| //===---- CGOpenMPRuntimeGPU.cpp - Interface to OpenMP GPU Runtimes ----===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This provides a generalized class for OpenMP runtime code generation |
| // specialized by GPU targets NVPTX and AMDGCN. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CGOpenMPRuntimeGPU.h" |
| #include "CGOpenMPRuntimeNVPTX.h" |
| #include "CodeGenFunction.h" |
| #include "clang/AST/Attr.h" |
| #include "clang/AST/DeclOpenMP.h" |
| #include "clang/AST/StmtOpenMP.h" |
| #include "clang/AST/StmtVisitor.h" |
| #include "clang/Basic/Cuda.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/Frontend/OpenMP/OMPGridValues.h" |
| #include "llvm/IR/IntrinsicsNVPTX.h" |
| |
| using namespace clang; |
| using namespace CodeGen; |
| using namespace llvm::omp; |
| |
| namespace { |
| /// Pre(post)-action for different OpenMP constructs specialized for NVPTX. |
| class NVPTXActionTy final : public PrePostActionTy { |
| llvm::FunctionCallee EnterCallee = nullptr; |
| ArrayRef<llvm::Value *> EnterArgs; |
| llvm::FunctionCallee ExitCallee = nullptr; |
| ArrayRef<llvm::Value *> ExitArgs; |
| bool Conditional = false; |
| llvm::BasicBlock *ContBlock = nullptr; |
| |
| public: |
| NVPTXActionTy(llvm::FunctionCallee EnterCallee, |
| ArrayRef<llvm::Value *> EnterArgs, |
| llvm::FunctionCallee ExitCallee, |
| ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false) |
| : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee), |
| ExitArgs(ExitArgs), Conditional(Conditional) {} |
| void Enter(CodeGenFunction &CGF) override { |
| llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs); |
| if (Conditional) { |
| llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes); |
| auto *ThenBlock = CGF.createBasicBlock("omp_if.then"); |
| ContBlock = CGF.createBasicBlock("omp_if.end"); |
| // Generate the branch (If-stmt) |
| CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock); |
| CGF.EmitBlock(ThenBlock); |
| } |
| } |
| void Done(CodeGenFunction &CGF) { |
| // Emit the rest of blocks/branches |
| CGF.EmitBranch(ContBlock); |
| CGF.EmitBlock(ContBlock, true); |
| } |
| void Exit(CodeGenFunction &CGF) override { |
| CGF.EmitRuntimeCall(ExitCallee, ExitArgs); |
| } |
| }; |
| |
| /// A class to track the execution mode when codegening directives within |
| /// a target region. The appropriate mode (SPMD|NON-SPMD) is set on entry |
| /// to the target region and used by containing directives such as 'parallel' |
| /// to emit optimized code. |
| class ExecutionRuntimeModesRAII { |
| private: |
| CGOpenMPRuntimeGPU::ExecutionMode SavedExecMode = |
| CGOpenMPRuntimeGPU::EM_Unknown; |
| CGOpenMPRuntimeGPU::ExecutionMode &ExecMode; |
| bool SavedRuntimeMode = false; |
| bool *RuntimeMode = nullptr; |
| |
| public: |
| /// Constructor for Non-SPMD mode. |
| ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode) |
| : ExecMode(ExecMode) { |
| SavedExecMode = ExecMode; |
| ExecMode = CGOpenMPRuntimeGPU::EM_NonSPMD; |
| } |
| /// Constructor for SPMD mode. |
| ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode, |
| bool &RuntimeMode, bool FullRuntimeMode) |
| : ExecMode(ExecMode), RuntimeMode(&RuntimeMode) { |
| SavedExecMode = ExecMode; |
| SavedRuntimeMode = RuntimeMode; |
| ExecMode = CGOpenMPRuntimeGPU::EM_SPMD; |
| RuntimeMode = FullRuntimeMode; |
| } |
| ~ExecutionRuntimeModesRAII() { |
| ExecMode = SavedExecMode; |
| if (RuntimeMode) |
| *RuntimeMode = SavedRuntimeMode; |
| } |
| }; |
| |
| /// GPU Configuration: This information can be derived from cuda registers, |
| /// however, providing compile time constants helps generate more efficient |
| /// code. For all practical purposes this is fine because the configuration |
| /// is the same for all known NVPTX architectures. |
| enum MachineConfiguration : unsigned { |
| /// See "llvm/Frontend/OpenMP/OMPGridValues.h" for various related target |
| /// specific Grid Values like GV_Warp_Size, GV_Warp_Size_Log2, |
| /// and GV_Warp_Size_Log2_Mask. |
| |
| /// Global memory alignment for performance. |
| GlobalMemoryAlignment = 128, |
| |
| /// Maximal size of the shared memory buffer. |
| SharedMemorySize = 128, |
| }; |
| |
| static const ValueDecl *getPrivateItem(const Expr *RefExpr) { |
| RefExpr = RefExpr->IgnoreParens(); |
| if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(RefExpr)) { |
| const Expr *Base = ASE->getBase()->IgnoreParenImpCasts(); |
| while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) |
| Base = TempASE->getBase()->IgnoreParenImpCasts(); |
| RefExpr = Base; |
| } else if (auto *OASE = dyn_cast<OMPArraySectionExpr>(RefExpr)) { |
| const Expr *Base = OASE->getBase()->IgnoreParenImpCasts(); |
| while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base)) |
| Base = TempOASE->getBase()->IgnoreParenImpCasts(); |
| while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) |
| Base = TempASE->getBase()->IgnoreParenImpCasts(); |
| RefExpr = Base; |
| } |
| RefExpr = RefExpr->IgnoreParenImpCasts(); |
| if (const auto *DE = dyn_cast<DeclRefExpr>(RefExpr)) |
| return cast<ValueDecl>(DE->getDecl()->getCanonicalDecl()); |
| const auto *ME = cast<MemberExpr>(RefExpr); |
| return cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl()); |
| } |
| |
| |
| static RecordDecl *buildRecordForGlobalizedVars( |
| ASTContext &C, ArrayRef<const ValueDecl *> EscapedDecls, |
| ArrayRef<const ValueDecl *> EscapedDeclsForTeams, |
| llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> |
| &MappedDeclsFields, int BufSize) { |
| using VarsDataTy = std::pair<CharUnits /*Align*/, const ValueDecl *>; |
| if (EscapedDecls.empty() && EscapedDeclsForTeams.empty()) |
| return nullptr; |
| SmallVector<VarsDataTy, 4> GlobalizedVars; |
| for (const ValueDecl *D : EscapedDecls) |
| GlobalizedVars.emplace_back( |
| CharUnits::fromQuantity(std::max( |
| C.getDeclAlign(D).getQuantity(), |
| static_cast<CharUnits::QuantityType>(GlobalMemoryAlignment))), |
| D); |
| for (const ValueDecl *D : EscapedDeclsForTeams) |
| GlobalizedVars.emplace_back(C.getDeclAlign(D), D); |
| llvm::stable_sort(GlobalizedVars, [](VarsDataTy L, VarsDataTy R) { |
| return L.first > R.first; |
| }); |
| |
| // Build struct _globalized_locals_ty { |
| // /* globalized vars */[WarSize] align (max(decl_align, |
| // GlobalMemoryAlignment)) |
| // /* globalized vars */ for EscapedDeclsForTeams |
| // }; |
| RecordDecl *GlobalizedRD = C.buildImplicitRecord("_globalized_locals_ty"); |
| GlobalizedRD->startDefinition(); |
| llvm::SmallPtrSet<const ValueDecl *, 16> SingleEscaped( |
| EscapedDeclsForTeams.begin(), EscapedDeclsForTeams.end()); |
| for (const auto &Pair : GlobalizedVars) { |
| const ValueDecl *VD = Pair.second; |
| QualType Type = VD->getType(); |
| if (Type->isLValueReferenceType()) |
| Type = C.getPointerType(Type.getNonReferenceType()); |
| else |
| Type = Type.getNonReferenceType(); |
| SourceLocation Loc = VD->getLocation(); |
| FieldDecl *Field; |
| if (SingleEscaped.count(VD)) { |
| Field = FieldDecl::Create( |
| C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type, |
| C.getTrivialTypeSourceInfo(Type, SourceLocation()), |
| /*BW=*/nullptr, /*Mutable=*/false, |
| /*InitStyle=*/ICIS_NoInit); |
| Field->setAccess(AS_public); |
| if (VD->hasAttrs()) { |
| for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()), |
| E(VD->getAttrs().end()); |
| I != E; ++I) |
| Field->addAttr(*I); |
| } |
| } else { |
| llvm::APInt ArraySize(32, BufSize); |
| Type = C.getConstantArrayType(Type, ArraySize, nullptr, ArrayType::Normal, |
| 0); |
| Field = FieldDecl::Create( |
| C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type, |
| C.getTrivialTypeSourceInfo(Type, SourceLocation()), |
| /*BW=*/nullptr, /*Mutable=*/false, |
| /*InitStyle=*/ICIS_NoInit); |
| Field->setAccess(AS_public); |
| llvm::APInt Align(32, std::max(C.getDeclAlign(VD).getQuantity(), |
| static_cast<CharUnits::QuantityType>( |
| GlobalMemoryAlignment))); |
| Field->addAttr(AlignedAttr::CreateImplicit( |
| C, /*IsAlignmentExpr=*/true, |
| IntegerLiteral::Create(C, Align, |
| C.getIntTypeForBitwidth(32, /*Signed=*/0), |
| SourceLocation()), |
| {}, AttributeCommonInfo::AS_GNU, AlignedAttr::GNU_aligned)); |
| } |
| GlobalizedRD->addDecl(Field); |
| MappedDeclsFields.try_emplace(VD, Field); |
| } |
| GlobalizedRD->completeDefinition(); |
| return GlobalizedRD; |
| } |
| |
| /// Get the list of variables that can escape their declaration context. |
| class CheckVarsEscapingDeclContext final |
| : public ConstStmtVisitor<CheckVarsEscapingDeclContext> { |
| CodeGenFunction &CGF; |
| llvm::SetVector<const ValueDecl *> EscapedDecls; |
| llvm::SetVector<const ValueDecl *> EscapedVariableLengthDecls; |
| llvm::SmallPtrSet<const Decl *, 4> EscapedParameters; |
| RecordDecl *GlobalizedRD = nullptr; |
| llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields; |
| bool AllEscaped = false; |
| bool IsForCombinedParallelRegion = false; |
| |
| void markAsEscaped(const ValueDecl *VD) { |
| // Do not globalize declare target variables. |
| if (!isa<VarDecl>(VD) || |
| OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) |
| return; |
| VD = cast<ValueDecl>(VD->getCanonicalDecl()); |
| // Use user-specified allocation. |
| if (VD->hasAttrs() && VD->hasAttr<OMPAllocateDeclAttr>()) |
| return; |
| // Variables captured by value must be globalized. |
| if (auto *CSI = CGF.CapturedStmtInfo) { |
| if (const FieldDecl *FD = CSI->lookup(cast<VarDecl>(VD))) { |
| // Check if need to capture the variable that was already captured by |
| // value in the outer region. |
| if (!IsForCombinedParallelRegion) { |
| if (!FD->hasAttrs()) |
| return; |
| const auto *Attr = FD->getAttr<OMPCaptureKindAttr>(); |
| if (!Attr) |
| return; |
| if (((Attr->getCaptureKind() != OMPC_map) && |
| !isOpenMPPrivate(Attr->getCaptureKind())) || |
| ((Attr->getCaptureKind() == OMPC_map) && |
| !FD->getType()->isAnyPointerType())) |
| return; |
| } |
| if (!FD->getType()->isReferenceType()) { |
| assert(!VD->getType()->isVariablyModifiedType() && |
| "Parameter captured by value with variably modified type"); |
| EscapedParameters.insert(VD); |
| } else if (!IsForCombinedParallelRegion) { |
| return; |
| } |
| } |
| } |
| if ((!CGF.CapturedStmtInfo || |
| (IsForCombinedParallelRegion && CGF.CapturedStmtInfo)) && |
| VD->getType()->isReferenceType()) |
| // Do not globalize variables with reference type. |
| return; |
| if (VD->getType()->isVariablyModifiedType()) |
| EscapedVariableLengthDecls.insert(VD); |
| else |
| EscapedDecls.insert(VD); |
| } |
| |
| void VisitValueDecl(const ValueDecl *VD) { |
| if (VD->getType()->isLValueReferenceType()) |
| markAsEscaped(VD); |
| if (const auto *VarD = dyn_cast<VarDecl>(VD)) { |
| if (!isa<ParmVarDecl>(VarD) && VarD->hasInit()) { |
| const bool SavedAllEscaped = AllEscaped; |
| AllEscaped = VD->getType()->isLValueReferenceType(); |
| Visit(VarD->getInit()); |
| AllEscaped = SavedAllEscaped; |
| } |
| } |
| } |
| void VisitOpenMPCapturedStmt(const CapturedStmt *S, |
| ArrayRef<OMPClause *> Clauses, |
| bool IsCombinedParallelRegion) { |
| if (!S) |
| return; |
| for (const CapturedStmt::Capture &C : S->captures()) { |
| if (C.capturesVariable() && !C.capturesVariableByCopy()) { |
| const ValueDecl *VD = C.getCapturedVar(); |
| bool SavedIsForCombinedParallelRegion = IsForCombinedParallelRegion; |
| if (IsCombinedParallelRegion) { |
| // Check if the variable is privatized in the combined construct and |
| // those private copies must be shared in the inner parallel |
| // directive. |
| IsForCombinedParallelRegion = false; |
| for (const OMPClause *C : Clauses) { |
| if (!isOpenMPPrivate(C->getClauseKind()) || |
| C->getClauseKind() == OMPC_reduction || |
| C->getClauseKind() == OMPC_linear || |
| C->getClauseKind() == OMPC_private) |
| continue; |
| ArrayRef<const Expr *> Vars; |
| if (const auto *PC = dyn_cast<OMPFirstprivateClause>(C)) |
| Vars = PC->getVarRefs(); |
| else if (const auto *PC = dyn_cast<OMPLastprivateClause>(C)) |
| Vars = PC->getVarRefs(); |
| else |
| llvm_unreachable("Unexpected clause."); |
| for (const auto *E : Vars) { |
| const Decl *D = |
| cast<DeclRefExpr>(E)->getDecl()->getCanonicalDecl(); |
| if (D == VD->getCanonicalDecl()) { |
| IsForCombinedParallelRegion = true; |
| break; |
| } |
| } |
| if (IsForCombinedParallelRegion) |
| break; |
| } |
| } |
| markAsEscaped(VD); |
| if (isa<OMPCapturedExprDecl>(VD)) |
| VisitValueDecl(VD); |
| IsForCombinedParallelRegion = SavedIsForCombinedParallelRegion; |
| } |
| } |
| } |
| |
| void buildRecordForGlobalizedVars(bool IsInTTDRegion) { |
| assert(!GlobalizedRD && |
| "Record for globalized variables is built already."); |
| ArrayRef<const ValueDecl *> EscapedDeclsForParallel, EscapedDeclsForTeams; |
| unsigned WarpSize = CGF.getTarget().getGridValue(llvm::omp::GV_Warp_Size); |
| if (IsInTTDRegion) |
| EscapedDeclsForTeams = EscapedDecls.getArrayRef(); |
| else |
| EscapedDeclsForParallel = EscapedDecls.getArrayRef(); |
| GlobalizedRD = ::buildRecordForGlobalizedVars( |
| CGF.getContext(), EscapedDeclsForParallel, EscapedDeclsForTeams, |
| MappedDeclsFields, WarpSize); |
| } |
| |
| public: |
| CheckVarsEscapingDeclContext(CodeGenFunction &CGF, |
| ArrayRef<const ValueDecl *> TeamsReductions) |
| : CGF(CGF), EscapedDecls(TeamsReductions.begin(), TeamsReductions.end()) { |
| } |
| virtual ~CheckVarsEscapingDeclContext() = default; |
| void VisitDeclStmt(const DeclStmt *S) { |
| if (!S) |
| return; |
| for (const Decl *D : S->decls()) |
| if (const auto *VD = dyn_cast_or_null<ValueDecl>(D)) |
| VisitValueDecl(VD); |
| } |
| void VisitOMPExecutableDirective(const OMPExecutableDirective *D) { |
| if (!D) |
| return; |
| if (!D->hasAssociatedStmt()) |
| return; |
| if (const auto *S = |
| dyn_cast_or_null<CapturedStmt>(D->getAssociatedStmt())) { |
| // Do not analyze directives that do not actually require capturing, |
| // like `omp for` or `omp simd` directives. |
| llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; |
| getOpenMPCaptureRegions(CaptureRegions, D->getDirectiveKind()); |
| if (CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown) { |
| VisitStmt(S->getCapturedStmt()); |
| return; |
| } |
| VisitOpenMPCapturedStmt( |
| S, D->clauses(), |
| CaptureRegions.back() == OMPD_parallel && |
| isOpenMPDistributeDirective(D->getDirectiveKind())); |
| } |
| } |
| void VisitCapturedStmt(const CapturedStmt *S) { |
| if (!S) |
| return; |
| for (const CapturedStmt::Capture &C : S->captures()) { |
| if (C.capturesVariable() && !C.capturesVariableByCopy()) { |
| const ValueDecl *VD = C.getCapturedVar(); |
| markAsEscaped(VD); |
| if (isa<OMPCapturedExprDecl>(VD)) |
| VisitValueDecl(VD); |
| } |
| } |
| } |
| void VisitLambdaExpr(const LambdaExpr *E) { |
| if (!E) |
| return; |
| for (const LambdaCapture &C : E->captures()) { |
| if (C.capturesVariable()) { |
| if (C.getCaptureKind() == LCK_ByRef) { |
| const ValueDecl *VD = C.getCapturedVar(); |
| markAsEscaped(VD); |
| if (E->isInitCapture(&C) || isa<OMPCapturedExprDecl>(VD)) |
| VisitValueDecl(VD); |
| } |
| } |
| } |
| } |
| void VisitBlockExpr(const BlockExpr *E) { |
| if (!E) |
| return; |
| for (const BlockDecl::Capture &C : E->getBlockDecl()->captures()) { |
| if (C.isByRef()) { |
| const VarDecl *VD = C.getVariable(); |
| markAsEscaped(VD); |
| if (isa<OMPCapturedExprDecl>(VD) || VD->isInitCapture()) |
| VisitValueDecl(VD); |
| } |
| } |
| } |
| void VisitCallExpr(const CallExpr *E) { |
| if (!E) |
| return; |
| for (const Expr *Arg : E->arguments()) { |
| if (!Arg) |
| continue; |
| if (Arg->isLValue()) { |
| const bool SavedAllEscaped = AllEscaped; |
| AllEscaped = true; |
| Visit(Arg); |
| AllEscaped = SavedAllEscaped; |
| } else { |
| Visit(Arg); |
| } |
| } |
| Visit(E->getCallee()); |
| } |
| void VisitDeclRefExpr(const DeclRefExpr *E) { |
| if (!E) |
| return; |
| const ValueDecl *VD = E->getDecl(); |
| if (AllEscaped) |
| markAsEscaped(VD); |
| if (isa<OMPCapturedExprDecl>(VD)) |
| VisitValueDecl(VD); |
| else if (const auto *VarD = dyn_cast<VarDecl>(VD)) |
| if (VarD->isInitCapture()) |
| VisitValueDecl(VD); |
| } |
| void VisitUnaryOperator(const UnaryOperator *E) { |
| if (!E) |
| return; |
| if (E->getOpcode() == UO_AddrOf) { |
| const bool SavedAllEscaped = AllEscaped; |
| AllEscaped = true; |
| Visit(E->getSubExpr()); |
| AllEscaped = SavedAllEscaped; |
| } else { |
| Visit(E->getSubExpr()); |
| } |
| } |
| void VisitImplicitCastExpr(const ImplicitCastExpr *E) { |
| if (!E) |
| return; |
| if (E->getCastKind() == CK_ArrayToPointerDecay) { |
| const bool SavedAllEscaped = AllEscaped; |
| AllEscaped = true; |
| Visit(E->getSubExpr()); |
| AllEscaped = SavedAllEscaped; |
| } else { |
| Visit(E->getSubExpr()); |
| } |
| } |
| void VisitExpr(const Expr *E) { |
| if (!E) |
| return; |
| bool SavedAllEscaped = AllEscaped; |
| if (!E->isLValue()) |
| AllEscaped = false; |
| for (const Stmt *Child : E->children()) |
| if (Child) |
| Visit(Child); |
| AllEscaped = SavedAllEscaped; |
| } |
| void VisitStmt(const Stmt *S) { |
| if (!S) |
| return; |
| for (const Stmt *Child : S->children()) |
| if (Child) |
| Visit(Child); |
| } |
| |
| /// Returns the record that handles all the escaped local variables and used |
| /// instead of their original storage. |
| const RecordDecl *getGlobalizedRecord(bool IsInTTDRegion) { |
| if (!GlobalizedRD) |
| buildRecordForGlobalizedVars(IsInTTDRegion); |
| return GlobalizedRD; |
| } |
| |
| /// Returns the field in the globalized record for the escaped variable. |
| const FieldDecl *getFieldForGlobalizedVar(const ValueDecl *VD) const { |
| assert(GlobalizedRD && |
| "Record for globalized variables must be generated already."); |
| auto I = MappedDeclsFields.find(VD); |
| if (I == MappedDeclsFields.end()) |
| return nullptr; |
| return I->getSecond(); |
| } |
| |
| /// Returns the list of the escaped local variables/parameters. |
| ArrayRef<const ValueDecl *> getEscapedDecls() const { |
| return EscapedDecls.getArrayRef(); |
| } |
| |
| /// Checks if the escaped local variable is actually a parameter passed by |
| /// value. |
| const llvm::SmallPtrSetImpl<const Decl *> &getEscapedParameters() const { |
| return EscapedParameters; |
| } |
| |
| /// Returns the list of the escaped variables with the variably modified |
| /// types. |
| ArrayRef<const ValueDecl *> getEscapedVariableLengthDecls() const { |
| return EscapedVariableLengthDecls.getArrayRef(); |
| } |
| }; |
| } // anonymous namespace |
| |
| /// Get the id of the warp in the block. |
| /// We assume that the warp size is 32, which is always the case |
| /// on the NVPTX device, to generate more efficient code. |
| static llvm::Value *getNVPTXWarpID(CodeGenFunction &CGF) { |
| CGBuilderTy &Bld = CGF.Builder; |
| unsigned LaneIDBits = |
| CGF.getTarget().getGridValue(llvm::omp::GV_Warp_Size_Log2); |
| auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); |
| return Bld.CreateAShr(RT.getGPUThreadID(CGF), LaneIDBits, "nvptx_warp_id"); |
| } |
| |
| /// Get the id of the current lane in the Warp. |
| /// We assume that the warp size is 32, which is always the case |
| /// on the NVPTX device, to generate more efficient code. |
| static llvm::Value *getNVPTXLaneID(CodeGenFunction &CGF) { |
| CGBuilderTy &Bld = CGF.Builder; |
| unsigned LaneIDMask = CGF.getContext().getTargetInfo().getGridValue( |
| llvm::omp::GV_Warp_Size_Log2_Mask); |
| auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); |
| return Bld.CreateAnd(RT.getGPUThreadID(CGF), Bld.getInt32(LaneIDMask), |
| "nvptx_lane_id"); |
| } |
| |
| /// Get the value of the thread_limit clause in the teams directive. |
| /// For the 'generic' execution mode, the runtime encodes thread_limit in |
| /// the launch parameters, always starting thread_limit+warpSize threads per |
| /// CTA. The threads in the last warp are reserved for master execution. |
| /// For the 'spmd' execution mode, all threads in a CTA are part of the team. |
| static llvm::Value *getThreadLimit(CodeGenFunction &CGF, |
| bool IsInSPMDExecutionMode = false) { |
| CGBuilderTy &Bld = CGF.Builder; |
| auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); |
| return IsInSPMDExecutionMode |
| ? RT.getGPUNumThreads(CGF) |
| : Bld.CreateNUWSub(RT.getGPUNumThreads(CGF), |
| RT.getGPUWarpSize(CGF), "thread_limit"); |
| } |
| |
| /// Get the thread id of the OMP master thread. |
| /// The master thread id is the first thread (lane) of the last warp in the |
| /// GPU block. Warp size is assumed to be some power of 2. |
| /// Thread id is 0 indexed. |
| /// E.g: If NumThreads is 33, master id is 32. |
| /// If NumThreads is 64, master id is 32. |
| /// If NumThreads is 1024, master id is 992. |
| static llvm::Value *getMasterThreadID(CodeGenFunction &CGF) { |
| CGBuilderTy &Bld = CGF.Builder; |
| auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); |
| llvm::Value *NumThreads = RT.getGPUNumThreads(CGF); |
| // We assume that the warp size is a power of 2. |
| llvm::Value *Mask = Bld.CreateNUWSub(RT.getGPUWarpSize(CGF), Bld.getInt32(1)); |
| |
| return Bld.CreateAnd(Bld.CreateNUWSub(NumThreads, Bld.getInt32(1)), |
| Bld.CreateNot(Mask), "master_tid"); |
| } |
| |
| CGOpenMPRuntimeGPU::WorkerFunctionState::WorkerFunctionState( |
| CodeGenModule &CGM, SourceLocation Loc) |
| : WorkerFn(nullptr), CGFI(CGM.getTypes().arrangeNullaryFunction()), |
| Loc(Loc) { |
| createWorkerFunction(CGM); |
| } |
| |
| void CGOpenMPRuntimeGPU::WorkerFunctionState::createWorkerFunction( |
| CodeGenModule &CGM) { |
| // Create an worker function with no arguments. |
| |
| WorkerFn = llvm::Function::Create( |
| CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, |
| /*placeholder=*/"_worker", &CGM.getModule()); |
| CGM.SetInternalFunctionAttributes(GlobalDecl(), WorkerFn, CGFI); |
| WorkerFn->setDoesNotRecurse(); |
| } |
| |
| CGOpenMPRuntimeGPU::ExecutionMode |
| CGOpenMPRuntimeGPU::getExecutionMode() const { |
| return CurrentExecutionMode; |
| } |
| |
| static CGOpenMPRuntimeGPU::DataSharingMode |
| getDataSharingMode(CodeGenModule &CGM) { |
| return CGM.getLangOpts().OpenMPCUDAMode ? CGOpenMPRuntimeGPU::CUDA |
| : CGOpenMPRuntimeGPU::Generic; |
| } |
| |
| /// Check for inner (nested) SPMD construct, if any |
| static bool hasNestedSPMDDirective(ASTContext &Ctx, |
| const OMPExecutableDirective &D) { |
| const auto *CS = D.getInnermostCapturedStmt(); |
| const auto *Body = |
| CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); |
| const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); |
| |
| if (const auto *NestedDir = |
| dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { |
| OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind(); |
| switch (D.getDirectiveKind()) { |
| case OMPD_target: |
| if (isOpenMPParallelDirective(DKind)) |
| return true; |
| if (DKind == OMPD_teams) { |
| Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( |
| /*IgnoreCaptured=*/true); |
| if (!Body) |
| return false; |
| ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); |
| if (const auto *NND = |
| dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { |
| DKind = NND->getDirectiveKind(); |
| if (isOpenMPParallelDirective(DKind)) |
| return true; |
| } |
| } |
| return false; |
| case OMPD_target_teams: |
| return isOpenMPParallelDirective(DKind); |
| case OMPD_target_simd: |
| case OMPD_target_parallel: |
| case OMPD_target_parallel_for: |
| case OMPD_target_parallel_for_simd: |
| case OMPD_target_teams_distribute: |
| case OMPD_target_teams_distribute_simd: |
| case OMPD_target_teams_distribute_parallel_for: |
| case OMPD_target_teams_distribute_parallel_for_simd: |
| case OMPD_parallel: |
| case OMPD_for: |
| case OMPD_parallel_for: |
| case OMPD_parallel_master: |
| case OMPD_parallel_sections: |
| case OMPD_for_simd: |
| case OMPD_parallel_for_simd: |
| case OMPD_cancel: |
| case OMPD_cancellation_point: |
| case OMPD_ordered: |
| case OMPD_threadprivate: |
| case OMPD_allocate: |
| case OMPD_task: |
| case OMPD_simd: |
| case OMPD_sections: |
| case OMPD_section: |
| case OMPD_single: |
| case OMPD_master: |
| case OMPD_critical: |
| case OMPD_taskyield: |
| case OMPD_barrier: |
| case OMPD_taskwait: |
| case OMPD_taskgroup: |
| case OMPD_atomic: |
| case OMPD_flush: |
| case OMPD_depobj: |
| case OMPD_scan: |
| case OMPD_teams: |
| case OMPD_target_data: |
| case OMPD_target_exit_data: |
| case OMPD_target_enter_data: |
| case OMPD_distribute: |
| case OMPD_distribute_simd: |
| case OMPD_distribute_parallel_for: |
| case OMPD_distribute_parallel_for_simd: |
| case OMPD_teams_distribute: |
| case OMPD_teams_distribute_simd: |
| case OMPD_teams_distribute_parallel_for: |
| case OMPD_teams_distribute_parallel_for_simd: |
| case OMPD_target_update: |
| case OMPD_declare_simd: |
| case OMPD_declare_variant: |
| case OMPD_begin_declare_variant: |
| case OMPD_end_declare_variant: |
| case OMPD_declare_target: |
| case OMPD_end_declare_target: |
| case OMPD_declare_reduction: |
| case OMPD_declare_mapper: |
| case OMPD_taskloop: |
| case OMPD_taskloop_simd: |
| case OMPD_master_taskloop: |
| case OMPD_master_taskloop_simd: |
| case OMPD_parallel_master_taskloop: |
| case OMPD_parallel_master_taskloop_simd: |
| case OMPD_requires: |
| case OMPD_unknown: |
| default: |
| llvm_unreachable("Unexpected directive."); |
| } |
| } |
| |
| return false; |
| } |
| |
| static bool supportsSPMDExecutionMode(ASTContext &Ctx, |
| const OMPExecutableDirective &D) { |
| OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind(); |
| switch (DirectiveKind) { |
| case OMPD_target: |
| case OMPD_target_teams: |
| return hasNestedSPMDDirective(Ctx, D); |
| case OMPD_target_parallel: |
| case OMPD_target_parallel_for: |
| case OMPD_target_parallel_for_simd: |
| case OMPD_target_teams_distribute_parallel_for: |
| case OMPD_target_teams_distribute_parallel_for_simd: |
| case OMPD_target_simd: |
| case OMPD_target_teams_distribute_simd: |
| return true; |
| case OMPD_target_teams_distribute: |
| return false; |
| case OMPD_parallel: |
| case OMPD_for: |
| case OMPD_parallel_for: |
| case OMPD_parallel_master: |
| case OMPD_parallel_sections: |
| case OMPD_for_simd: |
| case OMPD_parallel_for_simd: |
| case OMPD_cancel: |
| case OMPD_cancellation_point: |
| case OMPD_ordered: |
| case OMPD_threadprivate: |
| case OMPD_allocate: |
| case OMPD_task: |
| case OMPD_simd: |
| case OMPD_sections: |
| case OMPD_section: |
| case OMPD_single: |
| case OMPD_master: |
| case OMPD_critical: |
| case OMPD_taskyield: |
| case OMPD_barrier: |
| case OMPD_taskwait: |
| case OMPD_taskgroup: |
| case OMPD_atomic: |
| case OMPD_flush: |
| case OMPD_depobj: |
| case OMPD_scan: |
| case OMPD_teams: |
| case OMPD_target_data: |
| case OMPD_target_exit_data: |
| case OMPD_target_enter_data: |
| case OMPD_distribute: |
| case OMPD_distribute_simd: |
| case OMPD_distribute_parallel_for: |
| case OMPD_distribute_parallel_for_simd: |
| case OMPD_teams_distribute: |
| case OMPD_teams_distribute_simd: |
| case OMPD_teams_distribute_parallel_for: |
| case OMPD_teams_distribute_parallel_for_simd: |
| case OMPD_target_update: |
| case OMPD_declare_simd: |
| case OMPD_declare_variant: |
| case OMPD_begin_declare_variant: |
| case OMPD_end_declare_variant: |
| case OMPD_declare_target: |
| case OMPD_end_declare_target: |
| case OMPD_declare_reduction: |
| case OMPD_declare_mapper: |
| case OMPD_taskloop: |
| case OMPD_taskloop_simd: |
| case OMPD_master_taskloop: |
| case OMPD_master_taskloop_simd: |
| case OMPD_parallel_master_taskloop: |
| case OMPD_parallel_master_taskloop_simd: |
| case OMPD_requires: |
| case OMPD_unknown: |
| default: |
| break; |
| } |
| llvm_unreachable( |
| "Unknown programming model for OpenMP directive on NVPTX target."); |
| } |
| |
| /// Check if the directive is loops based and has schedule clause at all or has |
| /// static scheduling. |
| static bool hasStaticScheduling(const OMPExecutableDirective &D) { |
| assert(isOpenMPWorksharingDirective(D.getDirectiveKind()) && |
| isOpenMPLoopDirective(D.getDirectiveKind()) && |
| "Expected loop-based directive."); |
| return !D.hasClausesOfKind<OMPOrderedClause>() && |
| (!D.hasClausesOfKind<OMPScheduleClause>() || |
| llvm::any_of(D.getClausesOfKind<OMPScheduleClause>(), |
| [](const OMPScheduleClause *C) { |
| return C->getScheduleKind() == OMPC_SCHEDULE_static; |
| })); |
| } |
| |
| /// Check for inner (nested) lightweight runtime construct, if any |
| static bool hasNestedLightweightDirective(ASTContext &Ctx, |
| const OMPExecutableDirective &D) { |
| assert(supportsSPMDExecutionMode(Ctx, D) && "Expected SPMD mode directive."); |
| const auto *CS = D.getInnermostCapturedStmt(); |
| const auto *Body = |
| CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); |
| const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); |
| |
| if (const auto *NestedDir = |
| dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { |
| OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind(); |
| switch (D.getDirectiveKind()) { |
| case OMPD_target: |
| if (isOpenMPParallelDirective(DKind) && |
| isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) && |
| hasStaticScheduling(*NestedDir)) |
| return true; |
| if (DKind == OMPD_teams_distribute_simd || DKind == OMPD_simd) |
| return true; |
| if (DKind == OMPD_parallel) { |
| Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( |
| /*IgnoreCaptured=*/true); |
| if (!Body) |
| return false; |
| ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); |
| if (const auto *NND = |
| dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { |
| DKind = NND->getDirectiveKind(); |
| if (isOpenMPWorksharingDirective(DKind) && |
| isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) |
| return true; |
| } |
| } else if (DKind == OMPD_teams) { |
| Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( |
| /*IgnoreCaptured=*/true); |
| if (!Body) |
| return false; |
| ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); |
| if (const auto *NND = |
| dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { |
| DKind = NND->getDirectiveKind(); |
| if (isOpenMPParallelDirective(DKind) && |
| isOpenMPWorksharingDirective(DKind) && |
| isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) |
| return true; |
| if (DKind == OMPD_parallel) { |
| Body = NND->getInnermostCapturedStmt()->IgnoreContainers( |
| /*IgnoreCaptured=*/true); |
| if (!Body) |
| return false; |
| ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); |
| if (const auto *NND = |
| dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { |
| DKind = NND->getDirectiveKind(); |
| if (isOpenMPWorksharingDirective(DKind) && |
| isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) |
| return true; |
| } |
| } |
| } |
| } |
| return false; |
| case OMPD_target_teams: |
| if (isOpenMPParallelDirective(DKind) && |
| isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) && |
| hasStaticScheduling(*NestedDir)) |
| return true; |
| if (DKind == OMPD_distribute_simd || DKind == OMPD_simd) |
| return true; |
| if (DKind == OMPD_parallel) { |
| Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( |
| /*IgnoreCaptured=*/true); |
| if (!Body) |
| return false; |
| ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); |
| if (const auto *NND = |
| dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { |
| DKind = NND->getDirectiveKind(); |
| if (isOpenMPWorksharingDirective(DKind) && |
| isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) |
| return true; |
| } |
| } |
| return false; |
| case OMPD_target_parallel: |
| if (DKind == OMPD_simd) |
| return true; |
| return isOpenMPWorksharingDirective(DKind) && |
| isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NestedDir); |
| case OMPD_target_teams_distribute: |
| case OMPD_target_simd: |
| case OMPD_target_parallel_for: |
| case OMPD_target_parallel_for_simd: |
| case OMPD_target_teams_distribute_simd: |
| case OMPD_target_teams_distribute_parallel_for: |
| case OMPD_target_teams_distribute_parallel_for_simd: |
| case OMPD_parallel: |
| case OMPD_for: |
| case OMPD_parallel_for: |
| case OMPD_parallel_master: |
| case OMPD_parallel_sections: |
| case OMPD_for_simd: |
| case OMPD_parallel_for_simd: |
| case OMPD_cancel: |
| case OMPD_cancellation_point: |
| case OMPD_ordered: |
| case OMPD_threadprivate: |
| case OMPD_allocate: |
| case OMPD_task: |
| case OMPD_simd: |
| case OMPD_sections: |
| case OMPD_section: |
| case OMPD_single: |
| case OMPD_master: |
| case OMPD_critical: |
| case OMPD_taskyield: |
| case OMPD_barrier: |
| case OMPD_taskwait: |
| case OMPD_taskgroup: |
| case OMPD_atomic: |
| case OMPD_flush: |
| case OMPD_depobj: |
| case OMPD_scan: |
| case OMPD_teams: |
| case OMPD_target_data: |
| case OMPD_target_exit_data: |
| case OMPD_target_enter_data: |
| case OMPD_distribute: |
| case OMPD_distribute_simd: |
| case OMPD_distribute_parallel_for: |
| case OMPD_distribute_parallel_for_simd: |
| case OMPD_teams_distribute: |
| case OMPD_teams_distribute_simd: |
| case OMPD_teams_distribute_parallel_for: |
| case OMPD_teams_distribute_parallel_for_simd: |
| case OMPD_target_update: |
| case OMPD_declare_simd: |
| case OMPD_declare_variant: |
| case OMPD_begin_declare_variant: |
| case OMPD_end_declare_variant: |
| case OMPD_declare_target: |
| case OMPD_end_declare_target: |
| case OMPD_declare_reduction: |
| case OMPD_declare_mapper: |
| case OMPD_taskloop: |
| case OMPD_taskloop_simd: |
| case OMPD_master_taskloop: |
| case OMPD_master_taskloop_simd: |
| case OMPD_parallel_master_taskloop: |
| case OMPD_parallel_master_taskloop_simd: |
| case OMPD_requires: |
| case OMPD_unknown: |
| default: |
| llvm_unreachable("Unexpected directive."); |
| } |
| } |
| |
| return false; |
| } |
| |
| /// Checks if the construct supports lightweight runtime. It must be SPMD |
| /// construct + inner loop-based construct with static scheduling. |
| static bool supportsLightweightRuntime(ASTContext &Ctx, |
| const OMPExecutableDirective &D) { |
| if (!supportsSPMDExecutionMode(Ctx, D)) |
| return false; |
| OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind(); |
| switch (DirectiveKind) { |
| case OMPD_target: |
| case OMPD_target_teams: |
| case OMPD_target_parallel: |
| return hasNestedLightweightDirective(Ctx, D); |
| case OMPD_target_parallel_for: |
| case OMPD_target_parallel_for_simd: |
| case OMPD_target_teams_distribute_parallel_for: |
| case OMPD_target_teams_distribute_parallel_for_simd: |
| // (Last|First)-privates must be shared in parallel region. |
| return hasStaticScheduling(D); |
| case OMPD_target_simd: |
| case OMPD_target_teams_distribute_simd: |
| return true; |
| case OMPD_target_teams_distribute: |
| return false; |
| case OMPD_parallel: |
| case OMPD_for: |
| case OMPD_parallel_for: |
| case OMPD_parallel_master: |
| case OMPD_parallel_sections: |
| case OMPD_for_simd: |
| case OMPD_parallel_for_simd: |
| case OMPD_cancel: |
| case OMPD_cancellation_point: |
| case OMPD_ordered: |
| case OMPD_threadprivate: |
| case OMPD_allocate: |
| case OMPD_task: |
| case OMPD_simd: |
| case OMPD_sections: |
| case OMPD_section: |
| case OMPD_single: |
| case OMPD_master: |
| case OMPD_critical: |
| case OMPD_taskyield: |
| case OMPD_barrier: |
| case OMPD_taskwait: |
| case OMPD_taskgroup: |
| case OMPD_atomic: |
| case OMPD_flush: |
| case OMPD_depobj: |
| case OMPD_scan: |
| case OMPD_teams: |
| case OMPD_target_data: |
| case OMPD_target_exit_data: |
| case OMPD_target_enter_data: |
| case OMPD_distribute: |
| case OMPD_distribute_simd: |
| case OMPD_distribute_parallel_for: |
| case OMPD_distribute_parallel_for_simd: |
| case OMPD_teams_distribute: |
| case OMPD_teams_distribute_simd: |
| case OMPD_teams_distribute_parallel_for: |
| case OMPD_teams_distribute_parallel_for_simd: |
| case OMPD_target_update: |
| case OMPD_declare_simd: |
| case OMPD_declare_variant: |
| case OMPD_begin_declare_variant: |
| case OMPD_end_declare_variant: |
| case OMPD_declare_target: |
| case OMPD_end_declare_target: |
| case OMPD_declare_reduction: |
| case OMPD_declare_mapper: |
| case OMPD_taskloop: |
| case OMPD_taskloop_simd: |
| case OMPD_master_taskloop: |
| case OMPD_master_taskloop_simd: |
| case OMPD_parallel_master_taskloop: |
| case OMPD_parallel_master_taskloop_simd: |
| case OMPD_requires: |
| case OMPD_unknown: |
| default: |
| break; |
| } |
| llvm_unreachable( |
| "Unknown programming model for OpenMP directive on NVPTX target."); |
| } |
| |
| void CGOpenMPRuntimeGPU::emitNonSPMDKernel(const OMPExecutableDirective &D, |
| StringRef ParentName, |
| llvm::Function *&OutlinedFn, |
| llvm::Constant *&OutlinedFnID, |
| bool IsOffloadEntry, |
| const RegionCodeGenTy &CodeGen) { |
| ExecutionRuntimeModesRAII ModeRAII(CurrentExecutionMode); |
| EntryFunctionState EST; |
| WorkerFunctionState WST(CGM, D.getBeginLoc()); |
| Work.clear(); |
| WrapperFunctionsMap.clear(); |
| |
| // Emit target region as a standalone region. |
| class NVPTXPrePostActionTy : public PrePostActionTy { |
| CGOpenMPRuntimeGPU::EntryFunctionState &EST; |
| CGOpenMPRuntimeGPU::WorkerFunctionState &WST; |
| |
| public: |
| NVPTXPrePostActionTy(CGOpenMPRuntimeGPU::EntryFunctionState &EST, |
| CGOpenMPRuntimeGPU::WorkerFunctionState &WST) |
| : EST(EST), WST(WST) {} |
| void Enter(CodeGenFunction &CGF) override { |
| auto &RT = |
| static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); |
| RT.emitNonSPMDEntryHeader(CGF, EST, WST); |
| // Skip target region initialization. |
| RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true); |
| } |
| void Exit(CodeGenFunction &CGF) override { |
| auto &RT = |
| static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); |
| RT.clearLocThreadIdInsertPt(CGF); |
| RT.emitNonSPMDEntryFooter(CGF, EST); |
| } |
| } Action(EST, WST); |
| CodeGen.setAction(Action); |
| IsInTTDRegion = true; |
| // Reserve place for the globalized memory. |
| GlobalizedRecords.emplace_back(); |
| if (!KernelStaticGlobalized) { |
| KernelStaticGlobalized = new llvm::GlobalVariable( |
| CGM.getModule(), CGM.VoidPtrTy, /*isConstant=*/false, |
| llvm::GlobalValue::InternalLinkage, |
| llvm::UndefValue::get(CGM.VoidPtrTy), |
| "_openmp_kernel_static_glob_rd$ptr", /*InsertBefore=*/nullptr, |
| llvm::GlobalValue::NotThreadLocal, |
| CGM.getContext().getTargetAddressSpace(LangAS::cuda_shared)); |
| } |
| emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID, |
| IsOffloadEntry, CodeGen); |
| IsInTTDRegion = false; |
| |
| // Now change the name of the worker function to correspond to this target |
| // region's entry function. |
| WST.WorkerFn->setName(Twine(OutlinedFn->getName(), "_worker")); |
| |
| // Create the worker function |
| emitWorkerFunction(WST); |
| } |
| |
| // Setup NVPTX threads for master-worker OpenMP scheme. |
| void CGOpenMPRuntimeGPU::emitNonSPMDEntryHeader(CodeGenFunction &CGF, |
| EntryFunctionState &EST, |
| WorkerFunctionState &WST) { |
| CGBuilderTy &Bld = CGF.Builder; |
| |
| llvm::BasicBlock *WorkerBB = CGF.createBasicBlock(".worker"); |
| llvm::BasicBlock *MasterCheckBB = CGF.createBasicBlock(".mastercheck"); |
| llvm::BasicBlock *MasterBB = CGF.createBasicBlock(".master"); |
| EST.ExitBB = CGF.createBasicBlock(".exit"); |
| |
| auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); |
| llvm::Value *IsWorker = |
| Bld.CreateICmpULT(RT.getGPUThreadID(CGF), getThreadLimit(CGF)); |
| Bld.CreateCondBr(IsWorker, WorkerBB, MasterCheckBB); |
| |
| CGF.EmitBlock(WorkerBB); |
| emitCall(CGF, WST.Loc, WST.WorkerFn); |
| CGF.EmitBranch(EST.ExitBB); |
| |
| CGF.EmitBlock(MasterCheckBB); |
| llvm::Value *IsMaster = |
| Bld.CreateICmpEQ(RT.getGPUThreadID(CGF), getMasterThreadID(CGF)); |
| Bld.CreateCondBr(IsMaster, MasterBB, EST.ExitBB); |
| |
| CGF.EmitBlock(MasterBB); |
| IsInTargetMasterThreadRegion = true; |
| // SEQUENTIAL (MASTER) REGION START |
| // First action in sequential region: |
| // Initialize the state of the OpenMP runtime library on the GPU. |
| // TODO: Optimize runtime initialization and pass in correct value. |
| llvm::Value *Args[] = {getThreadLimit(CGF), |
| Bld.getInt16(/*RequiresOMPRuntime=*/1)}; |
| CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( |
| CGM.getModule(), OMPRTL___kmpc_kernel_init), |
| Args); |
| |
| // For data sharing, we need to initialize the stack. |
| CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( |
| CGM.getModule(), OMPRTL___kmpc_data_sharing_init_stack)); |
| |
| emitGenericVarsProlog(CGF, WST.Loc); |
| } |
| |
| void CGOpenMPRuntimeGPU::emitNonSPMDEntryFooter(CodeGenFunction &CGF, |
| EntryFunctionState &EST) { |
| IsInTargetMasterThreadRegion = false; |
| if (!CGF.HaveInsertPoint()) |
| return; |
| |
| emitGenericVarsEpilog(CGF); |
| |
| if (!EST.ExitBB) |
| EST.ExitBB = CGF.createBasicBlock(".exit"); |
| |
| llvm::BasicBlock *TerminateBB = CGF.createBasicBlock(".termination.notifier"); |
| CGF.EmitBranch(TerminateBB); |
| |
| CGF.EmitBlock(TerminateBB); |
| // Signal termination condition. |
| // TODO: Optimize runtime initialization and pass in correct value. |
| llvm::Value *Args[] = {CGF.Builder.getInt16(/*IsOMPRuntimeInitialized=*/1)}; |
| CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( |
| CGM.getModule(), OMPRTL___kmpc_kernel_deinit), |
| Args); |
| // Barrier to terminate worker threads. |
| syncCTAThreads(CGF); |
| // Master thread jumps to exit point. |
| CGF.EmitBranch(EST.ExitBB); |
| |
| CGF.EmitBlock(EST.ExitBB); |
| EST.ExitBB = nullptr; |
| } |
| |
| void CGOpenMPRuntimeGPU::emitSPMDKernel(const OMPExecutableDirective &D, |
| StringRef ParentName, |
| llvm::Function *&OutlinedFn, |
| llvm::Constant *&OutlinedFnID, |
| bool IsOffloadEntry, |
| const RegionCodeGenTy &CodeGen) { |
| ExecutionRuntimeModesRAII ModeRAII( |
| CurrentExecutionMode, RequiresFullRuntime, |
| CGM.getLangOpts().OpenMPCUDAForceFullRuntime || |
| !supportsLightweightRuntime(CGM.getContext(), D)); |
| EntryFunctionState EST; |
| |
| // Emit target region as a standalone region. |
| class NVPTXPrePostActionTy : public PrePostActionTy { |
| CGOpenMPRuntimeGPU &RT; |
| CGOpenMPRuntimeGPU::EntryFunctionState &EST; |
| const OMPExecutableDirective &D; |
| |
| public: |
| NVPTXPrePostActionTy(CGOpenMPRuntimeGPU &RT, |
| CGOpenMPRuntimeGPU::EntryFunctionState &EST, |
| const OMPExecutableDirective &D) |
| : RT(RT), EST(EST), D(D) {} |
| void Enter(CodeGenFunction &CGF) override { |
| RT.emitSPMDEntryHeader(CGF, EST, D); |
| // Skip target region initialization. |
| RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true); |
| } |
| void Exit(CodeGenFunction &CGF) override { |
| RT.clearLocThreadIdInsertPt(CGF); |
| RT.emitSPMDEntryFooter(CGF, EST); |
| } |
| } Action(*this, EST, D); |
| CodeGen.setAction(Action); |
| IsInTTDRegion = true; |
| // Reserve place for the globalized memory. |
| GlobalizedRecords.emplace_back(); |
| if (!KernelStaticGlobalized) { |
| KernelStaticGlobalized = new llvm::GlobalVariable( |
| CGM.getModule(), CGM.VoidPtrTy, /*isConstant=*/false, |
| llvm::GlobalValue::InternalLinkage, |
| llvm::UndefValue::get(CGM.VoidPtrTy), |
| "_openmp_kernel_static_glob_rd$ptr", /*InsertBefore=*/nullptr, |
| llvm::GlobalValue::NotThreadLocal, |
| CGM.getContext().getTargetAddressSpace(LangAS::cuda_shared)); |
| } |
| emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID, |
| IsOffloadEntry, CodeGen); |
| IsInTTDRegion = false; |
| } |
| |
| void CGOpenMPRuntimeGPU::emitSPMDEntryHeader( |
| CodeGenFunction &CGF, EntryFunctionState &EST, |
| const OMPExecutableDirective &D) { |
| CGBuilderTy &Bld = CGF.Builder; |
| |
| // Setup BBs in entry function. |
| llvm::BasicBlock *ExecuteBB = CGF.createBasicBlock(".execute"); |
| EST.ExitBB = CGF.createBasicBlock(".exit"); |
| |
| llvm::Value *Args[] = {getThreadLimit(CGF, /*IsInSPMDExecutionMode=*/true), |
| /*RequiresOMPRuntime=*/ |
| Bld.getInt16(RequiresFullRuntime ? 1 : 0)}; |
| CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( |
| CGM.getModule(), OMPRTL___kmpc_spmd_kernel_init), |
| Args); |
| |
| if (RequiresFullRuntime) { |
| // For data sharing, we need to initialize the stack. |
| CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( |
| CGM.getModule(), OMPRTL___kmpc_data_sharing_init_stack_spmd)); |
| } |
| |
| CGF.EmitBranch(ExecuteBB); |
| |
| CGF.EmitBlock(ExecuteBB); |
| |
| IsInTargetMasterThreadRegion = true; |
| } |
| |
| void CGOpenMPRuntimeGPU::emitSPMDEntryFooter(CodeGenFunction &CGF, |
| EntryFunctionState &EST) { |
| IsInTargetMasterThreadRegion = false; |
| if (!CGF.HaveInsertPoint()) |
| return; |
| |
| if (!EST.ExitBB) |
| EST.ExitBB = CGF.createBasicBlock(".exit"); |
| |
| llvm::BasicBlock *OMPDeInitBB = CGF.createBasicBlock(".omp.deinit"); |
| CGF.EmitBranch(OMPDeInitBB); |
| |
| CGF.EmitBlock(OMPDeInitBB); |
| // DeInitialize the OMP state in the runtime; called by all active threads. |
| llvm::Value *Args[] = {/*RequiresOMPRuntime=*/ |
| CGF.Builder.getInt16(RequiresFullRuntime ? 1 : 0)}; |
| CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( |
| CGM.getModule(), OMPRTL___kmpc_spmd_kernel_deinit_v2), |
| Args); |
| CGF.EmitBranch(EST.ExitBB); |
| |
| CGF.EmitBlock(EST.ExitBB); |
| EST.ExitBB = nullptr; |
| } |
| |
| // Create a unique global variable to indicate the execution mode of this target |
| // region. The execution mode is either 'generic', or 'spmd' depending on the |
| // target directive. This variable is picked up by the offload library to setup |
| // the device appropriately before kernel launch. If the execution mode is |
| // 'generic', the runtime reserves one warp for the master, otherwise, all |
| // warps participate in parallel work. |
| static void setPropertyExecutionMode(CodeGenModule &CGM, StringRef Name, |
| bool Mode) { |
| auto *GVMode = |
| new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true, |
| llvm::GlobalValue::WeakAnyLinkage, |
| llvm::ConstantInt::get(CGM.Int8Ty, Mode ? 0 : 1), |
| Twine(Name, "_exec_mode")); |
| CGM.addCompilerUsedGlobal(GVMode); |
| } |
| |
| void CGOpenMPRuntimeGPU::emitWorkerFunction(WorkerFunctionState &WST) { |
| ASTContext &Ctx = CGM.getContext(); |
| |
| CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); |
| CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, WST.WorkerFn, WST.CGFI, {}, |
| WST.Loc, WST.Loc); |
| emitWorkerLoop(CGF, WST); |
| CGF.FinishFunction(); |
| } |
| |
| void CGOpenMPRuntimeGPU::emitWorkerLoop(CodeGenFunction &CGF, |
| WorkerFunctionState &WST) { |
| // |
| // The workers enter this loop and wait for parallel work from the master. |
| // When the master encounters a parallel region it sets up the work + variable |
| // arguments, and wakes up the workers. The workers first check to see if |
| // they are required for the parallel region, i.e., within the # of requested |
| // parallel threads. The activated workers load the variable arguments and |
| // execute the parallel work. |
| // |
| |
| CGBuilderTy &Bld = CGF.Builder; |
| |
| llvm::BasicBlock *AwaitBB = CGF.createBasicBlock(".await.work"); |
| llvm::BasicBlock *SelectWorkersBB = CGF.createBasicBlock(".select.workers"); |
| llvm::BasicBlock *ExecuteBB = CGF.createBasicBlock(".execute.parallel"); |
| llvm::BasicBlock *TerminateBB = CGF.createBasicBlock(".terminate.parallel"); |
| llvm::BasicBlock *BarrierBB = CGF.createBasicBlock(".barrier.parallel"); |
| llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".exit"); |
| |
| CGF.EmitBranch(AwaitBB); |
| |
| // Workers wait for work from master. |
| CGF.EmitBlock(AwaitBB); |
| // Wait for parallel work |
| syncCTAThreads(CGF); |
| |
| Address WorkFn = |
| CGF.CreateDefaultAlignTempAlloca(CGF.Int8PtrTy, /*Name=*/"work_fn"); |
| Address ExecStatus = |
| CGF.CreateDefaultAlignTempAlloca(CGF.Int8Ty, /*Name=*/"exec_status"); |
| CGF.InitTempAlloca(ExecStatus, Bld.getInt8(/*C=*/0)); |
| CGF.InitTempAlloca(WorkFn, llvm::Constant::getNullValue(CGF.Int8PtrTy)); |
| |
| // TODO: Optimize runtime initialization and pass in correct value. |
| llvm::Value *Args[] = {WorkFn.getPointer()}; |
| llvm::Value *Ret = |
| CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( |
| CGM.getModule(), OMPRTL___kmpc_kernel_parallel), |
| Args); |
| Bld.CreateStore(Bld.CreateZExt(Ret, CGF.Int8Ty), ExecStatus); |
| |
| // On termination condition (workid == 0), exit loop. |
| llvm::Value *WorkID = Bld.CreateLoad(WorkFn); |
| llvm::Value *ShouldTerminate = Bld.CreateIsNull(WorkID, "should_terminate"); |
| Bld.CreateCondBr(ShouldTerminate, ExitBB, SelectWorkersBB); |
| |
| // Activate requested workers. |
| CGF.EmitBlock(SelectWorkersBB); |
| llvm::Value *IsActive = |
| Bld.CreateIsNotNull(Bld.CreateLoad(ExecStatus), "is_active"); |
| Bld.CreateCondBr(IsActive, ExecuteBB, BarrierBB); |
| |
| // Signal start of parallel region. |
| CGF.EmitBlock(ExecuteBB); |
| // Skip initialization. |
| setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true); |
| |
| // Process work items: outlined parallel functions. |
| for (llvm::Function *W : Work) { |
| // Try to match this outlined function. |
| llvm::Value *ID = Bld.CreatePointerBitCastOrAddrSpaceCast(W, CGM.Int8PtrTy); |
| |
| llvm::Value *WorkFnMatch = |
| Bld.CreateICmpEQ(Bld.CreateLoad(WorkFn), ID, "work_match"); |
| |
| llvm::BasicBlock *ExecuteFNBB = CGF.createBasicBlock(".execute.fn"); |
| llvm::BasicBlock *CheckNextBB = CGF.createBasicBlock(".check.next"); |
| Bld.CreateCondBr(WorkFnMatch, ExecuteFNBB, CheckNextBB); |
| |
| // Execute this outlined function. |
| CGF.EmitBlock(ExecuteFNBB); |
| |
| // Insert call to work function via shared wrapper. The shared |
| // wrapper takes two arguments: |
| // - the parallelism level; |
| // - the thread ID; |
| emitCall(CGF, WST.Loc, W, |
| {Bld.getInt16(/*ParallelLevel=*/0), getThreadID(CGF, WST.Loc)}); |
| |
| // Go to end of parallel region. |
| CGF.EmitBranch(TerminateBB); |
| |
| CGF.EmitBlock(CheckNextBB); |
| } |
| // Default case: call to outlined function through pointer if the target |
| // region makes a declare target call that may contain an orphaned parallel |
| // directive. |
| auto *ParallelFnTy = |
| llvm::FunctionType::get(CGM.VoidTy, {CGM.Int16Ty, CGM.Int32Ty}, |
| /*isVarArg=*/false); |
| llvm::Value *WorkFnCast = |
| Bld.CreateBitCast(WorkID, ParallelFnTy->getPointerTo()); |
| // Insert call to work function via shared wrapper. The shared |
| // wrapper takes two arguments: |
| // - the parallelism level; |
| // - the thread ID; |
| emitCall(CGF, WST.Loc, {ParallelFnTy, WorkFnCast}, |
| {Bld.getInt16(/*ParallelLevel=*/0), getThreadID(CGF, WST.Loc)}); |
| // Go to end of parallel region. |
| CGF.EmitBranch(TerminateBB); |
| |
| // Signal end of parallel region. |
| CGF.EmitBlock(TerminateBB); |
| CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( |
| CGM.getModule(), OMPRTL___kmpc_kernel_end_parallel), |
| llvm::None); |
| CGF.EmitBranch(BarrierBB); |
| |
| // All active and inactive workers wait at a barrier after parallel region. |
| CGF.EmitBlock(BarrierBB); |
| // Barrier after parallel region. |
| syncCTAThreads(CGF); |
| CGF.EmitBranch(AwaitBB); |
| |
| // Exit target region. |
| CGF.EmitBlock(ExitBB); |
| // Skip initialization. |
| clearLocThreadIdInsertPt(CGF); |
| } |
| |
| void CGOpenMPRuntimeGPU::createOffloadEntry(llvm::Constant *ID, |
| llvm::Constant *Addr, |
| uint64_t Size, int32_t, |
| llvm::GlobalValue::LinkageTypes) { |
| // TODO: Add support for global variables on the device after declare target |
| // support. |
| if (!isa<llvm::Function>(Addr)) |
| return; |
| llvm::Module &M = CGM.getModule(); |
| llvm::LLVMContext &Ctx = CGM.getLLVMContext(); |
| |
| // Get "nvvm.annotations" metadata node |
| llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations"); |
| |
| llvm::Metadata *MDVals[] = { |
| llvm::ConstantAsMetadata::get(Addr), llvm::MDString::get(Ctx, "kernel"), |
| llvm::ConstantAsMetadata::get( |
| llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1))}; |
| // Append metadata to nvvm.annotations |
| MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); |
| } |
| |
| void CGOpenMPRuntimeGPU::emitTargetOutlinedFunction( |
| const OMPExecutableDirective &D, StringRef ParentName, |
| llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID, |
| bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) { |
| if (!IsOffloadEntry) // Nothing to do. |
| return; |
| |
| assert(!ParentName.empty() && "Invalid target region parent name!"); |
| |
| bool Mode = supportsSPMDExecutionMode(CGM.getContext(), D); |
| if (Mode) |
| emitSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, |
| CodeGen); |
| else |
| emitNonSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, |
| CodeGen); |
| |
| setPropertyExecutionMode(CGM, OutlinedFn->getName(), Mode); |
| } |
| |
| namespace { |
| LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE(); |
| /// Enum for accesseing the reserved_2 field of the ident_t struct. |
| enum ModeFlagsTy : unsigned { |
| /// Bit set to 1 when in SPMD mode. |
| KMP_IDENT_SPMD_MODE = 0x01, |
| /// Bit set to 1 when a simplified runtime is used. |
| KMP_IDENT_SIMPLE_RT_MODE = 0x02, |
| LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/KMP_IDENT_SIMPLE_RT_MODE) |
| }; |
| |
| /// Special mode Undefined. Is the combination of Non-SPMD mode + SimpleRuntime. |
| static const ModeFlagsTy UndefinedMode = |
| (~KMP_IDENT_SPMD_MODE) & KMP_IDENT_SIMPLE_RT_MODE; |
| } // anonymous namespace |
| |
| unsigned CGOpenMPRuntimeGPU::getDefaultLocationReserved2Flags() const { |
| switch (getExecutionMode()) { |
| case EM_SPMD: |
| if (requiresFullRuntime()) |
| return KMP_IDENT_SPMD_MODE & (~KMP_IDENT_SIMPLE_RT_MODE); |
| return KMP_IDENT_SPMD_MODE | KMP_IDENT_SIMPLE_RT_MODE; |
| case EM_NonSPMD: |
| assert(requiresFullRuntime() && "Expected full runtime."); |
| return (~KMP_IDENT_SPMD_MODE) & (~KMP_IDENT_SIMPLE_RT_MODE); |
| case EM_Unknown: |
| return UndefinedMode; |
| } |
| llvm_unreachable("Unknown flags are requested."); |
| } |
| |
| CGOpenMPRuntimeGPU::CGOpenMPRuntimeGPU(CodeGenModule &CGM) |
| : CGOpenMPRuntime(CGM, "_", "$") { |
| if (!CGM.getLangOpts().OpenMPIsDevice) |
| llvm_unreachable("OpenMP NVPTX can only handle device code."); |
| } |
| |
| void CGOpenMPRuntimeGPU::emitProcBindClause(CodeGenFunction &CGF, |
| ProcBindKind ProcBind, |
| SourceLocation Loc) { |
| // Do nothing in case of SPMD mode and L0 parallel. |
| if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) |
| return; |
| |
| CGOpenMPRuntime::emitProcBindClause(CGF, ProcBind, Loc); |
| } |
| |
| void CGOpenMPRuntimeGPU::emitNumThreadsClause(CodeGenFunction &CGF, |
| llvm::Value *NumThreads, |
| SourceLocation Loc) { |
| // Do nothing in case of SPMD mode and L0 parallel. |
| if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) |
| return; |
| |
| CGOpenMPRuntime::emitNumThreadsClause(CGF, NumThreads, Loc); |
| } |
| |
| void CGOpenMPRuntimeGPU::emitNumTeamsClause(CodeGenFunction &CGF, |
| const Expr *NumTeams, |
| const Expr *ThreadLimit, |
| SourceLocation Loc) {} |
| |
| llvm::Function *CGOpenMPRuntimeGPU::emitParallelOutlinedFunction( |
| const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, |
| OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { |
| // Emit target region as a standalone region. |
| class NVPTXPrePostActionTy : public PrePostActionTy { |
| bool &IsInParallelRegion; |
| bool PrevIsInParallelRegion; |
| |
| public: |
| NVPTXPrePostActionTy(bool &IsInParallelRegion) |
| : IsInParallelRegion(IsInParallelRegion) {} |
| void Enter(CodeGenFunction &CGF) override { |
| PrevIsInParallelRegion = IsInParallelRegion; |
| IsInParallelRegion = true; |
| } |
| void Exit(CodeGenFunction &CGF) override { |
| IsInParallelRegion = PrevIsInParallelRegion; |
| } |
| } Action(IsInParallelRegion); |
| CodeGen.setAction(Action); |
| bool PrevIsInTTDRegion = IsInTTDRegion; |
| IsInTTDRegion = false; |
| bool PrevIsInTargetMasterThreadRegion = IsInTargetMasterThreadRegion; |
| IsInTargetMasterThreadRegion = false; |
| auto *OutlinedFun = |
| cast<llvm::Function>(CGOpenMPRuntime::emitParallelOutlinedFunction( |
| D, ThreadIDVar, InnermostKind, CodeGen)); |
| if (CGM.getLangOpts().Optimize) { |
| OutlinedFun->removeFnAttr(llvm::Attribute::NoInline); |
| OutlinedFun->removeFnAttr(llvm::Attribute::OptimizeNone); |
| OutlinedFun->addFnAttr(llvm::Attribute::AlwaysInline); |
| } |
| IsInTargetMasterThreadRegion = PrevIsInTargetMasterThreadRegion; |
| IsInTTDRegion = PrevIsInTTDRegion; |
| if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD && |
| !IsInParallelRegion) { |
| llvm::Function *WrapperFun = |
| createParallelDataSharingWrapper(OutlinedFun, D); |
| WrapperFunctionsMap[OutlinedFun] = WrapperFun; |
| } |
| |
| return OutlinedFun; |
| } |
| |
| /// Get list of lastprivate variables from the teams distribute ... or |
| /// teams {distribute ...} directives. |
| static void |
| getDistributeLastprivateVars(ASTContext &Ctx, const OMPExecutableDirective &D, |
| llvm::SmallVectorImpl<const ValueDecl *> &Vars) { |
| assert(isOpenMPTeamsDirective(D.getDirectiveKind()) && |
| "expected teams directive."); |
| const OMPExecutableDirective *Dir = &D; |
| if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { |
| if (const Stmt *S = CGOpenMPRuntime::getSingleCompoundChild( |
| Ctx, |
| D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers( |
| /*IgnoreCaptured=*/true))) { |
| Dir = dyn_cast_or_null<OMPExecutableDirective>(S); |
| if (Dir && !isOpenMPDistributeDirective(Dir->getDirectiveKind())) |
| Dir = nullptr; |
| } |
| } |
| if (!Dir) |
| return; |
| for (const auto *C : Dir->getClausesOfKind<OMPLastprivateClause>()) { |
| for (const Expr *E : C->getVarRefs()) |
| Vars.push_back(getPrivateItem(E)); |
| } |
| } |
| |
| /// Get list of reduction variables from the teams ... directives. |
| static void |
| getTeamsReductionVars(ASTContext &Ctx, const OMPExecutableDirective &D, |
| llvm::SmallVectorImpl<const ValueDecl *> &Vars) { |
| assert(isOpenMPTeamsDirective(D.getDirectiveKind()) && |
| "expected teams directive."); |
| for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { |
| for (const Expr *E : C->privates()) |
| Vars.push_back(getPrivateItem(E)); |
| } |
| } |
| |
| llvm::Function *CGOpenMPRuntimeGPU::emitTeamsOutlinedFunction( |
| const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, |
| OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { |
| SourceLocation Loc = D.getBeginLoc(); |
| |
| const RecordDecl *GlobalizedRD = nullptr; |
| llvm::SmallVector<const ValueDecl *, 4> LastPrivatesReductions; |
| llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields; |
| unsigned WarpSize = CGM.getTarget().getGridValue(llvm::omp::GV_Warp_Size); |
| // Globalize team reductions variable unconditionally in all modes. |
| if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) |
| getTeamsReductionVars(CGM.getContext(), D, LastPrivatesReductions); |
| if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) { |
| getDistributeLastprivateVars(CGM.getContext(), D, LastPrivatesReductions); |
| if (!LastPrivatesReductions.empty()) { |
| GlobalizedRD = ::buildRecordForGlobalizedVars( |
| CGM.getContext(), llvm::None, LastPrivatesReductions, |
| MappedDeclsFields, WarpSize); |
| } |
| } else if (!LastPrivatesReductions.empty()) { |
| assert(!TeamAndReductions.first && |
| "Previous team declaration is not expected."); |
| TeamAndReductions.first = D.getCapturedStmt(OMPD_teams)->getCapturedDecl(); |
| std::swap(TeamAndReductions.second, LastPrivatesReductions); |
| } |
| |
| // Emit target region as a standalone region. |
| class NVPTXPrePostActionTy : public PrePostActionTy { |
| SourceLocation &Loc; |
| const RecordDecl *GlobalizedRD; |
| llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> |
| &MappedDeclsFields; |
| |
| public: |
| NVPTXPrePostActionTy( |
| SourceLocation &Loc, const RecordDecl *GlobalizedRD, |
| llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> |
| &MappedDeclsFields) |
| : Loc(Loc), GlobalizedRD(GlobalizedRD), |
| MappedDeclsFields(MappedDeclsFields) {} |
| void Enter(CodeGenFunction &CGF) override { |
| auto &Rt = |
| static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); |
| if (GlobalizedRD) { |
| auto I = Rt.FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first; |
| I->getSecond().GlobalRecord = GlobalizedRD; |
| I->getSecond().MappedParams = |
| std::make_unique<CodeGenFunction::OMPMapVars>(); |
| DeclToAddrMapTy &Data = I->getSecond().LocalVarData; |
| for (const auto &Pair : MappedDeclsFields) { |
| assert(Pair.getFirst()->isCanonicalDecl() && |
| "Expected canonical declaration"); |
| Data.insert(std::make_pair(Pair.getFirst(), |
| MappedVarData(Pair.getSecond(), |
| /*IsOnePerTeam=*/true))); |
| } |
| } |
| Rt.emitGenericVarsProlog(CGF, Loc); |
| } |
| void Exit(CodeGenFunction &CGF) override { |
| static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()) |
| .emitGenericVarsEpilog(CGF); |
| } |
| } Action(Loc, GlobalizedRD, MappedDeclsFields); |
| CodeGen.setAction(Action); |
| llvm::Function *OutlinedFun = CGOpenMPRuntime::emitTeamsOutlinedFunction( |
| D, ThreadIDVar, InnermostKind, CodeGen); |
| if (CGM.getLangOpts().Optimize) { |
| OutlinedFun->removeFnAttr(llvm::Attribute::NoInline); |
| OutlinedFun->removeFnAttr(llvm::Attribute::OptimizeNone); |
| OutlinedFun->addFnAttr(llvm::Attribute::AlwaysInline); |
| } |
| |
| return OutlinedFun; |
| } |
| |
| void CGOpenMPRuntimeGPU::emitGenericVarsProlog(CodeGenFunction &CGF, |
| SourceLocation Loc, |
| bool WithSPMDCheck) { |
| if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic && |
| getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) |
| return; |
| |
| CGBuilderTy &Bld = CGF.Builder; |
| |
| const auto I = FunctionGlobalizedDecls.find(CGF.CurFn); |
| if (I == FunctionGlobalizedDecls.end()) |
| return; |
| if (const RecordDecl *GlobalizedVarsRecord = I->getSecond().GlobalRecord) { |
| QualType GlobalRecTy = CGM.getContext().getRecordType(GlobalizedVarsRecord); |
| QualType SecGlobalRecTy; |
| |
| // Recover pointer to this function's global record. The runtime will |
| // handle the specifics of the allocation of the memory. |
| // Use actual memory size of the record including the padding |
| // for alignment purposes. |
| unsigned Alignment = |
| CGM.getContext().getTypeAlignInChars(GlobalRecTy).getQuantity(); |
| unsigned GlobalRecordSize = |
| CGM.getContext().getTypeSizeInChars(GlobalRecTy).getQuantity(); |
| GlobalRecordSize = llvm::alignTo(GlobalRecordSize, Alignment); |
| |
| llvm::PointerType *GlobalRecPtrTy = |
| CGF.ConvertTypeForMem(GlobalRecTy)->getPointerTo(); |
| llvm::Value *GlobalRecCastAddr; |
| llvm::Value *IsTTD = nullptr; |
| if (!IsInTTDRegion && |
| (WithSPMDCheck || |
| getExecutionMode() == CGOpenMPRuntimeGPU::EM_Unknown)) { |
| llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".exit"); |
| llvm::BasicBlock *SPMDBB = CGF.createBasicBlock(".spmd"); |
| llvm::BasicBlock *NonSPMDBB = CGF.createBasicBlock(".non-spmd"); |
| if (I->getSecond().SecondaryGlobalRecord.hasValue()) { |
| llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); |
| llvm::Value *ThreadID = getThreadID(CGF, Loc); |
| llvm::Value *PL = CGF.EmitRuntimeCall( |
| OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), |
| OMPRTL___kmpc_parallel_level), |
| {RTLoc, ThreadID}); |
| IsTTD = Bld.CreateIsNull(PL); |
| } |
| llvm::Value *IsSPMD = Bld.CreateIsNotNull( |
| CGF.EmitNounwindRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( |
| CGM.getModule(), OMPRTL___kmpc_is_spmd_exec_mode))); |
| Bld.CreateCondBr(IsSPMD, SPMDBB, NonSPMDBB); |
| // There is no need to emit line number for unconditional branch. |
| (void)ApplyDebugLocation::CreateEmpty(CGF); |
| CGF.EmitBlock(SPMDBB); |
| Address RecPtr = Address(llvm::ConstantPointerNull::get(GlobalRecPtrTy), |
| CharUnits::fromQuantity(Alignment)); |
| CGF.EmitBranch(ExitBB); |
| // There is no need to emit line number for unconditional branch. |
| (void)ApplyDebugLocation::CreateEmpty(CGF); |
| CGF.EmitBlock(NonSPMDBB); |
| llvm::Value *Size = llvm::ConstantInt::get(CGM.SizeTy, GlobalRecordSize); |
| if (const RecordDecl *SecGlobalizedVarsRecord = |
| I->getSecond().SecondaryGlobalRecord.getValueOr(nullptr)) { |
| SecGlobalRecTy = |
| CGM.getContext().getRecordType(SecGlobalizedVarsRecord); |
| |
| // Recover pointer to this function's global record. The runtime will |
| // handle the specifics of the allocation of the memory. |
| // Use actual memory size of the record including the padding |
| // for alignment purposes. |
| unsigned Alignment = |
| CGM.getContext().getTypeAlignInChars(SecGlobalRecTy).getQuantity(); |
| unsigned GlobalRecordSize = |
| CGM.getContext().getTypeSizeInChars(SecGlobalRecTy).getQuantity(); |
| GlobalRecordSize = llvm::alignTo(GlobalRecordSize, Alignment); |
| Size = Bld.CreateSelect( |
| IsTTD, llvm::ConstantInt::get(CGM.SizeTy, GlobalRecordSize), Size); |
| } |
| // TODO: allow the usage of shared memory to be controlled by |
| // the user, for now, default to global. |
| llvm::Value *GlobalRecordSizeArg[] = { |
| Size, CGF.Builder.getInt16(/*UseSharedMemory=*/0)}; |
| llvm::Value *GlobalRecValue = CGF.EmitRuntimeCall( |
| OMPBuilder.getOrCreateRuntimeFunction( |
| CGM.getModule(), OMPRTL___kmpc_data_sharing_coalesced_push_stack), |
| GlobalRecordSizeArg); |
| GlobalRecCastAddr = Bld.CreatePointerBitCastOrAddrSpaceCast( |
| GlobalRecValue, GlobalRecPtrTy); |
| CGF.EmitBlock(ExitBB); |
| auto *Phi = Bld.CreatePHI(GlobalRecPtrTy, |
| /*NumReservedValues=*/2, "_select_stack"); |
| Phi->addIncoming(RecPtr.getPointer(), SPMDBB); |
| Phi->addIncoming(GlobalRecCastAddr, NonSPMDBB); |
| GlobalRecCastAddr = Phi; |
| I->getSecond().GlobalRecordAddr = Phi; |
| I->getSecond().IsInSPMDModeFlag = IsSPMD; |
| } else if (!CGM.getLangOpts().OpenMPCUDATargetParallel && IsInTTDRegion) { |
| assert(GlobalizedRecords.back().Records.size() < 2 && |
| "Expected less than 2 globalized records: one for target and one " |
| "for teams."); |
| unsigned Offset = 0; |
| for (const RecordDecl *RD : GlobalizedRecords.back().Records) { |
| QualType RDTy = CGM.getContext().getRecordType(RD); |
| unsigned Alignment = |
| CGM.getContext().getTypeAlignInChars(RDTy).getQuantity(); |
| unsigned Size = CGM.getContext().getTypeSizeInChars(RDTy).getQuantity(); |
| Offset = |
| llvm::alignTo(llvm::alignTo(Offset, Alignment) + Size, Alignment); |
| } |
| unsigned Alignment = |
| CGM.getContext().getTypeAlignInChars(GlobalRecTy).getQuantity(); |
| Offset = llvm::alignTo(Offset, Alignment); |
| GlobalizedRecords.back().Records.push_back(GlobalizedVarsRecord); |
| ++GlobalizedRecords.back().RegionCounter; |
| if (GlobalizedRecords.back().Records.size() == 1) { |
| assert(KernelStaticGlobalized && |
| "Kernel static pointer must be initialized already."); |
| auto *UseSharedMemory = new llvm::GlobalVariable( |
| CGM.getModule(), CGM.Int16Ty, /*isConstant=*/true, |
| llvm::GlobalValue::InternalLinkage, nullptr, |
| "_openmp_static_kernel$is_shared"); |
| UseSharedMemory->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); |
| QualType Int16Ty = CGM.getContext().getIntTypeForBitwidth( |
| /*DestWidth=*/16, /*Signed=*/0); |
| llvm::Value *IsInSharedMemory = CGF.EmitLoadOfScalar( |
| Address(UseSharedMemory, |
| CGM.getContext().getTypeAlignInChars(Int16Ty)), |
| /*Volatile=*/false, Int16Ty, Loc); |
| auto *StaticGlobalized = new llvm::GlobalVariable( |
| CGM.getModule(), CGM.Int8Ty, /*isConstant=*/false, |
| llvm::GlobalValue::CommonLinkage, nullptr); |
| auto *RecSize = new llvm::GlobalVariable( |
| CGM.getModule(), CGM.SizeTy, /*isConstant=*/true, |
| llvm::GlobalValue::InternalLinkage, nullptr, |
| "_openmp_static_kernel$size"); |
| RecSize->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); |
| llvm::Value *Ld = CGF.EmitLoadOfScalar( |
| Address(RecSize, CGM.getSizeAlign()), /*Volatile=*/false, |
| CGM.getContext().getSizeType(), Loc); |
| llvm::Value *ResAddr = Bld.CreatePointerBitCastOrAddrSpaceCast( |
| KernelStaticGlobalized, CGM.VoidPtrPtrTy); |
| llvm::Value *GlobalRecordSizeArg[] = { |
| llvm::ConstantInt::get( |
| CGM.Int16Ty, |
| getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD ? 1 : 0), |
| StaticGlobalized, Ld, IsInSharedMemory, ResAddr}; |
| CGF.EmitRuntimeCall( |
| OMPBuilder.getOrCreateRuntimeFunction( |
| CGM.getModule(), OMPRTL___kmpc_get_team_static_memory), |
| GlobalRecordSizeArg); |
| GlobalizedRecords.back().Buffer = StaticGlobalized; |
| GlobalizedRecords.back().RecSize = RecSize; |
| GlobalizedRecords.back().UseSharedMemory = UseSharedMemory; |
| GlobalizedRecords.back().Loc = Loc; |
| } |
| assert(KernelStaticGlobalized && "Global address must be set already."); |
| Address FrameAddr = CGF.EmitLoadOfPointer( |
| Address(KernelStaticGlobalized, CGM.getPointerAlign()), |
| CGM.getContext() |
| .getPointerType(CGM.getContext().VoidPtrTy) |
| .castAs<PointerType>()); |
| llvm::Value *GlobalRecValue = |
| Bld.CreateConstInBoundsGEP(FrameAddr, Offset).getPointer(); |
| I->getSecond().GlobalRecordAddr = GlobalRecValue; |
| I->getSecond().IsInSPMDModeFlag = nullptr; |
| GlobalRecCastAddr = Bld.CreatePointerBitCastOrAddrSpaceCast( |
| GlobalRecValue, CGF.ConvertTypeForMem(GlobalRecTy)->getPointerTo()); |
| } else { |
| // TODO: allow the usage of shared memory to be controlled by |
| // the user, for now, default to global. |
| bool UseSharedMemory = |
| IsInTTDRegion && GlobalRecordSize <= SharedMemorySize; |
| llvm::Value *GlobalRecordSizeArg[] = { |
| llvm::ConstantInt::get(CGM.SizeTy, GlobalRecordSize), |
| CGF.Builder.getInt16(UseSharedMemory ? 1 : 0)}; |
| llvm::Value *GlobalRecValue = CGF.EmitRuntimeCall( |
| OMPBuilder.getOrCreateRuntimeFunction( |
| CGM.getModule(), |
| IsInTTDRegion ? OMPRTL___kmpc_data_sharing_push_stack |
| : OMPRTL___kmpc_data_sharing_coalesced_push_stack), |
| GlobalRecordSizeArg); |
| GlobalRecCastAddr = Bld.CreatePointerBitCastOrAddrSpaceCast( |
| GlobalRecValue, GlobalRecPtrTy); |
| I->getSecond().GlobalRecordAddr = GlobalRecValue; |
| I->getSecond().IsInSPMDModeFlag = nullptr; |
| } |
| LValue Base = |
| CGF.MakeNaturalAlignPointeeAddrLValue(GlobalRecCastAddr, GlobalRecTy); |
| |
| // Emit the "global alloca" which is a GEP from the global declaration |
| // record using the pointer returned by the runtime. |
| LValue SecBase; |
| decltype(I->getSecond().LocalVarData)::const_iterator SecIt; |
| if (IsTTD) { |
| SecIt = I->getSecond().SecondaryLocalVarData->begin(); |
| llvm::PointerType *SecGlobalRecPtrTy = |
| CGF.ConvertTypeForMem(SecGlobalRecTy)->getPointerTo(); |
| SecBase = CGF.MakeNaturalAlignPointeeAddrLValue( |
| Bld.CreatePointerBitCastOrAddrSpaceCast( |
| I->getSecond().GlobalRecordAddr, SecGlobalRecPtrTy), |
| SecGlobalRecTy); |
| } |
| for (auto &Rec : I->getSecond().LocalVarData) { |
| bool EscapedParam = I->getSecond().EscapedParameters.count(Rec.first); |
| llvm::Value *ParValue; |
| if (EscapedParam) { |
| const auto *VD = cast<VarDecl>(Rec.first); |
| LValue ParLVal = |
| CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType()); |
| ParValue = CGF.EmitLoadOfScalar(ParLVal, Loc); |
| } |
| LValue VarAddr = CGF.EmitLValueForField(Base, Rec.second.FD); |
| // Emit VarAddr basing on lane-id if required. |
| QualType VarTy; |
| if (Rec.second.IsOnePerTeam) { |
| VarTy = Rec.second.FD->getType(); |
| } else { |
| llvm::Value *Ptr = CGF.Builder.CreateInBoundsGEP( |
| VarAddr.getAddress(CGF).getPointer(), |
| {Bld.getInt32(0), getNVPTXLaneID(CGF)}); |
| VarTy = |
| Rec.second.FD->getType()->castAsArrayTypeUnsafe()->getElementType(); |
| VarAddr = CGF.MakeAddrLValue( |
| Address(Ptr, CGM.getContext().getDeclAlign(Rec.first)), VarTy, |
| AlignmentSource::Decl); |
| } |
| Rec.second.PrivateAddr = VarAddr.getAddress(CGF); |
| if (!IsInTTDRegion && |
| (WithSPMDCheck || |
| getExecutionMode() == CGOpenMPRuntimeGPU::EM_Unknown)) { |
| assert(I->getSecond().IsInSPMDModeFlag && |
| "Expected unknown execution mode or required SPMD check."); |
| if (IsTTD) { |
| assert(SecIt->second.IsOnePerTeam && |
| "Secondary glob data must be one per team."); |
| LValue SecVarAddr = CGF.EmitLValueForField(SecBase, SecIt->second.FD); |
| VarAddr.setAddress( |
| Address(Bld.CreateSelect(IsTTD, SecVarAddr.getPointer(CGF), |
| VarAddr.getPointer(CGF)), |
| VarAddr.getAlignment())); |
| Rec.second.PrivateAddr = VarAddr.getAddress(CGF); |
| } |
| Address GlobalPtr = Rec.second.PrivateAddr; |
| Address LocalAddr = CGF.CreateMemTemp(VarTy, Rec.second.FD->getName()); |
| Rec.second.PrivateAddr = Address( |
| Bld.CreateSelect(I->getSecond().IsInSPMDModeFlag, |
| LocalAddr.getPointer(), GlobalPtr.getPointer()), |
| LocalAddr.getAlignment()); |
| } |
| if (EscapedParam) { |
| const auto *VD = cast<VarDecl>(Rec.first); |
| CGF.EmitStoreOfScalar(ParValue, VarAddr); |
| I->getSecond().MappedParams->setVarAddr(CGF, VD, |
| VarAddr.getAddress(CGF)); |
| } |
| if (IsTTD) |
| ++SecIt; |
| } |
| } |
| for (const ValueDecl *VD : I->getSecond().EscapedVariableLengthDecls) { |
| // Recover pointer to this function's global record. The runtime will |
| // handle the specifics of the allocation of the memory. |
| // Use actual memory size of the record including the padding |
| // for alignment purposes. |
| CGBuilderTy &Bld = CGF.Builder; |
| llvm::Value *Size = CGF.getTypeSize(VD->getType()); |
| CharUnits Align = CGM.getContext().getDeclAlign(VD); |
| Size = Bld.CreateNUWAdd( |
| Size, llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity() - 1)); |
| llvm::Value *AlignVal = |
| llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity()); |
| Size = Bld.CreateUDiv(Size, AlignVal); |
| Size = Bld.CreateNUWMul(Size, AlignVal); |
| // TODO: allow the usage of shared memory to be controlled by |
| // the user, for now, default to global. |
| llvm::Value *GlobalRecordSizeArg[] = { |
| Size, CGF.Builder.getInt16(/*UseSharedMemory=*/0)}; |
| llvm::Value *GlobalRecValue = CGF.EmitRuntimeCall( |
| OMPBuilder.getOrCreateRuntimeFunction( |
| CGM.getModule(), OMPRTL___kmpc_data_sharing_coalesced_push_stack), |
| GlobalRecordSizeArg); |
| llvm::Value *GlobalRecCastAddr = Bld.CreatePointerBitCastOrAddrSpaceCast( |
| GlobalRecValue, CGF.ConvertTypeForMem(VD->getType())->getPointerTo()); |
| LValue Base = CGF.MakeAddrLValue(GlobalRecCastAddr, VD->getType(), |
| CGM.getContext().getDeclAlign(VD), |
| AlignmentSource::Decl); |
| I->getSecond().MappedParams->setVarAddr(CGF, cast<VarDecl>(VD), |
| Base.getAddress(CGF)); |
| I->getSecond().EscapedVariableLengthDeclsAddrs.emplace_back(GlobalRecValue); |
| } |
| I->getSecond().MappedParams->apply(CGF); |
| } |
| |
| void CGOpenMPRuntimeGPU::emitGenericVarsEpilog(CodeGenFunction &CGF, |
| bool WithSPMDCheck) { |
| if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic && |
| getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) |
| return; |
| |
| const auto I = FunctionGlobalizedDecls.find(CGF.CurFn); |
| if (I != FunctionGlobalizedDecls.end()) { |
| I->getSecond().MappedParams->restore(CGF); |
| if (!CGF.HaveInsertPoint()) |
| return; |
| for (llvm::Value *Addr : |
| llvm::reverse(I->getSecond().EscapedVariableLengthDeclsAddrs)) { |
| CGF.EmitRuntimeCall( |
| OMPBuilder.getOrCreateRuntimeFunction( |
| CGM.getModule(), OMPRTL___kmpc_data_sharing_pop_stack), |
| Addr); |
| } |
| if (I->getSecond().GlobalRecordAddr) { |
| if (!IsInTTDRegion && |
| (WithSPMDCheck || |
| getExecutionMode() == CGOpenMPRuntimeGPU::EM_Unknown)) { |
| CGBuilderTy &Bld = CGF.Builder; |
| llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".exit"); |
| llvm::BasicBlock *NonSPMDBB = CGF.createBasicBlock(".non-spmd"); |
| Bld.CreateCondBr(I->getSecond().IsInSPMDModeFlag, ExitBB, NonSPMDBB); |
| // There is no need to emit line number for unconditional branch. |
| (void)ApplyDebugLocation::CreateEmpty(CGF); |
| CGF.EmitBlock(NonSPMDBB); |
| CGF.EmitRuntimeCall( |
| OMPBuilder.getOrCreateRuntimeFunction( |
| CGM.getModule(), OMPRTL___kmpc_data_sharing_pop_stack), |
| CGF.EmitCastToVoidPtr(I->getSecond().GlobalRecordAddr)); |
| CGF.EmitBlock(ExitBB); |
| } else if (!CGM.getLangOpts().OpenMPCUDATargetParallel && IsInTTDRegion) { |
| assert(GlobalizedRecords.back().RegionCounter > 0 && |
| "region counter must be > 0."); |
| --GlobalizedRecords.back().RegionCounter; |
| // Emit the restore function only in the target region. |
| if (GlobalizedRecords.back().RegionCounter == 0) { |
| QualType Int16Ty = CGM.getContext().getIntTypeForBitwidth( |
| /*DestWidth=*/16, /*Signed=*/0); |
| llvm::Value *IsInSharedMemory = CGF.EmitLoadOfScalar( |
| Address(GlobalizedRecords.back().UseSharedMemory, |
| CGM.getContext().getTypeAlignInChars(Int16Ty)), |
| /*Volatile=*/false, Int16Ty, GlobalizedRecords.back().Loc); |
| llvm::Value *Args[] = { |
| llvm::ConstantInt::get( |
| CGM.Int16Ty, |
| getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD ? 1 : 0), |
| IsInSharedMemory}; |
| CGF.EmitRuntimeCall( |
| OMPBuilder.getOrCreateRuntimeFunction( |
| CGM.getModule(), OMPRTL___kmpc_restore_team_static_memory), |
| Args); |
| } |
| } else { |
| CGF.EmitRuntimeCall( |
| OMPBuilder.getOrCreateRuntimeFunction( |
| CGM.getModule(), OMPRTL___kmpc_data_sharing_pop_stack), |
| I->getSecond().GlobalRecordAddr); |
| } |
| } |
| } |
| } |
| |
| void CGOpenMPRuntimeGPU::emitTeamsCall(CodeGenFunction &CGF, |
| const OMPExecutableDirective &D, |
| SourceLocation Loc, |
| llvm::Function *OutlinedFn, |
| ArrayRef<llvm::Value *> CapturedVars) { |
| if (!CGF.HaveInsertPoint()) |
| return; |
| |
| Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty, |
| /*Name=*/".zero.addr"); |
| CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0)); |
| llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs; |
| OutlinedFnArgs.push_back(emitThreadIDAddress(CGF, Loc).getPointer()); |
| OutlinedFnArgs.push_back(ZeroAddr.getPointer()); |
| OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end()); |
| emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs); |
| } |
| |
| void CGOpenMPRuntimeGPU::emitParallelCall( |
| CodeGenFunction &CGF, SourceLocation Loc, llvm::Function *OutlinedFn, |
| ArrayRef<llvm::Value *> CapturedVars, const Expr *IfCond) { |
| if (!CGF.HaveInsertPoint()) |
| return; |
| |
| if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) |
| emitSPMDParallelCall(CGF, Loc, OutlinedFn, CapturedVars, IfCond); |
| else |
| emitNonSPMDParallelCall(CGF, Loc, OutlinedFn, CapturedVars, IfCond); |
| } |
| |
| void CGOpenMPRuntimeGPU::emitNonSPMDParallelCall( |
| CodeGenFunction &CGF, SourceLocation Loc, llvm::Value *OutlinedFn, |
| ArrayRef<llvm::Value *> CapturedVars, const Expr *IfCond) { |
| llvm::Function *Fn = cast<llvm::Function>(OutlinedFn); |
| |
| // Force inline this outlined function at its call site. |
| Fn->setLinkage(llvm::GlobalValue::InternalLinkage); |
| |
| Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty, |
| /*Name=*/".zero.addr"); |
| CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0)); |
| // ThreadId for serialized parallels is 0. |
| Address ThreadIDAddr = ZeroAddr; |
| auto &&CodeGen = [this, Fn, CapturedVars, Loc, &ThreadIDAddr]( |
| CodeGenFunction &CGF, PrePostActionTy &Action) { |
| Action.Enter(CGF); |
| |
| Address ZeroAddr = |
| CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty, |
| /*Name=*/".bound.zero.addr"); |
| CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0)); |
| llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs; |
| OutlinedFnArgs.push_back(ThreadIDAddr.getPointer()); |
| OutlinedFnArgs.push_back(ZeroAddr.getPointer()); |
| OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end()); |
| emitOutlinedFunctionCall(CGF, Loc, Fn, OutlinedFnArgs); |
| }; |
| auto &&SeqGen = [this, &CodeGen, Loc](CodeGenFunction &CGF, |
| PrePostActionTy &) { |
| |
| RegionCodeGenTy RCG(CodeGen); |
| llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); |
| llvm::Value *ThreadID = getThreadID(CGF, Loc); |
| llvm::Value *Args[] = {RTLoc, ThreadID}; |
| |
| NVPTXActionTy Action( |
| OMPBuilder.getOrCreateRuntimeFunction( |
| CGM.getModule(), OMPRTL___kmpc_serialized_parallel), |
| Args, |
| OMPBuilder.getOrCreateRuntimeFunction( |
| CGM.getModule(), OMPRTL___kmpc_end_serialized_parallel), |
| Args); |
| RCG.setAction(Action); |
| RCG(CGF); |
| }; |
| |
| auto &&L0ParallelGen = [this, CapturedVars, Fn](CodeGenFunction &CGF, |
| PrePostActionTy &Action) { |
| CGBuilderTy &Bld = CGF.Builder; |
| llvm::Function *WFn = WrapperFunctionsMap[Fn]; |
| assert(WFn && "Wrapper function does not exist!"); |
| llvm::Value *ID = Bld.CreateBitOrPointerCast(WFn, CGM.Int8PtrTy); |
| |
| // Prepare for parallel region. Indicate the outlined function. |
| llvm::Value *Args[] = {ID}; |
| CGF.EmitRuntimeCall( |
| OMPBuilder.getOrCreateRuntimeFunction( |
| CGM.getModule(), OMPRTL___kmpc_kernel_prepare_parallel), |
| Args); |
| |
| // Create a private scope that will globalize the arguments |
| // passed from the outside of the target region. |
| CodeGenFunction::OMPPrivateScope PrivateArgScope(CGF); |
| |
| // There's something to share. |
| if (!CapturedVars.empty()) { |
| // Prepare for parallel region. Indicate the outlined function. |
| Address SharedArgs = |
| CGF.CreateDefaultAlignTempAlloca(CGF.VoidPtrPtrTy, "shared_arg_refs"); |
| llvm::Value *SharedArgsPtr = SharedArgs.getPointer(); |
| |
| llvm::Value *DataSharingArgs[] = { |
| SharedArgsPtr, |
| llvm::ConstantInt::get(CGM.SizeTy, CapturedVars.size())}; |
| CGF.EmitRuntimeCall( |
| OMPBuilder.getOrCreateRuntimeFunction( |
| CGM.getModule(), OMPRTL___kmpc_begin_sharing_variables), |
| DataSharingArgs); |
| |
| // Store variable address in a list of references to pass to workers. |
| unsigned Idx = 0; |
| ASTContext &Ctx = CGF.getContext(); |
| Address SharedArgListAddress = CGF.EmitLoadOfPointer( |
| SharedArgs, Ctx.getPointerType(Ctx.getPointerType(Ctx.VoidPtrTy)) |
| .castAs<PointerType>()); |
| for (llvm::Value *V : CapturedVars) { |
| Address Dst = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx); |
| llvm::Value *PtrV; |
| if (V->getType()->isIntegerTy()) |
| PtrV = Bld.CreateIntToPtr(V, CGF.VoidPtrTy); |
| else |
| PtrV = Bld.CreatePointerBitCastOrAddrSpaceCast(V, CGF.VoidPtrTy); |
| CGF.EmitStoreOfScalar(PtrV, Dst, /*Volatile=*/false, |
| Ctx.getPointerType(Ctx.VoidPtrTy)); |
| ++Idx; |
| } |
| } |
| |
| // Activate workers. This barrier is used by the master to signal |
| // work for the workers. |
| syncCTAThreads(CGF); |
| |
| // OpenMP [2.5, Parallel Construct, p.49] |
| // There is an implied barrier at the end of a parallel region. After the |
| // end of a parallel region, only the master thread of the team resumes |
| // execution of the enclosing task region. |
| // |
| // The master waits at this barrier until all workers are done. |
| syncCTAThreads(CGF); |
| |
| if (!CapturedVars.empty()) |
| CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( |
| CGM.getModule(), OMPRTL___kmpc_end_sharing_variables)); |
| |
| // Remember for post-processing in worker loop. |
| Work.emplace_back(WFn); |
| }; |
| |
| auto &&LNParallelGen = [this, Loc, &SeqGen, &L0ParallelGen]( |
| CodeGenFunction &CGF, PrePostActionTy &Action) { |
| if (IsInParallelRegion) { |
| SeqGen(CGF, Action); |
| } else if (IsInTargetMasterThreadRegion) { |
| L0ParallelGen(CGF, Action); |
| } else { |
| // Check for master and then parallelism: |
| // if (__kmpc_is_spmd_exec_mode() || __kmpc_parallel_level(loc, gtid)) { |
| // Serialized execution. |
| // } else { |
| // Worker call. |
| // } |
| CGBuilderTy &Bld = CGF.Builder; |
| llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".exit"); |
| llvm::BasicBlock *SeqBB = CGF.createBasicBlock(".sequential"); |
| llvm::BasicBlock *ParallelCheckBB = CGF.createBasicBlock(".parcheck"); |
| llvm::BasicBlock *MasterBB = CGF.createBasicBlock(".master"); |
| llvm::Value *IsSPMD = Bld.CreateIsNotNull( |
| CGF.EmitNounwindRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( |
| CGM.getModule(), OMPRTL___kmpc_is_spmd_exec_mode))); |
| Bld.CreateCondBr(IsSPMD, SeqBB, ParallelCheckBB); |
| // There is no need to emit line number for unconditional branch. |
| (void)ApplyDebugLocation::CreateEmpty(CGF); |
| CGF.EmitBlock(ParallelCheckBB); |
| llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); |
| llvm::Value *ThreadID = getThreadID(CGF, Loc); |
| llvm::Value *PL = CGF.EmitRuntimeCall( |
| OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), |
| OMPRTL___kmpc_parallel_level), |
| {RTLoc, ThreadID}); |
| llvm::Value *Res = Bld.CreateIsNotNull(PL); |
| Bld.CreateCondBr(Res, SeqBB, MasterBB); |
| CGF.EmitBlock(SeqBB); |
| SeqGen(CGF, Action); |
| CGF.EmitBranch(ExitBB); |
| // There is no need to emit line number for unconditional branch. |
| (void)ApplyDebugLocation::CreateEmpty(CGF); |
| CGF.EmitBlock(MasterBB); |
| L0ParallelGen(CGF, Action); |
| CGF.EmitBranch(ExitBB); |
| // There is no need to emit line number for unconditional branch. |
| (void)ApplyDebugLocation::CreateEmpty(CGF); |
| // Emit the continuation block for code after the if. |
| CGF.EmitBlock(ExitBB, /*IsFinished=*/true); |
| } |
| }; |
| |
| if (IfCond) { |
| emitIfClause(CGF, IfCond, LNParallelGen, SeqGen); |
| } else { |
| CodeGenFunction::RunCleanupsScope Scope(CGF); |
| RegionCodeGenTy ThenRCG(LNParallelGen); |
| ThenRCG(CGF); |
| } |
| } |
| |
| void CGOpenMPRuntimeGPU::emitSPMDParallelCall( |
| CodeGenFunction &CGF, SourceLocation Loc, llvm::Function *OutlinedFn, |
| ArrayRef<llvm::Value *> CapturedVars, const Expr *IfCond) { |
| // Just call the outlined function to execute the parallel region. |
| // OutlinedFn(>id, &zero, CapturedStruct); |
| // |
| llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs; |
| |
| Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty, |
| /*Name=*/".zero.addr"); |
| CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0)); |
| // ThreadId for serialized parallels is 0. |
| Address ThreadIDAddr = ZeroAddr; |
| auto &&CodeGen = [this, OutlinedFn, CapturedVars, Loc, &ThreadIDAddr]( |
| CodeGenFunction &CGF, PrePostActionTy &Action) { |
| Action.Enter(CGF); |
| |
| Address ZeroAddr = |
| CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty, |
| /*Name=*/".bound.zero.addr"); |
| CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0)); |
| llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs; |
| OutlinedFnArgs.push_back(ThreadIDAddr.getPointer()); |
| OutlinedFnArgs.push_back(ZeroAddr.getPointer()); |
| OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end()); |
| emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs); |
| }; |
| auto &&SeqGen = [this, &CodeGen, Loc](CodeGenFunction &CGF, |
| PrePostActionTy &) { |
| |
| RegionCodeGenTy RCG(CodeGen); |
| llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); |
| llvm::Value *ThreadID = getThreadID(CGF, Loc); |
| llvm::Value *Args[] = {RTLoc, ThreadID}; |
| |
| NVPTXActionTy Action( |
| OMPBuilder.getOrCreateRuntimeFunction( |
| CGM.getModule(), OMPRTL___kmpc_serialized_parallel), |
| Args, |
| OMPBuilder.getOrCreateRuntimeFunction( |
| CGM.getModule(), OMPRTL___kmpc_end_serialized_parallel), |
| Args); |
| RCG.setAction(Action); |
| RCG(CGF); |
| }; |
| |
| if (IsInTargetMasterThreadRegion) { |
| // In the worker need to use the real thread id. |
| ThreadIDAddr = emitThreadIDAddress(CGF, Loc); |
| RegionCodeGenTy RCG(CodeGen); |
| RCG(CGF); |
| } else { |
| // If we are not in the target region, it is definitely L2 parallelism or |
| // more, because for SPMD mode we always has L1 parallel level, sowe don't |
| // need to check for orphaned directives. |
| RegionCodeGenTy RCG(SeqGen); |
| RCG(CGF); |
| } |
| } |
| |
| void CGOpenMPRuntimeGPU::syncCTAThreads(CodeGenFunction &CGF) { |
| // Always emit simple barriers! |
| if (!CGF.HaveInsertPoint()) |
| return; |
| // Build call __kmpc_barrier_simple_spmd(nullptr, 0); |
| // This function does not use parameters, so we can emit just default values. |
| llvm::Value *Args[] = { |
| llvm::ConstantPointerNull::get( |
| cast<llvm::PointerType>(getIdentTyPointerTy())), |
| llvm::ConstantInt::get(CGF.Int32Ty, /*V=*/0, /*isSigned=*/true)}; |
| CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( |
| CGM.getModule(), OMPRTL___kmpc_barrier_simple_spmd), |
| Args); |
| } |
| |
| void CGOpenMPRuntimeGPU::emitBarrierCall(CodeGenFunction &CGF, |
| SourceLocation Loc, |
| OpenMPDirectiveKind Kind, bool, |
| bool) { |
| // Always emit simple barriers! |
| if (!CGF.HaveInsertPoint()) |
| return; |
| // Build call __kmpc_cancel_barrier(loc, thread_id); |
| unsigned Flags = getDefaultFlagsForBarriers(Kind); |
| llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags), |
| getThreadID(CGF, Loc)}; |
| |
| CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( |
| CGM.getModule(), OMPRTL___kmpc_barrier), |
| Args); |
| } |
| |
| void CGOpenMPRuntimeGPU::emitCriticalRegion( |
| CodeGenFunction &CGF, StringRef CriticalName, |
| const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc, |
| const Expr *Hint) { |
| llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.critical.loop"); |
| llvm::BasicBlock *TestBB = CGF.createBasicBlock("omp.critical.test"); |
| llvm::BasicBlock *SyncBB = CGF.createBasicBlock("omp.critical.sync"); |
| llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.critical.body"); |
| llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.critical.exit"); |
| |
| auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); |
| |
| // Get the mask of active threads in the warp. |
| llvm::Value *Mask = CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( |
| CGM.getModule(), OMPRTL___kmpc_warp_active_thread_mask)); |
| // Fetch team-local id of the thread. |
| llvm::Value *ThreadID = RT.getGPUThreadID(CGF); |
| |
| // Get the width of the team. |
| llvm::Value *TeamWidth = RT.getGPUNumThreads(CGF); |
| |
| // Initialize the counter variable for the loop. |
| QualType Int32Ty = |
| CGF.getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/0); |
| Address Counter = CGF.CreateMemTemp(Int32Ty, "critical_counter"); |
| LValue CounterLVal = CGF.MakeAddrLValue(Counter, Int32Ty); |
| CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.Int32Ty), CounterLVal, |
| /*isInit=*/true); |
| |
| // Block checks if loop counter exceeds upper bound. |
| CGF.EmitBlock(LoopBB); |
| llvm::Value *CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc); |
| llvm::Value *CmpLoopBound = CGF.Builder.CreateICmpSLT(CounterVal, TeamWidth); |
| CGF.Builder.CreateCondBr(CmpLoopBound, TestBB, ExitBB); |
| |
| // Block tests which single thread should execute region, and which threads |
| // should go straight to synchronisation point. |
| CGF.EmitBlock(TestBB); |
| CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc); |
| llvm::Value *CmpThreadToCounter = |
| CGF.Builder.CreateICmpEQ(ThreadID, CounterVal); |
| CGF.Builder.CreateCondBr(CmpThreadToCounter, BodyBB, SyncBB); |
| |
| // Block emits the body of the critical region. |
| CGF.EmitBlock(BodyBB); |
| |
| // Output the critical statement. |
| CGOpenMPRuntime::emitCriticalRegion(CGF, CriticalName, CriticalOpGen, Loc, |
| Hint); |
| |
| // After the body surrounded by the critical region, the single executing |
| // thread will jump to the synchronisation point. |
| // Block waits for all threads in current team to finish then increments the |
| // counter variable and returns to the loop. |
| CGF.EmitBlock(SyncBB); |
| // Reconverge active threads in the warp. |
| (void)CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( |
| CGM.getModule(), OMPRTL___kmpc_syncwarp), |
| Mask); |
| |
| llvm::Value *IncCounterVal = |
| CGF.Builder.CreateNSWAdd(CounterVal, CGF.Builder.getInt32(1)); |
| CGF.EmitStoreOfScalar(IncCounterVal, CounterLVal); |
| CGF.EmitBranch(LoopBB); |
| |
| // Block that is reached when all threads in the team complete the region. |
| CGF.EmitBlock(ExitBB, /*IsFinished=*/true); |
| } |
| |
| /// Cast value to the specified type. |
| static llvm::Value *castValueToType(CodeGenFunction &CGF, llvm::Value *Val, |
| QualType ValTy, QualType CastTy, |
| SourceLocation Loc) { |
| assert(!CGF.getContext().getTypeSizeInChars(CastTy).isZero() && |
| "Cast type must sized."); |
| assert(!CGF.getContext().getTypeSizeInChars(ValTy).isZero() && |
| "Val type must sized."); |
| llvm::Type *LLVMCastTy = CGF.ConvertTypeForMem(CastTy); |
| if (ValTy == CastTy) |
| return Val; |
| if (CGF.getContext().getTypeSizeInChars(ValTy) == |
| CGF.getContext().getTypeSizeInChars(CastTy)) |
| return CGF.Builder.CreateBitCast(Val, LLVMCastTy); |
| if (CastTy->isIntegerType() && ValTy->isIntegerType()) |
| return CGF.Builder.CreateIntCast(Val, LLVMCastTy, |
| CastTy->hasSignedIntegerRepresentation()); |
| Address CastItem = CGF.CreateMemTemp(CastTy); |
| Address ValCastItem = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( |
| CastItem, Val->getType()->getPointerTo(CastItem.getAddressSpace())); |
| CGF.EmitStoreOfScalar(Val, ValCastItem, /*Volatile=*/false, ValTy, |
| LValueBaseInfo(AlignmentSource::Type), |
| TBAAAccessInfo()); |
| return CGF.EmitLoadOfScalar(CastItem, /*Volatile=*/false, CastTy, Loc, |
| LValueBaseInfo(AlignmentSource::Type), |
| TBAAAccessInfo()); |
| } |
| |
| /// This function creates calls to one of two shuffle functions to copy |
| /// variables between lanes in a warp. |
| static llvm::Value *createRuntimeShuffleFunction(CodeGenFunction &CGF, |
| llvm::Value *Elem, |
| QualType ElemType, |
| llvm::Value *Offset, |
| SourceLocation Loc) { |
| CodeGenModule &CGM = CGF.CGM; |
| CGBuilderTy &Bld = CGF.Builder; |
| CGOpenMPRuntimeGPU &RT = |
| *(static_cast<CGOpenMPRuntimeGPU *>(&CGM.getOpenMPRuntime())); |
| llvm::OpenMPIRBuilder &OMPBuilder = RT.getOMPBuilder(); |
| |
| CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType); |
| assert(Size.getQuantity() <= 8 && |
| "Unsupported bitwidth in shuffle instruction."); |
| |
| RuntimeFunction ShuffleFn = Size.getQuantity() <= 4 |
| ? OMPRTL___kmpc_shuffle_int32 |
| : OMPRTL___kmpc_shuffle_int64; |
| |
| // Cast all types to 32- or 64-bit values before calling shuffle routines. |
| QualType CastTy = CGF.getContext().getIntTypeForBitwidth( |
| Size.getQuantity() <= 4 ? 32 : 64, /*Signed=*/1); |
| llvm::Value *ElemCast = castValueToType(CGF, Elem, ElemType, CastTy, Loc); |
| llvm::Value *WarpSize = |
| Bld.CreateIntCast(RT.getGPUWarpSize(CGF), CGM.Int16Ty, /*isSigned=*/true); |
| |
| llvm::Value *ShuffledVal = CGF.EmitRuntimeCall( |
| OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), ShuffleFn), |
| {ElemCast, Offset, WarpSize}); |
| |
| return castValueToType(CGF, ShuffledVal, CastTy, ElemType, Loc); |
| } |
| |
| static void shuffleAndStore(CodeGenFunction &CGF, Address SrcAddr, |
| Address DestAddr, QualType ElemType, |
| llvm::Value *Offset, SourceLocation Loc) { |
| CGBuilderTy &Bld = CGF.Builder; |
| |
| CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType); |
| // Create the loop over the big sized data. |
| // ptr = (void*)Elem; |
| // ptrEnd = (void*) Elem + 1; |
| // Step = 8; |
| // while (ptr + Step < ptrEnd) |
| // shuffle((int64_t)*ptr); |
| // Step = 4; |
| // while (ptr + Step < ptrEnd) |
| // shuffle((int32_t)*ptr); |
| // ... |
| Address ElemPtr = DestAddr; |
| Address Ptr = SrcAddr; |
| Address PtrEnd = Bld.CreatePointerBitCastOrAddrSpaceCast( |
| Bld.CreateConstGEP(SrcAddr, 1), CGF.VoidPtrTy); |
| for (int IntSize = 8; IntSize >= 1; IntSize /= 2) { |
| if (Size < CharUnits::fromQuantity(IntSize)) |
| continue; |
| QualType IntType = CGF.getContext().getIntTypeForBitwidth( |
| CGF.getContext().toBits(CharUnits::fromQuantity(IntSize)), |
| /*Signed=*/1); |
| llvm::Type *IntTy = CGF.ConvertTypeForMem(IntType); |
| Ptr = Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr, IntTy->getPointerTo()); |
| ElemPtr = |
| Bld.CreatePointerBitCastOrAddrSpaceCast(ElemPtr, IntTy->getPointerTo()); |
| if (Size.getQuantity() / IntSize > 1) { |
| llvm::BasicBlock *PreCondBB = CGF.createBasicBlock(".shuffle.pre_cond"); |
| llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".shuffle.then"); |
| llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".shuffle.exit"); |
| llvm::BasicBlock *CurrentBB = Bld.GetInsertBlock(); |
| CGF.EmitBlock(PreCondBB); |
| llvm::PHINode *PhiSrc = |
| Bld.CreatePHI(Ptr.getType(), /*NumReservedValues=*/2); |
| PhiSrc->addIncoming(Ptr.getPointer(), CurrentBB); |
| llvm::PHINode *PhiDest = |
| Bld.CreatePHI(ElemPtr.getType(), /*NumReservedValues=*/2); |
| PhiDest->addIncoming(ElemPtr.getPointer(), CurrentBB); |
| Ptr = Address(PhiSrc, Ptr.getAlignment()); |
| ElemPtr = Address(PhiDest, ElemPtr.getAlignment()); |
| llvm::Value *PtrDiff = Bld.CreatePtrDiff( |
| PtrEnd.getPointer(), Bld.CreatePointerBitCastOrAddrSpaceCast( |
| Ptr.getPointer(), CGF.VoidPtrTy)); |
| Bld.CreateCondBr(Bld.CreateICmpSGT(PtrDiff, Bld.getInt64(IntSize - 1)), |
| ThenBB, ExitBB); |
| CGF.EmitBlock(ThenBB); |
| llvm::Value *Res = createRuntimeShuffleFunction( |
| CGF, |
| CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc, |
| LValueBaseInfo(AlignmentSource::Type), |
| TBAAAccessInfo()), |
| IntType, Offset, Loc); |
| CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType, |
| LValueBaseInfo(AlignmentSource::Type), |
| TBAAAccessInfo()); |
| Address LocalPtr = Bld.CreateConstGEP(Ptr, 1); |
| Address LocalElemPtr = Bld.CreateConstGEP(ElemPtr, 1); |
| PhiSrc->addIncoming(LocalPtr.getPointer(), ThenBB); |
| PhiDest->addIncoming(LocalElemPtr.getPointer(), ThenBB); |
| CGF.EmitBranch(PreCondBB); |
| CGF.EmitBlock(ExitBB); |
| } else { |
| llvm::Value *Res = createRuntimeShuffleFunction( |
| CGF, |
| CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc, |
| LValueBaseInfo(AlignmentSource::Type), |
| TBAAAccessInfo()), |
| IntType, Offset, Loc); |
| CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType, |
| LValueBaseInfo(AlignmentSource::Type), |
| TBAAAccessInfo()); |
| Ptr = Bld.CreateConstGEP(Ptr, 1); |
| ElemPtr = Bld.CreateConstGEP(ElemPtr, 1); |
| } |
| Size = Size % IntSize; |
| } |
| } |
| |
| namespace { |
| enum CopyAction : unsigned { |
| // RemoteLaneToThread: Copy over a Reduce list from a remote lane in |
| // the warp using shuffle instructions. |
| RemoteLaneToThread, |
| // ThreadCopy: Make a copy of a Reduce list on the thread's stack. |
| ThreadCopy, |
| // ThreadToScratchpad: Copy a team-reduced array to the scratchpad. |
| ThreadToScratchpad, |
| // ScratchpadToThread: Copy from a scratchpad array in global memory |
| // containing team-reduced data to a thread's stack. |
| ScratchpadToThread, |
| }; |
| } // namespace |
| |
| struct CopyOptionsTy { |
| llvm::Value *RemoteLaneOffset; |
| llvm::Value *ScratchpadIndex; |
| llvm::Value *ScratchpadWidth; |
| }; |
| |
| /// Emit instructions to copy a Reduce list, which contains partially |
| /// aggregated values, in the specified direction. |
| static void emitReductionListCopy( |
| CopyAction Action, CodeGenFunction &CGF, QualType ReductionArrayTy, |
| ArrayRef<const Expr *> Privates, Address SrcBase, Address DestBase, |
| CopyOptionsTy CopyOptions = {nullptr, nullptr, nullptr}) { |
| |
| CodeGenModule &CGM = CGF.CGM; |
| ASTContext &C = CGM.getContext(); |
| CGBuilderTy &Bld = CGF.Builder; |
| |
| llvm::Value *RemoteLaneOffset = CopyOptions.RemoteLaneOffset; |
| llvm::Value *ScratchpadIndex = CopyOptions.ScratchpadIndex; |
| llvm::Value *ScratchpadWidth = CopyOptions.ScratchpadWidth; |
| |
| // Iterates, element-by-element, through the source Reduce list and |
| // make a copy. |
| unsigned Idx = 0; |
| unsigned Size = Privates.size(); |
| for (const Expr *Private : Privates) { |
| Address SrcElementAddr = Address::invalid(); |
| Address DestElementAddr = Address::invalid(); |
| Address DestElementPtrAddr = Address::invalid(); |
| // Should we shuffle in an element from a remote lane? |
| bool ShuffleInElement = false; |
| // Set to true to update the pointer in the dest Reduce list to a |
| // newly created element. |
| bool UpdateDestListPtr = false; |
| // Increment the src or dest pointer to the scratchpad, for each |
| // new element. |
| bool IncrScratchpadSrc = false; |
| bool IncrScratchpadDest = false; |
| |
| switch (Action) { |
| case RemoteLaneToThread: { |
| // Step 1.1: Get the address for the src element in the Reduce list. |
| Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx); |
| SrcElementAddr = CGF.EmitLoadOfPointer( |
| SrcElementPtrAddr, |
| C.getPointerType(Private->getType())->castAs<PointerType>()); |
| |
| // Step 1.2: Create a temporary to store the element in the destination |
| // Reduce list. |
| DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx); |
| DestElementAddr = |
| CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element"); |
| ShuffleInElement = true; |
| UpdateDestListPtr = true; |
| break; |
| } |
| case ThreadCopy: { |
| // Step 1.1: Get the address for the src element in the Reduce list. |
| Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx); |
| SrcElementAddr = CGF.EmitLoadOfPointer( |
| SrcElementPtrAddr, |
| C.getPointerType(Private->getType())->castAs<PointerType>()); |
| |
| // Step 1.2: Get the address for dest element. The destination |
| // element has already been created on the thread's stack. |
| DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx); |
| DestElementAddr = CGF.EmitLoadOfPointer( |
| DestElementPtrAddr, |
| C.getPointerType(Private->getType())->castAs<PointerType>()); |
| break; |
| } |
| case ThreadToScratchpad: { |
| // Step 1.1: Get the address for the src element in the Reduce list. |
| Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx); |
| SrcElementAddr = CGF.EmitLoadOfPointer( |
| SrcElementPtrAddr, |
| C.getPointerType(Private->getType())->castAs<PointerType>()); |
| |
| // Step 1.2: Get the address for dest element: |
| // address = base + index * ElementSizeInChars. |
| llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType()); |
| llvm::Value *CurrentOffset = |
| Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex); |
| llvm::Value *ScratchPadElemAbsolutePtrVal = |
| Bld.CreateNUWAdd(DestBase.getPointer(), CurrentOffset); |
| ScratchPadElemAbsolutePtrVal = |
| Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy); |
| DestElementAddr = Address(ScratchPadElemAbsolutePtrVal, |
| C.getTypeAlignInChars(Private->getType())); |
| IncrScratchpadDest = true; |
| break; |
| } |
| case ScratchpadToThread: { |
| // Step 1.1: Get the address for the src element in the scratchpad. |
| // address = base + index * ElementSizeInChars. |
| llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType()); |
| llvm::Value *CurrentOffset = |
| Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex); |
| llvm::Value *ScratchPadElemAbsolutePtrVal = |
| Bld.CreateNUWAdd(SrcBase.getPointer(), CurrentOffset); |
| ScratchPadElemAbsolutePtrVal = |
| Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy); |
| SrcElementAddr = Address(ScratchPadElemAbsolutePtrVal, |
| C.getTypeAlignInChars(Private->getType())); |
| IncrScratchpadSrc = true; |
| |
| // Step 1.2: Create a temporary to store the element in the destination |
| // Reduce list. |
| DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx); |
| DestElementAddr = |
| CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element"); |
| UpdateDestListPtr = true; |
| break; |
| } |
| } |
| |
| // Regardless of src and dest of copy, we emit the load of src |
| // element as this is required in all directions |
| SrcElementAddr = Bld.CreateElementBitCast( |
| SrcElementAddr, CGF.ConvertTypeForMem(Private->getType())); |
| DestElementAddr = Bld.CreateElementBitCast(DestElementAddr, |
| SrcElementAddr.getElementType()); |
| |
| // Now that all active lanes have read the element in the |
| // Reduce list, shuffle over the value from the remote lane. |
| if (ShuffleInElement) { |
| shuffleAndStore(CGF, SrcElementAddr, DestElementAddr, Private->getType(), |
| RemoteLaneOffset, Private->getExprLoc()); |
| } else { |
| switch (CGF.getEvaluationKind(Private->getType())) { |
| case TEK_Scalar: { |
| llvm::Value *Elem = CGF.EmitLoadOfScalar( |
| SrcElementAddr, /*Volatile=*/false, Private->getType(), |
| Private->getExprLoc(), LValueBaseInfo(AlignmentSource::Type), |
| TBAAAccessInfo()); |
| // Store the source element value to the dest element address. |
| CGF.EmitStoreOfScalar( |
| Elem, DestElementAddr, /*Volatile=*/false, Private->getType(), |
| LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); |
| break; |
| } |
| case TEK_Complex: { |
| CodeGenFunction::ComplexPairTy Elem = CGF.EmitLoadOfComplex( |
| CGF.MakeAddrLValue(SrcElementAddr, Private->getType()), |
| Private->getExprLoc()); |
| CGF.EmitStoreOfComplex( |
| Elem, CGF.MakeAddrLValue(DestElementAddr, Private->getType()), |
| /*isInit=*/false); |
| break; |
| } |
| case TEK_Aggregate: |
| CGF.EmitAggregateCopy( |
| CGF.MakeAddrLValue(DestElementAddr, Private->getType()), |
| CGF.MakeAddrLValue(SrcElementAddr, Private->getType()), |
| Private->getType(), AggValueSlot::DoesNotOverlap); |
| break; |
| } |
| } |
| |
| // Step 3.1: Modify reference in dest Reduce list as needed. |
| // Modifying the reference in Reduce list to point to the newly |
| // created element. The element is live in the current function |
| // scope and that of functions it invokes (i.e., reduce_function). |
| // RemoteReduceData[i] = (void*)&RemoteElem |
| if (UpdateDestListPtr) { |
| CGF.EmitStoreOfScalar(Bld.CreatePointerBitCastOrAddrSpaceCast( |
| DestElementAddr.getPointer(), CGF.VoidPtrTy), |
| DestElementPtrAddr, /*Volatile=*/false, |
| C.VoidPtrTy); |
| } |
| |
| // Step 4.1: Increment SrcBase/DestBase so that it points to the starting |
| // address of the next element in scratchpad memory, unless we're currently |
| // processing the last one. Memory alignment is also taken care of here. |
| if ((IncrScratchpadDest || IncrScratchpadSrc) && (Idx + 1 < Size)) { |
| llvm::Value *ScratchpadBasePtr = |
| IncrScratchpadDest ? DestBase.getPointer() : SrcBase.getPointer(); |
| llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType()); |
| ScratchpadBasePtr = Bld.CreateNUWAdd( |
| ScratchpadBasePtr, |
| Bld.CreateNUWMul(ScratchpadWidth, ElementSizeInChars)); |
| |
| // Take care of global memory alignment for performance |
| ScratchpadBasePtr = Bld.CreateNUWSub( |
| ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1)); |
| ScratchpadBasePtr = Bld.CreateUDiv( |
| ScratchpadBasePtr, |
| llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment)); |
| ScratchpadBasePtr = Bld.CreateNUWAdd( |
| ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1)); |
| ScratchpadBasePtr = Bld.CreateNUWMul( |
| ScratchpadBasePtr, |
| llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment)); |
| |
| if (IncrScratchpadDest) |
| DestBase = Address(ScratchpadBasePtr, CGF.getPointerAlign()); |
| else /* IncrScratchpadSrc = true */ |
| SrcBase = Address(ScratchpadBasePtr, CGF.getPointerAlign()); |
| } |
| |
| ++Idx; |
| } |
| } |
| |
| /// This function emits a helper that gathers Reduce lists from the first |
| /// lane of every active warp to lanes in the first warp. |
| /// |
| /// void inter_warp_copy_func(void* reduce_data, num_warps) |
| /// shared smem[warp_size]; |
| /// For all data entries D in reduce_data: |
| /// sync |
| /// If (I am the first lane in each warp) |
| /// Copy my local D to smem[warp_id] |
| /// sync |
| /// if (I am the first warp) |
| /// Copy smem[thread_id] to my local D |
| static llvm::Value *emitInterWarpCopyFunction(CodeGenModule &CGM, |
| ArrayRef<const Expr *> Privates, |
| QualType ReductionArrayTy, |
| SourceLocation Loc) { |
| ASTContext &C = CGM.getContext(); |
| llvm::Module &M = CGM.getModule(); |
| |
| // ReduceList: thread local Reduce list. |
| // At the stage of the computation when this function is called, partially |
| // aggregated values reside in the first lane of every active warp. |
| ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, |
| C.VoidPtrTy, ImplicitParamDecl::Other); |
| // NumWarps: number of warps active in the parallel region. This could |
| // be smaller than 32 (max warps in a CTA) for partial block reduction. |
| ImplicitParamDecl NumWarpsArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, |
| C.getIntTypeForBitwidth(32, /* Signed */ true), |
| ImplicitParamDecl::Other); |
| FunctionArgList Args; |
| Args.push_back(&ReduceListArg); |
| Args.push_back(&NumWarpsArg); |
| |
| const CGFunctionInfo &CGFI = |
| CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); |
| auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI), |
| llvm::GlobalValue::InternalLinkage, |
| "_omp_reduction_inter_warp_copy_func", &M); |
| CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); |
| Fn->setDoesNotRecurse(); |
| CodeGenFunction CGF(CGM); |
| CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); |
| |
| CGBuilderTy &Bld = CGF.Builder; |
| |
| // This array is used as a medium to transfer, one reduce element at a time, |
| // the data from the first lane of every warp to lanes in the first warp |
| // in order to perform the final step of a reduction in a parallel region |
| // (reduction across warps). The array is placed in NVPTX __shared__ memory |
| // for reduced latency, as well as to have a distinct copy for concurrently |
| // executing target regions. The array is declared with common linkage so |
| // as to be shared across compilation units. |
| StringRef TransferMediumName = |
| "__openmp_nvptx_data_transfer_temporary_storage"; |
| llvm::GlobalVariable *TransferMedium = |
| M.getGlobalVariable(TransferMediumName); |
| unsigned WarpSize = CGF.getTarget().getGridValue(llvm::omp::GV_Warp_Size); |
| if (!TransferMedium) { |
| auto *Ty = llvm::ArrayType::get(CGM.Int32Ty, WarpSize); |
| unsigned SharedAddressSpace = C.getTargetAddressSpace(LangAS::cuda_shared); |
| TransferMedium = new llvm::GlobalVariable( |
| M, Ty, /*isConstant=*/false, llvm::GlobalVariable::WeakAnyLinkage, |
| llvm::UndefValue::get(Ty), TransferMediumName, |
| /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, |
| SharedAddressSpace); |
| CGM.addCompilerUsedGlobal(TransferMedium); |
| } |
| |
| auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); |
| // Get the CUDA thread id of the current OpenMP thread on the GPU. |
| llvm::Value *ThreadID = RT.getGPUThreadID(CGF); |
| // nvptx_lane_id = nvptx_id % warpsize |
| llvm::Value *LaneID = getNVPTXLaneID(CGF); |
| // nvptx_warp_id = nvptx_id / warpsize |
| llvm::Value *WarpID = getNVPTXWarpID(CGF); |
| |
| Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); |
| Address LocalReduceList( |
| Bld.CreatePointerBitCastOrAddrSpaceCast( |
| CGF.EmitLoadOfScalar( |
| AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc, |
| LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()), |
| CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), |
| CGF.getPointerAlign()); |
| |
| unsigned Idx = 0; |
| for (const Expr *Private : Privates) { |
| // |
| // Warp master copies reduce element to transfer medium in __shared__ |
| // memory. |
| // |
| unsigned RealTySize = |
| C.getTypeSizeInChars(Private->getType()) |
| .alignTo(C.getTypeAlignInChars(Private->getType())) |
| .getQuantity(); |
| for (unsigned TySize = 4; TySize > 0 && RealTySize > 0; TySize /=2) { |
| unsigned NumIters = RealTySize / TySize; |
| if (NumIters == 0) |
| continue; |
| QualType CType = C.getIntTypeForBitwidth( |
| C.toBits(CharUnits::fromQuantity(TySize)), /*Signed=*/1); |
| llvm::Type *CopyType = CGF.ConvertTypeForMem(CType); |
| CharUnits Align = CharUnits::fromQuantity(TySize); |
| llvm::Value *Cnt = nullptr; |
| Address CntAddr = Address::invalid(); |
| llvm::BasicBlock *PrecondBB = nullptr; |
| llvm::BasicBlock *ExitBB = nullptr; |
| if (NumIters > 1) { |
| CntAddr = CGF.CreateMemTemp(C.IntTy, ".cnt.addr"); |
| CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.IntTy), CntAddr, |
| /*Volatile=*/false, C.IntTy); |
| PrecondBB = CGF.createBasicBlock("precond"); |
| ExitBB = CGF.createBasicBlock("exit"); |
| llvm::BasicBlock *BodyBB = CGF.createBasicBlock("body"); |
| // There is no need to emit line number for unconditional branch. |
| (void)ApplyDebugLocation::CreateEmpty(CGF); |
| CGF.EmitBlock(PrecondBB); |
| Cnt = CGF.EmitLoadOfScalar(CntAddr, /*Volatile=*/false, C.IntTy, Loc); |
| llvm::Value *Cmp = |
| Bld.CreateICmpULT(Cnt, llvm::ConstantInt::get(CGM.IntTy, NumIters)); |
| Bld.CreateCondBr(Cmp, BodyBB, ExitBB); |
| CGF.EmitBlock(BodyBB); |
| } |
| // kmpc_barrier. |
| CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown, |
| /*EmitChecks=*/false, |
| /*ForceSimpleCall=*/true); |
| llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then"); |
| llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else"); |
| llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont"); |
| |
| // if (lane_id == 0) |
| llvm::Value *IsWarpMaster = Bld.CreateIsNull(LaneID, "warp_master"); |
| Bld.CreateCondBr(IsWarpMaster, ThenBB, ElseBB); |
| CGF.EmitBlock(ThenBB); |
| |
| // Reduce element = LocalReduceList[i] |
| Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); |
| llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( |
| ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); |
| // elemptr = ((CopyType*)(elemptrptr)) + I |
| Address ElemPtr = Address(ElemPtrPtr, Align); |
| ElemPtr = Bld.CreateElementBitCast(ElemPtr, CopyType); |
| if (NumIters > 1) { |
| ElemPtr = Address(Bld.CreateGEP(ElemPtr.getPointer(), Cnt), |
| ElemPtr.getAlignment()); |
| } |
| |
| // Get pointer to location in transfer medium. |
| // MediumPtr = &medium[warp_id] |
| llvm::Value *MediumPtrVal = Bld.CreateInBoundsGEP( |
| TransferMedium, {llvm::Constant::getNullValue(CGM.Int64Ty), WarpID}); |
| Address MediumPtr(MediumPtrVal, Align); |
| // Casting to actual data type. |
| // MediumPtr = (CopyType*)MediumPtrAddr; |
| MediumPtr = Bld.CreateElementBitCast(MediumPtr, CopyType); |
| |
| // elem = *elemptr |
| //*MediumPtr = elem |
| llvm::Value *Elem = CGF.EmitLoadOfScalar( |
| ElemPtr, /*Volatile=*/false, CType, Loc, |
| LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); |
| // Store the source element value to the dest element address. |
| CGF.EmitStoreOfScalar(Elem, MediumPtr, /*Volatile=*/true, CType, |
| LValueBaseInfo(AlignmentSource::Type), |
| TBAAAccessInfo()); |
| |
| Bld.CreateBr(MergeBB); |
| |
| CGF.EmitBlock(ElseBB); |
| Bld.CreateBr(MergeBB); |
| |
| CGF.EmitBlock(MergeBB); |
| |
| // kmpc_barrier. |
| CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown, |
| /*EmitChecks=*/false, |
| /*ForceSimpleCall=*/true); |
| |
| // |
| // Warp 0 copies reduce element from transfer medium. |
| // |
| llvm::BasicBlock *W0ThenBB = CGF.createBasicBlock("then"); |
| llvm::BasicBlock *W0ElseBB = CGF.createBasicBlock("else"); |
| llvm::BasicBlock *W0MergeBB = CGF.createBasicBlock("ifcont"); |
| |
| Address AddrNumWarpsArg = CGF.GetAddrOfLocalVar(&NumWarpsArg); |
| llvm::Value *NumWarpsVal = CGF.EmitLoadOfScalar( |
| AddrNumWarpsArg, /*Volatile=*/false, C.IntTy, Loc); |
| |
| // Up to 32 threads in warp 0 are active. |
| llvm::Value *IsActiveThread = |
| Bld.CreateICmpULT(ThreadID, NumWarpsVal, "is_active_thread"); |
| Bld.CreateCondBr(IsActiveThread, W0ThenBB, W0ElseBB); |
| |
| CGF.EmitBlock(W0ThenBB); |
| |
| // SrcMediumPtr = &medium[tid] |
| llvm::Value *SrcMediumPtrVal = Bld.CreateInBoundsGEP( |
| TransferMedium, |
| {llvm::Constant::getNullValue(CGM.Int64Ty), ThreadID}); |
| Address SrcMediumPtr(SrcMediumPtrVal, Align); |
| // SrcMediumVal = *SrcMediumPtr; |
| SrcMediumPtr = Bld.CreateElementBitCast(SrcMediumPtr, CopyType); |
| |
| // TargetElemPtr = (CopyType*)(SrcDataAddr[i]) + I |
| Address TargetElemPtrPtr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); |
| llvm::Value *TargetElemPtrVal = CGF.EmitLoadOfScalar( |
| TargetElemPtrPtr, /*Volatile=*/false, C.VoidPtrTy, Loc); |
| Address TargetElemPtr = Address(TargetElemPtrVal, Align); |
| TargetElemPtr = Bld.CreateElementBitCast(TargetElemPtr, CopyType); |
| if (NumIters > 1) { |
| TargetElemPtr = Address(Bld.CreateGEP(TargetElemPtr.getPointer(), Cnt), |
| TargetElemPtr.getAlignment()); |
| } |
| |
| // *TargetElemPtr = SrcMediumVal; |
| llvm::Value *SrcMediumValue = |
| CGF.EmitLoadOfScalar(SrcMediumPtr, /*Volatile=*/true, CType, Loc); |
| CGF.EmitStoreOfScalar(SrcMediumValue, TargetElemPtr, /*Volatile=*/false, |
| CType); |
| Bld.CreateBr(W0MergeBB); |
| |
| CGF.EmitBlock(W0ElseBB); |
| Bld.CreateBr(W0MergeBB); |
| |
| CGF.EmitBlock(W0MergeBB); |
| |
| if (NumIters > 1) { |
| Cnt = Bld.CreateNSWAdd(Cnt, llvm::ConstantInt::get(CGM.IntTy, /*V=*/1)); |
| CGF.EmitStoreOfScalar(Cnt, CntAddr, /*Volatile=*/false, C.IntTy); |
| CGF.EmitBranch(PrecondBB); |
| (void)ApplyDebugLocation::CreateEmpty(CGF); |
| CGF.EmitBlock(ExitBB); |
| } |
| RealTySize %= TySize; |
| } |
| ++Idx; |
| } |
| |
| CGF.FinishFunction(); |
| return Fn; |
| } |
| |
| /// Emit a helper that reduces data across two OpenMP threads (lanes) |
| /// in the same warp. It uses shuffle instructions to copy over data from |
| /// a remote lane's stack. The reduction algorithm performed is specified |
| /// by the fourth parameter. |
| /// |
| /// Algorithm Versions. |
| /// Full Warp Reduce (argument value 0): |
| /// This algorithm assumes that all 32 lanes are active and gathers |
| /// data from these 32 lanes, producing a single resultant value. |
| /// Contiguous Partial Warp Reduce (argument value 1): |
| /// This algorithm assumes that only a *contiguous* subset of lanes |
| /// are active. This happens for the last warp in a parallel region |
| /// when the user specified num_threads is not an integer multiple of |
| /// 32. This contiguous subset always starts with the zeroth lane. |
| /// Partial Warp Reduce (argument value 2): |
| /// This algorithm gathers data from any number of lanes at any position. |
| /// All reduced values are stored in the lowest possible lane. The set |
| /// of problems every algorithm addresses is a super set of those |
| /// addressable by algorithms with a lower version number. Overhead |
| /// increases as algorithm version increases. |
| /// |
| /// Terminology |
| /// Reduce element: |
| /// Reduce element refers to the individual data field with primitive |
| /// data types to be combined and reduced across threads. |
| /// Reduce list: |
| /// Reduce list refers to a collection of local, thread-private |
| /// reduce elements. |
| /// Remote Reduce list: |
| /// Remote Reduce list refers to a collection of remote (relative to |
| /// the current thread) reduce elements. |
| /// |
| /// We distinguish between three states of threads that are important to |
| /// the implementation of this function. |
| /// Alive threads: |
| /// Threads in a warp executing the SIMT instruction, as distinguished from |
| /// threads that are inactive due to divergent control flow. |
| /// Active threads: |
| /// The minimal set of threads that has to be alive upon entry to this |
| /// function. The computation is correct iff active threads are alive. |
| /// Some threads are alive but they are not active because they do not |
| /// contribute to the computation in any useful manner. Turning them off |
| /// may introduce control flow overheads without any tangible benefits. |
| /// Effective threads: |
| /// In order to comply with the argument requirements of the shuffle |
| /// function, we must keep all lanes holding data alive. But at most |
| /// half of them perform value aggregation; we refer to this half of |
| /// threads as effective. The other half is simply handing off their |
| /// data. |
| /// |
| /// Procedure |
| /// Value shuffle: |
| /// In this step active threads transfer data from higher lane positions |
| /// in the warp to lower lane positions, creating Remote Reduce list. |
| /// Value aggregation: |
| /// In this step, effective threads combine their thread local Reduce list |
| /// with Remote Reduce list and store the result in the thread local |
| /// Reduce list. |
| /// Value copy: |
| /// In this step, we deal with the assumption made by algorithm 2 |
| /// (i.e. contiguity assumption). When we have an odd number of lanes |
| /// active, say 2k+1, only k threads will be effective and therefore k |
| /// new values will be produced. However, the Reduce list owned by the |
| /// (2k+1)th thread is ignored in the value aggregation. Therefore |
| /// we copy the Reduce list from the (2k+1)th lane to (k+1)th lane so |
| /// that the contiguity assumption still holds. |
| static llvm::Function *emitShuffleAndReduceFunction( |
| CodeGenModule &CGM, ArrayRef<const Expr *> Privates, |
| QualType ReductionArrayTy, llvm::Function *ReduceFn, SourceLocation Loc) { |
| ASTContext &C = CGM.getContext(); |
| |
| // Thread local Reduce list used to host the values of data to be reduced. |
| ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, |
| C.VoidPtrTy, ImplicitParamDecl::Other); |
| // Current lane id; could be logical. |
| ImplicitParamDecl LaneIDArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.ShortTy, |
| ImplicitParamDecl::Other); |
| // Offset of the remote source lane relative to the current lane. |
| ImplicitParamDecl RemoteLaneOffsetArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, |
| C.ShortTy, ImplicitParamDecl::Other); |
| // Algorithm version. This is expected to be known at compile time. |
| ImplicitParamDecl AlgoVerArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, |
| C.ShortTy, ImplicitParamDecl::Other); |
| FunctionArgList Args; |
| Args.push_back(&ReduceListArg); |
| Args.push_back(&LaneIDArg); |
| Args.push_back(&RemoteLaneOffsetArg); |
| Args.push_back(&AlgoVerArg); |
| |
| const CGFunctionInfo &CGFI = |
| CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); |
| auto *Fn = llvm::Function::Create( |
| CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, |
| "_omp_reduction_shuffle_and_reduce_func", &CGM.getModule()); |
| CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); |
| Fn->setDoesNotRecurse(); |
| if (CGM.getLangOpts().Optimize) { |
| Fn->removeFnAttr(llvm::Attribute::NoInline); |
| Fn->removeFnAttr(llvm::Attribute::OptimizeNone); |
| Fn->addFnAttr(llvm::Attribute::AlwaysInline); |
| } |
| |
| CodeGenFunction CGF(CGM); |
| CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); |
| |
| CGBuilderTy &Bld = CGF.Builder; |
| |
| Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); |
| Address LocalReduceList( |
| Bld.CreatePointerBitCastOrAddrSpaceCast( |
| CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, |
| C.VoidPtrTy, SourceLocation()), |
| CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), |
| CGF.getPointerAlign()); |
| |
| Address AddrLaneIDArg = CGF.GetAddrOfLocalVar(&LaneIDArg); |
| llvm::Value *LaneIDArgVal = CGF.EmitLoadOfScalar( |
| AddrLaneIDArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); |
| |
| Address AddrRemoteLaneOffsetArg = CGF.GetAddrOfLocalVar(&RemoteLaneOffsetArg); |
| llvm::Value *RemoteLaneOffsetArgVal = CGF.EmitLoadOfScalar( |
| AddrRemoteLaneOffsetArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); |
| |
| Address AddrAlgoVerArg = CGF.GetAddrOfLocalVar(&AlgoVerArg); |
| llvm::Value *AlgoVerArgVal = CGF.EmitLoadOfScalar( |
| AddrAlgoVerArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); |
| |
| // Create a local thread-private variable to host the Reduce list |
| // from a remote lane. |
| Address RemoteReduceList = |
| CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.remote_reduce_list"); |
| |
| // This loop iterates through the list of reduce elements and copies, |
| // element by element, from a remote lane in the warp to RemoteReduceList, |
| // hosted on the thread's stack. |
| emitReductionListCopy(RemoteLaneToThread, CGF, ReductionArrayTy, Privates, |
| LocalReduceList, RemoteReduceList, |
| {/*RemoteLaneOffset=*/RemoteLaneOffsetArgVal, |
| /*ScratchpadIndex=*/nullptr, |
| /*ScratchpadWidth=*/nullptr}); |
| |
| // The actions to be performed on the Remote Reduce list is dependent |
| // on the algorithm version. |
| // |
| // if (AlgoVer==0) || (AlgoVer==1 && (LaneId < Offset)) || (AlgoVer==2 && |
| // LaneId % 2 == 0 && Offset > 0): |
| // do the reduction value aggregation |
| // |
| // The thread local variable Reduce list is mutated in place to host the |
| // reduced data, which is the aggregated value produced from local and |
| // remote lanes. |
| // |
| // Note that AlgoVer is expected to be a constant integer known at compile |
| // time. |
| // When AlgoVer==0, the first conjunction evaluates to true, making |
| // the entire predicate true during compile time. |
| // When AlgoVer==1, the second conjunction has only the second part to be |
| // evaluated during runtime. Other conjunctions evaluates to false |
| // during compile time. |
| // When AlgoVer==2, the third conjunction has only the second part to be |
| // evaluated during runtime. Other conjunctions evaluates to false |
| // during compile time. |
| llvm::Value *CondAlgo0 = Bld.CreateIsNull(AlgoVerArgVal); |
| |
| llvm::Value *Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1)); |
| llvm::Value *CondAlgo1 = Bld.CreateAnd( |
| Algo1, Bld.CreateICmpULT(LaneIDArgVal, RemoteLaneOffsetArgVal)); |
| |
| llvm::Value *Algo2 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(2)); |
| llvm::Value *CondAlgo2 = Bld.CreateAnd( |
| Algo2, Bld.CreateIsNull(Bld.CreateAnd(LaneIDArgVal, Bld.getInt16(1)))); |
| CondAlgo2 = Bld.CreateAnd( |
| CondAlgo2, Bld.CreateICmpSGT(RemoteLaneOffsetArgVal, Bld.getInt16(0))); |
| |
| llvm::Value *CondReduce = Bld.CreateOr(CondAlgo0, CondAlgo1); |
| CondReduce = Bld.CreateOr(CondReduce, CondAlgo2); |
| |
| llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then"); |
| llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else"); |
| llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont"); |
| Bld.CreateCondBr(CondReduce, ThenBB, ElseBB); |
| |
| CGF.EmitBlock(ThenBB); |
| // reduce_function(LocalReduceList, RemoteReduceList) |
| llvm::Value *LocalReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( |
| LocalReduceList.getPointer(), CGF.VoidPtrTy); |
| llvm::Value *RemoteReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( |
| RemoteReduceList.getPointer(), CGF.VoidPtrTy); |
| CGM.getOpenMPRuntime().emitOutlinedFunctionCall( |
| CGF, Loc, ReduceFn, {LocalReduceListPtr, RemoteReduceListPtr}); |
| Bld.CreateBr(MergeBB); |
| |
| CGF.EmitBlock(ElseBB); |
| Bld.CreateBr(MergeBB); |
| |
| CGF.EmitBlock(MergeBB); |
| |
| // if (AlgoVer==1 && (LaneId >= Offset)) copy Remote Reduce list to local |
| // Reduce list. |
| Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1)); |
| llvm::Value *CondCopy = Bld.CreateAnd( |
| Algo1, Bld.CreateICmpUGE(LaneIDArgVal, RemoteLaneOffsetArgVal)); |
| |
| llvm::BasicBlock *CpyThenBB = CGF.createBasicBlock("then"); |
| llvm::BasicBlock *CpyElseBB = CGF.createBasicBlock("else"); |
| llvm::BasicBlock *CpyMergeBB = CGF.createBasicBlock("ifcont"); |
| Bld.CreateCondBr(CondCopy, CpyThenBB, CpyElseBB); |
| |
| CGF.EmitBlock(CpyThenBB); |
| emitReductionListCopy(ThreadCopy, CGF, ReductionArrayTy, Privates, |
| RemoteReduceList, LocalReduceList); |
| Bld.CreateBr(CpyMergeBB); |
| |
| CGF.EmitBlock(CpyElseBB); |
| Bld.CreateBr(CpyMergeBB); |
| |
| CGF.EmitBlock(CpyMergeBB); |
| |
| CGF.FinishFunction(); |
| return Fn; |
| } |
| |
| /// This function emits a helper that copies all the reduction variables from |
| /// the team into the provided global buffer for the reduction variables. |
| /// |
| /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data) |
| /// For all data entries D in reduce_data: |
| /// Copy local D to buffer.D[Idx] |
| static llvm::Value *emitListToGlobalCopyFunction( |
| CodeGenModule &CGM, ArrayRef<const Expr *> Privates, |
| QualType ReductionArrayTy, SourceLocation Loc, |
| const RecordDecl *TeamReductionRec, |
| const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> |
| &VarFieldMap) { |
| ASTContext &C = CGM.getContext(); |
| |
| // Buffer: global reduction buffer. |
| ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, |
| C.VoidPtrTy, ImplicitParamDecl::Other); |
| // Idx: index of the buffer. |
| ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, |
| ImplicitParamDecl::Other); |
| // ReduceList: thread local Reduce list. |
| ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, |
| C.VoidPtrTy, ImplicitParamDecl::Other); |
| FunctionArgList Args; |
| Args.push_back(&BufferArg); |
| Args.push_back(&IdxArg); |
| Args.push_back(&ReduceListArg); |
| |
| const CGFunctionInfo &CGFI = |
| CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); |
| auto *Fn = llvm::Function::Create( |
| CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, |
| "_omp_reduction_list_to_global_copy_func", &CGM.getModule()); |
| CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); |
| Fn->setDoesNotRecurse(); |
| CodeGenFunction CGF(CGM); |
| CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); |
| |
| CGBuilderTy &Bld = CGF.Builder; |
| |
| Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); |
| Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); |
| Address LocalReduceList( |
| Bld.CreatePointerBitCastOrAddrSpaceCast( |
| CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, |
| C.VoidPtrTy, Loc), |
| CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), |
| CGF.getPointerAlign()); |
| QualType StaticTy = C.getRecordType(TeamReductionRec); |
| llvm::Type *LLVMReductionsBufferTy = |
| CGM.getTypes().ConvertTypeForMem(StaticTy); |
| llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( |
| CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), |
| LLVMReductionsBufferTy->getPointerTo()); |
| llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), |
| CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), |
| /*Volatile=*/false, C.IntTy, |
| Loc)}; |
| unsigned Idx = 0; |
| for (const Expr *Private : Privates) { |
| // Reduce element = LocalReduceList[i] |
| Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); |
| llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( |
| ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); |
| // elemptr = ((CopyType*)(elemptrptr)) + I |
| ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( |
| ElemPtrPtr, CGF.ConvertTypeForMem(Private->getType())->getPointerTo()); |
| Address ElemPtr = |
| Address(ElemPtrPtr, C.getTypeAlignInChars(Private->getType())); |
| const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl(); |
| // Global = Buffer.VD[Idx]; |
| const FieldDecl *FD = VarFieldMap.lookup(VD); |
| LValue GlobLVal = CGF.EmitLValueForField( |
| CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); |
| llvm::Value *BufferPtr = |
| Bld.CreateInBoundsGEP(GlobLVal.getPointer(CGF), Idxs); |
| GlobLVal.setAddress(Address(BufferPtr, GlobLVal.getAlignment())); |
| switch (CGF.getEvaluationKind(Private->getType())) { |
| case TEK_Scalar: { |
| llvm::Value *V = CGF.EmitLoadOfScalar( |
| ElemPtr, /*Volatile=*/false, Private->getType(), Loc, |
| LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); |
| CGF.EmitStoreOfScalar(V, GlobLVal); |
| break; |
| } |
| case TEK_Complex: { |
| CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex( |
| CGF.MakeAddrLValue(ElemPtr, Private->getType()), Loc); |
| CGF.EmitStoreOfComplex(V, GlobLVal, /*isInit=*/false); |
| break; |
| } |
| case TEK_Aggregate: |
| CGF.EmitAggregateCopy(GlobLVal, |
| CGF.MakeAddrLValue(ElemPtr, Private->getType()), |
| Private->getType(), AggValueSlot::DoesNotOverlap); |
| break; |
| } |
| ++Idx; |
| } |
| |
| CGF.FinishFunction(); |
| return Fn; |
| } |
| |
| /// This function emits a helper that reduces all the reduction variables from |
| /// the team into the provided global buffer for the reduction variables. |
| /// |
| /// void list_to_global_reduce_func(void *buffer, int Idx, void *reduce_data) |
| /// void *GlobPtrs[]; |
| /// GlobPtrs[0] = (void*)&buffer.D0[Idx]; |
| /// ... |
| /// GlobPtrs[N] = (void*)&buffer.DN[Idx]; |
| /// reduce_function(GlobPtrs, reduce_data); |
| static llvm::Value *emitListToGlobalReduceFunction( |
| CodeGenModule &CGM, ArrayRef<const Expr *> Privates, |
| QualType ReductionArrayTy, SourceLocation Loc, |
| const RecordDecl *TeamReductionRec, |
| const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> |
| &VarFieldMap, |
| llvm::Function *ReduceFn) { |
| ASTContext &C = CGM.getContext(); |
| |
| // Buffer: global reduction buffer. |
| ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, |
| C.VoidPtrTy, ImplicitParamDecl::Other); |
| // Idx: index of the buffer. |
| ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, |
| ImplicitParamDecl::Other); |
| // ReduceList: thread local Reduce list. |
| ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, |
| C.VoidPtrTy, ImplicitParamDecl::Other); |
| FunctionArgList Args; |
| Args.push_back(&BufferArg); |
| Args.push_back(&IdxArg); |
| Args.push_back(&ReduceListArg); |
| |
| const CGFunctionInfo &CGFI = |
| CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); |
| auto *Fn = llvm::Function::Create( |
| CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, |
| "_omp_reduction_list_to_global_reduce_func", &CGM.getModule()); |
| CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); |
| Fn->setDoesNotRecurse(); |
| CodeGenFunction CGF(CGM); |
| CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); |
| |
| CGBuilderTy &Bld = CGF.Builder; |
| |
| Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); |
| QualType StaticTy = C.getRecordType(TeamReductionRec); |
| llvm::Type *LLVMReductionsBufferTy = |
| CGM.getTypes().ConvertTypeForMem(StaticTy); |
| llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( |
| CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), |
| LLVMReductionsBufferTy->getPointerTo()); |
| |
| // 1. Build a list of reduction variables. |
| // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; |
| Address ReductionList = |
| CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); |
| auto IPriv = Privates.begin(); |
| llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), |
| CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), |
| /*Volatile=*/false, C.IntTy, |
| Loc)}; |
| unsigned Idx = 0; |
| for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) { |
| Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); |
| // Global = Buffer.VD[Idx]; |
| const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl(); |
| const FieldDecl *FD = VarFieldMap.lookup(VD); |
| LValue GlobLVal = CGF.EmitLValueForField( |
| CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); |
| llvm::Value *BufferPtr = |
| Bld.CreateInBoundsGEP(GlobLVal.getPointer(CGF), Idxs); |
| llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr); |
| CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy); |
| if ((*IPriv)->getType()->isVariablyModifiedType()) { |
| // Store array size. |
| ++Idx; |
| Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); |
| llvm::Value *Size = CGF.Builder.CreateIntCast( |
| CGF.getVLASize( |
| CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) |
| .NumElts, |
| CGF.SizeTy, /*isSigned=*/false); |
| CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), |
| Elem); |
| } |
| } |
| |
| // Call reduce_function(GlobalReduceList, ReduceList) |
| llvm::Value *GlobalReduceList = |
| CGF.EmitCastToVoidPtr(ReductionList.getPointer()); |
| Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); |
| llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar( |
| AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc); |
| CGM.getOpenMPRuntime().emitOutlinedFunctionCall( |
| CGF, Loc, ReduceFn, {GlobalReduceList, ReducedPtr}); |
| CGF.FinishFunction(); |
| return Fn; |
| } |
| |
| /// This function emits a helper that copies all the reduction variables from |
| /// the team into the provided global buffer for the reduction variables. |
| /// |
| /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data) |
| /// For all data entries D in reduce_data: |
| /// Copy buffer.D[Idx] to local D; |
| static llvm::Value *emitGlobalToListCopyFunction( |
| CodeGenModule &CGM, ArrayRef<const Expr *> Privates, |
| QualType ReductionArrayTy, SourceLocation Loc, |
| const RecordDecl *TeamReductionRec, |
| const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> |
| &VarFieldMap) { |
| ASTContext &C = CGM.getContext(); |
| |
| // Buffer: global reduction buffer. |
| ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, |
| C.VoidPtrTy, ImplicitParamDecl::Other); |
| // Idx: index of the buffer. |
| ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, |
| ImplicitParamDecl::Other); |
| // ReduceList: thread local Reduce list. |
| ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, |
| C.VoidPtrTy, ImplicitParamDecl::Other); |
| FunctionArgList Args; |
| Args.push_back(&BufferArg); |
| Args.push_back(&IdxArg); |
| Args.push_back(&ReduceListArg); |
| |
| const CGFunctionInfo &CGFI = |
| CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); |
| auto *Fn = llvm::Function::Create( |
| CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, |
| "_omp_reduction_global_to_list_copy_func", &CGM.getModule()); |
| CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); |
| Fn->setDoesNotRecurse(); |
| CodeGenFunction CGF(CGM); |
| CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); |
| |
| CGBuilderTy &Bld = CGF.Builder; |
| |
| Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); |
| Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); |
| Address LocalReduceList( |
| Bld.CreatePointerBitCastOrAddrSpaceCast( |
| CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, |
| C.VoidPtrTy, Loc), |
| CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), |
| CGF.getPointerAlign()); |
| QualType StaticTy = C.getRecordType(TeamReductionRec); |
| llvm::Type *LLVMReductionsBufferTy = |
| CGM.getTypes().ConvertTypeForMem(StaticTy); |
| llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( |
| CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), |
| LLVMReductionsBufferTy->getPointerTo()); |
| |
| llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), |
| CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), |
| /*Volatile=*/false, C.IntTy, |
| Loc)}; |
| unsigned Idx = 0; |
| for (const Expr *Private : Privates) { |
| // Reduce element = LocalReduceList[i] |
| Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); |
| llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( |
| ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); |
| // elemptr = ((CopyType*)(elemptrptr)) + I |
| ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( |
| ElemPtrPtr, CGF.ConvertTypeForMem(Private->getType())->getPointerTo()); |
| Address ElemPtr = |
| Address(ElemPtrPtr, C.getTypeAlignInChars(Private->getType())); |
| const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl(); |
| // Global = Buffer.VD[Idx]; |
| const FieldDecl *FD = VarFieldMap.lookup(VD); |
| LValue GlobLVal = CGF.EmitLValueForField( |
| CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); |
| llvm::Value *BufferPtr = |
| Bld.CreateInBoundsGEP(GlobLVal.getPointer(CGF), Idxs); |
| GlobLVal.setAddress(Address(BufferPtr, GlobLVal.getAlignment())); |
| switch (CGF.getEvaluationKind(Private->getType())) { |
| case TEK_Scalar: { |
| llvm::Value *V = CGF.EmitLoadOfScalar(GlobLVal, Loc); |
| CGF.EmitStoreOfScalar(V, ElemPtr, /*Volatile=*/false, Private->getType(), |
| LValueBaseInfo(AlignmentSource::Type), |
| TBAAAccessInfo()); |
| break; |
| } |
| case TEK_Complex: { |
| CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(GlobLVal, Loc); |
| CGF.EmitStoreOfComplex(V, CGF.MakeAddrLValue(ElemPtr, Private->getType()), |
| /*isInit=*/false); |
| break; |
| } |
| case TEK_Aggregate: |
| CGF.EmitAggregateCopy(CGF.MakeAddrLValue(ElemPtr, Private->getType()), |
| GlobLVal, Private->getType(), |
| AggValueSlot::DoesNotOverlap); |
| break; |
| } |
| ++Idx; |
| } |
| |
| CGF.FinishFunction(); |
| return Fn; |
| } |
| |
| /// This function emits a helper that reduces all the reduction variables from |
| /// the team into the provided global buffer for the reduction variables. |
| /// |
| /// void global_to_list_reduce_func(void *buffer, int Idx, void *reduce_data) |
| /// void *GlobPtrs[]; |
| /// GlobPtrs[0] = (void*)&buffer.D0[Idx]; |
| /// ... |
| /// GlobPtrs[N] = (void*)&buffer.DN[Idx]; |
| /// reduce_function(reduce_data, GlobPtrs); |
| static llvm::Value *emitGlobalToListReduceFunction( |
| CodeGenModule &CGM, ArrayRef<const Expr *> Privates, |
| QualType ReductionArrayTy, SourceLocation Loc, |
| const RecordDecl *TeamReductionRec, |
| const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> |
| &VarFieldMap, |
| llvm::Function *ReduceFn) { |
| ASTContext &C = CGM.getContext(); |
| |
| // Buffer: global reduction buffer. |
| ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, |
| C.VoidPtrTy, ImplicitParamDecl::Other); |
| // Idx: index of the buffer. |
| ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, |
| ImplicitParamDecl::Other); |
| // ReduceList: thread local Reduce list. |
| ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, |
| C.VoidPtrTy, ImplicitParamDecl::Other); |
| FunctionArgList Args; |
| Args.push_back(&BufferArg); |
| Args.push_back(&IdxArg); |
| Args.push_back(&ReduceListArg); |
| |
| const CGFunctionInfo &CGFI = |
| CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); |
| auto *Fn = llvm::Function::Create( |
| CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, |
| "_omp_reduction_global_to_list_reduce_func", &CGM.getModule()); |
| CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); |
| Fn->setDoesNotRecurse(); |
| CodeGenFunction CGF(CGM); |
| CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); |
| |
| CGBuilderTy &Bld = CGF.Builder; |
| |
| Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); |
| QualType StaticTy = C.getRecordType(TeamReductionRec); |
| llvm::Type *LLVMReductionsBufferTy = |
| CGM.getTypes().ConvertTypeForMem(StaticTy); |
| llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( |
| CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), |
| LLVMReductionsBufferTy->getPointerTo()); |
| |
| // 1. Build a list of reduction variables. |
| // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; |
| Address ReductionList = |
| CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); |
| auto IPriv = Privates.begin(); |
| llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), |
| CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), |
| /*Volatile=*/false, C.IntTy, |
| Loc)}; |
| unsigned Idx = 0; |
| for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) { |
| Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); |
| // Global = Buffer.VD[Idx]; |
| const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl(); |
| const FieldDecl *FD = VarFieldMap.lookup(VD); |
| LValue GlobLVal = CGF.EmitLValueForField( |
| CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); |
| llvm::Value *BufferPtr = |
| Bld.CreateInBoundsGEP(GlobLVal.getPointer(CGF), Idxs); |
| llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr); |
| CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy); |
| if ((*IPriv)->getType()->isVariablyModifiedType()) { |
| // Store array size. |
| ++Idx; |
| Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); |
| llvm::Value *Size = CGF.Builder.CreateIntCast( |
| CGF.getVLASize( |
| CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) |
| .NumElts, |
| CGF.SizeTy, /*isSigned=*/false); |
| CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), |
| Elem); |
| } |
| } |
| |
| // Call reduce_function(ReduceList, GlobalReduceList) |
| llvm::Value *GlobalReduceList = |
| CGF.EmitCastToVoidPtr(ReductionList.getPointer()); |
| Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); |
| llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar( |
| AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc); |
| CGM.getOpenMPRuntime().emitOutlinedFunctionCall( |
| CGF, Loc, ReduceFn, {ReducedPtr, GlobalReduceList}); |
| CGF.FinishFunction(); |
| return Fn; |
| } |
| |
| /// |
| /// Design of OpenMP reductions on the GPU |
| /// |
| /// Consider a typical OpenMP program with one or more reduction |
| /// clauses: |
| /// |
| /// float foo; |
| /// double bar; |
| /// #pragma omp target teams distribute parallel for \ |
| /// reduction(+:foo) reduction(*:bar) |
| /// for (int i = 0; i < N; i++) { |
| /// foo += A[i]; bar *= B[i]; |
| /// } |
| /// |
| /// where 'foo' and 'bar' are reduced across all OpenMP threads in |
| /// all teams. In our OpenMP implementation on the NVPTX device an |
| /// OpenMP team is mapped to a CUDA threadblock and OpenMP threads |
| /// within a team are mapped to CUDA threads within a threadblock. |
| /// Our goal is to efficiently aggregate values across all OpenMP |
| /// threads such that: |
| /// |
| /// - the compiler and runtime are logically concise, and |
| /// - the reduction is performed efficiently in a hierarchical |
| /// manner as follows: within OpenMP threads in the same warp, |
| /// across warps in a threadblock, and finally across teams on |
| /// the NVPTX device. |
| /// |
| /// Introduction to Decoupling |
| /// |
| /// We would like to decouple the compiler and the runtime so that the |
| /// latter is ignorant of the reduction variables (number, data types) |
| /// and the reduction operators. This allows a simpler interface |
| /// and implementation while still attaining good performance. |
| /// |
| /// Pseudocode for the aforementioned OpenMP program generated by the |
| /// compiler is as follows: |
| /// |
| /// 1. Create private copies of reduction variables on each OpenMP |
| /// thread: 'foo_private', 'bar_private' |
| /// 2. Each OpenMP thread reduces the chunk of 'A' and 'B' assigned |
| /// to it and writes the result in 'foo_private' and 'bar_private' |
| /// respectively. |
| /// 3. Call the OpenMP runtime on the GPU to reduce within a team |
| /// and store the result on the team master: |
| /// |
| /// __kmpc_nvptx_parallel_reduce_nowait_v2(..., |
| /// reduceData, shuffleReduceFn, interWarpCpyFn) |
| /// |
| /// where: |
| /// struct ReduceData { |
| /// double *foo; |
| /// double *bar; |
| /// } reduceData |
| /// reduceData.foo = &foo_private |
| /// reduceData.bar = &bar_private |
| /// |
| /// 'shuffleReduceFn' and 'interWarpCpyFn' are pointers to two |
| /// auxiliary functions generated by the compiler that operate on |
| /// variables of type 'ReduceData'. They aid the runtime perform |
| /// algorithmic steps in a data agnostic manner. |
| /// |
| /// 'shuffleReduceFn' is a pointer to a function that reduces data |
| /// of type 'ReduceData' across two OpenMP threads (lanes) in the |
| /// same warp. It takes the following arguments as input: |
| /// |
| /// a. variable of type 'ReduceData' on the calling lane, |
| /// b. its lane_id, |
| /// c. an offset relative to the current lane_id to generate a |
| /// remote_lane_id. The remote lane contains the second |
| /// variable of type 'ReduceData' that is to be reduced. |
| /// d. an algorithm version parameter determining which reduction |
| /// algorithm to use. |
| /// |
| /// 'shuffleReduceFn' retrieves data from the remote lane using |
| /// efficient GPU shuffle intrinsics and reduces, using the |
| /// algorithm specified by the 4th parameter, the two operands |
| /// element-wise. The result is written to the first operand. |
| /// |
| /// Different reduction algorithms are implemented in different |
| /// runtime functions, all calling 'shuffleReduceFn' to perform |
| /// the essential reduction step. Therefore, based on the 4th |
| /// parameter, this function behaves slightly differently to |
| /// cooperate with the runtime to ensure correctness under |
| /// different circumstances. |
| /// |
| /// 'InterWarpCpyFn' is a pointer to a function that transfers |
| /// reduced variables across warps. It tunnels, through CUDA |
| /// shared memory, the thread-private data of type 'ReduceData' |
| /// from lane 0 of each warp to a lane in the first warp. |
| /// 4. Call the OpenMP runtime on the GPU to reduce across teams. |
| /// The last team writes the global reduced value to memory. |
| /// |
| /// ret = __kmpc_nvptx_teams_reduce_nowait(..., |
| /// reduceData, shuffleReduceFn, interWarpCpyFn, |
| /// scratchpadCopyFn, loadAndReduceFn) |
| /// |
| /// 'scratchpadCopyFn' is a helper that stores reduced |
| /// data from the team master to a scratchpad array in |
| /// global memory. |
| /// |
| /// 'loadAndReduceFn' is a helper that loads data from |
| /// the scratchpad array and reduces it with the input |
| /// operand. |
| /// |
| /// These compiler generated functions hide address |
| /// calculation and alignment information from the runtime. |
| /// 5. if ret == 1: |
| /// The team master of the last team stores the reduced |
| /// result to the globals in memory. |
| /// foo += reduceData.foo; bar *= reduceData.bar |
| /// |
| /// |
| /// Warp Reduction Algorithms |
| /// |
| /// On the warp level, we have three algorithms implemented in the |
| /// OpenMP runtime depending on the number of active lanes: |
| /// |
| /// Full Warp Reduction |
| /// |
| /// The reduce algorithm within a warp where all lanes are active |
| /// is implemented in the runtime as follows: |
| /// |
| /// full_warp_reduce(void *reduce_data, |
| /// kmp_ShuffleReductFctPtr ShuffleReduceFn) { |
| /// for (int offset = WARPSIZE/2; offset > 0; offset /= 2) |
| /// ShuffleReduceFn(reduce_data, 0, offset, 0); |
| /// } |
| /// |
| /// The algorithm completes in log(2, WARPSIZE) steps. |
| /// |
| /// 'ShuffleReduceFn' is used here with lane_id set to 0 because it is |
| /// not used therefore we save instructions by not retrieving lane_id |
| /// from the corresponding special registers. The 4th parameter, which |
| /// represents the version of the algorithm being used, is set to 0 to |
| /// signify full warp reduction. |
| /// |
| /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: |
| /// |
| /// #reduce_elem refers to an element in the local lane's data structure |
| /// #remote_elem is retrieved from a remote lane |
| /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); |
| /// reduce_elem = reduce_elem REDUCE_OP remote_elem; |
| /// |
| /// Contiguous Partial Warp Reduction |
| /// |
| /// This reduce algorithm is used within a warp where only the first |
| /// 'n' (n <= WARPSIZE) lanes are active. It is typically used when the |
| /// number of OpenMP threads in a parallel region is not a multiple of |
| /// WARPSIZE. The algorithm is implemented in the runtime as follows: |
| /// |
| /// void |
| /// contiguous_partial_reduce(void *reduce_data, |
| /// kmp_ShuffleReductFctPtr ShuffleReduceFn, |
| /// int size, int lane_id) { |
| /// int curr_size; |
| /// int offset; |
| /// curr_size = size; |
| /// mask = curr_size/2; |
| /// while (offset>0) { |
| /// ShuffleReduceFn(reduce_data, lane_id, offset, 1); |
| /// curr_size = (curr_size+1)/2; |
| /// offset = curr_size/2; |
| /// } |
| /// } |
| /// |
| /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: |
| /// |
| /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); |
| /// if (lane_id < offset) |
| /// reduce_elem = reduce_elem REDUCE_OP remote_elem |
| /// else |
| /// reduce_elem = remote_elem |
| /// |
| /// This algorithm assumes that the data to be reduced are located in a |
| /// contiguous subset of lanes starting from the first. When there is |
| /// an odd number of active lanes, the data in the last lane is not |
| /// aggregated with any other lane's dat but is instead copied over. |
| /// |
| /// Dispersed Partial Warp Reduction |
| /// |
| /// This algorithm is used within a warp when any discontiguous subset of |
| /// lanes are active. It is used to implement the reduction operation |
| /// across lanes in an OpenMP simd region or in a nested parallel region. |
| /// |
| /// void |
| /// dispersed_partial_reduce(void *reduce_data, |
| /// kmp_ShuffleReductFctPtr ShuffleReduceFn) { |
| /// int size, remote_id; |
| /// int logical_lane_id = number_of_active_lanes_before_me() * 2; |
| /// do { |
| /// remote_id = next_active_lane_id_right_after_me(); |
| /// # the above function returns 0 of no active lane |
| /// # is present right after the current lane. |
| /// size = number_of_active_lanes_in_this_warp(); |
| /// logical_lane_id /= 2; |
| /// ShuffleReduceFn(reduce_data, logical_lane_id, |
| /// remote_id-1-threadIdx.x, 2); |
| /// } while (logical_lane_id % 2 == 0 && size > 1); |
| /// } |
| /// |
| /// There is no assumption made about the initial state of the reduction. |
| /// Any number of lanes (>=1) could be active at any position. The reduction |
| /// result is returned in the first active lane. |
| /// |
| /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: |
| /// |
| /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); |
| /// if (lane_id % 2 == 0 && offset > 0) |
| /// reduce_elem = reduce_elem REDUCE_OP remote_elem |
| /// else |
| /// reduce_elem = remote_elem |
| /// |
| /// |
| /// Intra-Team Reduction |
| /// |
| /// This function, as implemented in the runtime call |
| /// '__kmpc_nvptx_parallel_reduce_nowait_v2', aggregates data across OpenMP |
| /// threads in a team. It first reduces within a warp using the |
| /// aforementioned algorithms. We then proceed to gather all such |
| /// reduced values at the first warp. |
| /// |
| /// The runtime makes use of the function 'InterWarpCpyFn', which copies |
| /// data from each of the "warp master" (zeroth lane of each warp, where |
| /// warp-reduced data is held) to the zeroth warp. This step reduces (in |
| /// a mathematical sense) the problem of reduction across warp masters in |
| /// a block to the problem of warp reduction. |
| /// |
| /// |
| /// Inter-Team Reduction |
| /// |
| /// Once a team has reduced its data to a single value, it is stored in |
| /// a global scratchpad array. Since each team has a distinct slot, this |
| /// can be done without locking. |
| /// |
| /// The last team to write to the scratchpad array proceeds to reduce the |
| /// scratchpad array. One or more workers in the last team use the helper |
| /// 'loadAndReduceDataFn' to load and reduce values from the array, i.e., |
| /// the k'th worker reduces every k'th element. |
| /// |
| /// Finally, a call is made to '__kmpc_nvptx_parallel_reduce_nowait_v2' to |
| /// reduce across workers and compute a globally reduced value. |
| /// |
| void CGOpenMPRuntimeGPU::emitReduction( |
| CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates, |
| ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs, |
| ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) { |
| if (!CGF.HaveInsertPoint()) |
| return; |
| |
| bool ParallelReduction = isOpenMPParallelDirective(Options.ReductionKind); |
| #ifndef NDEBUG |
| bool TeamsReduction = isOpenMPTeamsDirective(Options.ReductionKind); |
| #endif |
| |
| if (Options.SimpleReduction) { |
| assert(!TeamsReduction && !ParallelReduction && |
| "Invalid reduction selection in emitReduction."); |
| CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs, |
| ReductionOps, Options); |
| return; |
| } |
| |
| assert((TeamsReduction || ParallelReduction) && |
| "Invalid reduction selection in emitReduction."); |
| |
| // Build res = __kmpc_reduce{_nowait}(<gtid>, <n>, sizeof(RedList), |
| // RedList, shuffle_reduce_func, interwarp_copy_func); |
| // or |
| // Build res = __kmpc_reduce_teams_nowait_simple(<loc>, <gtid>, <lck>); |
| llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); |
| llvm::Value *ThreadId = getThreadID(CGF, Loc); |
| |
| llvm::Value *Res; |
| ASTContext &C = CGM.getContext(); |
| // 1. Build a list of reduction variables. |
| // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; |
| auto Size = RHSExprs.size(); |
| for (const Expr *E : Privates) { |
| if (E->getType()->isVariablyModifiedType()) |
| // Reserve place for array size. |
| ++Size; |
| } |
| llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size); |
| QualType ReductionArrayTy = |
| C.getConstantArrayType(C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal, |
| /*IndexTypeQuals=*/0); |
| Address ReductionList = |
| CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); |
| auto IPriv = Privates.begin(); |
| unsigned Idx = 0; |
| for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) { |
| Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); |
| CGF.Builder.CreateStore( |
| CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( |
| CGF.EmitLValue(RHSExprs[I]).getPointer(CGF), CGF.VoidPtrTy), |
| Elem); |
| if ((*IPriv)->getType()->isVariablyModifiedType()) { |
| // Store array size. |
| ++Idx; |
| Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); |
| llvm::Value *Size = CGF.Builder.CreateIntCast( |
| CGF.getVLASize( |
| CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) |
| .NumElts, |
| CGF.SizeTy, /*isSigned=*/false); |
| CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), |
| Elem); |
| } |
| } |
| |
| llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( |
| ReductionList.getPointer(), CGF.VoidPtrTy); |
| llvm::Function *ReductionFn = emitReductionFunction( |
| Loc, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates, |
| LHSExprs, RHSExprs, ReductionOps); |
| llvm::Value *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy); |
| llvm::Function *ShuffleAndReduceFn = emitShuffleAndReduceFunction( |
| CGM, Privates, ReductionArrayTy, ReductionFn, Loc); |
| llvm::Value *InterWarpCopyFn = |
| emitInterWarpCopyFunction(CGM, Privates, ReductionArrayTy, Loc); |
| |
| if (ParallelReduction) { |
| llvm::Value *Args[] = {RTLoc, |
| ThreadId, |
| CGF.Builder.getInt32(RHSExprs.size()), |
| ReductionArrayTySize, |
| RL, |
| ShuffleAndReduceFn, |
| InterWarpCopyFn}; |
| |
| Res = CGF.EmitRuntimeCall( |
| OMPBuilder.getOrCreateRuntimeFunction( |
| CGM.getModule(), OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2), |
| Args); |
| } else { |
| assert(TeamsReduction && "expected teams reduction."); |
| llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> VarFieldMap; |
| llvm::SmallVector<const ValueDecl *, 4> PrivatesReductions(Privates.size()); |
| int Cnt = 0; |
| for (const Expr *DRE : Privates) { |
| PrivatesReductions[Cnt] = cast<DeclRefExpr>(DRE)->getDecl(); |
| ++Cnt; |
| } |
| const RecordDecl *TeamReductionRec = ::buildRecordForGlobalizedVars( |
| CGM.getContext(), PrivatesReductions, llvm::None, VarFieldMap, |
| C.getLangOpts().OpenMPCUDAReductionBufNum); |
| TeamsReductions.push_back(TeamReductionRec); |
| if (!KernelTeamsReductionPtr) { |
| KernelTeamsReductionPtr = new llvm::GlobalVariable( |
| CGM.getModule(), CGM.VoidPtrTy, /*isConstant=*/true, |
| llvm::GlobalValue::InternalLinkage, nullptr, |
| "_openmp_teams_reductions_buffer_$_$ptr"); |
| } |
| llvm::Value *GlobalBufferPtr = CGF.EmitLoadOfScalar( |
| Address(KernelTeamsReductionPtr, CGM.getPointerAlign()), |
| /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc); |
| llvm::Value *GlobalToBufferCpyFn = ::emitListToGlobalCopyFunction( |
| CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap); |
| llvm::Value *GlobalToBufferRedFn = ::emitListToGlobalReduceFunction( |
| CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap, |
| ReductionFn); |
| llvm::Value *BufferToGlobalCpyFn = ::emitGlobalToListCopyFunction( |
| CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap); |
| llvm::Value *BufferToGlobalRedFn = ::emitGlobalToListReduceFunction( |
| CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap, |
| ReductionFn); |
| |
| llvm::Value *Args[] = { |
| RTLoc, |
| ThreadId, |
| GlobalBufferPtr, |
| CGF.Builder.getInt32(C.getLangOpts().OpenMPCUDAReductionBufNum), |
| RL, |
| ShuffleAndReduceFn, |
| InterWarpCopyFn, |
| GlobalToBufferCpyFn, |
| GlobalToBufferRedFn, |
| BufferToGlobalCpyFn, |
| BufferToGlobalRedFn}; |
| |
| Res = CGF.EmitRuntimeCall( |
| OMPBuilder.getOrCreateRuntimeFunction( |
| CGM.getModule(), OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2), |
| Args); |
| } |
| |
| // 5. Build if (res == 1) |
| llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.reduction.done"); |
| llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.then"); |
| llvm::Value *Cond = CGF.Builder.CreateICmpEQ( |
| Res, llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1)); |
| CGF.Builder.CreateCondBr(Cond, ThenBB, ExitBB); |
| |
| // 6. Build then branch: where we have reduced values in the master |
| // thread in each team. |
| // __kmpc_end_reduce{_nowait}(<gtid>); |
| // break; |
| CGF.EmitBlock(ThenBB); |
| |
| // Add emission of __kmpc_end_reduce{_nowait}(<gtid>); |
| auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps, |
| this](CodeGenFunction &CGF, PrePostActionTy &Action) { |
| auto IPriv = Privates.begin(); |
| auto ILHS = LHSExprs.begin(); |
| auto IRHS = RHSExprs.begin(); |
| for (const Expr *E : ReductionOps) { |
| emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS), |
| cast<DeclRefExpr>(*IRHS)); |
| ++IPriv; |
| ++ILHS; |
| ++IRHS; |
| } |
| }; |
| llvm::Value *EndArgs[] = {ThreadId}; |
| RegionCodeGenTy RCG(CodeGen); |
| NVPTXActionTy Action( |
| nullptr, llvm::None, |
| OMPBuilder.getOrCreateRuntimeFunction( |
| CGM.getModule(), OMPRTL___kmpc_nvptx_end_reduce_nowait), |
| EndArgs); |
| RCG.setAction(Action); |
| RCG(CGF); |
| // There is no need to emit line number for unconditional branch. |
| (void)ApplyDebugLocation::CreateEmpty(CGF); |
| CGF.EmitBlock(ExitBB, /*IsFinished=*/true); |
| } |
| |
| const VarDecl * |
| CGOpenMPRuntimeGPU::translateParameter(const FieldDecl *FD, |
| const VarDecl *NativeParam) const { |
| if (!NativeParam->getType()->isReferenceType()) |
| return NativeParam; |
| QualType ArgType = NativeParam->getType(); |
| QualifierCollector QC; |
| const Type *NonQualTy = QC.strip(ArgType); |
| QualType PointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType(); |
| if (const auto *Attr = FD->getAttr<OMPCaptureKindAttr>()) { |
| if (Attr->getCaptureKind() == OMPC_map) { |
| PointeeTy = CGM.getContext().getAddrSpaceQualType(PointeeTy, |
| LangAS::opencl_global); |
| } else if (Attr->getCaptureKind() == OMPC_firstprivate && |
| PointeeTy.isConstant(CGM.getContext())) { |
| PointeeTy = CGM.getContext().getAddrSpaceQualType(PointeeTy, |
| LangAS::opencl_generic); |
| } |
| } |
| ArgType = CGM.getContext().getPointerType(PointeeTy); |
| QC.addRestrict(); |
| enum { NVPTX_local_addr = 5 }; |
| QC.addAddressSpace(getLangASFromTargetAS(NVPTX_local_addr)); |
| ArgType = QC.apply(CGM.getContext(), ArgType); |
| if (isa<ImplicitParamDecl>(NativeParam)) |
| return ImplicitParamDecl::Create( |
| CGM.getContext(), /*DC=*/nullptr, NativeParam->getLocation(), |
| NativeParam->getIdentifier(), ArgType, ImplicitParamDecl::Other); |
| return ParmVarDecl::Create( |
| CGM.getContext(), |
| const_cast<DeclContext *>(NativeParam->getDeclContext()), |
| NativeParam->getBeginLoc(), NativeParam->getLocation(), |
| NativeParam->getIdentifier(), ArgType, |
| /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); |
| } |
| |
| Address |
| CGOpenMPRuntimeGPU::getParameterAddress(CodeGenFunction &CGF, |
| const VarDecl *NativeParam, |
| const VarDecl *TargetParam) const { |
| assert(NativeParam != TargetParam && |
| NativeParam->getType()->isReferenceType() && |
| "Native arg must not be the same as target arg."); |
| Address LocalAddr = CGF.GetAddrOfLocalVar(TargetParam); |
| QualType NativeParamType = NativeParam->getType(); |
| QualifierCollector QC; |
| const Type *NonQualTy = QC.strip(NativeParamType); |
| QualType NativePointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType(); |
| unsigned NativePointeeAddrSpace = |
| CGF.getContext().getTargetAddressSpace(NativePointeeTy); |
| QualType TargetTy = TargetParam->getType(); |
| llvm::Value *TargetAddr = CGF.EmitLoadOfScalar( |
| LocalAddr, /*Volatile=*/false, TargetTy, SourceLocation()); |
| // First cast to generic. |
| TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( |
| TargetAddr, TargetAddr->getType()->getPointerElementType()->getPointerTo( |
| /*AddrSpace=*/0)); |
| // Cast from generic to native address space. |
| TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( |
| TargetAddr, TargetAddr->getType()->getPointerElementType()->getPointerTo( |
| NativePointeeAddrSpace)); |
| Address NativeParamAddr = CGF.CreateMemTemp(NativeParamType); |
| CGF.EmitStoreOfScalar(TargetAddr, NativeParamAddr, /*Volatile=*/false, |
| NativeParamType); |
| return NativeParamAddr; |
| } |
| |
| void CGOpenMPRuntimeGPU::emitOutlinedFunctionCall( |
| CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn, |
| ArrayRef<llvm::Value *> Args) const { |
| SmallVector<llvm::Value *, 4> TargetArgs; |
| TargetArgs.reserve(Args.size()); |
| auto *FnType = OutlinedFn.getFunctionType(); |
| for (unsigned I = 0, E = Args.size(); I < E; ++I) { |
| if (FnType->isVarArg() && FnType->getNumParams() <= I) { |
| TargetArgs.append(std::next(Args.begin(), I), Args.end()); |
| break; |
| } |
| llvm::Type *TargetType = FnType->getParamType(I); |
| llvm::Value *NativeArg = Args[I]; |
| if (!TargetType->isPointerTy()) { |
| TargetArgs.emplace_back(NativeArg); |
| continue; |
| } |
| llvm::Value *TargetArg = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( |
| NativeArg, |
| NativeArg->getType()->getPointerElementType()->getPointerTo()); |
| TargetArgs.emplace_back( |
| CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TargetArg, TargetType)); |
| } |
| CGOpenMPRuntime::emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, TargetArgs); |
| } |
| |
| /// Emit function which wraps the outline parallel region |
| /// and controls the arguments which are passed to this function. |
| /// The wrapper ensures that the outlined function is called |
| /// with the correct arguments when data is shared. |
| llvm::Function *CGOpenMPRuntimeGPU::createParallelDataSharingWrapper( |
| llvm::Function *OutlinedParallelFn, const OMPExecutableDirective &D) { |
| ASTContext &Ctx = CGM.getContext(); |
| const auto &CS = *D.getCapturedStmt(OMPD_parallel); |
| |
| // Create a function that takes as argument the source thread. |
| FunctionArgList WrapperArgs; |
| QualType Int16QTy = |
| Ctx.getIntTypeForBitwidth(/*DestWidth=*/16, /*Signed=*/false); |
| QualType Int32QTy = |
| Ctx.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false); |
| ImplicitParamDecl ParallelLevelArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(), |
| /*Id=*/nullptr, Int16QTy, |
| ImplicitParamDecl::Other); |
| ImplicitParamDecl WrapperArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(), |
| /*Id=*/nullptr, Int32QTy, |
| ImplicitParamDecl::Other); |
| WrapperArgs.emplace_back(&ParallelLevelArg); |
| WrapperArgs.emplace_back(&WrapperArg); |
| |
| const CGFunctionInfo &CGFI = |
| CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, WrapperArgs); |
| |
| auto *Fn = llvm::Function::Create( |
| CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, |
| Twine(OutlinedParallelFn->getName(), "_wrapper"), &CGM.getModule()); |
| CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); |
| Fn->setLinkage(llvm::GlobalValue::InternalLinkage); |
| Fn->setDoesNotRecurse(); |
| |
| CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); |
| CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, Fn, CGFI, WrapperArgs, |
| D.getBeginLoc(), D.getBeginLoc()); |
| |
| const auto *RD = CS.getCapturedRecordDecl(); |
| auto CurField = RD->field_begin(); |
| |
| Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty, |
| /*Name=*/".zero.addr"); |
| CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0)); |
| // Get the array of arguments. |
| SmallVector<llvm::Value *, 8> Args; |
| |
| Args.emplace_back(CGF.GetAddrOfLocalVar(&WrapperArg).getPointer()); |
| Args.emplace_back(ZeroAddr.getPointer()); |
| |
| CGBuilderTy &Bld = CGF.Builder; |
| auto CI = CS.capture_begin(); |
| |
| // Use global memory for data sharing. |
| // Handle passing of global args to workers. |
| Address GlobalArgs = |
| CGF.CreateDefaultAlignTempAlloca(CGF.VoidPtrPtrTy, "global_args"); |
| llvm::Value *GlobalArgsPtr = GlobalArgs.getPointer(); |
| llvm::Value *DataSharingArgs[] = {GlobalArgsPtr}; |
| CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( |
| CGM.getModule(), OMPRTL___kmpc_get_shared_variables), |
| DataSharingArgs); |
| |
| // Retrieve the shared variables from the list of references returned |
| // by the runtime. Pass the variables to the outlined function. |
| Address SharedArgListAddress = Address::invalid(); |
| if (CS.capture_size() > 0 || |
| isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) { |
| SharedArgListAddress = CGF.EmitLoadOfPointer( |
| GlobalArgs, CGF.getContext() |
| .getPointerType(CGF.getContext().getPointerType( |
| CGF.getContext().VoidPtrTy)) |
| .castAs<PointerType>()); |
| } |
| unsigned Idx = 0; |
| if (isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) { |
| Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx); |
| Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( |
| Src, CGF.SizeTy->getPointerTo()); |
| llvm::Value *LB = CGF.EmitLoadOfScalar( |
| TypedAddress, |
| /*Volatile=*/false, |
| CGF.getContext().getPointerType(CGF.getContext().getSizeType()), |
| cast<OMPLoopDirective>(D).getLowerBoundVariable()->getExprLoc()); |
| Args.emplace_back(LB); |
| ++Idx; |
| Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx); |
| TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( |
| Src, CGF.SizeTy->getPointerTo()); |
| llvm::Value *UB = CGF.EmitLoadOfScalar( |
| TypedAddress, |
| /*Volatile=*/false, |
| CGF.getContext().getPointerType(CGF.getContext().getSizeType()), |
| cast<OMPLoopDirective>(D).getUpperBoundVariable()->getExprLoc()); |
| Args.emplace_back(UB); |
| ++Idx; |
| } |
| if (CS.capture_size() > 0) { |
| ASTContext &CGFContext = CGF.getContext(); |
| for (unsigned I = 0, E = CS.capture_size(); I < E; ++I, ++CI, ++CurField) { |
| QualType ElemTy = CurField->getType(); |
| Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, I + Idx); |
| Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( |
| Src, CGF.ConvertTypeForMem(CGFContext.getPointerType(ElemTy))); |
| llvm::Value *Arg = CGF.EmitLoadOfScalar(TypedAddress, |
| /*Volatile=*/false, |
| CGFContext.getPointerType(ElemTy), |
| CI->getLocation()); |
| if (CI->capturesVariableByCopy() && |
| !CI->getCapturedVar()->getType()->isAnyPointerType()) { |
| Arg = castValueToType(CGF, Arg, ElemTy, CGFContext.getUIntPtrType(), |
| CI->getLocation()); |
| } |
| Args.emplace_back(Arg); |
| } |
| } |
| |
| emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedParallelFn, Args); |
| CGF.FinishFunction(); |
| return Fn; |
| } |
| |
| void CGOpenMPRuntimeGPU::emitFunctionProlog(CodeGenFunction &CGF, |
| const Decl *D) { |
| if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic) |
| return; |
| |
| assert(D && "Expected function or captured|block decl."); |
| assert(FunctionGlobalizedDecls.count(CGF.CurFn) == 0 && |
| "Function is registered already."); |
| assert((!TeamAndReductions.first || TeamAndReductions.first == D) && |
| "Team is set but not processed."); |
| const Stmt *Body = nullptr; |
| bool NeedToDelayGlobalization = false; |
| if (const auto *FD = dyn_cast<FunctionDecl>(D)) { |
| Body = FD->getBody(); |
| } else if (const auto *BD = dyn_cast<BlockDecl>(D)) { |
| Body = BD->getBody(); |
| } else if (const auto *CD = dyn_cast<CapturedDecl>(D)) { |
| Body = CD->getBody(); |
| NeedToDelayGlobalization = CGF.CapturedStmtInfo->getKind() == CR_OpenMP; |
| if (NeedToDelayGlobalization && |
| getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) |
| return; |
| } |
| if (!Body) |
| return; |
| CheckVarsEscapingDeclContext VarChecker(CGF, TeamAndReductions.second); |
| VarChecker.Visit(Body); |
| const RecordDecl *GlobalizedVarsRecord = |
| VarChecker.getGlobalizedRecord(IsInTTDRegion); |
| TeamAndReductions.first = nullptr; |
| TeamAndReductions.second.clear(); |
| ArrayRef<const ValueDecl *> EscapedVariableLengthDecls = |
| VarChecker.getEscapedVariableLengthDecls(); |
| if (!GlobalizedVarsRecord && EscapedVariableLengthDecls.empty()) |
| return; |
| auto I = FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first; |
| I->getSecond().MappedParams = |
| std::make_unique<CodeGenFunction::OMPMapVars>(); |
| I->getSecond().GlobalRecord = GlobalizedVarsRecord; |
| I->getSecond().EscapedParameters.insert( |
| VarChecker.getEscapedParameters().begin(), |
| VarChecker.getEscapedParameters().end()); |
| I->getSecond().EscapedVariableLengthDecls.append( |
| EscapedVariableLengthDecls.begin(), EscapedVariableLengthDecls.end()); |
| DeclToAddrMapTy &Data = I->getSecond().LocalVarData; |
| for (const ValueDecl *VD : VarChecker.getEscapedDecls()) { |
| assert(VD->isCanonicalDecl() && "Expected canonical declaration"); |
| const FieldDecl *FD = VarChecker.getFieldForGlobalizedVar(VD); |
| Data.insert(std::make_pair(VD, MappedVarData(FD, IsInTTDRegion))); |
| } |
| if (!IsInTTDRegion && !NeedToDelayGlobalization && !IsInParallelRegion) { |
| CheckVarsEscapingDeclContext VarChecker(CGF, llvm::None); |
| VarChecker.Visit(Body); |
| I->getSecond().SecondaryGlobalRecord = |
| VarChecker.getGlobalizedRecord(/*IsInTTDRegion=*/true); |
| I->getSecond().SecondaryLocalVarData.emplace(); |
| DeclToAddrMapTy &Data = I->getSecond().SecondaryLocalVarData.getValue(); |
| for (const ValueDecl *VD : VarChecker.getEscapedDecls()) { |
| assert(VD->isCanonicalDecl() && "Expected canonical declaration"); |
| const FieldDecl *FD = VarChecker.getFieldForGlobalizedVar(VD); |
| Data.insert( |
| std::make_pair(VD, MappedVarData(FD, /*IsInTTDRegion=*/true))); |
| } |
| } |
| if (!NeedToDelayGlobalization) { |
| emitGenericVarsProlog(CGF, D->getBeginLoc(), /*WithSPMDCheck=*/true); |
| struct GlobalizationScope final : EHScopeStack::Cleanup { |
| GlobalizationScope() = default; |
| |
| void Emit(CodeGenFunction &CGF, Flags flags) override { |
| static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()) |
| .emitGenericVarsEpilog(CGF, /*WithSPMDCheck=*/true); |
| } |
| }; |
| CGF.EHStack.pushCleanup<GlobalizationScope>(NormalAndEHCleanup); |
| } |
| } |
| |
| Address CGOpenMPRuntimeGPU::getAddressOfLocalVariable(CodeGenFunction &CGF, |
| const VarDecl *VD) { |
| if (VD && VD->hasAttr<OMPAllocateDeclAttr>()) { |
| const auto *A = VD->getAttr<OMPAllocateDeclAttr>(); |
| auto AS = LangAS::Default; |
| switch (A->getAllocatorType()) { |
| // Use the default allocator here as by default local vars are |
| // threadlocal. |
| case OMPAllocateDeclAttr::OMPNullMemAlloc: |
| case OMPAllocateDeclAttr::OMPDefaultMemAlloc: |
| case OMPAllocateDeclAttr::OMPThreadMemAlloc: |
| case OMPAllocateDeclAttr::OMPHighBWMemAlloc: |
| case OMPAllocateDeclAttr::OMPLowLatMemAlloc: |
| // Follow the user decision - use default allocation. |
| return Address::invalid(); |
| case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc: |
| // TODO: implement aupport for user-defined allocators. |
| return Address::invalid(); |
| case OMPAllocateDeclAttr::OMPConstMemAlloc: |
| AS = LangAS::cuda_constant; |
| break; |
| case OMPAllocateDeclAttr::OMPPTeamMemAlloc: |
| AS = LangAS::cuda_shared; |
| break; |
| case OMPAllocateDeclAttr::OMPLargeCapMemAlloc: |
| case OMPAllocateDeclAttr::OMPCGroupMemAlloc: |
| break; |
| } |
| llvm::Type *VarTy = CGF.ConvertTypeForMem(VD->getType()); |
| auto *GV = new llvm::GlobalVariable( |
| CGM.getModule(), VarTy, /*isConstant=*/false, |
| llvm::GlobalValue::InternalLinkage, llvm::Constant::getNullValue(VarTy), |
| VD->getName(), |
| /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, |
| CGM.getContext().getTargetAddressSpace(AS)); |
| CharUnits Align = CGM.getContext().getDeclAlign(VD); |
| GV->setAlignment(Align.getAsAlign()); |
| return Address( |
| CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( |
| GV, VarTy->getPointerTo(CGM.getContext().getTargetAddressSpace( |
| VD->getType().getAddressSpace()))), |
| Align); |
| } |
| |
| if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic) |
| return Address::invalid(); |
| |
| VD = VD->getCanonicalDecl(); |
| auto I = FunctionGlobalizedDecls.find(CGF.CurFn); |
| if (I == FunctionGlobalizedDecls.end()) |
| return Address::invalid(); |
| auto VDI = I->getSecond().LocalVarData.find(VD); |
| if (VDI != I->getSecond().LocalVarData.end()) |
| return VDI->second.PrivateAddr; |
| if (VD->hasAttrs()) { |
| for (specific_attr_iterator<OMPReferencedVarAttr> IT(VD->attr_begin()), |
| E(VD->attr_end()); |
| IT != E; ++IT) { |
| auto VDI = I->getSecond().LocalVarData.find( |
| cast<VarDecl>(cast<DeclRefExpr>(IT->getRef())->getDecl()) |
| ->getCanonicalDecl()); |
| if (VDI != I->getSecond().LocalVarData.end()) |
| return VDI->second.PrivateAddr; |
| } |
| } |
| |
| return Address::invalid(); |
| } |
| |
| void CGOpenMPRuntimeGPU::functionFinished(CodeGenFunction &CGF) { |
| FunctionGlobalizedDecls.erase(CGF.CurFn); |
| CGOpenMPRuntime::functionFinished(CGF); |
| } |
| |
| void CGOpenMPRuntimeGPU::getDefaultDistScheduleAndChunk( |
| CodeGenFunction &CGF, const OMPLoopDirective &S, |
| OpenMPDistScheduleClauseKind &ScheduleKind, |
| llvm::Value *&Chunk) const { |
| auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); |
| if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) { |
| ScheduleKind = OMPC_DIST_SCHEDULE_static; |
| Chunk = CGF.EmitScalarConversion( |
| RT.getGPUNumThreads(CGF), |
| CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0), |
| S.getIterationVariable()->getType(), S.getBeginLoc()); |
| return; |
| } |
| CGOpenMPRuntime::getDefaultDistScheduleAndChunk( |
| CGF, S, ScheduleKind, Chunk); |
| } |
| |
| void CGOpenMPRuntimeGPU::getDefaultScheduleAndChunk( |
| CodeGenFunction &CGF, const OMPLoopDirective &S, |
| OpenMPScheduleClauseKind &ScheduleKind, |
| const Expr *&ChunkExpr) const { |
| ScheduleKind = OMPC_SCHEDULE_static; |
| // Chunk size is 1 in this case. |
| llvm::APInt ChunkSize(32, 1); |
| ChunkExpr = IntegerLiteral::Create(CGF.getContext(), ChunkSize, |
| CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0), |
| SourceLocation()); |
| } |
| |
| void CGOpenMPRuntimeGPU::adjustTargetSpecificDataForLambdas( |
| CodeGenFunction &CGF, const OMPExecutableDirective &D) const { |
| assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) && |
| " Expected target-based directive."); |
| const CapturedStmt *CS = D.getCapturedStmt(OMPD_target); |
| for (const CapturedStmt::Capture &C : CS->captures()) { |
| // Capture variables captured by reference in lambdas for target-based |
| // directives. |
| if (!C.capturesVariable()) |
| continue; |
| const VarDecl *VD = C.getCapturedVar(); |
| const auto *RD = VD->getType() |
| .getCanonicalType() |
| .getNonReferenceType() |
| ->getAsCXXRecordDecl(); |
| if (!RD || !RD->isLambda()) |
| continue; |
| Address VDAddr = CGF.GetAddrOfLocalVar(VD); |
| LValue VDLVal; |
| if (VD->getType().getCanonicalType()->isReferenceType()) |
| VDLVal = CGF.EmitLoadOfReferenceLValue(VDAddr, VD->getType()); |
| else |
| VDLVal = CGF.MakeAddrLValue( |
| VDAddr, VD->getType().getCanonicalType().getNonReferenceType()); |
| llvm::DenseMap<const VarDecl *, FieldDecl *> Captures; |
| FieldDecl *ThisCapture = nullptr; |
| RD->getCaptureFields(Captures, ThisCapture); |
| if (ThisCapture && CGF.CapturedStmtInfo->isCXXThisExprCaptured()) { |
| LValue ThisLVal = |
| CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture); |
| llvm::Value *CXXThis = CGF.LoadCXXThis(); |
| CGF.EmitStoreOfScalar(CXXThis, ThisLVal); |
| } |
| for (const LambdaCapture &LC : RD->captures()) { |
| if (LC.getCaptureKind() != LCK_ByRef) |
| continue; |
| const VarDecl *VD = LC.getCapturedVar(); |
| if (!CS->capturesVariable(VD)) |
| continue; |
| auto It = Captures.find(VD); |
| assert(It != Captures.end() && "Found lambda capture without field."); |
| LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second); |
| Address VDAddr = CGF.GetAddrOfLocalVar(VD); |
| if (VD->getType().getCanonicalType()->isReferenceType()) |
| VDAddr = CGF.EmitLoadOfReferenceLValue(VDAddr, |
| VD->getType().getCanonicalType()) |
| .getAddress(CGF); |
| CGF.EmitStoreOfScalar(VDAddr.getPointer(), VarLVal); |
| } |
| } |
| } |
| |
| unsigned CGOpenMPRuntimeGPU::getDefaultFirstprivateAddressSpace() const { |
| return CGM.getContext().getTargetAddressSpace(LangAS::cuda_constant); |
| } |
| |
| bool CGOpenMPRuntimeGPU::hasAllocateAttributeForGlobalVar(const VarDecl *VD, |
| LangAS &AS) { |
| if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>()) |
| return false; |
| const auto *A = VD->getAttr<OMPAllocateDeclAttr>(); |
| switch(A->getAllocatorType()) { |
| case OMPAllocateDeclAttr::OMPNullMemAlloc: |
| case OMPAllocateDeclAttr::OMPDefaultMemAlloc: |
| // Not supported, fallback to the default mem space. |
| case OMPAllocateDeclAttr::OMPThreadMemAlloc: |
| case OMPAllocateDeclAttr::OMPLargeCapMemAlloc: |
| case OMPAllocateDeclAttr::OMPCGroupMemAlloc: |
| case OMPAllocateDeclAttr::OMPHighBWMemAlloc: |
| case OMPAllocateDeclAttr::OMPLowLatMemAlloc: |
| AS = LangAS::Default; |
| return true; |
| case OMPAllocateDeclAttr::OMPConstMemAlloc: |
| AS = LangAS::cuda_constant; |
| return true; |
| case OMPAllocateDeclAttr::OMPPTeamMemAlloc: |
| AS = LangAS::cuda_shared; |
| return true; |
| case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc: |
| llvm_unreachable("Expected predefined allocator for the variables with the " |
| "static storage."); |
| } |
| return false; |
| } |
| |
| // Get current CudaArch and ignore any unknown values |
| static CudaArch getCudaArch(CodeGenModule &CGM) { |
| if (!CGM.getTarget().hasFeature("ptx")) |
| return CudaArch::UNKNOWN; |
| for (const auto &Feature : CGM.getTarget().getTargetOpts().FeatureMap) { |
| if (Feature.getValue()) { |
| CudaArch Arch = StringToCudaArch(Feature.getKey()); |
| if (Arch != CudaArch::UNKNOWN) |
| return Arch; |
| } |
| } |
| return CudaArch::UNKNOWN; |
| } |
| |
| /// Check to see if target architecture supports unified addressing which is |
| /// a restriction for OpenMP requires clause "unified_shared_memory". |
| void CGOpenMPRuntimeGPU::processRequiresDirective( |
| const OMPRequiresDecl *D) { |
| for (const OMPClause *Clause : D->clauselists()) { |
| if (Clause->getClauseKind() == OMPC_unified_shared_memory) { |
| CudaArch Arch = getCudaArch(CGM); |
| switch (Arch) { |
| case CudaArch::SM_20: |
| case CudaArch::SM_21: |
| case CudaArch::SM_30: |
| case CudaArch::SM_32: |
| case CudaArch::SM_35: |
| case CudaArch::SM_37: |
| case CudaArch::SM_50: |
| case CudaArch::SM_52: |
| case CudaArch::SM_53: |
| case CudaArch::SM_60: |
| case CudaArch::SM_61: |
| case CudaArch::SM_62: { |
| SmallString<256> Buffer; |
| llvm::raw_svector_ostream Out(Buffer); |
| Out << "Target architecture " << CudaArchToString(Arch) |
| << " does not support unified addressing"; |
| CGM.Error(Clause->getBeginLoc(), Out.str()); |
| return; |
| } |
| case CudaArch::SM_70: |
| case CudaArch::SM_72: |
| case CudaArch::SM_75: |
| case CudaArch::SM_80: |
| case CudaArch::GFX600: |
| case CudaArch::GFX601: |
| case CudaArch::GFX602: |
| case CudaArch::GFX700: |
| case CudaArch::GFX701: |
| case CudaArch::GFX702: |
| case CudaArch::GFX703: |
| case CudaArch::GFX704: |
| case CudaArch::GFX705: |
| case CudaArch::GFX801: |
| case CudaArch::GFX802: |
| case CudaArch::GFX803: |
| case CudaArch::GFX805: |
| case CudaArch::GFX810: |
| case CudaArch::GFX900: |
| case CudaArch::GFX902: |
| case CudaArch::GFX904: |
| case CudaArch::GFX906: |
| case CudaArch::GFX908: |
| case CudaArch::GFX909: |
| case CudaArch::GFX90c: |
| case CudaArch::GFX1010: |
| case CudaArch::GFX1011: |
| case CudaArch::GFX1012: |
| case CudaArch::GFX1030: |
| case CudaArch::GFX1031: |
| case CudaArch::GFX1032: |
| case CudaArch::GFX1033: |
| case CudaArch::UNUSED: |
| case CudaArch::UNKNOWN: |
| break; |
| case CudaArch::LAST: |
| llvm_unreachable("Unexpected Cuda arch."); |
| } |
| } |
| } |
| CGOpenMPRuntime::processRequiresDirective(D); |
| } |
| |
| /// Get number of SMs and number of blocks per SM. |
| static std::pair<unsigned, unsigned> getSMsBlocksPerSM(CodeGenModule &CGM) { |
| std::pair<unsigned, unsigned> Data; |
| if (CGM.getLangOpts().OpenMPCUDANumSMs) |
| Data.first = CGM.getLangOpts().OpenMPCUDANumSMs; |
| if (CGM.getLangOpts().OpenMPCUDABlocksPerSM) |
| Data.second = CGM.getLangOpts().OpenMPCUDABlocksPerSM; |
| if (Data.first && Data.second) |
| return Data; |
| switch (getCudaArch(CGM)) { |
| case CudaArch::SM_20: |
| case CudaArch::SM_21: |
| case CudaArch::SM_30: |
| case CudaArch::SM_32: |
| case CudaArch::SM_35: |
| case CudaArch::SM_37: |
| case CudaArch::SM_50: |
| case CudaArch::SM_52: |
| case CudaArch::SM_53: |
| return {16, 16}; |
| case CudaArch::SM_60: |
| case CudaArch::SM_61: |
| case CudaArch::SM_62: |
| return {56, 32}; |
| case CudaArch::SM_70: |
| case CudaArch::SM_72: |
| case CudaArch::SM_75: |
| case CudaArch::SM_80: |
| return {84, 32}; |
| case CudaArch::GFX600: |
| case CudaArch::GFX601: |
| case CudaArch::GFX602: |
| case CudaArch::GFX700: |
| case CudaArch::GFX701: |
| case CudaArch::GFX702: |
| case CudaArch::GFX703: |
| case CudaArch::GFX704: |
| case CudaArch::GFX705: |
| case CudaArch::GFX801: |
| case CudaArch::GFX802: |
| case CudaArch::GFX803: |
| case CudaArch::GFX805: |
| case CudaArch::GFX810: |
| case CudaArch::GFX900: |
| case CudaArch::GFX902: |
| case CudaArch::GFX904: |
| case CudaArch::GFX906: |
| case CudaArch::GFX908: |
| case CudaArch::GFX909: |
| case CudaArch::GFX90c: |
| case CudaArch::GFX1010: |
| case CudaArch::GFX1011: |
| case CudaArch::GFX1012: |
| case CudaArch::GFX1030: |
| case CudaArch::GFX1031: |
| case CudaArch::GFX1032: |
| case CudaArch::GFX1033: |
| case CudaArch::UNUSED: |
| case CudaArch::UNKNOWN: |
| break; |
| case CudaArch::LAST: |
| llvm_unreachable("Unexpected Cuda arch."); |
| } |
| llvm_unreachable("Unexpected NVPTX target without ptx feature."); |
| } |
| |
| void CGOpenMPRuntimeGPU::clear() { |
| if (!GlobalizedRecords.empty() && |
| !CGM.getLangOpts().OpenMPCUDATargetParallel) { |
| ASTContext &C = CGM.getContext(); |
| llvm::SmallVector<const GlobalPtrSizeRecsTy *, 4> GlobalRecs; |
| llvm::SmallVector<const GlobalPtrSizeRecsTy *, 4> SharedRecs; |
| RecordDecl *StaticRD = C.buildImplicitRecord( |
| "_openmp_static_memory_type_$_", RecordDecl::TagKind::TTK_Union); |
| StaticRD->startDefinition(); |
| RecordDecl *SharedStaticRD = C.buildImplicitRecord( |
| "_shared_openmp_static_memory_type_$_", RecordDecl::TagKind::TTK_Union); |
| SharedStaticRD->startDefinition(); |
| for (const GlobalPtrSizeRecsTy &Records : GlobalizedRecords) { |
| if (Records.Records.empty()) |
| continue; |
| unsigned Size = 0; |
| unsigned RecAlignment = 0; |
| for (const RecordDecl *RD : Records.Records) { |
| QualType RDTy = C.getRecordType(RD); |
| unsigned Alignment = C.getTypeAlignInChars(RDTy).getQuantity(); |
| RecAlignment = std::max(RecAlignment, Alignment); |
| unsigned RecSize = C.getTypeSizeInChars(RDTy).getQuantity(); |
| Size = |
| llvm::alignTo(llvm::alignTo(Size, Alignment) + RecSize, Alignment); |
| } |
| Size = llvm::alignTo(Size, RecAlignment); |
| llvm::APInt ArySize(/*numBits=*/64, Size); |
| QualType SubTy = C.getConstantArrayType( |
| C.CharTy, ArySize, nullptr, ArrayType::Normal, /*IndexTypeQuals=*/0); |
| const bool UseSharedMemory = Size <= SharedMemorySize; |
| auto *Field = |
| FieldDecl::Create(C, UseSharedMemory ? SharedStaticRD : StaticRD, |
| SourceLocation(), SourceLocation(), nullptr, SubTy, |
| C.getTrivialTypeSourceInfo(SubTy, SourceLocation()), |
| /*BW=*/nullptr, /*Mutable=*/false, |
| /*InitStyle=*/ICIS_NoInit); |
| Field->setAccess(AS_public); |
| if (UseSharedMemory) { |
| SharedStaticRD->addDecl(Field); |
| SharedRecs.push_back(&Records); |
| } else { |
| StaticRD->addDecl(Field); |
| GlobalRecs.push_back(&Records); |
| } |
| Records.RecSize->setInitializer(llvm::ConstantInt::get(CGM.SizeTy, Size)); |
| Records.UseSharedMemory->setInitializer( |
| llvm::ConstantInt::get(CGM.Int16Ty, UseSharedMemory ? 1 : 0)); |
| } |
| // Allocate SharedMemorySize buffer for the shared memory. |
| // FIXME: nvlink does not handle weak linkage correctly (object with the |
| // different size are reported as erroneous). |
| // Restore this code as sson as nvlink is fixed. |
| if (!SharedStaticRD->field_empty()) { |
| llvm::APInt ArySize(/*numBits=*/64, SharedMemorySize); |
| QualType SubTy = C.getConstantArrayType( |
| C.CharTy, ArySize, nullptr, ArrayType::Normal, /*IndexTypeQuals=*/0); |
| auto *Field = FieldDecl::Create( |
| C, SharedStaticRD, SourceLocation(), SourceLocation(), nullptr, SubTy, |
| C.getTrivialTypeSourceInfo(SubTy, SourceLocation()), |
| /*BW=*/nullptr, /*Mutable=*/false, |
| /*InitStyle=*/ICIS_NoInit); |
| Field->setAccess(AS_public); |
| SharedStaticRD->addDecl(Field); |
| } |
| SharedStaticRD->completeDefinition(); |
| if (!SharedStaticRD->field_empty()) { |
| QualType StaticTy = C.getRecordType(SharedStaticRD); |
| llvm::Type *LLVMStaticTy = CGM.getTypes().ConvertTypeForMem(StaticTy); |
| auto *GV = new llvm::GlobalVariable( |
| CGM.getModule(), LLVMStaticTy, |
| /*isConstant=*/false, llvm::GlobalValue::WeakAnyLinkage, |
| llvm::UndefValue::get(LLVMStaticTy), |
| "_openmp_shared_static_glob_rd_$_", /*InsertBefore=*/nullptr, |
| llvm::GlobalValue::NotThreadLocal, |
| C.getTargetAddressSpace(LangAS::cuda_shared)); |
| auto *Replacement = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( |
| GV, CGM.VoidPtrTy); |
| for (const GlobalPtrSizeRecsTy *Rec : SharedRecs) { |
| Rec->Buffer->replaceAllUsesWith(Replacement); |
| Rec->Buffer->eraseFromParent(); |
| } |
| } |
| StaticRD->completeDefinition(); |
| if (!StaticRD->field_empty()) { |
| QualType StaticTy = C.getRecordType(StaticRD); |
| std::pair<unsigned, unsigned> SMsBlockPerSM = getSMsBlocksPerSM(CGM); |
| llvm::APInt Size1(32, SMsBlockPerSM.second); |
| QualType Arr1Ty = |
| C.getConstantArrayType(StaticTy, Size1, nullptr, ArrayType::Normal, |
| /*IndexTypeQuals=*/0); |
| llvm::APInt Size2(32, SMsBlockPerSM.first); |
| QualType Arr2Ty = |
| C.getConstantArrayType(Arr1Ty, Size2, nullptr, ArrayType::Normal, |
| /*IndexTypeQuals=*/0); |
| llvm::Type *LLVMArr2Ty = CGM.getTypes().ConvertTypeForMem(Arr2Ty); |
| // FIXME: nvlink does not handle weak linkage correctly (object with the |
| // different size are reported as erroneous). |
| // Restore CommonLinkage as soon as nvlink is fixed. |
| auto *GV = new llvm::GlobalVariable( |
| CGM.getModule(), LLVMArr2Ty, |
| /*isConstant=*/false, llvm::GlobalValue::InternalLinkage, |
| llvm::Constant::getNullValue(LLVMArr2Ty), |
| "_openmp_static_glob_rd_$_"); |
| auto *Replacement = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( |
| GV, CGM.VoidPtrTy); |
| for (const GlobalPtrSizeRecsTy *Rec : GlobalRecs) { |
| Rec->Buffer->replaceAllUsesWith(Replacement); |
| Rec->Buffer->eraseFromParent(); |
| } |
| } |
| } |
| if (!TeamsReductions.empty()) { |
| ASTContext &C = CGM.getContext(); |
| RecordDecl *StaticRD = C.buildImplicitRecord( |
| "_openmp_teams_reduction_type_$_", RecordDecl::TagKind::TTK_Union); |
| StaticRD->startDefinition(); |
| for (const RecordDecl *TeamReductionRec : TeamsReductions) { |
| QualType RecTy = C.getRecordType(TeamReductionRec); |
| auto *Field = FieldDecl::Create( |
| C, StaticRD, SourceLocation(), SourceLocation(), nullptr, RecTy, |
| C.getTrivialTypeSourceInfo(RecTy, SourceLocation()), |
| /*BW=*/nullptr, /*Mutable=*/false, |
| /*InitStyle=*/ICIS_NoInit); |
| Field->setAccess(AS_public); |
| StaticRD->addDecl(Field); |
| } |
| StaticRD->completeDefinition(); |
| QualType StaticTy = C.getRecordType(StaticRD); |
| llvm::Type *LLVMReductionsBufferTy = |
| CGM.getTypes().ConvertTypeForMem(StaticTy); |
| // FIXME: nvlink does not handle weak linkage correctly (object with the |
| // different size are reported as erroneous). |
| // Restore CommonLinkage as soon as nvlink is fixed. |
| auto *GV = new llvm::GlobalVariable( |
| CGM.getModule(), LLVMReductionsBufferTy, |
| /*isConstant=*/false, llvm::GlobalValue::InternalLinkage, |
| llvm::Constant::getNullValue(LLVMReductionsBufferTy), |
| "_openmp_teams_reductions_buffer_$_"); |
| KernelTeamsReductionPtr->setInitializer( |
| llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, |
| CGM.VoidPtrTy)); |
| } |
| CGOpenMPRuntime::clear(); |
| } |