blob: daf6a0e65d54b247eef997cb9fa6ef77dcabee58 [file] [log] [blame]
//===-- PPCMergeStringPool.cpp -------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This transformation tries to merge the strings in the module into one pool
// of strings. The idea is to reduce the number of TOC entries in the module so
// that instead of having one TOC entry for each string there is only one global
// TOC entry and all of the strings are referenced off of that one entry plus
// an offset.
//
//===----------------------------------------------------------------------===//
#include "PPC.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ValueSymbolTable.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#define DEBUG_TYPE "ppc-merge-strings"
STATISTIC(NumPooledStrings, "Number of Strings Pooled");
using namespace llvm;
static cl::opt<unsigned>
MaxStringsPooled("ppc-max-strings-pooled", cl::Hidden, cl::init(-1),
cl::desc("Maximum Number of Strings to Pool."));
static cl::opt<unsigned>
MinStringsBeforePool("ppc-min-strings-before-pool", cl::Hidden, cl::init(2),
cl::desc("Minimum number of string candidates before "
"pooling is considered."));
namespace {
struct {
bool operator()(const GlobalVariable *LHS, const GlobalVariable *RHS) const {
// First priority is alignment.
// If elements are sorted in terms of alignment then there won't be an
// issue with incorrect alignment that would require padding.
Align LHSAlign = LHS->getAlign().valueOrOne();
Align RHSAlign = RHS->getAlign().valueOrOne();
if (LHSAlign > RHSAlign)
return true;
else if (LHSAlign < RHSAlign)
return false;
// Next priority is the number of uses.
// Smaller offsets are easier to materialize because materializing a large
// offset may require more than one instruction. (ie addis, addi).
if (LHS->getNumUses() > RHS->getNumUses())
return true;
else if (LHS->getNumUses() < RHS->getNumUses())
return false;
const Constant *ConstLHS = LHS->getInitializer();
const ConstantDataSequential *ConstDataLHS =
dyn_cast<ConstantDataSequential>(ConstLHS);
unsigned LHSSize =
ConstDataLHS->getNumElements() * ConstDataLHS->getElementByteSize();
const Constant *ConstRHS = RHS->getInitializer();
const ConstantDataSequential *ConstDataRHS =
dyn_cast<ConstantDataSequential>(ConstRHS);
unsigned RHSSize =
ConstDataRHS->getNumElements() * ConstDataRHS->getElementByteSize();
// Finally smaller constants should go first. This is, again, trying to
// minimize the offsets into the final struct.
return LHSSize < RHSSize;
}
} CompareConstants;
class PPCMergeStringPool : public ModulePass {
public:
static char ID;
PPCMergeStringPool() : ModulePass(ID) {}
bool doInitialization(Module &M) override { return mergeModuleStringPool(M); }
bool runOnModule(Module &M) override { return false; }
StringRef getPassName() const override { return "PPC Merge String Pool"; }
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addPreserved<DominatorTreeWrapperPass>();
AU.addPreserved<LoopInfoWrapperPass>();
AU.addPreserved<ScalarEvolutionWrapperPass>();
AU.addPreserved<SCEVAAWrapperPass>();
}
private:
// Globals in a Module are already unique so a set is not required and a
// vector will do.
std::vector<GlobalVariable *> MergeableStrings;
Align MaxAlignment;
Type *PooledStructType;
LLVMContext *Context;
void collectCandidateConstants(Module &M);
bool mergeModuleStringPool(Module &M);
void replaceUsesWithGEP(GlobalVariable *GlobalToReplace, GlobalVariable *GPool,
unsigned ElementIndex);
};
// In order for a constant to be pooled we need to be able to replace all of
// the uses for that constant. This function checks all of the uses to make
// sure that they can be replaced.
static bool hasReplaceableUsers(GlobalVariable &GV) {
for (User *CurrentUser : GV.users()) {
if (auto *I = dyn_cast<Instruction>(CurrentUser)) {
// Do not merge globals in exception pads.
if (I->isEHPad())
return false;
if (auto *II = dyn_cast<IntrinsicInst>(I)) {
// Some intrinsics require a plain global.
if (II->getIntrinsicID() == Intrinsic::eh_typeid_for)
return false;
}
// Other instruction users are always valid.
continue;
}
// We cannot replace GlobalValue users because they are not just nodes
// in IR. To replace a user like this we would need to create a new
// GlobalValue with the replacement and then try to delete the original
// GlobalValue. Deleting the original would only happen if it has no other
// uses.
if (isa<GlobalValue>(CurrentUser))
return false;
// We only support Instruction and Constant users.
if (!isa<Constant>(CurrentUser))
return false;
}
return true;
}
// Run through all of the constants in the module and determine if they are
// valid candidates to be merged into the string pool. Valid candidates will
// be added to MergeableStrings.
void PPCMergeStringPool::collectCandidateConstants(Module &M) {
SmallVector<GlobalValue *, 4> UsedV;
collectUsedGlobalVariables(M, UsedV, /*CompilerUsed=*/false);
SmallVector<GlobalValue *, 4> UsedVCompiler;
collectUsedGlobalVariables(M, UsedVCompiler, /*CompilerUsed=*/true);
// Combine all of the Global Variables marked as used into a SmallPtrSet for
// faster lookup inside the loop.
SmallPtrSet<GlobalValue *, 8> AllUsedGlobals;
AllUsedGlobals.insert(UsedV.begin(), UsedV.end());
AllUsedGlobals.insert(UsedVCompiler.begin(), UsedVCompiler.end());
for (GlobalVariable &Global : M.globals()) {
LLVM_DEBUG(dbgs() << "Looking at global:");
LLVM_DEBUG(Global.dump());
LLVM_DEBUG(dbgs() << "isConstant() " << Global.isConstant() << "\n");
LLVM_DEBUG(dbgs() << "hasInitializer() " << Global.hasInitializer()
<< "\n");
// We can only pool non-thread-local constants.
if (!Global.isConstant() || !Global.hasInitializer() ||
Global.isThreadLocal())
continue;
// If a global constant has a section we do not try to pool it because
// there is no guarantee that other constants will also be in the same
// section. Trying to pool constants from different sections (or no
// section) means that the pool has to be in multiple sections at the same
// time.
if (Global.hasSection())
continue;
// Do not pool constants with metadata because we should not add metadata
// to the pool when that metadata refers to a single constant in the pool.
if (Global.hasMetadata())
continue;
ConstantDataSequential *ConstData =
dyn_cast<ConstantDataSequential>(Global.getInitializer());
// If the constant is undef then ConstData will be null.
if (!ConstData)
continue;
// Do not pool globals that are part of llvm.used or llvm.compiler.end.
if (AllUsedGlobals.contains(&Global))
continue;
if (!hasReplaceableUsers(Global))
continue;
Align AlignOfGlobal = Global.getAlign().valueOrOne();
// TODO: At this point do not allow over-aligned types. Adding a type
// with larger alignment may lose the larger alignment once it is
// added to the struct.
// Fix this in a future patch.
if (AlignOfGlobal.value() > ConstData->getElementByteSize())
continue;
// Make sure that the global is only visible inside the compilation unit.
if (Global.getLinkage() != GlobalValue::PrivateLinkage &&
Global.getLinkage() != GlobalValue::InternalLinkage)
continue;
LLVM_DEBUG(dbgs() << "Constant data of Global: ");
LLVM_DEBUG(ConstData->dump());
LLVM_DEBUG(dbgs() << "\n\n");
MergeableStrings.push_back(&Global);
if (MaxAlignment < AlignOfGlobal)
MaxAlignment = AlignOfGlobal;
// If we have already reached the maximum number of pooled strings then
// there is no point in looking for more.
if (MergeableStrings.size() >= MaxStringsPooled)
break;
}
}
bool PPCMergeStringPool::mergeModuleStringPool(Module &M) {
LLVM_DEBUG(dbgs() << "Merging string pool for module: " << M.getName()
<< "\n");
LLVM_DEBUG(dbgs() << "Number of globals is: " << M.global_size() << "\n");
collectCandidateConstants(M);
// If we have too few constants in the module that are merge candidates we
// will skip doing the merging.
if (MergeableStrings.size() < MinStringsBeforePool)
return false;
// Sort the global constants to make access more efficient.
std::sort(MergeableStrings.begin(), MergeableStrings.end(), CompareConstants);
SmallVector<Constant *> ConstantsInStruct;
for (GlobalVariable *GV : MergeableStrings)
ConstantsInStruct.push_back(GV->getInitializer());
// Use an anonymous struct to pool the strings.
// TODO: This pass uses a single anonymous struct for all of the pooled
// entries. This may cause a performance issue in the situation where
// computing the offset requires two instructions (addis, addi). For the
// future we may want to split this into multiple structs.
Constant *ConstantPool = ConstantStruct::getAnon(ConstantsInStruct);
PooledStructType = ConstantPool->getType();
// The GlobalVariable constructor calls
// MM->insertGlobalVariable(PooledGlobal).
GlobalVariable *PooledGlobal =
new GlobalVariable(M, PooledStructType,
/* isConstant */ true, GlobalValue::PrivateLinkage,
ConstantPool, "__ModuleStringPool");
PooledGlobal->setAlignment(MaxAlignment);
LLVM_DEBUG(dbgs() << "Constructing global variable for string pool: ");
LLVM_DEBUG(PooledGlobal->dump());
Context = &M.getContext();
size_t ElementIndex = 0;
for (GlobalVariable *GV : MergeableStrings) {
LLVM_DEBUG(dbgs() << "The global:\n");
LLVM_DEBUG(GV->dump());
LLVM_DEBUG(dbgs() << "Has " << GV->getNumUses() << " uses.\n");
// Access to the pooled constant strings require an offset. Add a GEP
// before every use in order to compute this offset.
replaceUsesWithGEP(GV, PooledGlobal, ElementIndex);
// Replace all the uses by metadata.
if (GV->isUsedByMetadata()) {
Constant *Indices[2] = {
ConstantInt::get(Type::getInt32Ty(*Context), 0),
ConstantInt::get(Type::getInt32Ty(*Context), ElementIndex)};
Constant *ConstGEP = ConstantExpr::getInBoundsGetElementPtr(
PooledStructType, PooledGlobal, Indices);
ValueAsMetadata::handleRAUW(GV, ConstGEP);
}
assert(!GV->isUsedByMetadata() && "Should be no metadata use anymore");
// This GV has no more uses so we can erase it.
if (GV->use_empty())
GV->eraseFromParent();
NumPooledStrings++;
ElementIndex++;
}
return true;
}
// For pooled strings we need to add the offset into the pool for each string.
// This is done by adding a Get Element Pointer (GEP) before each user. This
// function adds the GEP.
void PPCMergeStringPool::replaceUsesWithGEP(GlobalVariable *GlobalToReplace,
GlobalVariable *GPool,
unsigned ElementIndex) {
SmallVector<Value *, 2> Indices;
Indices.push_back(ConstantInt::get(Type::getInt32Ty(*Context), 0));
Indices.push_back(ConstantInt::get(Type::getInt32Ty(*Context), ElementIndex));
Constant *ConstGEP =
ConstantExpr::getInBoundsGetElementPtr(PooledStructType, GPool, Indices);
LLVM_DEBUG(dbgs() << "Replacing this global:\n");
LLVM_DEBUG(GlobalToReplace->dump());
LLVM_DEBUG(dbgs() << "with this:\n");
LLVM_DEBUG(ConstGEP->dump());
GlobalToReplace->replaceAllUsesWith(ConstGEP);
}
} // namespace
char PPCMergeStringPool::ID = 0;
INITIALIZE_PASS(PPCMergeStringPool, DEBUG_TYPE, "PPC Merge String Pool", false,
false)
ModulePass *llvm::createPPCMergeStringPoolPass() {
return new PPCMergeStringPool();
}