blob: bf488f827f898c06d91679046ab148f45e4331a4 [file] [log] [blame] [edit]
//===- DropUnitDims.cpp - Pass to drop use of unit-extent for broadcasting ===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements patterns/pass to remove usage of unit-extent dimensions
// to specify broadcasting in favor of more canonical representation of the
// computation
//
//===----------------------------------------------------------------------===//
#include "PassDetail.h"
#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
#include "mlir/Dialect/Linalg/IR/LinalgTypes.h"
#include "mlir/Dialect/Linalg/Passes.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/Transforms/FoldUtils.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "linalg-drop-unit-dims"
using namespace mlir;
using namespace mlir::edsc;
using namespace mlir::edsc::intrinsics;
using namespace mlir::linalg;
/// Implements a pass that canonicalizes the uses of unit-extent dimensions for
/// broadcasting. For example,
///
/// ```mlir
/// #accesses = [
/// affine_map<(d0, d1) -> (0, d1)>,
/// affine_map<(d0, d1) -> (d0, 0)>,
/// affine_map<(d0, d1) -> (d0, d1)>
/// ]
///
/// #trait = {
/// args_in = 2,
/// args_out = 1,
/// indexing_maps = #accesses,
/// iterator_types = ["parallel", "parallel"],
/// library_call = "some_external_fn"
/// }
///
/// func @broadcast_test(%arg0 : tensor<5xf32>, %arg1 : tensor<5xf32>) ->
/// tensor<5x5xf32>
/// {
/// %0 = linalg.tensor_reshape %arg0 [affine_map<(d0, d1) -> (d0, d1)>] :
/// tensor<5xf32> into tensor<1x5xf32>
/// %1 = linalg.tensor_reshape %arg1 [affine_map<(d0, d1) -> (d0, d1)>] :
/// tensor<5xf32> into tensor<5x1xf32>
/// %2 = linalg.generic #trait %0, %1 {
/// ^bb0(%arg2: f32, %arg3: f32):
/// %3 = addf %arg2, %arg3 : f32
/// linalg.yield %3 : f32
/// } : tensor<1x5xf32>, tensor<5x1xf32> -> tensor<5x5xf32>
/// return %2 : tensor<5x5xf32>
/// }
///
/// would canonicalize to
///
/// ```mlir
/// #accesses = [
/// affine_map<(d0, d1) -> (d1)>,
/// affine_map<(d0, d1) -> (d0)>,
/// affine_map<(d0, d1) -> (d0, d1)>
/// ]
///
/// #trait = {
/// args_in = 2,
/// args_out = 1,
/// indexing_maps = #accesses,
/// iterator_types = ["parallel", "parallel"],
/// library_call = "some_external_fn"
/// }
///
/// func @broadcast_test(%arg0 : tensor<5xf32>, %arg1 : tensor<5xf32>) ->
/// tensor<5x5xf32>
/// {
/// %0 = linalg.generic #trait %arg0, %arg1 {
/// ^bb0(%arg2: f32, %arg3: f32):
/// %3 = addf %arg2, %arg3 : f32
/// linalg.yield %3 : f32
/// } : tensor<5xf32>, tensor<5xf32> -> tensor<5x5xf32>
/// return %0 : tensor<5x5xf32>
/// }
/// Given dims of the iteration space of a structured op that are known to be
/// single trip count (`unitDims`), return the indexing maps to use in the
/// canonicalized op with these dims removed, given the original `indexingMaps`.
static ArrayAttr replaceUnitDims(DenseSet<unsigned> &unitDims,
ArrayRef<AffineMap> indexingMaps,
MLIRContext *context) {
if (indexingMaps.empty())
return nullptr;
unsigned numIterationDims = indexingMaps.front().getNumDims();
unsigned numSymbols = indexingMaps.front().getNumSymbols();
// Compute the replacement for each dim expr.
SmallVector<AffineExpr, 4> dimReplacements;
dimReplacements.reserve(numIterationDims);
unsigned numKeptDims = 0;
for (unsigned dim : llvm::seq<unsigned>(0, numIterationDims)) {
if (unitDims.count(dim))
dimReplacements.push_back(getAffineConstantExpr(0, context));
else
dimReplacements.push_back(getAffineDimExpr(numKeptDims++, context));
}
// Symbols remain the same.
SmallVector<AffineExpr, 4> symReplacements;
symReplacements.reserve(numSymbols);
for (unsigned symbol : llvm::seq<unsigned>(0, numSymbols))
symReplacements.push_back(getAffineSymbolExpr(symbol, context));
SmallVector<AffineMap, 4> newIndexingMaps;
newIndexingMaps.reserve(indexingMaps.size());
for (AffineMap operandMap : indexingMaps) {
// Expected indexing maps to have no symbols.
if (operandMap.getNumSymbols())
return nullptr;
newIndexingMaps.push_back(simplifyAffineMap(
operandMap.replaceDimsAndSymbols(dimReplacements, symReplacements,
numIterationDims - unitDims.size(),
numSymbols)));
}
// Check that the new index maps are invertible. If not, something went
// wrong, so abort.
if (!inversePermutation(concatAffineMaps(newIndexingMaps)))
return nullptr;
return ArrayAttr::get(
llvm::to_vector<4>(llvm::map_range(
newIndexingMaps,
[](AffineMap map) -> Attribute { return AffineMapAttr::get(map); })),
context);
}
/// Modify the region of indexed generic op to drop arguments corresponding to
/// loops that are unit trip count.
template <typename OpTy>
static LogicalResult
replaceBlockArgForUnitDimLoops(OpTy op, const DenseSet<unsigned> &unitDims,
PatternRewriter &rewriterp) {
return success();
}
template <>
LogicalResult replaceBlockArgForUnitDimLoops<IndexedGenericOp>(
IndexedGenericOp op, const DenseSet<unsigned> &unitDims,
PatternRewriter &rewriter) {
OpBuilder::InsertionGuard guard(rewriter);
Block *entryBlock = &op->getRegion(0).front();
rewriter.setInsertionPointToStart(entryBlock);
Value zero = rewriter.create<ConstantIndexOp>(op.getLoc(), 0);
for (unsigned unitDimLoop : unitDims) {
entryBlock->getArgument(unitDimLoop).replaceAllUsesWith(zero);
}
SmallVector<unsigned, 8> unitDimsToErase(unitDims.begin(), unitDims.end());
entryBlock->eraseArguments(unitDimsToErase);
return success();
}
namespace {
/// Pattern to fold unit-trip count loops in GenericOps.
// TODO: Generalize this to indexed-generic as well by modifying the region args
// as well.
template <typename GenericOpTy>
struct FoldUnitDimLoops : public OpRewritePattern<GenericOpTy> {
using OpRewritePattern<GenericOpTy>::OpRewritePattern;
LogicalResult matchAndRewrite(GenericOpTy op,
PatternRewriter &rewriter) const override {
SmallVector<AffineMap, 4> indexingMaps = op.getIndexingMaps();
if (indexingMaps.empty())
return failure();
// Check if any of the iteration dimensions are unit-trip count. They will
// end up being unit-trip count if they are used to index into a unit-dim
// tensor/memref.
AffineMap invertedMap = inversePermutation(concatAffineMaps(indexingMaps));
if (!invertedMap)
return failure();
SmallVector<int64_t, 4> dims;
for (ShapedType shapedType : op.getInputOutputShapedTypes())
dims.append(shapedType.getShape().begin(), shapedType.getShape().end());
DenseSet<unsigned> unitDims;
ArrayAttr iteratorTypes = op.iterator_types();
for (auto expr : enumerate(invertedMap.getResults())) {
if (AffineDimExpr dimExpr = expr.value().dyn_cast<AffineDimExpr>())
if (dims[dimExpr.getPosition()] == 1 &&
iteratorTypes[expr.index()].dyn_cast<StringAttr>().getValue() ==
getParallelIteratorTypeName())
unitDims.insert(expr.index());
}
if (unitDims.empty())
return failure();
// Compute the modified indexing maps.
MLIRContext *context = rewriter.getContext();
ArrayAttr newIndexingMapAttr =
replaceUnitDims(unitDims, indexingMaps, context);
if (!newIndexingMapAttr)
return op.emitError("unable to compute modified indexing_maps");
// Compute the iterator types of the modified op by dropping the one-trip
// count loops.
SmallVector<Attribute, 4> newIteratorTypes;
for (auto attr : llvm::enumerate(iteratorTypes)) {
if (!unitDims.count(attr.index()))
newIteratorTypes.push_back(attr.value());
}
rewriter.startRootUpdate(op);
op.indexing_mapsAttr(newIndexingMapAttr);
op.iterator_typesAttr(ArrayAttr::get(newIteratorTypes, context));
replaceBlockArgForUnitDimLoops(op, unitDims, rewriter);
rewriter.finalizeRootUpdate(op);
return success();
}
};
struct UnitExtentReplacementInfo {
RankedTensorType type;
AffineMap indexMap;
ArrayAttr reassociation;
};
} // namespace
/// Utility function for replacing operands/results to a linalg generic
/// operation on tensors with unit-extent dimensions. These can be replaced with
/// an operand/result with the unit-extent dimension removed. This is only done
/// if the indexing map used to access that didimensionmension has a
/// AffineConstantExpr of value 0. Given the `type` of an result/operand of a
/// Linalg op, and its `indexMap` the utility function returns:
/// - the new type with dimensions of size 1 removed.
/// - modified index map that can be used to access the replaced result/operand
/// - the reassociation that converts from the original tensor type to the
/// modified tensor type.
static UnitExtentReplacementInfo replaceUnitExtents(AffineMap indexMap,
RankedTensorType type,
MLIRContext *context) {
ArrayRef<int64_t> shape = type.getShape();
ArrayRef<AffineExpr> exprs = indexMap.getResults();
SmallVector<AffineExpr, 2> reassociations;
SmallVector<Attribute, 4> reassociationMaps;
SmallVector<AffineExpr, 4> newIndexExprs;
SmallVector<int64_t, 4> newShape;
int64_t origRank = type.getRank();
AffineExpr zeroExpr = getAffineConstantExpr(0, context);
auto isUnitExtent = [&](int64_t dim) -> bool {
return shape[dim] == 1 && exprs[dim] == zeroExpr;
};
unsigned dim = 0;
// Fold dimensions that are unit-extent at the beginning of the tensor.
while (dim < origRank && isUnitExtent(dim))
reassociations.push_back(getAffineDimExpr(dim++, context));
while (dim < origRank) {
reassociations.push_back(getAffineDimExpr(dim, context));
newIndexExprs.push_back(exprs[dim]);
newShape.push_back(shape[dim]);
// Fold all following dimensions that are unit-extent.
while (dim + 1 < origRank && isUnitExtent(dim + 1)) {
++dim;
reassociations.push_back(getAffineDimExpr(dim, context));
}
reassociationMaps.push_back(AffineMapAttr::get(AffineMap::get(
origRank, /*numSymbols = */ 0, reassociations, context)));
reassociations.clear();
++dim;
}
UnitExtentReplacementInfo info = {
RankedTensorType::get(newShape, type.getElementType()),
AffineMap::get(indexMap.getNumDims(), indexMap.getNumSymbols(),
newIndexExprs, context),
ArrayAttr::get(reassociationMaps, context)};
return info;
}
namespace {
/// Pattern to replace tensors operands/results that are unit extents.
template <typename GenericOpTy>
struct ReplaceUnitExtentTensors : public OpRewritePattern<GenericOpTy> {
using OpRewritePattern<GenericOpTy>::OpRewritePattern;
LogicalResult matchAndRewrite(GenericOpTy op,
PatternRewriter &rewriter) const override {
// TODO: support init_tensors and reductions.
if (!op.hasTensorSemantics() || !op.init_tensors().empty())
return failure();
MLIRContext *context = rewriter.getContext();
Location loc = op.getLoc();
SmallVector<AffineMap, 4> newIndexingMaps;
SmallVector<ArrayAttr, 4> reassociationMaps;
SmallVector<ShapedType, 4> newInputOutputTypes;
bool doCanonicalization = false;
for (auto it :
llvm::zip(op.getIndexingMaps(), op.getInputOutputShapedTypes())) {
auto replacementInfo = replaceUnitExtents(
std::get<0>(it), std::get<1>(it).template cast<RankedTensorType>(),
context);
reassociationMaps.push_back(replacementInfo.reassociation);
newIndexingMaps.push_back(replacementInfo.indexMap);
newInputOutputTypes.push_back(replacementInfo.type);
doCanonicalization |= replacementInfo.type != std::get<1>(it);
}
// If the indexing maps of the result operation are not invertible (i.e. not
// legal), abort.
if (!doCanonicalization ||
!inversePermutation(concatAffineMaps(newIndexingMaps)))
return failure();
// If any operand type change, insert a reshape to convert from the original
// type to the new type.
// TODO: get rid of flattenedIdx which assumes operand order and contiguity.
unsigned flattenedIdx = 0;
auto insertReshapes = [&](ValueRange values) {
SmallVector<Value, 4> res;
res.reserve(values.size());
for (auto operand : llvm::enumerate(values)) {
if (operand.value().getType() == newInputOutputTypes[flattenedIdx])
res.push_back(operand.value());
else
res.push_back(rewriter.create<linalg::TensorReshapeOp>(
loc, newInputOutputTypes[flattenedIdx], operand.value(),
reassociationMaps[flattenedIdx]));
++flattenedIdx;
}
return res;
};
SmallVector<Value, 4> newInputs = insertReshapes(op.inputs());
SmallVector<Value, 4> newOutputBuffers =
insertReshapes(op.output_buffers());
SmallVector<Value, 4> newInitTensors = insertReshapes(op.init_tensors());
// If any result type change, insert a reshape to convert from the original
// type to the new type.
SmallVector<Type, 4> resultTypes;
resultTypes.reserve(op.getNumResults());
for (unsigned i : llvm::seq<unsigned>(0, op.getNumResults()))
resultTypes.push_back(newInputOutputTypes[i + op.getNumInputs()]);
GenericOpTy replacementOp = rewriter.create<GenericOpTy>(
loc, resultTypes, newInputs, newOutputBuffers, newInitTensors,
newIndexingMaps,
llvm::to_vector<4>(
op.iterator_types().template getAsValueRange<StringAttr>()));
rewriter.inlineRegionBefore(op.region(), replacementOp.region(),
replacementOp.region().begin());
// If any result tensor has a modified shape, then add reshape to recover
// the original shape.
SmallVector<Value, 4> resultReplacements;
for (auto result : llvm::enumerate(replacementOp.getResults())) {
unsigned index = result.index() + replacementOp.getNumOperands();
RankedTensorType origResultType = op.getResult(result.index())
.getType()
.template cast<RankedTensorType>();
if (origResultType != result.value().getType())
resultReplacements.push_back(rewriter.create<linalg::TensorReshapeOp>(
loc, origResultType, result.value(), reassociationMaps[index]));
else
resultReplacements.push_back(result.value());
}
rewriter.replaceOp(op, resultReplacements);
return success();
}
};
} // namespace
namespace {
/// Pattern to fold pair of reshape ops where the intermediate has unit-dims for
/// example:
///
/// %0 = linalg.tensor_reshape %arg0
/// [affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>]
/// : tensor<2048xf32> into tensor<1x4x1x512xf32>
/// %1 = linalg.tensor_reshape %0
/// [affine_map<(d0, d1, d2, d3) -> (d0, d1, d2)>,
/// affine_map<(d0, d1, d2, d3) -> (d3)>]
/// : tensor<1x4x1x512xf32> into tensor<4x512xf32>
///
/// can be replaced with
///
/// %0 = linalg.tensor_reshape %arg0 [affine_map<(d0, d1) -> (d0, d1)>]
/// : tensor<2048xf32> into tensor<4x512xf32>
///
/// Similarly,
///
/// %0 = linalg.tensor_reshape %arg0
/// [affine_map<(d0, d1, d2, d3) -> (d0, d1, d2)>,
/// affine_map<(d0, d1, d2, d3) -> (d3)>]
/// : tensor<4x512xf32> into tensor<1x4x1x512xf32>
/// %1 = linalg.tensor_reshape %0
/// [affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>]
/// : tensor<1x4x1x512xf32> into tensor<2048xf32>
///
/// can be replaced with
///
/// %0 = linalg.tensor_reshape %arg0 [affine_map<(d0, d1) -> (d0, d1)>]
/// : tensor<4x512xf32> into tensor<2048xf32>
struct FoldReshapeOpWithUnitExtent : OpRewritePattern<TensorReshapeOp> {
using OpRewritePattern<TensorReshapeOp>::OpRewritePattern;
LogicalResult matchAndRewrite(TensorReshapeOp reshapeOp,
PatternRewriter &rewriter) const override {
// Check that the source operand is created from a reshape as well.
TensorReshapeOp parentReshapeOp =
reshapeOp.src().getDefiningOp<TensorReshapeOp>();
if (!parentReshapeOp)
return failure();
RankedTensorType srcType = reshapeOp.getSrcType(),
dstType = reshapeOp.getResultType(),
parentSrcType = parentReshapeOp.getSrcType();
if (!srcType.hasStaticShape() || !dstType.hasStaticShape() ||
!parentSrcType.hasStaticShape() ||
srcType.getRank() < dstType.getRank() ||
parentSrcType.getRank() == dstType.getRank())
return failure();
// Check if the result tensor_reshape after folding the reshapeOp and
// parentReshapeOp are combined.
// If the final tensor_reshape is folding, the parentReshapeOp is
// introducing unit-dims, and the reshapeOp does an actual reshape.
// If the final tensor_reshape op is expanding, the reshapeOp is
// introducing unit-dims, and the parentReshapeOp does an actual reshape.
bool isFoldingPattern = parentSrcType.getRank() > dstType.getRank();
ArrayRef<int64_t> expandedShape =
isFoldingPattern ? parentSrcType.getShape() : dstType.getShape();
ArrayRef<int64_t> foldedShape =
isFoldingPattern ? dstType.getShape() : parentSrcType.getShape();
unsigned expandedDim = 0, foldedDim = 0;
SmallVector<SmallVector<AffineExpr, 4>, 4> reassociationExprs(
foldedShape.size());
while (expandedDim < expandedShape.size() &&
foldedDim < foldedShape.size()) {
int64_t dstSize = foldedShape[foldedDim];
int64_t srcSize = expandedShape[expandedDim];
while (srcSize < dstSize && expandedDim < expandedShape.size()) {
reassociationExprs[foldedDim].push_back(
rewriter.getAffineDimExpr(expandedDim++));
srcSize *= expandedShape[expandedDim];
}
if (srcSize == dstSize) {
reassociationExprs[foldedDim].push_back(
rewriter.getAffineDimExpr(expandedDim++));
// If the next dim in foldedShape is not 1, treat subsequent dims in
// expandedShape which are 1 to be collapsed.
if (foldedDim == foldedShape.size() - 1 ||
foldedShape[foldedDim + 1] != 1) {
while (expandedDim < expandedShape.size() &&
expandedShape[expandedDim] == 1) {
reassociationExprs[foldedDim].push_back(
rewriter.getAffineDimExpr(expandedDim++));
}
}
} else {
return failure();
}
foldedDim++;
}
if (expandedDim != expandedShape.size())
return failure();
SmallVector<AffineMap, 4> reassociationMaps =
llvm::to_vector<4>(llvm::map_range(
reassociationExprs, [&](ArrayRef<AffineExpr> exprs) -> AffineMap {
return AffineMap::get(expandedShape.size(), 0, exprs,
rewriter.getContext());
}));
rewriter.replaceOpWithNewOp<TensorReshapeOp>(
reshapeOp, dstType, parentReshapeOp.src(),
rewriter.getAffineMapArrayAttr(reassociationMaps));
return success();
}
};
} // namespace
/// Patterns that are used to canonicalize the use of unit-extent dims for
/// broadcasting.
void mlir::populateLinalgFoldUnitExtentDimsPatterns(
MLIRContext *context, OwningRewritePatternList &patterns) {
patterns
.insert<FoldUnitDimLoops<GenericOp>, FoldUnitDimLoops<IndexedGenericOp>,
ReplaceUnitExtentTensors<GenericOp>,
ReplaceUnitExtentTensors<IndexedGenericOp>>(context);
TensorReshapeOp::getCanonicalizationPatterns(patterns, context);
patterns.insert<FoldReshapeOpWithUnitExtent>(context);
}
namespace {
/// Pass that removes unit-extent dims within generic ops.
struct LinalgFoldUnitExtentDimsPass
: public LinalgFoldUnitExtentDimsBase<LinalgFoldUnitExtentDimsPass> {
void runOnFunction() override {
OwningRewritePatternList patterns;
FuncOp funcOp = getFunction();
MLIRContext *context = funcOp.getContext();
if (foldOneTripLoopsOnly)
patterns.insert<FoldUnitDimLoops<GenericOp>,
FoldUnitDimLoops<IndexedGenericOp>>(context);
else
populateLinalgFoldUnitExtentDimsPatterns(context, patterns);
applyPatternsAndFoldGreedily(funcOp.getBody(), std::move(patterns));
}
};
} // namespace
std::unique_ptr<OperationPass<FuncOp>>
mlir::createLinalgFoldUnitExtentDimsPass() {
return std::make_unique<LinalgFoldUnitExtentDimsPass>();
}