| //===- Bufferize.cpp - Bufferization for std ops --------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements bufferization of std ops. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Transforms/Bufferize.h" |
| #include "PassDetail.h" |
| #include "mlir/Dialect/SCF/SCF.h" |
| #include "mlir/Dialect/StandardOps/IR/Ops.h" |
| #include "mlir/Dialect/StandardOps/Transforms/Passes.h" |
| #include "mlir/IR/BlockAndValueMapping.h" |
| #include "mlir/Transforms/DialectConversion.h" |
| |
| using namespace mlir; |
| |
| namespace { |
| class BufferizeDimOp : public OpConversionPattern<DimOp> { |
| public: |
| using OpConversionPattern::OpConversionPattern; |
| LogicalResult |
| matchAndRewrite(DimOp op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| DimOp::Adaptor adaptor(operands); |
| rewriter.replaceOpWithNewOp<DimOp>(op, adaptor.memrefOrTensor(), |
| adaptor.index()); |
| return success(); |
| } |
| }; |
| } // namespace |
| |
| namespace { |
| class BufferizeDynamicTensorFromElementsOp |
| : public OpConversionPattern<DynamicTensorFromElementsOp> { |
| public: |
| using OpConversionPattern::OpConversionPattern; |
| |
| LogicalResult |
| matchAndRewrite(DynamicTensorFromElementsOp op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const final { |
| // Allocate memory. |
| Location loc = op.getLoc(); |
| DynamicTensorFromElementsOp::Adaptor transformed(operands); |
| RankedTensorType tensorType = op.getType().cast<RankedTensorType>(); |
| MemRefType memrefType = |
| MemRefType::get(tensorType.getShape(), tensorType.getElementType()); |
| Value result = |
| rewriter.create<AllocOp>(loc, memrefType, transformed.dynamicExtents()); |
| |
| // Collect loop bounds. |
| int64_t rank = tensorType.getRank(); |
| Value zero = rewriter.create<ConstantIndexOp>(loc, 0); |
| Value one = rewriter.create<ConstantIndexOp>(loc, 1); |
| SmallVector<Value, 4> lowerBounds(rank, zero); |
| SmallVector<Value, 4> steps(rank, one); |
| SmallVector<Value, 4> upperBounds; |
| int nextDynamicIndex = 0; |
| for (int i = 0; i < rank; i++) { |
| Value upperBound = |
| tensorType.isDynamicDim(i) |
| ? transformed.dynamicExtents()[nextDynamicIndex++] |
| : rewriter.create<ConstantIndexOp>(loc, memrefType.getDimSize(i)); |
| upperBounds.push_back(upperBound); |
| } |
| |
| // Generate tensor elements with a parallel loop. |
| rewriter.create<scf::ParallelOp>( |
| loc, lowerBounds, upperBounds, steps, |
| [&](OpBuilder &b, Location loc, ValueRange ivs) { |
| BlockAndValueMapping mapping; |
| mapping.map(op.body().getArguments(), ivs); |
| for (auto &nestedOp : op.getBody()->without_terminator()) |
| b.clone(nestedOp, mapping); |
| auto yieldOp = cast<YieldOp>(op.getBody()->getTerminator()); |
| b.create<StoreOp>(loc, mapping.lookup(yieldOp.value()), result, ivs); |
| b.create<scf::YieldOp>(loc); |
| }); |
| |
| rewriter.replaceOp(op, {result}); |
| return success(); |
| } |
| }; |
| } // namespace |
| |
| namespace { |
| class BufferizeExtractElementOp : public OpConversionPattern<ExtractElementOp> { |
| public: |
| using OpConversionPattern::OpConversionPattern; |
| LogicalResult |
| matchAndRewrite(ExtractElementOp op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| ExtractElementOp::Adaptor adaptor(operands); |
| rewriter.replaceOpWithNewOp<LoadOp>(op, adaptor.aggregate(), |
| adaptor.indices()); |
| return success(); |
| } |
| }; |
| } // namespace |
| |
| namespace { |
| class BufferizeSelectOp : public OpConversionPattern<SelectOp> { |
| public: |
| using OpConversionPattern::OpConversionPattern; |
| LogicalResult |
| matchAndRewrite(SelectOp op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| if (!op.condition().getType().isa<IntegerType>()) |
| return rewriter.notifyMatchFailure(op, "requires scalar condition"); |
| |
| SelectOp::Adaptor adaptor(operands); |
| rewriter.replaceOpWithNewOp<SelectOp>( |
| op, adaptor.condition(), adaptor.true_value(), adaptor.false_value()); |
| return success(); |
| } |
| }; |
| } // namespace |
| |
| namespace { |
| class BufferizeTensorCastOp : public OpConversionPattern<TensorCastOp> { |
| public: |
| using OpConversionPattern::OpConversionPattern; |
| LogicalResult |
| matchAndRewrite(TensorCastOp op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| auto resultType = getTypeConverter()->convertType(op.getType()); |
| rewriter.replaceOpWithNewOp<MemRefCastOp>(op, resultType, operands[0]); |
| return success(); |
| } |
| }; |
| } // namespace |
| |
| namespace { |
| class BufferizeTensorFromElementsOp |
| : public OpConversionPattern<TensorFromElementsOp> { |
| public: |
| using OpConversionPattern::OpConversionPattern; |
| LogicalResult |
| matchAndRewrite(TensorFromElementsOp op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| int numberOfElements = op.elements().size(); |
| auto resultType = MemRefType::get( |
| {numberOfElements}, op.getType().cast<TensorType>().getElementType()); |
| Value result = rewriter.create<AllocOp>(op.getLoc(), resultType); |
| for (auto element : llvm::enumerate(op.elements())) { |
| Value index = |
| rewriter.create<ConstantIndexOp>(op.getLoc(), element.index()); |
| rewriter.create<StoreOp>(op.getLoc(), element.value(), result, index); |
| } |
| rewriter.replaceOp(op, {result}); |
| return success(); |
| } |
| }; |
| } // namespace |
| |
| void mlir::populateStdBufferizePatterns(MLIRContext *context, |
| BufferizeTypeConverter &typeConverter, |
| OwningRewritePatternList &patterns) { |
| patterns.insert< |
| // clang-format off |
| BufferizeDimOp, |
| BufferizeDynamicTensorFromElementsOp, |
| BufferizeExtractElementOp, |
| BufferizeSelectOp, |
| BufferizeTensorCastOp, |
| BufferizeTensorFromElementsOp |
| // clang-format on |
| >(typeConverter, context); |
| } |
| |
| namespace { |
| struct StdBufferizePass : public StdBufferizeBase<StdBufferizePass> { |
| void runOnFunction() override { |
| auto *context = &getContext(); |
| BufferizeTypeConverter typeConverter; |
| OwningRewritePatternList patterns; |
| ConversionTarget target(*context); |
| |
| target.addLegalDialect<StandardOpsDialect>(); |
| target.addLegalDialect<scf::SCFDialect>(); |
| |
| populateStdBufferizePatterns(context, typeConverter, patterns); |
| target.addIllegalOp<DynamicTensorFromElementsOp, ExtractElementOp, |
| TensorCastOp, TensorFromElementsOp>(); |
| // We only bufferize the case of tensor selected type and scalar condition, |
| // as that boils down to a select over memref descriptors (don't need to |
| // touch the data). |
| target.addDynamicallyLegalOp<SelectOp>([&](SelectOp op) { |
| return typeConverter.isLegal(op.getType()) || |
| !op.condition().getType().isa<IntegerType>(); |
| }); |
| target.addDynamicallyLegalOp<DimOp>( |
| [&](DimOp op) { return typeConverter.isLegal(op); }); |
| if (failed( |
| applyPartialConversion(getFunction(), target, std::move(patterns)))) |
| signalPassFailure(); |
| } |
| }; |
| } // namespace |
| |
| std::unique_ptr<Pass> mlir::createStdBufferizePass() { |
| return std::make_unique<StdBufferizePass>(); |
| } |