(*LHSComputationT, E)) |
| return false; |
| break; |
| case BO_MulAssign: |
| if (!this->emitMul(*LHSComputationT, E)) |
| return false; |
| break; |
| case BO_DivAssign: |
| if (!this->emitDiv(*LHSComputationT, E)) |
| return false; |
| break; |
| case BO_RemAssign: |
| if (!this->emitRem(*LHSComputationT, E)) |
| return false; |
| break; |
| case BO_ShlAssign: |
| if (!this->emitShl(*LHSComputationT, *RT, E)) |
| return false; |
| break; |
| case BO_ShrAssign: |
| if (!this->emitShr(*LHSComputationT, *RT, E)) |
| return false; |
| break; |
| case BO_AndAssign: |
| if (!this->emitBitAnd(*LHSComputationT, E)) |
| return false; |
| break; |
| case BO_XorAssign: |
| if (!this->emitBitXor(*LHSComputationT, E)) |
| return false; |
| break; |
| case BO_OrAssign: |
| if (!this->emitBitOr(*LHSComputationT, E)) |
| return false; |
| break; |
| default: |
| llvm_unreachable("Unimplemented compound assign operator"); |
| } |
| |
| // And now cast from LHSComputationT to ResultT. |
| if (ResultT != LHSComputationT) { |
| if (!this->emitCast(*LHSComputationT, *ResultT, E)) |
| return false; |
| } |
| |
| // And store the result in LHS. |
| if (DiscardResult) { |
| if (LHS->refersToBitField()) |
| return this->emitStoreBitFieldPop(*ResultT, E); |
| return this->emitStorePop(*ResultT, E); |
| } |
| if (LHS->refersToBitField()) |
| return this->emitStoreBitField(*ResultT, E); |
| return this->emitStore(*ResultT, E); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitExprWithCleanups(const ExprWithCleanups *E) { |
| LocalScope<Emitter> ES(this); |
| const Expr *SubExpr = E->getSubExpr(); |
| |
| return this->delegate(SubExpr) && ES.destroyLocals(E); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitMaterializeTemporaryExpr( |
| const MaterializeTemporaryExpr *E) { |
| const Expr *SubExpr = E->getSubExpr(); |
| |
| if (Initializing) { |
| // We already have a value, just initialize that. |
| return this->delegate(SubExpr); |
| } |
| // If we don't end up using the materialized temporary anyway, don't |
| // bother creating it. |
| if (DiscardResult) |
| return this->discard(SubExpr); |
| |
| // When we're initializing a global variable *or* the storage duration of |
| // the temporary is explicitly static, create a global variable. |
| std::optional<PrimType> SubExprT = classify(SubExpr); |
| bool IsStatic = E->getStorageDuration() == SD_Static; |
| if (IsStatic) { |
| std::optional<unsigned> GlobalIndex = P.createGlobal(E); |
| if (!GlobalIndex) |
| return false; |
| |
| const LifetimeExtendedTemporaryDecl *TempDecl = |
| E->getLifetimeExtendedTemporaryDecl(); |
| if (IsStatic) |
| assert(TempDecl); |
| |
| if (SubExprT) { |
| if (!this->visit(SubExpr)) |
| return false; |
| if (IsStatic) { |
| if (!this->emitInitGlobalTemp(*SubExprT, *GlobalIndex, TempDecl, E)) |
| return false; |
| } else { |
| if (!this->emitInitGlobal(*SubExprT, *GlobalIndex, E)) |
| return false; |
| } |
| return this->emitGetPtrGlobal(*GlobalIndex, E); |
| } |
| |
| // Non-primitive values. |
| if (!this->emitGetPtrGlobal(*GlobalIndex, E)) |
| return false; |
| if (!this->visitInitializer(SubExpr)) |
| return false; |
| if (IsStatic) |
| return this->emitInitGlobalTempComp(TempDecl, E); |
| return true; |
| } |
| |
| // For everyhing else, use local variables. |
| if (SubExprT) { |
| unsigned LocalIndex = allocateLocalPrimitive( |
| SubExpr, *SubExprT, /*IsConst=*/true, /*IsExtended=*/true); |
| if (!this->visit(SubExpr)) |
| return false; |
| if (!this->emitSetLocal(*SubExprT, LocalIndex, E)) |
| return false; |
| return this->emitGetPtrLocal(LocalIndex, E); |
| } else { |
| const Expr *Inner = E->getSubExpr()->skipRValueSubobjectAdjustments(); |
| if (std::optional<unsigned> LocalIndex = |
| allocateLocal(Inner, E->getExtendingDecl())) { |
| InitLinkScope<Emitter> ILS(this, InitLink::Temp(*LocalIndex)); |
| if (!this->emitGetPtrLocal(*LocalIndex, E)) |
| return false; |
| return this->visitInitializer(SubExpr); |
| } |
| } |
| return false; |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitCXXBindTemporaryExpr( |
| const CXXBindTemporaryExpr *E) { |
| return this->delegate(E->getSubExpr()); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { |
| const Expr *Init = E->getInitializer(); |
| if (DiscardResult) |
| return this->discard(Init); |
| |
| if (Initializing) { |
| // We already have a value, just initialize that. |
| return this->visitInitializer(Init) && this->emitFinishInit(E); |
| } |
| |
| std::optional<PrimType> T = classify(E->getType()); |
| if (E->isFileScope()) { |
| // Avoid creating a variable if this is a primitive RValue anyway. |
| if (T && !E->isLValue()) |
| return this->delegate(Init); |
| |
| if (std::optional<unsigned> GlobalIndex = P.createGlobal(E)) { |
| if (!this->emitGetPtrGlobal(*GlobalIndex, E)) |
| return false; |
| |
| if (T) { |
| if (!this->visit(Init)) |
| return false; |
| return this->emitInitGlobal(*T, *GlobalIndex, E); |
| } |
| |
| return this->visitInitializer(Init) && this->emitFinishInit(E); |
| } |
| |
| return false; |
| } |
| |
| // Otherwise, use a local variable. |
| if (T && !E->isLValue()) { |
| // For primitive types, we just visit the initializer. |
| return this->delegate(Init); |
| } else { |
| unsigned LocalIndex; |
| |
| if (T) |
| LocalIndex = this->allocateLocalPrimitive(Init, *T, false, false); |
| else if (std::optional<unsigned> MaybeIndex = this->allocateLocal(Init)) |
| LocalIndex = *MaybeIndex; |
| else |
| return false; |
| |
| if (!this->emitGetPtrLocal(LocalIndex, E)) |
| return false; |
| |
| if (T) { |
| if (!this->visit(Init)) { |
| return false; |
| } |
| return this->emitInit(*T, E); |
| } else { |
| if (!this->visitInitializer(Init) || !this->emitFinishInit(E)) |
| return false; |
| } |
| return true; |
| } |
| |
| return false; |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitTypeTraitExpr(const TypeTraitExpr *E) { |
| if (DiscardResult) |
| return true; |
| if (E->getType()->isBooleanType()) |
| return this->emitConstBool(E->getValue(), E); |
| return this->emitConst(E->getValue(), E); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { |
| if (DiscardResult) |
| return true; |
| return this->emitConst(E->getValue(), E); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitLambdaExpr(const LambdaExpr *E) { |
| if (DiscardResult) |
| return true; |
| |
| assert(Initializing); |
| const Record *R = P.getOrCreateRecord(E->getLambdaClass()); |
| |
| auto *CaptureInitIt = E->capture_init_begin(); |
| // Initialize all fields (which represent lambda captures) of the |
| // record with their initializers. |
| for (const Record::Field &F : R->fields()) { |
| const Expr *Init = *CaptureInitIt; |
| ++CaptureInitIt; |
| |
| if (!Init) |
| continue; |
| |
| if (std::optional<PrimType> T = classify(Init)) { |
| if (!this->visit(Init)) |
| return false; |
| |
| if (!this->emitInitField(*T, F.Offset, E)) |
| return false; |
| } else { |
| if (!this->emitGetPtrField(F.Offset, E)) |
| return false; |
| |
| if (!this->visitInitializer(Init)) |
| return false; |
| |
| if (!this->emitPopPtr(E)) |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitPredefinedExpr(const PredefinedExpr *E) { |
| if (DiscardResult) |
| return true; |
| |
| return this->delegate(E->getFunctionName()); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitCXXThrowExpr(const CXXThrowExpr *E) { |
| if (E->getSubExpr() && !this->discard(E->getSubExpr())) |
| return false; |
| |
| return this->emitInvalid(E); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitCXXReinterpretCastExpr( |
| const CXXReinterpretCastExpr *E) { |
| const Expr *SubExpr = E->getSubExpr(); |
| |
| bool TypesMatch = classify(E) == classify(SubExpr); |
| if (!this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/!TypesMatch, E)) |
| return false; |
| |
| return this->delegate(SubExpr); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { |
| assert(E->getType()->isBooleanType()); |
| |
| if (DiscardResult) |
| return true; |
| return this->emitConstBool(E->getValue(), E); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitCXXConstructExpr(const CXXConstructExpr *E) { |
| QualType T = E->getType(); |
| assert(!classify(T)); |
| |
| if (T->isRecordType()) { |
| const CXXConstructorDecl *Ctor = E->getConstructor(); |
| |
| // Trivial copy/move constructor. Avoid copy. |
| if (Ctor->isDefaulted() && Ctor->isCopyOrMoveConstructor() && |
| Ctor->isTrivial() && |
| E->getArg(0)->isTemporaryObject(Ctx.getASTContext(), |
| T->getAsCXXRecordDecl())) |
| return this->visitInitializer(E->getArg(0)); |
| |
| // If we're discarding a construct expression, we still need |
| // to allocate a variable and call the constructor and destructor. |
| if (DiscardResult) { |
| if (Ctor->isTrivial()) |
| return true; |
| assert(!Initializing); |
| std::optional<unsigned> LocalIndex = allocateLocal(E); |
| |
| if (!LocalIndex) |
| return false; |
| |
| if (!this->emitGetPtrLocal(*LocalIndex, E)) |
| return false; |
| } |
| |
| // Zero initialization. |
| if (E->requiresZeroInitialization()) { |
| const Record *R = getRecord(E->getType()); |
| |
| if (!this->visitZeroRecordInitializer(R, E)) |
| return false; |
| |
| // If the constructor is trivial anyway, we're done. |
| if (Ctor->isTrivial()) |
| return true; |
| } |
| |
| const Function *Func = getFunction(Ctor); |
| |
| if (!Func) |
| return false; |
| |
| assert(Func->hasThisPointer()); |
| assert(!Func->hasRVO()); |
| |
| // The This pointer is already on the stack because this is an initializer, |
| // but we need to dup() so the call() below has its own copy. |
| if (!this->emitDupPtr(E)) |
| return false; |
| |
| // Constructor arguments. |
| for (const auto *Arg : E->arguments()) { |
| if (!this->visit(Arg)) |
| return false; |
| } |
| |
| if (Func->isVariadic()) { |
| uint32_t VarArgSize = 0; |
| unsigned NumParams = Func->getNumWrittenParams(); |
| for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) { |
| VarArgSize += |
| align(primSize(classify(E->getArg(I)->getType()).value_or(PT_Ptr))); |
| } |
| if (!this->emitCallVar(Func, VarArgSize, E)) |
| return false; |
| } else { |
| if (!this->emitCall(Func, 0, E)) |
| return false; |
| } |
| |
| if (DiscardResult) |
| return this->emitPopPtr(E); |
| return this->emitFinishInit(E); |
| } |
| |
| if (T->isArrayType()) { |
| const ConstantArrayType *CAT = |
| Ctx.getASTContext().getAsConstantArrayType(E->getType()); |
| if (!CAT) |
| return false; |
| |
| size_t NumElems = CAT->getZExtSize(); |
| const Function *Func = getFunction(E->getConstructor()); |
| if (!Func || !Func->isConstexpr()) |
| return false; |
| |
| // FIXME(perf): We're calling the constructor once per array element here, |
| // in the old intepreter we had a special-case for trivial constructors. |
| for (size_t I = 0; I != NumElems; ++I) { |
| if (!this->emitConstUint64(I, E)) |
| return false; |
| if (!this->emitArrayElemPtrUint64(E)) |
| return false; |
| |
| // Constructor arguments. |
| for (const auto *Arg : E->arguments()) { |
| if (!this->visit(Arg)) |
| return false; |
| } |
| |
| if (!this->emitCall(Func, 0, E)) |
| return false; |
| } |
| return true; |
| } |
| |
| return false; |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitSourceLocExpr(const SourceLocExpr *E) { |
| if (DiscardResult) |
| return true; |
| |
| const APValue Val = |
| E->EvaluateInContext(Ctx.getASTContext(), SourceLocDefaultExpr); |
| |
| // Things like __builtin_LINE(). |
| if (E->getType()->isIntegerType()) { |
| assert(Val.isInt()); |
| const APSInt &I = Val.getInt(); |
| return this->emitConst(I, E); |
| } |
| // Otherwise, the APValue is an LValue, with only one element. |
| // Theoretically, we don't need the APValue at all of course. |
| assert(E->getType()->isPointerType()); |
| assert(Val.isLValue()); |
| const APValue::LValueBase &Base = Val.getLValueBase(); |
| if (const Expr *LValueExpr = Base.dyn_cast<const Expr *>()) |
| return this->visit(LValueExpr); |
| |
| // Otherwise, we have a decl (which is the case for |
| // __builtin_source_location). |
| assert(Base.is<const ValueDecl *>()); |
| assert(Val.getLValuePath().size() == 0); |
| const auto *BaseDecl = Base.dyn_cast<const ValueDecl *>(); |
| assert(BaseDecl); |
| |
| auto *UGCD = cast<UnnamedGlobalConstantDecl>(BaseDecl); |
| |
| std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(UGCD); |
| if (!GlobalIndex) |
| return false; |
| |
| if (!this->emitGetPtrGlobal(*GlobalIndex, E)) |
| return false; |
| |
| const Record *R = getRecord(E->getType()); |
| const APValue &V = UGCD->getValue(); |
| for (unsigned I = 0, N = R->getNumFields(); I != N; ++I) { |
| const Record::Field *F = R->getField(I); |
| const APValue &FieldValue = V.getStructField(I); |
| |
| PrimType FieldT = classifyPrim(F->Decl->getType()); |
| |
| if (!this->visitAPValue(FieldValue, FieldT, E)) |
| return false; |
| if (!this->emitInitField(FieldT, F->Offset, E)) |
| return false; |
| } |
| |
| // Leave the pointer to the global on the stack. |
| return true; |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitOffsetOfExpr(const OffsetOfExpr *E) { |
| unsigned N = E->getNumComponents(); |
| if (N == 0) |
| return false; |
| |
| for (unsigned I = 0; I != N; ++I) { |
| const OffsetOfNode &Node = E->getComponent(I); |
| if (Node.getKind() == OffsetOfNode::Array) { |
| const Expr *ArrayIndexExpr = E->getIndexExpr(Node.getArrayExprIndex()); |
| PrimType IndexT = classifyPrim(ArrayIndexExpr->getType()); |
| |
| if (DiscardResult) { |
| if (!this->discard(ArrayIndexExpr)) |
| return false; |
| continue; |
| } |
| |
| if (!this->visit(ArrayIndexExpr)) |
| return false; |
| // Cast to Sint64. |
| if (IndexT != PT_Sint64) { |
| if (!this->emitCast(IndexT, PT_Sint64, E)) |
| return false; |
| } |
| } |
| } |
| |
| if (DiscardResult) |
| return true; |
| |
| PrimType T = classifyPrim(E->getType()); |
| return this->emitOffsetOf(T, E, E); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitCXXScalarValueInitExpr( |
| const CXXScalarValueInitExpr *E) { |
| QualType Ty = E->getType(); |
| |
| if (DiscardResult || Ty->isVoidType()) |
| return true; |
| |
| if (std::optional<PrimType> T = classify(Ty)) |
| return this->visitZeroInitializer(*T, Ty, E); |
| |
| if (const auto *CT = Ty->getAs<ComplexType>()) { |
| if (!Initializing) { |
| std::optional<unsigned> LocalIndex = allocateLocal(E); |
| if (!LocalIndex) |
| return false; |
| if (!this->emitGetPtrLocal(*LocalIndex, E)) |
| return false; |
| } |
| |
| // Initialize both fields to 0. |
| QualType ElemQT = CT->getElementType(); |
| PrimType ElemT = classifyPrim(ElemQT); |
| |
| for (unsigned I = 0; I != 2; ++I) { |
| if (!this->visitZeroInitializer(ElemT, ElemQT, E)) |
| return false; |
| if (!this->emitInitElem(ElemT, I, E)) |
| return false; |
| } |
| return true; |
| } |
| |
| if (const auto *VT = Ty->getAs<VectorType>()) { |
| // FIXME: Code duplication with the _Complex case above. |
| if (!Initializing) { |
| std::optional<unsigned> LocalIndex = allocateLocal(E); |
| if (!LocalIndex) |
| return false; |
| if (!this->emitGetPtrLocal(*LocalIndex, E)) |
| return false; |
| } |
| |
| // Initialize all fields to 0. |
| QualType ElemQT = VT->getElementType(); |
| PrimType ElemT = classifyPrim(ElemQT); |
| |
| for (unsigned I = 0, N = VT->getNumElements(); I != N; ++I) { |
| if (!this->visitZeroInitializer(ElemT, ElemQT, E)) |
| return false; |
| if (!this->emitInitElem(ElemT, I, E)) |
| return false; |
| } |
| return true; |
| } |
| |
| return false; |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitSizeOfPackExpr(const SizeOfPackExpr *E) { |
| return this->emitConst(E->getPackLength(), E); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitGenericSelectionExpr( |
| const GenericSelectionExpr *E) { |
| return this->delegate(E->getResultExpr()); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitChooseExpr(const ChooseExpr *E) { |
| return this->delegate(E->getChosenSubExpr()); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { |
| if (DiscardResult) |
| return true; |
| |
| return this->emitConst(E->getValue(), E); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitCXXInheritedCtorInitExpr( |
| const CXXInheritedCtorInitExpr *E) { |
| const CXXConstructorDecl *Ctor = E->getConstructor(); |
| assert(!Ctor->isTrivial() && |
| "Trivial CXXInheritedCtorInitExpr, implement. (possible?)"); |
| const Function *F = this->getFunction(Ctor); |
| assert(F); |
| assert(!F->hasRVO()); |
| assert(F->hasThisPointer()); |
| |
| if (!this->emitDupPtr(SourceInfo{})) |
| return false; |
| |
| // Forward all arguments of the current function (which should be a |
| // constructor itself) to the inherited ctor. |
| // This is necessary because the calling code has pushed the pointer |
| // of the correct base for us already, but the arguments need |
| // to come after. |
| unsigned Offset = align(primSize(PT_Ptr)); // instance pointer. |
| for (const ParmVarDecl *PD : Ctor->parameters()) { |
| PrimType PT = this->classify(PD->getType()).value_or(PT_Ptr); |
| |
| if (!this->emitGetParam(PT, Offset, E)) |
| return false; |
| Offset += align(primSize(PT)); |
| } |
| |
| return this->emitCall(F, 0, E); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitCXXNewExpr(const CXXNewExpr *E) { |
| assert(classifyPrim(E->getType()) == PT_Ptr); |
| const Expr *Init = E->getInitializer(); |
| QualType ElementType = E->getAllocatedType(); |
| std::optional<PrimType> ElemT = classify(ElementType); |
| unsigned PlacementArgs = E->getNumPlacementArgs(); |
| bool IsNoThrow = false; |
| |
| // FIXME: Better diagnostic. diag::note_constexpr_new_placement |
| if (PlacementArgs != 0) { |
| // The only new-placement list we support is of the form (std::nothrow). |
| // |
| // FIXME: There is no restriction on this, but it's not clear that any |
| // other form makes any sense. We get here for cases such as: |
| // |
| // new (std::align_val_t{N}) X(int) |
| // |
| // (which should presumably be valid only if N is a multiple of |
| // alignof(int), and in any case can't be deallocated unless N is |
| // alignof(X) and X has new-extended alignment). |
| if (PlacementArgs != 1 || !E->getPlacementArg(0)->getType()->isNothrowT()) |
| return this->emitInvalid(E); |
| |
| if (!this->discard(E->getPlacementArg(0))) |
| return false; |
| IsNoThrow = true; |
| } |
| |
| const Descriptor *Desc; |
| if (ElemT) { |
| if (E->isArray()) |
| Desc = nullptr; // We're not going to use it in this case. |
| else |
| Desc = P.createDescriptor(E, *ElemT, Descriptor::InlineDescMD, |
| /*IsConst=*/false, /*IsTemporary=*/false, |
| /*IsMutable=*/false); |
| } else { |
| Desc = P.createDescriptor( |
| E, ElementType.getTypePtr(), |
| E->isArray() ? std::nullopt : Descriptor::InlineDescMD, |
| /*IsConst=*/false, /*IsTemporary=*/false, /*IsMutable=*/false, Init); |
| } |
| |
| if (E->isArray()) { |
| std::optional<const Expr *> ArraySizeExpr = E->getArraySize(); |
| if (!ArraySizeExpr) |
| return false; |
| |
| const Expr *Stripped = *ArraySizeExpr; |
| for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped); |
| Stripped = ICE->getSubExpr()) |
| if (ICE->getCastKind() != CK_NoOp && |
| ICE->getCastKind() != CK_IntegralCast) |
| break; |
| |
| PrimType SizeT = classifyPrim(Stripped->getType()); |
| |
| if (!this->visit(Stripped)) |
| return false; |
| |
| if (ElemT) { |
| // N primitive elements. |
| if (!this->emitAllocN(SizeT, *ElemT, E, IsNoThrow, E)) |
| return false; |
| } else { |
| // N Composite elements. |
| if (!this->emitAllocCN(SizeT, Desc, IsNoThrow, E)) |
| return false; |
| } |
| |
| if (Init && !this->visitInitializer(Init)) |
| return false; |
| |
| } else { |
| // Allocate just one element. |
| if (!this->emitAlloc(Desc, E)) |
| return false; |
| |
| if (Init) { |
| if (ElemT) { |
| if (!this->visit(Init)) |
| return false; |
| |
| if (!this->emitInit(*ElemT, E)) |
| return false; |
| } else { |
| // Composite. |
| if (!this->visitInitializer(Init)) |
| return false; |
| } |
| } |
| } |
| |
| if (DiscardResult) |
| return this->emitPopPtr(E); |
| |
| return true; |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitCXXDeleteExpr(const CXXDeleteExpr *E) { |
| const Expr *Arg = E->getArgument(); |
| |
| // Arg must be an lvalue. |
| if (!this->visit(Arg)) |
| return false; |
| |
| return this->emitFree(E->isArrayForm(), E); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitBlockExpr(const BlockExpr *E) { |
| const Function *Func = nullptr; |
| if (auto F = Compiler<ByteCodeEmitter>(Ctx, P).compileObjCBlock(E)) |
| Func = F; |
| |
| if (!Func) |
| return false; |
| return this->emitGetFnPtr(Func, E); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { |
| assert(Ctx.getLangOpts().CPlusPlus); |
| return this->emitConstBool(E->getValue(), E); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitCXXUuidofExpr(const CXXUuidofExpr *E) { |
| if (DiscardResult) |
| return true; |
| assert(!Initializing); |
| |
| const MSGuidDecl *GuidDecl = E->getGuidDecl(); |
| const RecordDecl *RD = GuidDecl->getType()->getAsRecordDecl(); |
| assert(RD); |
| // If the definiton of the result type is incomplete, just return a dummy. |
| // If (and when) that is read from, we will fail, but not now. |
| if (!RD->isCompleteDefinition()) { |
| if (std::optional<unsigned> I = P.getOrCreateDummy(GuidDecl)) |
| return this->emitGetPtrGlobal(*I, E); |
| return false; |
| } |
| |
| std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(GuidDecl); |
| if (!GlobalIndex) |
| return false; |
| if (!this->emitGetPtrGlobal(*GlobalIndex, E)) |
| return false; |
| |
| assert(this->getRecord(E->getType())); |
| |
| const APValue &V = GuidDecl->getAsAPValue(); |
| if (V.getKind() == APValue::None) |
| return true; |
| |
| assert(V.isStruct()); |
| assert(V.getStructNumBases() == 0); |
| if (!this->visitAPValueInitializer(V, E)) |
| return false; |
| |
| return this->emitFinishInit(E); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitRequiresExpr(const RequiresExpr *E) { |
| assert(classifyPrim(E->getType()) == PT_Bool); |
| if (DiscardResult) |
| return true; |
| return this->emitConstBool(E->isSatisfied(), E); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitConceptSpecializationExpr( |
| const ConceptSpecializationExpr *E) { |
| assert(classifyPrim(E->getType()) == PT_Bool); |
| if (DiscardResult) |
| return true; |
| return this->emitConstBool(E->isSatisfied(), E); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitCXXRewrittenBinaryOperator( |
| const CXXRewrittenBinaryOperator *E) { |
| return this->delegate(E->getSemanticForm()); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitPseudoObjectExpr(const PseudoObjectExpr *E) { |
| |
| for (const Expr *SemE : E->semantics()) { |
| if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) { |
| if (SemE == E->getResultExpr()) |
| return false; |
| |
| if (OVE->isUnique()) |
| continue; |
| |
| if (!this->discard(OVE)) |
| return false; |
| } else if (SemE == E->getResultExpr()) { |
| if (!this->delegate(SemE)) |
| return false; |
| } else { |
| if (!this->discard(SemE)) |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitPackIndexingExpr(const PackIndexingExpr *E) { |
| return this->delegate(E->getSelectedExpr()); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitRecoveryExpr(const RecoveryExpr *E) { |
| return this->emitError(E); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitAddrLabelExpr(const AddrLabelExpr *E) { |
| assert(E->getType()->isVoidPointerType()); |
| |
| unsigned Offset = allocateLocalPrimitive( |
| E->getLabel(), PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false); |
| |
| return this->emitGetLocal(PT_Ptr, Offset, E); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitConvertVectorExpr(const ConvertVectorExpr *E) { |
| assert(Initializing); |
| const auto *VT = E->getType()->castAs<VectorType>(); |
| QualType ElemType = VT->getElementType(); |
| PrimType ElemT = classifyPrim(ElemType); |
| const Expr *Src = E->getSrcExpr(); |
| PrimType SrcElemT = |
| classifyPrim(Src->getType()->castAs<VectorType>()->getElementType()); |
| |
| unsigned SrcOffset = this->allocateLocalPrimitive(Src, PT_Ptr, true, false); |
| if (!this->visit(Src)) |
| return false; |
| if (!this->emitSetLocal(PT_Ptr, SrcOffset, E)) |
| return false; |
| |
| for (unsigned I = 0; I != VT->getNumElements(); ++I) { |
| if (!this->emitGetLocal(PT_Ptr, SrcOffset, E)) |
| return false; |
| if (!this->emitArrayElemPop(SrcElemT, I, E)) |
| return false; |
| if (SrcElemT != ElemT) { |
| if (!this->emitPrimCast(SrcElemT, ElemT, ElemType, E)) |
| return false; |
| } |
| if (!this->emitInitElem(ElemT, I, E)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitShuffleVectorExpr(const ShuffleVectorExpr *E) { |
| assert(Initializing); |
| assert(E->getNumSubExprs() > 2); |
| |
| const Expr *Vecs[] = {E->getExpr(0), E->getExpr(1)}; |
| const VectorType *VT = Vecs[0]->getType()->castAs<VectorType>(); |
| PrimType ElemT = classifyPrim(VT->getElementType()); |
| unsigned NumInputElems = VT->getNumElements(); |
| unsigned NumOutputElems = E->getNumSubExprs() - 2; |
| assert(NumOutputElems > 0); |
| |
| // Save both input vectors to a local variable. |
| unsigned VectorOffsets[2]; |
| for (unsigned I = 0; I != 2; ++I) { |
| VectorOffsets[I] = this->allocateLocalPrimitive( |
| Vecs[I], PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false); |
| if (!this->visit(Vecs[I])) |
| return false; |
| if (!this->emitSetLocal(PT_Ptr, VectorOffsets[I], E)) |
| return false; |
| } |
| for (unsigned I = 0; I != NumOutputElems; ++I) { |
| APSInt ShuffleIndex = E->getShuffleMaskIdx(Ctx.getASTContext(), I); |
| if (ShuffleIndex == -1) |
| return this->emitInvalid(E); // FIXME: Better diagnostic. |
| |
| assert(ShuffleIndex < (NumInputElems * 2)); |
| if (!this->emitGetLocal(PT_Ptr, |
| VectorOffsets[ShuffleIndex >= NumInputElems], E)) |
| return false; |
| unsigned InputVectorIndex = ShuffleIndex.getZExtValue() % NumInputElems; |
| if (!this->emitArrayElemPop(ElemT, InputVectorIndex, E)) |
| return false; |
| |
| if (!this->emitInitElem(ElemT, I, E)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitExtVectorElementExpr( |
| const ExtVectorElementExpr *E) { |
| const Expr *Base = E->getBase(); |
| assert( |
| Base->getType()->isVectorType() || |
| Base->getType()->getAs<PointerType>()->getPointeeType()->isVectorType()); |
| |
| SmallVector<uint32_t, 4> Indices; |
| E->getEncodedElementAccess(Indices); |
| |
| if (Indices.size() == 1) { |
| if (!this->visit(Base)) |
| return false; |
| |
| if (E->isGLValue()) { |
| if (!this->emitConstUint32(Indices[0], E)) |
| return false; |
| return this->emitArrayElemPtrPop(PT_Uint32, E); |
| } |
| // Else, also load the value. |
| return this->emitArrayElemPop(classifyPrim(E->getType()), Indices[0], E); |
| } |
| |
| // Create a local variable for the base. |
| unsigned BaseOffset = allocateLocalPrimitive(Base, PT_Ptr, /*IsConst=*/true, |
| /*IsExtended=*/false); |
| if (!this->visit(Base)) |
| return false; |
| if (!this->emitSetLocal(PT_Ptr, BaseOffset, E)) |
| return false; |
| |
| // Now the vector variable for the return value. |
| if (!Initializing) { |
| std::optional<unsigned> ResultIndex; |
| ResultIndex = allocateLocal(E); |
| if (!ResultIndex) |
| return false; |
| if (!this->emitGetPtrLocal(*ResultIndex, E)) |
| return false; |
| } |
| |
| assert(Indices.size() == E->getType()->getAs<VectorType>()->getNumElements()); |
| |
| PrimType ElemT = |
| classifyPrim(E->getType()->getAs<VectorType>()->getElementType()); |
| uint32_t DstIndex = 0; |
| for (uint32_t I : Indices) { |
| if (!this->emitGetLocal(PT_Ptr, BaseOffset, E)) |
| return false; |
| if (!this->emitArrayElemPop(ElemT, I, E)) |
| return false; |
| if (!this->emitInitElem(ElemT, DstIndex, E)) |
| return false; |
| ++DstIndex; |
| } |
| |
| // Leave the result pointer on the stack. |
| assert(!DiscardResult); |
| return true; |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) { |
| const Expr *SubExpr = E->getSubExpr(); |
| if (!E->isExpressibleAsConstantInitializer()) |
| return this->discard(SubExpr) && this->emitInvalid(E); |
| |
| return this->delegate(SubExpr); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitCXXStdInitializerListExpr( |
| const CXXStdInitializerListExpr *E) { |
| const Expr *SubExpr = E->getSubExpr(); |
| const ConstantArrayType *ArrayType = |
| Ctx.getASTContext().getAsConstantArrayType(SubExpr->getType()); |
| const Record *R = getRecord(E->getType()); |
| assert(Initializing); |
| assert(SubExpr->isGLValue()); |
| |
| if (!this->visit(SubExpr)) |
| return false; |
| if (!this->emitInitFieldPtr(R->getField(0u)->Offset, E)) |
| return false; |
| |
| PrimType SecondFieldT = classifyPrim(R->getField(1u)->Decl->getType()); |
| if (isIntegralType(SecondFieldT)) { |
| if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()), |
| SecondFieldT, E)) |
| return false; |
| return this->emitInitField(SecondFieldT, R->getField(1u)->Offset, E); |
| } |
| assert(SecondFieldT == PT_Ptr); |
| |
| if (!this->emitGetFieldPtr(R->getField(0u)->Offset, E)) |
| return false; |
| if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()), PT_Uint64, E)) |
| return false; |
| if (!this->emitArrayElemPtrPop(PT_Uint64, E)) |
| return false; |
| return this->emitInitFieldPtr(R->getField(1u)->Offset, E); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitStmtExpr(const StmtExpr *E) { |
| BlockScope<Emitter> BS(this); |
| StmtExprScope<Emitter> SS(this); |
| |
| const CompoundStmt *CS = E->getSubStmt(); |
| const Stmt *Result = CS->getStmtExprResult(); |
| for (const Stmt *S : CS->body()) { |
| if (S != Result) { |
| if (!this->visitStmt(S)) |
| return false; |
| continue; |
| } |
| |
| assert(S == Result); |
| if (const Expr *ResultExpr = dyn_cast<Expr>(S)) |
| return this->delegate(ResultExpr); |
| return this->emitUnsupported(E); |
| } |
| |
| return BS.destroyLocals(); |
| } |
| |
| template <class Emitter> bool Compiler<Emitter>::discard(const Expr *E) { |
| OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/true, |
| /*NewInitializing=*/false); |
| return this->Visit(E); |
| } |
| |
| template <class Emitter> bool Compiler<Emitter>::delegate(const Expr *E) { |
| if (E->containsErrors()) |
| return this->emitError(E); |
| |
| // We're basically doing: |
| // OptionScope<Emitter> Scope(this, DicardResult, Initializing); |
| // but that's unnecessary of course. |
| return this->Visit(E); |
| } |
| |
| template <class Emitter> bool Compiler<Emitter>::visit(const Expr *E) { |
| if (E->getType().isNull()) |
| return false; |
| |
| // Create local variable to hold the return value. |
| if (!E->getType()->isVoidType() && !E->isGLValue() && |
| !E->getType()->isAnyComplexType() && !classify(E->getType())) { |
| std::optional<unsigned> LocalIndex = allocateLocal(E); |
| if (!LocalIndex) |
| return false; |
| |
| if (!this->emitGetPtrLocal(*LocalIndex, E)) |
| return false; |
| return this->visitInitializer(E); |
| } |
| |
| // Otherwise,we have a primitive return value, produce the value directly |
| // and push it on the stack. |
| OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false, |
| /*NewInitializing=*/false); |
| return this->Visit(E); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::visitInitializer(const Expr *E) { |
| assert(!classify(E->getType())); |
| |
| if (E->containsErrors()) |
| return this->emitError(E); |
| |
| if (!this->checkLiteralType(E)) |
| return false; |
| |
| OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false, |
| /*NewInitializing=*/true); |
| return this->Visit(E); |
| } |
| |
| template <class Emitter> bool Compiler<Emitter>::visitBool(const Expr *E) { |
| std::optional<PrimType> T = classify(E->getType()); |
| if (!T) { |
| // Convert complex values to bool. |
| if (E->getType()->isAnyComplexType()) { |
| if (!this->visit(E)) |
| return false; |
| return this->emitComplexBoolCast(E); |
| } |
| return false; |
| } |
| |
| if (!this->visit(E)) |
| return false; |
| |
| if (T == PT_Bool) |
| return true; |
| |
| // Convert pointers to bool. |
| if (T == PT_Ptr || T == PT_FnPtr) { |
| if (!this->emitNull(*T, nullptr, E)) |
| return false; |
| return this->emitNE(*T, E); |
| } |
| |
| // Or Floats. |
| if (T == PT_Float) |
| return this->emitCastFloatingIntegralBool(E); |
| |
| // Or anything else we can. |
| return this->emitCast(*T, PT_Bool, E); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::visitZeroInitializer(PrimType T, QualType QT, |
| const Expr *E) { |
| switch (T) { |
| case PT_Bool: |
| return this->emitZeroBool(E); |
| case PT_Sint8: |
| return this->emitZeroSint8(E); |
| case PT_Uint8: |
| return this->emitZeroUint8(E); |
| case PT_Sint16: |
| return this->emitZeroSint16(E); |
| case PT_Uint16: |
| return this->emitZeroUint16(E); |
| case PT_Sint32: |
| return this->emitZeroSint32(E); |
| case PT_Uint32: |
| return this->emitZeroUint32(E); |
| case PT_Sint64: |
| return this->emitZeroSint64(E); |
| case PT_Uint64: |
| return this->emitZeroUint64(E); |
| case PT_IntAP: |
| return this->emitZeroIntAP(Ctx.getBitWidth(QT), E); |
| case PT_IntAPS: |
| return this->emitZeroIntAPS(Ctx.getBitWidth(QT), E); |
| case PT_Ptr: |
| return this->emitNullPtr(nullptr, E); |
| case PT_FnPtr: |
| return this->emitNullFnPtr(nullptr, E); |
| case PT_MemberPtr: |
| return this->emitNullMemberPtr(nullptr, E); |
| case PT_Float: { |
| return this->emitConstFloat(APFloat::getZero(Ctx.getFloatSemantics(QT)), E); |
| } |
| } |
| llvm_unreachable("unknown primitive type"); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::visitZeroRecordInitializer(const Record *R, |
| const Expr *E) { |
| assert(E); |
| assert(R); |
| // Fields |
| for (const Record::Field &Field : R->fields()) { |
| if (Field.Decl->isUnnamedBitField()) |
| continue; |
| |
| const Descriptor *D = Field.Desc; |
| if (D->isPrimitive()) { |
| QualType QT = D->getType(); |
| PrimType T = classifyPrim(D->getType()); |
| if (!this->visitZeroInitializer(T, QT, E)) |
| return false; |
| if (!this->emitInitField(T, Field.Offset, E)) |
| return false; |
| if (R->isUnion()) |
| break; |
| continue; |
| } |
| |
| if (!this->emitGetPtrField(Field.Offset, E)) |
| return false; |
| |
| if (D->isPrimitiveArray()) { |
| QualType ET = D->getElemQualType(); |
| PrimType T = classifyPrim(ET); |
| for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) { |
| if (!this->visitZeroInitializer(T, ET, E)) |
| return false; |
| if (!this->emitInitElem(T, I, E)) |
| return false; |
| } |
| } else if (D->isCompositeArray()) { |
| const Record *ElemRecord = D->ElemDesc->ElemRecord; |
| assert(D->ElemDesc->ElemRecord); |
| for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) { |
| if (!this->emitConstUint32(I, E)) |
| return false; |
| if (!this->emitArrayElemPtr(PT_Uint32, E)) |
| return false; |
| if (!this->visitZeroRecordInitializer(ElemRecord, E)) |
| return false; |
| if (!this->emitPopPtr(E)) |
| return false; |
| } |
| } else if (D->isRecord()) { |
| if (!this->visitZeroRecordInitializer(D->ElemRecord, E)) |
| return false; |
| } else { |
| assert(false); |
| } |
| |
| if (!this->emitFinishInitPop(E)) |
| return false; |
| |
| if (R->isUnion()) |
| break; |
| } |
| |
| for (const Record::Base &B : R->bases()) { |
| if (!this->emitGetPtrBase(B.Offset, E)) |
| return false; |
| if (!this->visitZeroRecordInitializer(B.R, E)) |
| return false; |
| if (!this->emitFinishInitPop(E)) |
| return false; |
| } |
| |
| // FIXME: Virtual bases. |
| |
| return true; |
| } |
| |
| template <class Emitter> |
| template <typename T> |
| bool Compiler<Emitter>::emitConst(T Value, PrimType Ty, const Expr *E) { |
| switch (Ty) { |
| case PT_Sint8: |
| return this->emitConstSint8(Value, E); |
| case PT_Uint8: |
| return this->emitConstUint8(Value, E); |
| case PT_Sint16: |
| return this->emitConstSint16(Value, E); |
| case PT_Uint16: |
| return this->emitConstUint16(Value, E); |
| case PT_Sint32: |
| return this->emitConstSint32(Value, E); |
| case PT_Uint32: |
| return this->emitConstUint32(Value, E); |
| case PT_Sint64: |
| return this->emitConstSint64(Value, E); |
| case PT_Uint64: |
| return this->emitConstUint64(Value, E); |
| case PT_Bool: |
| return this->emitConstBool(Value, E); |
| case PT_Ptr: |
| case PT_FnPtr: |
| case PT_MemberPtr: |
| case PT_Float: |
| case PT_IntAP: |
| case PT_IntAPS: |
| llvm_unreachable("Invalid integral type"); |
| break; |
| } |
| llvm_unreachable("unknown primitive type"); |
| } |
| |
| template <class Emitter> |
| template <typename T> |
| bool Compiler<Emitter>::emitConst(T Value, const Expr *E) { |
| return this->emitConst(Value, classifyPrim(E->getType()), E); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::emitConst(const APSInt &Value, PrimType Ty, |
| const Expr *E) { |
| if (Ty == PT_IntAPS) |
| return this->emitConstIntAPS(Value, E); |
| if (Ty == PT_IntAP) |
| return this->emitConstIntAP(Value, E); |
| |
| if (Value.isSigned()) |
| return this->emitConst(Value.getSExtValue(), Ty, E); |
| return this->emitConst(Value.getZExtValue(), Ty, E); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::emitConst(const APSInt &Value, const Expr *E) { |
| return this->emitConst(Value, classifyPrim(E->getType()), E); |
| } |
| |
| template <class Emitter> |
| unsigned Compiler<Emitter>::allocateLocalPrimitive(DeclTy &&Src, PrimType Ty, |
| bool IsConst, |
| bool IsExtended) { |
| // Make sure we don't accidentally register the same decl twice. |
| if (const auto *VD = |
| dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) { |
| assert(!P.getGlobal(VD)); |
| assert(!Locals.contains(VD)); |
| (void)VD; |
| } |
| |
| // FIXME: There are cases where Src.is<Expr*>() is wrong, e.g. |
| // (int){12} in C. Consider using Expr::isTemporaryObject() instead |
| // or isa<MaterializeTemporaryExpr>(). |
| Descriptor *D = P.createDescriptor(Src, Ty, Descriptor::InlineDescMD, IsConst, |
| Src.is<const Expr *>()); |
| Scope::Local Local = this->createLocal(D); |
| if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) |
| Locals.insert({VD, Local}); |
| VarScope->add(Local, IsExtended); |
| return Local.Offset; |
| } |
| |
| template <class Emitter> |
| std::optional<unsigned> |
| Compiler<Emitter>::allocateLocal(DeclTy &&Src, const ValueDecl *ExtendingDecl) { |
| // Make sure we don't accidentally register the same decl twice. |
| if ([[maybe_unused]] const auto *VD = |
| dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) { |
| assert(!P.getGlobal(VD)); |
| assert(!Locals.contains(VD)); |
| } |
| |
| QualType Ty; |
| const ValueDecl *Key = nullptr; |
| const Expr *Init = nullptr; |
| bool IsTemporary = false; |
| if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) { |
| Key = VD; |
| Ty = VD->getType(); |
| |
| if (const auto *VarD = dyn_cast<VarDecl>(VD)) |
| Init = VarD->getInit(); |
| } |
| if (auto *E = Src.dyn_cast<const Expr *>()) { |
| IsTemporary = true; |
| Ty = E->getType(); |
| } |
| |
| Descriptor *D = P.createDescriptor( |
| Src, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(), |
| IsTemporary, /*IsMutable=*/false, Init); |
| if (!D) |
| return std::nullopt; |
| |
| Scope::Local Local = this->createLocal(D); |
| if (Key) |
| Locals.insert({Key, Local}); |
| if (ExtendingDecl) |
| VarScope->addExtended(Local, ExtendingDecl); |
| else |
| VarScope->add(Local, false); |
| return Local.Offset; |
| } |
| |
| template <class Emitter> |
| unsigned Compiler<Emitter>::allocateTemporary(const Expr *E) { |
| QualType Ty = E->getType(); |
| assert(!Ty->isRecordType()); |
| |
| Descriptor *D = P.createDescriptor( |
| E, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(), |
| /*IsTemporary=*/true, /*IsMutable=*/false, /*Init=*/nullptr); |
| assert(D); |
| |
| Scope::Local Local = this->createLocal(D); |
| VariableScope<Emitter> *S = VarScope; |
| assert(S); |
| // Attach to topmost scope. |
| while (S->getParent()) |
| S = S->getParent(); |
| assert(S && !S->getParent()); |
| S->addLocal(Local); |
| return Local.Offset; |
| } |
| |
| template <class Emitter> |
| const RecordType *Compiler<Emitter>::getRecordTy(QualType Ty) { |
| if (const PointerType *PT = dyn_cast<PointerType>(Ty)) |
| return PT->getPointeeType()->getAs<RecordType>(); |
| return Ty->getAs<RecordType>(); |
| } |
| |
| template <class Emitter> Record *Compiler<Emitter>::getRecord(QualType Ty) { |
| if (const auto *RecordTy = getRecordTy(Ty)) |
| return getRecord(RecordTy->getDecl()); |
| return nullptr; |
| } |
| |
| template <class Emitter> |
| Record *Compiler<Emitter>::getRecord(const RecordDecl *RD) { |
| return P.getOrCreateRecord(RD); |
| } |
| |
| template <class Emitter> |
| const Function *Compiler<Emitter>::getFunction(const FunctionDecl *FD) { |
| return Ctx.getOrCreateFunction(FD); |
| } |
| |
| template <class Emitter> bool Compiler<Emitter>::visitExpr(const Expr *E) { |
| LocalScope<Emitter> RootScope(this); |
| // Void expressions. |
| if (E->getType()->isVoidType()) { |
| if (!visit(E)) |
| return false; |
| return this->emitRetVoid(E) && RootScope.destroyLocals(); |
| } |
| |
| // Expressions with a primitive return type. |
| if (std::optional<PrimType> T = classify(E)) { |
| if (!visit(E)) |
| return false; |
| return this->emitRet(*T, E) && RootScope.destroyLocals(); |
| } |
| |
| // Expressions with a composite return type. |
| // For us, that means everything we don't |
| // have a PrimType for. |
| if (std::optional<unsigned> LocalOffset = this->allocateLocal(E)) { |
| if (!this->emitGetPtrLocal(*LocalOffset, E)) |
| return false; |
| |
| if (!visitInitializer(E)) |
| return false; |
| |
| if (!this->emitFinishInit(E)) |
| return false; |
| // We are destroying the locals AFTER the Ret op. |
| // The Ret op needs to copy the (alive) values, but the |
| // destructors may still turn the entire expression invalid. |
| return this->emitRetValue(E) && RootScope.destroyLocals(); |
| } |
| |
| RootScope.destroyLocals(); |
| return false; |
| } |
| |
| template <class Emitter> |
| VarCreationState Compiler<Emitter>::visitDecl(const VarDecl *VD) { |
| |
| auto R = this->visitVarDecl(VD, /*Toplevel=*/true); |
| |
| if (R.notCreated()) |
| return R; |
| |
| if (R) |
| return true; |
| |
| if (!R && Context::shouldBeGloballyIndexed(VD)) { |
| if (auto GlobalIndex = P.getGlobal(VD)) { |
| Block *GlobalBlock = P.getGlobal(*GlobalIndex); |
| GlobalInlineDescriptor &GD = |
| *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData()); |
| |
| GD.InitState = GlobalInitState::InitializerFailed; |
| GlobalBlock->invokeDtor(); |
| } |
| } |
| |
| return R; |
| } |
| |
| /// Toplevel visitDeclAndReturn(). |
| /// We get here from evaluateAsInitializer(). |
| /// We need to evaluate the initializer and return its value. |
| template <class Emitter> |
| bool Compiler<Emitter>::visitDeclAndReturn(const VarDecl *VD, |
| bool ConstantContext) { |
| std::optional<PrimType> VarT = classify(VD->getType()); |
| |
| // We only create variables if we're evaluating in a constant context. |
| // Otherwise, just evaluate the initializer and return it. |
| if (!ConstantContext) { |
| DeclScope<Emitter> LS(this, VD); |
| if (!this->visit(VD->getAnyInitializer())) |
| return false; |
| return this->emitRet(VarT.value_or(PT_Ptr), VD) && LS.destroyLocals(); |
| } |
| |
| LocalScope<Emitter> VDScope(this, VD); |
| if (!this->visitVarDecl(VD, /*Toplevel=*/true)) |
| return false; |
| |
| if (Context::shouldBeGloballyIndexed(VD)) { |
| auto GlobalIndex = P.getGlobal(VD); |
| assert(GlobalIndex); // visitVarDecl() didn't return false. |
| if (VarT) { |
| if (!this->emitGetGlobalUnchecked(*VarT, *GlobalIndex, VD)) |
| return false; |
| } else { |
| if (!this->emitGetPtrGlobal(*GlobalIndex, VD)) |
| return false; |
| } |
| } else { |
| auto Local = Locals.find(VD); |
| assert(Local != Locals.end()); // Same here. |
| if (VarT) { |
| if (!this->emitGetLocal(*VarT, Local->second.Offset, VD)) |
| return false; |
| } else { |
| if (!this->emitGetPtrLocal(Local->second.Offset, VD)) |
| return false; |
| } |
| } |
| |
| // Return the value. |
| if (!this->emitRet(VarT.value_or(PT_Ptr), VD)) { |
| // If the Ret above failed and this is a global variable, mark it as |
| // uninitialized, even everything else succeeded. |
| if (Context::shouldBeGloballyIndexed(VD)) { |
| auto GlobalIndex = P.getGlobal(VD); |
| assert(GlobalIndex); |
| Block *GlobalBlock = P.getGlobal(*GlobalIndex); |
| GlobalInlineDescriptor &GD = |
| *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData()); |
| |
| GD.InitState = GlobalInitState::InitializerFailed; |
| GlobalBlock->invokeDtor(); |
| } |
| return false; |
| } |
| |
| return VDScope.destroyLocals(); |
| } |
| |
| template <class Emitter> |
| VarCreationState Compiler<Emitter>::visitVarDecl(const VarDecl *VD, |
| bool Toplevel) { |
| // We don't know what to do with these, so just return false. |
| if (VD->getType().isNull()) |
| return false; |
| |
| // This case is EvalEmitter-only. If we won't create any instructions for the |
| // initializer anyway, don't bother creating the variable in the first place. |
| if (!this->isActive()) |
| return VarCreationState::NotCreated(); |
| |
| const Expr *Init = VD->getInit(); |
| std::optional<PrimType> VarT = classify(VD->getType()); |
| |
| if (Init && Init->isValueDependent()) |
| return false; |
| |
| if (Context::shouldBeGloballyIndexed(VD)) { |
| auto checkDecl = [&]() -> bool { |
| bool NeedsOp = !Toplevel && VD->isLocalVarDecl() && VD->isStaticLocal(); |
| return !NeedsOp || this->emitCheckDecl(VD, VD); |
| }; |
| |
| auto initGlobal = [&](unsigned GlobalIndex) -> bool { |
| assert(Init); |
| DeclScope<Emitter> LocalScope(this, VD); |
| |
| if (VarT) { |
| if (!this->visit(Init)) |
| return checkDecl() && false; |
| |
| return checkDecl() && this->emitInitGlobal(*VarT, GlobalIndex, VD); |
| } |
| |
| if (!checkDecl()) |
| return false; |
| |
| if (!this->emitGetPtrGlobal(GlobalIndex, Init)) |
| return false; |
| |
| if (!visitInitializer(Init)) |
| return false; |
| |
| if (!this->emitFinishInit(Init)) |
| return false; |
| |
| return this->emitPopPtr(Init); |
| }; |
| |
| // We've already seen and initialized this global. |
| if (std::optional<unsigned> GlobalIndex = P.getGlobal(VD)) { |
| if (P.getPtrGlobal(*GlobalIndex).isInitialized()) |
| return checkDecl(); |
| |
| // The previous attempt at initialization might've been unsuccessful, |
| // so let's try this one. |
| return Init && checkDecl() && initGlobal(*GlobalIndex); |
| } |
| |
| std::optional<unsigned> GlobalIndex = P.createGlobal(VD, Init); |
| |
| if (!GlobalIndex) |
| return false; |
| |
| return !Init || (checkDecl() && initGlobal(*GlobalIndex)); |
| } else { |
| InitLinkScope<Emitter> ILS(this, InitLink::Decl(VD)); |
| |
| if (VarT) { |
| unsigned Offset = this->allocateLocalPrimitive( |
| VD, *VarT, VD->getType().isConstQualified()); |
| if (Init) { |
| // If this is a toplevel declaration, create a scope for the |
| // initializer. |
| if (Toplevel) { |
| LocalScope<Emitter> Scope(this); |
| if (!this->visit(Init)) |
| return false; |
| return this->emitSetLocal(*VarT, Offset, VD) && Scope.destroyLocals(); |
| } else { |
| if (!this->visit(Init)) |
| return false; |
| return this->emitSetLocal(*VarT, Offset, VD); |
| } |
| } |
| } else { |
| if (std::optional<unsigned> Offset = this->allocateLocal(VD)) { |
| if (!Init) |
| return true; |
| |
| if (!this->emitGetPtrLocal(*Offset, Init)) |
| return false; |
| |
| if (!visitInitializer(Init)) |
| return false; |
| |
| if (!this->emitFinishInit(Init)) |
| return false; |
| |
| return this->emitPopPtr(Init); |
| } |
| return false; |
| } |
| return true; |
| } |
| |
| return false; |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::visitAPValue(const APValue &Val, PrimType ValType, |
| const Expr *E) { |
| assert(!DiscardResult); |
| if (Val.isInt()) |
| return this->emitConst(Val.getInt(), ValType, E); |
| else if (Val.isFloat()) |
| return this->emitConstFloat(Val.getFloat(), E); |
| |
| if (Val.isLValue()) { |
| if (Val.isNullPointer()) |
| return this->emitNull(ValType, nullptr, E); |
| APValue::LValueBase Base = Val.getLValueBase(); |
| if (const Expr *BaseExpr = Base.dyn_cast<const Expr *>()) |
| return this->visit(BaseExpr); |
| else if (const auto *VD = Base.dyn_cast<const ValueDecl *>()) { |
| return this->visitDeclRef(VD, E); |
| } |
| } else if (Val.isMemberPointer()) { |
| if (const ValueDecl *MemberDecl = Val.getMemberPointerDecl()) |
| return this->emitGetMemberPtr(MemberDecl, E); |
| return this->emitNullMemberPtr(nullptr, E); |
| } |
| |
| return false; |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::visitAPValueInitializer(const APValue &Val, |
| const Expr *E) { |
| |
| if (Val.isStruct()) { |
| const Record *R = this->getRecord(E->getType()); |
| assert(R); |
| for (unsigned I = 0, N = Val.getStructNumFields(); I != N; ++I) { |
| const APValue &F = Val.getStructField(I); |
| const Record::Field *RF = R->getField(I); |
| |
| if (F.isInt() || F.isFloat() || F.isLValue() || F.isMemberPointer()) { |
| PrimType T = classifyPrim(RF->Decl->getType()); |
| if (!this->visitAPValue(F, T, E)) |
| return false; |
| if (!this->emitInitField(T, RF->Offset, E)) |
| return false; |
| } else if (F.isArray()) { |
| assert(RF->Desc->isPrimitiveArray()); |
| const auto *ArrType = RF->Decl->getType()->getAsArrayTypeUnsafe(); |
| PrimType ElemT = classifyPrim(ArrType->getElementType()); |
| assert(ArrType); |
| |
| if (!this->emitGetPtrField(RF->Offset, E)) |
| return false; |
| |
| for (unsigned A = 0, AN = F.getArraySize(); A != AN; ++A) { |
| if (!this->visitAPValue(F.getArrayInitializedElt(A), ElemT, E)) |
| return false; |
| if (!this->emitInitElem(ElemT, A, E)) |
| return false; |
| } |
| |
| if (!this->emitPopPtr(E)) |
| return false; |
| } else if (F.isStruct() || F.isUnion()) { |
| if (!this->emitGetPtrField(RF->Offset, E)) |
| return false; |
| if (!this->visitAPValueInitializer(F, E)) |
| return false; |
| if (!this->emitPopPtr(E)) |
| return false; |
| } else { |
| assert(false && "I don't think this should be possible"); |
| } |
| } |
| return true; |
| } else if (Val.isUnion()) { |
| const FieldDecl *UnionField = Val.getUnionField(); |
| const Record *R = this->getRecord(UnionField->getParent()); |
| assert(R); |
| const APValue &F = Val.getUnionValue(); |
| const Record::Field *RF = R->getField(UnionField); |
| PrimType T = classifyPrim(RF->Decl->getType()); |
| if (!this->visitAPValue(F, T, E)) |
| return false; |
| return this->emitInitField(T, RF->Offset, E); |
| } |
| // TODO: Other types. |
| |
| return false; |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitBuiltinCallExpr(const CallExpr *E) { |
| const Function *Func = getFunction(E->getDirectCallee()); |
| if (!Func) |
| return false; |
| |
| // For these, we're expected to ultimately return an APValue pointing |
| // to the CallExpr. This is needed to get the correct codegen. |
| unsigned Builtin = E->getBuiltinCallee(); |
| if (Builtin == Builtin::BI__builtin___CFStringMakeConstantString || |
| Builtin == Builtin::BI__builtin___NSStringMakeConstantString || |
| Builtin == Builtin::BI__builtin_ptrauth_sign_constant || |
| Builtin == Builtin::BI__builtin_function_start) { |
| if (std::optional<unsigned> GlobalOffset = P.createGlobal(E)) { |
| if (!this->emitGetPtrGlobal(*GlobalOffset, E)) |
| return false; |
| |
| if (PrimType PT = classifyPrim(E); PT != PT_Ptr && isPtrType(PT)) |
| return this->emitDecayPtr(PT_Ptr, PT, E); |
| return true; |
| } |
| return false; |
| } |
| |
| QualType ReturnType = E->getType(); |
| std::optional<PrimType> ReturnT = classify(E); |
| |
| // Non-primitive return type. Prepare storage. |
| if (!Initializing && !ReturnT && !ReturnType->isVoidType()) { |
| std::optional<unsigned> LocalIndex = allocateLocal(E); |
| if (!LocalIndex) |
| return false; |
| if (!this->emitGetPtrLocal(*LocalIndex, E)) |
| return false; |
| } |
| |
| if (!Func->isUnevaluatedBuiltin()) { |
| // Put arguments on the stack. |
| for (const auto *Arg : E->arguments()) { |
| if (!this->visit(Arg)) |
| return false; |
| } |
| } |
| |
| if (!this->emitCallBI(Func, E, E)) |
| return false; |
| |
| if (DiscardResult && !ReturnType->isVoidType()) { |
| assert(ReturnT); |
| return this->emitPop(*ReturnT, E); |
| } |
| |
| return true; |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitCallExpr(const CallExpr *E) { |
| if (E->getBuiltinCallee()) |
| return VisitBuiltinCallExpr(E); |
| |
| QualType ReturnType = E->getCallReturnType(Ctx.getASTContext()); |
| std::optional<PrimType> T = classify(ReturnType); |
| bool HasRVO = !ReturnType->isVoidType() && !T; |
| const FunctionDecl *FuncDecl = E->getDirectCallee(); |
| |
| if (HasRVO) { |
| if (DiscardResult) { |
| // If we need to discard the return value but the function returns its |
| // value via an RVO pointer, we need to create one such pointer just |
| // for this call. |
| if (std::optional<unsigned> LocalIndex = allocateLocal(E)) { |
| if (!this->emitGetPtrLocal(*LocalIndex, E)) |
| return false; |
| } |
| } else { |
| // We need the result. Prepare a pointer to return or |
| // dup the current one. |
| if (!Initializing) { |
| if (std::optional<unsigned> LocalIndex = allocateLocal(E)) { |
| if (!this->emitGetPtrLocal(*LocalIndex, E)) |
| return false; |
| } |
| } |
| if (!this->emitDupPtr(E)) |
| return false; |
| } |
| } |
| |
| SmallVector<const Expr *, 8> Args( |
| llvm::ArrayRef(E->getArgs(), E->getNumArgs())); |
| |
| bool IsAssignmentOperatorCall = false; |
| if (const auto *OCE = dyn_cast<CXXOperatorCallExpr>(E); |
| OCE && OCE->isAssignmentOp()) { |
| // Just like with regular assignments, we need to special-case assignment |
| // operators here and evaluate the RHS (the second arg) before the LHS (the |
| // first arg. We fix this by using a Flip op later. |
| assert(Args.size() == 2); |
| IsAssignmentOperatorCall = true; |
| std::reverse(Args.begin(), Args.end()); |
| } |
| // Calling a static operator will still |
| // pass the instance, but we don't need it. |
| // Discard it here. |
| if (isa<CXXOperatorCallExpr>(E)) { |
| if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(FuncDecl); |
| MD && MD->isStatic()) { |
| if (!this->discard(E->getArg(0))) |
| return false; |
| // Drop first arg. |
| Args.erase(Args.begin()); |
| } |
| } |
| |
| std::optional<unsigned> CalleeOffset; |
| // Add the (optional, implicit) This pointer. |
| if (const auto *MC = dyn_cast<CXXMemberCallExpr>(E)) { |
| if (!FuncDecl && classifyPrim(E->getCallee()) == PT_MemberPtr) { |
| // If we end up creating a CallPtr op for this, we need the base of the |
| // member pointer as the instance pointer, and later extract the function |
| // decl as the function pointer. |
| const Expr *Callee = E->getCallee(); |
| CalleeOffset = |
| this->allocateLocalPrimitive(Callee, PT_MemberPtr, true, false); |
| if (!this->visit(Callee)) |
| return false; |
| if (!this->emitSetLocal(PT_MemberPtr, *CalleeOffset, E)) |
| return false; |
| if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E)) |
| return false; |
| if (!this->emitGetMemberPtrBase(E)) |
| return false; |
| } else if (!this->visit(MC->getImplicitObjectArgument())) { |
| return false; |
| } |
| } else if (!FuncDecl) { |
| const Expr *Callee = E->getCallee(); |
| CalleeOffset = this->allocateLocalPrimitive(Callee, PT_FnPtr, true, false); |
| if (!this->visit(Callee)) |
| return false; |
| if (!this->emitSetLocal(PT_FnPtr, *CalleeOffset, E)) |
| return false; |
| } |
| |
| llvm::BitVector NonNullArgs = collectNonNullArgs(FuncDecl, Args); |
| // Put arguments on the stack. |
| unsigned ArgIndex = 0; |
| for (const auto *Arg : Args) { |
| if (!this->visit(Arg)) |
| return false; |
| |
| // If we know the callee already, check the known parametrs for nullability. |
| if (FuncDecl && NonNullArgs[ArgIndex]) { |
| PrimType ArgT = classify(Arg).value_or(PT_Ptr); |
| if (ArgT == PT_Ptr || ArgT == PT_FnPtr) { |
| if (!this->emitCheckNonNullArg(ArgT, Arg)) |
| return false; |
| } |
| } |
| ++ArgIndex; |
| } |
| |
| // Undo the argument reversal we did earlier. |
| if (IsAssignmentOperatorCall) { |
| assert(Args.size() == 2); |
| PrimType Arg1T = classify(Args[0]).value_or(PT_Ptr); |
| PrimType Arg2T = classify(Args[1]).value_or(PT_Ptr); |
| if (!this->emitFlip(Arg2T, Arg1T, E)) |
| return false; |
| } |
| |
| if (FuncDecl) { |
| const Function *Func = getFunction(FuncDecl); |
| if (!Func) |
| return false; |
| assert(HasRVO == Func->hasRVO()); |
| |
| bool HasQualifier = false; |
| if (const auto *ME = dyn_cast<MemberExpr>(E->getCallee())) |
| HasQualifier = ME->hasQualifier(); |
| |
| bool IsVirtual = false; |
| if (const auto *MD = dyn_cast<CXXMethodDecl>(FuncDecl)) |
| IsVirtual = MD->isVirtual(); |
| |
| // In any case call the function. The return value will end up on the stack |
| // and if the function has RVO, we already have the pointer on the stack to |
| // write the result into. |
| if (IsVirtual && !HasQualifier) { |
| uint32_t VarArgSize = 0; |
| unsigned NumParams = |
| Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E); |
| for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) |
| VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr))); |
| |
| if (!this->emitCallVirt(Func, VarArgSize, E)) |
| return false; |
| } else if (Func->isVariadic()) { |
| uint32_t VarArgSize = 0; |
| unsigned NumParams = |
| Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E); |
| for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) |
| VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr))); |
| if (!this->emitCallVar(Func, VarArgSize, E)) |
| return false; |
| } else { |
| if (!this->emitCall(Func, 0, E)) |
| return false; |
| } |
| } else { |
| // Indirect call. Visit the callee, which will leave a FunctionPointer on |
| // the stack. Cleanup of the returned value if necessary will be done after |
| // the function call completed. |
| |
| // Sum the size of all args from the call expr. |
| uint32_t ArgSize = 0; |
| for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I) |
| ArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr))); |
| |
| // Get the callee, either from a member pointer or function pointer saved in |
| // CalleeOffset. |
| if (isa<CXXMemberCallExpr>(E) && CalleeOffset) { |
| if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E)) |
| return false; |
| if (!this->emitGetMemberPtrDecl(E)) |
| return false; |
| } else { |
| if (!this->emitGetLocal(PT_FnPtr, *CalleeOffset, E)) |
| return false; |
| } |
| if (!this->emitCallPtr(ArgSize, E, E)) |
| return false; |
| } |
| |
| // Cleanup for discarded return values. |
| if (DiscardResult && !ReturnType->isVoidType() && T) |
| return this->emitPop(*T, E); |
| |
| return true; |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) { |
| SourceLocScope<Emitter> SLS(this, E); |
| |
| return this->delegate(E->getExpr()); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) { |
| SourceLocScope<Emitter> SLS(this, E); |
| |
| const Expr *SubExpr = E->getExpr(); |
| if (std::optional<PrimType> T = classify(E->getExpr())) |
| return this->visit(SubExpr); |
| |
| assert(Initializing); |
| return this->visitInitializer(SubExpr); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { |
| if (DiscardResult) |
| return true; |
| |
| return this->emitConstBool(E->getValue(), E); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitCXXNullPtrLiteralExpr( |
| const CXXNullPtrLiteralExpr *E) { |
| if (DiscardResult) |
| return true; |
| |
| return this->emitNullPtr(nullptr, E); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitGNUNullExpr(const GNUNullExpr *E) { |
| if (DiscardResult) |
| return true; |
| |
| assert(E->getType()->isIntegerType()); |
| |
| PrimType T = classifyPrim(E->getType()); |
| return this->emitZero(T, E); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitCXXThisExpr(const CXXThisExpr *E) { |
| if (DiscardResult) |
| return true; |
| |
| if (this->LambdaThisCapture.Offset > 0) { |
| if (this->LambdaThisCapture.IsPtr) |
| return this->emitGetThisFieldPtr(this->LambdaThisCapture.Offset, E); |
| return this->emitGetPtrThisField(this->LambdaThisCapture.Offset, E); |
| } |
| |
| // In some circumstances, the 'this' pointer does not actually refer to the |
| // instance pointer of the current function frame, but e.g. to the declaration |
| // currently being initialized. Here we emit the necessary instruction(s) for |
| // this scenario. |
| if (!InitStackActive || !E->isImplicit()) |
| return this->emitThis(E); |
| |
| if (InitStackActive && !InitStack.empty()) { |
| unsigned StartIndex = 0; |
| for (StartIndex = InitStack.size() - 1; StartIndex > 0; --StartIndex) { |
| if (InitStack[StartIndex].Kind != InitLink::K_Field && |
| InitStack[StartIndex].Kind != InitLink::K_Elem) |
| break; |
| } |
| |
| for (unsigned I = StartIndex, N = InitStack.size(); I != N; ++I) { |
| if (!InitStack[I].template emit<Emitter>(this, E)) |
| return false; |
| } |
| return true; |
| } |
| return this->emitThis(E); |
| } |
| |
| template <class Emitter> bool Compiler<Emitter>::visitStmt(const Stmt *S) { |
| switch (S->getStmtClass()) { |
| case Stmt::CompoundStmtClass: |
| return visitCompoundStmt(cast<CompoundStmt>(S)); |
| case Stmt::DeclStmtClass: |
| return visitDeclStmt(cast<DeclStmt>(S)); |
| case Stmt::ReturnStmtClass: |
| return visitReturnStmt(cast<ReturnStmt>(S)); |
| case Stmt::IfStmtClass: |
| return visitIfStmt(cast<IfStmt>(S)); |
| case Stmt::WhileStmtClass: |
| return visitWhileStmt(cast<WhileStmt>(S)); |
| case Stmt::DoStmtClass: |
| return visitDoStmt(cast<DoStmt>(S)); |
| case Stmt::ForStmtClass: |
| return visitForStmt(cast<ForStmt>(S)); |
| case Stmt::CXXForRangeStmtClass: |
| return visitCXXForRangeStmt(cast<CXXForRangeStmt>(S)); |
| case Stmt::BreakStmtClass: |
| return visitBreakStmt(cast<BreakStmt>(S)); |
| case Stmt::ContinueStmtClass: |
| return visitContinueStmt(cast<ContinueStmt>(S)); |
| case Stmt::SwitchStmtClass: |
| return visitSwitchStmt(cast<SwitchStmt>(S)); |
| case Stmt::CaseStmtClass: |
| return visitCaseStmt(cast<CaseStmt>(S)); |
| case Stmt::DefaultStmtClass: |
| return visitDefaultStmt(cast<DefaultStmt>(S)); |
| case Stmt::AttributedStmtClass: |
| return visitAttributedStmt(cast<AttributedStmt>(S)); |
| case Stmt::CXXTryStmtClass: |
| return visitCXXTryStmt(cast<CXXTryStmt>(S)); |
| case Stmt::NullStmtClass: |
| return true; |
| // Always invalid statements. |
| case Stmt::GCCAsmStmtClass: |
| case Stmt::MSAsmStmtClass: |
| case Stmt::GotoStmtClass: |
| return this->emitInvalid(S); |
| case Stmt::LabelStmtClass: |
| return this->visitStmt(cast<LabelStmt>(S)->getSubStmt()); |
| default: { |
| if (const auto *E = dyn_cast<Expr>(S)) |
| return this->discard(E); |
| return false; |
| } |
| } |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::visitCompoundStmt(const CompoundStmt *S) { |
| BlockScope<Emitter> Scope(this); |
| for (const auto *InnerStmt : S->body()) |
| if (!visitStmt(InnerStmt)) |
| return false; |
| return Scope.destroyLocals(); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::visitDeclStmt(const DeclStmt *DS) { |
| for (const auto *D : DS->decls()) { |
| if (isa<StaticAssertDecl, TagDecl, TypedefNameDecl, UsingEnumDecl, |
| FunctionDecl>(D)) |
| continue; |
| |
| const auto *VD = dyn_cast<VarDecl>(D); |
| if (!VD) |
| return false; |
| if (!this->visitVarDecl(VD)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::visitReturnStmt(const ReturnStmt *RS) { |
| if (this->InStmtExpr) |
| return this->emitUnsupported(RS); |
| |
| if (const Expr *RE = RS->getRetValue()) { |
| LocalScope<Emitter> RetScope(this); |
| if (ReturnType) { |
| // Primitive types are simply returned. |
| if (!this->visit(RE)) |
| return false; |
| this->emitCleanup(); |
| return this->emitRet(*ReturnType, RS); |
| } else if (RE->getType()->isVoidType()) { |
| if (!this->visit(RE)) |
| return false; |
| } else { |
| // RVO - construct the value in the return location. |
| if (!this->emitRVOPtr(RE)) |
| return false; |
| if (!this->visitInitializer(RE)) |
| return false; |
| if (!this->emitPopPtr(RE)) |
| return false; |
| |
| this->emitCleanup(); |
| return this->emitRetVoid(RS); |
| } |
| } |
| |
| // Void return. |
| this->emitCleanup(); |
| return this->emitRetVoid(RS); |
| } |
| |
| template <class Emitter> bool Compiler<Emitter>::visitIfStmt(const IfStmt *IS) { |
| if (auto *CondInit = IS->getInit()) |
| if (!visitStmt(CondInit)) |
| return false; |
| |
| if (const DeclStmt *CondDecl = IS->getConditionVariableDeclStmt()) |
| if (!visitDeclStmt(CondDecl)) |
| return false; |
| |
| // Compile condition. |
| if (IS->isNonNegatedConsteval()) { |
| if (!this->emitIsConstantContext(IS)) |
| return false; |
| } else if (IS->isNegatedConsteval()) { |
| if (!this->emitIsConstantContext(IS)) |
| return false; |
| if (!this->emitInv(IS)) |
| return false; |
| } else { |
| if (!this->visitBool(IS->getCond())) |
| return false; |
| } |
| |
| if (const Stmt *Else = IS->getElse()) { |
| LabelTy LabelElse = this->getLabel(); |
| LabelTy LabelEnd = this->getLabel(); |
| if (!this->jumpFalse(LabelElse)) |
| return false; |
| if (!visitStmt(IS->getThen())) |
| return false; |
| if (!this->jump(LabelEnd)) |
| return false; |
| this->emitLabel(LabelElse); |
| if (!visitStmt(Else)) |
| return false; |
| this->emitLabel(LabelEnd); |
| } else { |
| LabelTy LabelEnd = this->getLabel(); |
| if (!this->jumpFalse(LabelEnd)) |
| return false; |
| if (!visitStmt(IS->getThen())) |
| return false; |
| this->emitLabel(LabelEnd); |
| } |
| |
| return true; |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::visitWhileStmt(const WhileStmt *S) { |
| const Expr *Cond = S->getCond(); |
| const Stmt *Body = S->getBody(); |
| |
| LabelTy CondLabel = this->getLabel(); // Label before the condition. |
| LabelTy EndLabel = this->getLabel(); // Label after the loop. |
| LoopScope<Emitter> LS(this, EndLabel, CondLabel); |
| |
| this->fallthrough(CondLabel); |
| this->emitLabel(CondLabel); |
| |
| if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt()) |
| if (!visitDeclStmt(CondDecl)) |
| return false; |
| |
| if (!this->visitBool(Cond)) |
| return false; |
| if (!this->jumpFalse(EndLabel)) |
| return false; |
| |
| if (!this->visitStmt(Body)) |
| return false; |
| |
| if (!this->jump(CondLabel)) |
| return false; |
| this->fallthrough(EndLabel); |
| this->emitLabel(EndLabel); |
| |
| return true; |
| } |
| |
| template <class Emitter> bool Compiler<Emitter>::visitDoStmt(const DoStmt *S) { |
| const Expr *Cond = S->getCond(); |
| const Stmt *Body = S->getBody(); |
| |
| LabelTy StartLabel = this->getLabel(); |
| LabelTy EndLabel = this->getLabel(); |
| LabelTy CondLabel = this->getLabel(); |
| LoopScope<Emitter> LS(this, EndLabel, CondLabel); |
| |
| this->fallthrough(StartLabel); |
| this->emitLabel(StartLabel); |
| { |
| if (!this->visitStmt(Body)) |
| return false; |
| this->fallthrough(CondLabel); |
| this->emitLabel(CondLabel); |
| if (!this->visitBool(Cond)) |
| return false; |
| } |
| if (!this->jumpTrue(StartLabel)) |
| return false; |
| |
| this->fallthrough(EndLabel); |
| this->emitLabel(EndLabel); |
| return true; |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::visitForStmt(const ForStmt *S) { |
| // for (Init; Cond; Inc) { Body } |
| const Stmt *Init = S->getInit(); |
| const Expr *Cond = S->getCond(); |
| const Expr *Inc = S->getInc(); |
| const Stmt *Body = S->getBody(); |
| |
| LabelTy EndLabel = this->getLabel(); |
| LabelTy CondLabel = this->getLabel(); |
| LabelTy IncLabel = this->getLabel(); |
| LoopScope<Emitter> LS(this, EndLabel, IncLabel); |
| |
| if (Init && !this->visitStmt(Init)) |
| return false; |
| |
| this->fallthrough(CondLabel); |
| this->emitLabel(CondLabel); |
| |
| if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt()) |
| if (!visitDeclStmt(CondDecl)) |
| return false; |
| |
| if (Cond) { |
| if (!this->visitBool(Cond)) |
| return false; |
| if (!this->jumpFalse(EndLabel)) |
| return false; |
| } |
| |
| { |
| if (Body && !this->visitStmt(Body)) |
| return false; |
| |
| this->fallthrough(IncLabel); |
| this->emitLabel(IncLabel); |
| if (Inc && !this->discard(Inc)) |
| return false; |
| } |
| |
| if (!this->jump(CondLabel)) |
| return false; |
| this->fallthrough(EndLabel); |
| this->emitLabel(EndLabel); |
| return true; |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::visitCXXForRangeStmt(const CXXForRangeStmt *S) { |
| const Stmt *Init = S->getInit(); |
| const Expr *Cond = S->getCond(); |
| const Expr *Inc = S->getInc(); |
| const Stmt *Body = S->getBody(); |
| const Stmt *BeginStmt = S->getBeginStmt(); |
| const Stmt *RangeStmt = S->getRangeStmt(); |
| const Stmt *EndStmt = S->getEndStmt(); |
| const VarDecl *LoopVar = S->getLoopVariable(); |
| |
| LabelTy EndLabel = this->getLabel(); |
| LabelTy CondLabel = this->getLabel(); |
| LabelTy IncLabel = this->getLabel(); |
| LoopScope<Emitter> LS(this, EndLabel, IncLabel); |
| |
| // Emit declarations needed in the loop. |
| if (Init && !this->visitStmt(Init)) |
| return false; |
| if (!this->visitStmt(RangeStmt)) |
| return false; |
| if (!this->visitStmt(BeginStmt)) |
| return false; |
| if (!this->visitStmt(EndStmt)) |
| return false; |
| |
| // Now the condition as well as the loop variable assignment. |
| this->fallthrough(CondLabel); |
| this->emitLabel(CondLabel); |
| if (!this->visitBool(Cond)) |
| return false; |
| if (!this->jumpFalse(EndLabel)) |
| return false; |
| |
| if (!this->visitVarDecl(LoopVar)) |
| return false; |
| |
| // Body. |
| { |
| if (!this->visitStmt(Body)) |
| return false; |
| |
| this->fallthrough(IncLabel); |
| this->emitLabel(IncLabel); |
| if (!this->discard(Inc)) |
| return false; |
| } |
| |
| if (!this->jump(CondLabel)) |
| return false; |
| |
| this->fallthrough(EndLabel); |
| this->emitLabel(EndLabel); |
| return true; |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::visitBreakStmt(const BreakStmt *S) { |
| if (!BreakLabel) |
| return false; |
| |
| this->emitCleanup(); |
| return this->jump(*BreakLabel); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::visitContinueStmt(const ContinueStmt *S) { |
| if (!ContinueLabel) |
| return false; |
| |
| this->emitCleanup(); |
| return this->jump(*ContinueLabel); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::visitSwitchStmt(const SwitchStmt *S) { |
| const Expr *Cond = S->getCond(); |
| PrimType CondT = this->classifyPrim(Cond->getType()); |
| |
| LabelTy EndLabel = this->getLabel(); |
| OptLabelTy DefaultLabel = std::nullopt; |
| unsigned CondVar = this->allocateLocalPrimitive(Cond, CondT, true, false); |
| |
| if (const auto *CondInit = S->getInit()) |
| if (!visitStmt(CondInit)) |
| return false; |
| |
| if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt()) |
| if (!visitDeclStmt(CondDecl)) |
| return false; |
| |
| // Initialize condition variable. |
| if (!this->visit(Cond)) |
| return false; |
| if (!this->emitSetLocal(CondT, CondVar, S)) |
| return false; |
| |
| CaseMap CaseLabels; |
| // Create labels and comparison ops for all case statements. |
| for (const SwitchCase *SC = S->getSwitchCaseList(); SC; |
| SC = SC->getNextSwitchCase()) { |
| if (const auto *CS = dyn_cast<CaseStmt>(SC)) { |
| // FIXME: Implement ranges. |
| if (CS->caseStmtIsGNURange()) |
| return false; |
| CaseLabels[SC] = this->getLabel(); |
| |
| const Expr *Value = CS->getLHS(); |
| PrimType ValueT = this->classifyPrim(Value->getType()); |
| |
| // Compare the case statement's value to the switch condition. |
| if (!this->emitGetLocal(CondT, CondVar, CS)) |
| return false; |
| if (!this->visit(Value)) |
| return false; |
| |
| // Compare and jump to the case label. |
| if (!this->emitEQ(ValueT, S)) |
| return false; |
| if (!this->jumpTrue(CaseLabels[CS])) |
| return false; |
| } else { |
| assert(!DefaultLabel); |
| DefaultLabel = this->getLabel(); |
| } |
| } |
| |
| // If none of the conditions above were true, fall through to the default |
| // statement or jump after the switch statement. |
| if (DefaultLabel) { |
| if (!this->jump(*DefaultLabel)) |
| return false; |
| } else { |
| if (!this->jump(EndLabel)) |
| return false; |
| } |
| |
| SwitchScope<Emitter> SS(this, std::move(CaseLabels), EndLabel, DefaultLabel); |
| if (!this->visitStmt(S->getBody())) |
| return false; |
| this->emitLabel(EndLabel); |
| return true; |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::visitCaseStmt(const CaseStmt *S) { |
| this->emitLabel(CaseLabels[S]); |
| return this->visitStmt(S->getSubStmt()); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::visitDefaultStmt(const DefaultStmt *S) { |
| this->emitLabel(*DefaultLabel); |
| return this->visitStmt(S->getSubStmt()); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::visitAttributedStmt(const AttributedStmt *S) { |
| if (this->Ctx.getLangOpts().CXXAssumptions && |
| !this->Ctx.getLangOpts().MSVCCompat) { |
| for (const Attr *A : S->getAttrs()) { |
| auto *AA = dyn_cast<CXXAssumeAttr>(A); |
| if (!AA) |
| continue; |
| |
| assert(isa<NullStmt>(S->getSubStmt())); |
| |
| const Expr *Assumption = AA->getAssumption(); |
| if (Assumption->isValueDependent()) |
| return false; |
| |
| if (Assumption->HasSideEffects(this->Ctx.getASTContext())) |
| continue; |
| |
| // Evaluate assumption. |
| if (!this->visitBool(Assumption)) |
| return false; |
| |
| if (!this->emitAssume(Assumption)) |
| return false; |
| } |
| } |
| |
| // Ignore other attributes. |
| return this->visitStmt(S->getSubStmt()); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::visitCXXTryStmt(const CXXTryStmt *S) { |
| // Ignore all handlers. |
| return this->visitStmt(S->getTryBlock()); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::emitLambdaStaticInvokerBody(const CXXMethodDecl *MD) { |
| assert(MD->isLambdaStaticInvoker()); |
| assert(MD->hasBody()); |
| assert(cast<CompoundStmt>(MD->getBody())->body_empty()); |
| |
| const CXXRecordDecl *ClosureClass = MD->getParent(); |
| const CXXMethodDecl *LambdaCallOp = ClosureClass->getLambdaCallOperator(); |
| assert(ClosureClass->captures_begin() == ClosureClass->captures_end()); |
| const Function *Func = this->getFunction(LambdaCallOp); |
| if (!Func) |
| return false; |
| assert(Func->hasThisPointer()); |
| assert(Func->getNumParams() == (MD->getNumParams() + 1 + Func->hasRVO())); |
| |
| if (Func->hasRVO()) { |
| if (!this->emitRVOPtr(MD)) |
| return false; |
| } |
| |
| // The lambda call operator needs an instance pointer, but we don't have |
| // one here, and we don't need one either because the lambda cannot have |
| // any captures, as verified above. Emit a null pointer. This is then |
| // special-cased when interpreting to not emit any misleading diagnostics. |
| if (!this->emitNullPtr(nullptr, MD)) |
| return false; |
| |
| // Forward all arguments from the static invoker to the lambda call operator. |
| for (const ParmVarDecl *PVD : MD->parameters()) { |
| auto It = this->Params.find(PVD); |
| assert(It != this->Params.end()); |
| |
| // We do the lvalue-to-rvalue conversion manually here, so no need |
| // to care about references. |
| PrimType ParamType = this->classify(PVD->getType()).value_or(PT_Ptr); |
| if (!this->emitGetParam(ParamType, It->second.Offset, MD)) |
| return false; |
| } |
| |
| if (!this->emitCall(Func, 0, LambdaCallOp)) |
| return false; |
| |
| this->emitCleanup(); |
| if (ReturnType) |
| return this->emitRet(*ReturnType, MD); |
| |
| // Nothing to do, since we emitted the RVO pointer above. |
| return this->emitRetVoid(MD); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::checkLiteralType(const Expr *E) { |
| if (Ctx.getLangOpts().CPlusPlus23) |
| return true; |
| |
| if (!E->isPRValue() || E->getType()->isLiteralType(Ctx.getASTContext())) |
| return true; |
| |
| return this->emitCheckLiteralType(E->getType().getTypePtr(), E); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::compileConstructor(const CXXConstructorDecl *Ctor) { |
| assert(!ReturnType); |
| |
| auto emitFieldInitializer = [&](const Record::Field *F, unsigned FieldOffset, |
| const Expr *InitExpr) -> bool { |
| // We don't know what to do with these, so just return false. |
| if (InitExpr->getType().isNull()) |
| return false; |
| |
| if (std::optional<PrimType> T = this->classify(InitExpr)) { |
| if (!this->visit(InitExpr)) |
| return false; |
| |
| if (F->isBitField()) |
| return this->emitInitThisBitField(*T, F, FieldOffset, InitExpr); |
| return this->emitInitThisField(*T, FieldOffset, InitExpr); |
| } |
| // Non-primitive case. Get a pointer to the field-to-initialize |
| // on the stack and call visitInitialzer() for it. |
| InitLinkScope<Emitter> FieldScope(this, InitLink::Field(F->Offset)); |
| if (!this->emitGetPtrThisField(FieldOffset, InitExpr)) |
| return false; |
| |
| if (!this->visitInitializer(InitExpr)) |
| return false; |
| |
| return this->emitFinishInitPop(InitExpr); |
| }; |
| |
| const RecordDecl *RD = Ctor->getParent(); |
| const Record *R = this->getRecord(RD); |
| if (!R) |
| return false; |
| |
| if (R->isUnion() && Ctor->isCopyOrMoveConstructor()) { |
| // union copy and move ctors are special. |
| assert(cast<CompoundStmt>(Ctor->getBody())->body_empty()); |
| if (!this->emitThis(Ctor)) |
| return false; |
| |
| auto PVD = Ctor->getParamDecl(0); |
| ParamOffset PO = this->Params[PVD]; // Must exist. |
| |
| if (!this->emitGetParam(PT_Ptr, PO.Offset, Ctor)) |
| return false; |
| |
| return this->emitMemcpy(Ctor) && this->emitPopPtr(Ctor) && |
| this->emitRetVoid(Ctor); |
| } |
| |
| InitLinkScope<Emitter> InitScope(this, InitLink::This()); |
| for (const auto *Init : Ctor->inits()) { |
| // Scope needed for the initializers. |
| BlockScope<Emitter> Scope(this); |
| |
| const Expr *InitExpr = Init->getInit(); |
| if (const FieldDecl *Member = Init->getMember()) { |
| const Record::Field *F = R->getField(Member); |
| |
| if (!emitFieldInitializer(F, F->Offset, InitExpr)) |
| return false; |
| } else if (const Type *Base = Init->getBaseClass()) { |
| const auto *BaseDecl = Base->getAsCXXRecordDecl(); |
| assert(BaseDecl); |
| |
| if (Init->isBaseVirtual()) { |
| assert(R->getVirtualBase(BaseDecl)); |
| if (!this->emitGetPtrThisVirtBase(BaseDecl, InitExpr)) |
| return false; |
| |
| } else { |
| // Base class initializer. |
| // Get This Base and call initializer on it. |
| const Record::Base *B = R->getBase(BaseDecl); |
| assert(B); |
| if (!this->emitGetPtrThisBase(B->Offset, InitExpr)) |
| return false; |
| } |
| |
| if (!this->visitInitializer(InitExpr)) |
| return false; |
| if (!this->emitFinishInitPop(InitExpr)) |
| return false; |
| } else if (const IndirectFieldDecl *IFD = Init->getIndirectMember()) { |
| assert(IFD->getChainingSize() >= 2); |
| |
| unsigned NestedFieldOffset = 0; |
| const Record::Field *NestedField = nullptr; |
| for (const NamedDecl *ND : IFD->chain()) { |
| const auto *FD = cast<FieldDecl>(ND); |
| const Record *FieldRecord = this->P.getOrCreateRecord(FD->getParent()); |
| assert(FieldRecord); |
| |
| NestedField = FieldRecord->getField(FD); |
| assert(NestedField); |
| |
| NestedFieldOffset += NestedField->Offset; |
| } |
| assert(NestedField); |
| |
| if (!emitFieldInitializer(NestedField, NestedFieldOffset, InitExpr)) |
| return false; |
| } else { |
| assert(Init->isDelegatingInitializer()); |
| if (!this->emitThis(InitExpr)) |
| return false; |
| if (!this->visitInitializer(Init->getInit())) |
| return false; |
| if (!this->emitPopPtr(InitExpr)) |
| return false; |
| } |
| |
| if (!Scope.destroyLocals()) |
| return false; |
| } |
| |
| if (const auto *Body = Ctor->getBody()) |
| if (!visitStmt(Body)) |
| return false; |
| |
| return this->emitRetVoid(SourceInfo{}); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::compileDestructor(const CXXDestructorDecl *Dtor) { |
| const RecordDecl *RD = Dtor->getParent(); |
| const Record *R = this->getRecord(RD); |
| if (!R) |
| return false; |
| |
| if (!Dtor->isTrivial() && Dtor->getBody()) { |
| if (!this->visitStmt(Dtor->getBody())) |
| return false; |
| } |
| |
| if (!this->emitThis(Dtor)) |
| return false; |
| |
| assert(R); |
| if (!R->isUnion()) { |
| // First, destroy all fields. |
| for (const Record::Field &Field : llvm::reverse(R->fields())) { |
| const Descriptor *D = Field.Desc; |
| if (!D->isPrimitive() && !D->isPrimitiveArray()) { |
| if (!this->emitGetPtrField(Field.Offset, SourceInfo{})) |
| return false; |
| if (!this->emitDestruction(D)) |
| return false; |
| if (!this->emitPopPtr(SourceInfo{})) |
| return false; |
| } |
| } |
| } |
| |
| for (const Record::Base &Base : llvm::reverse(R->bases())) { |
| if (!this->emitGetPtrBase(Base.Offset, SourceInfo{})) |
| return false; |
| if (!this->emitRecordDestruction(Base.R)) |
| return false; |
| if (!this->emitPopPtr(SourceInfo{})) |
| return false; |
| } |
| |
| // FIXME: Virtual bases. |
| return this->emitPopPtr(Dtor) && this->emitRetVoid(Dtor); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::visitFunc(const FunctionDecl *F) { |
| // Classify the return type. |
| ReturnType = this->classify(F->getReturnType()); |
| |
| if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(F)) |
| return this->compileConstructor(Ctor); |
| if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(F)) |
| return this->compileDestructor(Dtor); |
| |
| // Emit custom code if this is a lambda static invoker. |
| if (const auto *MD = dyn_cast<CXXMethodDecl>(F); |
| MD && MD->isLambdaStaticInvoker()) |
| return this->emitLambdaStaticInvokerBody(MD); |
| |
| // Regular functions. |
| if (const auto *Body = F->getBody()) |
| if (!visitStmt(Body)) |
| return false; |
| |
| // Emit a guard return to protect against a code path missing one. |
| if (F->getReturnType()->isVoidType()) |
| return this->emitRetVoid(SourceInfo{}); |
| return this->emitNoRet(SourceInfo{}); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitUnaryOperator(const UnaryOperator *E) { |
| const Expr *SubExpr = E->getSubExpr(); |
| if (SubExpr->getType()->isAnyComplexType()) |
| return this->VisitComplexUnaryOperator(E); |
| std::optional<PrimType> T = classify(SubExpr->getType()); |
| |
| switch (E->getOpcode()) { |
| case UO_PostInc: { // x++ |
| if (!Ctx.getLangOpts().CPlusPlus14) |
| return this->emitInvalid(E); |
| if (!T) |
| return this->emitError(E); |
| |
| if (!this->visit(SubExpr)) |
| return false; |
| |
| if (T == PT_Ptr || T == PT_FnPtr) { |
| if (!this->emitIncPtr(E)) |
| return false; |
| |
| return DiscardResult ? this->emitPopPtr(E) : true; |
| } |
| |
| if (T == PT_Float) { |
| return DiscardResult ? this->emitIncfPop(getRoundingMode(E), E) |
| : this->emitIncf(getRoundingMode(E), E); |
| } |
| |
| return DiscardResult ? this->emitIncPop(*T, E) : this->emitInc(*T, E); |
| } |
| case UO_PostDec: { // x-- |
| if (!Ctx.getLangOpts().CPlusPlus14) |
| return this->emitInvalid(E); |
| if (!T) |
| return this->emitError(E); |
| |
| if (!this->visit(SubExpr)) |
| return false; |
| |
| if (T == PT_Ptr || T == PT_FnPtr) { |
| if (!this->emitDecPtr(E)) |
| return false; |
| |
| return DiscardResult ? this->emitPopPtr(E) : true; |
| } |
| |
| if (T == PT_Float) { |
| return DiscardResult ? this->emitDecfPop(getRoundingMode(E), E) |
| : this->emitDecf(getRoundingMode(E), E); |
| } |
| |
| return DiscardResult ? this->emitDecPop(*T, E) : this->emitDec(*T, E); |
| } |
| case UO_PreInc: { // ++x |
| if (!Ctx.getLangOpts().CPlusPlus14) |
| return this->emitInvalid(E); |
| if (!T) |
| return this->emitError(E); |
| |
| if (!this->visit(SubExpr)) |
| return false; |
| |
| if (T == PT_Ptr || T == PT_FnPtr) { |
| if (!this->emitLoadPtr(E)) |
| return false; |
| if (!this->emitConstUint8(1, E)) |
| return false; |
| if (!this->emitAddOffsetUint8(E)) |
| return false; |
| return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E); |
| } |
| |
| // Post-inc and pre-inc are the same if the value is to be discarded. |
| if (DiscardResult) { |
| if (T == PT_Float) |
| return this->emitIncfPop(getRoundingMode(E), E); |
| return this->emitIncPop(*T, E); |
| } |
| |
| if (T == PT_Float) { |
| const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType()); |
| if (!this->emitLoadFloat(E)) |
| return false; |
| if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E)) |
| return false; |
| if (!this->emitAddf(getRoundingMode(E), E)) |
| return false; |
| if (!this->emitStoreFloat(E)) |
| return false; |
| } else { |
| assert(isIntegralType(*T)); |
| if (!this->emitLoad(*T, E)) |
| return false; |
| if (!this->emitConst(1, E)) |
| return false; |
| if (!this->emitAdd(*T, E)) |
| return false; |
| if (!this->emitStore(*T, E)) |
| return false; |
| } |
| return E->isGLValue() || this->emitLoadPop(*T, E); |
| } |
| case UO_PreDec: { // --x |
| if (!Ctx.getLangOpts().CPlusPlus14) |
| return this->emitInvalid(E); |
| if (!T) |
| return this->emitError(E); |
| |
| if (!this->visit(SubExpr)) |
| return false; |
| |
| if (T == PT_Ptr || T == PT_FnPtr) { |
| if (!this->emitLoadPtr(E)) |
| return false; |
| if (!this->emitConstUint8(1, E)) |
| return false; |
| if (!this->emitSubOffsetUint8(E)) |
| return false; |
| return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E); |
| } |
| |
| // Post-dec and pre-dec are the same if the value is to be discarded. |
| if (DiscardResult) { |
| if (T == PT_Float) |
| return this->emitDecfPop(getRoundingMode(E), E); |
| return this->emitDecPop(*T, E); |
| } |
| |
| if (T == PT_Float) { |
| const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType()); |
| if (!this->emitLoadFloat(E)) |
| return false; |
| if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E)) |
| return false; |
| if (!this->emitSubf(getRoundingMode(E), E)) |
| return false; |
| if (!this->emitStoreFloat(E)) |
| return false; |
| } else { |
| assert(isIntegralType(*T)); |
| if (!this->emitLoad(*T, E)) |
| return false; |
| if (!this->emitConst(1, E)) |
| return false; |
| if (!this->emitSub(*T, E)) |
| return false; |
| if (!this->emitStore(*T, E)) |
| return false; |
| } |
| return E->isGLValue() || this->emitLoadPop(*T, E); |
| } |
| case UO_LNot: // !x |
| if (!T) |
| return this->emitError(E); |
| |
| if (DiscardResult) |
| return this->discard(SubExpr); |
| |
| if (!this->visitBool(SubExpr)) |
| return false; |
| |
| if (!this->emitInv(E)) |
| return false; |
| |
| if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool) |
| return this->emitCast(PT_Bool, ET, E); |
| return true; |
| case UO_Minus: // -x |
| if (!T) |
| return this->emitError(E); |
| |
| if (!this->visit(SubExpr)) |
| return false; |
| return DiscardResult ? this->emitPop(*T, E) : this->emitNeg(*T, E); |
| case UO_Plus: // +x |
| if (!T) |
| return this->emitError(E); |
| |
| if (!this->visit(SubExpr)) // noop |
| return false; |
| return DiscardResult ? this->emitPop(*T, E) : true; |
| case UO_AddrOf: // &x |
| if (E->getType()->isMemberPointerType()) { |
| // C++11 [expr.unary.op]p3 has very strict rules on how the address of a |
| // member can be formed. |
| return this->emitGetMemberPtr(cast<DeclRefExpr>(SubExpr)->getDecl(), E); |
| } |
| // We should already have a pointer when we get here. |
| return this->delegate(SubExpr); |
| case UO_Deref: // *x |
| if (DiscardResult || E->getType()->isVoidType()) |
| return this->discard(SubExpr); |
| return this->visit(SubExpr); |
| case UO_Not: // ~x |
| if (!T) |
| return this->emitError(E); |
| |
| if (!this->visit(SubExpr)) |
| return false; |
| return DiscardResult ? this->emitPop(*T, E) : this->emitComp(*T, E); |
| case UO_Real: // __real x |
| assert(T); |
| return this->delegate(SubExpr); |
| case UO_Imag: { // __imag x |
| assert(T); |
| if (!this->discard(SubExpr)) |
| return false; |
| return this->visitZeroInitializer(*T, SubExpr->getType(), SubExpr); |
| } |
| case UO_Extension: |
| return this->delegate(SubExpr); |
| case UO_Coawait: |
| assert(false && "Unhandled opcode"); |
| } |
| |
| return false; |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitComplexUnaryOperator(const UnaryOperator *E) { |
| const Expr *SubExpr = E->getSubExpr(); |
| assert(SubExpr->getType()->isAnyComplexType()); |
| |
| if (DiscardResult) |
| return this->discard(SubExpr); |
| |
| std::optional<PrimType> ResT = classify(E); |
| auto prepareResult = [=]() -> bool { |
| if (!ResT && !Initializing) { |
| std::optional<unsigned> LocalIndex = allocateLocal(SubExpr); |
| if (!LocalIndex) |
| return false; |
| return this->emitGetPtrLocal(*LocalIndex, E); |
| } |
| |
| return true; |
| }; |
| |
| // The offset of the temporary, if we created one. |
| unsigned SubExprOffset = ~0u; |
| auto createTemp = [=, &SubExprOffset]() -> bool { |
| SubExprOffset = this->allocateLocalPrimitive(SubExpr, PT_Ptr, true, false); |
| if (!this->visit(SubExpr)) |
| return false; |
| return this->emitSetLocal(PT_Ptr, SubExprOffset, E); |
| }; |
| |
| PrimType ElemT = classifyComplexElementType(SubExpr->getType()); |
| auto getElem = [=](unsigned Offset, unsigned Index) -> bool { |
| if (!this->emitGetLocal(PT_Ptr, Offset, E)) |
| return false; |
| return this->emitArrayElemPop(ElemT, Index, E); |
| }; |
| |
| switch (E->getOpcode()) { |
| case UO_Minus: |
| if (!prepareResult()) |
| return false; |
| if (!createTemp()) |
| return false; |
| for (unsigned I = 0; I != 2; ++I) { |
| if (!getElem(SubExprOffset, I)) |
| return false; |
| if (!this->emitNeg(ElemT, E)) |
| return false; |
| if (!this->emitInitElem(ElemT, I, E)) |
| return false; |
| } |
| break; |
| |
| case UO_Plus: // +x |
| case UO_AddrOf: // &x |
| case UO_Deref: // *x |
| return this->delegate(SubExpr); |
| |
| case UO_LNot: |
| if (!this->visit(SubExpr)) |
| return false; |
| if (!this->emitComplexBoolCast(SubExpr)) |
| return false; |
| if (!this->emitInv(E)) |
| return false; |
| if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool) |
| return this->emitCast(PT_Bool, ET, E); |
| return true; |
| |
| case UO_Real: |
| return this->emitComplexReal(SubExpr); |
| |
| case UO_Imag: |
| if (!this->visit(SubExpr)) |
| return false; |
| |
| if (SubExpr->isLValue()) { |
| if (!this->emitConstUint8(1, E)) |
| return false; |
| return this->emitArrayElemPtrPopUint8(E); |
| } |
| |
| // Since our _Complex implementation does not map to a primitive type, |
| // we sometimes have to do the lvalue-to-rvalue conversion here manually. |
| return this->emitArrayElemPop(classifyPrim(E->getType()), 1, E); |
| |
| case UO_Not: // ~x |
| if (!this->visit(SubExpr)) |
| return false; |
| // Negate the imaginary component. |
| if (!this->emitArrayElem(ElemT, 1, E)) |
| return false; |
| if (!this->emitNeg(ElemT, E)) |
| return false; |
| if (!this->emitInitElem(ElemT, 1, E)) |
| return false; |
| return DiscardResult ? this->emitPopPtr(E) : true; |
| |
| case UO_Extension: |
| return this->delegate(SubExpr); |
| |
| default: |
| return this->emitInvalid(E); |
| } |
| |
| return true; |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::visitDeclRef(const ValueDecl *D, const Expr *E) { |
| if (DiscardResult) |
| return true; |
| |
| if (const auto *ECD = dyn_cast<EnumConstantDecl>(D)) { |
| return this->emitConst(ECD->getInitVal(), E); |
| } else if (const auto *BD = dyn_cast<BindingDecl>(D)) { |
| return this->visit(BD->getBinding()); |
| } else if (const auto *FuncDecl = dyn_cast<FunctionDecl>(D)) { |
| const Function *F = getFunction(FuncDecl); |
| return F && this->emitGetFnPtr(F, E); |
| } else if (const auto *TPOD = dyn_cast<TemplateParamObjectDecl>(D)) { |
| if (std::optional<unsigned> Index = P.getOrCreateGlobal(D)) { |
| if (!this->emitGetPtrGlobal(*Index, E)) |
| return false; |
| if (std::optional<PrimType> T = classify(E->getType())) { |
| if (!this->visitAPValue(TPOD->getValue(), *T, E)) |
| return false; |
| return this->emitInitGlobal(*T, *Index, E); |
| } |
| return this->visitAPValueInitializer(TPOD->getValue(), E); |
| } |
| return false; |
| } |
| |
| // References are implemented via pointers, so when we see a DeclRefExpr |
| // pointing to a reference, we need to get its value directly (i.e. the |
| // pointer to the actual value) instead of a pointer to the pointer to the |
| // value. |
| bool IsReference = D->getType()->isReferenceType(); |
| |
| // Check for local/global variables and parameters. |
| if (auto It = Locals.find(D); It != Locals.end()) { |
| const unsigned Offset = It->second.Offset; |
| if (IsReference) |
| return this->emitGetLocal(PT_Ptr, Offset, E); |
| return this->emitGetPtrLocal(Offset, E); |
| } else if (auto GlobalIndex = P.getGlobal(D)) { |
| if (IsReference) { |
| if (!Ctx.getLangOpts().CPlusPlus11) |
| return this->emitGetGlobal(classifyPrim(E), *GlobalIndex, E); |
| return this->emitGetGlobalUnchecked(classifyPrim(E), *GlobalIndex, E); |
| } |
| |
| return this->emitGetPtrGlobal(*GlobalIndex, E); |
| } else if (const auto *PVD = dyn_cast<ParmVarDecl>(D)) { |
| if (auto It = this->Params.find(PVD); It != this->Params.end()) { |
| if (IsReference || !It->second.IsPtr) |
| return this->emitGetParam(classifyPrim(E), It->second.Offset, E); |
| |
| return this->emitGetPtrParam(It->second.Offset, E); |
| } |
| } |
| |
| // In case we need to re-visit a declaration. |
| auto revisit = [&](const VarDecl *VD) -> bool { |
| auto VarState = this->visitDecl(VD); |
| |
| if (VarState.notCreated()) |
| return true; |
| if (!VarState) |
| return false; |
| // Retry. |
| return this->visitDeclRef(D, E); |
| }; |
| |
| // Handle lambda captures. |
| if (auto It = this->LambdaCaptures.find(D); |
| It != this->LambdaCaptures.end()) { |
| auto [Offset, IsPtr] = It->second; |
| |
| if (IsPtr) |
| return this->emitGetThisFieldPtr(Offset, E); |
| return this->emitGetPtrThisField(Offset, E); |
| } else if (const auto *DRE = dyn_cast<DeclRefExpr>(E); |
| DRE && DRE->refersToEnclosingVariableOrCapture()) { |
| if (const auto *VD = dyn_cast<VarDecl>(D); VD && VD->isInitCapture()) |
| return revisit(VD); |
| } |
| |
| if (D != InitializingDecl) { |
| // Try to lazily visit (or emit dummy pointers for) declarations |
| // we haven't seen yet. |
| if (Ctx.getLangOpts().CPlusPlus) { |
| if (const auto *VD = dyn_cast<VarDecl>(D)) { |
| const auto typeShouldBeVisited = [&](QualType T) -> bool { |
| if (T.isConstant(Ctx.getASTContext())) |
| return true; |
| if (const auto *RT = T->getAs<ReferenceType>()) |
| return RT->getPointeeType().isConstQualified(); |
| return false; |
| }; |
| |
| // DecompositionDecls are just proxies for us. |
| if (isa<DecompositionDecl>(VD)) |
| return revisit(VD); |
| |
| // Visit local const variables like normal. |
| if ((VD->hasGlobalStorage() || VD->isLocalVarDecl() || |
| VD->isStaticDataMember()) && |
| typeShouldBeVisited(VD->getType())) |
| return revisit(VD); |
| } |
| } else { |
| if (const auto *VD = dyn_cast<VarDecl>(D); |
| VD && VD->getAnyInitializer() && |
| VD->getType().isConstant(Ctx.getASTContext()) && !VD->isWeak()) |
| return revisit(VD); |
| } |
| } |
| |
| if (std::optional<unsigned> I = P.getOrCreateDummy(D)) { |
| if (!this->emitGetPtrGlobal(*I, E)) |
| return false; |
| if (E->getType()->isVoidType()) |
| return true; |
| // Convert the dummy pointer to another pointer type if we have to. |
| if (PrimType PT = classifyPrim(E); PT != PT_Ptr) { |
| if (isPtrType(PT)) |
| return this->emitDecayPtr(PT_Ptr, PT, E); |
| return false; |
| } |
| return true; |
| } |
| |
| if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) |
| return this->emitInvalidDeclRef(DRE, E); |
| return false; |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::VisitDeclRefExpr(const DeclRefExpr *E) { |
| const auto *D = E->getDecl(); |
| return this->visitDeclRef(D, E); |
| } |
| |
| template <class Emitter> void Compiler<Emitter>::emitCleanup() { |
| for (VariableScope<Emitter> *C = VarScope; C; C = C->getParent()) |
| C->emitDestruction(); |
| } |
| |
| template <class Emitter> |
| unsigned Compiler<Emitter>::collectBaseOffset(const QualType BaseType, |
| const QualType DerivedType) { |
| const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * { |
| if (const auto *R = Ty->getPointeeCXXRecordDecl()) |
| return R; |
| return Ty->getAsCXXRecordDecl(); |
| }; |
| const CXXRecordDecl *BaseDecl = extractRecordDecl(BaseType); |
| const CXXRecordDecl *DerivedDecl = extractRecordDecl(DerivedType); |
| |
| return Ctx.collectBaseOffset(BaseDecl, DerivedDecl); |
| } |
| |
| /// Emit casts from a PrimType to another PrimType. |
| template <class Emitter> |
| bool Compiler<Emitter>::emitPrimCast(PrimType FromT, PrimType ToT, |
| QualType ToQT, const Expr *E) { |
| |
| if (FromT == PT_Float) { |
| // Floating to floating. |
| if (ToT == PT_Float) { |
| const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT); |
| return this->emitCastFP(ToSem, getRoundingMode(E), E); |
| } |
| |
| if (ToT == PT_IntAP) |
| return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(ToQT), E); |
| if (ToT == PT_IntAPS) |
| return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(ToQT), E); |
| |
| // Float to integral. |
| if (isIntegralType(ToT) || ToT == PT_Bool) |
| return this->emitCastFloatingIntegral(ToT, E); |
| } |
| |
| if (isIntegralType(FromT) || FromT == PT_Bool) { |
| if (ToT == PT_IntAP) |
| return this->emitCastAP(FromT, Ctx.getBitWidth(ToQT), E); |
| if (ToT == PT_IntAPS) |
| return this->emitCastAPS(FromT, Ctx.getBitWidth(ToQT), E); |
| |
| // Integral to integral. |
| if (isIntegralType(ToT) || ToT == PT_Bool) |
| return FromT != ToT ? this->emitCast(FromT, ToT, E) : true; |
| |
| if (ToT == PT_Float) { |
| // Integral to floating. |
| const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT); |
| return this->emitCastIntegralFloating(FromT, ToSem, getRoundingMode(E), |
| E); |
| } |
| } |
| |
| return false; |
| } |
| |
| /// Emits __real(SubExpr) |
| template <class Emitter> |
| bool Compiler<Emitter>::emitComplexReal(const Expr *SubExpr) { |
| assert(SubExpr->getType()->isAnyComplexType()); |
| |
| if (DiscardResult) |
| return this->discard(SubExpr); |
| |
| if (!this->visit(SubExpr)) |
| return false; |
| if (SubExpr->isLValue()) { |
| if (!this->emitConstUint8(0, SubExpr)) |
| return false; |
| return this->emitArrayElemPtrPopUint8(SubExpr); |
| } |
| |
| // Rvalue, load the actual element. |
| return this->emitArrayElemPop(classifyComplexElementType(SubExpr->getType()), |
| 0, SubExpr); |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::emitComplexBoolCast(const Expr *E) { |
| assert(!DiscardResult); |
| PrimType ElemT = classifyComplexElementType(E->getType()); |
| // We emit the expression (__real(E) != 0 || __imag(E) != 0) |
| // for us, that means (bool)E[0] || (bool)E[1] |
| if (!this->emitArrayElem(ElemT, 0, E)) |
| return false; |
| if (ElemT == PT_Float) { |
| if (!this->emitCastFloatingIntegral(PT_Bool, E)) |
| return false; |
| } else { |
| if (!this->emitCast(ElemT, PT_Bool, E)) |
| return false; |
| } |
| |
| // We now have the bool value of E[0] on the stack. |
| LabelTy LabelTrue = this->getLabel(); |
| if (!this->jumpTrue(LabelTrue)) |
| return false; |
| |
| if (!this->emitArrayElemPop(ElemT, 1, E)) |
| return false; |
| if (ElemT == PT_Float) { |
| if (!this->emitCastFloatingIntegral(PT_Bool, E)) |
| return false; |
| } else { |
| if (!this->emitCast(ElemT, PT_Bool, E)) |
| return false; |
| } |
| // Leave the boolean value of E[1] on the stack. |
| LabelTy EndLabel = this->getLabel(); |
| this->jump(EndLabel); |
| |
| this->emitLabel(LabelTrue); |
| if (!this->emitPopPtr(E)) |
| return false; |
| if (!this->emitConstBool(true, E)) |
| return false; |
| |
| this->fallthrough(EndLabel); |
| this->emitLabel(EndLabel); |
| |
| return true; |
| } |
| |
| template <class Emitter> |
| bool Compiler<Emitter>::emitComplexComparison(const Expr *LHS, const Expr *RHS, |
| const BinaryOperator *E) { |
| assert(E->isComparisonOp()); |
| assert(!Initializing); |
| assert(!DiscardResult); |
| |
| PrimType ElemT; |
| bool LHSIsComplex; |
| unsigned LHSOffset; |
| if (LHS->getType()->isAnyComplexType()) { |
| LHSIsComplex = true; |
| ElemT = classifyComplexElementType(LHS->getType()); |
| LHSOffset = allocateLocalPrimitive(LHS, PT_Ptr, /*IsConst=*/true, |
| /*IsExtended=*/false); |
| if (!this->visit(LHS)) |
| return false; |
| if (!this->emitSetLocal(PT_Ptr, LHSOffset, E)) |
| return false; |
| } else { |
| LHSIsComplex = false; |
| PrimType LHST = classifyPrim(LHS->getType()); |
| LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false); |
| if (!this->visit(LHS)) |
| return false; |
| if (!this->emitSetLocal(LHST, LHSOffset, E)) |
| return false; |
| } |
| |
| bool RHSIsComplex; |
| unsigned RHSOffset; |
| if (RHS->getType()->isAnyComplexType()) { |
| RHSIsComplex = true; |
| ElemT = classifyComplexElementType(RHS->getType()); |
| RHSOffset = allocateLocalPrimitive(RHS, PT_Ptr, /*IsConst=*/true, |
| /*IsExtended=*/false); |
| if (!this->visit(RHS)) |
| return false; |
| if (!this->emitSetLocal(PT_Ptr, RHSOffset, E)) |
| return false; |
| } else { |
| RHSIsComplex = false; |
| PrimType RHST = classifyPrim(RHS->getType()); |
| RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false); |
| if (!this->visit(RHS)) |
| return false; |
| if (!this->emitSetLocal(RHST, RHSOffset, E)) |
| return false; |
| } |
| |
| auto getElem = [&](unsigned LocalOffset, unsigned Index, |
| bool IsComplex) -> bool { |
| if (IsComplex) { |
| if (!this->emitGetLocal(PT_Ptr, LocalOffset, E)) |
| return false; |
| return this->emitArrayElemPop(ElemT, Index, E); |
| } |
| return this->emitGetLocal(ElemT, LocalOffset, E); |
| }; |
| |
| for (unsigned I = 0; I != 2; ++I) { |
| // Get both values. |
| if (!getElem(LHSOffset, I, LHSIsComplex)) |
| return false; |
| if (!getElem(RHSOffset, I, RHSIsComplex)) |
| return false; |
| // And compare them. |
| if (!this->emitEQ(ElemT, E)) |
| return false; |
| |
| if (!this->emitCastBoolUint8(E)) |
| return false; |
| } |
| |
| // We now have two bool values on the stack. Compare those. |
| if (!this->emitAddUint8(E)) |
| return false; |
| if (!this->emitConstUint8(2, E)) |
| return false; |
| |
| if (E->getOpcode() == BO_EQ) { |
| if (!this->emitEQUint8(E)) |
| return false; |
| } else if (E->getOpcode() == BO_NE) { |
| if (!this->emitNEUint8(E)) |
| return false; |
| } else |
| return false; |
| |
| // In C, this returns an int. |
| if (PrimType ResT = classifyPrim(E->getType()); ResT != PT_Bool) |
| return this->emitCast(PT_Bool, ResT, E); |
| return true; |
| } |
| |
| /// When calling this, we have a pointer of the local-to-destroy |
| /// on the stack. |
| /// Emit destruction of record types (or arrays of record types). |
| template <class Emitter> |
| bool Compiler<Emitter>::emitRecordDestruction(const Record *R) { |
| assert(R); |
| const CXXDestructorDecl *Dtor = R->getDestructor(); |
| if (!Dtor || Dtor->isTrivial()) |
| return true; |
| |
| assert(Dtor); |
| const Function *DtorFunc = getFunction(Dtor); |
| if (!DtorFunc) |
| return false; |
| assert(DtorFunc->hasThisPointer()); |
| assert(DtorFunc->getNumParams() == 1); |
| if (!this->emitDupPtr(SourceInfo{})) |
| return false; |
| return this->emitCall(DtorFunc, 0, SourceInfo{}); |
| } |
| /// When calling this, we have a pointer of the local-to-destroy |
| /// on the stack. |
| /// Emit destruction of record types (or arrays of record types). |
| template <class Emitter> |
| bool Compiler<Emitter>::emitDestruction(const Descriptor *Desc) { |
| assert(Desc); |
| assert(!Desc->isPrimitive()); |
| assert(!Desc->isPrimitiveArray()); |
| |
| // Arrays. |
| if (Desc->isArray()) { |
| const Descriptor *ElemDesc = Desc->ElemDesc; |
| assert(ElemDesc); |
| |
| // Don't need to do anything for these. |
| if (ElemDesc->isPrimitiveArray()) |
| return true; |
| |
| // If this is an array of record types, check if we need |
| // to call the element destructors at all. If not, try |
| // to save the work. |
| if (const Record *ElemRecord = ElemDesc->ElemRecord) { |
| if (const CXXDestructorDecl *Dtor = ElemRecord->getDestructor(); |
| !Dtor || Dtor->isTrivial()) |
| return true; |
| } |
| |
| for (ssize_t I = Desc->getNumElems() - 1; I >= 0; --I) { |
| if (!this->emitConstUint64(I, SourceInfo{})) |
| return false; |
| if (!this->emitArrayElemPtrUint64(SourceInfo{})) |
| return false; |
| if (!this->emitDestruction(ElemDesc)) |
| return false; |
| if (!this->emitPopPtr(SourceInfo{})) |
| return false; |
| } |
| return true; |
| } |
| |
| assert(Desc->ElemRecord); |
| return this->emitRecordDestruction(Desc->ElemRecord); |
| } |
| |
| namespace clang { |
| namespace interp { |
| |
| template class Compiler<ByteCodeEmitter>; |
| template class Compiler<EvalEmitter>; |
| |
| } // namespace interp |
| } // namespace clang |