blob: 50a18d4fb01c1d5f36e2609d585a2c7f044fdb90 [file] [log] [blame] [edit]
//===- Tiling.cpp - Implementation of linalg Tiling -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the linalg dialect Tiling pass.
//
//===----------------------------------------------------------------------===//
#include "PassDetail.h"
#include "mlir/Dialect/Affine/EDSC/Intrinsics.h"
#include "mlir/Dialect/Linalg/EDSC/FoldedIntrinsics.h"
#include "mlir/Dialect/Linalg/IR/LinalgTypes.h"
#include "mlir/Dialect/Linalg/Passes.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/SCF/EDSC/Builders.h"
#include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineExprVisitor.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/Transforms/FoldUtils.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/Support/CommandLine.h"
using namespace mlir;
using namespace mlir::edsc;
using namespace mlir::edsc::intrinsics;
using namespace mlir::linalg;
using namespace mlir::scf;
using folded_affine_min = FoldedValueBuilder<AffineMinOp>;
#define DEBUG_TYPE "linalg-tiling"
static bool isZero(Value v) {
if (auto cst = v.getDefiningOp<ConstantIndexOp>())
return cst.getValue() == 0;
return false;
}
using LoopIndexToRangeIndexMap = DenseMap<int, int>;
// Creates a number of ranges equal to the number of non-zero in `tileSizes`.
// One for each loop of the LinalgOp that is tiled. The `tileSizes` argument has
// one entry per surrounding loop. It uses zero as the convention that a
// particular loop is not tiled. This convention simplifies implementations by
// avoiding affine map manipulations.
// The returned ranges correspond to the loop ranges, in the proper order, that
// are tiled and for which new loops will be created. Also the function returns
// a map from loop indices of the LinalgOp to the corresponding non-empty range
// indices of newly created loops.
static std::tuple<SmallVector<Range, 4>, LoopIndexToRangeIndexMap>
makeTiledLoopRanges(OpBuilder &b, Location loc, AffineMap map,
ValueRange allShapeSizes, ValueRange allTileSizes) {
assert(allTileSizes.size() == map.getNumResults());
// Apply `map` to get shape sizes in loop order.
auto shapeSizes = applyMapToValues(b, loc, map, allShapeSizes);
SmallVector<Value, 4> tileSizes(allTileSizes.begin(), allTileSizes.end());
// Traverse the tile sizes, which are in loop order, erase zeros everywhere.
LoopIndexToRangeIndexMap loopIndexToRangeIndex;
for (int idx = 0, e = tileSizes.size(), zerosCount = 0; idx < e; ++idx) {
if (isZero(tileSizes[idx - zerosCount])) {
shapeSizes.erase(shapeSizes.begin() + idx - zerosCount);
tileSizes.erase(tileSizes.begin() + idx - zerosCount);
++zerosCount;
continue;
}
loopIndexToRangeIndex[idx] = idx - zerosCount;
}
// Create a new range with the applied tile sizes.
SmallVector<Range, 4> res;
for (unsigned idx = 0, e = tileSizes.size(); idx < e; ++idx)
res.push_back(
Range{std_constant_index(0), shapeSizes[idx], tileSizes[idx]});
return std::make_tuple(res, loopIndexToRangeIndex);
}
namespace {
// Helper visitor to determine whether an AffineExpr is tiled.
// This is achieved by traversing every AffineDimExpr with position `pos` and
// checking whether the corresponding `tileSizes[pos]` is non-zero.
// This also enforces only positive coefficients occur in multiplications.
//
// Example:
// `d0 + 2 * d1 + d3` is tiled by [0, 0, 0, 2] but not by [0, 0, 2, 0]
//
struct TileCheck : public AffineExprVisitor<TileCheck> {
TileCheck(ValueRange tileSizes) : isTiled(false), tileSizes(tileSizes) {}
void visitDimExpr(AffineDimExpr expr) {
isTiled |= !isZero(tileSizes[expr.getPosition()]);
}
void visitAffineBinaryOpExpr(AffineBinaryOpExpr expr) {
visit(expr.getLHS());
visit(expr.getRHS());
if (expr.getKind() == mlir::AffineExprKind::Mul)
assert(expr.getRHS().cast<AffineConstantExpr>().getValue() > 0 &&
"nonpositive multiplying coefficient");
}
bool isTiled;
ValueRange tileSizes;
};
} // namespace
// IndexedGenericOp explicitly uses induction variables in the loop body. The
// values of the indices that are used in the loop body for any given access of
// input/output memref before `subview` op was applied should be invariant with
// respect to tiling.
//
// Therefore, if the operation is tiled, we have to transform the indices
// accordingly, i.e. offset them by the values of the corresponding induction
// variables that are captured implicitly in the body of the op.
//
// Example. `linalg.indexed_generic` before tiling:
//
// #id_2d = (i, j) -> (i, j)
// #pointwise_2d_trait = {
// indexing_maps = [#id_2d, #id_2d],
// iterator_types = ["parallel", "parallel"],
// n_views = [1, 1]
// }
// linalg.indexed_generic #pointwise_2d_trait %operand, %result {
// ^bb0(%i: index, %j: index, %operand_in: f32, %result_in: f32):
// <some operations that use %i, %j>
// }: memref<50x100xf32>, memref<50x100xf32>
//
// After tiling pass with tiles sizes 10 and 25:
//
// #strided = (i, j)[s0, s1, s2] -> (i * s1 + s0 + j * s2)
//
// %c1 = constant 1 : index
// %c0 = constant 0 : index
// %c25 = constant 25 : index
// %c10 = constant 10 : index
// operand_dim_0 = dim %operand, 0 : memref<50x100xf32>
// operand_dim_1 = dim %operand, 1 : memref<50x100xf32>
// scf.for %k = %c0 to operand_dim_0 step %c10 {
// scf.for %l = %c0 to operand_dim_1 step %c25 {
// %4 = std.subview %operand[%k, %l][%c10, %c25][%c1, %c1]
// : memref<50x100xf32> to memref<?x?xf32, #strided>
// %5 = std.subview %result[%k, %l][%c10, %c25][%c1, %c1]
// : memref<50x100xf32> to memref<?x?xf32, #strided>
// linalg.indexed_generic pointwise_2d_trait %4, %5 {
// ^bb0(%i: index, %j: index, %operand_in: f32, %result_in: f32):
// // Indices `k` and `l` are implicitly captured in the body.
// %transformed_i = addi %i, %k : index // index `i` is offset by %k
// %transformed_j = addi %j, %l : index // index `j` is offset by %l
// // Every use of %i, %j is replaced with %transformed_i, %transformed_j
// <some operations that use %transformed_i, %transformed_j>
// }: memref<?x?xf32, #strided>, memref<?x?xf32, #strided>
// }
// }
//
// TODO: Investigate whether mixing implicit and explicit indices
// does not lead to losing information.
static void transformIndexedGenericOpIndices(
OpBuilder &b, LinalgOp op, SmallVectorImpl<Value> &ivs,
const LoopIndexToRangeIndexMap &loopIndexToRangeIndex) {
auto indexedGenericOp = dyn_cast<IndexedGenericOp>(op.getOperation());
if (!indexedGenericOp)
return;
// `linalg.indexed_generic` comes in two flavours. One has a region with a
// single block that defines the loop body. The other has a `fun` attribute
// that refers to an existing function symbol. The `fun` function call will be
// inserted in the loop body in that case.
//
// TODO: Add support for `linalg.indexed_generic` with `fun` attribute.
auto &region = indexedGenericOp.region();
if (region.empty()) {
indexedGenericOp.emitOpError("expected a region");
return;
}
auto &block = region.front();
OpBuilder::InsertionGuard g(b);
b.setInsertionPointToStart(&block);
for (unsigned i = 0; i < indexedGenericOp.getNumLoops(); ++i) {
auto rangeIndex = loopIndexToRangeIndex.find(i);
if (rangeIndex == loopIndexToRangeIndex.end())
continue;
Value oldIndex = block.getArgument(i);
// Offset the index argument `i` by the value of the corresponding induction
// variable and replace all uses of the previous value.
Value newIndex = b.create<AddIOp>(indexedGenericOp.getLoc(), oldIndex,
ivs[rangeIndex->second]);
for (auto &use : oldIndex.getUses()) {
if (use.getOwner() == newIndex.getDefiningOp())
continue;
use.set(newIndex);
}
}
}
static bool isTiled(AffineExpr expr, ValueRange tileSizes) {
if (!expr)
return false;
TileCheck t(tileSizes);
t.visit(expr);
return t.isTiled;
}
// Checks whether the `map varies with respect to a non-zero `tileSize`.
static bool isTiled(AffineMap map, ValueRange tileSizes) {
if (!map)
return false;
for (unsigned r = 0; r < map.getNumResults(); ++r)
if (isTiled(map.getResult(r), tileSizes))
return true;
return false;
}
static SmallVector<Value, 4>
makeTiledShapes(OpBuilder &b, Location loc, LinalgOp linalgOp,
ValueRange operands, AffineMap map, ValueRange ivs,
ValueRange tileSizes, ValueRange allShapeSizes) {
assert(operands.size() == linalgOp.getShapedOperands().size());
assert(ivs.size() == static_cast<size_t>(llvm::count_if(
llvm::make_range(tileSizes.begin(), tileSizes.end()),
[](Value v) { return !isZero(v); })) &&
"expected as many ivs as non-zero sizes");
using namespace edsc::op;
auto shapeSizes = applyMapToValues(b, loc, map, allShapeSizes);
// Construct (potentially temporary) mins and maxes on which to apply maps
// that define tile subshapes.
SmallVector<Value, 8> lbs, subShapeSizes;
for (unsigned idx = 0, idxIvs = 0, e = tileSizes.size(); idx < e; ++idx) {
bool isTiled = !isZero(tileSizes[idx]);
lbs.push_back(isTiled ? ivs[idxIvs++] : (Value)std_constant_index(0));
// Before composing, we need to make range a closed interval.
Value size = isTiled ? tileSizes[idx] : shapeSizes[idx];
subShapeSizes.push_back(size - std_constant_index(1));
}
auto *op = linalgOp.getOperation();
SmallVector<Value, 4> res;
res.reserve(op->getNumOperands());
for (auto en : llvm::enumerate(operands)) {
Value shapedOp = en.value();
ShapedType shapedType = shapedOp.getType().cast<ShapedType>();
unsigned rank = shapedType.getRank();
AffineMap map = linalgOp.getIndexingMap(en.index());
// If the shape is not tiled, we can use it as is.
if (!isTiled(map, tileSizes)) {
res.push_back(shapedOp);
continue;
}
// Construct a new subview / subtensor for the tile.
SmallVector<Value, 4> offsets, sizes, strides;
offsets.reserve(rank);
sizes.reserve(rank);
strides.reserve(rank);
for (unsigned r = 0; r < rank; ++r) {
if (!isTiled(map.getSubMap({r}), tileSizes)) {
offsets.push_back(std_constant_index(0));
sizes.push_back(std_dim(shapedOp, r));
strides.push_back(std_constant_index(1));
continue;
}
// Tiling creates a new slice at the proper index, the slice step is 1
// (i.e. the op does not subsample, stepping occurs in the loop).
auto m = map.getSubMap({r});
auto offset = applyMapToValues(b, loc, m, lbs).front();
offsets.push_back(offset);
auto closedIntSize = applyMapToValues(b, loc, m, subShapeSizes).front();
// Resulting size needs to be made half open interval again.
auto size = closedIntSize + std_constant_index(1);
// The size of the subview / subtensor should be trimmed to avoid
// out-of-bounds accesses, unless we statically know the subshape size
// divides the shape size evenly.
int64_t shapeSize = shapedType.getDimSize(r);
auto sizeCst = size.getDefiningOp<ConstantIndexOp>();
if (ShapedType::isDynamic(shapeSize) || !sizeCst ||
(shapeSize % sizeCst.getValue()) != 0) {
// Compute min(size, dim - offset) to avoid out-of-bounds accesses.
auto minMap = AffineMap::get(
/*dimCount=*/3, /*symbolCount=*/0,
{getAffineDimExpr(/*position=*/0, b.getContext()),
getAffineDimExpr(/*position=*/1, b.getContext()) -
getAffineDimExpr(/*position=*/2, b.getContext())},
b.getContext());
auto d = std_dim(shapedOp, r);
size =
affine_min(b.getIndexType(), minMap, ValueRange{size, d, offset});
}
sizes.push_back(size);
strides.push_back(std_constant_index(1));
}
if (shapedType.isa<MemRefType>())
res.push_back(
b.create<SubViewOp>(loc, shapedOp, offsets, sizes, strides));
else
res.push_back(
b.create<SubTensorOp>(loc, shapedOp, offsets, sizes, strides));
}
return res;
}
template <typename LoopTy>
static Optional<TiledLinalgOp>
tileLinalgOpImpl(OpBuilder &b, LinalgOp op, ValueRange tileSizes,
const LinalgTilingOptions &options) {
auto nLoops = op.getNumLoops();
// Initial tile sizes may be too big, only take the first nLoops.
tileSizes = tileSizes.take_front(nLoops);
if (llvm::all_of(tileSizes, isZero))
return llvm::None;
if (auto convOp = dyn_cast<linalg::ConvOp>(op.getOperation())) {
// For conv op only support tiling along batch dimension (which is the first
// loop).
if (convOp.padding() && !llvm::all_of(tileSizes.drop_front(), isZero))
return llvm::None;
}
// 1. Build the tiled loop ranges.
auto allShapeSizes = op.createFlatListOfOperandDims(b, op.getLoc());
AffineMap shapeSizesToLoopsMap = op.getShapesToLoopsMap();
if (!shapeSizesToLoopsMap)
return llvm::None;
SmallVector<Range, 4> loopRanges;
LoopIndexToRangeIndexMap loopIndexToRangeIndex;
std::tie(loopRanges, loopIndexToRangeIndex) = makeTiledLoopRanges(
b, op.getLoc(), shapeSizesToLoopsMap, allShapeSizes, tileSizes);
SmallVector<Attribute, 4> iteratorTypes;
for (auto attr :
enumerate(op.iterator_types().cast<ArrayAttr>().getValue())) {
if (loopIndexToRangeIndex.count(attr.index()))
iteratorTypes.push_back(attr.value());
}
// If interchangeVector is empty, use the identity. Build the permutation map
// otherwise.
auto invPermutationMap =
AffineMap::getMultiDimIdentityMap(tileSizes.size(), b.getContext());
if (!options.interchangeVector.empty()) {
// Based on the pruned iterations (due to zero tile size), recompute the
// interchange vector.
SmallVector<unsigned, 4> interchangeVector;
interchangeVector.reserve(options.interchangeVector.size());
for (auto pos : options.interchangeVector) {
auto it = loopIndexToRangeIndex.find(pos);
if (it == loopIndexToRangeIndex.end())
continue;
interchangeVector.push_back(it->second);
}
// Interchange vector is guaranteed to be a permutation,
// `inversePermutation` must succeed.
invPermutationMap = inversePermutation(
AffineMap::getPermutationMap(interchangeVector, b.getContext()));
assert(invPermutationMap);
applyPermutationToVector(loopRanges, interchangeVector);
applyPermutationToVector(iteratorTypes, interchangeVector);
}
// 2. Create the tiled loops.
LinalgOp res = op;
SmallVector<Value, 4> ivs, tensorResults;
auto initTensors = op.getInitTensors();
GenerateLoopNest<LoopTy>::doit(
loopRanges, /*iterArgInitValues*/ initTensors, iteratorTypes,
[&](ValueRange localIvs, ValueRange iterArgs) -> scf::ValueVector {
auto &b = ScopedContext::getBuilderRef();
auto loc = ScopedContext::getLocation();
ivs.assign(localIvs.begin(), localIvs.end());
// When an `interchangeVector` is present, it has been applied to the
// loop ranges and the iterator types. Apply its inverse to the
// resulting loop `ivs` to match the op definition.
SmallVector<Value, 4> interchangedIvs;
if (!options.interchangeVector.empty())
interchangedIvs = applyMapToValues(b, loc, invPermutationMap, ivs);
else
interchangedIvs.assign(ivs.begin(), ivs.end());
assert(op.getNumInitTensors() == iterArgs.size() &&
"num init tensors must match number of loop iter arguments");
// This uses knowledge about position of the init tensor in the list
// of operands.
auto operands = llvm::to_vector<4>(op.getShapedOperands());
std::copy(iterArgs.begin(), iterArgs.end(),
operands.begin() + op.getNumInputsAndOutputBuffers());
SmallVector<Value, 4> tiledOperands =
makeTiledShapes(b, loc, op, operands, shapeSizesToLoopsMap,
interchangedIvs, tileSizes, allShapeSizes);
auto nonShapedOperands = op.getAssumedNonShapedOperands();
tiledOperands.append(nonShapedOperands.begin(),
nonShapedOperands.end());
// If LinalgOp has results, they must all be tied to init tensors.
// We enforce this to ensure all tiled ops have been rewritten in
// "init tensor" form. This ensures tiling has anchor values into which
// to subtensor / subtensor_insert. Otherwise tiling would need to
// allocate which is not acceptable.
// This would not be the case with a special terminator op that
// generates the whole tensor (instead of inserting a subtensor). But
// the generator-based abstraction has other issues.
assert(op.getNumInitTensors() == op->getNumResults() &&
"expected same number of init tensors as number of results");
// Handle init tensor operands.
// This uses knowledge about position of the init tensor in the list
// of operands.
// TODO: InterfaceAdaptor ?
SmallVector<Type, 4> resultTensorTypes;
for (auto idx : llvm::seq<unsigned>(0, op.getNumInitTensors()))
resultTensorTypes.push_back(
tiledOperands[op.getNumInputsAndOutputBuffers() + idx].getType());
res = op.clone(b, loc, resultTensorTypes, tiledOperands);
// Insert a subtensor_insert for each init subtensor.
for (unsigned idx = 0, e = op.getNumInitTensors(); idx != e; ++idx) {
Value initTensor =
tiledOperands[op.getNumInputsAndOutputBuffers() + idx];
if (auto subtensor = initTensor.getDefiningOp<SubTensorOp>()) {
tensorResults.push_back(b.create<SubTensorInsertOp>(
loc, subtensor.source().getType(), res->getResult(idx),
subtensor.source(), subtensor.offsets(), subtensor.sizes(),
subtensor.strides(), subtensor.static_offsets(),
subtensor.static_sizes(), subtensor.static_strides()));
} else {
tensorResults.push_back(res->getResult(idx));
}
}
return scf::ValueVector(tensorResults.begin(), tensorResults.end());
},
options.distribution);
// 3. Transforms index arguments of `linalg.generic` w.r.t. to the tiling.
transformIndexedGenericOpIndices(b, res, ivs, loopIndexToRangeIndex);
// 4. Gather the newly created loops and return them with the new op.
SmallVector<Operation *, 8> loops;
loops.reserve(ivs.size());
for (auto iv : ivs) {
if (iv.isa<BlockArgument>()) {
loops.push_back(iv.cast<BlockArgument>().getOwner()->getParentOp());
assert(loops.back() && "no owner found for induction variable!");
} else {
// TODO: Instead of doing this, try to recover the ops used instead of the
// loop.
loops.push_back(nullptr);
}
}
// 5. Get the tensor results from the outermost loop if available. Otherwise
// use the previously captured `tensorResults`.
Operation *outermostLoop = nullptr;
for (Operation *loop : loops)
if ((outermostLoop = loop))
break;
return TiledLinalgOp{
res, loops, outermostLoop ? outermostLoop->getResults() : tensorResults};
}
template <typename LoopTy>
Optional<TiledLinalgOp> static tileLinalgOpImpl(
OpBuilder &b, LinalgOp op, const LinalgTilingOptions &options) {
OpBuilder::InsertionGuard g(b);
b.setInsertionPoint(op);
ScopedContext scope(b, op.getLoc());
// Enforce the convention that "tiling by zero" skips tiling a particular
// dimension. This convention is significantly simpler to handle instead of
// adjusting affine maps to account for missing dimensions.
auto nLoops = op.getNumLoops();
SmallVector<Value, 4> tileSizeVector =
options.tileSizeComputationFunction(b, op);
if (tileSizeVector.size() < nLoops) {
auto zero = std_constant_index(0);
tileSizeVector.append(nLoops - tileSizeVector.size(), zero);
}
return tileLinalgOpImpl<LoopTy>(b, op, tileSizeVector, options);
}
Optional<TiledLinalgOp>
mlir::linalg::tileLinalgOp(OpBuilder &b, LinalgOp op,
const LinalgTilingOptions &options) {
switch (options.loopType) {
case LinalgTilingLoopType::Loops:
return tileLinalgOpImpl<scf::ForOp>(b, op, options);
case LinalgTilingLoopType::ParallelLoops:
return tileLinalgOpImpl<scf::ParallelOp>(b, op, options);
default:;
}
return llvm::None;
}
namespace {
/// Helper classes for type list expansion.
template <typename... OpTypes>
class CanonicalizationPatternList;
template <>
class CanonicalizationPatternList<> {
public:
static void insert(OwningRewritePatternList &patterns, MLIRContext *ctx) {}
};
template <typename OpTy, typename... OpTypes>
class CanonicalizationPatternList<OpTy, OpTypes...> {
public:
static void insert(OwningRewritePatternList &patterns, MLIRContext *ctx) {
OpTy::getCanonicalizationPatterns(patterns, ctx);
CanonicalizationPatternList<OpTypes...>::insert(patterns, ctx);
}
};
/// Helper classes for type list expansion.
template <typename... OpTypes>
class RewritePatternList;
template <>
class RewritePatternList<> {
public:
static void insert(OwningRewritePatternList &patterns,
const LinalgTilingOptions &options, MLIRContext *ctx) {}
};
template <typename OpTy, typename... OpTypes>
class RewritePatternList<OpTy, OpTypes...> {
public:
static void insert(OwningRewritePatternList &patterns,
const LinalgTilingOptions &options, MLIRContext *ctx) {
patterns.insert<LinalgTilingPattern<OpTy>>(
ctx, options, LinalgMarker({}, Identifier::get("tiled", ctx)));
RewritePatternList<OpTypes...>::insert(patterns, options, ctx);
}
};
} // namespace
OwningRewritePatternList
mlir::linalg::getLinalgTilingCanonicalizationPatterns(MLIRContext *ctx) {
OwningRewritePatternList patterns;
populateLinalgTilingCanonicalizationPatterns(patterns, ctx);
return patterns;
}
void mlir::linalg::populateLinalgTilingCanonicalizationPatterns(
OwningRewritePatternList &patterns, MLIRContext *ctx) {
AffineApplyOp::getCanonicalizationPatterns(patterns, ctx);
AffineForOp::getCanonicalizationPatterns(patterns, ctx);
AffineMinOp::getCanonicalizationPatterns(patterns, ctx);
AffineMaxOp::getCanonicalizationPatterns(patterns, ctx);
scf::ForOp::getCanonicalizationPatterns(patterns, ctx);
scf::ParallelOp::getCanonicalizationPatterns(patterns, ctx);
ConstantIndexOp::getCanonicalizationPatterns(patterns, ctx);
SubTensorOp::getCanonicalizationPatterns(patterns, ctx);
SubViewOp::getCanonicalizationPatterns(patterns, ctx);
TensorCastOp::getCanonicalizationPatterns(patterns, ctx);
ViewOp::getCanonicalizationPatterns(patterns, ctx);
CanonicalizationPatternList<
#define GET_OP_LIST
#include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc"
>::insert(patterns, ctx);
}
/// Populate the given list with patterns that apply Linalg tiling.
static void insertTilingPatterns(OwningRewritePatternList &patterns,
const LinalgTilingOptions &options,
MLIRContext *ctx) {
RewritePatternList<
#define GET_OP_LIST
#include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc"
>::insert(patterns, options, ctx);
}
static void applyTilingToLoopPatterns(LinalgTilingLoopType loopType,
FuncOp funcOp,
ArrayRef<int64_t> tileSizes) {
auto options =
LinalgTilingOptions().setTileSizes(tileSizes).setLoopType(loopType);
MLIRContext *ctx = funcOp.getContext();
OwningRewritePatternList patterns;
insertTilingPatterns(patterns, options, ctx);
applyPatternsAndFoldGreedily(funcOp, std::move(patterns));
applyPatternsAndFoldGreedily(funcOp,
getLinalgTilingCanonicalizationPatterns(ctx));
// Drop the marker.
funcOp.walk([](LinalgOp op) {
op.removeAttr(LinalgTransforms::kLinalgTransformMarker);
});
}
namespace {
struct LinalgTilingPass : public LinalgTilingBase<LinalgTilingPass> {
LinalgTilingPass() = default;
LinalgTilingPass(ArrayRef<int64_t> sizes) { tileSizes = sizes; }
void runOnFunction() override {
applyTilingToLoopPatterns(LinalgTilingLoopType::Loops, getFunction(),
tileSizes);
}
};
struct LinalgTilingToParallelLoopsPass
: public LinalgTilingToParallelLoopsBase<LinalgTilingToParallelLoopsPass> {
LinalgTilingToParallelLoopsPass() = default;
LinalgTilingToParallelLoopsPass(ArrayRef<int64_t> sizes) {
tileSizes = sizes;
}
void runOnFunction() override {
applyTilingToLoopPatterns(LinalgTilingLoopType::ParallelLoops,
getFunction(), tileSizes);
}
};
} // namespace
std::unique_ptr<OperationPass<FuncOp>>
mlir::createLinalgTilingPass(ArrayRef<int64_t> tileSizes) {
return std::make_unique<LinalgTilingPass>(tileSizes);
}
std::unique_ptr<OperationPass<FuncOp>>
mlir::createLinalgTilingToParallelLoopsPass(ArrayRef<int64_t> tileSizes) {
return std::make_unique<LinalgTilingToParallelLoopsPass>(tileSizes);
}