| //===--- RedundantExpressionCheck.cpp - clang-tidy-------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "RedundantExpressionCheck.h" |
| #include "../utils/Matchers.h" |
| #include "../utils/OptionsUtils.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/ASTMatchers/ASTMatchFinder.h" |
| #include "clang/Basic/LLVM.h" |
| #include "clang/Basic/SourceLocation.h" |
| #include "clang/Basic/SourceManager.h" |
| #include "clang/Lex/Lexer.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/APSInt.h" |
| #include "llvm/ADT/FoldingSet.h" |
| #include "llvm/ADT/SmallBitVector.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/FormatVariadic.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| #include <string> |
| #include <vector> |
| |
| using namespace clang::ast_matchers; |
| using namespace clang::tidy::matchers; |
| |
| namespace clang { |
| namespace tidy { |
| namespace misc { |
| namespace { |
| using llvm::APSInt; |
| |
| static constexpr llvm::StringLiteral KnownBannedMacroNames[] = { |
| "EAGAIN", |
| "EWOULDBLOCK", |
| "SIGCLD", |
| "SIGCHLD", |
| }; |
| |
| static bool incrementWithoutOverflow(const APSInt &Value, APSInt &Result) { |
| Result = Value; |
| ++Result; |
| return Value < Result; |
| } |
| |
| static bool areEquivalentNameSpecifier(const NestedNameSpecifier *Left, |
| const NestedNameSpecifier *Right) { |
| llvm::FoldingSetNodeID LeftID, RightID; |
| Left->Profile(LeftID); |
| Right->Profile(RightID); |
| return LeftID == RightID; |
| } |
| |
| static bool areEquivalentExpr(const Expr *Left, const Expr *Right) { |
| if (!Left || !Right) |
| return !Left && !Right; |
| |
| Left = Left->IgnoreParens(); |
| Right = Right->IgnoreParens(); |
| |
| // Compare classes. |
| if (Left->getStmtClass() != Right->getStmtClass()) |
| return false; |
| |
| // Compare children. |
| Expr::const_child_iterator LeftIter = Left->child_begin(); |
| Expr::const_child_iterator RightIter = Right->child_begin(); |
| while (LeftIter != Left->child_end() && RightIter != Right->child_end()) { |
| if (!areEquivalentExpr(dyn_cast_or_null<Expr>(*LeftIter), |
| dyn_cast_or_null<Expr>(*RightIter))) |
| return false; |
| ++LeftIter; |
| ++RightIter; |
| } |
| if (LeftIter != Left->child_end() || RightIter != Right->child_end()) |
| return false; |
| |
| // Perform extra checks. |
| switch (Left->getStmtClass()) { |
| default: |
| return false; |
| |
| case Stmt::CharacterLiteralClass: |
| return cast<CharacterLiteral>(Left)->getValue() == |
| cast<CharacterLiteral>(Right)->getValue(); |
| case Stmt::IntegerLiteralClass: { |
| llvm::APInt LeftLit = cast<IntegerLiteral>(Left)->getValue(); |
| llvm::APInt RightLit = cast<IntegerLiteral>(Right)->getValue(); |
| return LeftLit.getBitWidth() == RightLit.getBitWidth() && |
| LeftLit == RightLit; |
| } |
| case Stmt::FloatingLiteralClass: |
| return cast<FloatingLiteral>(Left)->getValue().bitwiseIsEqual( |
| cast<FloatingLiteral>(Right)->getValue()); |
| case Stmt::StringLiteralClass: |
| return cast<StringLiteral>(Left)->getBytes() == |
| cast<StringLiteral>(Right)->getBytes(); |
| case Stmt::CXXOperatorCallExprClass: |
| return cast<CXXOperatorCallExpr>(Left)->getOperator() == |
| cast<CXXOperatorCallExpr>(Right)->getOperator(); |
| case Stmt::DependentScopeDeclRefExprClass: |
| if (cast<DependentScopeDeclRefExpr>(Left)->getDeclName() != |
| cast<DependentScopeDeclRefExpr>(Right)->getDeclName()) |
| return false; |
| return areEquivalentNameSpecifier( |
| cast<DependentScopeDeclRefExpr>(Left)->getQualifier(), |
| cast<DependentScopeDeclRefExpr>(Right)->getQualifier()); |
| case Stmt::DeclRefExprClass: |
| return cast<DeclRefExpr>(Left)->getDecl() == |
| cast<DeclRefExpr>(Right)->getDecl(); |
| case Stmt::MemberExprClass: |
| return cast<MemberExpr>(Left)->getMemberDecl() == |
| cast<MemberExpr>(Right)->getMemberDecl(); |
| case Stmt::CXXFoldExprClass: |
| return cast<CXXFoldExpr>(Left)->getOperator() == |
| cast<CXXFoldExpr>(Right)->getOperator(); |
| case Stmt::CXXFunctionalCastExprClass: |
| case Stmt::CStyleCastExprClass: |
| return cast<ExplicitCastExpr>(Left)->getTypeAsWritten() == |
| cast<ExplicitCastExpr>(Right)->getTypeAsWritten(); |
| case Stmt::CallExprClass: |
| case Stmt::ImplicitCastExprClass: |
| case Stmt::ArraySubscriptExprClass: |
| return true; |
| case Stmt::UnaryOperatorClass: |
| if (cast<UnaryOperator>(Left)->isIncrementDecrementOp()) |
| return false; |
| return cast<UnaryOperator>(Left)->getOpcode() == |
| cast<UnaryOperator>(Right)->getOpcode(); |
| case Stmt::BinaryOperatorClass: |
| return cast<BinaryOperator>(Left)->getOpcode() == |
| cast<BinaryOperator>(Right)->getOpcode(); |
| case Stmt::UnaryExprOrTypeTraitExprClass: |
| const auto *LeftUnaryExpr = |
| cast<UnaryExprOrTypeTraitExpr>(Left); |
| const auto *RightUnaryExpr = |
| cast<UnaryExprOrTypeTraitExpr>(Right); |
| if (LeftUnaryExpr->isArgumentType() && RightUnaryExpr->isArgumentType()) |
| return LeftUnaryExpr->getArgumentType() == |
| RightUnaryExpr->getArgumentType(); |
| else if (!LeftUnaryExpr->isArgumentType() && |
| !RightUnaryExpr->isArgumentType()) |
| return areEquivalentExpr(LeftUnaryExpr->getArgumentExpr(), |
| RightUnaryExpr->getArgumentExpr()); |
| |
| return false; |
| } |
| } |
| |
| // For a given expression 'x', returns whether the ranges covered by the |
| // relational operators are equivalent (i.e. x <= 4 is equivalent to x < 5). |
| static bool areEquivalentRanges(BinaryOperatorKind OpcodeLHS, |
| const APSInt &ValueLHS, |
| BinaryOperatorKind OpcodeRHS, |
| const APSInt &ValueRHS) { |
| assert(APSInt::compareValues(ValueLHS, ValueRHS) <= 0 && |
| "Values must be ordered"); |
| // Handle the case where constants are the same: x <= 4 <==> x <= 4. |
| if (APSInt::compareValues(ValueLHS, ValueRHS) == 0) |
| return OpcodeLHS == OpcodeRHS; |
| |
| // Handle the case where constants are off by one: x <= 4 <==> x < 5. |
| APSInt ValueLHS_plus1; |
| return ((OpcodeLHS == BO_LE && OpcodeRHS == BO_LT) || |
| (OpcodeLHS == BO_GT && OpcodeRHS == BO_GE)) && |
| incrementWithoutOverflow(ValueLHS, ValueLHS_plus1) && |
| APSInt::compareValues(ValueLHS_plus1, ValueRHS) == 0; |
| } |
| |
| // For a given expression 'x', returns whether the ranges covered by the |
| // relational operators are fully disjoint (i.e. x < 4 and x > 7). |
| static bool areExclusiveRanges(BinaryOperatorKind OpcodeLHS, |
| const APSInt &ValueLHS, |
| BinaryOperatorKind OpcodeRHS, |
| const APSInt &ValueRHS) { |
| assert(APSInt::compareValues(ValueLHS, ValueRHS) <= 0 && |
| "Values must be ordered"); |
| |
| // Handle cases where the constants are the same. |
| if (APSInt::compareValues(ValueLHS, ValueRHS) == 0) { |
| switch (OpcodeLHS) { |
| case BO_EQ: |
| return OpcodeRHS == BO_NE || OpcodeRHS == BO_GT || OpcodeRHS == BO_LT; |
| case BO_NE: |
| return OpcodeRHS == BO_EQ; |
| case BO_LE: |
| return OpcodeRHS == BO_GT; |
| case BO_GE: |
| return OpcodeRHS == BO_LT; |
| case BO_LT: |
| return OpcodeRHS == BO_EQ || OpcodeRHS == BO_GT || OpcodeRHS == BO_GE; |
| case BO_GT: |
| return OpcodeRHS == BO_EQ || OpcodeRHS == BO_LT || OpcodeRHS == BO_LE; |
| default: |
| return false; |
| } |
| } |
| |
| // Handle cases where the constants are different. |
| if ((OpcodeLHS == BO_EQ || OpcodeLHS == BO_LT || OpcodeLHS == BO_LE) && |
| (OpcodeRHS == BO_EQ || OpcodeRHS == BO_GT || OpcodeRHS == BO_GE)) |
| return true; |
| |
| // Handle the case where constants are off by one: x > 5 && x < 6. |
| APSInt ValueLHS_plus1; |
| if (OpcodeLHS == BO_GT && OpcodeRHS == BO_LT && |
| incrementWithoutOverflow(ValueLHS, ValueLHS_plus1) && |
| APSInt::compareValues(ValueLHS_plus1, ValueRHS) == 0) |
| return true; |
| |
| return false; |
| } |
| |
| // Returns whether the ranges covered by the union of both relational |
| // expressions cover the whole domain (i.e. x < 10 and x > 0). |
| static bool rangesFullyCoverDomain(BinaryOperatorKind OpcodeLHS, |
| const APSInt &ValueLHS, |
| BinaryOperatorKind OpcodeRHS, |
| const APSInt &ValueRHS) { |
| assert(APSInt::compareValues(ValueLHS, ValueRHS) <= 0 && |
| "Values must be ordered"); |
| |
| // Handle cases where the constants are the same: x < 5 || x >= 5. |
| if (APSInt::compareValues(ValueLHS, ValueRHS) == 0) { |
| switch (OpcodeLHS) { |
| case BO_EQ: |
| return OpcodeRHS == BO_NE; |
| case BO_NE: |
| return OpcodeRHS == BO_EQ; |
| case BO_LE: |
| return OpcodeRHS == BO_GT || OpcodeRHS == BO_GE; |
| case BO_LT: |
| return OpcodeRHS == BO_GE; |
| case BO_GE: |
| return OpcodeRHS == BO_LT || OpcodeRHS == BO_LE; |
| case BO_GT: |
| return OpcodeRHS == BO_LE; |
| default: |
| return false; |
| } |
| } |
| |
| // Handle the case where constants are off by one: x <= 4 || x >= 5. |
| APSInt ValueLHS_plus1; |
| if (OpcodeLHS == BO_LE && OpcodeRHS == BO_GE && |
| incrementWithoutOverflow(ValueLHS, ValueLHS_plus1) && |
| APSInt::compareValues(ValueLHS_plus1, ValueRHS) == 0) |
| return true; |
| |
| // Handle cases where the constants are different: x > 4 || x <= 7. |
| if ((OpcodeLHS == BO_GT || OpcodeLHS == BO_GE) && |
| (OpcodeRHS == BO_LT || OpcodeRHS == BO_LE)) |
| return true; |
| |
| // Handle cases where constants are different but both ops are !=, like: |
| // x != 5 || x != 10 |
| if (OpcodeLHS == BO_NE && OpcodeRHS == BO_NE) |
| return true; |
| |
| return false; |
| } |
| |
| static bool rangeSubsumesRange(BinaryOperatorKind OpcodeLHS, |
| const APSInt &ValueLHS, |
| BinaryOperatorKind OpcodeRHS, |
| const APSInt &ValueRHS) { |
| int Comparison = APSInt::compareValues(ValueLHS, ValueRHS); |
| switch (OpcodeLHS) { |
| case BO_EQ: |
| return OpcodeRHS == BO_EQ && Comparison == 0; |
| case BO_NE: |
| return (OpcodeRHS == BO_NE && Comparison == 0) || |
| (OpcodeRHS == BO_EQ && Comparison != 0) || |
| (OpcodeRHS == BO_LT && Comparison >= 0) || |
| (OpcodeRHS == BO_LE && Comparison > 0) || |
| (OpcodeRHS == BO_GT && Comparison <= 0) || |
| (OpcodeRHS == BO_GE && Comparison < 0); |
| |
| case BO_LT: |
| return ((OpcodeRHS == BO_LT && Comparison >= 0) || |
| (OpcodeRHS == BO_LE && Comparison > 0) || |
| (OpcodeRHS == BO_EQ && Comparison > 0)); |
| case BO_GT: |
| return ((OpcodeRHS == BO_GT && Comparison <= 0) || |
| (OpcodeRHS == BO_GE && Comparison < 0) || |
| (OpcodeRHS == BO_EQ && Comparison < 0)); |
| case BO_LE: |
| return (OpcodeRHS == BO_LT || OpcodeRHS == BO_LE || OpcodeRHS == BO_EQ) && |
| Comparison >= 0; |
| case BO_GE: |
| return (OpcodeRHS == BO_GT || OpcodeRHS == BO_GE || OpcodeRHS == BO_EQ) && |
| Comparison <= 0; |
| default: |
| return false; |
| } |
| } |
| |
| static void transformSubToCanonicalAddExpr(BinaryOperatorKind &Opcode, |
| APSInt &Value) { |
| if (Opcode == BO_Sub) { |
| Opcode = BO_Add; |
| Value = -Value; |
| } |
| } |
| |
| // to use in the template below |
| static OverloadedOperatorKind getOp(const BinaryOperator *Op) { |
| return BinaryOperator::getOverloadedOperator(Op->getOpcode()); |
| } |
| |
| static OverloadedOperatorKind getOp(const CXXOperatorCallExpr *Op) { |
| if (Op->getNumArgs() != 2) |
| return OO_None; |
| return Op->getOperator(); |
| } |
| |
| static std::pair<const Expr *, const Expr *> |
| getOperands(const BinaryOperator *Op) { |
| return {Op->getLHS()->IgnoreParenImpCasts(), |
| Op->getRHS()->IgnoreParenImpCasts()}; |
| } |
| |
| static std::pair<const Expr *, const Expr *> |
| getOperands(const CXXOperatorCallExpr *Op) { |
| return {Op->getArg(0)->IgnoreParenImpCasts(), |
| Op->getArg(1)->IgnoreParenImpCasts()}; |
| } |
| |
| template <typename TExpr> |
| static const TExpr *checkOpKind(const Expr *TheExpr, |
| OverloadedOperatorKind OpKind) { |
| const auto *AsTExpr = dyn_cast_or_null<TExpr>(TheExpr); |
| if (AsTExpr && getOp(AsTExpr) == OpKind) |
| return AsTExpr; |
| |
| return nullptr; |
| } |
| |
| // returns true if a subexpression has two directly equivalent operands and |
| // is already handled by operands/parametersAreEquivalent |
| template <typename TExpr, unsigned N> |
| static bool collectOperands(const Expr *Part, |
| SmallVector<const Expr *, N> &AllOperands, |
| OverloadedOperatorKind OpKind) { |
| if (const auto *BinOp = checkOpKind<TExpr>(Part, OpKind)) { |
| const std::pair<const Expr *, const Expr *> Operands = getOperands(BinOp); |
| if (areEquivalentExpr(Operands.first, Operands.second)) |
| return true; |
| return collectOperands<TExpr>(Operands.first, AllOperands, OpKind) || |
| collectOperands<TExpr>(Operands.second, AllOperands, OpKind); |
| } |
| |
| AllOperands.push_back(Part); |
| return false; |
| } |
| |
| template <typename TExpr> |
| static bool hasSameOperatorParent(const Expr *TheExpr, |
| OverloadedOperatorKind OpKind, |
| ASTContext &Context) { |
| // IgnoreParenImpCasts logic in reverse: skip surrounding uninteresting nodes |
| const DynTypedNodeList Parents = Context.getParents(*TheExpr); |
| for (ast_type_traits::DynTypedNode DynParent : Parents) { |
| if (const auto *Parent = DynParent.get<Expr>()) { |
| bool Skip = isa<ParenExpr>(Parent) || isa<ImplicitCastExpr>(Parent) || |
| isa<FullExpr>(Parent) || |
| isa<MaterializeTemporaryExpr>(Parent); |
| if (Skip && hasSameOperatorParent<TExpr>(Parent, OpKind, Context)) |
| return true; |
| if (checkOpKind<TExpr>(Parent, OpKind)) |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| template <typename TExpr> |
| static bool |
| markDuplicateOperands(const TExpr *TheExpr, |
| ast_matchers::internal::BoundNodesTreeBuilder *Builder, |
| ASTContext &Context) { |
| const OverloadedOperatorKind OpKind = getOp(TheExpr); |
| if (OpKind == OO_None) |
| return false; |
| // if there are no nested operators of the same kind, it's handled by |
| // operands/parametersAreEquivalent |
| const std::pair<const Expr *, const Expr *> Operands = getOperands(TheExpr); |
| if (!(checkOpKind<TExpr>(Operands.first, OpKind) || |
| checkOpKind<TExpr>(Operands.second, OpKind))) |
| return false; |
| |
| // if parent is the same kind of operator, it's handled by a previous call to |
| // markDuplicateOperands |
| if (hasSameOperatorParent<TExpr>(TheExpr, OpKind, Context)) |
| return false; |
| |
| SmallVector<const Expr *, 4> AllOperands; |
| if (collectOperands<TExpr>(Operands.first, AllOperands, OpKind)) |
| return false; |
| if (collectOperands<TExpr>(Operands.second, AllOperands, OpKind)) |
| return false; |
| size_t NumOperands = AllOperands.size(); |
| llvm::SmallBitVector Duplicates(NumOperands); |
| for (size_t I = 0; I < NumOperands; I++) { |
| if (Duplicates[I]) |
| continue; |
| bool FoundDuplicates = false; |
| |
| for (size_t J = I + 1; J < NumOperands; J++) { |
| if (AllOperands[J]->HasSideEffects(Context)) |
| break; |
| |
| if (areEquivalentExpr(AllOperands[I], AllOperands[J])) { |
| FoundDuplicates = true; |
| Duplicates.set(J); |
| Builder->setBinding( |
| SmallString<11>(llvm::formatv("duplicate{0}", J)), |
| ast_type_traits::DynTypedNode::create(*AllOperands[J])); |
| } |
| } |
| |
| if (FoundDuplicates) |
| Builder->setBinding( |
| SmallString<11>(llvm::formatv("duplicate{0}", I)), |
| ast_type_traits::DynTypedNode::create(*AllOperands[I])); |
| } |
| |
| return Duplicates.any(); |
| } |
| |
| AST_MATCHER(Expr, isIntegerConstantExpr) { |
| if (Node.isInstantiationDependent()) |
| return false; |
| return Node.isIntegerConstantExpr(Finder->getASTContext()); |
| } |
| |
| AST_MATCHER(BinaryOperator, operandsAreEquivalent) { |
| return areEquivalentExpr(Node.getLHS(), Node.getRHS()); |
| } |
| |
| AST_MATCHER(BinaryOperator, nestedOperandsAreEquivalent) { |
| return markDuplicateOperands(&Node, Builder, Finder->getASTContext()); |
| } |
| |
| AST_MATCHER(ConditionalOperator, expressionsAreEquivalent) { |
| return areEquivalentExpr(Node.getTrueExpr(), Node.getFalseExpr()); |
| } |
| |
| AST_MATCHER(CallExpr, parametersAreEquivalent) { |
| return Node.getNumArgs() == 2 && |
| areEquivalentExpr(Node.getArg(0), Node.getArg(1)); |
| } |
| |
| AST_MATCHER(CXXOperatorCallExpr, nestedParametersAreEquivalent) { |
| return markDuplicateOperands(&Node, Builder, Finder->getASTContext()); |
| } |
| |
| AST_MATCHER(BinaryOperator, binaryOperatorIsInMacro) { |
| return Node.getOperatorLoc().isMacroID(); |
| } |
| |
| AST_MATCHER(ConditionalOperator, conditionalOperatorIsInMacro) { |
| return Node.getQuestionLoc().isMacroID() || Node.getColonLoc().isMacroID(); |
| } |
| |
| AST_MATCHER(Expr, isMacro) { return Node.getExprLoc().isMacroID(); } |
| |
| AST_MATCHER_P(Expr, expandedByMacro, ArrayRef<llvm::StringLiteral>, Names) { |
| const SourceManager &SM = Finder->getASTContext().getSourceManager(); |
| const LangOptions &LO = Finder->getASTContext().getLangOpts(); |
| SourceLocation Loc = Node.getExprLoc(); |
| while (Loc.isMacroID()) { |
| StringRef MacroName = Lexer::getImmediateMacroName(Loc, SM, LO); |
| if (llvm::is_contained(Names, MacroName)) |
| return true; |
| Loc = SM.getImmediateMacroCallerLoc(Loc); |
| } |
| return false; |
| } |
| |
| // Returns a matcher for integer constant expressions. |
| static ast_matchers::internal::Matcher<Expr> |
| matchIntegerConstantExpr(StringRef Id) { |
| std::string CstId = (Id + "-const").str(); |
| return expr(isIntegerConstantExpr()).bind(CstId); |
| } |
| |
| // Retrieves the integer expression matched by 'matchIntegerConstantExpr' with |
| // name 'Id' and stores it into 'ConstExpr', the value of the expression is |
| // stored into `Value`. |
| static bool retrieveIntegerConstantExpr(const MatchFinder::MatchResult &Result, |
| StringRef Id, APSInt &Value, |
| const Expr *&ConstExpr) { |
| std::string CstId = (Id + "-const").str(); |
| ConstExpr = Result.Nodes.getNodeAs<Expr>(CstId); |
| if (!ConstExpr) |
| return false; |
| Optional<llvm::APSInt> R = ConstExpr->getIntegerConstantExpr(*Result.Context); |
| if (!R) |
| return false; |
| Value = *R; |
| return true; |
| } |
| |
| // Overloaded `retrieveIntegerConstantExpr` for compatibility. |
| static bool retrieveIntegerConstantExpr(const MatchFinder::MatchResult &Result, |
| StringRef Id, APSInt &Value) { |
| const Expr *ConstExpr = nullptr; |
| return retrieveIntegerConstantExpr(Result, Id, Value, ConstExpr); |
| } |
| |
| // Returns a matcher for symbolic expressions (matches every expression except |
| // ingeter constant expressions). |
| static ast_matchers::internal::Matcher<Expr> matchSymbolicExpr(StringRef Id) { |
| std::string SymId = (Id + "-sym").str(); |
| return ignoringParenImpCasts( |
| expr(unless(isIntegerConstantExpr())).bind(SymId)); |
| } |
| |
| // Retrieves the expression matched by 'matchSymbolicExpr' with name 'Id' and |
| // stores it into 'SymExpr'. |
| static bool retrieveSymbolicExpr(const MatchFinder::MatchResult &Result, |
| StringRef Id, const Expr *&SymExpr) { |
| std::string SymId = (Id + "-sym").str(); |
| if (const auto *Node = Result.Nodes.getNodeAs<Expr>(SymId)) { |
| SymExpr = Node; |
| return true; |
| } |
| return false; |
| } |
| |
| // Match a binary operator between a symbolic expression and an integer constant |
| // expression. |
| static ast_matchers::internal::Matcher<Expr> |
| matchBinOpIntegerConstantExpr(StringRef Id) { |
| const auto BinOpCstExpr = |
| expr(anyOf(binaryOperator(hasAnyOperatorName("+", "|", "&"), |
| hasOperands(matchSymbolicExpr(Id), |
| matchIntegerConstantExpr(Id))), |
| binaryOperator(hasOperatorName("-"), |
| hasLHS(matchSymbolicExpr(Id)), |
| hasRHS(matchIntegerConstantExpr(Id))))) |
| .bind(Id); |
| return ignoringParenImpCasts(BinOpCstExpr); |
| } |
| |
| // Retrieves sub-expressions matched by 'matchBinOpIntegerConstantExpr' with |
| // name 'Id'. |
| static bool |
| retrieveBinOpIntegerConstantExpr(const MatchFinder::MatchResult &Result, |
| StringRef Id, BinaryOperatorKind &Opcode, |
| const Expr *&Symbol, APSInt &Value) { |
| if (const auto *BinExpr = Result.Nodes.getNodeAs<BinaryOperator>(Id)) { |
| Opcode = BinExpr->getOpcode(); |
| return retrieveSymbolicExpr(Result, Id, Symbol) && |
| retrieveIntegerConstantExpr(Result, Id, Value); |
| } |
| return false; |
| } |
| |
| // Matches relational expressions: 'Expr <op> k' (i.e. x < 2, x != 3, 12 <= x). |
| static ast_matchers::internal::Matcher<Expr> |
| matchRelationalIntegerConstantExpr(StringRef Id) { |
| std::string CastId = (Id + "-cast").str(); |
| std::string SwapId = (Id + "-swap").str(); |
| std::string NegateId = (Id + "-negate").str(); |
| std::string OverloadId = (Id + "-overload").str(); |
| |
| const auto RelationalExpr = ignoringParenImpCasts(binaryOperator( |
| isComparisonOperator(), expr().bind(Id), |
| anyOf(allOf(hasLHS(matchSymbolicExpr(Id)), |
| hasRHS(matchIntegerConstantExpr(Id))), |
| allOf(hasLHS(matchIntegerConstantExpr(Id)), |
| hasRHS(matchSymbolicExpr(Id)), expr().bind(SwapId))))); |
| |
| // A cast can be matched as a comparator to zero. (i.e. if (x) is equivalent |
| // to if (x != 0)). |
| const auto CastExpr = |
| implicitCastExpr(hasCastKind(CK_IntegralToBoolean), |
| hasSourceExpression(matchSymbolicExpr(Id))) |
| .bind(CastId); |
| |
| const auto NegateRelationalExpr = |
| unaryOperator(hasOperatorName("!"), |
| hasUnaryOperand(anyOf(CastExpr, RelationalExpr))) |
| .bind(NegateId); |
| |
| // Do not bind to double negation. |
| const auto NegateNegateRelationalExpr = |
| unaryOperator(hasOperatorName("!"), |
| hasUnaryOperand(unaryOperator( |
| hasOperatorName("!"), |
| hasUnaryOperand(anyOf(CastExpr, RelationalExpr))))); |
| |
| const auto OverloadedOperatorExpr = |
| cxxOperatorCallExpr( |
| hasAnyOverloadedOperatorName("==", "!=", "<", "<=", ">", ">="), |
| // Filter noisy false positives. |
| unless(isMacro()), unless(isInTemplateInstantiation())) |
| .bind(OverloadId); |
| |
| return anyOf(RelationalExpr, CastExpr, NegateRelationalExpr, |
| NegateNegateRelationalExpr, OverloadedOperatorExpr); |
| } |
| |
| // Checks whether a function param is non constant reference type, and may |
| // be modified in the function. |
| static bool isNonConstReferenceType(QualType ParamType) { |
| return ParamType->isReferenceType() && |
| !ParamType.getNonReferenceType().isConstQualified(); |
| } |
| |
| // Checks whether the arguments of an overloaded operator can be modified in the |
| // function. |
| // For operators that take an instance and a constant as arguments, only the |
| // first argument (the instance) needs to be checked, since the constant itself |
| // is a temporary expression. Whether the second parameter is checked is |
| // controlled by the parameter `ParamsToCheckCount`. |
| static bool |
| canOverloadedOperatorArgsBeModified(const CXXOperatorCallExpr *OperatorCall, |
| bool checkSecondParam) { |
| const auto *OperatorDecl = |
| dyn_cast_or_null<FunctionDecl>(OperatorCall->getCalleeDecl()); |
| // if we can't find the declaration, conservatively assume it can modify |
| // arguments |
| if (!OperatorDecl) |
| return true; |
| |
| unsigned ParamCount = OperatorDecl->getNumParams(); |
| |
| // Overloaded operators declared inside a class have only one param. |
| // These functions must be declared const in order to not be able to modify |
| // the instance of the class they are called through. |
| if (ParamCount == 1 && |
| !OperatorDecl->getType()->castAs<FunctionType>()->isConst()) |
| return true; |
| |
| if (isNonConstReferenceType(OperatorDecl->getParamDecl(0)->getType())) |
| return true; |
| |
| return checkSecondParam && ParamCount == 2 && |
| isNonConstReferenceType(OperatorDecl->getParamDecl(1)->getType()); |
| } |
| |
| // Retrieves sub-expressions matched by 'matchRelationalIntegerConstantExpr' |
| // with name 'Id'. |
| static bool retrieveRelationalIntegerConstantExpr( |
| const MatchFinder::MatchResult &Result, StringRef Id, |
| const Expr *&OperandExpr, BinaryOperatorKind &Opcode, const Expr *&Symbol, |
| APSInt &Value, const Expr *&ConstExpr) { |
| std::string CastId = (Id + "-cast").str(); |
| std::string SwapId = (Id + "-swap").str(); |
| std::string NegateId = (Id + "-negate").str(); |
| std::string OverloadId = (Id + "-overload").str(); |
| |
| if (const auto *Bin = Result.Nodes.getNodeAs<BinaryOperator>(Id)) { |
| // Operand received with explicit comparator. |
| Opcode = Bin->getOpcode(); |
| OperandExpr = Bin; |
| |
| if (!retrieveIntegerConstantExpr(Result, Id, Value, ConstExpr)) |
| return false; |
| } else if (const auto *Cast = Result.Nodes.getNodeAs<CastExpr>(CastId)) { |
| // Operand received with implicit comparator (cast). |
| Opcode = BO_NE; |
| OperandExpr = Cast; |
| Value = APSInt(32, false); |
| } else if (const auto *OverloadedOperatorExpr = |
| Result.Nodes.getNodeAs<CXXOperatorCallExpr>(OverloadId)) { |
| if (canOverloadedOperatorArgsBeModified(OverloadedOperatorExpr, false)) |
| return false; |
| |
| if (const auto *Arg = OverloadedOperatorExpr->getArg(1)) { |
| if (!Arg->isValueDependent() && |
| !Arg->isIntegerConstantExpr(*Result.Context)) |
| return false; |
| } |
| Symbol = OverloadedOperatorExpr->getArg(0); |
| OperandExpr = OverloadedOperatorExpr; |
| Opcode = BinaryOperator::getOverloadedOpcode(OverloadedOperatorExpr->getOperator()); |
| |
| return BinaryOperator::isComparisonOp(Opcode); |
| } else { |
| return false; |
| } |
| |
| if (!retrieveSymbolicExpr(Result, Id, Symbol)) |
| return false; |
| |
| if (Result.Nodes.getNodeAs<Expr>(SwapId)) |
| Opcode = BinaryOperator::reverseComparisonOp(Opcode); |
| if (Result.Nodes.getNodeAs<Expr>(NegateId)) |
| Opcode = BinaryOperator::negateComparisonOp(Opcode); |
| return true; |
| } |
| |
| // Checks for expressions like (X == 4) && (Y != 9) |
| static bool areSidesBinaryConstExpressions(const BinaryOperator *&BinOp, const ASTContext *AstCtx) { |
| const auto *LhsBinOp = dyn_cast<BinaryOperator>(BinOp->getLHS()); |
| const auto *RhsBinOp = dyn_cast<BinaryOperator>(BinOp->getRHS()); |
| |
| if (!LhsBinOp || !RhsBinOp) |
| return false; |
| |
| auto IsIntegerConstantExpr = [AstCtx](const Expr *E) { |
| return !E->isValueDependent() && E->isIntegerConstantExpr(*AstCtx); |
| }; |
| |
| if ((IsIntegerConstantExpr(LhsBinOp->getLHS()) || |
| IsIntegerConstantExpr(LhsBinOp->getRHS())) && |
| (IsIntegerConstantExpr(RhsBinOp->getLHS()) || |
| IsIntegerConstantExpr(RhsBinOp->getRHS()))) |
| return true; |
| return false; |
| } |
| |
| // Retrieves integer constant subexpressions from binary operator expressions |
| // that have two equivalent sides. |
| // E.g.: from (X == 5) && (X == 5) retrieves 5 and 5. |
| static bool retrieveConstExprFromBothSides(const BinaryOperator *&BinOp, |
| BinaryOperatorKind &MainOpcode, |
| BinaryOperatorKind &SideOpcode, |
| const Expr *&LhsConst, |
| const Expr *&RhsConst, |
| const ASTContext *AstCtx) { |
| assert(areSidesBinaryConstExpressions(BinOp, AstCtx) && |
| "Both sides of binary operator must be constant expressions!"); |
| |
| MainOpcode = BinOp->getOpcode(); |
| |
| const auto *BinOpLhs = cast<BinaryOperator>(BinOp->getLHS()); |
| const auto *BinOpRhs = cast<BinaryOperator>(BinOp->getRHS()); |
| |
| auto IsIntegerConstantExpr = [AstCtx](const Expr *E) { |
| return !E->isValueDependent() && E->isIntegerConstantExpr(*AstCtx); |
| }; |
| |
| LhsConst = IsIntegerConstantExpr(BinOpLhs->getLHS()) ? BinOpLhs->getLHS() |
| : BinOpLhs->getRHS(); |
| RhsConst = IsIntegerConstantExpr(BinOpRhs->getLHS()) ? BinOpRhs->getLHS() |
| : BinOpRhs->getRHS(); |
| |
| if (!LhsConst || !RhsConst) |
| return false; |
| |
| assert(BinOpLhs->getOpcode() == BinOpRhs->getOpcode() && |
| "Sides of the binary operator must be equivalent expressions!"); |
| |
| SideOpcode = BinOpLhs->getOpcode(); |
| |
| return true; |
| } |
| |
| static bool isSameRawIdentifierToken(const Token &T1, const Token &T2, |
| const SourceManager &SM) { |
| if (T1.getKind() != T2.getKind()) |
| return false; |
| if (T1.isNot(tok::raw_identifier)) |
| return true; |
| if (T1.getLength() != T2.getLength()) |
| return false; |
| return StringRef(SM.getCharacterData(T1.getLocation()), T1.getLength()) == |
| StringRef(SM.getCharacterData(T2.getLocation()), T2.getLength()); |
| } |
| |
| bool isTokAtEndOfExpr(SourceRange ExprSR, Token T, const SourceManager &SM) { |
| return SM.getExpansionLoc(ExprSR.getEnd()) == T.getLocation(); |
| } |
| |
| /// Returns true if both LhsEpxr and RhsExpr are |
| /// macro expressions and they are expanded |
| /// from different macros. |
| static bool areExprsFromDifferentMacros(const Expr *LhsExpr, |
| const Expr *RhsExpr, |
| const ASTContext *AstCtx) { |
| if (!LhsExpr || !RhsExpr) |
| return false; |
| SourceRange Lsr = LhsExpr->getSourceRange(); |
| SourceRange Rsr = RhsExpr->getSourceRange(); |
| if (!Lsr.getBegin().isMacroID() || !Rsr.getBegin().isMacroID()) |
| return false; |
| |
| const SourceManager &SM = AstCtx->getSourceManager(); |
| const LangOptions &LO = AstCtx->getLangOpts(); |
| |
| std::pair<FileID, unsigned> LsrLocInfo = |
| SM.getDecomposedLoc(SM.getExpansionLoc(Lsr.getBegin())); |
| std::pair<FileID, unsigned> RsrLocInfo = |
| SM.getDecomposedLoc(SM.getExpansionLoc(Rsr.getBegin())); |
| llvm::MemoryBufferRef MB = SM.getBufferOrFake(LsrLocInfo.first); |
| |
| const char *LTokenPos = MB.getBufferStart() + LsrLocInfo.second; |
| const char *RTokenPos = MB.getBufferStart() + RsrLocInfo.second; |
| Lexer LRawLex(SM.getLocForStartOfFile(LsrLocInfo.first), LO, |
| MB.getBufferStart(), LTokenPos, MB.getBufferEnd()); |
| Lexer RRawLex(SM.getLocForStartOfFile(RsrLocInfo.first), LO, |
| MB.getBufferStart(), RTokenPos, MB.getBufferEnd()); |
| |
| Token LTok, RTok; |
| do { // Compare the expressions token-by-token. |
| LRawLex.LexFromRawLexer(LTok); |
| RRawLex.LexFromRawLexer(RTok); |
| } while (!LTok.is(tok::eof) && !RTok.is(tok::eof) && |
| isSameRawIdentifierToken(LTok, RTok, SM) && |
| !isTokAtEndOfExpr(Lsr, LTok, SM) && |
| !isTokAtEndOfExpr(Rsr, RTok, SM)); |
| return (!isTokAtEndOfExpr(Lsr, LTok, SM) || |
| !isTokAtEndOfExpr(Rsr, RTok, SM)) || |
| !isSameRawIdentifierToken(LTok, RTok, SM); |
| } |
| |
| static bool areExprsMacroAndNonMacro(const Expr *&LhsExpr, |
| const Expr *&RhsExpr) { |
| if (!LhsExpr || !RhsExpr) |
| return false; |
| |
| SourceLocation LhsLoc = LhsExpr->getExprLoc(); |
| SourceLocation RhsLoc = RhsExpr->getExprLoc(); |
| |
| return LhsLoc.isMacroID() != RhsLoc.isMacroID(); |
| } |
| } // namespace |
| |
| void RedundantExpressionCheck::registerMatchers(MatchFinder *Finder) { |
| const auto AnyLiteralExpr = ignoringParenImpCasts( |
| anyOf(cxxBoolLiteral(), characterLiteral(), integerLiteral())); |
| |
| const auto BannedIntegerLiteral = |
| integerLiteral(expandedByMacro(KnownBannedMacroNames)); |
| |
| // Binary with equivalent operands, like (X != 2 && X != 2). |
| Finder->addMatcher( |
| traverse(ast_type_traits::TK_AsIs, |
| binaryOperator( |
| anyOf(isComparisonOperator(), |
| hasAnyOperatorName("-", "/", "%", "|", "&", "^", "&&", |
| "||", "=")), |
| operandsAreEquivalent(), |
| // Filter noisy false positives. |
| unless(isInTemplateInstantiation()), |
| unless(binaryOperatorIsInMacro()), |
| unless(hasType(realFloatingPointType())), |
| unless(hasEitherOperand(hasType(realFloatingPointType()))), |
| unless(hasLHS(AnyLiteralExpr)), |
| unless(hasDescendant(BannedIntegerLiteral))) |
| .bind("binary")), |
| this); |
| |
| // Logical or bitwise operator with equivalent nested operands, like (X && Y |
| // && X) or (X && (Y && X)) |
| Finder->addMatcher( |
| binaryOperator(hasAnyOperatorName("|", "&", "||", "&&", "^"), |
| nestedOperandsAreEquivalent(), |
| // Filter noisy false positives. |
| unless(isInTemplateInstantiation()), |
| unless(binaryOperatorIsInMacro()), |
| // TODO: if the banned macros are themselves duplicated |
| unless(hasDescendant(BannedIntegerLiteral))) |
| .bind("nested-duplicates"), |
| this); |
| |
| // Conditional (trenary) operator with equivalent operands, like (Y ? X : X). |
| Finder->addMatcher( |
| traverse(ast_type_traits::TK_AsIs, |
| conditionalOperator(expressionsAreEquivalent(), |
| // Filter noisy false positives. |
| unless(conditionalOperatorIsInMacro()), |
| unless(isInTemplateInstantiation())) |
| .bind("cond")), |
| this); |
| |
| // Overloaded operators with equivalent operands. |
| Finder->addMatcher( |
| traverse(ast_type_traits::TK_AsIs, |
| cxxOperatorCallExpr( |
| hasAnyOverloadedOperatorName("-", "/", "%", "|", "&", "^", |
| "==", "!=", "<", "<=", ">", |
| ">=", "&&", "||", "="), |
| parametersAreEquivalent(), |
| // Filter noisy false positives. |
| unless(isMacro()), unless(isInTemplateInstantiation())) |
| .bind("call")), |
| this); |
| |
| // Overloaded operators with equivalent operands. |
| Finder->addMatcher( |
| cxxOperatorCallExpr( |
| hasAnyOverloadedOperatorName("|", "&", "||", "&&", "^"), |
| nestedParametersAreEquivalent(), argumentCountIs(2), |
| // Filter noisy false positives. |
| unless(isMacro()), unless(isInTemplateInstantiation())) |
| .bind("nested-duplicates"), |
| this); |
| |
| // Match expressions like: !(1 | 2 | 3) |
| Finder->addMatcher( |
| traverse(ast_type_traits::TK_AsIs, |
| implicitCastExpr( |
| hasImplicitDestinationType(isInteger()), |
| has(unaryOperator( |
| hasOperatorName("!"), |
| hasUnaryOperand(ignoringParenImpCasts(binaryOperator( |
| hasAnyOperatorName("|", "&"), |
| hasLHS(anyOf( |
| binaryOperator(hasAnyOperatorName("|", "&")), |
| integerLiteral())), |
| hasRHS(integerLiteral()))))) |
| .bind("logical-bitwise-confusion")))), |
| this); |
| |
| // Match expressions like: (X << 8) & 0xFF |
| Finder->addMatcher( |
| traverse( |
| ast_type_traits::TK_AsIs, |
| binaryOperator( |
| hasOperatorName("&"), |
| hasOperands( |
| ignoringParenImpCasts( |
| binaryOperator(hasOperatorName("<<"), |
| hasRHS(ignoringParenImpCasts( |
| integerLiteral().bind("shift-const"))))), |
| ignoringParenImpCasts(integerLiteral().bind("and-const")))) |
| .bind("left-right-shift-confusion")), |
| this); |
| |
| // Match common expressions and apply more checks to find redundant |
| // sub-expressions. |
| // a) Expr <op> K1 == K2 |
| // b) Expr <op> K1 == Expr |
| // c) Expr <op> K1 == Expr <op> K2 |
| // see: 'checkArithmeticExpr' and 'checkBitwiseExpr' |
| const auto BinOpCstLeft = matchBinOpIntegerConstantExpr("lhs"); |
| const auto BinOpCstRight = matchBinOpIntegerConstantExpr("rhs"); |
| const auto CstRight = matchIntegerConstantExpr("rhs"); |
| const auto SymRight = matchSymbolicExpr("rhs"); |
| |
| // Match expressions like: x <op> 0xFF == 0xF00. |
| Finder->addMatcher(traverse(ast_type_traits::TK_AsIs, |
| binaryOperator(isComparisonOperator(), |
| hasOperands(BinOpCstLeft, |
| CstRight)) |
| .bind("binop-const-compare-to-const")), |
| this); |
| |
| // Match expressions like: x <op> 0xFF == x. |
| Finder->addMatcher( |
| traverse( |
| ast_type_traits::TK_AsIs, |
| binaryOperator(isComparisonOperator(), |
| anyOf(allOf(hasLHS(BinOpCstLeft), hasRHS(SymRight)), |
| allOf(hasLHS(SymRight), hasRHS(BinOpCstLeft)))) |
| .bind("binop-const-compare-to-sym")), |
| this); |
| |
| // Match expressions like: x <op> 10 == x <op> 12. |
| Finder->addMatcher( |
| traverse(ast_type_traits::TK_AsIs, |
| binaryOperator(isComparisonOperator(), hasLHS(BinOpCstLeft), |
| hasRHS(BinOpCstRight), |
| // Already reported as redundant. |
| unless(operandsAreEquivalent())) |
| .bind("binop-const-compare-to-binop-const")), |
| this); |
| |
| // Match relational expressions combined with logical operators and find |
| // redundant sub-expressions. |
| // see: 'checkRelationalExpr' |
| |
| // Match expressions like: x < 2 && x > 2. |
| const auto ComparisonLeft = matchRelationalIntegerConstantExpr("lhs"); |
| const auto ComparisonRight = matchRelationalIntegerConstantExpr("rhs"); |
| Finder->addMatcher( |
| traverse(ast_type_traits::TK_AsIs, |
| binaryOperator(hasAnyOperatorName("||", "&&"), |
| hasLHS(ComparisonLeft), hasRHS(ComparisonRight), |
| // Already reported as redundant. |
| unless(operandsAreEquivalent())) |
| .bind("comparisons-of-symbol-and-const")), |
| this); |
| } |
| |
| void RedundantExpressionCheck::checkArithmeticExpr( |
| const MatchFinder::MatchResult &Result) { |
| APSInt LhsValue, RhsValue; |
| const Expr *LhsSymbol = nullptr, *RhsSymbol = nullptr; |
| BinaryOperatorKind LhsOpcode, RhsOpcode; |
| |
| if (const auto *ComparisonOperator = Result.Nodes.getNodeAs<BinaryOperator>( |
| "binop-const-compare-to-sym")) { |
| BinaryOperatorKind Opcode = ComparisonOperator->getOpcode(); |
| if (!retrieveBinOpIntegerConstantExpr(Result, "lhs", LhsOpcode, LhsSymbol, |
| LhsValue) || |
| !retrieveSymbolicExpr(Result, "rhs", RhsSymbol) || |
| !areEquivalentExpr(LhsSymbol, RhsSymbol)) |
| return; |
| |
| // Check expressions: x + k == x or x - k == x. |
| if (LhsOpcode == BO_Add || LhsOpcode == BO_Sub) { |
| if ((LhsValue != 0 && Opcode == BO_EQ) || |
| (LhsValue == 0 && Opcode == BO_NE)) |
| diag(ComparisonOperator->getOperatorLoc(), |
| "logical expression is always false"); |
| else if ((LhsValue == 0 && Opcode == BO_EQ) || |
| (LhsValue != 0 && Opcode == BO_NE)) |
| diag(ComparisonOperator->getOperatorLoc(), |
| "logical expression is always true"); |
| } |
| } else if (const auto *ComparisonOperator = |
| Result.Nodes.getNodeAs<BinaryOperator>( |
| "binop-const-compare-to-binop-const")) { |
| BinaryOperatorKind Opcode = ComparisonOperator->getOpcode(); |
| |
| if (!retrieveBinOpIntegerConstantExpr(Result, "lhs", LhsOpcode, LhsSymbol, |
| LhsValue) || |
| !retrieveBinOpIntegerConstantExpr(Result, "rhs", RhsOpcode, RhsSymbol, |
| RhsValue) || |
| !areEquivalentExpr(LhsSymbol, RhsSymbol)) |
| return; |
| |
| transformSubToCanonicalAddExpr(LhsOpcode, LhsValue); |
| transformSubToCanonicalAddExpr(RhsOpcode, RhsValue); |
| |
| // Check expressions: x + 1 == x + 2 or x + 1 != x + 2. |
| if (LhsOpcode == BO_Add && RhsOpcode == BO_Add) { |
| if ((Opcode == BO_EQ && APSInt::compareValues(LhsValue, RhsValue) == 0) || |
| (Opcode == BO_NE && APSInt::compareValues(LhsValue, RhsValue) != 0)) { |
| diag(ComparisonOperator->getOperatorLoc(), |
| "logical expression is always true"); |
| } else if ((Opcode == BO_EQ && |
| APSInt::compareValues(LhsValue, RhsValue) != 0) || |
| (Opcode == BO_NE && |
| APSInt::compareValues(LhsValue, RhsValue) == 0)) { |
| diag(ComparisonOperator->getOperatorLoc(), |
| "logical expression is always false"); |
| } |
| } |
| } |
| } |
| |
| static bool exprEvaluatesToZero(BinaryOperatorKind Opcode, APSInt Value) { |
| return (Opcode == BO_And || Opcode == BO_AndAssign) && Value == 0; |
| } |
| |
| static bool exprEvaluatesToBitwiseNegatedZero(BinaryOperatorKind Opcode, |
| APSInt Value) { |
| return (Opcode == BO_Or || Opcode == BO_OrAssign) && ~Value == 0; |
| } |
| |
| static bool exprEvaluatesToSymbolic(BinaryOperatorKind Opcode, APSInt Value) { |
| return ((Opcode == BO_Or || Opcode == BO_OrAssign) && Value == 0) || |
| ((Opcode == BO_And || Opcode == BO_AndAssign) && ~Value == 0); |
| } |
| |
| |
| void RedundantExpressionCheck::checkBitwiseExpr( |
| const MatchFinder::MatchResult &Result) { |
| if (const auto *ComparisonOperator = Result.Nodes.getNodeAs<BinaryOperator>( |
| "binop-const-compare-to-const")) { |
| BinaryOperatorKind Opcode = ComparisonOperator->getOpcode(); |
| |
| APSInt LhsValue, RhsValue; |
| const Expr *LhsSymbol = nullptr; |
| BinaryOperatorKind LhsOpcode; |
| if (!retrieveBinOpIntegerConstantExpr(Result, "lhs", LhsOpcode, LhsSymbol, |
| LhsValue) || |
| !retrieveIntegerConstantExpr(Result, "rhs", RhsValue)) |
| return; |
| |
| uint64_t LhsConstant = LhsValue.getZExtValue(); |
| uint64_t RhsConstant = RhsValue.getZExtValue(); |
| SourceLocation Loc = ComparisonOperator->getOperatorLoc(); |
| |
| // Check expression: x & k1 == k2 (i.e. x & 0xFF == 0xF00) |
| if (LhsOpcode == BO_And && (LhsConstant & RhsConstant) != RhsConstant) { |
| if (Opcode == BO_EQ) |
| diag(Loc, "logical expression is always false"); |
| else if (Opcode == BO_NE) |
| diag(Loc, "logical expression is always true"); |
| } |
| |
| // Check expression: x | k1 == k2 (i.e. x | 0xFF == 0xF00) |
| if (LhsOpcode == BO_Or && (LhsConstant | RhsConstant) != RhsConstant) { |
| if (Opcode == BO_EQ) |
| diag(Loc, "logical expression is always false"); |
| else if (Opcode == BO_NE) |
| diag(Loc, "logical expression is always true"); |
| } |
| } else if (const auto *IneffectiveOperator = |
| Result.Nodes.getNodeAs<BinaryOperator>( |
| "ineffective-bitwise")) { |
| APSInt Value; |
| const Expr *Sym = nullptr, *ConstExpr = nullptr; |
| |
| if (!retrieveSymbolicExpr(Result, "ineffective-bitwise", Sym) || |
| !retrieveIntegerConstantExpr(Result, "ineffective-bitwise", Value, |
| ConstExpr)) |
| return; |
| |
| if((Value != 0 && ~Value != 0) || Sym->getExprLoc().isMacroID()) |
| return; |
| |
| SourceLocation Loc = IneffectiveOperator->getOperatorLoc(); |
| |
| BinaryOperatorKind Opcode = IneffectiveOperator->getOpcode(); |
| if (exprEvaluatesToZero(Opcode, Value)) { |
| diag(Loc, "expression always evaluates to 0"); |
| } else if (exprEvaluatesToBitwiseNegatedZero(Opcode, Value)) { |
| SourceRange ConstExprRange(ConstExpr->getBeginLoc(), |
| ConstExpr->getEndLoc()); |
| StringRef ConstExprText = Lexer::getSourceText( |
| CharSourceRange::getTokenRange(ConstExprRange), *Result.SourceManager, |
| Result.Context->getLangOpts()); |
| |
| diag(Loc, "expression always evaluates to '%0'") << ConstExprText; |
| |
| } else if (exprEvaluatesToSymbolic(Opcode, Value)) { |
| SourceRange SymExprRange(Sym->getBeginLoc(), Sym->getEndLoc()); |
| |
| StringRef ExprText = Lexer::getSourceText( |
| CharSourceRange::getTokenRange(SymExprRange), *Result.SourceManager, |
| Result.Context->getLangOpts()); |
| |
| diag(Loc, "expression always evaluates to '%0'") << ExprText; |
| } |
| } |
| } |
| |
| void RedundantExpressionCheck::checkRelationalExpr( |
| const MatchFinder::MatchResult &Result) { |
| if (const auto *ComparisonOperator = Result.Nodes.getNodeAs<BinaryOperator>( |
| "comparisons-of-symbol-and-const")) { |
| // Matched expressions are: (x <op> k1) <REL> (x <op> k2). |
| // E.g.: (X < 2) && (X > 4) |
| BinaryOperatorKind Opcode = ComparisonOperator->getOpcode(); |
| |
| const Expr *LhsExpr = nullptr, *RhsExpr = nullptr; |
| const Expr *LhsSymbol = nullptr, *RhsSymbol = nullptr; |
| const Expr *LhsConst = nullptr, *RhsConst = nullptr; |
| BinaryOperatorKind LhsOpcode, RhsOpcode; |
| APSInt LhsValue, RhsValue; |
| |
| if (!retrieveRelationalIntegerConstantExpr( |
| Result, "lhs", LhsExpr, LhsOpcode, LhsSymbol, LhsValue, LhsConst) || |
| !retrieveRelationalIntegerConstantExpr( |
| Result, "rhs", RhsExpr, RhsOpcode, RhsSymbol, RhsValue, RhsConst) || |
| !areEquivalentExpr(LhsSymbol, RhsSymbol)) |
| return; |
| |
| // Bring expr to a canonical form: smallest constant must be on the left. |
| if (APSInt::compareValues(LhsValue, RhsValue) > 0) { |
| std::swap(LhsExpr, RhsExpr); |
| std::swap(LhsValue, RhsValue); |
| std::swap(LhsSymbol, RhsSymbol); |
| std::swap(LhsOpcode, RhsOpcode); |
| } |
| |
| // Constants come from two different macros, or one of them is a macro. |
| if (areExprsFromDifferentMacros(LhsConst, RhsConst, Result.Context) || |
| areExprsMacroAndNonMacro(LhsConst, RhsConst)) |
| return; |
| |
| if ((Opcode == BO_LAnd || Opcode == BO_LOr) && |
| areEquivalentRanges(LhsOpcode, LhsValue, RhsOpcode, RhsValue)) { |
| diag(ComparisonOperator->getOperatorLoc(), |
| "equivalent expression on both sides of logical operator"); |
| return; |
| } |
| |
| if (Opcode == BO_LAnd) { |
| if (areExclusiveRanges(LhsOpcode, LhsValue, RhsOpcode, RhsValue)) { |
| diag(ComparisonOperator->getOperatorLoc(), |
| "logical expression is always false"); |
| } else if (rangeSubsumesRange(LhsOpcode, LhsValue, RhsOpcode, RhsValue)) { |
| diag(LhsExpr->getExprLoc(), "expression is redundant"); |
| } else if (rangeSubsumesRange(RhsOpcode, RhsValue, LhsOpcode, LhsValue)) { |
| diag(RhsExpr->getExprLoc(), "expression is redundant"); |
| } |
| } |
| |
| if (Opcode == BO_LOr) { |
| if (rangesFullyCoverDomain(LhsOpcode, LhsValue, RhsOpcode, RhsValue)) { |
| diag(ComparisonOperator->getOperatorLoc(), |
| "logical expression is always true"); |
| } else if (rangeSubsumesRange(LhsOpcode, LhsValue, RhsOpcode, RhsValue)) { |
| diag(RhsExpr->getExprLoc(), "expression is redundant"); |
| } else if (rangeSubsumesRange(RhsOpcode, RhsValue, LhsOpcode, LhsValue)) { |
| diag(LhsExpr->getExprLoc(), "expression is redundant"); |
| } |
| } |
| } |
| } |
| |
| void RedundantExpressionCheck::check(const MatchFinder::MatchResult &Result) { |
| if (const auto *BinOp = Result.Nodes.getNodeAs<BinaryOperator>("binary")) { |
| // If the expression's constants are macros, check whether they are |
| // intentional. |
| if (areSidesBinaryConstExpressions(BinOp, Result.Context)) { |
| const Expr *LhsConst = nullptr, *RhsConst = nullptr; |
| BinaryOperatorKind MainOpcode, SideOpcode; |
| |
| if (!retrieveConstExprFromBothSides(BinOp, MainOpcode, SideOpcode, |
| LhsConst, RhsConst, Result.Context)) |
| return; |
| |
| if (areExprsFromDifferentMacros(LhsConst, RhsConst, Result.Context) || |
| areExprsMacroAndNonMacro(LhsConst, RhsConst)) |
| return; |
| } |
| |
| diag(BinOp->getOperatorLoc(), "both sides of operator are equivalent"); |
| } |
| |
| if (const auto *CondOp = |
| Result.Nodes.getNodeAs<ConditionalOperator>("cond")) { |
| const Expr *TrueExpr = CondOp->getTrueExpr(); |
| const Expr *FalseExpr = CondOp->getFalseExpr(); |
| |
| if (areExprsFromDifferentMacros(TrueExpr, FalseExpr, Result.Context) || |
| areExprsMacroAndNonMacro(TrueExpr, FalseExpr)) |
| return; |
| diag(CondOp->getColonLoc(), |
| "'true' and 'false' expressions are equivalent"); |
| } |
| |
| if (const auto *Call = Result.Nodes.getNodeAs<CXXOperatorCallExpr>("call")) { |
| if (canOverloadedOperatorArgsBeModified(Call, true)) |
| return; |
| |
| diag(Call->getOperatorLoc(), |
| "both sides of overloaded operator are equivalent"); |
| } |
| |
| if (const auto *Op = Result.Nodes.getNodeAs<Expr>("nested-duplicates")) { |
| const auto *Call = dyn_cast<CXXOperatorCallExpr>(Op); |
| if (Call && canOverloadedOperatorArgsBeModified(Call, true)) |
| return; |
| |
| StringRef Message = |
| Call ? "overloaded operator has equivalent nested operands" |
| : "operator has equivalent nested operands"; |
| |
| const auto Diag = diag(Op->getExprLoc(), Message); |
| for (const auto &KeyValue : Result.Nodes.getMap()) { |
| if (StringRef(KeyValue.first).startswith("duplicate")) |
| Diag << KeyValue.second.getSourceRange(); |
| } |
| } |
| |
| if (const auto *NegateOperator = |
| Result.Nodes.getNodeAs<UnaryOperator>("logical-bitwise-confusion")) { |
| SourceLocation OperatorLoc = NegateOperator->getOperatorLoc(); |
| |
| auto Diag = |
| diag(OperatorLoc, |
| "ineffective logical negation operator used; did you mean '~'?"); |
| SourceLocation LogicalNotLocation = OperatorLoc.getLocWithOffset(1); |
| |
| if (!LogicalNotLocation.isMacroID()) |
| Diag << FixItHint::CreateReplacement( |
| CharSourceRange::getCharRange(OperatorLoc, LogicalNotLocation), "~"); |
| } |
| |
| if (const auto *BinaryAndExpr = Result.Nodes.getNodeAs<BinaryOperator>( |
| "left-right-shift-confusion")) { |
| const auto *ShiftingConst = Result.Nodes.getNodeAs<Expr>("shift-const"); |
| assert(ShiftingConst && "Expr* 'ShiftingConst' is nullptr!"); |
| Optional<llvm::APSInt> ShiftingValue = |
| ShiftingConst->getIntegerConstantExpr(*Result.Context); |
| |
| if (!ShiftingValue) |
| return; |
| |
| const auto *AndConst = Result.Nodes.getNodeAs<Expr>("and-const"); |
| assert(AndConst && "Expr* 'AndCont' is nullptr!"); |
| Optional<llvm::APSInt> AndValue = |
| AndConst->getIntegerConstantExpr(*Result.Context); |
| if (!AndValue) |
| return; |
| |
| // If ShiftingConst is shifted left with more bits than the position of the |
| // leftmost 1 in the bit representation of AndValue, AndConstant is |
| // ineffective. |
| if (AndValue->getActiveBits() > *ShiftingValue) |
| return; |
| |
| auto Diag = diag(BinaryAndExpr->getOperatorLoc(), |
| "ineffective bitwise and operation"); |
| } |
| |
| // Check for the following bound expressions: |
| // - "binop-const-compare-to-sym", |
| // - "binop-const-compare-to-binop-const", |
| // Produced message: |
| // -> "logical expression is always false/true" |
| checkArithmeticExpr(Result); |
| |
| // Check for the following bound expression: |
| // - "binop-const-compare-to-const", |
| // - "ineffective-bitwise" |
| // Produced message: |
| // -> "logical expression is always false/true" |
| // -> "expression always evaluates to ..." |
| checkBitwiseExpr(Result); |
| |
| // Check for te following bound expression: |
| // - "comparisons-of-symbol-and-const", |
| // Produced messages: |
| // -> "equivalent expression on both sides of logical operator", |
| // -> "logical expression is always false/true" |
| // -> "expression is redundant" |
| checkRelationalExpr(Result); |
| } |
| |
| } // namespace misc |
| } // namespace tidy |
| } // namespace clang |