blob: 681309687d18a1077dd88c17ce7c4236c670bd16 [file] [log] [blame] [edit]
//===- Fusion.cpp - Implementation of linalg Fusion -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the linalg dialect Fusion pass.
//
//===----------------------------------------------------------------------===//
#include "PassDetail.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h"
#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
#include "mlir/Dialect/Linalg/IR/LinalgTypes.h"
#include "mlir/Dialect/Linalg/Passes.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Dominance.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include <set>
#define DEBUG_TYPE "linalg-fusion"
using namespace mlir;
using namespace mlir::edsc;
using namespace mlir::edsc::intrinsics;
using namespace mlir::linalg;
using llvm::dbgs;
/// Implements a simple high-level fusion pass on linalg structured operations.
///
/// In each block, linalg ops are processed in reverse textual order.
/// Given a linalg op `O`, fusion occurs by:
/// 1. inspecting the linalg ops that write into the views read by `O`. There
/// are 2 cases:
/// a) buffer case: use the SSA value of the views and a simple alias
/// analysis on subview ops to determine producer-consumer dependences;
/// b) tensor case: use SSA use-def chains on subtensor ops;
/// 2. greedily fuse the linalg ops that produce the subview/subtensor.
/// 3. inspect the fused ops and determine whether they have other remaining
/// LinalgOp uses. If not, then erase the original producing linalg op.
///
/// More advanced use cases, analyses as well as profitability heuristics are
/// left for future work.
// Fill `offset`, `sizes` and `strides` used to iterate over the shape indexed
// by `permutationMap`.
static void inferShapeComponents(AffineMap permutationMap,
ArrayRef<Range> loopRanges,
SmallVectorImpl<Value> &offsets,
SmallVectorImpl<Value> &sizes,
SmallVectorImpl<Value> &strides) {
assert(permutationMap.isProjectedPermutation() &&
"expected some subset of a permutation map");
SmallVector<Range, 4> shapeRanges(permutationMap.getNumResults());
unsigned idx = 0;
for (AffineExpr e : permutationMap.getResults()) {
// loopToOperandRangesMaps are permutations-only, just swap indices.
unsigned loopPos = e.cast<AffineDimExpr>().getPosition();
shapeRanges[idx++] = loopRanges[loopPos];
}
// Construct a new subshape for the tile.
unsigned rank = shapeRanges.size();
offsets.reserve(rank);
sizes.reserve(rank);
strides.reserve(rank);
for (auto r : shapeRanges) {
offsets.push_back(r.offset);
sizes.push_back(r.size);
strides.push_back(r.stride);
}
}
// Return a cloned version of `op` that operates on `loopRanges`, assumed to be
// a subset of the original loop ranges of `op`.
// This is achieved by applying the `loopToOperandRangesMaps` permutation maps
// to the `loopRanges` in order to obtain view ranges.
static LinalgOp cloneWithLoopRanges(OpBuilder &b, Location loc, LinalgOp op,
ArrayRef<Range> loopRanges) {
SmallVector<Value, 8> clonedShapes;
clonedShapes.reserve(op.getNumShapedOperands());
// Iterate over the shape operands in order.
// Extract the subranges from the linearized ranges.
for (auto en : llvm::enumerate(op.getShapedOperands())) {
unsigned shapedOperandIdx = en.index();
AffineMap map = op.getIndexingMap(shapedOperandIdx);
LLVM_DEBUG(llvm::dbgs() << "shapedOperandIdx: " << shapedOperandIdx
<< " with indexingMap: " << map << "\n");
SmallVector<Value, 4> offsets, sizes, strides;
inferShapeComponents(map, loopRanges, offsets, sizes, strides);
Value shape = en.value();
Value sub = shape.getType().isa<MemRefType>()
? b.create<SubViewOp>(loc, shape, offsets, sizes, strides)
.getResult()
: b.create<SubTensorOp>(loc, shape, offsets, sizes, strides)
.getResult();
clonedShapes.push_back(sub);
}
// Append the other operands.
auto operands = op.getAssumedNonShapedOperands();
clonedShapes.append(operands.begin(), operands.end());
// Iterate over the results in order.
// Extract the subtensor type from the linearized range.
// Since we do not enforce any canonicalizations on the fly, this is always
// fully dynamic at construction time.
SmallVector<Type, 4> resultTypes;
resultTypes.reserve(op->getNumResults());
for (RankedTensorType t : op.getOutputTensorTypes()) {
unsigned rank = t.getRank();
SmallVector<int64_t, 4> staticOffsetsVector(
rank, ShapedType::kDynamicStrideOrOffset);
SmallVector<int64_t, 4> staticSizesVector(rank, ShapedType::kDynamicSize);
SmallVector<int64_t, 4> staticStridesVector(
rank, ShapedType::kDynamicStrideOrOffset);
resultTypes.push_back(SubTensorOp::inferResultType(
t.cast<RankedTensorType>(), staticOffsetsVector, staticSizesVector,
staticStridesVector));
}
Operation *clonedOp = op.clone(b, loc, resultTypes, clonedShapes);
// When the producer is an IndexedGenericOp, we have to transform its block
// IV arguments according to the tiling of the consumer, i.e. offset them by
// the values computed in `loopRanges`.
if (auto indexedGenericOp = dyn_cast<IndexedGenericOp>(clonedOp)) {
auto &block = indexedGenericOp.region().front();
OpBuilder::InsertionGuard g(b);
b.setInsertionPointToStart(&block);
for (unsigned i = 0, e = indexedGenericOp.getNumLoops(); i < e; ++i) {
Value oldIndex = block.getArgument(i);
// TODO: replace by an affine_apply.
AddIOp newIndex = b.create<AddIOp>(indexedGenericOp.getLoc(), oldIndex,
loopRanges[i].offset);
oldIndex.replaceAllUsesExcept(newIndex,
SmallPtrSet<Operation *, 1>{newIndex});
}
}
return clonedOp;
}
struct ShapeDimension {
Value shape;
unsigned dimension;
};
// Given an `op`, returns the first (`shape`, `dimension`) pair that identifies
// the loop range at `loopDepth`. The semantics of the loopToOperandRangesMaps
// guarantees at least one such dimension is found. If multiple candidates exist
// they must agree by construction (i.e. have the same size) and we just return
// the first one.
static ShapeDimension
getShapeDefiningLoopRange(LinalgOp op, unsigned loopDepth,
bool fromSubViewOpOnly = false) {
auto maps = op.indexing_maps();
// Iterate over the inputs and outputs in order.
// Extract the subranges from the linearized ranges.
SmallVector<Value, 8> ios(op.getInputsAndOutputBuffers());
for (auto en : llvm::enumerate(ios)) {
// The method `getRangeFromOperandShape` requires using SubViewOp or
// SubTensorOps. If the value isnt defined from there continue.
// todo: The method should be adapted to get the values from
// `ViewInterface`. The interface needs a `getOrCreateRanges` method which
// currently returns a `linalg.range`. The fix here is to move this op to
// `std` dialect and add the method to `ViewInterface`.
if (fromSubViewOpOnly &&
!isa_and_nonnull<SubViewOp, SubTensorOp>(en.value().getDefiningOp()))
continue;
unsigned idx = en.index();
auto map = maps[idx].cast<AffineMapAttr>().getValue();
LLVM_DEBUG(llvm::dbgs()
<< "getShapeDefiningLoopRange I/O idx: " << idx << "\n");
LLVM_DEBUG(llvm::dbgs()
<< "getShapeDefiningLoopRange map: " << map << "\n");
Value shape = en.value();
SmallVector<Value, 8> shapeRanges(map.getNumResults(), nullptr);
for (auto en2 : llvm::enumerate(map.getResults())) {
auto dimExpr = en2.value().dyn_cast<AffineDimExpr>();
if (!dimExpr)
continue;
if (loopDepth == en2.value().cast<AffineDimExpr>().getPosition()) {
LLVM_DEBUG(llvm::dbgs() << "getShapeDefiningLoopRange loopDepth: "
<< loopDepth << "\n");
LLVM_DEBUG(llvm::dbgs()
<< "getShapeDefiningLoopRange shape: " << shape << "\n");
return ShapeDimension{shape, static_cast<unsigned>(en2.index())};
}
}
}
llvm_unreachable("Expect to be able to extract a shape defining loop range");
}
/// Fuse the producer by cloning the `producer`. The `fusedLoopsAndRanges`
/// provides the loop range information for the fused loops. The rest are
/// obtained from the producer itself, since they are not tiled + fused.
static LinalgOp fuse(OpBuilder &b, LinalgOp producer,
const DenseMap<unsigned, Range> &fusedLoopsAndRanges) {
unsigned nPar = producer.getNumParallelLoops();
unsigned nRed = producer.getNumReductionLoops();
unsigned nWin = producer.getNumWindowLoops();
SmallVector<Range, 8> loopRanges(nPar + nRed + nWin);
for (auto fusedLoops : fusedLoopsAndRanges)
loopRanges[fusedLoops.first] = fusedLoops.second;
// Iterate over all dimensions. For the dimensions not identified by the
// producer map for `producerIdx`, we need to explicitly compute the shape
// that defines the loop ranges using the `producer`.
for (unsigned i = 0, nLoops = loopRanges.size(); i < nLoops; ++i) {
if (loopRanges[i].offset)
LLVM_DEBUG(llvm::dbgs()
<< "existing LoopRange: " << loopRanges[i] << "\n");
else {
auto shapeDim = getShapeDefiningLoopRange(producer, i);
loopRanges[i] = Range{std_constant_index(0),
std_dim(shapeDim.shape, shapeDim.dimension),
std_constant_index(1)};
LLVM_DEBUG(llvm::dbgs() << "new LoopRange: " << loopRanges[i] << "\n");
}
}
return cloneWithLoopRanges(b, producer.getLoc(), producer, loopRanges);
}
/// Get the loop range for a dimension `dim` based on the `shapedOperand`. It is
/// expected to be defined by a subview op or a subtensor op.
static Range getRangeFromOperandShape(OpBuilder &b, Location loc,
Value shapedOperand, unsigned dim) {
Operation *shapeProducingOp = shapedOperand.getDefiningOp();
if (auto subViewOp = dyn_cast<SubViewOp>(shapeProducingOp))
return subViewOp.getOrCreateRanges(b, loc)[dim];
if (auto subTensorOp = dyn_cast<SubTensorOp>(shapeProducingOp))
return subTensorOp.getOrCreateRanges(b, loc)[dim];
llvm_unreachable("SubviewOp or SubTensorOp expected");
}
/// Fuses the producer of `producerIdx` into the loop immediately enclosing
/// `consumer`. This is achieved by "recomputing" the `producer` at the time it
/// is needed just before the `consumer.
///
/// Depending on the type of `consumer.getShapedOperand(consumerIdx)`, there are
/// 2 cases:
/// 1. Buffer case: `producerIdx` is the index of the buffer in
/// `producer.getOutputBuffers()`.
/// 2. Tensor case: `producerIdx` is the index of the tensor in
/// `producer.getResults()`.
static LinalgOp fuse(OpBuilder &b, LinalgOp producer, unsigned producerIdx,
LinalgOp consumer, unsigned consumerIdx) {
AffineMap producerMap = producer.getOutputIndexingMap(producerIdx);
LLVM_DEBUG(llvm::dbgs() << "Producer Idx: " << producerIdx
<< ", producer map: " << producerMap << "\n");
DenseMap<unsigned, Range> fusedLoopsAndRanges;
Location loc = consumer.getLoc();
Value shapedOperand = consumer.getShapedOperand(consumerIdx);
for (auto en : llvm::enumerate(producerMap.getResults())) {
unsigned posInProducerLoop = en.value().cast<AffineDimExpr>().getPosition();
fusedLoopsAndRanges[posInProducerLoop] =
getRangeFromOperandShape(b, loc, shapedOperand, en.index());
}
return fuse(b, producer, fusedLoopsAndRanges);
}
// Encode structural fusion safety preconditions.
// Some of these will be lifted in the future with better analysis.
static bool isStructurallyFusableProducer(LinalgOp producer, Value consumedView,
LinalgOp consumer) {
assert(producer.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
assert(consumer.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
if (producer.getNumOutputs() != 1) {
LLVM_DEBUG(llvm::dbgs() << "\nNot structurally fusable (multi-output)");
return false;
}
// Only fuse when the producer block dominates.
DominanceInfo dom(producer.getOperation());
if (!dom.dominates(producer->getBlock(), consumer->getBlock())) {
LLVM_DEBUG(
llvm::dbgs()
<< "\nNot structurally fusable (producer block does not dominate)");
return false;
}
return true;
}
bool mlir::linalg::isProducerLastWriteOfView(const LinalgDependenceGraph &graph,
LinalgOp consumer,
Value consumedView,
LinalgOp producer) {
assert(producer.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
assert(consumer.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
// Make some simple structural checks that alleviate the need for more
// complex analyses.
if (!isStructurallyFusableProducer(producer, consumedView, consumer)) {
LLVM_DEBUG(llvm::dbgs() << "\n***Not static last write due to structure:\t"
<< *producer.getOperation());
return false;
}
// Check for any interleaved write to consumedView.
if (!graph.findCoveringWrites(producer, consumer, consumedView).empty()) {
LLVM_DEBUG(llvm::dbgs() << "\n***Not fusable due to interleaved write:\t"
<< *producer.getOperation());
return false;
}
return true;
}
bool mlir::linalg::isFusableInto(const LinalgDependenceGraph &graph,
LinalgOp consumer, Value consumedView,
LinalgOp producer) {
assert(producer.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
assert(consumer.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
if (!isProducerLastWriteOfView(graph, consumer, consumedView, producer))
return false;
// Check for any fusion-preventing dependence to any shape read/written that
// would violate dependences.
if (!graph.findCoveringDependences(producer, consumer).empty()) {
LLVM_DEBUG(llvm::dbgs()
<< "\n***Not fusable due to an interleaved dependence:\t"
<< *producer.getOperation());
return false;
}
if (auto convOp = dyn_cast<linalg::ConvOp>(producer.getOperation())) {
// TODO: add a level of indirection to linalg.generic.
if (convOp.padding())
return false;
}
if (auto convOp = dyn_cast<linalg::ConvOp>(consumer.getOperation())) {
// TODO: add a level of indirection to linalg.generic.
if (convOp.padding())
return false;
}
return true;
}
static bool isSameSubView(Value a, Value b) {
if (a == b)
return true;
auto sva = a.getDefiningOp<SubViewOp>();
auto svb = b.getDefiningOp<SubViewOp>();
if (!sva || !svb)
return false;
if (!isSameSubView(sva.getViewSource(), svb.getViewSource()))
return false;
if (sva.getType() != svb.getType())
return false;
if (sva.getNumOperands() != svb.getNumOperands())
return false;
if (sva.static_offsets() != svb.static_offsets())
return false;
if (sva.static_sizes() != svb.static_sizes())
return false;
if (sva.static_strides() != svb.static_strides())
return false;
/// Skip the "source" operand.
for (unsigned idx = 1, e = sva.getNumOperands(); idx != e; ++idx)
if (sva.getOperand(idx) != svb.getOperand(idx))
return false;
return true;
}
static Optional<LinalgDependenceGraph::LinalgDependenceGraphElem>
findFusableProducer(LinalgOp consumer, unsigned consumerIdx,
const LinalgDependenceGraph &dependenceGraph) {
// Only consider RAW and WAW atm.
for (auto depType : {
LinalgDependenceGraph::DependenceType::RAW,
LinalgDependenceGraph::DependenceType::WAW,
}) {
for (auto dependence : llvm::make_filter_range(
dependenceGraph.getDependencesInto(consumer, depType),
[consumerIdx](
LinalgDependenceGraph::LinalgDependenceGraphElem elem) {
return elem.indexingOpView.operandIndex == consumerIdx;
})) {
auto producer = cast<LinalgOp>(dependence.dependentOpView.op);
// Check that the dependence is indeed on the input `consumerIdx` view.
auto consumedView =
consumer.getBuffer(dependence.indexingOpView.operandIndex);
if (!isSameSubView(consumer.getBuffer(consumerIdx), consumedView))
continue;
// Consumer consumes this view, `isStructurallyFusableProducer` also
// checks whether it is a strict subview of the producer view.
auto producedView =
producer.getBuffer(dependence.dependentOpView.operandIndex);
LLVM_DEBUG(llvm::dbgs()
<< "\n"
<< LinalgDependenceGraph::getDependenceTypeStr(depType)
<< "producer: " << *producer.getOperation()
<< " view: " << producedView << " output index: "
<< dependence.dependentOpView.operandIndex -
producer.getNumInputs()
<< "\n");
(void)producedView;
// Simple fusability checks.
if (!isFusableInto(dependenceGraph, consumer, consumedView, producer))
continue;
return dependence;
}
}
return {};
}
Optional<FusionInfo>
mlir::linalg::fuseProducerOfBuffer(OpBuilder &b, LinalgOp consumer,
unsigned consumerIdx,
const LinalgDependenceGraph &graph) {
Optional<LinalgDependenceGraph::LinalgDependenceGraphElem> fusableDependence =
findFusableProducer(consumer, consumerIdx, graph);
if (!fusableDependence)
return {};
LinalgOp producerOp = cast<LinalgOp>(fusableDependence->dependentOpView.op);
// If producer is already in the same block as consumer, we are done.
if (consumer->getBlock() == producerOp->getBlock())
return {};
unsigned producerIdx = fusableDependence->dependentOpView.operandIndex -
producerOp.getNumInputs();
Value consumerView = consumer.getShapedOperand(consumerIdx);
// Must be a subview or a slice to guarantee there are loops we can fuse
// into.
auto subView = consumerView.getDefiningOp<SubViewOp>();
auto slice = consumerView.getDefiningOp<SliceOp>();
if (!subView && !slice) {
LLVM_DEBUG(llvm::dbgs() << "\nNot fusable (not a subview or slice)");
return {};
}
// Fuse `producer` just before `consumer`.
OpBuilder::InsertionGuard g(b);
b.setInsertionPoint(consumer.getOperation());
ScopedContext scope(b, consumer.getLoc());
LLVM_DEBUG(llvm::dbgs() << "Fuse into consumer: " << *consumer << "\n");
auto fusedProducer = fuse(b, producerOp, producerIdx, consumer, consumerIdx);
return FusionInfo{producerOp, fusedProducer};
}
/// Walk back use-def chain through scf::For yields.
/// Sets `producer` and `outputIndex` if it finds a producer LinalgOp
static void getProducerOfTensor(Value tensor, LinalgOp &producer,
unsigned &outputIndex) {
if (!tensor.getType().isa<RankedTensorType>())
return;
while (true) {
if (auto linalgOp = tensor.getDefiningOp<LinalgOp>()) {
producer = linalgOp;
outputIndex = tensor.cast<OpResult>().getResultNumber();
return;
}
if (auto subTensorOp = tensor.getDefiningOp<SubTensorOp>()) {
tensor = subTensorOp.source();
continue;
}
if (auto blockArg = tensor.dyn_cast<BlockArgument>()) {
if (auto forOp = blockArg.getDefiningOp<scf::ForOp>()) {
tensor = forOp.getResult(blockArg.getArgNumber());
continue;
}
}
return;
}
}
Optional<FusionInfo> mlir::linalg::fuseProducerOfTensor(OpBuilder &b,
LinalgOp consumer,
unsigned consumerIdx) {
Value inputTensor = consumer.getInput(consumerIdx);
LinalgOp producerOp;
unsigned producerIdx;
getProducerOfTensor(inputTensor, producerOp, producerIdx);
// Must be a subtensor to guarantee there are loops we can fuse into.
auto subTensor = inputTensor.getDefiningOp<SubTensorOp>();
if (!subTensor || !producerOp) {
LLVM_DEBUG(llvm::dbgs() << "\nNot fusable (not a subtensor)");
return {};
}
// If producer is already in the same block as consumer, we are done.
if (consumer->getBlock() == producerOp->getBlock())
return {};
// Insert fused `producer` just before `consumer`.
OpBuilder::InsertionGuard g(b);
b.setInsertionPoint(consumer.getOperation());
ScopedContext scope(b, consumer.getLoc());
LLVM_DEBUG(llvm::dbgs() << "Fuse into consumer: " << *consumer << "\n");
LinalgOp fusedProducer =
fuse(b, producerOp, producerIdx, consumer, consumerIdx);
// Replace use.
// Canonicalizations are not guaranteed to have happened before constructing
// `fusedProducer`. In the tensor case this can result in temporary type
// mismatches. Insert a `tensor_cast` op to propagate the transformation
// invariant that types are compatible.
Value def = fusedProducer->getResult(producerIdx);
OpOperand &use = consumer->getOpOperand(consumerIdx);
Type consumerType = use.get().getType();
if (consumerType != def.getType())
def = b.create<TensorCastOp>(fusedProducer.getLoc(), consumerType, def);
use.set(def);
return FusionInfo{producerOp, fusedProducer};
}
/// Prune all dimensions that are of reduction iterator type from `map`.
static AffineMap pruneReductionDimsFromMap(ArrayRef<Attribute> iteratorTypes,
AffineMap map) {
SmallVector<unsigned, 2> projectedDims;
for (auto attr : llvm::enumerate(iteratorTypes)) {
if (!isParallelIterator(attr.value()))
projectedDims.push_back(attr.index());
}
return getProjectedMap(map, projectedDims);
}
/// Returns the mapping from iterations in the consumer that write to the same
/// location as the iterations in the producer. To do so use
/// - indexing map of the fused view in the consumer : consumerIndexMap
/// - indexing map of the fused view in the producer : producerIndexMap
/// consumerLoopToProducerLoop =
/// inverse(producerIndexMap).compose(consumerIndexMap)
static Optional<AffineMap> getConsumerLoopToProducerLoopMap(
LinalgDependenceGraph::LinalgDependenceGraphElem dependence) {
auto producer = cast<LinalgOp>(dependence.dependentOpView.op);
AffineMap producerIndexingMap =
producer.getIndexingMap(dependence.dependentOpView.operandIndex);
auto consumer = cast<LinalgOp>(dependence.indexingOpView.op);
AffineMap consumerIndexingMap =
consumer.getIndexingMap(dependence.indexingOpView.operandIndex);
AffineMap prunedProducerIndexingMap = pruneReductionDimsFromMap(
producer.iterator_types().getValue(), producerIndexingMap);
if (!prunedProducerIndexingMap.isPermutation())
return None;
if (consumerIndexingMap.getNumResults() !=
prunedProducerIndexingMap.getNumResults())
return None;
LLVM_DEBUG({
llvm::dbgs() << "\t producerMap : ";
producerIndexingMap.print(llvm::dbgs());
llvm::dbgs() << " pruned : ";
prunedProducerIndexingMap.print(llvm::dbgs());
llvm::dbgs() << "\n";
llvm::dbgs() << "\t consumerMap : ";
consumerIndexingMap.print(llvm::dbgs());
llvm::dbgs() << "\n";
});
AffineMap invProducerIndexMap = inversePermutation(prunedProducerIndexingMap);
if (!invProducerIndexMap)
return None;
return invProducerIndexMap.compose(consumerIndexingMap);
}
/// Given a projected permutation `map`, returns true if the map changes the
/// order in which the fused loop dimension appear.
static bool doesTransposeAccess(AffineMap map,
const std::set<unsigned> &fusableLoops) {
Optional<unsigned> lastFusableLoop;
for (unsigned pos : llvm::map_range(map.getResults(), [](AffineExpr expr) {
return expr.cast<AffineDimExpr>().getPosition();
})) {
if (!fusableLoops.count(pos))
continue;
if (!lastFusableLoop) {
lastFusableLoop = pos;
continue;
}
if (pos <= lastFusableLoop.getValue())
return true;
lastFusableLoop = pos;
}
return false;
}
/// Returns the positions of the loop in `op` that can be tiled based on the
/// operations that are to be fused with it. For example, in a
///
/// linalg.matmul ins(%a, %b : ...) outs(%c : ...)
///
/// if the producer of %a needs to be fused with this op, only the `i` loop of
/// the matmul can be tiled while fusing. If producer of %a, and %b are to be
/// fused, then no loops can be tiled while fusing. The conditions used are:
/// 1. Only parallel loops can be used for tile + fuse. Find the number of
/// common outer parallel loops between the op and its producers being fused.
/// 2. Of the parallel loops only some can be fused. Only those loops can be
/// fused such where the fusable loops iteration space only touches one tile
/// of the fused operation. This is because the producer (which is writing
/// the fused subview) has update semantics.
///
/// Since an inverse computation is needed, we need to consider the projection
/// of the producerIndexMap w.r.t the parallel loops. The actual fusable loops
/// are the dimensions of the consumerLoopToProducerLoop map that correspond to
/// parallel loops and appear in the result of the map
///
/// Example 1:
/// linalg.fill(%c, %cst)
/// linalg.matmul ins(%a, %b) outs(%c)
/// Number of parallel loops : 2
/// producerIndexMap = affine_map<(i, j) ->(i , j)>
/// consumerIndexMap = affine_map<(i, j, k) -> (i, j)>
/// consumerLoopToProducerLoop = affine_map<(i, j, k) -> (i, j)>
/// Fused dimensions : i, j
///
/// Example 2:
/// linalg.matmul ins(%a, %b) outs(%c)
/// linalg.generic {indexing_maps = [affine_map<(i, j) -> (j, i)>, ...
/// iterator_types = ["parallel", "parallel"]}
/// ins(%c) ...
///
/// Number of parallel loops = 2:
/// producerIndexMap (projected to parallel loops) =
/// affine_map<(i, j) -> (i, j)>
/// consumerLoopToProducerLoop2 = affine_map<(i, j) -> (j, i)>
/// Fused dimensions : i, j
///
/// Example 3:
/// linalg.copy(%s, %b)
/// linalg.matmul ins(%a, %b) outs(%c)
///
/// Number of parallel loops = 2
/// produceIndexMap : affine_map<(i, j) -> (i, j)>
/// consumerLoopToProduceLoops = affine_map<(i, j, k) -> (k, j)>
/// submap with only parallel loops = affine_map<(i, j) -> (j)>
/// Fused dimensions : j
static std::set<unsigned>
collectFusableLoops(ArrayRef<LinalgOp> ops,
const FusableOpDependencesTy &fusableDependences) {
assert(!ops.empty());
auto getNumOuterParallelLoops = [](LinalgOp linalgOp) {
return linalgOp.iterator_types()
.getValue()
.take_while([](Attribute attr) -> bool {
return attr.cast<StringAttr>().getValue() ==
getParallelIteratorTypeName();
})
.size();
};
size_t numOuterParallelLoops = getNumOuterParallelLoops(ops.back());
for (auto op : ops.drop_back()) {
numOuterParallelLoops =
std::min(numOuterParallelLoops, getNumOuterParallelLoops(op));
}
std::set<unsigned> fusableLoops;
auto range = llvm::seq<unsigned>(0, numOuterParallelLoops);
fusableLoops.insert(range.begin(), range.end());
for (auto op : reverse(ops)) {
for (auto dependence : fusableDependences.lookup(op)) {
LLVM_DEBUG({
llvm::dbgs() << "\t fusable :";
for (unsigned i : fusableLoops)
llvm::dbgs() << " " << i;
llvm::dbgs() << "\n";
});
Optional<AffineMap> consumerLoopToProducerLoop =
getConsumerLoopToProducerLoopMap(dependence);
if (!consumerLoopToProducerLoop) {
op.emitRemark("failed to get map from consumer loop to producer loop");
return {};
}
// todo: This condition is only an implementation limitation. When fusing
// the operation, if the accesses in the producer/consumer are transposes
// of each other, the loop bounds for the tiled producer can be
// manipulated accordingly. This requires some additional bookkeeping in
// the implementation of tile+fuse that is defered to later.
if (doesTransposeAccess(*consumerLoopToProducerLoop, fusableLoops)) {
op.emitRemark("unhandled fusion when fusion requires permutation");
return {};
}
std::set<unsigned> candidates;
for (AffineExpr expr : consumerLoopToProducerLoop->getResults()) {
unsigned position = expr.cast<AffineDimExpr>().getPosition();
if (fusableLoops.count(position))
candidates.insert(position);
}
LLVM_DEBUG({
llvm::dbgs() << "\t candidates :";
for (unsigned i : candidates)
llvm::dbgs() << " " << i;
llvm::dbgs() << "\n";
});
if (candidates.empty())
return {};
std::swap(candidates, fusableLoops);
}
}
return fusableLoops;
}
/// Find all dependences that are fusable.
FusableOpDependencesTy mlir::linalg::findAllFusableDependences(
ArrayRef<LinalgOp> ops, const LinalgDependenceGraph &dependenceGraph) {
FusableOpDependencesTy fusableDependences;
// TODO: Currently fusion would not be legal if the fusable dependence is to
// the same producer but different indexing map in the consumer. Fix this, but
// in the meanwhile disallow such a fusion.
DenseMap<Operation *, AffineMap> fusedProducerIndexingMap;
for (LinalgOp op : reverse(ops)) {
for (auto operandIndex :
llvm::seq<unsigned>(0, op.getNumInputsAndOutputBuffers())) {
Optional<LinalgDependenceGraph::LinalgDependenceGraphElem>
fusableDependence =
findFusableProducer(op, operandIndex, dependenceGraph);
if (!fusableDependence)
continue;
LinalgOp producerOp =
cast<LinalgOp>(fusableDependence->dependentOpView.op);
// Do not fuse dependences that are to operations not in the same basic
// block. This avoid moving fused operations across loops that might
// themselves carry dependency making the fusion illegal.
if (producerOp->getBlock() != op->getBlock()) {
op.emitRemark("unhandled fusion of ops in different basic blocks");
return FusableOpDependencesTy{};
}
// Make sure that the indexing map of the view used for fusion in the
// producer is a projected permutation.
unsigned producerIdx = fusableDependence->dependentOpView.operandIndex;
AffineMap producerMap = producerOp.getIndexingMap(producerIdx);
if (!producerMap.isProjectedPermutation()) {
op.emitRemark(
"unhandled non permutation indexing map for fused view in "
"producer for operand at index ")
<< operandIndex;
return FusableOpDependencesTy{};
}
unsigned consumerIdx = fusableDependence->indexingOpView.operandIndex;
AffineMap consumerMap = op.getIndexingMap(consumerIdx);
if (!consumerMap.isProjectedPermutation()) {
op.emitRemark(
"unhandled case where indexing map for fused view in the consumer "
"is "
"not a projected permuration while fusing at index ")
<< operandIndex;
return FusableOpDependencesTy{};
}
// Check if the producer is already a fusion candidate. Cannot fuse this
// dependence if it has a different indexing map when used in the
// consumer.
if (fusedProducerIndexingMap.count(producerOp.getOperation()) &&
fusedProducerIndexingMap[producerOp.getOperation()] != consumerMap) {
op.emitRemark(
"unhandled fusion to the same producer but with different "
"indexing maps");
return FusableOpDependencesTy{};
}
fusedProducerIndexingMap[producerOp.getOperation()] = consumerMap;
fusableDependences[producerOp.getOperation()].push_back(
*fusableDependence);
}
}
return fusableDependences;
}
/// Tile the fused loops in the root operation, by setting the tile sizes for
/// all other loops to zero (those will be tiled later).
static Optional<TiledLinalgOp> tileRootOperation(
OpBuilder &builder, LinalgOp op, ArrayRef<Value> tileSizeVector,
const LinalgTilingOptions &options, const std::set<unsigned> &fusedLoops) {
SmallVector<Value, 4> tileSizes(tileSizeVector.begin(), tileSizeVector.end());
auto zero = std_constant_index(0);
for (unsigned i = 0, e = tileSizes.size(); i != e; ++i)
if (!fusedLoops.count(i))
tileSizes[i] = zero;
LinalgTilingOptions tileFusedLoopsOptions = options;
tileFusedLoopsOptions.setTileSizes(tileSizes);
return tileLinalgOp(builder, op, tileFusedLoopsOptions);
}
/// Fuse the operations in `fusionCandidates` with `tiledOp`. Latter is expected
/// to be a tiled operation such that it is valid to fuse all operations in
/// `fusionCandidates`, i.e. move the operation within the inter-tile loops of
/// `tiledOp`.
static SmallVector<LinalgOp, 1>
fuseOperations(OpBuilder &builder, LinalgOp tiledOp,
ArrayRef<LinalgOp> fusionCandidates,
const FusableOpDependencesTy &fusableDependences,
const std::set<unsigned> &fusedLoops) {
OpBuilder::InsertionGuard guard(builder);
builder.setInsertionPoint(tiledOp);
DenseMap<unsigned, Range> fusedLoopsAndRanges;
for (unsigned loop : fusedLoops) {
ShapeDimension shapeDim = getShapeDefiningLoopRange(tiledOp, loop, true);
fusedLoopsAndRanges[loop] = getRangeFromOperandShape(
builder, tiledOp.getLoc(), shapeDim.shape, shapeDim.dimension);
}
SmallVector<LinalgOp, 1> fusedOps(fusionCandidates.size());
for (auto candidate : enumerate(llvm::reverse(fusionCandidates))) {
LinalgOp fusedOp = fuse(builder, candidate.value(), fusedLoopsAndRanges);
fusedOps[fusionCandidates.size() - candidate.index() - 1] = fusedOp;
builder.setInsertionPoint(fusedOp);
}
return fusedOps;
}
template <typename LoopType>
static Optional<TiledAndFusedLinalgOps>
tileAndFuseLinalgOpsImpl(OpBuilder &builder, ArrayRef<LinalgOp> ops,
const LinalgDependenceGraph &dependenceGraph,
const LinalgTilingOptions &tilingOptions) {
if (ops.empty())
return llvm::None;
LinalgOp rootOp = ops.back();
for (auto op : enumerate(ops)) {
// TODO: Nothing in the fusion of sequence of ops is specific to
// buffers. This check can be removed after it is tested on tensors.
LinalgOp linalgOp = op.value();
if (!linalgOp.hasBufferSemantics()) {
linalgOp.emitError("tile and fuse only tested for buffer operation");
return llvm::None;
}
}
// TODO: Support interchange with tile + fuse. This might actually help do
// better fusion.
if (!tilingOptions.interchangeVector.empty()) {
rootOp.emitError("unable to handle tile and fuse with interchange");
return llvm::None;
}
OpBuilder::InsertionGuard guard(builder);
builder.setInsertionPoint(rootOp);
ScopedContext scope(builder, rootOp.getLoc());
// Find all the producers.
FusableOpDependencesTy fusableDependences =
findAllFusableDependences(ops, dependenceGraph);
if (fusableDependences.empty())
return llvm::None;
TiledAndFusedLinalgOps ret;
// Find the loops that can be tiled and fused.
ret.fusedLoopDims = collectFusableLoops(ops, fusableDependences);
// If there are no fusable dependences or there are no tile+fusable loops,
// just return.
if (ret.fusedLoopDims.empty()) {
return llvm::None;
}
// Tile the fused loops in the last operation in the list.
SmallVector<Value, 4> tileSizeVector =
tilingOptions.tileSizeComputationFunction(builder, rootOp);
Optional<TiledLinalgOp> tiledRootOp = tileRootOperation(
builder, rootOp, tileSizeVector, tilingOptions, ret.fusedLoopDims);
if (!tiledRootOp) {
rootOp.emitError("failed to tile the fused loops");
return llvm::None;
}
ret.op = tiledRootOp->op;
ret.fusedLoops.assign(tiledRootOp->loops.begin(), tiledRootOp->loops.end());
// Fuse the other operations into the fused inter-tile loops produced above.
ret.fusedProducers = fuseOperations(builder, ret.op, ops.drop_back(),
fusableDependences, ret.fusedLoopDims);
return ret;
}
Optional<TiledAndFusedLinalgOps>
mlir::linalg::tileAndFuseLinalgOps(OpBuilder &builder, ArrayRef<LinalgOp> ops,
const LinalgDependenceGraph &dependenceGraph,
const LinalgTilingOptions &tilingOptions) {
switch (tilingOptions.loopType) {
case LinalgTilingLoopType::Loops:
return tileAndFuseLinalgOpsImpl<scf::ForOp>(builder, ops, dependenceGraph,
tilingOptions);
case LinalgTilingLoopType::ParallelLoops:
return tileAndFuseLinalgOpsImpl<scf::ParallelOp>(
builder, ops, dependenceGraph, tilingOptions);
default:;
}
return llvm::None;
}