| //===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| /// \file |
| /// This pass does misc. AMDGPU optimizations on IR before instruction |
| /// selection. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "AMDGPU.h" |
| #include "AMDGPUTargetMachine.h" |
| #include "SIModeRegisterDefaults.h" |
| #include "llvm/Analysis/AssumptionCache.h" |
| #include "llvm/Analysis/ConstantFolding.h" |
| #include "llvm/Analysis/TargetLibraryInfo.h" |
| #include "llvm/Analysis/UniformityAnalysis.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/CodeGen/TargetPassConfig.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/InstVisitor.h" |
| #include "llvm/IR/IntrinsicsAMDGPU.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/KnownBits.h" |
| #include "llvm/Transforms/Utils/IntegerDivision.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| |
| #define DEBUG_TYPE "amdgpu-codegenprepare" |
| |
| using namespace llvm; |
| using namespace llvm::PatternMatch; |
| |
| namespace { |
| |
| static cl::opt<bool> WidenLoads( |
| "amdgpu-codegenprepare-widen-constant-loads", |
| cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare"), |
| cl::ReallyHidden, |
| cl::init(false)); |
| |
| static cl::opt<bool> Widen16BitOps( |
| "amdgpu-codegenprepare-widen-16-bit-ops", |
| cl::desc("Widen uniform 16-bit instructions to 32-bit in AMDGPUCodeGenPrepare"), |
| cl::ReallyHidden, |
| cl::init(true)); |
| |
| static cl::opt<bool> |
| BreakLargePHIs("amdgpu-codegenprepare-break-large-phis", |
| cl::desc("Break large PHI nodes for DAGISel"), |
| cl::ReallyHidden, cl::init(true)); |
| |
| static cl::opt<bool> |
| ForceBreakLargePHIs("amdgpu-codegenprepare-force-break-large-phis", |
| cl::desc("For testing purposes, always break large " |
| "PHIs even if it isn't profitable."), |
| cl::ReallyHidden, cl::init(false)); |
| |
| static cl::opt<unsigned> BreakLargePHIsThreshold( |
| "amdgpu-codegenprepare-break-large-phis-threshold", |
| cl::desc("Minimum type size in bits for breaking large PHI nodes"), |
| cl::ReallyHidden, cl::init(32)); |
| |
| static cl::opt<bool> UseMul24Intrin( |
| "amdgpu-codegenprepare-mul24", |
| cl::desc("Introduce mul24 intrinsics in AMDGPUCodeGenPrepare"), |
| cl::ReallyHidden, |
| cl::init(true)); |
| |
| // Legalize 64-bit division by using the generic IR expansion. |
| static cl::opt<bool> ExpandDiv64InIR( |
| "amdgpu-codegenprepare-expand-div64", |
| cl::desc("Expand 64-bit division in AMDGPUCodeGenPrepare"), |
| cl::ReallyHidden, |
| cl::init(false)); |
| |
| // Leave all division operations as they are. This supersedes ExpandDiv64InIR |
| // and is used for testing the legalizer. |
| static cl::opt<bool> DisableIDivExpand( |
| "amdgpu-codegenprepare-disable-idiv-expansion", |
| cl::desc("Prevent expanding integer division in AMDGPUCodeGenPrepare"), |
| cl::ReallyHidden, |
| cl::init(false)); |
| |
| // Disable processing of fdiv so we can better test the backend implementations. |
| static cl::opt<bool> DisableFDivExpand( |
| "amdgpu-codegenprepare-disable-fdiv-expansion", |
| cl::desc("Prevent expanding floating point division in AMDGPUCodeGenPrepare"), |
| cl::ReallyHidden, |
| cl::init(false)); |
| |
| class AMDGPUCodeGenPrepareImpl |
| : public InstVisitor<AMDGPUCodeGenPrepareImpl, bool> { |
| public: |
| const GCNSubtarget *ST = nullptr; |
| const AMDGPUTargetMachine *TM = nullptr; |
| const TargetLibraryInfo *TLInfo = nullptr; |
| AssumptionCache *AC = nullptr; |
| DominatorTree *DT = nullptr; |
| UniformityInfo *UA = nullptr; |
| Module *Mod = nullptr; |
| const DataLayout *DL = nullptr; |
| bool HasUnsafeFPMath = false; |
| bool HasFP32DenormalFlush = false; |
| bool FlowChanged = false; |
| mutable Function *SqrtF32 = nullptr; |
| mutable Function *LdexpF32 = nullptr; |
| |
| DenseMap<const PHINode *, bool> BreakPhiNodesCache; |
| |
| Function *getSqrtF32() const { |
| if (SqrtF32) |
| return SqrtF32; |
| |
| LLVMContext &Ctx = Mod->getContext(); |
| SqrtF32 = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_sqrt, |
| {Type::getFloatTy(Ctx)}); |
| return SqrtF32; |
| } |
| |
| Function *getLdexpF32() const { |
| if (LdexpF32) |
| return LdexpF32; |
| |
| LLVMContext &Ctx = Mod->getContext(); |
| LdexpF32 = Intrinsic::getDeclaration( |
| Mod, Intrinsic::ldexp, {Type::getFloatTy(Ctx), Type::getInt32Ty(Ctx)}); |
| return LdexpF32; |
| } |
| |
| bool canBreakPHINode(const PHINode &I); |
| |
| /// Copies exact/nsw/nuw flags (if any) from binary operation \p I to |
| /// binary operation \p V. |
| /// |
| /// \returns Binary operation \p V. |
| /// \returns \p T's base element bit width. |
| unsigned getBaseElementBitWidth(const Type *T) const; |
| |
| /// \returns Equivalent 32 bit integer type for given type \p T. For example, |
| /// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32> |
| /// is returned. |
| Type *getI32Ty(IRBuilder<> &B, const Type *T) const; |
| |
| /// \returns True if binary operation \p I is a signed binary operation, false |
| /// otherwise. |
| bool isSigned(const BinaryOperator &I) const; |
| |
| /// \returns True if the condition of 'select' operation \p I comes from a |
| /// signed 'icmp' operation, false otherwise. |
| bool isSigned(const SelectInst &I) const; |
| |
| /// \returns True if type \p T needs to be promoted to 32 bit integer type, |
| /// false otherwise. |
| bool needsPromotionToI32(const Type *T) const; |
| |
| /// Return true if \p T is a legal scalar floating point type. |
| bool isLegalFloatingTy(const Type *T) const; |
| |
| /// Wrapper to pass all the arguments to computeKnownFPClass |
| KnownFPClass computeKnownFPClass(const Value *V, FPClassTest Interested, |
| const Instruction *CtxI) const { |
| return llvm::computeKnownFPClass(V, *DL, Interested, 0, TLInfo, AC, CtxI, |
| DT); |
| } |
| |
| bool canIgnoreDenormalInput(const Value *V, const Instruction *CtxI) const { |
| return HasFP32DenormalFlush || |
| computeKnownFPClass(V, fcSubnormal, CtxI).isKnownNeverSubnormal(); |
| } |
| |
| /// Promotes uniform binary operation \p I to equivalent 32 bit binary |
| /// operation. |
| /// |
| /// \details \p I's base element bit width must be greater than 1 and less |
| /// than or equal 16. Promotion is done by sign or zero extending operands to |
| /// 32 bits, replacing \p I with equivalent 32 bit binary operation, and |
| /// truncating the result of 32 bit binary operation back to \p I's original |
| /// type. Division operation is not promoted. |
| /// |
| /// \returns True if \p I is promoted to equivalent 32 bit binary operation, |
| /// false otherwise. |
| bool promoteUniformOpToI32(BinaryOperator &I) const; |
| |
| /// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation. |
| /// |
| /// \details \p I's base element bit width must be greater than 1 and less |
| /// than or equal 16. Promotion is done by sign or zero extending operands to |
| /// 32 bits, and replacing \p I with 32 bit 'icmp' operation. |
| /// |
| /// \returns True. |
| bool promoteUniformOpToI32(ICmpInst &I) const; |
| |
| /// Promotes uniform 'select' operation \p I to 32 bit 'select' |
| /// operation. |
| /// |
| /// \details \p I's base element bit width must be greater than 1 and less |
| /// than or equal 16. Promotion is done by sign or zero extending operands to |
| /// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the |
| /// result of 32 bit 'select' operation back to \p I's original type. |
| /// |
| /// \returns True. |
| bool promoteUniformOpToI32(SelectInst &I) const; |
| |
| /// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse' |
| /// intrinsic. |
| /// |
| /// \details \p I's base element bit width must be greater than 1 and less |
| /// than or equal 16. Promotion is done by zero extending the operand to 32 |
| /// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the |
| /// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the |
| /// shift amount is 32 minus \p I's base element bit width), and truncating |
| /// the result of the shift operation back to \p I's original type. |
| /// |
| /// \returns True. |
| bool promoteUniformBitreverseToI32(IntrinsicInst &I) const; |
| |
| /// \returns The minimum number of bits needed to store the value of \Op as an |
| /// unsigned integer. Truncating to this size and then zero-extending to |
| /// the original will not change the value. |
| unsigned numBitsUnsigned(Value *Op) const; |
| |
| /// \returns The minimum number of bits needed to store the value of \Op as a |
| /// signed integer. Truncating to this size and then sign-extending to |
| /// the original size will not change the value. |
| unsigned numBitsSigned(Value *Op) const; |
| |
| /// Replace mul instructions with llvm.amdgcn.mul.u24 or llvm.amdgcn.mul.s24. |
| /// SelectionDAG has an issue where an and asserting the bits are known |
| bool replaceMulWithMul24(BinaryOperator &I) const; |
| |
| /// Perform same function as equivalently named function in DAGCombiner. Since |
| /// we expand some divisions here, we need to perform this before obscuring. |
| bool foldBinOpIntoSelect(BinaryOperator &I) const; |
| |
| bool divHasSpecialOptimization(BinaryOperator &I, |
| Value *Num, Value *Den) const; |
| int getDivNumBits(BinaryOperator &I, |
| Value *Num, Value *Den, |
| unsigned AtLeast, bool Signed) const; |
| |
| /// Expands 24 bit div or rem. |
| Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I, |
| Value *Num, Value *Den, |
| bool IsDiv, bool IsSigned) const; |
| |
| Value *expandDivRem24Impl(IRBuilder<> &Builder, BinaryOperator &I, |
| Value *Num, Value *Den, unsigned NumBits, |
| bool IsDiv, bool IsSigned) const; |
| |
| /// Expands 32 bit div or rem. |
| Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I, |
| Value *Num, Value *Den) const; |
| |
| Value *shrinkDivRem64(IRBuilder<> &Builder, BinaryOperator &I, |
| Value *Num, Value *Den) const; |
| void expandDivRem64(BinaryOperator &I) const; |
| |
| /// Widen a scalar load. |
| /// |
| /// \details \p Widen scalar load for uniform, small type loads from constant |
| // memory / to a full 32-bits and then truncate the input to allow a scalar |
| // load instead of a vector load. |
| // |
| /// \returns True. |
| |
| bool canWidenScalarExtLoad(LoadInst &I) const; |
| |
| Value *matchFractPat(IntrinsicInst &I); |
| Value *applyFractPat(IRBuilder<> &Builder, Value *FractArg); |
| |
| bool canOptimizeWithRsq(const FPMathOperator *SqrtOp, FastMathFlags DivFMF, |
| FastMathFlags SqrtFMF) const; |
| |
| Value *optimizeWithRsq(IRBuilder<> &Builder, Value *Num, Value *Den, |
| FastMathFlags DivFMF, FastMathFlags SqrtFMF, |
| const Instruction *CtxI) const; |
| |
| Value *optimizeWithRcp(IRBuilder<> &Builder, Value *Num, Value *Den, |
| FastMathFlags FMF, const Instruction *CtxI) const; |
| Value *optimizeWithFDivFast(IRBuilder<> &Builder, Value *Num, Value *Den, |
| float ReqdAccuracy) const; |
| |
| Value *visitFDivElement(IRBuilder<> &Builder, Value *Num, Value *Den, |
| FastMathFlags DivFMF, FastMathFlags SqrtFMF, |
| Value *RsqOp, const Instruction *FDiv, |
| float ReqdAccuracy) const; |
| |
| std::pair<Value *, Value *> getFrexpResults(IRBuilder<> &Builder, |
| Value *Src) const; |
| |
| Value *emitRcpIEEE1ULP(IRBuilder<> &Builder, Value *Src, |
| bool IsNegative) const; |
| Value *emitFrexpDiv(IRBuilder<> &Builder, Value *LHS, Value *RHS, |
| FastMathFlags FMF) const; |
| Value *emitSqrtIEEE2ULP(IRBuilder<> &Builder, Value *Src, |
| FastMathFlags FMF) const; |
| |
| public: |
| bool visitFDiv(BinaryOperator &I); |
| |
| bool visitInstruction(Instruction &I) { return false; } |
| bool visitBinaryOperator(BinaryOperator &I); |
| bool visitLoadInst(LoadInst &I); |
| bool visitICmpInst(ICmpInst &I); |
| bool visitSelectInst(SelectInst &I); |
| bool visitPHINode(PHINode &I); |
| bool visitAddrSpaceCastInst(AddrSpaceCastInst &I); |
| |
| bool visitIntrinsicInst(IntrinsicInst &I); |
| bool visitBitreverseIntrinsicInst(IntrinsicInst &I); |
| bool visitMinNum(IntrinsicInst &I); |
| bool visitSqrt(IntrinsicInst &I); |
| bool run(Function &F); |
| }; |
| |
| class AMDGPUCodeGenPrepare : public FunctionPass { |
| private: |
| AMDGPUCodeGenPrepareImpl Impl; |
| |
| public: |
| static char ID; |
| AMDGPUCodeGenPrepare() : FunctionPass(ID) { |
| initializeAMDGPUCodeGenPreparePass(*PassRegistry::getPassRegistry()); |
| } |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.addRequired<AssumptionCacheTracker>(); |
| AU.addRequired<UniformityInfoWrapperPass>(); |
| AU.addRequired<TargetLibraryInfoWrapperPass>(); |
| |
| // FIXME: Division expansion needs to preserve the dominator tree. |
| if (!ExpandDiv64InIR) |
| AU.setPreservesAll(); |
| } |
| bool runOnFunction(Function &F) override; |
| bool doInitialization(Module &M) override; |
| StringRef getPassName() const override { return "AMDGPU IR optimizations"; } |
| }; |
| |
| } // end anonymous namespace |
| |
| bool AMDGPUCodeGenPrepareImpl::run(Function &F) { |
| BreakPhiNodesCache.clear(); |
| bool MadeChange = false; |
| |
| Function::iterator NextBB; |
| for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; FI = NextBB) { |
| BasicBlock *BB = &*FI; |
| NextBB = std::next(FI); |
| |
| BasicBlock::iterator Next; |
| for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; |
| I = Next) { |
| Next = std::next(I); |
| |
| MadeChange |= visit(*I); |
| |
| if (Next != E) { // Control flow changed |
| BasicBlock *NextInstBB = Next->getParent(); |
| if (NextInstBB != BB) { |
| BB = NextInstBB; |
| E = BB->end(); |
| FE = F.end(); |
| } |
| } |
| } |
| } |
| return MadeChange; |
| } |
| |
| unsigned AMDGPUCodeGenPrepareImpl::getBaseElementBitWidth(const Type *T) const { |
| assert(needsPromotionToI32(T) && "T does not need promotion to i32"); |
| |
| if (T->isIntegerTy()) |
| return T->getIntegerBitWidth(); |
| return cast<VectorType>(T)->getElementType()->getIntegerBitWidth(); |
| } |
| |
| Type *AMDGPUCodeGenPrepareImpl::getI32Ty(IRBuilder<> &B, const Type *T) const { |
| assert(needsPromotionToI32(T) && "T does not need promotion to i32"); |
| |
| if (T->isIntegerTy()) |
| return B.getInt32Ty(); |
| return FixedVectorType::get(B.getInt32Ty(), cast<FixedVectorType>(T)); |
| } |
| |
| bool AMDGPUCodeGenPrepareImpl::isSigned(const BinaryOperator &I) const { |
| return I.getOpcode() == Instruction::AShr || |
| I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem; |
| } |
| |
| bool AMDGPUCodeGenPrepareImpl::isSigned(const SelectInst &I) const { |
| return isa<ICmpInst>(I.getOperand(0)) ? |
| cast<ICmpInst>(I.getOperand(0))->isSigned() : false; |
| } |
| |
| bool AMDGPUCodeGenPrepareImpl::needsPromotionToI32(const Type *T) const { |
| if (!Widen16BitOps) |
| return false; |
| |
| const IntegerType *IntTy = dyn_cast<IntegerType>(T); |
| if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16) |
| return true; |
| |
| if (const VectorType *VT = dyn_cast<VectorType>(T)) { |
| // TODO: The set of packed operations is more limited, so may want to |
| // promote some anyway. |
| if (ST->hasVOP3PInsts()) |
| return false; |
| |
| return needsPromotionToI32(VT->getElementType()); |
| } |
| |
| return false; |
| } |
| |
| bool AMDGPUCodeGenPrepareImpl::isLegalFloatingTy(const Type *Ty) const { |
| return Ty->isFloatTy() || Ty->isDoubleTy() || |
| (Ty->isHalfTy() && ST->has16BitInsts()); |
| } |
| |
| // Return true if the op promoted to i32 should have nsw set. |
| static bool promotedOpIsNSW(const Instruction &I) { |
| switch (I.getOpcode()) { |
| case Instruction::Shl: |
| case Instruction::Add: |
| case Instruction::Sub: |
| return true; |
| case Instruction::Mul: |
| return I.hasNoUnsignedWrap(); |
| default: |
| return false; |
| } |
| } |
| |
| // Return true if the op promoted to i32 should have nuw set. |
| static bool promotedOpIsNUW(const Instruction &I) { |
| switch (I.getOpcode()) { |
| case Instruction::Shl: |
| case Instruction::Add: |
| case Instruction::Mul: |
| return true; |
| case Instruction::Sub: |
| return I.hasNoUnsignedWrap(); |
| default: |
| return false; |
| } |
| } |
| |
| bool AMDGPUCodeGenPrepareImpl::canWidenScalarExtLoad(LoadInst &I) const { |
| Type *Ty = I.getType(); |
| const DataLayout &DL = Mod->getDataLayout(); |
| int TySize = DL.getTypeSizeInBits(Ty); |
| Align Alignment = DL.getValueOrABITypeAlignment(I.getAlign(), Ty); |
| |
| return I.isSimple() && TySize < 32 && Alignment >= 4 && UA->isUniform(&I); |
| } |
| |
| bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(BinaryOperator &I) const { |
| assert(needsPromotionToI32(I.getType()) && |
| "I does not need promotion to i32"); |
| |
| if (I.getOpcode() == Instruction::SDiv || |
| I.getOpcode() == Instruction::UDiv || |
| I.getOpcode() == Instruction::SRem || |
| I.getOpcode() == Instruction::URem) |
| return false; |
| |
| IRBuilder<> Builder(&I); |
| Builder.SetCurrentDebugLocation(I.getDebugLoc()); |
| |
| Type *I32Ty = getI32Ty(Builder, I.getType()); |
| Value *ExtOp0 = nullptr; |
| Value *ExtOp1 = nullptr; |
| Value *ExtRes = nullptr; |
| Value *TruncRes = nullptr; |
| |
| if (isSigned(I)) { |
| ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); |
| ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); |
| } else { |
| ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); |
| ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); |
| } |
| |
| ExtRes = Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1); |
| if (Instruction *Inst = dyn_cast<Instruction>(ExtRes)) { |
| if (promotedOpIsNSW(cast<Instruction>(I))) |
| Inst->setHasNoSignedWrap(); |
| |
| if (promotedOpIsNUW(cast<Instruction>(I))) |
| Inst->setHasNoUnsignedWrap(); |
| |
| if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) |
| Inst->setIsExact(ExactOp->isExact()); |
| } |
| |
| TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); |
| |
| I.replaceAllUsesWith(TruncRes); |
| I.eraseFromParent(); |
| |
| return true; |
| } |
| |
| bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(ICmpInst &I) const { |
| assert(needsPromotionToI32(I.getOperand(0)->getType()) && |
| "I does not need promotion to i32"); |
| |
| IRBuilder<> Builder(&I); |
| Builder.SetCurrentDebugLocation(I.getDebugLoc()); |
| |
| Type *I32Ty = getI32Ty(Builder, I.getOperand(0)->getType()); |
| Value *ExtOp0 = nullptr; |
| Value *ExtOp1 = nullptr; |
| Value *NewICmp = nullptr; |
| |
| if (I.isSigned()) { |
| ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); |
| ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); |
| } else { |
| ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); |
| ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); |
| } |
| NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1); |
| |
| I.replaceAllUsesWith(NewICmp); |
| I.eraseFromParent(); |
| |
| return true; |
| } |
| |
| bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(SelectInst &I) const { |
| assert(needsPromotionToI32(I.getType()) && |
| "I does not need promotion to i32"); |
| |
| IRBuilder<> Builder(&I); |
| Builder.SetCurrentDebugLocation(I.getDebugLoc()); |
| |
| Type *I32Ty = getI32Ty(Builder, I.getType()); |
| Value *ExtOp1 = nullptr; |
| Value *ExtOp2 = nullptr; |
| Value *ExtRes = nullptr; |
| Value *TruncRes = nullptr; |
| |
| if (isSigned(I)) { |
| ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); |
| ExtOp2 = Builder.CreateSExt(I.getOperand(2), I32Ty); |
| } else { |
| ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); |
| ExtOp2 = Builder.CreateZExt(I.getOperand(2), I32Ty); |
| } |
| ExtRes = Builder.CreateSelect(I.getOperand(0), ExtOp1, ExtOp2); |
| TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); |
| |
| I.replaceAllUsesWith(TruncRes); |
| I.eraseFromParent(); |
| |
| return true; |
| } |
| |
| bool AMDGPUCodeGenPrepareImpl::promoteUniformBitreverseToI32( |
| IntrinsicInst &I) const { |
| assert(I.getIntrinsicID() == Intrinsic::bitreverse && |
| "I must be bitreverse intrinsic"); |
| assert(needsPromotionToI32(I.getType()) && |
| "I does not need promotion to i32"); |
| |
| IRBuilder<> Builder(&I); |
| Builder.SetCurrentDebugLocation(I.getDebugLoc()); |
| |
| Type *I32Ty = getI32Ty(Builder, I.getType()); |
| Function *I32 = |
| Intrinsic::getDeclaration(Mod, Intrinsic::bitreverse, { I32Ty }); |
| Value *ExtOp = Builder.CreateZExt(I.getOperand(0), I32Ty); |
| Value *ExtRes = Builder.CreateCall(I32, { ExtOp }); |
| Value *LShrOp = |
| Builder.CreateLShr(ExtRes, 32 - getBaseElementBitWidth(I.getType())); |
| Value *TruncRes = |
| Builder.CreateTrunc(LShrOp, I.getType()); |
| |
| I.replaceAllUsesWith(TruncRes); |
| I.eraseFromParent(); |
| |
| return true; |
| } |
| |
| unsigned AMDGPUCodeGenPrepareImpl::numBitsUnsigned(Value *Op) const { |
| return computeKnownBits(Op, *DL, 0, AC).countMaxActiveBits(); |
| } |
| |
| unsigned AMDGPUCodeGenPrepareImpl::numBitsSigned(Value *Op) const { |
| return ComputeMaxSignificantBits(Op, *DL, 0, AC); |
| } |
| |
| static void extractValues(IRBuilder<> &Builder, |
| SmallVectorImpl<Value *> &Values, Value *V) { |
| auto *VT = dyn_cast<FixedVectorType>(V->getType()); |
| if (!VT) { |
| Values.push_back(V); |
| return; |
| } |
| |
| for (int I = 0, E = VT->getNumElements(); I != E; ++I) |
| Values.push_back(Builder.CreateExtractElement(V, I)); |
| } |
| |
| static Value *insertValues(IRBuilder<> &Builder, |
| Type *Ty, |
| SmallVectorImpl<Value *> &Values) { |
| if (!Ty->isVectorTy()) { |
| assert(Values.size() == 1); |
| return Values[0]; |
| } |
| |
| Value *NewVal = PoisonValue::get(Ty); |
| for (int I = 0, E = Values.size(); I != E; ++I) |
| NewVal = Builder.CreateInsertElement(NewVal, Values[I], I); |
| |
| return NewVal; |
| } |
| |
| bool AMDGPUCodeGenPrepareImpl::replaceMulWithMul24(BinaryOperator &I) const { |
| if (I.getOpcode() != Instruction::Mul) |
| return false; |
| |
| Type *Ty = I.getType(); |
| unsigned Size = Ty->getScalarSizeInBits(); |
| if (Size <= 16 && ST->has16BitInsts()) |
| return false; |
| |
| // Prefer scalar if this could be s_mul_i32 |
| if (UA->isUniform(&I)) |
| return false; |
| |
| Value *LHS = I.getOperand(0); |
| Value *RHS = I.getOperand(1); |
| IRBuilder<> Builder(&I); |
| Builder.SetCurrentDebugLocation(I.getDebugLoc()); |
| |
| unsigned LHSBits = 0, RHSBits = 0; |
| bool IsSigned = false; |
| |
| if (ST->hasMulU24() && (LHSBits = numBitsUnsigned(LHS)) <= 24 && |
| (RHSBits = numBitsUnsigned(RHS)) <= 24) { |
| IsSigned = false; |
| |
| } else if (ST->hasMulI24() && (LHSBits = numBitsSigned(LHS)) <= 24 && |
| (RHSBits = numBitsSigned(RHS)) <= 24) { |
| IsSigned = true; |
| |
| } else |
| return false; |
| |
| SmallVector<Value *, 4> LHSVals; |
| SmallVector<Value *, 4> RHSVals; |
| SmallVector<Value *, 4> ResultVals; |
| extractValues(Builder, LHSVals, LHS); |
| extractValues(Builder, RHSVals, RHS); |
| |
| IntegerType *I32Ty = Builder.getInt32Ty(); |
| IntegerType *IntrinTy = Size > 32 ? Builder.getInt64Ty() : I32Ty; |
| Type *DstTy = LHSVals[0]->getType(); |
| |
| for (int I = 0, E = LHSVals.size(); I != E; ++I) { |
| Value *LHS = IsSigned ? Builder.CreateSExtOrTrunc(LHSVals[I], I32Ty) |
| : Builder.CreateZExtOrTrunc(LHSVals[I], I32Ty); |
| Value *RHS = IsSigned ? Builder.CreateSExtOrTrunc(RHSVals[I], I32Ty) |
| : Builder.CreateZExtOrTrunc(RHSVals[I], I32Ty); |
| Intrinsic::ID ID = |
| IsSigned ? Intrinsic::amdgcn_mul_i24 : Intrinsic::amdgcn_mul_u24; |
| Value *Result = Builder.CreateIntrinsic(ID, {IntrinTy}, {LHS, RHS}); |
| Result = IsSigned ? Builder.CreateSExtOrTrunc(Result, DstTy) |
| : Builder.CreateZExtOrTrunc(Result, DstTy); |
| ResultVals.push_back(Result); |
| } |
| |
| Value *NewVal = insertValues(Builder, Ty, ResultVals); |
| NewVal->takeName(&I); |
| I.replaceAllUsesWith(NewVal); |
| I.eraseFromParent(); |
| |
| return true; |
| } |
| |
| // Find a select instruction, which may have been casted. This is mostly to deal |
| // with cases where i16 selects were promoted here to i32. |
| static SelectInst *findSelectThroughCast(Value *V, CastInst *&Cast) { |
| Cast = nullptr; |
| if (SelectInst *Sel = dyn_cast<SelectInst>(V)) |
| return Sel; |
| |
| if ((Cast = dyn_cast<CastInst>(V))) { |
| if (SelectInst *Sel = dyn_cast<SelectInst>(Cast->getOperand(0))) |
| return Sel; |
| } |
| |
| return nullptr; |
| } |
| |
| bool AMDGPUCodeGenPrepareImpl::foldBinOpIntoSelect(BinaryOperator &BO) const { |
| // Don't do this unless the old select is going away. We want to eliminate the |
| // binary operator, not replace a binop with a select. |
| int SelOpNo = 0; |
| |
| CastInst *CastOp; |
| |
| // TODO: Should probably try to handle some cases with multiple |
| // users. Duplicating the select may be profitable for division. |
| SelectInst *Sel = findSelectThroughCast(BO.getOperand(0), CastOp); |
| if (!Sel || !Sel->hasOneUse()) { |
| SelOpNo = 1; |
| Sel = findSelectThroughCast(BO.getOperand(1), CastOp); |
| } |
| |
| if (!Sel || !Sel->hasOneUse()) |
| return false; |
| |
| Constant *CT = dyn_cast<Constant>(Sel->getTrueValue()); |
| Constant *CF = dyn_cast<Constant>(Sel->getFalseValue()); |
| Constant *CBO = dyn_cast<Constant>(BO.getOperand(SelOpNo ^ 1)); |
| if (!CBO || !CT || !CF) |
| return false; |
| |
| if (CastOp) { |
| if (!CastOp->hasOneUse()) |
| return false; |
| CT = ConstantFoldCastOperand(CastOp->getOpcode(), CT, BO.getType(), *DL); |
| CF = ConstantFoldCastOperand(CastOp->getOpcode(), CF, BO.getType(), *DL); |
| } |
| |
| // TODO: Handle special 0/-1 cases DAG combine does, although we only really |
| // need to handle divisions here. |
| Constant *FoldedT = SelOpNo ? |
| ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CT, *DL) : |
| ConstantFoldBinaryOpOperands(BO.getOpcode(), CT, CBO, *DL); |
| if (!FoldedT || isa<ConstantExpr>(FoldedT)) |
| return false; |
| |
| Constant *FoldedF = SelOpNo ? |
| ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CF, *DL) : |
| ConstantFoldBinaryOpOperands(BO.getOpcode(), CF, CBO, *DL); |
| if (!FoldedF || isa<ConstantExpr>(FoldedF)) |
| return false; |
| |
| IRBuilder<> Builder(&BO); |
| Builder.SetCurrentDebugLocation(BO.getDebugLoc()); |
| if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&BO)) |
| Builder.setFastMathFlags(FPOp->getFastMathFlags()); |
| |
| Value *NewSelect = Builder.CreateSelect(Sel->getCondition(), |
| FoldedT, FoldedF); |
| NewSelect->takeName(&BO); |
| BO.replaceAllUsesWith(NewSelect); |
| BO.eraseFromParent(); |
| if (CastOp) |
| CastOp->eraseFromParent(); |
| Sel->eraseFromParent(); |
| return true; |
| } |
| |
| std::pair<Value *, Value *> |
| AMDGPUCodeGenPrepareImpl::getFrexpResults(IRBuilder<> &Builder, |
| Value *Src) const { |
| Type *Ty = Src->getType(); |
| Value *Frexp = Builder.CreateIntrinsic(Intrinsic::frexp, |
| {Ty, Builder.getInt32Ty()}, Src); |
| Value *FrexpMant = Builder.CreateExtractValue(Frexp, {0}); |
| |
| // Bypass the bug workaround for the exponent result since it doesn't matter. |
| // TODO: Does the bug workaround even really need to consider the exponent |
| // result? It's unspecified by the spec. |
| |
| Value *FrexpExp = |
| ST->hasFractBug() |
| ? Builder.CreateIntrinsic(Intrinsic::amdgcn_frexp_exp, |
| {Builder.getInt32Ty(), Ty}, Src) |
| : Builder.CreateExtractValue(Frexp, {1}); |
| return {FrexpMant, FrexpExp}; |
| } |
| |
| /// Emit an expansion of 1.0 / Src good for 1ulp that supports denormals. |
| Value *AMDGPUCodeGenPrepareImpl::emitRcpIEEE1ULP(IRBuilder<> &Builder, |
| Value *Src, |
| bool IsNegative) const { |
| // Same as for 1.0, but expand the sign out of the constant. |
| // -1.0 / x -> rcp (fneg x) |
| if (IsNegative) |
| Src = Builder.CreateFNeg(Src); |
| |
| // The rcp instruction doesn't support denormals, so scale the input |
| // out of the denormal range and convert at the end. |
| // |
| // Expand as 2^-n * (1.0 / (x * 2^n)) |
| |
| // TODO: Skip scaling if input is known never denormal and the input |
| // range won't underflow to denormal. The hard part is knowing the |
| // result. We need a range check, the result could be denormal for |
| // 0x1p+126 < den <= 0x1p+127. |
| auto [FrexpMant, FrexpExp] = getFrexpResults(Builder, Src); |
| Value *ScaleFactor = Builder.CreateNeg(FrexpExp); |
| Value *Rcp = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, FrexpMant); |
| return Builder.CreateCall(getLdexpF32(), {Rcp, ScaleFactor}); |
| } |
| |
| /// Emit a 2ulp expansion for fdiv by using frexp for input scaling. |
| Value *AMDGPUCodeGenPrepareImpl::emitFrexpDiv(IRBuilder<> &Builder, Value *LHS, |
| Value *RHS, |
| FastMathFlags FMF) const { |
| // If we have have to work around the fract/frexp bug, we're worse off than |
| // using the fdiv.fast expansion. The full safe expansion is faster if we have |
| // fast FMA. |
| if (HasFP32DenormalFlush && ST->hasFractBug() && !ST->hasFastFMAF32() && |
| (!FMF.noNaNs() || !FMF.noInfs())) |
| return nullptr; |
| |
| // We're scaling the LHS to avoid a denormal input, and scale the denominator |
| // to avoid large values underflowing the result. |
| auto [FrexpMantRHS, FrexpExpRHS] = getFrexpResults(Builder, RHS); |
| |
| Value *Rcp = |
| Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, FrexpMantRHS); |
| |
| auto [FrexpMantLHS, FrexpExpLHS] = getFrexpResults(Builder, LHS); |
| Value *Mul = Builder.CreateFMul(FrexpMantLHS, Rcp); |
| |
| // We multiplied by 2^N/2^M, so we need to multiply by 2^(N-M) to scale the |
| // result. |
| Value *ExpDiff = Builder.CreateSub(FrexpExpLHS, FrexpExpRHS); |
| return Builder.CreateCall(getLdexpF32(), {Mul, ExpDiff}); |
| } |
| |
| /// Emit a sqrt that handles denormals and is accurate to 2ulp. |
| Value *AMDGPUCodeGenPrepareImpl::emitSqrtIEEE2ULP(IRBuilder<> &Builder, |
| Value *Src, |
| FastMathFlags FMF) const { |
| Type *Ty = Src->getType(); |
| APFloat SmallestNormal = |
| APFloat::getSmallestNormalized(Ty->getFltSemantics()); |
| Value *NeedScale = |
| Builder.CreateFCmpOLT(Src, ConstantFP::get(Ty, SmallestNormal)); |
| |
| ConstantInt *Zero = Builder.getInt32(0); |
| Value *InputScaleFactor = |
| Builder.CreateSelect(NeedScale, Builder.getInt32(32), Zero); |
| |
| Value *Scaled = Builder.CreateCall(getLdexpF32(), {Src, InputScaleFactor}); |
| |
| Value *Sqrt = Builder.CreateCall(getSqrtF32(), Scaled); |
| |
| Value *OutputScaleFactor = |
| Builder.CreateSelect(NeedScale, Builder.getInt32(-16), Zero); |
| return Builder.CreateCall(getLdexpF32(), {Sqrt, OutputScaleFactor}); |
| } |
| |
| /// Emit an expansion of 1.0 / sqrt(Src) good for 1ulp that supports denormals. |
| static Value *emitRsqIEEE1ULP(IRBuilder<> &Builder, Value *Src, |
| bool IsNegative) { |
| // bool need_scale = x < 0x1p-126f; |
| // float input_scale = need_scale ? 0x1.0p+24f : 1.0f; |
| // float output_scale = need_scale ? 0x1.0p+12f : 1.0f; |
| // rsq(x * input_scale) * output_scale; |
| |
| Type *Ty = Src->getType(); |
| APFloat SmallestNormal = |
| APFloat::getSmallestNormalized(Ty->getFltSemantics()); |
| Value *NeedScale = |
| Builder.CreateFCmpOLT(Src, ConstantFP::get(Ty, SmallestNormal)); |
| Constant *One = ConstantFP::get(Ty, 1.0); |
| Constant *InputScale = ConstantFP::get(Ty, 0x1.0p+24); |
| Constant *OutputScale = |
| ConstantFP::get(Ty, IsNegative ? -0x1.0p+12 : 0x1.0p+12); |
| |
| Value *InputScaleFactor = Builder.CreateSelect(NeedScale, InputScale, One); |
| |
| Value *ScaledInput = Builder.CreateFMul(Src, InputScaleFactor); |
| Value *Rsq = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rsq, ScaledInput); |
| Value *OutputScaleFactor = Builder.CreateSelect( |
| NeedScale, OutputScale, IsNegative ? ConstantFP::get(Ty, -1.0) : One); |
| |
| return Builder.CreateFMul(Rsq, OutputScaleFactor); |
| } |
| |
| bool AMDGPUCodeGenPrepareImpl::canOptimizeWithRsq(const FPMathOperator *SqrtOp, |
| FastMathFlags DivFMF, |
| FastMathFlags SqrtFMF) const { |
| // The rsqrt contraction increases accuracy from ~2ulp to ~1ulp. |
| if (!DivFMF.allowContract() || !SqrtFMF.allowContract()) |
| return false; |
| |
| // v_rsq_f32 gives 1ulp |
| return SqrtFMF.approxFunc() || HasUnsafeFPMath || |
| SqrtOp->getFPAccuracy() >= 1.0f; |
| } |
| |
| Value *AMDGPUCodeGenPrepareImpl::optimizeWithRsq( |
| IRBuilder<> &Builder, Value *Num, Value *Den, const FastMathFlags DivFMF, |
| const FastMathFlags SqrtFMF, const Instruction *CtxI) const { |
| // The rsqrt contraction increases accuracy from ~2ulp to ~1ulp. |
| assert(DivFMF.allowContract() && SqrtFMF.allowContract()); |
| |
| // rsq_f16 is accurate to 0.51 ulp. |
| // rsq_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed. |
| // rsq_f64 is never accurate. |
| const ConstantFP *CLHS = dyn_cast<ConstantFP>(Num); |
| if (!CLHS) |
| return nullptr; |
| |
| assert(Den->getType()->isFloatTy()); |
| |
| bool IsNegative = false; |
| |
| // TODO: Handle other numerator values with arcp. |
| if (CLHS->isExactlyValue(1.0) || (IsNegative = CLHS->isExactlyValue(-1.0))) { |
| // Add in the sqrt flags. |
| IRBuilder<>::FastMathFlagGuard Guard(Builder); |
| Builder.setFastMathFlags(DivFMF | SqrtFMF); |
| |
| if ((DivFMF.approxFunc() && SqrtFMF.approxFunc()) || HasUnsafeFPMath || |
| canIgnoreDenormalInput(Den, CtxI)) { |
| Value *Result = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rsq, Den); |
| // -1.0 / sqrt(x) -> fneg(rsq(x)) |
| return IsNegative ? Builder.CreateFNeg(Result) : Result; |
| } |
| |
| return emitRsqIEEE1ULP(Builder, Den, IsNegative); |
| } |
| |
| return nullptr; |
| } |
| |
| // Optimize fdiv with rcp: |
| // |
| // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is |
| // allowed with unsafe-fp-math or afn. |
| // |
| // a/b -> a*rcp(b) when arcp is allowed, and we only need provide ULP 1.0 |
| Value * |
| AMDGPUCodeGenPrepareImpl::optimizeWithRcp(IRBuilder<> &Builder, Value *Num, |
| Value *Den, FastMathFlags FMF, |
| const Instruction *CtxI) const { |
| // rcp_f16 is accurate to 0.51 ulp. |
| // rcp_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed. |
| // rcp_f64 is never accurate. |
| assert(Den->getType()->isFloatTy()); |
| |
| if (const ConstantFP *CLHS = dyn_cast<ConstantFP>(Num)) { |
| bool IsNegative = false; |
| if (CLHS->isExactlyValue(1.0) || |
| (IsNegative = CLHS->isExactlyValue(-1.0))) { |
| Value *Src = Den; |
| |
| if (HasFP32DenormalFlush || FMF.approxFunc()) { |
| // -1.0 / x -> 1.0 / fneg(x) |
| if (IsNegative) |
| Src = Builder.CreateFNeg(Src); |
| |
| // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to |
| // the CI documentation has a worst case error of 1 ulp. |
| // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK |
| // to use it as long as we aren't trying to use denormals. |
| // |
| // v_rcp_f16 and v_rsq_f16 DO support denormals. |
| |
| // NOTE: v_sqrt and v_rcp will be combined to v_rsq later. So we don't |
| // insert rsq intrinsic here. |
| |
| // 1.0 / x -> rcp(x) |
| return Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, Src); |
| } |
| |
| // TODO: If the input isn't denormal, and we know the input exponent isn't |
| // big enough to introduce a denormal we can avoid the scaling. |
| return emitRcpIEEE1ULP(Builder, Src, IsNegative); |
| } |
| } |
| |
| if (FMF.allowReciprocal()) { |
| // x / y -> x * (1.0 / y) |
| |
| // TODO: Could avoid denormal scaling and use raw rcp if we knew the output |
| // will never underflow. |
| if (HasFP32DenormalFlush || FMF.approxFunc()) { |
| Value *Recip = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, Den); |
| return Builder.CreateFMul(Num, Recip); |
| } |
| |
| Value *Recip = emitRcpIEEE1ULP(Builder, Den, false); |
| return Builder.CreateFMul(Num, Recip); |
| } |
| |
| return nullptr; |
| } |
| |
| // optimize with fdiv.fast: |
| // |
| // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed. |
| // |
| // 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp. |
| // |
| // NOTE: optimizeWithRcp should be tried first because rcp is the preference. |
| Value *AMDGPUCodeGenPrepareImpl::optimizeWithFDivFast( |
| IRBuilder<> &Builder, Value *Num, Value *Den, float ReqdAccuracy) const { |
| // fdiv.fast can achieve 2.5 ULP accuracy. |
| if (ReqdAccuracy < 2.5f) |
| return nullptr; |
| |
| // Only have fdiv.fast for f32. |
| assert(Den->getType()->isFloatTy()); |
| |
| bool NumIsOne = false; |
| if (const ConstantFP *CNum = dyn_cast<ConstantFP>(Num)) { |
| if (CNum->isExactlyValue(+1.0) || CNum->isExactlyValue(-1.0)) |
| NumIsOne = true; |
| } |
| |
| // fdiv does not support denormals. But 1.0/x is always fine to use it. |
| // |
| // TODO: This works for any value with a specific known exponent range, don't |
| // just limit to constant 1. |
| if (!HasFP32DenormalFlush && !NumIsOne) |
| return nullptr; |
| |
| return Builder.CreateIntrinsic(Intrinsic::amdgcn_fdiv_fast, {}, {Num, Den}); |
| } |
| |
| Value *AMDGPUCodeGenPrepareImpl::visitFDivElement( |
| IRBuilder<> &Builder, Value *Num, Value *Den, FastMathFlags DivFMF, |
| FastMathFlags SqrtFMF, Value *RsqOp, const Instruction *FDivInst, |
| float ReqdDivAccuracy) const { |
| if (RsqOp) { |
| Value *Rsq = |
| optimizeWithRsq(Builder, Num, RsqOp, DivFMF, SqrtFMF, FDivInst); |
| if (Rsq) |
| return Rsq; |
| } |
| |
| Value *Rcp = optimizeWithRcp(Builder, Num, Den, DivFMF, FDivInst); |
| if (Rcp) |
| return Rcp; |
| |
| // In the basic case fdiv_fast has the same instruction count as the frexp div |
| // expansion. Slightly prefer fdiv_fast since it ends in an fmul that can |
| // potentially be fused into a user. Also, materialization of the constants |
| // can be reused for multiple instances. |
| Value *FDivFast = optimizeWithFDivFast(Builder, Num, Den, ReqdDivAccuracy); |
| if (FDivFast) |
| return FDivFast; |
| |
| return emitFrexpDiv(Builder, Num, Den, DivFMF); |
| } |
| |
| // Optimizations is performed based on fpmath, fast math flags as well as |
| // denormals to optimize fdiv with either rcp or fdiv.fast. |
| // |
| // With rcp: |
| // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is |
| // allowed with unsafe-fp-math or afn. |
| // |
| // a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn. |
| // |
| // With fdiv.fast: |
| // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed. |
| // |
| // 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp. |
| // |
| // NOTE: rcp is the preference in cases that both are legal. |
| bool AMDGPUCodeGenPrepareImpl::visitFDiv(BinaryOperator &FDiv) { |
| if (DisableFDivExpand) |
| return false; |
| |
| Type *Ty = FDiv.getType()->getScalarType(); |
| if (!Ty->isFloatTy()) |
| return false; |
| |
| // The f64 rcp/rsq approximations are pretty inaccurate. We can do an |
| // expansion around them in codegen. f16 is good enough to always use. |
| |
| const FPMathOperator *FPOp = cast<const FPMathOperator>(&FDiv); |
| const FastMathFlags DivFMF = FPOp->getFastMathFlags(); |
| const float ReqdAccuracy = FPOp->getFPAccuracy(); |
| |
| FastMathFlags SqrtFMF; |
| |
| Value *Num = FDiv.getOperand(0); |
| Value *Den = FDiv.getOperand(1); |
| |
| Value *RsqOp = nullptr; |
| auto *DenII = dyn_cast<IntrinsicInst>(Den); |
| if (DenII && DenII->getIntrinsicID() == Intrinsic::sqrt && |
| DenII->hasOneUse()) { |
| const auto *SqrtOp = cast<FPMathOperator>(DenII); |
| SqrtFMF = SqrtOp->getFastMathFlags(); |
| if (canOptimizeWithRsq(SqrtOp, DivFMF, SqrtFMF)) |
| RsqOp = SqrtOp->getOperand(0); |
| } |
| |
| // Inaccurate rcp is allowed with unsafe-fp-math or afn. |
| // |
| // Defer to codegen to handle this. |
| // |
| // TODO: Decide on an interpretation for interactions between afn + arcp + |
| // !fpmath, and make it consistent between here and codegen. For now, defer |
| // expansion of afn to codegen. The current interpretation is so aggressive we |
| // don't need any pre-consideration here when we have better information. A |
| // more conservative interpretation could use handling here. |
| const bool AllowInaccurateRcp = HasUnsafeFPMath || DivFMF.approxFunc(); |
| if (!RsqOp && AllowInaccurateRcp) |
| return false; |
| |
| // Defer the correct implementations to codegen. |
| if (ReqdAccuracy < 1.0f) |
| return false; |
| |
| IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator())); |
| Builder.setFastMathFlags(DivFMF); |
| Builder.SetCurrentDebugLocation(FDiv.getDebugLoc()); |
| |
| SmallVector<Value *, 4> NumVals; |
| SmallVector<Value *, 4> DenVals; |
| SmallVector<Value *, 4> RsqDenVals; |
| extractValues(Builder, NumVals, Num); |
| extractValues(Builder, DenVals, Den); |
| |
| if (RsqOp) |
| extractValues(Builder, RsqDenVals, RsqOp); |
| |
| SmallVector<Value *, 4> ResultVals(NumVals.size()); |
| for (int I = 0, E = NumVals.size(); I != E; ++I) { |
| Value *NumElt = NumVals[I]; |
| Value *DenElt = DenVals[I]; |
| Value *RsqDenElt = RsqOp ? RsqDenVals[I] : nullptr; |
| |
| Value *NewElt = |
| visitFDivElement(Builder, NumElt, DenElt, DivFMF, SqrtFMF, RsqDenElt, |
| cast<Instruction>(FPOp), ReqdAccuracy); |
| if (!NewElt) { |
| // Keep the original, but scalarized. |
| |
| // This has the unfortunate side effect of sometimes scalarizing when |
| // we're not going to do anything. |
| NewElt = Builder.CreateFDiv(NumElt, DenElt); |
| if (auto *NewEltInst = dyn_cast<Instruction>(NewElt)) |
| NewEltInst->copyMetadata(FDiv); |
| } |
| |
| ResultVals[I] = NewElt; |
| } |
| |
| Value *NewVal = insertValues(Builder, FDiv.getType(), ResultVals); |
| |
| if (NewVal) { |
| FDiv.replaceAllUsesWith(NewVal); |
| NewVal->takeName(&FDiv); |
| RecursivelyDeleteTriviallyDeadInstructions(&FDiv, TLInfo); |
| } |
| |
| return true; |
| } |
| |
| static bool hasUnsafeFPMath(const Function &F) { |
| Attribute Attr = F.getFnAttribute("unsafe-fp-math"); |
| return Attr.getValueAsBool(); |
| } |
| |
| static std::pair<Value*, Value*> getMul64(IRBuilder<> &Builder, |
| Value *LHS, Value *RHS) { |
| Type *I32Ty = Builder.getInt32Ty(); |
| Type *I64Ty = Builder.getInt64Ty(); |
| |
| Value *LHS_EXT64 = Builder.CreateZExt(LHS, I64Ty); |
| Value *RHS_EXT64 = Builder.CreateZExt(RHS, I64Ty); |
| Value *MUL64 = Builder.CreateMul(LHS_EXT64, RHS_EXT64); |
| Value *Lo = Builder.CreateTrunc(MUL64, I32Ty); |
| Value *Hi = Builder.CreateLShr(MUL64, Builder.getInt64(32)); |
| Hi = Builder.CreateTrunc(Hi, I32Ty); |
| return std::pair(Lo, Hi); |
| } |
| |
| static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) { |
| return getMul64(Builder, LHS, RHS).second; |
| } |
| |
| /// Figure out how many bits are really needed for this division. \p AtLeast is |
| /// an optimization hint to bypass the second ComputeNumSignBits call if we the |
| /// first one is insufficient. Returns -1 on failure. |
| int AMDGPUCodeGenPrepareImpl::getDivNumBits(BinaryOperator &I, Value *Num, |
| Value *Den, unsigned AtLeast, |
| bool IsSigned) const { |
| const DataLayout &DL = Mod->getDataLayout(); |
| unsigned LHSSignBits = ComputeNumSignBits(Num, DL, 0, AC, &I); |
| if (LHSSignBits < AtLeast) |
| return -1; |
| |
| unsigned RHSSignBits = ComputeNumSignBits(Den, DL, 0, AC, &I); |
| if (RHSSignBits < AtLeast) |
| return -1; |
| |
| unsigned SignBits = std::min(LHSSignBits, RHSSignBits); |
| unsigned DivBits = Num->getType()->getScalarSizeInBits() - SignBits; |
| if (IsSigned) |
| ++DivBits; |
| return DivBits; |
| } |
| |
| // The fractional part of a float is enough to accurately represent up to |
| // a 24-bit signed integer. |
| Value *AMDGPUCodeGenPrepareImpl::expandDivRem24(IRBuilder<> &Builder, |
| BinaryOperator &I, Value *Num, |
| Value *Den, bool IsDiv, |
| bool IsSigned) const { |
| unsigned SSBits = Num->getType()->getScalarSizeInBits(); |
| // If Num bits <= 24, assume 0 signbits. |
| unsigned AtLeast = (SSBits <= 24) ? 0 : (SSBits - 24 + IsSigned); |
| int DivBits = getDivNumBits(I, Num, Den, AtLeast, IsSigned); |
| if (DivBits == -1) |
| return nullptr; |
| return expandDivRem24Impl(Builder, I, Num, Den, DivBits, IsDiv, IsSigned); |
| } |
| |
| Value *AMDGPUCodeGenPrepareImpl::expandDivRem24Impl( |
| IRBuilder<> &Builder, BinaryOperator &I, Value *Num, Value *Den, |
| unsigned DivBits, bool IsDiv, bool IsSigned) const { |
| Type *I32Ty = Builder.getInt32Ty(); |
| Num = Builder.CreateTrunc(Num, I32Ty); |
| Den = Builder.CreateTrunc(Den, I32Ty); |
| |
| Type *F32Ty = Builder.getFloatTy(); |
| ConstantInt *One = Builder.getInt32(1); |
| Value *JQ = One; |
| |
| if (IsSigned) { |
| // char|short jq = ia ^ ib; |
| JQ = Builder.CreateXor(Num, Den); |
| |
| // jq = jq >> (bitsize - 2) |
| JQ = Builder.CreateAShr(JQ, Builder.getInt32(30)); |
| |
| // jq = jq | 0x1 |
| JQ = Builder.CreateOr(JQ, One); |
| } |
| |
| // int ia = (int)LHS; |
| Value *IA = Num; |
| |
| // int ib, (int)RHS; |
| Value *IB = Den; |
| |
| // float fa = (float)ia; |
| Value *FA = IsSigned ? Builder.CreateSIToFP(IA, F32Ty) |
| : Builder.CreateUIToFP(IA, F32Ty); |
| |
| // float fb = (float)ib; |
| Value *FB = IsSigned ? Builder.CreateSIToFP(IB,F32Ty) |
| : Builder.CreateUIToFP(IB,F32Ty); |
| |
| Function *RcpDecl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, |
| Builder.getFloatTy()); |
| Value *RCP = Builder.CreateCall(RcpDecl, { FB }); |
| Value *FQM = Builder.CreateFMul(FA, RCP); |
| |
| // fq = trunc(fqm); |
| CallInst *FQ = Builder.CreateUnaryIntrinsic(Intrinsic::trunc, FQM); |
| FQ->copyFastMathFlags(Builder.getFastMathFlags()); |
| |
| // float fqneg = -fq; |
| Value *FQNeg = Builder.CreateFNeg(FQ); |
| |
| // float fr = mad(fqneg, fb, fa); |
| auto FMAD = !ST->hasMadMacF32Insts() |
| ? Intrinsic::fma |
| : (Intrinsic::ID)Intrinsic::amdgcn_fmad_ftz; |
| Value *FR = Builder.CreateIntrinsic(FMAD, |
| {FQNeg->getType()}, {FQNeg, FB, FA}, FQ); |
| |
| // int iq = (int)fq; |
| Value *IQ = IsSigned ? Builder.CreateFPToSI(FQ, I32Ty) |
| : Builder.CreateFPToUI(FQ, I32Ty); |
| |
| // fr = fabs(fr); |
| FR = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FR, FQ); |
| |
| // fb = fabs(fb); |
| FB = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FB, FQ); |
| |
| // int cv = fr >= fb; |
| Value *CV = Builder.CreateFCmpOGE(FR, FB); |
| |
| // jq = (cv ? jq : 0); |
| JQ = Builder.CreateSelect(CV, JQ, Builder.getInt32(0)); |
| |
| // dst = iq + jq; |
| Value *Div = Builder.CreateAdd(IQ, JQ); |
| |
| Value *Res = Div; |
| if (!IsDiv) { |
| // Rem needs compensation, it's easier to recompute it |
| Value *Rem = Builder.CreateMul(Div, Den); |
| Res = Builder.CreateSub(Num, Rem); |
| } |
| |
| if (DivBits != 0 && DivBits < 32) { |
| // Extend in register from the number of bits this divide really is. |
| if (IsSigned) { |
| int InRegBits = 32 - DivBits; |
| |
| Res = Builder.CreateShl(Res, InRegBits); |
| Res = Builder.CreateAShr(Res, InRegBits); |
| } else { |
| ConstantInt *TruncMask |
| = Builder.getInt32((UINT64_C(1) << DivBits) - 1); |
| Res = Builder.CreateAnd(Res, TruncMask); |
| } |
| } |
| |
| return Res; |
| } |
| |
| // Try to recognize special cases the DAG will emit special, better expansions |
| // than the general expansion we do here. |
| |
| // TODO: It would be better to just directly handle those optimizations here. |
| bool AMDGPUCodeGenPrepareImpl::divHasSpecialOptimization(BinaryOperator &I, |
| Value *Num, |
| Value *Den) const { |
| if (Constant *C = dyn_cast<Constant>(Den)) { |
| // Arbitrary constants get a better expansion as long as a wider mulhi is |
| // legal. |
| if (C->getType()->getScalarSizeInBits() <= 32) |
| return true; |
| |
| // TODO: Sdiv check for not exact for some reason. |
| |
| // If there's no wider mulhi, there's only a better expansion for powers of |
| // two. |
| // TODO: Should really know for each vector element. |
| if (isKnownToBeAPowerOfTwo(C, *DL, true, 0, AC, &I, DT)) |
| return true; |
| |
| return false; |
| } |
| |
| if (BinaryOperator *BinOpDen = dyn_cast<BinaryOperator>(Den)) { |
| // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 |
| if (BinOpDen->getOpcode() == Instruction::Shl && |
| isa<Constant>(BinOpDen->getOperand(0)) && |
| isKnownToBeAPowerOfTwo(BinOpDen->getOperand(0), *DL, true, |
| 0, AC, &I, DT)) { |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| static Value *getSign32(Value *V, IRBuilder<> &Builder, const DataLayout *DL) { |
| // Check whether the sign can be determined statically. |
| KnownBits Known = computeKnownBits(V, *DL); |
| if (Known.isNegative()) |
| return Constant::getAllOnesValue(V->getType()); |
| if (Known.isNonNegative()) |
| return Constant::getNullValue(V->getType()); |
| return Builder.CreateAShr(V, Builder.getInt32(31)); |
| } |
| |
| Value *AMDGPUCodeGenPrepareImpl::expandDivRem32(IRBuilder<> &Builder, |
| BinaryOperator &I, Value *X, |
| Value *Y) const { |
| Instruction::BinaryOps Opc = I.getOpcode(); |
| assert(Opc == Instruction::URem || Opc == Instruction::UDiv || |
| Opc == Instruction::SRem || Opc == Instruction::SDiv); |
| |
| FastMathFlags FMF; |
| FMF.setFast(); |
| Builder.setFastMathFlags(FMF); |
| |
| if (divHasSpecialOptimization(I, X, Y)) |
| return nullptr; // Keep it for later optimization. |
| |
| bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv; |
| bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv; |
| |
| Type *Ty = X->getType(); |
| Type *I32Ty = Builder.getInt32Ty(); |
| Type *F32Ty = Builder.getFloatTy(); |
| |
| if (Ty->getScalarSizeInBits() != 32) { |
| if (IsSigned) { |
| X = Builder.CreateSExtOrTrunc(X, I32Ty); |
| Y = Builder.CreateSExtOrTrunc(Y, I32Ty); |
| } else { |
| X = Builder.CreateZExtOrTrunc(X, I32Ty); |
| Y = Builder.CreateZExtOrTrunc(Y, I32Ty); |
| } |
| } |
| |
| if (Value *Res = expandDivRem24(Builder, I, X, Y, IsDiv, IsSigned)) { |
| return IsSigned ? Builder.CreateSExtOrTrunc(Res, Ty) : |
| Builder.CreateZExtOrTrunc(Res, Ty); |
| } |
| |
| ConstantInt *Zero = Builder.getInt32(0); |
| ConstantInt *One = Builder.getInt32(1); |
| |
| Value *Sign = nullptr; |
| if (IsSigned) { |
| Value *SignX = getSign32(X, Builder, DL); |
| Value *SignY = getSign32(Y, Builder, DL); |
| // Remainder sign is the same as LHS |
| Sign = IsDiv ? Builder.CreateXor(SignX, SignY) : SignX; |
| |
| X = Builder.CreateAdd(X, SignX); |
| Y = Builder.CreateAdd(Y, SignY); |
| |
| X = Builder.CreateXor(X, SignX); |
| Y = Builder.CreateXor(Y, SignY); |
| } |
| |
| // The algorithm here is based on ideas from "Software Integer Division", Tom |
| // Rodeheffer, August 2008. |
| // |
| // unsigned udiv(unsigned x, unsigned y) { |
| // // Initial estimate of inv(y). The constant is less than 2^32 to ensure |
| // // that this is a lower bound on inv(y), even if some of the calculations |
| // // round up. |
| // unsigned z = (unsigned)((4294967296.0 - 512.0) * v_rcp_f32((float)y)); |
| // |
| // // One round of UNR (Unsigned integer Newton-Raphson) to improve z. |
| // // Empirically this is guaranteed to give a "two-y" lower bound on |
| // // inv(y). |
| // z += umulh(z, -y * z); |
| // |
| // // Quotient/remainder estimate. |
| // unsigned q = umulh(x, z); |
| // unsigned r = x - q * y; |
| // |
| // // Two rounds of quotient/remainder refinement. |
| // if (r >= y) { |
| // ++q; |
| // r -= y; |
| // } |
| // if (r >= y) { |
| // ++q; |
| // r -= y; |
| // } |
| // |
| // return q; |
| // } |
| |
| // Initial estimate of inv(y). |
| Value *FloatY = Builder.CreateUIToFP(Y, F32Ty); |
| Function *Rcp = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, F32Ty); |
| Value *RcpY = Builder.CreateCall(Rcp, {FloatY}); |
| Constant *Scale = ConstantFP::get(F32Ty, llvm::bit_cast<float>(0x4F7FFFFE)); |
| Value *ScaledY = Builder.CreateFMul(RcpY, Scale); |
| Value *Z = Builder.CreateFPToUI(ScaledY, I32Ty); |
| |
| // One round of UNR. |
| Value *NegY = Builder.CreateSub(Zero, Y); |
| Value *NegYZ = Builder.CreateMul(NegY, Z); |
| Z = Builder.CreateAdd(Z, getMulHu(Builder, Z, NegYZ)); |
| |
| // Quotient/remainder estimate. |
| Value *Q = getMulHu(Builder, X, Z); |
| Value *R = Builder.CreateSub(X, Builder.CreateMul(Q, Y)); |
| |
| // First quotient/remainder refinement. |
| Value *Cond = Builder.CreateICmpUGE(R, Y); |
| if (IsDiv) |
| Q = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q); |
| R = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R); |
| |
| // Second quotient/remainder refinement. |
| Cond = Builder.CreateICmpUGE(R, Y); |
| Value *Res; |
| if (IsDiv) |
| Res = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q); |
| else |
| Res = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R); |
| |
| if (IsSigned) { |
| Res = Builder.CreateXor(Res, Sign); |
| Res = Builder.CreateSub(Res, Sign); |
| Res = Builder.CreateSExtOrTrunc(Res, Ty); |
| } else { |
| Res = Builder.CreateZExtOrTrunc(Res, Ty); |
| } |
| return Res; |
| } |
| |
| Value *AMDGPUCodeGenPrepareImpl::shrinkDivRem64(IRBuilder<> &Builder, |
| BinaryOperator &I, Value *Num, |
| Value *Den) const { |
| if (!ExpandDiv64InIR && divHasSpecialOptimization(I, Num, Den)) |
| return nullptr; // Keep it for later optimization. |
| |
| Instruction::BinaryOps Opc = I.getOpcode(); |
| |
| bool IsDiv = Opc == Instruction::SDiv || Opc == Instruction::UDiv; |
| bool IsSigned = Opc == Instruction::SDiv || Opc == Instruction::SRem; |
| |
| int NumDivBits = getDivNumBits(I, Num, Den, 32, IsSigned); |
| if (NumDivBits == -1) |
| return nullptr; |
| |
| Value *Narrowed = nullptr; |
| if (NumDivBits <= 24) { |
| Narrowed = expandDivRem24Impl(Builder, I, Num, Den, NumDivBits, |
| IsDiv, IsSigned); |
| } else if (NumDivBits <= 32) { |
| Narrowed = expandDivRem32(Builder, I, Num, Den); |
| } |
| |
| if (Narrowed) { |
| return IsSigned ? Builder.CreateSExt(Narrowed, Num->getType()) : |
| Builder.CreateZExt(Narrowed, Num->getType()); |
| } |
| |
| return nullptr; |
| } |
| |
| void AMDGPUCodeGenPrepareImpl::expandDivRem64(BinaryOperator &I) const { |
| Instruction::BinaryOps Opc = I.getOpcode(); |
| // Do the general expansion. |
| if (Opc == Instruction::UDiv || Opc == Instruction::SDiv) { |
| expandDivisionUpTo64Bits(&I); |
| return; |
| } |
| |
| if (Opc == Instruction::URem || Opc == Instruction::SRem) { |
| expandRemainderUpTo64Bits(&I); |
| return; |
| } |
| |
| llvm_unreachable("not a division"); |
| } |
| |
| bool AMDGPUCodeGenPrepareImpl::visitBinaryOperator(BinaryOperator &I) { |
| if (foldBinOpIntoSelect(I)) |
| return true; |
| |
| if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && |
| UA->isUniform(&I) && promoteUniformOpToI32(I)) |
| return true; |
| |
| if (UseMul24Intrin && replaceMulWithMul24(I)) |
| return true; |
| |
| bool Changed = false; |
| Instruction::BinaryOps Opc = I.getOpcode(); |
| Type *Ty = I.getType(); |
| Value *NewDiv = nullptr; |
| unsigned ScalarSize = Ty->getScalarSizeInBits(); |
| |
| SmallVector<BinaryOperator *, 8> Div64ToExpand; |
| |
| if ((Opc == Instruction::URem || Opc == Instruction::UDiv || |
| Opc == Instruction::SRem || Opc == Instruction::SDiv) && |
| ScalarSize <= 64 && |
| !DisableIDivExpand) { |
| Value *Num = I.getOperand(0); |
| Value *Den = I.getOperand(1); |
| IRBuilder<> Builder(&I); |
| Builder.SetCurrentDebugLocation(I.getDebugLoc()); |
| |
| if (auto *VT = dyn_cast<FixedVectorType>(Ty)) { |
| NewDiv = PoisonValue::get(VT); |
| |
| for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) { |
| Value *NumEltN = Builder.CreateExtractElement(Num, N); |
| Value *DenEltN = Builder.CreateExtractElement(Den, N); |
| |
| Value *NewElt; |
| if (ScalarSize <= 32) { |
| NewElt = expandDivRem32(Builder, I, NumEltN, DenEltN); |
| if (!NewElt) |
| NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN); |
| } else { |
| // See if this 64-bit division can be shrunk to 32/24-bits before |
| // producing the general expansion. |
| NewElt = shrinkDivRem64(Builder, I, NumEltN, DenEltN); |
| if (!NewElt) { |
| // The general 64-bit expansion introduces control flow and doesn't |
| // return the new value. Just insert a scalar copy and defer |
| // expanding it. |
| NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN); |
| Div64ToExpand.push_back(cast<BinaryOperator>(NewElt)); |
| } |
| } |
| |
| if (auto *NewEltI = dyn_cast<Instruction>(NewElt)) |
| NewEltI->copyIRFlags(&I); |
| |
| NewDiv = Builder.CreateInsertElement(NewDiv, NewElt, N); |
| } |
| } else { |
| if (ScalarSize <= 32) |
| NewDiv = expandDivRem32(Builder, I, Num, Den); |
| else { |
| NewDiv = shrinkDivRem64(Builder, I, Num, Den); |
| if (!NewDiv) |
| Div64ToExpand.push_back(&I); |
| } |
| } |
| |
| if (NewDiv) { |
| I.replaceAllUsesWith(NewDiv); |
| I.eraseFromParent(); |
| Changed = true; |
| } |
| } |
| |
| if (ExpandDiv64InIR) { |
| // TODO: We get much worse code in specially handled constant cases. |
| for (BinaryOperator *Div : Div64ToExpand) { |
| expandDivRem64(*Div); |
| FlowChanged = true; |
| Changed = true; |
| } |
| } |
| |
| return Changed; |
| } |
| |
| bool AMDGPUCodeGenPrepareImpl::visitLoadInst(LoadInst &I) { |
| if (!WidenLoads) |
| return false; |
| |
| if ((I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || |
| I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && |
| canWidenScalarExtLoad(I)) { |
| IRBuilder<> Builder(&I); |
| Builder.SetCurrentDebugLocation(I.getDebugLoc()); |
| |
| Type *I32Ty = Builder.getInt32Ty(); |
| LoadInst *WidenLoad = Builder.CreateLoad(I32Ty, I.getPointerOperand()); |
| WidenLoad->copyMetadata(I); |
| |
| // If we have range metadata, we need to convert the type, and not make |
| // assumptions about the high bits. |
| if (auto *Range = WidenLoad->getMetadata(LLVMContext::MD_range)) { |
| ConstantInt *Lower = |
| mdconst::extract<ConstantInt>(Range->getOperand(0)); |
| |
| if (Lower->isNullValue()) { |
| WidenLoad->setMetadata(LLVMContext::MD_range, nullptr); |
| } else { |
| Metadata *LowAndHigh[] = { |
| ConstantAsMetadata::get(ConstantInt::get(I32Ty, Lower->getValue().zext(32))), |
| // Don't make assumptions about the high bits. |
| ConstantAsMetadata::get(ConstantInt::get(I32Ty, 0)) |
| }; |
| |
| WidenLoad->setMetadata(LLVMContext::MD_range, |
| MDNode::get(Mod->getContext(), LowAndHigh)); |
| } |
| } |
| |
| int TySize = Mod->getDataLayout().getTypeSizeInBits(I.getType()); |
| Type *IntNTy = Builder.getIntNTy(TySize); |
| Value *ValTrunc = Builder.CreateTrunc(WidenLoad, IntNTy); |
| Value *ValOrig = Builder.CreateBitCast(ValTrunc, I.getType()); |
| I.replaceAllUsesWith(ValOrig); |
| I.eraseFromParent(); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool AMDGPUCodeGenPrepareImpl::visitICmpInst(ICmpInst &I) { |
| bool Changed = false; |
| |
| if (ST->has16BitInsts() && needsPromotionToI32(I.getOperand(0)->getType()) && |
| UA->isUniform(&I)) |
| Changed |= promoteUniformOpToI32(I); |
| |
| return Changed; |
| } |
| |
| bool AMDGPUCodeGenPrepareImpl::visitSelectInst(SelectInst &I) { |
| Value *Cond = I.getCondition(); |
| Value *TrueVal = I.getTrueValue(); |
| Value *FalseVal = I.getFalseValue(); |
| Value *CmpVal; |
| FCmpInst::Predicate Pred; |
| |
| if (ST->has16BitInsts() && needsPromotionToI32(I.getType())) { |
| if (UA->isUniform(&I)) |
| return promoteUniformOpToI32(I); |
| return false; |
| } |
| |
| // Match fract pattern with nan check. |
| if (!match(Cond, m_FCmp(Pred, m_Value(CmpVal), m_NonNaN()))) |
| return false; |
| |
| FPMathOperator *FPOp = dyn_cast<FPMathOperator>(&I); |
| if (!FPOp) |
| return false; |
| |
| IRBuilder<> Builder(&I); |
| Builder.setFastMathFlags(FPOp->getFastMathFlags()); |
| |
| auto *IITrue = dyn_cast<IntrinsicInst>(TrueVal); |
| auto *IIFalse = dyn_cast<IntrinsicInst>(FalseVal); |
| |
| Value *Fract = nullptr; |
| if (Pred == FCmpInst::FCMP_UNO && TrueVal == CmpVal && IIFalse && |
| CmpVal == matchFractPat(*IIFalse)) { |
| // isnan(x) ? x : fract(x) |
| Fract = applyFractPat(Builder, CmpVal); |
| } else if (Pred == FCmpInst::FCMP_ORD && FalseVal == CmpVal && IITrue && |
| CmpVal == matchFractPat(*IITrue)) { |
| // !isnan(x) ? fract(x) : x |
| Fract = applyFractPat(Builder, CmpVal); |
| } else |
| return false; |
| |
| Fract->takeName(&I); |
| I.replaceAllUsesWith(Fract); |
| RecursivelyDeleteTriviallyDeadInstructions(&I, TLInfo); |
| return true; |
| } |
| |
| static bool areInSameBB(const Value *A, const Value *B) { |
| const auto *IA = dyn_cast<Instruction>(A); |
| const auto *IB = dyn_cast<Instruction>(B); |
| return IA && IB && IA->getParent() == IB->getParent(); |
| } |
| |
| // Helper for breaking large PHIs that returns true when an extractelement on V |
| // is likely to be folded away by the DAG combiner. |
| static bool isInterestingPHIIncomingValue(const Value *V) { |
| const auto *FVT = dyn_cast<FixedVectorType>(V->getType()); |
| if (!FVT) |
| return false; |
| |
| const Value *CurVal = V; |
| |
| // Check for insertelements, keeping track of the elements covered. |
| BitVector EltsCovered(FVT->getNumElements()); |
| while (const auto *IE = dyn_cast<InsertElementInst>(CurVal)) { |
| const auto *Idx = dyn_cast<ConstantInt>(IE->getOperand(2)); |
| |
| // Non constant index/out of bounds index -> folding is unlikely. |
| // The latter is more of a sanity check because canonical IR should just |
| // have replaced those with poison. |
| if (!Idx || Idx->getZExtValue() >= FVT->getNumElements()) |
| return false; |
| |
| const auto *VecSrc = IE->getOperand(0); |
| |
| // If the vector source is another instruction, it must be in the same basic |
| // block. Otherwise, the DAGCombiner won't see the whole thing and is |
| // unlikely to be able to do anything interesting here. |
| if (isa<Instruction>(VecSrc) && !areInSameBB(VecSrc, IE)) |
| return false; |
| |
| CurVal = VecSrc; |
| EltsCovered.set(Idx->getZExtValue()); |
| |
| // All elements covered. |
| if (EltsCovered.all()) |
| return true; |
| } |
| |
| // We either didn't find a single insertelement, or the insertelement chain |
| // ended before all elements were covered. Check for other interesting values. |
| |
| // Constants are always interesting because we can just constant fold the |
| // extractelements. |
| if (isa<Constant>(CurVal)) |
| return true; |
| |
| // shufflevector is likely to be profitable if either operand is a constant, |
| // or if either source is in the same block. |
| // This is because shufflevector is most often lowered as a series of |
| // insert/extract elements anyway. |
| if (const auto *SV = dyn_cast<ShuffleVectorInst>(CurVal)) { |
| return isa<Constant>(SV->getOperand(1)) || |
| areInSameBB(SV, SV->getOperand(0)) || |
| areInSameBB(SV, SV->getOperand(1)); |
| } |
| |
| return false; |
| } |
| |
| static void collectPHINodes(const PHINode &I, |
| SmallPtrSet<const PHINode *, 8> &SeenPHIs) { |
| const auto [It, Inserted] = SeenPHIs.insert(&I); |
| if (!Inserted) |
| return; |
| |
| for (const Value *Inc : I.incoming_values()) { |
| if (const auto *PhiInc = dyn_cast<PHINode>(Inc)) |
| collectPHINodes(*PhiInc, SeenPHIs); |
| } |
| |
| for (const User *U : I.users()) { |
| if (const auto *PhiU = dyn_cast<PHINode>(U)) |
| collectPHINodes(*PhiU, SeenPHIs); |
| } |
| } |
| |
| bool AMDGPUCodeGenPrepareImpl::canBreakPHINode(const PHINode &I) { |
| // Check in the cache first. |
| if (const auto It = BreakPhiNodesCache.find(&I); |
| It != BreakPhiNodesCache.end()) |
| return It->second; |
| |
| // We consider PHI nodes as part of "chains", so given a PHI node I, we |
| // recursively consider all its users and incoming values that are also PHI |
| // nodes. We then make a decision about all of those PHIs at once. Either they |
| // all get broken up, or none of them do. That way, we avoid cases where a |
| // single PHI is/is not broken and we end up reforming/exploding a vector |
| // multiple times, or even worse, doing it in a loop. |
| SmallPtrSet<const PHINode *, 8> WorkList; |
| collectPHINodes(I, WorkList); |
| |
| #ifndef NDEBUG |
| // Check that none of the PHI nodes in the worklist are in the map. If some of |
| // them are, it means we're not good enough at collecting related PHIs. |
| for (const PHINode *WLP : WorkList) { |
| assert(BreakPhiNodesCache.count(WLP) == 0); |
| } |
| #endif |
| |
| // To consider a PHI profitable to break, we need to see some interesting |
| // incoming values. At least 2/3rd (rounded up) of all PHIs in the worklist |
| // must have one to consider all PHIs breakable. |
| // |
| // This threshold has been determined through performance testing. |
| // |
| // Note that the computation below is equivalent to |
| // |
| // (unsigned)ceil((K / 3.0) * 2) |
| // |
| // It's simply written this way to avoid mixing integral/FP arithmetic. |
| const auto Threshold = (alignTo(WorkList.size() * 2, 3) / 3); |
| unsigned NumBreakablePHIs = 0; |
| bool CanBreak = false; |
| for (const PHINode *Cur : WorkList) { |
| // Don't break PHIs that have no interesting incoming values. That is, where |
| // there is no clear opportunity to fold the "extractelement" instructions |
| // we would add. |
| // |
| // Note: IC does not run after this pass, so we're only interested in the |
| // foldings that the DAG combiner can do. |
| if (any_of(Cur->incoming_values(), isInterestingPHIIncomingValue)) { |
| if (++NumBreakablePHIs >= Threshold) { |
| CanBreak = true; |
| break; |
| } |
| } |
| } |
| |
| for (const PHINode *Cur : WorkList) |
| BreakPhiNodesCache[Cur] = CanBreak; |
| |
| return CanBreak; |
| } |
| |
| /// Helper class for "break large PHIs" (visitPHINode). |
| /// |
| /// This represents a slice of a PHI's incoming value, which is made up of: |
| /// - The type of the slice (Ty) |
| /// - The index in the incoming value's vector where the slice starts (Idx) |
| /// - The number of elements in the slice (NumElts). |
| /// It also keeps track of the NewPHI node inserted for this particular slice. |
| /// |
| /// Slice examples: |
| /// <4 x i64> -> Split into four i64 slices. |
| /// -> [i64, 0, 1], [i64, 1, 1], [i64, 2, 1], [i64, 3, 1] |
| /// <5 x i16> -> Split into 2 <2 x i16> slices + a i16 tail. |
| /// -> [<2 x i16>, 0, 2], [<2 x i16>, 2, 2], [i16, 4, 1] |
| class VectorSlice { |
| public: |
| VectorSlice(Type *Ty, unsigned Idx, unsigned NumElts) |
| : Ty(Ty), Idx(Idx), NumElts(NumElts) {} |
| |
| Type *Ty = nullptr; |
| unsigned Idx = 0; |
| unsigned NumElts = 0; |
| PHINode *NewPHI = nullptr; |
| |
| /// Slice \p Inc according to the information contained within this slice. |
| /// This is cached, so if called multiple times for the same \p BB & \p Inc |
| /// pair, it returns the same Sliced value as well. |
| /// |
| /// Note this *intentionally* does not return the same value for, say, |
| /// [%bb.0, %0] & [%bb.1, %0] as: |
| /// - It could cause issues with dominance (e.g. if bb.1 is seen first, then |
| /// the value in bb.1 may not be reachable from bb.0 if it's its |
| /// predecessor.) |
| /// - We also want to make our extract instructions as local as possible so |
| /// the DAG has better chances of folding them out. Duplicating them like |
| /// that is beneficial in that regard. |
| /// |
| /// This is both a minor optimization to avoid creating duplicate |
| /// instructions, but also a requirement for correctness. It is not forbidden |
| /// for a PHI node to have the same [BB, Val] pair multiple times. If we |
| /// returned a new value each time, those previously identical pairs would all |
| /// have different incoming values (from the same block) and it'd cause a "PHI |
| /// node has multiple entries for the same basic block with different incoming |
| /// values!" verifier error. |
| Value *getSlicedVal(BasicBlock *BB, Value *Inc, StringRef NewValName) { |
| Value *&Res = SlicedVals[{BB, Inc}]; |
| if (Res) |
| return Res; |
| |
| IRBuilder<> B(BB->getTerminator()); |
| if (Instruction *IncInst = dyn_cast<Instruction>(Inc)) |
| B.SetCurrentDebugLocation(IncInst->getDebugLoc()); |
| |
| if (NumElts > 1) { |
| SmallVector<int, 4> Mask; |
| for (unsigned K = Idx; K < (Idx + NumElts); ++K) |
| Mask.push_back(K); |
| Res = B.CreateShuffleVector(Inc, Mask, NewValName); |
| } else |
| Res = B.CreateExtractElement(Inc, Idx, NewValName); |
| |
| return Res; |
| } |
| |
| private: |
| SmallDenseMap<std::pair<BasicBlock *, Value *>, Value *> SlicedVals; |
| }; |
| |
| bool AMDGPUCodeGenPrepareImpl::visitPHINode(PHINode &I) { |
| // Break-up fixed-vector PHIs into smaller pieces. |
| // Default threshold is 32, so it breaks up any vector that's >32 bits into |
| // its elements, or into 32-bit pieces (for 8/16 bit elts). |
| // |
| // This is only helpful for DAGISel because it doesn't handle large PHIs as |
| // well as GlobalISel. DAGISel lowers PHIs by using CopyToReg/CopyFromReg. |
| // With large, odd-sized PHIs we may end up needing many `build_vector` |
| // operations with most elements being "undef". This inhibits a lot of |
| // optimization opportunities and can result in unreasonably high register |
| // pressure and the inevitable stack spilling. |
| if (!BreakLargePHIs || getCGPassBuilderOption().EnableGlobalISelOption) |
| return false; |
| |
| FixedVectorType *FVT = dyn_cast<FixedVectorType>(I.getType()); |
| if (!FVT || FVT->getNumElements() == 1 || |
| DL->getTypeSizeInBits(FVT) <= BreakLargePHIsThreshold) |
| return false; |
| |
| if (!ForceBreakLargePHIs && !canBreakPHINode(I)) |
| return false; |
| |
| std::vector<VectorSlice> Slices; |
| |
| Type *EltTy = FVT->getElementType(); |
| { |
| unsigned Idx = 0; |
| // For 8/16 bits type, don't scalarize fully but break it up into as many |
| // 32-bit slices as we can, and scalarize the tail. |
| const unsigned EltSize = DL->getTypeSizeInBits(EltTy); |
| const unsigned NumElts = FVT->getNumElements(); |
| if (EltSize == 8 || EltSize == 16) { |
| const unsigned SubVecSize = (32 / EltSize); |
| Type *SubVecTy = FixedVectorType::get(EltTy, SubVecSize); |
| for (unsigned End = alignDown(NumElts, SubVecSize); Idx < End; |
| Idx += SubVecSize) |
| Slices.emplace_back(SubVecTy, Idx, SubVecSize); |
| } |
| |
| // Scalarize all remaining elements. |
| for (; Idx < NumElts; ++Idx) |
| Slices.emplace_back(EltTy, Idx, 1); |
| } |
| |
| assert(Slices.size() > 1); |
| |
| // Create one PHI per vector piece. The "VectorSlice" class takes care of |
| // creating the necessary instruction to extract the relevant slices of each |
| // incoming value. |
| IRBuilder<> B(I.getParent()); |
| B.SetCurrentDebugLocation(I.getDebugLoc()); |
| |
| unsigned IncNameSuffix = 0; |
| for (VectorSlice &S : Slices) { |
| // We need to reset the build on each iteration, because getSlicedVal may |
| // have inserted something into I's BB. |
| B.SetInsertPoint(I.getParent()->getFirstNonPHIIt()); |
| S.NewPHI = B.CreatePHI(S.Ty, I.getNumIncomingValues()); |
| |
| for (const auto &[Idx, BB] : enumerate(I.blocks())) { |
| S.NewPHI->addIncoming(S.getSlicedVal(BB, I.getIncomingValue(Idx), |
| "largephi.extractslice" + |
| std::to_string(IncNameSuffix++)), |
| BB); |
| } |
| } |
| |
| // And replace this PHI with a vector of all the previous PHI values. |
| Value *Vec = PoisonValue::get(FVT); |
| unsigned NameSuffix = 0; |
| for (VectorSlice &S : Slices) { |
| const auto ValName = "largephi.insertslice" + std::to_string(NameSuffix++); |
| if (S.NumElts > 1) |
| Vec = |
| B.CreateInsertVector(FVT, Vec, S.NewPHI, B.getInt64(S.Idx), ValName); |
| else |
| Vec = B.CreateInsertElement(Vec, S.NewPHI, S.Idx, ValName); |
| } |
| |
| I.replaceAllUsesWith(Vec); |
| I.eraseFromParent(); |
| return true; |
| } |
| |
| /// \param V Value to check |
| /// \param DL DataLayout |
| /// \param TM TargetMachine (TODO: remove once DL contains nullptr values) |
| /// \param AS Target Address Space |
| /// \return true if \p V cannot be the null value of \p AS, false otherwise. |
| static bool isPtrKnownNeverNull(const Value *V, const DataLayout &DL, |
| const AMDGPUTargetMachine &TM, unsigned AS) { |
| // Pointer cannot be null if it's a block address, GV or alloca. |
| // NOTE: We don't support extern_weak, but if we did, we'd need to check for |
| // it as the symbol could be null in such cases. |
| if (isa<BlockAddress>(V) || isa<GlobalValue>(V) || isa<AllocaInst>(V)) |
| return true; |
| |
| // Check nonnull arguments. |
| if (const auto *Arg = dyn_cast<Argument>(V); Arg && Arg->hasNonNullAttr()) |
| return true; |
| |
| // getUnderlyingObject may have looked through another addrspacecast, although |
| // the optimizable situations most likely folded out by now. |
| if (AS != cast<PointerType>(V->getType())->getAddressSpace()) |
| return false; |
| |
| // TODO: Calls that return nonnull? |
| |
| // For all other things, use KnownBits. |
| // We either use 0 or all bits set to indicate null, so check whether the |
| // value can be zero or all ones. |
| // |
| // TODO: Use ValueTracking's isKnownNeverNull if it becomes aware that some |
| // address spaces have non-zero null values. |
| auto SrcPtrKB = computeKnownBits(V, DL); |
| const auto NullVal = TM.getNullPointerValue(AS); |
| |
| assert(SrcPtrKB.getBitWidth() == DL.getPointerSizeInBits(AS)); |
| assert((NullVal == 0 || NullVal == -1) && |
| "don't know how to check for this null value!"); |
| return NullVal ? !SrcPtrKB.getMaxValue().isAllOnes() : SrcPtrKB.isNonZero(); |
| } |
| |
| bool AMDGPUCodeGenPrepareImpl::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { |
| // Intrinsic doesn't support vectors, also it seems that it's often difficult |
| // to prove that a vector cannot have any nulls in it so it's unclear if it's |
| // worth supporting. |
| if (I.getType()->isVectorTy()) |
| return false; |
| |
| // Check if this can be lowered to a amdgcn.addrspacecast.nonnull. |
| // This is only worthwhile for casts from/to priv/local to flat. |
| const unsigned SrcAS = I.getSrcAddressSpace(); |
| const unsigned DstAS = I.getDestAddressSpace(); |
| |
| bool CanLower = false; |
| if (SrcAS == AMDGPUAS::FLAT_ADDRESS) |
| CanLower = (DstAS == AMDGPUAS::LOCAL_ADDRESS || |
| DstAS == AMDGPUAS::PRIVATE_ADDRESS); |
| else if (DstAS == AMDGPUAS::FLAT_ADDRESS) |
| CanLower = (SrcAS == AMDGPUAS::LOCAL_ADDRESS || |
| SrcAS == AMDGPUAS::PRIVATE_ADDRESS); |
| if (!CanLower) |
| return false; |
| |
| SmallVector<const Value *, 4> WorkList; |
| getUnderlyingObjects(I.getOperand(0), WorkList); |
| if (!all_of(WorkList, [&](const Value *V) { |
| return isPtrKnownNeverNull(V, *DL, *TM, SrcAS); |
| })) |
| return false; |
| |
| IRBuilder<> B(&I); |
| auto *Intrin = B.CreateIntrinsic( |
| I.getType(), Intrinsic::amdgcn_addrspacecast_nonnull, {I.getOperand(0)}); |
| I.replaceAllUsesWith(Intrin); |
| I.eraseFromParent(); |
| return true; |
| } |
| |
| bool AMDGPUCodeGenPrepareImpl::visitIntrinsicInst(IntrinsicInst &I) { |
| switch (I.getIntrinsicID()) { |
| case Intrinsic::bitreverse: |
| return visitBitreverseIntrinsicInst(I); |
| case Intrinsic::minnum: |
| return visitMinNum(I); |
| case Intrinsic::sqrt: |
| return visitSqrt(I); |
| default: |
| return false; |
| } |
| } |
| |
| bool AMDGPUCodeGenPrepareImpl::visitBitreverseIntrinsicInst(IntrinsicInst &I) { |
| bool Changed = false; |
| |
| if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && |
| UA->isUniform(&I)) |
| Changed |= promoteUniformBitreverseToI32(I); |
| |
| return Changed; |
| } |
| |
| /// Match non-nan fract pattern. |
| /// minnum(fsub(x, floor(x)), nextafter(1.0, -1.0) |
| /// |
| /// If fract is a useful instruction for the subtarget. Does not account for the |
| /// nan handling; the instruction has a nan check on the input value. |
| Value *AMDGPUCodeGenPrepareImpl::matchFractPat(IntrinsicInst &I) { |
| if (ST->hasFractBug()) |
| return nullptr; |
| |
| if (I.getIntrinsicID() != Intrinsic::minnum) |
| return nullptr; |
| |
| Type *Ty = I.getType(); |
| if (!isLegalFloatingTy(Ty->getScalarType())) |
| return nullptr; |
| |
| Value *Arg0 = I.getArgOperand(0); |
| Value *Arg1 = I.getArgOperand(1); |
| |
| const APFloat *C; |
| if (!match(Arg1, m_APFloat(C))) |
| return nullptr; |
| |
| APFloat One(1.0); |
| bool LosesInfo; |
| One.convert(C->getSemantics(), APFloat::rmNearestTiesToEven, &LosesInfo); |
| |
| // Match nextafter(1.0, -1) |
| One.next(true); |
| if (One != *C) |
| return nullptr; |
| |
| Value *FloorSrc; |
| if (match(Arg0, m_FSub(m_Value(FloorSrc), |
| m_Intrinsic<Intrinsic::floor>(m_Deferred(FloorSrc))))) |
| return FloorSrc; |
| return nullptr; |
| } |
| |
| Value *AMDGPUCodeGenPrepareImpl::applyFractPat(IRBuilder<> &Builder, |
| Value *FractArg) { |
| SmallVector<Value *, 4> FractVals; |
| extractValues(Builder, FractVals, FractArg); |
| |
| SmallVector<Value *, 4> ResultVals(FractVals.size()); |
| |
| Type *Ty = FractArg->getType()->getScalarType(); |
| for (unsigned I = 0, E = FractVals.size(); I != E; ++I) { |
| ResultVals[I] = |
| Builder.CreateIntrinsic(Intrinsic::amdgcn_fract, {Ty}, {FractVals[I]}); |
| } |
| |
| return insertValues(Builder, FractArg->getType(), ResultVals); |
| } |
| |
| bool AMDGPUCodeGenPrepareImpl::visitMinNum(IntrinsicInst &I) { |
| Value *FractArg = matchFractPat(I); |
| if (!FractArg) |
| return false; |
| |
| // Match pattern for fract intrinsic in contexts where the nan check has been |
| // optimized out (and hope the knowledge the source can't be nan wasn't lost). |
| if (!I.hasNoNaNs() && |
| !isKnownNeverNaN(FractArg, /*Depth=*/0, SimplifyQuery(*DL, TLInfo))) |
| return false; |
| |
| IRBuilder<> Builder(&I); |
| FastMathFlags FMF = I.getFastMathFlags(); |
| FMF.setNoNaNs(); |
| Builder.setFastMathFlags(FMF); |
| |
| Value *Fract = applyFractPat(Builder, FractArg); |
| Fract->takeName(&I); |
| I.replaceAllUsesWith(Fract); |
| |
| RecursivelyDeleteTriviallyDeadInstructions(&I, TLInfo); |
| return true; |
| } |
| |
| static bool isOneOrNegOne(const Value *Val) { |
| const APFloat *C; |
| return match(Val, m_APFloat(C)) && C->getExactLog2Abs() == 0; |
| } |
| |
| // Expand llvm.sqrt.f32 calls with !fpmath metadata in a semi-fast way. |
| bool AMDGPUCodeGenPrepareImpl::visitSqrt(IntrinsicInst &Sqrt) { |
| Type *Ty = Sqrt.getType()->getScalarType(); |
| if (!Ty->isFloatTy() && (!Ty->isHalfTy() || ST->has16BitInsts())) |
| return false; |
| |
| const FPMathOperator *FPOp = cast<const FPMathOperator>(&Sqrt); |
| FastMathFlags SqrtFMF = FPOp->getFastMathFlags(); |
| |
| // We're trying to handle the fast-but-not-that-fast case only. The lowering |
| // of fast llvm.sqrt will give the raw instruction anyway. |
| if (SqrtFMF.approxFunc() || HasUnsafeFPMath) |
| return false; |
| |
| const float ReqdAccuracy = FPOp->getFPAccuracy(); |
| |
| // Defer correctly rounded expansion to codegen. |
| if (ReqdAccuracy < 1.0f) |
| return false; |
| |
| // FIXME: This is an ugly hack for this pass using forward iteration instead |
| // of reverse. If it worked like a normal combiner, the rsq would form before |
| // we saw a sqrt call. |
| auto *FDiv = |
| dyn_cast_or_null<FPMathOperator>(Sqrt.getUniqueUndroppableUser()); |
| if (FDiv && FDiv->getOpcode() == Instruction::FDiv && |
| FDiv->getFPAccuracy() >= 1.0f && |
| canOptimizeWithRsq(FPOp, FDiv->getFastMathFlags(), SqrtFMF) && |
| // TODO: We should also handle the arcp case for the fdiv with non-1 value |
| isOneOrNegOne(FDiv->getOperand(0))) |
| return false; |
| |
| Value *SrcVal = Sqrt.getOperand(0); |
| bool CanTreatAsDAZ = canIgnoreDenormalInput(SrcVal, &Sqrt); |
| |
| // The raw instruction is 1 ulp, but the correction for denormal handling |
| // brings it to 2. |
| if (!CanTreatAsDAZ && ReqdAccuracy < 2.0f) |
| return false; |
| |
| IRBuilder<> Builder(&Sqrt); |
| SmallVector<Value *, 4> SrcVals; |
| extractValues(Builder, SrcVals, SrcVal); |
| |
| SmallVector<Value *, 4> ResultVals(SrcVals.size()); |
| for (int I = 0, E = SrcVals.size(); I != E; ++I) { |
| if (CanTreatAsDAZ) |
| ResultVals[I] = Builder.CreateCall(getSqrtF32(), SrcVals[I]); |
| else |
| ResultVals[I] = emitSqrtIEEE2ULP(Builder, SrcVals[I], SqrtFMF); |
| } |
| |
| Value *NewSqrt = insertValues(Builder, Sqrt.getType(), ResultVals); |
| NewSqrt->takeName(&Sqrt); |
| Sqrt.replaceAllUsesWith(NewSqrt); |
| Sqrt.eraseFromParent(); |
| return true; |
| } |
| |
| bool AMDGPUCodeGenPrepare::doInitialization(Module &M) { |
| Impl.Mod = &M; |
| Impl.DL = &Impl.Mod->getDataLayout(); |
| Impl.SqrtF32 = nullptr; |
| Impl.LdexpF32 = nullptr; |
| return false; |
| } |
| |
| bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) { |
| if (skipFunction(F)) |
| return false; |
| |
| auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); |
| if (!TPC) |
| return false; |
| |
| const AMDGPUTargetMachine &TM = TPC->getTM<AMDGPUTargetMachine>(); |
| Impl.TM = &TM; |
| Impl.TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); |
| Impl.ST = &TM.getSubtarget<GCNSubtarget>(F); |
| Impl.AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); |
| Impl.UA = &getAnalysis<UniformityInfoWrapperPass>().getUniformityInfo(); |
| auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); |
| Impl.DT = DTWP ? &DTWP->getDomTree() : nullptr; |
| Impl.HasUnsafeFPMath = hasUnsafeFPMath(F); |
| SIModeRegisterDefaults Mode(F, *Impl.ST); |
| Impl.HasFP32DenormalFlush = |
| Mode.FP32Denormals == DenormalMode::getPreserveSign(); |
| return Impl.run(F); |
| } |
| |
| PreservedAnalyses AMDGPUCodeGenPreparePass::run(Function &F, |
| FunctionAnalysisManager &FAM) { |
| AMDGPUCodeGenPrepareImpl Impl; |
| Impl.Mod = F.getParent(); |
| Impl.DL = &Impl.Mod->getDataLayout(); |
| Impl.TM = static_cast<const AMDGPUTargetMachine *>(&TM); |
| Impl.TLInfo = &FAM.getResult<TargetLibraryAnalysis>(F); |
| Impl.ST = &TM.getSubtarget<GCNSubtarget>(F); |
| Impl.AC = &FAM.getResult<AssumptionAnalysis>(F); |
| Impl.UA = &FAM.getResult<UniformityInfoAnalysis>(F); |
| Impl.DT = FAM.getCachedResult<DominatorTreeAnalysis>(F); |
| Impl.HasUnsafeFPMath = hasUnsafeFPMath(F); |
| SIModeRegisterDefaults Mode(F, *Impl.ST); |
| Impl.HasFP32DenormalFlush = |
| Mode.FP32Denormals == DenormalMode::getPreserveSign(); |
| PreservedAnalyses PA = PreservedAnalyses::none(); |
| if (!Impl.FlowChanged) |
| PA.preserveSet<CFGAnalyses>(); |
| return Impl.run(F) ? PA : PreservedAnalyses::all(); |
| } |
| |
| INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE, |
| "AMDGPU IR optimizations", false, false) |
| INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) |
| INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(UniformityInfoWrapperPass) |
| INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations", |
| false, false) |
| |
| char AMDGPUCodeGenPrepare::ID = 0; |
| |
| FunctionPass *llvm::createAMDGPUCodeGenPreparePass() { |
| return new AMDGPUCodeGenPrepare(); |
| } |