| //===--- SemaDeclAttr.cpp - Declaration Attribute Handling ----------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements decl-related attribute processing. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/AST/ASTConsumer.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/ASTMutationListener.h" |
| #include "clang/AST/CXXInheritance.h" |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/DeclTemplate.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/Mangle.h" |
| #include "clang/AST/RecursiveASTVisitor.h" |
| #include "clang/AST/Type.h" |
| #include "clang/Basic/CharInfo.h" |
| #include "clang/Basic/SourceManager.h" |
| #include "clang/Basic/TargetBuiltins.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "clang/Lex/Preprocessor.h" |
| #include "clang/Sema/DeclSpec.h" |
| #include "clang/Sema/DelayedDiagnostic.h" |
| #include "clang/Sema/Initialization.h" |
| #include "clang/Sema/Lookup.h" |
| #include "clang/Sema/ParsedAttr.h" |
| #include "clang/Sema/Scope.h" |
| #include "clang/Sema/ScopeInfo.h" |
| #include "clang/Sema/SemaInternal.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| using namespace clang; |
| using namespace sema; |
| |
| namespace AttributeLangSupport { |
| enum LANG { |
| C, |
| Cpp, |
| ObjC |
| }; |
| } // end namespace AttributeLangSupport |
| |
| //===----------------------------------------------------------------------===// |
| // Helper functions |
| //===----------------------------------------------------------------------===// |
| |
| /// isFunctionOrMethod - Return true if the given decl has function |
| /// type (function or function-typed variable) or an Objective-C |
| /// method. |
| static bool isFunctionOrMethod(const Decl *D) { |
| return (D->getFunctionType() != nullptr) || isa<ObjCMethodDecl>(D); |
| } |
| |
| /// Return true if the given decl has function type (function or |
| /// function-typed variable) or an Objective-C method or a block. |
| static bool isFunctionOrMethodOrBlock(const Decl *D) { |
| return isFunctionOrMethod(D) || isa<BlockDecl>(D); |
| } |
| |
| /// Return true if the given decl has a declarator that should have |
| /// been processed by Sema::GetTypeForDeclarator. |
| static bool hasDeclarator(const Decl *D) { |
| // In some sense, TypedefDecl really *ought* to be a DeclaratorDecl. |
| return isa<DeclaratorDecl>(D) || isa<BlockDecl>(D) || isa<TypedefNameDecl>(D) || |
| isa<ObjCPropertyDecl>(D); |
| } |
| |
| /// hasFunctionProto - Return true if the given decl has a argument |
| /// information. This decl should have already passed |
| /// isFunctionOrMethod or isFunctionOrMethodOrBlock. |
| static bool hasFunctionProto(const Decl *D) { |
| if (const FunctionType *FnTy = D->getFunctionType()) |
| return isa<FunctionProtoType>(FnTy); |
| return isa<ObjCMethodDecl>(D) || isa<BlockDecl>(D); |
| } |
| |
| /// getFunctionOrMethodNumParams - Return number of function or method |
| /// parameters. It is an error to call this on a K&R function (use |
| /// hasFunctionProto first). |
| static unsigned getFunctionOrMethodNumParams(const Decl *D) { |
| if (const FunctionType *FnTy = D->getFunctionType()) |
| return cast<FunctionProtoType>(FnTy)->getNumParams(); |
| if (const auto *BD = dyn_cast<BlockDecl>(D)) |
| return BD->getNumParams(); |
| return cast<ObjCMethodDecl>(D)->param_size(); |
| } |
| |
| static const ParmVarDecl *getFunctionOrMethodParam(const Decl *D, |
| unsigned Idx) { |
| if (const auto *FD = dyn_cast<FunctionDecl>(D)) |
| return FD->getParamDecl(Idx); |
| if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) |
| return MD->getParamDecl(Idx); |
| if (const auto *BD = dyn_cast<BlockDecl>(D)) |
| return BD->getParamDecl(Idx); |
| return nullptr; |
| } |
| |
| static QualType getFunctionOrMethodParamType(const Decl *D, unsigned Idx) { |
| if (const FunctionType *FnTy = D->getFunctionType()) |
| return cast<FunctionProtoType>(FnTy)->getParamType(Idx); |
| if (const auto *BD = dyn_cast<BlockDecl>(D)) |
| return BD->getParamDecl(Idx)->getType(); |
| |
| return cast<ObjCMethodDecl>(D)->parameters()[Idx]->getType(); |
| } |
| |
| static SourceRange getFunctionOrMethodParamRange(const Decl *D, unsigned Idx) { |
| if (auto *PVD = getFunctionOrMethodParam(D, Idx)) |
| return PVD->getSourceRange(); |
| return SourceRange(); |
| } |
| |
| static QualType getFunctionOrMethodResultType(const Decl *D) { |
| if (const FunctionType *FnTy = D->getFunctionType()) |
| return FnTy->getReturnType(); |
| return cast<ObjCMethodDecl>(D)->getReturnType(); |
| } |
| |
| static SourceRange getFunctionOrMethodResultSourceRange(const Decl *D) { |
| if (const auto *FD = dyn_cast<FunctionDecl>(D)) |
| return FD->getReturnTypeSourceRange(); |
| if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) |
| return MD->getReturnTypeSourceRange(); |
| return SourceRange(); |
| } |
| |
| static bool isFunctionOrMethodVariadic(const Decl *D) { |
| if (const FunctionType *FnTy = D->getFunctionType()) |
| return cast<FunctionProtoType>(FnTy)->isVariadic(); |
| if (const auto *BD = dyn_cast<BlockDecl>(D)) |
| return BD->isVariadic(); |
| return cast<ObjCMethodDecl>(D)->isVariadic(); |
| } |
| |
| static bool isInstanceMethod(const Decl *D) { |
| if (const auto *MethodDecl = dyn_cast<CXXMethodDecl>(D)) |
| return MethodDecl->isInstance(); |
| return false; |
| } |
| |
| static inline bool isNSStringType(QualType T, ASTContext &Ctx) { |
| const auto *PT = T->getAs<ObjCObjectPointerType>(); |
| if (!PT) |
| return false; |
| |
| ObjCInterfaceDecl *Cls = PT->getObjectType()->getInterface(); |
| if (!Cls) |
| return false; |
| |
| IdentifierInfo* ClsName = Cls->getIdentifier(); |
| |
| // FIXME: Should we walk the chain of classes? |
| return ClsName == &Ctx.Idents.get("NSString") || |
| ClsName == &Ctx.Idents.get("NSMutableString"); |
| } |
| |
| static inline bool isCFStringType(QualType T, ASTContext &Ctx) { |
| const auto *PT = T->getAs<PointerType>(); |
| if (!PT) |
| return false; |
| |
| const auto *RT = PT->getPointeeType()->getAs<RecordType>(); |
| if (!RT) |
| return false; |
| |
| const RecordDecl *RD = RT->getDecl(); |
| if (RD->getTagKind() != TTK_Struct) |
| return false; |
| |
| return RD->getIdentifier() == &Ctx.Idents.get("__CFString"); |
| } |
| |
| static unsigned getNumAttributeArgs(const ParsedAttr &AL) { |
| // FIXME: Include the type in the argument list. |
| return AL.getNumArgs() + AL.hasParsedType(); |
| } |
| |
| template <typename Compare> |
| static bool checkAttributeNumArgsImpl(Sema &S, const ParsedAttr &AL, |
| unsigned Num, unsigned Diag, |
| Compare Comp) { |
| if (Comp(getNumAttributeArgs(AL), Num)) { |
| S.Diag(AL.getLoc(), Diag) << AL << Num; |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// Check if the attribute has exactly as many args as Num. May |
| /// output an error. |
| static bool checkAttributeNumArgs(Sema &S, const ParsedAttr &AL, unsigned Num) { |
| return checkAttributeNumArgsImpl(S, AL, Num, |
| diag::err_attribute_wrong_number_arguments, |
| std::not_equal_to<unsigned>()); |
| } |
| |
| /// Check if the attribute has at least as many args as Num. May |
| /// output an error. |
| static bool checkAttributeAtLeastNumArgs(Sema &S, const ParsedAttr &AL, |
| unsigned Num) { |
| return checkAttributeNumArgsImpl(S, AL, Num, |
| diag::err_attribute_too_few_arguments, |
| std::less<unsigned>()); |
| } |
| |
| /// Check if the attribute has at most as many args as Num. May |
| /// output an error. |
| static bool checkAttributeAtMostNumArgs(Sema &S, const ParsedAttr &AL, |
| unsigned Num) { |
| return checkAttributeNumArgsImpl(S, AL, Num, |
| diag::err_attribute_too_many_arguments, |
| std::greater<unsigned>()); |
| } |
| |
| /// A helper function to provide Attribute Location for the Attr types |
| /// AND the ParsedAttr. |
| template <typename AttrInfo> |
| static std::enable_if_t<std::is_base_of<Attr, AttrInfo>::value, SourceLocation> |
| getAttrLoc(const AttrInfo &AL) { |
| return AL.getLocation(); |
| } |
| static SourceLocation getAttrLoc(const ParsedAttr &AL) { return AL.getLoc(); } |
| |
| /// If Expr is a valid integer constant, get the value of the integer |
| /// expression and return success or failure. May output an error. |
| /// |
| /// Negative argument is implicitly converted to unsigned, unless |
| /// \p StrictlyUnsigned is true. |
| template <typename AttrInfo> |
| static bool checkUInt32Argument(Sema &S, const AttrInfo &AI, const Expr *Expr, |
| uint32_t &Val, unsigned Idx = UINT_MAX, |
| bool StrictlyUnsigned = false) { |
| Optional<llvm::APSInt> I = llvm::APSInt(32); |
| if (Expr->isTypeDependent() || Expr->isValueDependent() || |
| !(I = Expr->getIntegerConstantExpr(S.Context))) { |
| if (Idx != UINT_MAX) |
| S.Diag(getAttrLoc(AI), diag::err_attribute_argument_n_type) |
| << &AI << Idx << AANT_ArgumentIntegerConstant |
| << Expr->getSourceRange(); |
| else |
| S.Diag(getAttrLoc(AI), diag::err_attribute_argument_type) |
| << &AI << AANT_ArgumentIntegerConstant << Expr->getSourceRange(); |
| return false; |
| } |
| |
| if (!I->isIntN(32)) { |
| S.Diag(Expr->getExprLoc(), diag::err_ice_too_large) |
| << I->toString(10, false) << 32 << /* Unsigned */ 1; |
| return false; |
| } |
| |
| if (StrictlyUnsigned && I->isSigned() && I->isNegative()) { |
| S.Diag(getAttrLoc(AI), diag::err_attribute_requires_positive_integer) |
| << &AI << /*non-negative*/ 1; |
| return false; |
| } |
| |
| Val = (uint32_t)I->getZExtValue(); |
| return true; |
| } |
| |
| /// Wrapper around checkUInt32Argument, with an extra check to be sure |
| /// that the result will fit into a regular (signed) int. All args have the same |
| /// purpose as they do in checkUInt32Argument. |
| template <typename AttrInfo> |
| static bool checkPositiveIntArgument(Sema &S, const AttrInfo &AI, const Expr *Expr, |
| int &Val, unsigned Idx = UINT_MAX) { |
| uint32_t UVal; |
| if (!checkUInt32Argument(S, AI, Expr, UVal, Idx)) |
| return false; |
| |
| if (UVal > (uint32_t)std::numeric_limits<int>::max()) { |
| llvm::APSInt I(32); // for toString |
| I = UVal; |
| S.Diag(Expr->getExprLoc(), diag::err_ice_too_large) |
| << I.toString(10, false) << 32 << /* Unsigned */ 0; |
| return false; |
| } |
| |
| Val = UVal; |
| return true; |
| } |
| |
| /// Diagnose mutually exclusive attributes when present on a given |
| /// declaration. Returns true if diagnosed. |
| template <typename AttrTy> |
| static bool checkAttrMutualExclusion(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (const auto *A = D->getAttr<AttrTy>()) { |
| S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) << AL << A; |
| S.Diag(A->getLocation(), diag::note_conflicting_attribute); |
| return true; |
| } |
| return false; |
| } |
| |
| template <typename AttrTy> |
| static bool checkAttrMutualExclusion(Sema &S, Decl *D, const Attr &AL) { |
| if (const auto *A = D->getAttr<AttrTy>()) { |
| S.Diag(AL.getLocation(), diag::err_attributes_are_not_compatible) << &AL |
| << A; |
| S.Diag(A->getLocation(), diag::note_conflicting_attribute); |
| return true; |
| } |
| return false; |
| } |
| |
| /// Check if IdxExpr is a valid parameter index for a function or |
| /// instance method D. May output an error. |
| /// |
| /// \returns true if IdxExpr is a valid index. |
| template <typename AttrInfo> |
| static bool checkFunctionOrMethodParameterIndex( |
| Sema &S, const Decl *D, const AttrInfo &AI, unsigned AttrArgNum, |
| const Expr *IdxExpr, ParamIdx &Idx, bool CanIndexImplicitThis = false) { |
| assert(isFunctionOrMethodOrBlock(D)); |
| |
| // In C++ the implicit 'this' function parameter also counts. |
| // Parameters are counted from one. |
| bool HP = hasFunctionProto(D); |
| bool HasImplicitThisParam = isInstanceMethod(D); |
| bool IV = HP && isFunctionOrMethodVariadic(D); |
| unsigned NumParams = |
| (HP ? getFunctionOrMethodNumParams(D) : 0) + HasImplicitThisParam; |
| |
| Optional<llvm::APSInt> IdxInt; |
| if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent() || |
| !(IdxInt = IdxExpr->getIntegerConstantExpr(S.Context))) { |
| S.Diag(getAttrLoc(AI), diag::err_attribute_argument_n_type) |
| << &AI << AttrArgNum << AANT_ArgumentIntegerConstant |
| << IdxExpr->getSourceRange(); |
| return false; |
| } |
| |
| unsigned IdxSource = IdxInt->getLimitedValue(UINT_MAX); |
| if (IdxSource < 1 || (!IV && IdxSource > NumParams)) { |
| S.Diag(getAttrLoc(AI), diag::err_attribute_argument_out_of_bounds) |
| << &AI << AttrArgNum << IdxExpr->getSourceRange(); |
| return false; |
| } |
| if (HasImplicitThisParam && !CanIndexImplicitThis) { |
| if (IdxSource == 1) { |
| S.Diag(getAttrLoc(AI), diag::err_attribute_invalid_implicit_this_argument) |
| << &AI << IdxExpr->getSourceRange(); |
| return false; |
| } |
| } |
| |
| Idx = ParamIdx(IdxSource, D); |
| return true; |
| } |
| |
| /// Check if the argument \p ArgNum of \p Attr is a ASCII string literal. |
| /// If not emit an error and return false. If the argument is an identifier it |
| /// will emit an error with a fixit hint and treat it as if it was a string |
| /// literal. |
| bool Sema::checkStringLiteralArgumentAttr(const ParsedAttr &AL, unsigned ArgNum, |
| StringRef &Str, |
| SourceLocation *ArgLocation) { |
| // Look for identifiers. If we have one emit a hint to fix it to a literal. |
| if (AL.isArgIdent(ArgNum)) { |
| IdentifierLoc *Loc = AL.getArgAsIdent(ArgNum); |
| Diag(Loc->Loc, diag::err_attribute_argument_type) |
| << AL << AANT_ArgumentString |
| << FixItHint::CreateInsertion(Loc->Loc, "\"") |
| << FixItHint::CreateInsertion(getLocForEndOfToken(Loc->Loc), "\""); |
| Str = Loc->Ident->getName(); |
| if (ArgLocation) |
| *ArgLocation = Loc->Loc; |
| return true; |
| } |
| |
| // Now check for an actual string literal. |
| Expr *ArgExpr = AL.getArgAsExpr(ArgNum); |
| const auto *Literal = dyn_cast<StringLiteral>(ArgExpr->IgnoreParenCasts()); |
| if (ArgLocation) |
| *ArgLocation = ArgExpr->getBeginLoc(); |
| |
| if (!Literal || !Literal->isAscii()) { |
| Diag(ArgExpr->getBeginLoc(), diag::err_attribute_argument_type) |
| << AL << AANT_ArgumentString; |
| return false; |
| } |
| |
| Str = Literal->getString(); |
| return true; |
| } |
| |
| /// Applies the given attribute to the Decl without performing any |
| /// additional semantic checking. |
| template <typename AttrType> |
| static void handleSimpleAttribute(Sema &S, Decl *D, |
| const AttributeCommonInfo &CI) { |
| D->addAttr(::new (S.Context) AttrType(S.Context, CI)); |
| } |
| |
| template <typename... DiagnosticArgs> |
| static const Sema::SemaDiagnosticBuilder& |
| appendDiagnostics(const Sema::SemaDiagnosticBuilder &Bldr) { |
| return Bldr; |
| } |
| |
| template <typename T, typename... DiagnosticArgs> |
| static const Sema::SemaDiagnosticBuilder& |
| appendDiagnostics(const Sema::SemaDiagnosticBuilder &Bldr, T &&ExtraArg, |
| DiagnosticArgs &&... ExtraArgs) { |
| return appendDiagnostics(Bldr << std::forward<T>(ExtraArg), |
| std::forward<DiagnosticArgs>(ExtraArgs)...); |
| } |
| |
| /// Add an attribute {@code AttrType} to declaration {@code D}, provided that |
| /// {@code PassesCheck} is true. |
| /// Otherwise, emit diagnostic {@code DiagID}, passing in all parameters |
| /// specified in {@code ExtraArgs}. |
| template <typename AttrType, typename... DiagnosticArgs> |
| static void handleSimpleAttributeOrDiagnose(Sema &S, Decl *D, |
| const AttributeCommonInfo &CI, |
| bool PassesCheck, unsigned DiagID, |
| DiagnosticArgs &&... ExtraArgs) { |
| if (!PassesCheck) { |
| Sema::SemaDiagnosticBuilder DB = S.Diag(D->getBeginLoc(), DiagID); |
| appendDiagnostics(DB, std::forward<DiagnosticArgs>(ExtraArgs)...); |
| return; |
| } |
| handleSimpleAttribute<AttrType>(S, D, CI); |
| } |
| |
| template <typename AttrType> |
| static void handleSimpleAttributeWithExclusions(Sema &S, Decl *D, |
| const ParsedAttr &AL) { |
| handleSimpleAttribute<AttrType>(S, D, AL); |
| } |
| |
| /// Applies the given attribute to the Decl so long as the Decl doesn't |
| /// already have one of the given incompatible attributes. |
| template <typename AttrType, typename IncompatibleAttrType, |
| typename... IncompatibleAttrTypes> |
| static void handleSimpleAttributeWithExclusions(Sema &S, Decl *D, |
| const ParsedAttr &AL) { |
| if (checkAttrMutualExclusion<IncompatibleAttrType>(S, D, AL)) |
| return; |
| handleSimpleAttributeWithExclusions<AttrType, IncompatibleAttrTypes...>(S, D, |
| AL); |
| } |
| |
| /// Check if the passed-in expression is of type int or bool. |
| static bool isIntOrBool(Expr *Exp) { |
| QualType QT = Exp->getType(); |
| return QT->isBooleanType() || QT->isIntegerType(); |
| } |
| |
| |
| // Check to see if the type is a smart pointer of some kind. We assume |
| // it's a smart pointer if it defines both operator-> and operator*. |
| static bool threadSafetyCheckIsSmartPointer(Sema &S, const RecordType* RT) { |
| auto IsOverloadedOperatorPresent = [&S](const RecordDecl *Record, |
| OverloadedOperatorKind Op) { |
| DeclContextLookupResult Result = |
| Record->lookup(S.Context.DeclarationNames.getCXXOperatorName(Op)); |
| return !Result.empty(); |
| }; |
| |
| const RecordDecl *Record = RT->getDecl(); |
| bool foundStarOperator = IsOverloadedOperatorPresent(Record, OO_Star); |
| bool foundArrowOperator = IsOverloadedOperatorPresent(Record, OO_Arrow); |
| if (foundStarOperator && foundArrowOperator) |
| return true; |
| |
| const CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record); |
| if (!CXXRecord) |
| return false; |
| |
| for (auto BaseSpecifier : CXXRecord->bases()) { |
| if (!foundStarOperator) |
| foundStarOperator = IsOverloadedOperatorPresent( |
| BaseSpecifier.getType()->getAsRecordDecl(), OO_Star); |
| if (!foundArrowOperator) |
| foundArrowOperator = IsOverloadedOperatorPresent( |
| BaseSpecifier.getType()->getAsRecordDecl(), OO_Arrow); |
| } |
| |
| if (foundStarOperator && foundArrowOperator) |
| return true; |
| |
| return false; |
| } |
| |
| /// Check if passed in Decl is a pointer type. |
| /// Note that this function may produce an error message. |
| /// \return true if the Decl is a pointer type; false otherwise |
| static bool threadSafetyCheckIsPointer(Sema &S, const Decl *D, |
| const ParsedAttr &AL) { |
| const auto *VD = cast<ValueDecl>(D); |
| QualType QT = VD->getType(); |
| if (QT->isAnyPointerType()) |
| return true; |
| |
| if (const auto *RT = QT->getAs<RecordType>()) { |
| // If it's an incomplete type, it could be a smart pointer; skip it. |
| // (We don't want to force template instantiation if we can avoid it, |
| // since that would alter the order in which templates are instantiated.) |
| if (RT->isIncompleteType()) |
| return true; |
| |
| if (threadSafetyCheckIsSmartPointer(S, RT)) |
| return true; |
| } |
| |
| S.Diag(AL.getLoc(), diag::warn_thread_attribute_decl_not_pointer) << AL << QT; |
| return false; |
| } |
| |
| /// Checks that the passed in QualType either is of RecordType or points |
| /// to RecordType. Returns the relevant RecordType, null if it does not exit. |
| static const RecordType *getRecordType(QualType QT) { |
| if (const auto *RT = QT->getAs<RecordType>()) |
| return RT; |
| |
| // Now check if we point to record type. |
| if (const auto *PT = QT->getAs<PointerType>()) |
| return PT->getPointeeType()->getAs<RecordType>(); |
| |
| return nullptr; |
| } |
| |
| template <typename AttrType> |
| static bool checkRecordDeclForAttr(const RecordDecl *RD) { |
| // Check if the record itself has the attribute. |
| if (RD->hasAttr<AttrType>()) |
| return true; |
| |
| // Else check if any base classes have the attribute. |
| if (const auto *CRD = dyn_cast<CXXRecordDecl>(RD)) { |
| CXXBasePaths BPaths(false, false); |
| if (CRD->lookupInBases( |
| [](const CXXBaseSpecifier *BS, CXXBasePath &) { |
| const auto &Ty = *BS->getType(); |
| // If it's type-dependent, we assume it could have the attribute. |
| if (Ty.isDependentType()) |
| return true; |
| return Ty.castAs<RecordType>()->getDecl()->hasAttr<AttrType>(); |
| }, |
| BPaths, true)) |
| return true; |
| } |
| return false; |
| } |
| |
| static bool checkRecordTypeForCapability(Sema &S, QualType Ty) { |
| const RecordType *RT = getRecordType(Ty); |
| |
| if (!RT) |
| return false; |
| |
| // Don't check for the capability if the class hasn't been defined yet. |
| if (RT->isIncompleteType()) |
| return true; |
| |
| // Allow smart pointers to be used as capability objects. |
| // FIXME -- Check the type that the smart pointer points to. |
| if (threadSafetyCheckIsSmartPointer(S, RT)) |
| return true; |
| |
| return checkRecordDeclForAttr<CapabilityAttr>(RT->getDecl()); |
| } |
| |
| static bool checkTypedefTypeForCapability(QualType Ty) { |
| const auto *TD = Ty->getAs<TypedefType>(); |
| if (!TD) |
| return false; |
| |
| TypedefNameDecl *TN = TD->getDecl(); |
| if (!TN) |
| return false; |
| |
| return TN->hasAttr<CapabilityAttr>(); |
| } |
| |
| static bool typeHasCapability(Sema &S, QualType Ty) { |
| if (checkTypedefTypeForCapability(Ty)) |
| return true; |
| |
| if (checkRecordTypeForCapability(S, Ty)) |
| return true; |
| |
| return false; |
| } |
| |
| static bool isCapabilityExpr(Sema &S, const Expr *Ex) { |
| // Capability expressions are simple expressions involving the boolean logic |
| // operators &&, || or !, a simple DeclRefExpr, CastExpr or a ParenExpr. Once |
| // a DeclRefExpr is found, its type should be checked to determine whether it |
| // is a capability or not. |
| |
| if (const auto *E = dyn_cast<CastExpr>(Ex)) |
| return isCapabilityExpr(S, E->getSubExpr()); |
| else if (const auto *E = dyn_cast<ParenExpr>(Ex)) |
| return isCapabilityExpr(S, E->getSubExpr()); |
| else if (const auto *E = dyn_cast<UnaryOperator>(Ex)) { |
| if (E->getOpcode() == UO_LNot || E->getOpcode() == UO_AddrOf || |
| E->getOpcode() == UO_Deref) |
| return isCapabilityExpr(S, E->getSubExpr()); |
| return false; |
| } else if (const auto *E = dyn_cast<BinaryOperator>(Ex)) { |
| if (E->getOpcode() == BO_LAnd || E->getOpcode() == BO_LOr) |
| return isCapabilityExpr(S, E->getLHS()) && |
| isCapabilityExpr(S, E->getRHS()); |
| return false; |
| } |
| |
| return typeHasCapability(S, Ex->getType()); |
| } |
| |
| /// Checks that all attribute arguments, starting from Sidx, resolve to |
| /// a capability object. |
| /// \param Sidx The attribute argument index to start checking with. |
| /// \param ParamIdxOk Whether an argument can be indexing into a function |
| /// parameter list. |
| static void checkAttrArgsAreCapabilityObjs(Sema &S, Decl *D, |
| const ParsedAttr &AL, |
| SmallVectorImpl<Expr *> &Args, |
| unsigned Sidx = 0, |
| bool ParamIdxOk = false) { |
| if (Sidx == AL.getNumArgs()) { |
| // If we don't have any capability arguments, the attribute implicitly |
| // refers to 'this'. So we need to make sure that 'this' exists, i.e. we're |
| // a non-static method, and that the class is a (scoped) capability. |
| const auto *MD = dyn_cast<const CXXMethodDecl>(D); |
| if (MD && !MD->isStatic()) { |
| const CXXRecordDecl *RD = MD->getParent(); |
| // FIXME -- need to check this again on template instantiation |
| if (!checkRecordDeclForAttr<CapabilityAttr>(RD) && |
| !checkRecordDeclForAttr<ScopedLockableAttr>(RD)) |
| S.Diag(AL.getLoc(), |
| diag::warn_thread_attribute_not_on_capability_member) |
| << AL << MD->getParent(); |
| } else { |
| S.Diag(AL.getLoc(), diag::warn_thread_attribute_not_on_non_static_member) |
| << AL; |
| } |
| } |
| |
| for (unsigned Idx = Sidx; Idx < AL.getNumArgs(); ++Idx) { |
| Expr *ArgExp = AL.getArgAsExpr(Idx); |
| |
| if (ArgExp->isTypeDependent()) { |
| // FIXME -- need to check this again on template instantiation |
| Args.push_back(ArgExp); |
| continue; |
| } |
| |
| if (const auto *StrLit = dyn_cast<StringLiteral>(ArgExp)) { |
| if (StrLit->getLength() == 0 || |
| (StrLit->isAscii() && StrLit->getString() == StringRef("*"))) { |
| // Pass empty strings to the analyzer without warnings. |
| // Treat "*" as the universal lock. |
| Args.push_back(ArgExp); |
| continue; |
| } |
| |
| // We allow constant strings to be used as a placeholder for expressions |
| // that are not valid C++ syntax, but warn that they are ignored. |
| S.Diag(AL.getLoc(), diag::warn_thread_attribute_ignored) << AL; |
| Args.push_back(ArgExp); |
| continue; |
| } |
| |
| QualType ArgTy = ArgExp->getType(); |
| |
| // A pointer to member expression of the form &MyClass::mu is treated |
| // specially -- we need to look at the type of the member. |
| if (const auto *UOp = dyn_cast<UnaryOperator>(ArgExp)) |
| if (UOp->getOpcode() == UO_AddrOf) |
| if (const auto *DRE = dyn_cast<DeclRefExpr>(UOp->getSubExpr())) |
| if (DRE->getDecl()->isCXXInstanceMember()) |
| ArgTy = DRE->getDecl()->getType(); |
| |
| // First see if we can just cast to record type, or pointer to record type. |
| const RecordType *RT = getRecordType(ArgTy); |
| |
| // Now check if we index into a record type function param. |
| if(!RT && ParamIdxOk) { |
| const auto *FD = dyn_cast<FunctionDecl>(D); |
| const auto *IL = dyn_cast<IntegerLiteral>(ArgExp); |
| if(FD && IL) { |
| unsigned int NumParams = FD->getNumParams(); |
| llvm::APInt ArgValue = IL->getValue(); |
| uint64_t ParamIdxFromOne = ArgValue.getZExtValue(); |
| uint64_t ParamIdxFromZero = ParamIdxFromOne - 1; |
| if (!ArgValue.isStrictlyPositive() || ParamIdxFromOne > NumParams) { |
| S.Diag(AL.getLoc(), |
| diag::err_attribute_argument_out_of_bounds_extra_info) |
| << AL << Idx + 1 << NumParams; |
| continue; |
| } |
| ArgTy = FD->getParamDecl(ParamIdxFromZero)->getType(); |
| } |
| } |
| |
| // If the type does not have a capability, see if the components of the |
| // expression have capabilities. This allows for writing C code where the |
| // capability may be on the type, and the expression is a capability |
| // boolean logic expression. Eg) requires_capability(A || B && !C) |
| if (!typeHasCapability(S, ArgTy) && !isCapabilityExpr(S, ArgExp)) |
| S.Diag(AL.getLoc(), diag::warn_thread_attribute_argument_not_lockable) |
| << AL << ArgTy; |
| |
| Args.push_back(ArgExp); |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Attribute Implementations |
| //===----------------------------------------------------------------------===// |
| |
| static void handlePtGuardedVarAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (!threadSafetyCheckIsPointer(S, D, AL)) |
| return; |
| |
| D->addAttr(::new (S.Context) PtGuardedVarAttr(S.Context, AL)); |
| } |
| |
| static bool checkGuardedByAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, |
| Expr *&Arg) { |
| SmallVector<Expr *, 1> Args; |
| // check that all arguments are lockable objects |
| checkAttrArgsAreCapabilityObjs(S, D, AL, Args); |
| unsigned Size = Args.size(); |
| if (Size != 1) |
| return false; |
| |
| Arg = Args[0]; |
| |
| return true; |
| } |
| |
| static void handleGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| Expr *Arg = nullptr; |
| if (!checkGuardedByAttrCommon(S, D, AL, Arg)) |
| return; |
| |
| D->addAttr(::new (S.Context) GuardedByAttr(S.Context, AL, Arg)); |
| } |
| |
| static void handlePtGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| Expr *Arg = nullptr; |
| if (!checkGuardedByAttrCommon(S, D, AL, Arg)) |
| return; |
| |
| if (!threadSafetyCheckIsPointer(S, D, AL)) |
| return; |
| |
| D->addAttr(::new (S.Context) PtGuardedByAttr(S.Context, AL, Arg)); |
| } |
| |
| static bool checkAcquireOrderAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, |
| SmallVectorImpl<Expr *> &Args) { |
| if (!checkAttributeAtLeastNumArgs(S, AL, 1)) |
| return false; |
| |
| // Check that this attribute only applies to lockable types. |
| QualType QT = cast<ValueDecl>(D)->getType(); |
| if (!QT->isDependentType() && !typeHasCapability(S, QT)) { |
| S.Diag(AL.getLoc(), diag::warn_thread_attribute_decl_not_lockable) << AL; |
| return false; |
| } |
| |
| // Check that all arguments are lockable objects. |
| checkAttrArgsAreCapabilityObjs(S, D, AL, Args); |
| if (Args.empty()) |
| return false; |
| |
| return true; |
| } |
| |
| static void handleAcquiredAfterAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| SmallVector<Expr *, 1> Args; |
| if (!checkAcquireOrderAttrCommon(S, D, AL, Args)) |
| return; |
| |
| Expr **StartArg = &Args[0]; |
| D->addAttr(::new (S.Context) |
| AcquiredAfterAttr(S.Context, AL, StartArg, Args.size())); |
| } |
| |
| static void handleAcquiredBeforeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| SmallVector<Expr *, 1> Args; |
| if (!checkAcquireOrderAttrCommon(S, D, AL, Args)) |
| return; |
| |
| Expr **StartArg = &Args[0]; |
| D->addAttr(::new (S.Context) |
| AcquiredBeforeAttr(S.Context, AL, StartArg, Args.size())); |
| } |
| |
| static bool checkLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, |
| SmallVectorImpl<Expr *> &Args) { |
| // zero or more arguments ok |
| // check that all arguments are lockable objects |
| checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 0, /*ParamIdxOk=*/true); |
| |
| return true; |
| } |
| |
| static void handleAssertSharedLockAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| SmallVector<Expr *, 1> Args; |
| if (!checkLockFunAttrCommon(S, D, AL, Args)) |
| return; |
| |
| unsigned Size = Args.size(); |
| Expr **StartArg = Size == 0 ? nullptr : &Args[0]; |
| D->addAttr(::new (S.Context) |
| AssertSharedLockAttr(S.Context, AL, StartArg, Size)); |
| } |
| |
| static void handleAssertExclusiveLockAttr(Sema &S, Decl *D, |
| const ParsedAttr &AL) { |
| SmallVector<Expr *, 1> Args; |
| if (!checkLockFunAttrCommon(S, D, AL, Args)) |
| return; |
| |
| unsigned Size = Args.size(); |
| Expr **StartArg = Size == 0 ? nullptr : &Args[0]; |
| D->addAttr(::new (S.Context) |
| AssertExclusiveLockAttr(S.Context, AL, StartArg, Size)); |
| } |
| |
| /// Checks to be sure that the given parameter number is in bounds, and |
| /// is an integral type. Will emit appropriate diagnostics if this returns |
| /// false. |
| /// |
| /// AttrArgNo is used to actually retrieve the argument, so it's base-0. |
| template <typename AttrInfo> |
| static bool checkParamIsIntegerType(Sema &S, const FunctionDecl *FD, |
| const AttrInfo &AI, unsigned AttrArgNo) { |
| assert(AI.isArgExpr(AttrArgNo) && "Expected expression argument"); |
| Expr *AttrArg = AI.getArgAsExpr(AttrArgNo); |
| ParamIdx Idx; |
| if (!checkFunctionOrMethodParameterIndex(S, FD, AI, AttrArgNo + 1, AttrArg, |
| Idx)) |
| return false; |
| |
| const ParmVarDecl *Param = FD->getParamDecl(Idx.getASTIndex()); |
| if (!Param->getType()->isIntegerType() && !Param->getType()->isCharType()) { |
| SourceLocation SrcLoc = AttrArg->getBeginLoc(); |
| S.Diag(SrcLoc, diag::err_attribute_integers_only) |
| << AI << Param->getSourceRange(); |
| return false; |
| } |
| return true; |
| } |
| |
| static void handleAllocSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (!checkAttributeAtLeastNumArgs(S, AL, 1) || |
| !checkAttributeAtMostNumArgs(S, AL, 2)) |
| return; |
| |
| const auto *FD = cast<FunctionDecl>(D); |
| if (!FD->getReturnType()->isPointerType()) { |
| S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only) << AL; |
| return; |
| } |
| |
| const Expr *SizeExpr = AL.getArgAsExpr(0); |
| int SizeArgNoVal; |
| // Parameter indices are 1-indexed, hence Index=1 |
| if (!checkPositiveIntArgument(S, AL, SizeExpr, SizeArgNoVal, /*Idx=*/1)) |
| return; |
| if (!checkParamIsIntegerType(S, FD, AL, /*AttrArgNo=*/0)) |
| return; |
| ParamIdx SizeArgNo(SizeArgNoVal, D); |
| |
| ParamIdx NumberArgNo; |
| if (AL.getNumArgs() == 2) { |
| const Expr *NumberExpr = AL.getArgAsExpr(1); |
| int Val; |
| // Parameter indices are 1-based, hence Index=2 |
| if (!checkPositiveIntArgument(S, AL, NumberExpr, Val, /*Idx=*/2)) |
| return; |
| if (!checkParamIsIntegerType(S, FD, AL, /*AttrArgNo=*/1)) |
| return; |
| NumberArgNo = ParamIdx(Val, D); |
| } |
| |
| D->addAttr(::new (S.Context) |
| AllocSizeAttr(S.Context, AL, SizeArgNo, NumberArgNo)); |
| } |
| |
| static bool checkTryLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, |
| SmallVectorImpl<Expr *> &Args) { |
| if (!checkAttributeAtLeastNumArgs(S, AL, 1)) |
| return false; |
| |
| if (!isIntOrBool(AL.getArgAsExpr(0))) { |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) |
| << AL << 1 << AANT_ArgumentIntOrBool; |
| return false; |
| } |
| |
| // check that all arguments are lockable objects |
| checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 1); |
| |
| return true; |
| } |
| |
| static void handleSharedTrylockFunctionAttr(Sema &S, Decl *D, |
| const ParsedAttr &AL) { |
| SmallVector<Expr*, 2> Args; |
| if (!checkTryLockFunAttrCommon(S, D, AL, Args)) |
| return; |
| |
| D->addAttr(::new (S.Context) SharedTrylockFunctionAttr( |
| S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size())); |
| } |
| |
| static void handleExclusiveTrylockFunctionAttr(Sema &S, Decl *D, |
| const ParsedAttr &AL) { |
| SmallVector<Expr*, 2> Args; |
| if (!checkTryLockFunAttrCommon(S, D, AL, Args)) |
| return; |
| |
| D->addAttr(::new (S.Context) ExclusiveTrylockFunctionAttr( |
| S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size())); |
| } |
| |
| static void handleLockReturnedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| // check that the argument is lockable object |
| SmallVector<Expr*, 1> Args; |
| checkAttrArgsAreCapabilityObjs(S, D, AL, Args); |
| unsigned Size = Args.size(); |
| if (Size == 0) |
| return; |
| |
| D->addAttr(::new (S.Context) LockReturnedAttr(S.Context, AL, Args[0])); |
| } |
| |
| static void handleLocksExcludedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (!checkAttributeAtLeastNumArgs(S, AL, 1)) |
| return; |
| |
| // check that all arguments are lockable objects |
| SmallVector<Expr*, 1> Args; |
| checkAttrArgsAreCapabilityObjs(S, D, AL, Args); |
| unsigned Size = Args.size(); |
| if (Size == 0) |
| return; |
| Expr **StartArg = &Args[0]; |
| |
| D->addAttr(::new (S.Context) |
| LocksExcludedAttr(S.Context, AL, StartArg, Size)); |
| } |
| |
| static bool checkFunctionConditionAttr(Sema &S, Decl *D, const ParsedAttr &AL, |
| Expr *&Cond, StringRef &Msg) { |
| Cond = AL.getArgAsExpr(0); |
| if (!Cond->isTypeDependent()) { |
| ExprResult Converted = S.PerformContextuallyConvertToBool(Cond); |
| if (Converted.isInvalid()) |
| return false; |
| Cond = Converted.get(); |
| } |
| |
| if (!S.checkStringLiteralArgumentAttr(AL, 1, Msg)) |
| return false; |
| |
| if (Msg.empty()) |
| Msg = "<no message provided>"; |
| |
| SmallVector<PartialDiagnosticAt, 8> Diags; |
| if (isa<FunctionDecl>(D) && !Cond->isValueDependent() && |
| !Expr::isPotentialConstantExprUnevaluated(Cond, cast<FunctionDecl>(D), |
| Diags)) { |
| S.Diag(AL.getLoc(), diag::err_attr_cond_never_constant_expr) << AL; |
| for (const PartialDiagnosticAt &PDiag : Diags) |
| S.Diag(PDiag.first, PDiag.second); |
| return false; |
| } |
| return true; |
| } |
| |
| static void handleEnableIfAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| S.Diag(AL.getLoc(), diag::ext_clang_enable_if); |
| |
| Expr *Cond; |
| StringRef Msg; |
| if (checkFunctionConditionAttr(S, D, AL, Cond, Msg)) |
| D->addAttr(::new (S.Context) EnableIfAttr(S.Context, AL, Cond, Msg)); |
| } |
| |
| namespace { |
| /// Determines if a given Expr references any of the given function's |
| /// ParmVarDecls, or the function's implicit `this` parameter (if applicable). |
| class ArgumentDependenceChecker |
| : public RecursiveASTVisitor<ArgumentDependenceChecker> { |
| #ifndef NDEBUG |
| const CXXRecordDecl *ClassType; |
| #endif |
| llvm::SmallPtrSet<const ParmVarDecl *, 16> Parms; |
| bool Result; |
| |
| public: |
| ArgumentDependenceChecker(const FunctionDecl *FD) { |
| #ifndef NDEBUG |
| if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) |
| ClassType = MD->getParent(); |
| else |
| ClassType = nullptr; |
| #endif |
| Parms.insert(FD->param_begin(), FD->param_end()); |
| } |
| |
| bool referencesArgs(Expr *E) { |
| Result = false; |
| TraverseStmt(E); |
| return Result; |
| } |
| |
| bool VisitCXXThisExpr(CXXThisExpr *E) { |
| assert(E->getType()->getPointeeCXXRecordDecl() == ClassType && |
| "`this` doesn't refer to the enclosing class?"); |
| Result = true; |
| return false; |
| } |
| |
| bool VisitDeclRefExpr(DeclRefExpr *DRE) { |
| if (const auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) |
| if (Parms.count(PVD)) { |
| Result = true; |
| return false; |
| } |
| return true; |
| } |
| }; |
| } |
| |
| static void handleDiagnoseIfAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| S.Diag(AL.getLoc(), diag::ext_clang_diagnose_if); |
| |
| Expr *Cond; |
| StringRef Msg; |
| if (!checkFunctionConditionAttr(S, D, AL, Cond, Msg)) |
| return; |
| |
| StringRef DiagTypeStr; |
| if (!S.checkStringLiteralArgumentAttr(AL, 2, DiagTypeStr)) |
| return; |
| |
| DiagnoseIfAttr::DiagnosticType DiagType; |
| if (!DiagnoseIfAttr::ConvertStrToDiagnosticType(DiagTypeStr, DiagType)) { |
| S.Diag(AL.getArgAsExpr(2)->getBeginLoc(), |
| diag::err_diagnose_if_invalid_diagnostic_type); |
| return; |
| } |
| |
| bool ArgDependent = false; |
| if (const auto *FD = dyn_cast<FunctionDecl>(D)) |
| ArgDependent = ArgumentDependenceChecker(FD).referencesArgs(Cond); |
| D->addAttr(::new (S.Context) DiagnoseIfAttr( |
| S.Context, AL, Cond, Msg, DiagType, ArgDependent, cast<NamedDecl>(D))); |
| } |
| |
| static void handleNoBuiltinAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| static constexpr const StringRef kWildcard = "*"; |
| |
| llvm::SmallVector<StringRef, 16> Names; |
| bool HasWildcard = false; |
| |
| const auto AddBuiltinName = [&Names, &HasWildcard](StringRef Name) { |
| if (Name == kWildcard) |
| HasWildcard = true; |
| Names.push_back(Name); |
| }; |
| |
| // Add previously defined attributes. |
| if (const auto *NBA = D->getAttr<NoBuiltinAttr>()) |
| for (StringRef BuiltinName : NBA->builtinNames()) |
| AddBuiltinName(BuiltinName); |
| |
| // Add current attributes. |
| if (AL.getNumArgs() == 0) |
| AddBuiltinName(kWildcard); |
| else |
| for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) { |
| StringRef BuiltinName; |
| SourceLocation LiteralLoc; |
| if (!S.checkStringLiteralArgumentAttr(AL, I, BuiltinName, &LiteralLoc)) |
| return; |
| |
| if (Builtin::Context::isBuiltinFunc(BuiltinName)) |
| AddBuiltinName(BuiltinName); |
| else |
| S.Diag(LiteralLoc, diag::warn_attribute_no_builtin_invalid_builtin_name) |
| << BuiltinName << AL; |
| } |
| |
| // Repeating the same attribute is fine. |
| llvm::sort(Names); |
| Names.erase(std::unique(Names.begin(), Names.end()), Names.end()); |
| |
| // Empty no_builtin must be on its own. |
| if (HasWildcard && Names.size() > 1) |
| S.Diag(D->getLocation(), |
| diag::err_attribute_no_builtin_wildcard_or_builtin_name) |
| << AL; |
| |
| if (D->hasAttr<NoBuiltinAttr>()) |
| D->dropAttr<NoBuiltinAttr>(); |
| D->addAttr(::new (S.Context) |
| NoBuiltinAttr(S.Context, AL, Names.data(), Names.size())); |
| } |
| |
| static void handlePassObjectSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (D->hasAttr<PassObjectSizeAttr>()) { |
| S.Diag(D->getBeginLoc(), diag::err_attribute_only_once_per_parameter) << AL; |
| return; |
| } |
| |
| Expr *E = AL.getArgAsExpr(0); |
| uint32_t Type; |
| if (!checkUInt32Argument(S, AL, E, Type, /*Idx=*/1)) |
| return; |
| |
| // pass_object_size's argument is passed in as the second argument of |
| // __builtin_object_size. So, it has the same constraints as that second |
| // argument; namely, it must be in the range [0, 3]. |
| if (Type > 3) { |
| S.Diag(E->getBeginLoc(), diag::err_attribute_argument_out_of_range) |
| << AL << 0 << 3 << E->getSourceRange(); |
| return; |
| } |
| |
| // pass_object_size is only supported on constant pointer parameters; as a |
| // kindness to users, we allow the parameter to be non-const for declarations. |
| // At this point, we have no clue if `D` belongs to a function declaration or |
| // definition, so we defer the constness check until later. |
| if (!cast<ParmVarDecl>(D)->getType()->isPointerType()) { |
| S.Diag(D->getBeginLoc(), diag::err_attribute_pointers_only) << AL << 1; |
| return; |
| } |
| |
| D->addAttr(::new (S.Context) PassObjectSizeAttr(S.Context, AL, (int)Type)); |
| } |
| |
| static void handleConsumableAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| ConsumableAttr::ConsumedState DefaultState; |
| |
| if (AL.isArgIdent(0)) { |
| IdentifierLoc *IL = AL.getArgAsIdent(0); |
| if (!ConsumableAttr::ConvertStrToConsumedState(IL->Ident->getName(), |
| DefaultState)) { |
| S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL |
| << IL->Ident; |
| return; |
| } |
| } else { |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_type) |
| << AL << AANT_ArgumentIdentifier; |
| return; |
| } |
| |
| D->addAttr(::new (S.Context) ConsumableAttr(S.Context, AL, DefaultState)); |
| } |
| |
| static bool checkForConsumableClass(Sema &S, const CXXMethodDecl *MD, |
| const ParsedAttr &AL) { |
| QualType ThisType = MD->getThisType()->getPointeeType(); |
| |
| if (const CXXRecordDecl *RD = ThisType->getAsCXXRecordDecl()) { |
| if (!RD->hasAttr<ConsumableAttr>()) { |
| S.Diag(AL.getLoc(), diag::warn_attr_on_unconsumable_class) << RD; |
| |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| static void handleCallableWhenAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (!checkAttributeAtLeastNumArgs(S, AL, 1)) |
| return; |
| |
| if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL)) |
| return; |
| |
| SmallVector<CallableWhenAttr::ConsumedState, 3> States; |
| for (unsigned ArgIndex = 0; ArgIndex < AL.getNumArgs(); ++ArgIndex) { |
| CallableWhenAttr::ConsumedState CallableState; |
| |
| StringRef StateString; |
| SourceLocation Loc; |
| if (AL.isArgIdent(ArgIndex)) { |
| IdentifierLoc *Ident = AL.getArgAsIdent(ArgIndex); |
| StateString = Ident->Ident->getName(); |
| Loc = Ident->Loc; |
| } else { |
| if (!S.checkStringLiteralArgumentAttr(AL, ArgIndex, StateString, &Loc)) |
| return; |
| } |
| |
| if (!CallableWhenAttr::ConvertStrToConsumedState(StateString, |
| CallableState)) { |
| S.Diag(Loc, diag::warn_attribute_type_not_supported) << AL << StateString; |
| return; |
| } |
| |
| States.push_back(CallableState); |
| } |
| |
| D->addAttr(::new (S.Context) |
| CallableWhenAttr(S.Context, AL, States.data(), States.size())); |
| } |
| |
| static void handleParamTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| ParamTypestateAttr::ConsumedState ParamState; |
| |
| if (AL.isArgIdent(0)) { |
| IdentifierLoc *Ident = AL.getArgAsIdent(0); |
| StringRef StateString = Ident->Ident->getName(); |
| |
| if (!ParamTypestateAttr::ConvertStrToConsumedState(StateString, |
| ParamState)) { |
| S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) |
| << AL << StateString; |
| return; |
| } |
| } else { |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_type) |
| << AL << AANT_ArgumentIdentifier; |
| return; |
| } |
| |
| // FIXME: This check is currently being done in the analysis. It can be |
| // enabled here only after the parser propagates attributes at |
| // template specialization definition, not declaration. |
| //QualType ReturnType = cast<ParmVarDecl>(D)->getType(); |
| //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl(); |
| // |
| //if (!RD || !RD->hasAttr<ConsumableAttr>()) { |
| // S.Diag(AL.getLoc(), diag::warn_return_state_for_unconsumable_type) << |
| // ReturnType.getAsString(); |
| // return; |
| //} |
| |
| D->addAttr(::new (S.Context) ParamTypestateAttr(S.Context, AL, ParamState)); |
| } |
| |
| static void handleReturnTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| ReturnTypestateAttr::ConsumedState ReturnState; |
| |
| if (AL.isArgIdent(0)) { |
| IdentifierLoc *IL = AL.getArgAsIdent(0); |
| if (!ReturnTypestateAttr::ConvertStrToConsumedState(IL->Ident->getName(), |
| ReturnState)) { |
| S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL |
| << IL->Ident; |
| return; |
| } |
| } else { |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_type) |
| << AL << AANT_ArgumentIdentifier; |
| return; |
| } |
| |
| // FIXME: This check is currently being done in the analysis. It can be |
| // enabled here only after the parser propagates attributes at |
| // template specialization definition, not declaration. |
| //QualType ReturnType; |
| // |
| //if (const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D)) { |
| // ReturnType = Param->getType(); |
| // |
| //} else if (const CXXConstructorDecl *Constructor = |
| // dyn_cast<CXXConstructorDecl>(D)) { |
| // ReturnType = Constructor->getThisType()->getPointeeType(); |
| // |
| //} else { |
| // |
| // ReturnType = cast<FunctionDecl>(D)->getCallResultType(); |
| //} |
| // |
| //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl(); |
| // |
| //if (!RD || !RD->hasAttr<ConsumableAttr>()) { |
| // S.Diag(Attr.getLoc(), diag::warn_return_state_for_unconsumable_type) << |
| // ReturnType.getAsString(); |
| // return; |
| //} |
| |
| D->addAttr(::new (S.Context) ReturnTypestateAttr(S.Context, AL, ReturnState)); |
| } |
| |
| static void handleSetTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL)) |
| return; |
| |
| SetTypestateAttr::ConsumedState NewState; |
| if (AL.isArgIdent(0)) { |
| IdentifierLoc *Ident = AL.getArgAsIdent(0); |
| StringRef Param = Ident->Ident->getName(); |
| if (!SetTypestateAttr::ConvertStrToConsumedState(Param, NewState)) { |
| S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) << AL |
| << Param; |
| return; |
| } |
| } else { |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_type) |
| << AL << AANT_ArgumentIdentifier; |
| return; |
| } |
| |
| D->addAttr(::new (S.Context) SetTypestateAttr(S.Context, AL, NewState)); |
| } |
| |
| static void handleTestTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL)) |
| return; |
| |
| TestTypestateAttr::ConsumedState TestState; |
| if (AL.isArgIdent(0)) { |
| IdentifierLoc *Ident = AL.getArgAsIdent(0); |
| StringRef Param = Ident->Ident->getName(); |
| if (!TestTypestateAttr::ConvertStrToConsumedState(Param, TestState)) { |
| S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) << AL |
| << Param; |
| return; |
| } |
| } else { |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_type) |
| << AL << AANT_ArgumentIdentifier; |
| return; |
| } |
| |
| D->addAttr(::new (S.Context) TestTypestateAttr(S.Context, AL, TestState)); |
| } |
| |
| static void handleExtVectorTypeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| // Remember this typedef decl, we will need it later for diagnostics. |
| S.ExtVectorDecls.push_back(cast<TypedefNameDecl>(D)); |
| } |
| |
| static void handlePackedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (auto *TD = dyn_cast<TagDecl>(D)) |
| TD->addAttr(::new (S.Context) PackedAttr(S.Context, AL)); |
| else if (auto *FD = dyn_cast<FieldDecl>(D)) { |
| bool BitfieldByteAligned = (!FD->getType()->isDependentType() && |
| !FD->getType()->isIncompleteType() && |
| FD->isBitField() && |
| S.Context.getTypeAlign(FD->getType()) <= 8); |
| |
| if (S.getASTContext().getTargetInfo().getTriple().isPS4()) { |
| if (BitfieldByteAligned) |
| // The PS4 target needs to maintain ABI backwards compatibility. |
| S.Diag(AL.getLoc(), diag::warn_attribute_ignored_for_field_of_type) |
| << AL << FD->getType(); |
| else |
| FD->addAttr(::new (S.Context) PackedAttr(S.Context, AL)); |
| } else { |
| // Report warning about changed offset in the newer compiler versions. |
| if (BitfieldByteAligned) |
| S.Diag(AL.getLoc(), diag::warn_attribute_packed_for_bitfield); |
| |
| FD->addAttr(::new (S.Context) PackedAttr(S.Context, AL)); |
| } |
| |
| } else |
| S.Diag(AL.getLoc(), diag::warn_attribute_ignored) << AL; |
| } |
| |
| static bool checkIBOutletCommon(Sema &S, Decl *D, const ParsedAttr &AL) { |
| // The IBOutlet/IBOutletCollection attributes only apply to instance |
| // variables or properties of Objective-C classes. The outlet must also |
| // have an object reference type. |
| if (const auto *VD = dyn_cast<ObjCIvarDecl>(D)) { |
| if (!VD->getType()->getAs<ObjCObjectPointerType>()) { |
| S.Diag(AL.getLoc(), diag::warn_iboutlet_object_type) |
| << AL << VD->getType() << 0; |
| return false; |
| } |
| } |
| else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(D)) { |
| if (!PD->getType()->getAs<ObjCObjectPointerType>()) { |
| S.Diag(AL.getLoc(), diag::warn_iboutlet_object_type) |
| << AL << PD->getType() << 1; |
| return false; |
| } |
| } |
| else { |
| S.Diag(AL.getLoc(), diag::warn_attribute_iboutlet) << AL; |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static void handleIBOutlet(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (!checkIBOutletCommon(S, D, AL)) |
| return; |
| |
| D->addAttr(::new (S.Context) IBOutletAttr(S.Context, AL)); |
| } |
| |
| static void handleIBOutletCollection(Sema &S, Decl *D, const ParsedAttr &AL) { |
| |
| // The iboutletcollection attribute can have zero or one arguments. |
| if (AL.getNumArgs() > 1) { |
| S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1; |
| return; |
| } |
| |
| if (!checkIBOutletCommon(S, D, AL)) |
| return; |
| |
| ParsedType PT; |
| |
| if (AL.hasParsedType()) |
| PT = AL.getTypeArg(); |
| else { |
| PT = S.getTypeName(S.Context.Idents.get("NSObject"), AL.getLoc(), |
| S.getScopeForContext(D->getDeclContext()->getParent())); |
| if (!PT) { |
| S.Diag(AL.getLoc(), diag::err_iboutletcollection_type) << "NSObject"; |
| return; |
| } |
| } |
| |
| TypeSourceInfo *QTLoc = nullptr; |
| QualType QT = S.GetTypeFromParser(PT, &QTLoc); |
| if (!QTLoc) |
| QTLoc = S.Context.getTrivialTypeSourceInfo(QT, AL.getLoc()); |
| |
| // Diagnose use of non-object type in iboutletcollection attribute. |
| // FIXME. Gnu attribute extension ignores use of builtin types in |
| // attributes. So, __attribute__((iboutletcollection(char))) will be |
| // treated as __attribute__((iboutletcollection())). |
| if (!QT->isObjCIdType() && !QT->isObjCObjectType()) { |
| S.Diag(AL.getLoc(), |
| QT->isBuiltinType() ? diag::err_iboutletcollection_builtintype |
| : diag::err_iboutletcollection_type) << QT; |
| return; |
| } |
| |
| D->addAttr(::new (S.Context) IBOutletCollectionAttr(S.Context, AL, QTLoc)); |
| } |
| |
| bool Sema::isValidPointerAttrType(QualType T, bool RefOkay) { |
| if (RefOkay) { |
| if (T->isReferenceType()) |
| return true; |
| } else { |
| T = T.getNonReferenceType(); |
| } |
| |
| // The nonnull attribute, and other similar attributes, can be applied to a |
| // transparent union that contains a pointer type. |
| if (const RecordType *UT = T->getAsUnionType()) { |
| if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) { |
| RecordDecl *UD = UT->getDecl(); |
| for (const auto *I : UD->fields()) { |
| QualType QT = I->getType(); |
| if (QT->isAnyPointerType() || QT->isBlockPointerType()) |
| return true; |
| } |
| } |
| } |
| |
| return T->isAnyPointerType() || T->isBlockPointerType(); |
| } |
| |
| static bool attrNonNullArgCheck(Sema &S, QualType T, const ParsedAttr &AL, |
| SourceRange AttrParmRange, |
| SourceRange TypeRange, |
| bool isReturnValue = false) { |
| if (!S.isValidPointerAttrType(T)) { |
| if (isReturnValue) |
| S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only) |
| << AL << AttrParmRange << TypeRange; |
| else |
| S.Diag(AL.getLoc(), diag::warn_attribute_pointers_only) |
| << AL << AttrParmRange << TypeRange << 0; |
| return false; |
| } |
| return true; |
| } |
| |
| static void handleNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| SmallVector<ParamIdx, 8> NonNullArgs; |
| for (unsigned I = 0; I < AL.getNumArgs(); ++I) { |
| Expr *Ex = AL.getArgAsExpr(I); |
| ParamIdx Idx; |
| if (!checkFunctionOrMethodParameterIndex(S, D, AL, I + 1, Ex, Idx)) |
| return; |
| |
| // Is the function argument a pointer type? |
| if (Idx.getASTIndex() < getFunctionOrMethodNumParams(D) && |
| !attrNonNullArgCheck( |
| S, getFunctionOrMethodParamType(D, Idx.getASTIndex()), AL, |
| Ex->getSourceRange(), |
| getFunctionOrMethodParamRange(D, Idx.getASTIndex()))) |
| continue; |
| |
| NonNullArgs.push_back(Idx); |
| } |
| |
| // If no arguments were specified to __attribute__((nonnull)) then all pointer |
| // arguments have a nonnull attribute; warn if there aren't any. Skip this |
| // check if the attribute came from a macro expansion or a template |
| // instantiation. |
| if (NonNullArgs.empty() && AL.getLoc().isFileID() && |
| !S.inTemplateInstantiation()) { |
| bool AnyPointers = isFunctionOrMethodVariadic(D); |
| for (unsigned I = 0, E = getFunctionOrMethodNumParams(D); |
| I != E && !AnyPointers; ++I) { |
| QualType T = getFunctionOrMethodParamType(D, I); |
| if (T->isDependentType() || S.isValidPointerAttrType(T)) |
| AnyPointers = true; |
| } |
| |
| if (!AnyPointers) |
| S.Diag(AL.getLoc(), diag::warn_attribute_nonnull_no_pointers); |
| } |
| |
| ParamIdx *Start = NonNullArgs.data(); |
| unsigned Size = NonNullArgs.size(); |
| llvm::array_pod_sort(Start, Start + Size); |
| D->addAttr(::new (S.Context) NonNullAttr(S.Context, AL, Start, Size)); |
| } |
| |
| static void handleNonNullAttrParameter(Sema &S, ParmVarDecl *D, |
| const ParsedAttr &AL) { |
| if (AL.getNumArgs() > 0) { |
| if (D->getFunctionType()) { |
| handleNonNullAttr(S, D, AL); |
| } else { |
| S.Diag(AL.getLoc(), diag::warn_attribute_nonnull_parm_no_args) |
| << D->getSourceRange(); |
| } |
| return; |
| } |
| |
| // Is the argument a pointer type? |
| if (!attrNonNullArgCheck(S, D->getType(), AL, SourceRange(), |
| D->getSourceRange())) |
| return; |
| |
| D->addAttr(::new (S.Context) NonNullAttr(S.Context, AL, nullptr, 0)); |
| } |
| |
| static void handleReturnsNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| QualType ResultType = getFunctionOrMethodResultType(D); |
| SourceRange SR = getFunctionOrMethodResultSourceRange(D); |
| if (!attrNonNullArgCheck(S, ResultType, AL, SourceRange(), SR, |
| /* isReturnValue */ true)) |
| return; |
| |
| D->addAttr(::new (S.Context) ReturnsNonNullAttr(S.Context, AL)); |
| } |
| |
| static void handleNoEscapeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (D->isInvalidDecl()) |
| return; |
| |
| // noescape only applies to pointer types. |
| QualType T = cast<ParmVarDecl>(D)->getType(); |
| if (!S.isValidPointerAttrType(T, /* RefOkay */ true)) { |
| S.Diag(AL.getLoc(), diag::warn_attribute_pointers_only) |
| << AL << AL.getRange() << 0; |
| return; |
| } |
| |
| D->addAttr(::new (S.Context) NoEscapeAttr(S.Context, AL)); |
| } |
| |
| static void handleAssumeAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| Expr *E = AL.getArgAsExpr(0), |
| *OE = AL.getNumArgs() > 1 ? AL.getArgAsExpr(1) : nullptr; |
| S.AddAssumeAlignedAttr(D, AL, E, OE); |
| } |
| |
| static void handleAllocAlignAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| S.AddAllocAlignAttr(D, AL, AL.getArgAsExpr(0)); |
| } |
| |
| void Sema::AddAssumeAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E, |
| Expr *OE) { |
| QualType ResultType = getFunctionOrMethodResultType(D); |
| SourceRange SR = getFunctionOrMethodResultSourceRange(D); |
| |
| AssumeAlignedAttr TmpAttr(Context, CI, E, OE); |
| SourceLocation AttrLoc = TmpAttr.getLocation(); |
| |
| if (!isValidPointerAttrType(ResultType, /* RefOkay */ true)) { |
| Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only) |
| << &TmpAttr << TmpAttr.getRange() << SR; |
| return; |
| } |
| |
| if (!E->isValueDependent()) { |
| Optional<llvm::APSInt> I = llvm::APSInt(64); |
| if (!(I = E->getIntegerConstantExpr(Context))) { |
| if (OE) |
| Diag(AttrLoc, diag::err_attribute_argument_n_type) |
| << &TmpAttr << 1 << AANT_ArgumentIntegerConstant |
| << E->getSourceRange(); |
| else |
| Diag(AttrLoc, diag::err_attribute_argument_type) |
| << &TmpAttr << AANT_ArgumentIntegerConstant |
| << E->getSourceRange(); |
| return; |
| } |
| |
| if (!I->isPowerOf2()) { |
| Diag(AttrLoc, diag::err_alignment_not_power_of_two) |
| << E->getSourceRange(); |
| return; |
| } |
| |
| if (*I > Sema::MaximumAlignment) |
| Diag(CI.getLoc(), diag::warn_assume_aligned_too_great) |
| << CI.getRange() << Sema::MaximumAlignment; |
| } |
| |
| if (OE && !OE->isValueDependent() && !OE->isIntegerConstantExpr(Context)) { |
| Diag(AttrLoc, diag::err_attribute_argument_n_type) |
| << &TmpAttr << 2 << AANT_ArgumentIntegerConstant |
| << OE->getSourceRange(); |
| return; |
| } |
| |
| D->addAttr(::new (Context) AssumeAlignedAttr(Context, CI, E, OE)); |
| } |
| |
| void Sema::AddAllocAlignAttr(Decl *D, const AttributeCommonInfo &CI, |
| Expr *ParamExpr) { |
| QualType ResultType = getFunctionOrMethodResultType(D); |
| |
| AllocAlignAttr TmpAttr(Context, CI, ParamIdx()); |
| SourceLocation AttrLoc = CI.getLoc(); |
| |
| if (!ResultType->isDependentType() && |
| !isValidPointerAttrType(ResultType, /* RefOkay */ true)) { |
| Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only) |
| << &TmpAttr << CI.getRange() << getFunctionOrMethodResultSourceRange(D); |
| return; |
| } |
| |
| ParamIdx Idx; |
| const auto *FuncDecl = cast<FunctionDecl>(D); |
| if (!checkFunctionOrMethodParameterIndex(*this, FuncDecl, TmpAttr, |
| /*AttrArgNum=*/1, ParamExpr, Idx)) |
| return; |
| |
| QualType Ty = getFunctionOrMethodParamType(D, Idx.getASTIndex()); |
| if (!Ty->isDependentType() && !Ty->isIntegralType(Context) && |
| !Ty->isAlignValT()) { |
| Diag(ParamExpr->getBeginLoc(), diag::err_attribute_integers_only) |
| << &TmpAttr |
| << FuncDecl->getParamDecl(Idx.getASTIndex())->getSourceRange(); |
| return; |
| } |
| |
| D->addAttr(::new (Context) AllocAlignAttr(Context, CI, Idx)); |
| } |
| |
| /// Normalize the attribute, __foo__ becomes foo. |
| /// Returns true if normalization was applied. |
| static bool normalizeName(StringRef &AttrName) { |
| if (AttrName.size() > 4 && AttrName.startswith("__") && |
| AttrName.endswith("__")) { |
| AttrName = AttrName.drop_front(2).drop_back(2); |
| return true; |
| } |
| return false; |
| } |
| |
| static void handleOwnershipAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| // This attribute must be applied to a function declaration. The first |
| // argument to the attribute must be an identifier, the name of the resource, |
| // for example: malloc. The following arguments must be argument indexes, the |
| // arguments must be of integer type for Returns, otherwise of pointer type. |
| // The difference between Holds and Takes is that a pointer may still be used |
| // after being held. free() should be __attribute((ownership_takes)), whereas |
| // a list append function may well be __attribute((ownership_holds)). |
| |
| if (!AL.isArgIdent(0)) { |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) |
| << AL << 1 << AANT_ArgumentIdentifier; |
| return; |
| } |
| |
| // Figure out our Kind. |
| OwnershipAttr::OwnershipKind K = |
| OwnershipAttr(S.Context, AL, nullptr, nullptr, 0).getOwnKind(); |
| |
| // Check arguments. |
| switch (K) { |
| case OwnershipAttr::Takes: |
| case OwnershipAttr::Holds: |
| if (AL.getNumArgs() < 2) { |
| S.Diag(AL.getLoc(), diag::err_attribute_too_few_arguments) << AL << 2; |
| return; |
| } |
| break; |
| case OwnershipAttr::Returns: |
| if (AL.getNumArgs() > 2) { |
| S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1; |
| return; |
| } |
| break; |
| } |
| |
| IdentifierInfo *Module = AL.getArgAsIdent(0)->Ident; |
| |
| StringRef ModuleName = Module->getName(); |
| if (normalizeName(ModuleName)) { |
| Module = &S.PP.getIdentifierTable().get(ModuleName); |
| } |
| |
| SmallVector<ParamIdx, 8> OwnershipArgs; |
| for (unsigned i = 1; i < AL.getNumArgs(); ++i) { |
| Expr *Ex = AL.getArgAsExpr(i); |
| ParamIdx Idx; |
| if (!checkFunctionOrMethodParameterIndex(S, D, AL, i, Ex, Idx)) |
| return; |
| |
| // Is the function argument a pointer type? |
| QualType T = getFunctionOrMethodParamType(D, Idx.getASTIndex()); |
| int Err = -1; // No error |
| switch (K) { |
| case OwnershipAttr::Takes: |
| case OwnershipAttr::Holds: |
| if (!T->isAnyPointerType() && !T->isBlockPointerType()) |
| Err = 0; |
| break; |
| case OwnershipAttr::Returns: |
| if (!T->isIntegerType()) |
| Err = 1; |
| break; |
| } |
| if (-1 != Err) { |
| S.Diag(AL.getLoc(), diag::err_ownership_type) << AL << Err |
| << Ex->getSourceRange(); |
| return; |
| } |
| |
| // Check we don't have a conflict with another ownership attribute. |
| for (const auto *I : D->specific_attrs<OwnershipAttr>()) { |
| // Cannot have two ownership attributes of different kinds for the same |
| // index. |
| if (I->getOwnKind() != K && I->args_end() != |
| std::find(I->args_begin(), I->args_end(), Idx)) { |
| S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) << AL << I; |
| return; |
| } else if (K == OwnershipAttr::Returns && |
| I->getOwnKind() == OwnershipAttr::Returns) { |
| // A returns attribute conflicts with any other returns attribute using |
| // a different index. |
| if (std::find(I->args_begin(), I->args_end(), Idx) == I->args_end()) { |
| S.Diag(I->getLocation(), diag::err_ownership_returns_index_mismatch) |
| << I->args_begin()->getSourceIndex(); |
| if (I->args_size()) |
| S.Diag(AL.getLoc(), diag::note_ownership_returns_index_mismatch) |
| << Idx.getSourceIndex() << Ex->getSourceRange(); |
| return; |
| } |
| } |
| } |
| OwnershipArgs.push_back(Idx); |
| } |
| |
| ParamIdx *Start = OwnershipArgs.data(); |
| unsigned Size = OwnershipArgs.size(); |
| llvm::array_pod_sort(Start, Start + Size); |
| D->addAttr(::new (S.Context) |
| OwnershipAttr(S.Context, AL, Module, Start, Size)); |
| } |
| |
| static void handleWeakRefAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| // Check the attribute arguments. |
| if (AL.getNumArgs() > 1) { |
| S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1; |
| return; |
| } |
| |
| // gcc rejects |
| // class c { |
| // static int a __attribute__((weakref ("v2"))); |
| // static int b() __attribute__((weakref ("f3"))); |
| // }; |
| // and ignores the attributes of |
| // void f(void) { |
| // static int a __attribute__((weakref ("v2"))); |
| // } |
| // we reject them |
| const DeclContext *Ctx = D->getDeclContext()->getRedeclContext(); |
| if (!Ctx->isFileContext()) { |
| S.Diag(AL.getLoc(), diag::err_attribute_weakref_not_global_context) |
| << cast<NamedDecl>(D); |
| return; |
| } |
| |
| // The GCC manual says |
| // |
| // At present, a declaration to which `weakref' is attached can only |
| // be `static'. |
| // |
| // It also says |
| // |
| // Without a TARGET, |
| // given as an argument to `weakref' or to `alias', `weakref' is |
| // equivalent to `weak'. |
| // |
| // gcc 4.4.1 will accept |
| // int a7 __attribute__((weakref)); |
| // as |
| // int a7 __attribute__((weak)); |
| // This looks like a bug in gcc. We reject that for now. We should revisit |
| // it if this behaviour is actually used. |
| |
| // GCC rejects |
| // static ((alias ("y"), weakref)). |
| // Should we? How to check that weakref is before or after alias? |
| |
| // FIXME: it would be good for us to keep the WeakRefAttr as-written instead |
| // of transforming it into an AliasAttr. The WeakRefAttr never uses the |
| // StringRef parameter it was given anyway. |
| StringRef Str; |
| if (AL.getNumArgs() && S.checkStringLiteralArgumentAttr(AL, 0, Str)) |
| // GCC will accept anything as the argument of weakref. Should we |
| // check for an existing decl? |
| D->addAttr(::new (S.Context) AliasAttr(S.Context, AL, Str)); |
| |
| D->addAttr(::new (S.Context) WeakRefAttr(S.Context, AL)); |
| } |
| |
| static void handleIFuncAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| StringRef Str; |
| if (!S.checkStringLiteralArgumentAttr(AL, 0, Str)) |
| return; |
| |
| // Aliases should be on declarations, not definitions. |
| const auto *FD = cast<FunctionDecl>(D); |
| if (FD->isThisDeclarationADefinition()) { |
| S.Diag(AL.getLoc(), diag::err_alias_is_definition) << FD << 1; |
| return; |
| } |
| |
| D->addAttr(::new (S.Context) IFuncAttr(S.Context, AL, Str)); |
| } |
| |
| static void handleAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| StringRef Str; |
| if (!S.checkStringLiteralArgumentAttr(AL, 0, Str)) |
| return; |
| |
| if (S.Context.getTargetInfo().getTriple().isOSDarwin()) { |
| S.Diag(AL.getLoc(), diag::err_alias_not_supported_on_darwin); |
| return; |
| } |
| if (S.Context.getTargetInfo().getTriple().isNVPTX()) { |
| S.Diag(AL.getLoc(), diag::err_alias_not_supported_on_nvptx); |
| } |
| |
| // Aliases should be on declarations, not definitions. |
| if (const auto *FD = dyn_cast<FunctionDecl>(D)) { |
| if (FD->isThisDeclarationADefinition()) { |
| S.Diag(AL.getLoc(), diag::err_alias_is_definition) << FD << 0; |
| return; |
| } |
| } else { |
| const auto *VD = cast<VarDecl>(D); |
| if (VD->isThisDeclarationADefinition() && VD->isExternallyVisible()) { |
| S.Diag(AL.getLoc(), diag::err_alias_is_definition) << VD << 0; |
| return; |
| } |
| } |
| |
| // Mark target used to prevent unneeded-internal-declaration warnings. |
| if (!S.LangOpts.CPlusPlus) { |
| // FIXME: demangle Str for C++, as the attribute refers to the mangled |
| // linkage name, not the pre-mangled identifier. |
| const DeclarationNameInfo target(&S.Context.Idents.get(Str), AL.getLoc()); |
| LookupResult LR(S, target, Sema::LookupOrdinaryName); |
| if (S.LookupQualifiedName(LR, S.getCurLexicalContext())) |
| for (NamedDecl *ND : LR) |
| ND->markUsed(S.Context); |
| } |
| |
| D->addAttr(::new (S.Context) AliasAttr(S.Context, AL, Str)); |
| } |
| |
| static void handleTLSModelAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| StringRef Model; |
| SourceLocation LiteralLoc; |
| // Check that it is a string. |
| if (!S.checkStringLiteralArgumentAttr(AL, 0, Model, &LiteralLoc)) |
| return; |
| |
| // Check that the value. |
| if (Model != "global-dynamic" && Model != "local-dynamic" |
| && Model != "initial-exec" && Model != "local-exec") { |
| S.Diag(LiteralLoc, diag::err_attr_tlsmodel_arg); |
| return; |
| } |
| |
| D->addAttr(::new (S.Context) TLSModelAttr(S.Context, AL, Model)); |
| } |
| |
| static void handleRestrictAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| QualType ResultType = getFunctionOrMethodResultType(D); |
| if (ResultType->isAnyPointerType() || ResultType->isBlockPointerType()) { |
| D->addAttr(::new (S.Context) RestrictAttr(S.Context, AL)); |
| return; |
| } |
| |
| S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only) |
| << AL << getFunctionOrMethodResultSourceRange(D); |
| } |
| |
| static void handleCPUSpecificAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| FunctionDecl *FD = cast<FunctionDecl>(D); |
| |
| if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) { |
| if (MD->getParent()->isLambda()) { |
| S.Diag(AL.getLoc(), diag::err_attribute_dll_lambda) << AL; |
| return; |
| } |
| } |
| |
| if (!checkAttributeAtLeastNumArgs(S, AL, 1)) |
| return; |
| |
| SmallVector<IdentifierInfo *, 8> CPUs; |
| for (unsigned ArgNo = 0; ArgNo < getNumAttributeArgs(AL); ++ArgNo) { |
| if (!AL.isArgIdent(ArgNo)) { |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_type) |
| << AL << AANT_ArgumentIdentifier; |
| return; |
| } |
| |
| IdentifierLoc *CPUArg = AL.getArgAsIdent(ArgNo); |
| StringRef CPUName = CPUArg->Ident->getName().trim(); |
| |
| if (!S.Context.getTargetInfo().validateCPUSpecificCPUDispatch(CPUName)) { |
| S.Diag(CPUArg->Loc, diag::err_invalid_cpu_specific_dispatch_value) |
| << CPUName << (AL.getKind() == ParsedAttr::AT_CPUDispatch); |
| return; |
| } |
| |
| const TargetInfo &Target = S.Context.getTargetInfo(); |
| if (llvm::any_of(CPUs, [CPUName, &Target](const IdentifierInfo *Cur) { |
| return Target.CPUSpecificManglingCharacter(CPUName) == |
| Target.CPUSpecificManglingCharacter(Cur->getName()); |
| })) { |
| S.Diag(AL.getLoc(), diag::warn_multiversion_duplicate_entries); |
| return; |
| } |
| CPUs.push_back(CPUArg->Ident); |
| } |
| |
| FD->setIsMultiVersion(true); |
| if (AL.getKind() == ParsedAttr::AT_CPUSpecific) |
| D->addAttr(::new (S.Context) |
| CPUSpecificAttr(S.Context, AL, CPUs.data(), CPUs.size())); |
| else |
| D->addAttr(::new (S.Context) |
| CPUDispatchAttr(S.Context, AL, CPUs.data(), CPUs.size())); |
| } |
| |
| static void handleCommonAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (S.LangOpts.CPlusPlus) { |
| S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang) |
| << AL << AttributeLangSupport::Cpp; |
| return; |
| } |
| |
| if (CommonAttr *CA = S.mergeCommonAttr(D, AL)) |
| D->addAttr(CA); |
| } |
| |
| static void handleCmseNSEntryAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (S.LangOpts.CPlusPlus && !D->getDeclContext()->isExternCContext()) { |
| S.Diag(AL.getLoc(), diag::err_attribute_not_clinkage) << AL; |
| return; |
| } |
| |
| const auto *FD = cast<FunctionDecl>(D); |
| if (!FD->isExternallyVisible()) { |
| S.Diag(AL.getLoc(), diag::warn_attribute_cmse_entry_static); |
| return; |
| } |
| |
| D->addAttr(::new (S.Context) CmseNSEntryAttr(S.Context, AL)); |
| } |
| |
| static void handleNakedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (checkAttrMutualExclusion<DisableTailCallsAttr>(S, D, AL)) |
| return; |
| |
| if (AL.isDeclspecAttribute()) { |
| const auto &Triple = S.getASTContext().getTargetInfo().getTriple(); |
| const auto &Arch = Triple.getArch(); |
| if (Arch != llvm::Triple::x86 && |
| (Arch != llvm::Triple::arm && Arch != llvm::Triple::thumb)) { |
| S.Diag(AL.getLoc(), diag::err_attribute_not_supported_on_arch) |
| << AL << Triple.getArchName(); |
| return; |
| } |
| } |
| |
| D->addAttr(::new (S.Context) NakedAttr(S.Context, AL)); |
| } |
| |
| static void handleNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &Attrs) { |
| if (hasDeclarator(D)) return; |
| |
| if (!isa<ObjCMethodDecl>(D)) { |
| S.Diag(Attrs.getLoc(), diag::warn_attribute_wrong_decl_type) |
| << Attrs << ExpectedFunctionOrMethod; |
| return; |
| } |
| |
| D->addAttr(::new (S.Context) NoReturnAttr(S.Context, Attrs)); |
| } |
| |
| static void handleNoCfCheckAttr(Sema &S, Decl *D, const ParsedAttr &Attrs) { |
| if (!S.getLangOpts().CFProtectionBranch) |
| S.Diag(Attrs.getLoc(), diag::warn_nocf_check_attribute_ignored); |
| else |
| handleSimpleAttribute<AnyX86NoCfCheckAttr>(S, D, Attrs); |
| } |
| |
| bool Sema::CheckAttrNoArgs(const ParsedAttr &Attrs) { |
| if (!checkAttributeNumArgs(*this, Attrs, 0)) { |
| Attrs.setInvalid(); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool Sema::CheckAttrTarget(const ParsedAttr &AL) { |
| // Check whether the attribute is valid on the current target. |
| if (!AL.existsInTarget(Context.getTargetInfo())) { |
| Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored) |
| << AL << AL.getRange(); |
| AL.setInvalid(); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static void handleAnalyzerNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| |
| // The checking path for 'noreturn' and 'analyzer_noreturn' are different |
| // because 'analyzer_noreturn' does not impact the type. |
| if (!isFunctionOrMethodOrBlock(D)) { |
| ValueDecl *VD = dyn_cast<ValueDecl>(D); |
| if (!VD || (!VD->getType()->isBlockPointerType() && |
| !VD->getType()->isFunctionPointerType())) { |
| S.Diag(AL.getLoc(), AL.isCXX11Attribute() |
| ? diag::err_attribute_wrong_decl_type |
| : diag::warn_attribute_wrong_decl_type) |
| << AL << ExpectedFunctionMethodOrBlock; |
| return; |
| } |
| } |
| |
| D->addAttr(::new (S.Context) AnalyzerNoReturnAttr(S.Context, AL)); |
| } |
| |
| // PS3 PPU-specific. |
| static void handleVecReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| /* |
| Returning a Vector Class in Registers |
| |
| According to the PPU ABI specifications, a class with a single member of |
| vector type is returned in memory when used as the return value of a |
| function. |
| This results in inefficient code when implementing vector classes. To return |
| the value in a single vector register, add the vecreturn attribute to the |
| class definition. This attribute is also applicable to struct types. |
| |
| Example: |
| |
| struct Vector |
| { |
| __vector float xyzw; |
| } __attribute__((vecreturn)); |
| |
| Vector Add(Vector lhs, Vector rhs) |
| { |
| Vector result; |
| result.xyzw = vec_add(lhs.xyzw, rhs.xyzw); |
| return result; // This will be returned in a register |
| } |
| */ |
| if (VecReturnAttr *A = D->getAttr<VecReturnAttr>()) { |
| S.Diag(AL.getLoc(), diag::err_repeat_attribute) << A; |
| return; |
| } |
| |
| const auto *R = cast<RecordDecl>(D); |
| int count = 0; |
| |
| if (!isa<CXXRecordDecl>(R)) { |
| S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_vector_member); |
| return; |
| } |
| |
| if (!cast<CXXRecordDecl>(R)->isPOD()) { |
| S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_pod_record); |
| return; |
| } |
| |
| for (const auto *I : R->fields()) { |
| if ((count == 1) || !I->getType()->isVectorType()) { |
| S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_vector_member); |
| return; |
| } |
| count++; |
| } |
| |
| D->addAttr(::new (S.Context) VecReturnAttr(S.Context, AL)); |
| } |
| |
| static void handleDependencyAttr(Sema &S, Scope *Scope, Decl *D, |
| const ParsedAttr &AL) { |
| if (isa<ParmVarDecl>(D)) { |
| // [[carries_dependency]] can only be applied to a parameter if it is a |
| // parameter of a function declaration or lambda. |
| if (!(Scope->getFlags() & clang::Scope::FunctionDeclarationScope)) { |
| S.Diag(AL.getLoc(), |
| diag::err_carries_dependency_param_not_function_decl); |
| return; |
| } |
| } |
| |
| D->addAttr(::new (S.Context) CarriesDependencyAttr(S.Context, AL)); |
| } |
| |
| static void handleUnusedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| bool IsCXX17Attr = AL.isCXX11Attribute() && !AL.getScopeName(); |
| |
| // If this is spelled as the standard C++17 attribute, but not in C++17, warn |
| // about using it as an extension. |
| if (!S.getLangOpts().CPlusPlus17 && IsCXX17Attr) |
| S.Diag(AL.getLoc(), diag::ext_cxx17_attr) << AL; |
| |
| D->addAttr(::new (S.Context) UnusedAttr(S.Context, AL)); |
| } |
| |
| static void handleConstructorAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| uint32_t priority = ConstructorAttr::DefaultPriority; |
| if (AL.getNumArgs() && |
| !checkUInt32Argument(S, AL, AL.getArgAsExpr(0), priority)) |
| return; |
| |
| D->addAttr(::new (S.Context) ConstructorAttr(S.Context, AL, priority)); |
| } |
| |
| static void handleDestructorAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| uint32_t priority = DestructorAttr::DefaultPriority; |
| if (AL.getNumArgs() && |
| !checkUInt32Argument(S, AL, AL.getArgAsExpr(0), priority)) |
| return; |
| |
| D->addAttr(::new (S.Context) DestructorAttr(S.Context, AL, priority)); |
| } |
| |
| template <typename AttrTy> |
| static void handleAttrWithMessage(Sema &S, Decl *D, const ParsedAttr &AL) { |
| // Handle the case where the attribute has a text message. |
| StringRef Str; |
| if (AL.getNumArgs() == 1 && !S.checkStringLiteralArgumentAttr(AL, 0, Str)) |
| return; |
| |
| D->addAttr(::new (S.Context) AttrTy(S.Context, AL, Str)); |
| } |
| |
| static void handleObjCSuppresProtocolAttr(Sema &S, Decl *D, |
| const ParsedAttr &AL) { |
| if (!cast<ObjCProtocolDecl>(D)->isThisDeclarationADefinition()) { |
| S.Diag(AL.getLoc(), diag::err_objc_attr_protocol_requires_definition) |
| << AL << AL.getRange(); |
| return; |
| } |
| |
| D->addAttr(::new (S.Context) ObjCExplicitProtocolImplAttr(S.Context, AL)); |
| } |
| |
| static bool checkAvailabilityAttr(Sema &S, SourceRange Range, |
| IdentifierInfo *Platform, |
| VersionTuple Introduced, |
| VersionTuple Deprecated, |
| VersionTuple Obsoleted) { |
| StringRef PlatformName |
| = AvailabilityAttr::getPrettyPlatformName(Platform->getName()); |
| if (PlatformName.empty()) |
| PlatformName = Platform->getName(); |
| |
| // Ensure that Introduced <= Deprecated <= Obsoleted (although not all |
| // of these steps are needed). |
| if (!Introduced.empty() && !Deprecated.empty() && |
| !(Introduced <= Deprecated)) { |
| S.Diag(Range.getBegin(), diag::warn_availability_version_ordering) |
| << 1 << PlatformName << Deprecated.getAsString() |
| << 0 << Introduced.getAsString(); |
| return true; |
| } |
| |
| if (!Introduced.empty() && !Obsoleted.empty() && |
| !(Introduced <= Obsoleted)) { |
| S.Diag(Range.getBegin(), diag::warn_availability_version_ordering) |
| << 2 << PlatformName << Obsoleted.getAsString() |
| << 0 << Introduced.getAsString(); |
| return true; |
| } |
| |
| if (!Deprecated.empty() && !Obsoleted.empty() && |
| !(Deprecated <= Obsoleted)) { |
| S.Diag(Range.getBegin(), diag::warn_availability_version_ordering) |
| << 2 << PlatformName << Obsoleted.getAsString() |
| << 1 << Deprecated.getAsString(); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// Check whether the two versions match. |
| /// |
| /// If either version tuple is empty, then they are assumed to match. If |
| /// \p BeforeIsOkay is true, then \p X can be less than or equal to \p Y. |
| static bool versionsMatch(const VersionTuple &X, const VersionTuple &Y, |
| bool BeforeIsOkay) { |
| if (X.empty() || Y.empty()) |
| return true; |
| |
| if (X == Y) |
| return true; |
| |
| if (BeforeIsOkay && X < Y) |
| return true; |
| |
| return false; |
| } |
| |
| AvailabilityAttr *Sema::mergeAvailabilityAttr( |
| NamedDecl *D, const AttributeCommonInfo &CI, IdentifierInfo *Platform, |
| bool Implicit, VersionTuple Introduced, VersionTuple Deprecated, |
| VersionTuple Obsoleted, bool IsUnavailable, StringRef Message, |
| bool IsStrict, StringRef Replacement, AvailabilityMergeKind AMK, |
| int Priority) { |
| VersionTuple MergedIntroduced = Introduced; |
| VersionTuple MergedDeprecated = Deprecated; |
| VersionTuple MergedObsoleted = Obsoleted; |
| bool FoundAny = false; |
| bool OverrideOrImpl = false; |
| switch (AMK) { |
| case AMK_None: |
| case AMK_Redeclaration: |
| OverrideOrImpl = false; |
| break; |
| |
| case AMK_Override: |
| case AMK_ProtocolImplementation: |
| OverrideOrImpl = true; |
| break; |
| } |
| |
| if (D->hasAttrs()) { |
| AttrVec &Attrs = D->getAttrs(); |
| for (unsigned i = 0, e = Attrs.size(); i != e;) { |
| const auto *OldAA = dyn_cast<AvailabilityAttr>(Attrs[i]); |
| if (!OldAA) { |
| ++i; |
| continue; |
| } |
| |
| IdentifierInfo *OldPlatform = OldAA->getPlatform(); |
| if (OldPlatform != Platform) { |
| ++i; |
| continue; |
| } |
| |
| // If there is an existing availability attribute for this platform that |
| // has a lower priority use the existing one and discard the new |
| // attribute. |
| if (OldAA->getPriority() < Priority) |
| return nullptr; |
| |
| // If there is an existing attribute for this platform that has a higher |
| // priority than the new attribute then erase the old one and continue |
| // processing the attributes. |
| if (OldAA->getPriority() > Priority) { |
| Attrs.erase(Attrs.begin() + i); |
| --e; |
| continue; |
| } |
| |
| FoundAny = true; |
| VersionTuple OldIntroduced = OldAA->getIntroduced(); |
| VersionTuple OldDeprecated = OldAA->getDeprecated(); |
| VersionTuple OldObsoleted = OldAA->getObsoleted(); |
| bool OldIsUnavailable = OldAA->getUnavailable(); |
| |
| if (!versionsMatch(OldIntroduced, Introduced, OverrideOrImpl) || |
| !versionsMatch(Deprecated, OldDeprecated, OverrideOrImpl) || |
| !versionsMatch(Obsoleted, OldObsoleted, OverrideOrImpl) || |
| !(OldIsUnavailable == IsUnavailable || |
| (OverrideOrImpl && !OldIsUnavailable && IsUnavailable))) { |
| if (OverrideOrImpl) { |
| int Which = -1; |
| VersionTuple FirstVersion; |
| VersionTuple SecondVersion; |
| if (!versionsMatch(OldIntroduced, Introduced, OverrideOrImpl)) { |
| Which = 0; |
| FirstVersion = OldIntroduced; |
| SecondVersion = Introduced; |
| } else if (!versionsMatch(Deprecated, OldDeprecated, OverrideOrImpl)) { |
| Which = 1; |
| FirstVersion = Deprecated; |
| SecondVersion = OldDeprecated; |
| } else if (!versionsMatch(Obsoleted, OldObsoleted, OverrideOrImpl)) { |
| Which = 2; |
| FirstVersion = Obsoleted; |
| SecondVersion = OldObsoleted; |
| } |
| |
| if (Which == -1) { |
| Diag(OldAA->getLocation(), |
| diag::warn_mismatched_availability_override_unavail) |
| << AvailabilityAttr::getPrettyPlatformName(Platform->getName()) |
| << (AMK == AMK_Override); |
| } else { |
| Diag(OldAA->getLocation(), |
| diag::warn_mismatched_availability_override) |
| << Which |
| << AvailabilityAttr::getPrettyPlatformName(Platform->getName()) |
| << FirstVersion.getAsString() << SecondVersion.getAsString() |
| << (AMK == AMK_Override); |
| } |
| if (AMK == AMK_Override) |
| Diag(CI.getLoc(), diag::note_overridden_method); |
| else |
| Diag(CI.getLoc(), diag::note_protocol_method); |
| } else { |
| Diag(OldAA->getLocation(), diag::warn_mismatched_availability); |
| Diag(CI.getLoc(), diag::note_previous_attribute); |
| } |
| |
| Attrs.erase(Attrs.begin() + i); |
| --e; |
| continue; |
| } |
| |
| VersionTuple MergedIntroduced2 = MergedIntroduced; |
| VersionTuple MergedDeprecated2 = MergedDeprecated; |
| VersionTuple MergedObsoleted2 = MergedObsoleted; |
| |
| if (MergedIntroduced2.empty()) |
| MergedIntroduced2 = OldIntroduced; |
| if (MergedDeprecated2.empty()) |
| MergedDeprecated2 = OldDeprecated; |
| if (MergedObsoleted2.empty()) |
| MergedObsoleted2 = OldObsoleted; |
| |
| if (checkAvailabilityAttr(*this, OldAA->getRange(), Platform, |
| MergedIntroduced2, MergedDeprecated2, |
| MergedObsoleted2)) { |
| Attrs.erase(Attrs.begin() + i); |
| --e; |
| continue; |
| } |
| |
| MergedIntroduced = MergedIntroduced2; |
| MergedDeprecated = MergedDeprecated2; |
| MergedObsoleted = MergedObsoleted2; |
| ++i; |
| } |
| } |
| |
| if (FoundAny && |
| MergedIntroduced == Introduced && |
| MergedDeprecated == Deprecated && |
| MergedObsoleted == Obsoleted) |
| return nullptr; |
| |
| // Only create a new attribute if !OverrideOrImpl, but we want to do |
| // the checking. |
| if (!checkAvailabilityAttr(*this, CI.getRange(), Platform, MergedIntroduced, |
| MergedDeprecated, MergedObsoleted) && |
| !OverrideOrImpl) { |
| auto *Avail = ::new (Context) AvailabilityAttr( |
| Context, CI, Platform, Introduced, Deprecated, Obsoleted, IsUnavailable, |
| Message, IsStrict, Replacement, Priority); |
| Avail->setImplicit(Implicit); |
| return Avail; |
| } |
| return nullptr; |
| } |
| |
| static void handleAvailabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (!checkAttributeNumArgs(S, AL, 1)) |
| return; |
| IdentifierLoc *Platform = AL.getArgAsIdent(0); |
| |
| IdentifierInfo *II = Platform->Ident; |
| if (AvailabilityAttr::getPrettyPlatformName(II->getName()).empty()) |
| S.Diag(Platform->Loc, diag::warn_availability_unknown_platform) |
| << Platform->Ident; |
| |
| auto *ND = dyn_cast<NamedDecl>(D); |
| if (!ND) // We warned about this already, so just return. |
| return; |
| |
| AvailabilityChange Introduced = AL.getAvailabilityIntroduced(); |
| AvailabilityChange Deprecated = AL.getAvailabilityDeprecated(); |
| AvailabilityChange Obsoleted = AL.getAvailabilityObsoleted(); |
| bool IsUnavailable = AL.getUnavailableLoc().isValid(); |
| bool IsStrict = AL.getStrictLoc().isValid(); |
| StringRef Str; |
| if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getMessageExpr())) |
| Str = SE->getString(); |
| StringRef Replacement; |
| if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getReplacementExpr())) |
| Replacement = SE->getString(); |
| |
| if (II->isStr("swift")) { |
| if (Introduced.isValid() || Obsoleted.isValid() || |
| (!IsUnavailable && !Deprecated.isValid())) { |
| S.Diag(AL.getLoc(), |
| diag::warn_availability_swift_unavailable_deprecated_only); |
| return; |
| } |
| } |
| |
| int PriorityModifier = AL.isPragmaClangAttribute() |
| ? Sema::AP_PragmaClangAttribute |
| : Sema::AP_Explicit; |
| AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr( |
| ND, AL, II, false /*Implicit*/, Introduced.Version, Deprecated.Version, |
| Obsoleted.Version, IsUnavailable, Str, IsStrict, Replacement, |
| Sema::AMK_None, PriorityModifier); |
| if (NewAttr) |
| D->addAttr(NewAttr); |
| |
| // Transcribe "ios" to "watchos" (and add a new attribute) if the versioning |
| // matches before the start of the watchOS platform. |
| if (S.Context.getTargetInfo().getTriple().isWatchOS()) { |
| IdentifierInfo *NewII = nullptr; |
| if (II->getName() == "ios") |
| NewII = &S.Context.Idents.get("watchos"); |
| else if (II->getName() == "ios_app_extension") |
| NewII = &S.Context.Idents.get("watchos_app_extension"); |
| |
| if (NewII) { |
| auto adjustWatchOSVersion = [](VersionTuple Version) -> VersionTuple { |
| if (Version.empty()) |
| return Version; |
| auto Major = Version.getMajor(); |
| auto NewMajor = Major >= 9 ? Major - 7 : 0; |
| if (NewMajor >= 2) { |
| if (Version.getMinor().hasValue()) { |
| if (Version.getSubminor().hasValue()) |
| return VersionTuple(NewMajor, Version.getMinor().getValue(), |
| Version.getSubminor().getValue()); |
| else |
| return VersionTuple(NewMajor, Version.getMinor().getValue()); |
| } |
| return VersionTuple(NewMajor); |
| } |
| |
| return VersionTuple(2, 0); |
| }; |
| |
| auto NewIntroduced = adjustWatchOSVersion(Introduced.Version); |
| auto NewDeprecated = adjustWatchOSVersion(Deprecated.Version); |
| auto NewObsoleted = adjustWatchOSVersion(Obsoleted.Version); |
| |
| AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr( |
| ND, AL, NewII, true /*Implicit*/, NewIntroduced, NewDeprecated, |
| NewObsoleted, IsUnavailable, Str, IsStrict, Replacement, |
| Sema::AMK_None, |
| PriorityModifier + Sema::AP_InferredFromOtherPlatform); |
| if (NewAttr) |
| D->addAttr(NewAttr); |
| } |
| } else if (S.Context.getTargetInfo().getTriple().isTvOS()) { |
| // Transcribe "ios" to "tvos" (and add a new attribute) if the versioning |
| // matches before the start of the tvOS platform. |
| IdentifierInfo *NewII = nullptr; |
| if (II->getName() == "ios") |
| NewII = &S.Context.Idents.get("tvos"); |
| else if (II->getName() == "ios_app_extension") |
| NewII = &S.Context.Idents.get("tvos_app_extension"); |
| |
| if (NewII) { |
| AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr( |
| ND, AL, NewII, true /*Implicit*/, Introduced.Version, |
| Deprecated.Version, Obsoleted.Version, IsUnavailable, Str, IsStrict, |
| Replacement, Sema::AMK_None, |
| PriorityModifier + Sema::AP_InferredFromOtherPlatform); |
| if (NewAttr) |
| D->addAttr(NewAttr); |
| } |
| } |
| } |
| |
| static void handleExternalSourceSymbolAttr(Sema &S, Decl *D, |
| const ParsedAttr &AL) { |
| if (!checkAttributeAtLeastNumArgs(S, AL, 1)) |
| return; |
| assert(checkAttributeAtMostNumArgs(S, AL, 3) && |
| "Invalid number of arguments in an external_source_symbol attribute"); |
| |
| StringRef Language; |
| if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getArgAsExpr(0))) |
| Language = SE->getString(); |
| StringRef DefinedIn; |
| if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getArgAsExpr(1))) |
| DefinedIn = SE->getString(); |
| bool IsGeneratedDeclaration = AL.getArgAsIdent(2) != nullptr; |
| |
| D->addAttr(::new (S.Context) ExternalSourceSymbolAttr( |
| S.Context, AL, Language, DefinedIn, IsGeneratedDeclaration)); |
| } |
| |
| template <class T> |
| static T *mergeVisibilityAttr(Sema &S, Decl *D, const AttributeCommonInfo &CI, |
| typename T::VisibilityType value) { |
| T *existingAttr = D->getAttr<T>(); |
| if (existingAttr) { |
| typename T::VisibilityType existingValue = existingAttr->getVisibility(); |
| if (existingValue == value) |
| return nullptr; |
| S.Diag(existingAttr->getLocation(), diag::err_mismatched_visibility); |
| S.Diag(CI.getLoc(), diag::note_previous_attribute); |
| D->dropAttr<T>(); |
| } |
| return ::new (S.Context) T(S.Context, CI, value); |
| } |
| |
| VisibilityAttr *Sema::mergeVisibilityAttr(Decl *D, |
| const AttributeCommonInfo &CI, |
| VisibilityAttr::VisibilityType Vis) { |
| return ::mergeVisibilityAttr<VisibilityAttr>(*this, D, CI, Vis); |
| } |
| |
| TypeVisibilityAttr * |
| Sema::mergeTypeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI, |
| TypeVisibilityAttr::VisibilityType Vis) { |
| return ::mergeVisibilityAttr<TypeVisibilityAttr>(*this, D, CI, Vis); |
| } |
| |
| static void handleVisibilityAttr(Sema &S, Decl *D, const ParsedAttr &AL, |
| bool isTypeVisibility) { |
| // Visibility attributes don't mean anything on a typedef. |
| if (isa<TypedefNameDecl>(D)) { |
| S.Diag(AL.getRange().getBegin(), diag::warn_attribute_ignored) << AL; |
| return; |
| } |
| |
| // 'type_visibility' can only go on a type or namespace. |
| if (isTypeVisibility && |
| !(isa<TagDecl>(D) || |
| isa<ObjCInterfaceDecl>(D) || |
| isa<NamespaceDecl>(D))) { |
| S.Diag(AL.getRange().getBegin(), diag::err_attribute_wrong_decl_type) |
| << AL << ExpectedTypeOrNamespace; |
| return; |
| } |
| |
| // Check that the argument is a string literal. |
| StringRef TypeStr; |
| SourceLocation LiteralLoc; |
| if (!S.checkStringLiteralArgumentAttr(AL, 0, TypeStr, &LiteralLoc)) |
| return; |
| |
| VisibilityAttr::VisibilityType type; |
| if (!VisibilityAttr::ConvertStrToVisibilityType(TypeStr, type)) { |
| S.Diag(LiteralLoc, diag::warn_attribute_type_not_supported) << AL |
| << TypeStr; |
| return; |
| } |
| |
| // Complain about attempts to use protected visibility on targets |
| // (like Darwin) that don't support it. |
| if (type == VisibilityAttr::Protected && |
| !S.Context.getTargetInfo().hasProtectedVisibility()) { |
| S.Diag(AL.getLoc(), diag::warn_attribute_protected_visibility); |
| type = VisibilityAttr::Default; |
| } |
| |
| Attr *newAttr; |
| if (isTypeVisibility) { |
| newAttr = S.mergeTypeVisibilityAttr( |
| D, AL, (TypeVisibilityAttr::VisibilityType)type); |
| } else { |
| newAttr = S.mergeVisibilityAttr(D, AL, type); |
| } |
| if (newAttr) |
| D->addAttr(newAttr); |
| } |
| |
| static void handleObjCNonRuntimeProtocolAttr(Sema &S, Decl *D, |
| const ParsedAttr &AL) { |
| handleSimpleAttribute<ObjCNonRuntimeProtocolAttr>(S, D, AL); |
| } |
| |
| static void handleObjCDirectAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| // objc_direct cannot be set on methods declared in the context of a protocol |
| if (isa<ObjCProtocolDecl>(D->getDeclContext())) { |
| S.Diag(AL.getLoc(), diag::err_objc_direct_on_protocol) << false; |
| return; |
| } |
| |
| if (S.getLangOpts().ObjCRuntime.allowsDirectDispatch()) { |
| handleSimpleAttribute<ObjCDirectAttr>(S, D, AL); |
| } else { |
| S.Diag(AL.getLoc(), diag::warn_objc_direct_ignored) << AL; |
| } |
| } |
| |
| static void handleObjCDirectMembersAttr(Sema &S, Decl *D, |
| const ParsedAttr &AL) { |
| if (S.getLangOpts().ObjCRuntime.allowsDirectDispatch()) { |
| handleSimpleAttribute<ObjCDirectMembersAttr>(S, D, AL); |
| } else { |
| S.Diag(AL.getLoc(), diag::warn_objc_direct_ignored) << AL; |
| } |
| } |
| |
| static void handleObjCMethodFamilyAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| const auto *M = cast<ObjCMethodDecl>(D); |
| if (!AL.isArgIdent(0)) { |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) |
| << AL << 1 << AANT_ArgumentIdentifier; |
| return; |
| } |
| |
| IdentifierLoc *IL = AL.getArgAsIdent(0); |
| ObjCMethodFamilyAttr::FamilyKind F; |
| if (!ObjCMethodFamilyAttr::ConvertStrToFamilyKind(IL->Ident->getName(), F)) { |
| S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL << IL->Ident; |
| return; |
| } |
| |
| if (F == ObjCMethodFamilyAttr::OMF_init && |
| !M->getReturnType()->isObjCObjectPointerType()) { |
| S.Diag(M->getLocation(), diag::err_init_method_bad_return_type) |
| << M->getReturnType(); |
| // Ignore the attribute. |
| return; |
| } |
| |
| D->addAttr(new (S.Context) ObjCMethodFamilyAttr(S.Context, AL, F)); |
| } |
| |
| static void handleObjCNSObject(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) { |
| QualType T = TD->getUnderlyingType(); |
| if (!T->isCARCBridgableType()) { |
| S.Diag(TD->getLocation(), diag::err_nsobject_attribute); |
| return; |
| } |
| } |
| else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(D)) { |
| QualType T = PD->getType(); |
| if (!T->isCARCBridgableType()) { |
| S.Diag(PD->getLocation(), diag::err_nsobject_attribute); |
| return; |
| } |
| } |
| else { |
| // It is okay to include this attribute on properties, e.g.: |
| // |
| // @property (retain, nonatomic) struct Bork *Q __attribute__((NSObject)); |
| // |
| // In this case it follows tradition and suppresses an error in the above |
| // case. |
| S.Diag(D->getLocation(), diag::warn_nsobject_attribute); |
| } |
| D->addAttr(::new (S.Context) ObjCNSObjectAttr(S.Context, AL)); |
| } |
| |
| static void handleObjCIndependentClass(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) { |
| QualType T = TD->getUnderlyingType(); |
| if (!T->isObjCObjectPointerType()) { |
| S.Diag(TD->getLocation(), diag::warn_ptr_independentclass_attribute); |
| return; |
| } |
| } else { |
| S.Diag(D->getLocation(), diag::warn_independentclass_attribute); |
| return; |
| } |
| D->addAttr(::new (S.Context) ObjCIndependentClassAttr(S.Context, AL)); |
| } |
| |
| static void handleBlocksAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (!AL.isArgIdent(0)) { |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) |
| << AL << 1 << AANT_ArgumentIdentifier; |
| return; |
| } |
| |
| IdentifierInfo *II = AL.getArgAsIdent(0)->Ident; |
| BlocksAttr::BlockType type; |
| if (!BlocksAttr::ConvertStrToBlockType(II->getName(), type)) { |
| S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II; |
| return; |
| } |
| |
| D->addAttr(::new (S.Context) BlocksAttr(S.Context, AL, type)); |
| } |
| |
| static void handleSentinelAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| unsigned sentinel = (unsigned)SentinelAttr::DefaultSentinel; |
| if (AL.getNumArgs() > 0) { |
| Expr *E = AL.getArgAsExpr(0); |
| Optional<llvm::APSInt> Idx = llvm::APSInt(32); |
| if (E->isTypeDependent() || E->isValueDependent() || |
| !(Idx = E->getIntegerConstantExpr(S.Context))) { |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) |
| << AL << 1 << AANT_ArgumentIntegerConstant << E->getSourceRange(); |
| return; |
| } |
| |
| if (Idx->isSigned() && Idx->isNegative()) { |
| S.Diag(AL.getLoc(), diag::err_attribute_sentinel_less_than_zero) |
| << E->getSourceRange(); |
| return; |
| } |
| |
| sentinel = Idx->getZExtValue(); |
| } |
| |
| unsigned nullPos = (unsigned)SentinelAttr::DefaultNullPos; |
| if (AL.getNumArgs() > 1) { |
| Expr *E = AL.getArgAsExpr(1); |
| Optional<llvm::APSInt> Idx = llvm::APSInt(32); |
| if (E->isTypeDependent() || E->isValueDependent() || |
| !(Idx = E->getIntegerConstantExpr(S.Context))) { |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) |
| << AL << 2 << AANT_ArgumentIntegerConstant << E->getSourceRange(); |
| return; |
| } |
| nullPos = Idx->getZExtValue(); |
| |
| if ((Idx->isSigned() && Idx->isNegative()) || nullPos > 1) { |
| // FIXME: This error message could be improved, it would be nice |
| // to say what the bounds actually are. |
| S.Diag(AL.getLoc(), diag::err_attribute_sentinel_not_zero_or_one) |
| << E->getSourceRange(); |
| return; |
| } |
| } |
| |
| if (const auto *FD = dyn_cast<FunctionDecl>(D)) { |
| const FunctionType *FT = FD->getType()->castAs<FunctionType>(); |
| if (isa<FunctionNoProtoType>(FT)) { |
| S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_named_arguments); |
| return; |
| } |
| |
| if (!cast<FunctionProtoType>(FT)->isVariadic()) { |
| S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0; |
| return; |
| } |
| } else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) { |
| if (!MD->isVariadic()) { |
| S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0; |
| return; |
| } |
| } else if (const auto *BD = dyn_cast<BlockDecl>(D)) { |
| if (!BD->isVariadic()) { |
| S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 1; |
| return; |
| } |
| } else if (const auto *V = dyn_cast<VarDecl>(D)) { |
| QualType Ty = V->getType(); |
| if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) { |
| const FunctionType *FT = Ty->isFunctionPointerType() |
| ? D->getFunctionType() |
| : Ty->castAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>(); |
| if (!cast<FunctionProtoType>(FT)->isVariadic()) { |
| int m = Ty->isFunctionPointerType() ? 0 : 1; |
| S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << m; |
| return; |
| } |
| } else { |
| S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) |
| << AL << ExpectedFunctionMethodOrBlock; |
| return; |
| } |
| } else { |
| S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) |
| << AL << ExpectedFunctionMethodOrBlock; |
| return; |
| } |
| D->addAttr(::new (S.Context) SentinelAttr(S.Context, AL, sentinel, nullPos)); |
| } |
| |
| static void handleWarnUnusedResult(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (D->getFunctionType() && |
| D->getFunctionType()->getReturnType()->isVoidType() && |
| !isa<CXXConstructorDecl>(D)) { |
| S.Diag(AL.getLoc(), diag::warn_attribute_void_function_method) << AL << 0; |
| return; |
| } |
| if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) |
| if (MD->getReturnType()->isVoidType()) { |
| S.Diag(AL.getLoc(), diag::warn_attribute_void_function_method) << AL << 1; |
| return; |
| } |
| |
| StringRef Str; |
| if ((AL.isCXX11Attribute() || AL.isC2xAttribute()) && !AL.getScopeName()) { |
| // The standard attribute cannot be applied to variable declarations such |
| // as a function pointer. |
| if (isa<VarDecl>(D)) |
| S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type_str) |
| << AL << "functions, classes, or enumerations"; |
| |
| // If this is spelled as the standard C++17 attribute, but not in C++17, |
| // warn about using it as an extension. If there are attribute arguments, |
| // then claim it's a C++2a extension instead. |
| // FIXME: If WG14 does not seem likely to adopt the same feature, add an |
| // extension warning for C2x mode. |
| const LangOptions &LO = S.getLangOpts(); |
| if (AL.getNumArgs() == 1) { |
| if (LO.CPlusPlus && !LO.CPlusPlus20) |
| S.Diag(AL.getLoc(), diag::ext_cxx20_attr) << AL; |
| |
| // Since this this is spelled [[nodiscard]], get the optional string |
| // literal. If in C++ mode, but not in C++2a mode, diagnose as an |
| // extension. |
| // FIXME: C2x should support this feature as well, even as an extension. |
| if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, nullptr)) |
| return; |
| } else if (LO.CPlusPlus && !LO.CPlusPlus17) |
| S.Diag(AL.getLoc(), diag::ext_cxx17_attr) << AL; |
| } |
| |
| D->addAttr(::new (S.Context) WarnUnusedResultAttr(S.Context, AL, Str)); |
| } |
| |
| static void handleWeakImportAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| // weak_import only applies to variable & function declarations. |
| bool isDef = false; |
| if (!D->canBeWeakImported(isDef)) { |
| if (isDef) |
| S.Diag(AL.getLoc(), diag::warn_attribute_invalid_on_definition) |
| << "weak_import"; |
| else if (isa<ObjCPropertyDecl>(D) || isa<ObjCMethodDecl>(D) || |
| (S.Context.getTargetInfo().getTriple().isOSDarwin() && |
| (isa<ObjCInterfaceDecl>(D) || isa<EnumDecl>(D)))) { |
| // Nothing to warn about here. |
| } else |
| S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) |
| << AL << ExpectedVariableOrFunction; |
| |
| return; |
| } |
| |
| D->addAttr(::new (S.Context) WeakImportAttr(S.Context, AL)); |
| } |
| |
| // Handles reqd_work_group_size and work_group_size_hint. |
| template <typename WorkGroupAttr> |
| static void handleWorkGroupSize(Sema &S, Decl *D, const ParsedAttr &AL) { |
| uint32_t WGSize[3]; |
| for (unsigned i = 0; i < 3; ++i) { |
| const Expr *E = AL.getArgAsExpr(i); |
| if (!checkUInt32Argument(S, AL, E, WGSize[i], i, |
| /*StrictlyUnsigned=*/true)) |
| return; |
| if (WGSize[i] == 0) { |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_is_zero) |
| << AL << E->getSourceRange(); |
| return; |
| } |
| } |
| |
| WorkGroupAttr *Existing = D->getAttr<WorkGroupAttr>(); |
| if (Existing && !(Existing->getXDim() == WGSize[0] && |
| Existing->getYDim() == WGSize[1] && |
| Existing->getZDim() == WGSize[2])) |
| S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL; |
| |
| D->addAttr(::new (S.Context) |
| WorkGroupAttr(S.Context, AL, WGSize[0], WGSize[1], WGSize[2])); |
| } |
| |
| // Handles intel_reqd_sub_group_size. |
| static void handleSubGroupSize(Sema &S, Decl *D, const ParsedAttr &AL) { |
| uint32_t SGSize; |
| const Expr *E = AL.getArgAsExpr(0); |
| if (!checkUInt32Argument(S, AL, E, SGSize)) |
| return; |
| if (SGSize == 0) { |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_is_zero) |
| << AL << E->getSourceRange(); |
| return; |
| } |
| |
| OpenCLIntelReqdSubGroupSizeAttr *Existing = |
| D->getAttr<OpenCLIntelReqdSubGroupSizeAttr>(); |
| if (Existing && Existing->getSubGroupSize() != SGSize) |
| S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL; |
| |
| D->addAttr(::new (S.Context) |
| OpenCLIntelReqdSubGroupSizeAttr(S.Context, AL, SGSize)); |
| } |
| |
| static void handleVecTypeHint(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (!AL.hasParsedType()) { |
| S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1; |
| return; |
| } |
| |
| TypeSourceInfo *ParmTSI = nullptr; |
| QualType ParmType = S.GetTypeFromParser(AL.getTypeArg(), &ParmTSI); |
| assert(ParmTSI && "no type source info for attribute argument"); |
| |
| if (!ParmType->isExtVectorType() && !ParmType->isFloatingType() && |
| (ParmType->isBooleanType() || |
| !ParmType->isIntegralType(S.getASTContext()))) { |
| S.Diag(AL.getLoc(), diag::err_attribute_invalid_argument) << 2 << AL; |
| return; |
| } |
| |
| if (VecTypeHintAttr *A = D->getAttr<VecTypeHintAttr>()) { |
| if (!S.Context.hasSameType(A->getTypeHint(), ParmType)) { |
| S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL; |
| return; |
| } |
| } |
| |
| D->addAttr(::new (S.Context) VecTypeHintAttr(S.Context, AL, ParmTSI)); |
| } |
| |
| SectionAttr *Sema::mergeSectionAttr(Decl *D, const AttributeCommonInfo &CI, |
| StringRef Name) { |
| // Explicit or partial specializations do not inherit |
| // the section attribute from the primary template. |
| if (const auto *FD = dyn_cast<FunctionDecl>(D)) { |
| if (CI.getAttributeSpellingListIndex() == SectionAttr::Declspec_allocate && |
| FD->isFunctionTemplateSpecialization()) |
| return nullptr; |
| } |
| if (SectionAttr *ExistingAttr = D->getAttr<SectionAttr>()) { |
| if (ExistingAttr->getName() == Name) |
| return nullptr; |
| Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section) |
| << 1 /*section*/; |
| Diag(CI.getLoc(), diag::note_previous_attribute); |
| return nullptr; |
| } |
| return ::new (Context) SectionAttr(Context, CI, Name); |
| } |
| |
| bool Sema::checkSectionName(SourceLocation LiteralLoc, StringRef SecName) { |
| std::string Error = Context.getTargetInfo().isValidSectionSpecifier(SecName); |
| if (!Error.empty()) { |
| Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target) << Error |
| << 1 /*'section'*/; |
| return false; |
| } |
| return true; |
| } |
| |
| static void handleSectionAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| // Make sure that there is a string literal as the sections's single |
| // argument. |
| StringRef Str; |
| SourceLocation LiteralLoc; |
| if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc)) |
| return; |
| |
| if (!S.checkSectionName(LiteralLoc, Str)) |
| return; |
| |
| // If the target wants to validate the section specifier, make it happen. |
| std::string Error = S.Context.getTargetInfo().isValidSectionSpecifier(Str); |
| if (!Error.empty()) { |
| S.Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target) |
| << Error; |
| return; |
| } |
| |
| SectionAttr *NewAttr = S.mergeSectionAttr(D, AL, Str); |
| if (NewAttr) |
| D->addAttr(NewAttr); |
| } |
| |
| // This is used for `__declspec(code_seg("segname"))` on a decl. |
| // `#pragma code_seg("segname")` uses checkSectionName() instead. |
| static bool checkCodeSegName(Sema &S, SourceLocation LiteralLoc, |
| StringRef CodeSegName) { |
| std::string Error = |
| S.Context.getTargetInfo().isValidSectionSpecifier(CodeSegName); |
| if (!Error.empty()) { |
| S.Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target) |
| << Error << 0 /*'code-seg'*/; |
| return false; |
| } |
| |
| return true; |
| } |
| |
| CodeSegAttr *Sema::mergeCodeSegAttr(Decl *D, const AttributeCommonInfo &CI, |
| StringRef Name) { |
| // Explicit or partial specializations do not inherit |
| // the code_seg attribute from the primary template. |
| if (const auto *FD = dyn_cast<FunctionDecl>(D)) { |
| if (FD->isFunctionTemplateSpecialization()) |
| return nullptr; |
| } |
| if (const auto *ExistingAttr = D->getAttr<CodeSegAttr>()) { |
| if (ExistingAttr->getName() == Name) |
| return nullptr; |
| Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section) |
| << 0 /*codeseg*/; |
| Diag(CI.getLoc(), diag::note_previous_attribute); |
| return nullptr; |
| } |
| return ::new (Context) CodeSegAttr(Context, CI, Name); |
| } |
| |
| static void handleCodeSegAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| StringRef Str; |
| SourceLocation LiteralLoc; |
| if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc)) |
| return; |
| if (!checkCodeSegName(S, LiteralLoc, Str)) |
| return; |
| if (const auto *ExistingAttr = D->getAttr<CodeSegAttr>()) { |
| if (!ExistingAttr->isImplicit()) { |
| S.Diag(AL.getLoc(), |
| ExistingAttr->getName() == Str |
| ? diag::warn_duplicate_codeseg_attribute |
| : diag::err_conflicting_codeseg_attribute); |
| return; |
| } |
| D->dropAttr<CodeSegAttr>(); |
| } |
| if (CodeSegAttr *CSA = S.mergeCodeSegAttr(D, AL, Str)) |
| D->addAttr(CSA); |
| } |
| |
| // Check for things we'd like to warn about. Multiversioning issues are |
| // handled later in the process, once we know how many exist. |
| bool Sema::checkTargetAttr(SourceLocation LiteralLoc, StringRef AttrStr) { |
| enum FirstParam { Unsupported, Duplicate, Unknown }; |
| enum SecondParam { None, Architecture, Tune }; |
| if (AttrStr.find("fpmath=") != StringRef::npos) |
| return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) |
| << Unsupported << None << "fpmath="; |
| |
| // Diagnose use of tune if target doesn't support it. |
| if (!Context.getTargetInfo().supportsTargetAttributeTune() && |
| AttrStr.find("tune=") != StringRef::npos) |
| return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) |
| << Unsupported << None << "tune="; |
| |
| ParsedTargetAttr ParsedAttrs = TargetAttr::parse(AttrStr); |
| |
| if (!ParsedAttrs.Architecture.empty() && |
| !Context.getTargetInfo().isValidCPUName(ParsedAttrs.Architecture)) |
| return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) |
| << Unknown << Architecture << ParsedAttrs.Architecture; |
| |
| if (!ParsedAttrs.Tune.empty() && |
| !Context.getTargetInfo().isValidCPUName(ParsedAttrs.Tune)) |
| return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) |
| << Unknown << Tune << ParsedAttrs.Tune; |
| |
| if (ParsedAttrs.DuplicateArchitecture) |
| return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) |
| << Duplicate << None << "arch="; |
| if (ParsedAttrs.DuplicateTune) |
| return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) |
| << Duplicate << None << "tune="; |
| |
| for (const auto &Feature : ParsedAttrs.Features) { |
| auto CurFeature = StringRef(Feature).drop_front(); // remove + or -. |
| if (!Context.getTargetInfo().isValidFeatureName(CurFeature)) |
| return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) |
| << Unsupported << None << CurFeature; |
| } |
| |
| TargetInfo::BranchProtectionInfo BPI; |
| StringRef Error; |
| if (!ParsedAttrs.BranchProtection.empty() && |
| !Context.getTargetInfo().validateBranchProtection( |
| ParsedAttrs.BranchProtection, BPI, Error)) { |
| if (Error.empty()) |
| return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) |
| << Unsupported << None << "branch-protection"; |
| else |
| return Diag(LiteralLoc, diag::err_invalid_branch_protection_spec) |
| << Error; |
| } |
| |
| return false; |
| } |
| |
| static void handleTargetAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| StringRef Str; |
| SourceLocation LiteralLoc; |
| if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc) || |
| S.checkTargetAttr(LiteralLoc, Str)) |
| return; |
| |
| TargetAttr *NewAttr = ::new (S.Context) TargetAttr(S.Context, AL, Str); |
| D->addAttr(NewAttr); |
| } |
| |
| static void handleMinVectorWidthAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| Expr *E = AL.getArgAsExpr(0); |
| uint32_t VecWidth; |
| if (!checkUInt32Argument(S, AL, E, VecWidth)) { |
| AL.setInvalid(); |
| return; |
| } |
| |
| MinVectorWidthAttr *Existing = D->getAttr<MinVectorWidthAttr>(); |
| if (Existing && Existing->getVectorWidth() != VecWidth) { |
| S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL; |
| return; |
| } |
| |
| D->addAttr(::new (S.Context) MinVectorWidthAttr(S.Context, AL, VecWidth)); |
| } |
| |
| static void handleCleanupAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| Expr *E = AL.getArgAsExpr(0); |
| SourceLocation Loc = E->getExprLoc(); |
| FunctionDecl *FD = nullptr; |
| DeclarationNameInfo NI; |
| |
| // gcc only allows for simple identifiers. Since we support more than gcc, we |
| // will warn the user. |
| if (auto *DRE = dyn_cast<DeclRefExpr>(E)) { |
| if (DRE->hasQualifier()) |
| S.Diag(Loc, diag::warn_cleanup_ext); |
| FD = dyn_cast<FunctionDecl>(DRE->getDecl()); |
| NI = DRE->getNameInfo(); |
| if (!FD) { |
| S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 1 |
| << NI.getName(); |
| return; |
| } |
| } else if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(E)) { |
| if (ULE->hasExplicitTemplateArgs()) |
| S.Diag(Loc, diag::warn_cleanup_ext); |
| FD = S.ResolveSingleFunctionTemplateSpecialization(ULE, true); |
| NI = ULE->getNameInfo(); |
| if (!FD) { |
| S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 2 |
| << NI.getName(); |
| if (ULE->getType() == S.Context.OverloadTy) |
| S.NoteAllOverloadCandidates(ULE); |
| return; |
| } |
| } else { |
| S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 0; |
| return; |
| } |
| |
| if (FD->getNumParams() != 1) { |
| S.Diag(Loc, diag::err_attribute_cleanup_func_must_take_one_arg) |
| << NI.getName(); |
| return; |
| } |
| |
| // We're currently more strict than GCC about what function types we accept. |
| // If this ever proves to be a problem it should be easy to fix. |
| QualType Ty = S.Context.getPointerType(cast<VarDecl>(D)->getType()); |
| QualType ParamTy = FD->getParamDecl(0)->getType(); |
| if (S.CheckAssignmentConstraints(FD->getParamDecl(0)->getLocation(), |
| ParamTy, Ty) != Sema::Compatible) { |
| S.Diag(Loc, diag::err_attribute_cleanup_func_arg_incompatible_type) |
| << NI.getName() << ParamTy << Ty; |
| return; |
| } |
| |
| D->addAttr(::new (S.Context) CleanupAttr(S.Context, AL, FD)); |
| } |
| |
| static void handleEnumExtensibilityAttr(Sema &S, Decl *D, |
| const ParsedAttr &AL) { |
| if (!AL.isArgIdent(0)) { |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) |
| << AL << 0 << AANT_ArgumentIdentifier; |
| return; |
| } |
| |
| EnumExtensibilityAttr::Kind ExtensibilityKind; |
| IdentifierInfo *II = AL.getArgAsIdent(0)->Ident; |
| if (!EnumExtensibilityAttr::ConvertStrToKind(II->getName(), |
| ExtensibilityKind)) { |
| S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II; |
| return; |
| } |
| |
| D->addAttr(::new (S.Context) |
| EnumExtensibilityAttr(S.Context, AL, ExtensibilityKind)); |
| } |
| |
| /// Handle __attribute__((format_arg((idx)))) attribute based on |
| /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html |
| static void handleFormatArgAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| Expr *IdxExpr = AL.getArgAsExpr(0); |
| ParamIdx Idx; |
| if (!checkFunctionOrMethodParameterIndex(S, D, AL, 1, IdxExpr, Idx)) |
| return; |
| |
| // Make sure the format string is really a string. |
| QualType Ty = getFunctionOrMethodParamType(D, Idx.getASTIndex()); |
| |
| bool NotNSStringTy = !isNSStringType(Ty, S.Context); |
| if (NotNSStringTy && |
| !isCFStringType(Ty, S.Context) && |
| (!Ty->isPointerType() || |
| !Ty->castAs<PointerType>()->getPointeeType()->isCharType())) { |
| S.Diag(AL.getLoc(), diag::err_format_attribute_not) |
| << "a string type" << IdxExpr->getSourceRange() |
| << getFunctionOrMethodParamRange(D, 0); |
| return; |
| } |
| Ty = getFunctionOrMethodResultType(D); |
| if (!isNSStringType(Ty, S.Context) && |
| !isCFStringType(Ty, S.Context) && |
| (!Ty->isPointerType() || |
| !Ty->castAs<PointerType>()->getPointeeType()->isCharType())) { |
| S.Diag(AL.getLoc(), diag::err_format_attribute_result_not) |
| << (NotNSStringTy ? "string type" : "NSString") |
| << IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, 0); |
| return; |
| } |
| |
| D->addAttr(::new (S.Context) FormatArgAttr(S.Context, AL, Idx)); |
| } |
| |
| enum FormatAttrKind { |
| CFStringFormat, |
| NSStringFormat, |
| StrftimeFormat, |
| SupportedFormat, |
| IgnoredFormat, |
| InvalidFormat |
| }; |
| |
| /// getFormatAttrKind - Map from format attribute names to supported format |
| /// types. |
| static FormatAttrKind getFormatAttrKind(StringRef Format) { |
| return llvm::StringSwitch<FormatAttrKind>(Format) |
| // Check for formats that get handled specially. |
| .Case("NSString", NSStringFormat) |
| .Case("CFString", CFStringFormat) |
| .Case("strftime", StrftimeFormat) |
| |
| // Otherwise, check for supported formats. |
| .Cases("scanf", "printf", "printf0", "strfmon", SupportedFormat) |
| .Cases("cmn_err", "vcmn_err", "zcmn_err", SupportedFormat) |
| .Case("kprintf", SupportedFormat) // OpenBSD. |
| .Case("freebsd_kprintf", SupportedFormat) // FreeBSD. |
| .Case("os_trace", SupportedFormat) |
| .Case("os_log", SupportedFormat) |
| |
| .Cases("gcc_diag", "gcc_cdiag", "gcc_cxxdiag", "gcc_tdiag", IgnoredFormat) |
| .Default(InvalidFormat); |
| } |
| |
| /// Handle __attribute__((init_priority(priority))) attributes based on |
| /// http://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Attributes.html |
| static void handleInitPriorityAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (!S.getLangOpts().CPlusPlus) { |
| S.Diag(AL.getLoc(), diag::warn_attribute_ignored) << AL; |
| return; |
| } |
| |
| if (S.getCurFunctionOrMethodDecl()) { |
| S.Diag(AL.getLoc(), diag::err_init_priority_object_attr); |
| AL.setInvalid(); |
| return; |
| } |
| QualType T = cast<VarDecl>(D)->getType(); |
| if (S.Context.getAsArrayType(T)) |
| T = S.Context.getBaseElementType(T); |
| if (!T->getAs<RecordType>()) { |
| S.Diag(AL.getLoc(), diag::err_init_priority_object_attr); |
| AL.setInvalid(); |
| return; |
| } |
| |
| Expr *E = AL.getArgAsExpr(0); |
| uint32_t prioritynum; |
| if (!checkUInt32Argument(S, AL, E, prioritynum)) { |
| AL.setInvalid(); |
| return; |
| } |
| |
| // Only perform the priority check if the attribute is outside of a system |
| // header. Values <= 100 are reserved for the implementation, and libc++ |
| // benefits from being able to specify values in that range. |
| if ((prioritynum < 101 || prioritynum > 65535) && |
| !S.getSourceManager().isInSystemHeader(AL.getLoc())) { |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_range) |
| << E->getSourceRange() << AL << 101 << 65535; |
| AL.setInvalid(); |
| return; |
| } |
| D->addAttr(::new (S.Context) InitPriorityAttr(S.Context, AL, prioritynum)); |
| } |
| |
| FormatAttr *Sema::mergeFormatAttr(Decl *D, const AttributeCommonInfo &CI, |
| IdentifierInfo *Format, int FormatIdx, |
| int FirstArg) { |
| // Check whether we already have an equivalent format attribute. |
| for (auto *F : D->specific_attrs<FormatAttr>()) { |
| if (F->getType() == Format && |
| F->getFormatIdx() == FormatIdx && |
| F->getFirstArg() == FirstArg) { |
| // If we don't have a valid location for this attribute, adopt the |
| // location. |
| if (F->getLocation().isInvalid()) |
| F->setRange(CI.getRange()); |
| return nullptr; |
| } |
| } |
| |
| return ::new (Context) FormatAttr(Context, CI, Format, FormatIdx, FirstArg); |
| } |
| |
| /// Handle __attribute__((format(type,idx,firstarg))) attributes based on |
| /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html |
| static void handleFormatAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (!AL.isArgIdent(0)) { |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) |
| << AL << 1 << AANT_ArgumentIdentifier; |
| return; |
| } |
| |
| // In C++ the implicit 'this' function parameter also counts, and they are |
| // counted from one. |
| bool HasImplicitThisParam = isInstanceMethod(D); |
| unsigned NumArgs = getFunctionOrMethodNumParams(D) + HasImplicitThisParam; |
| |
| IdentifierInfo *II = AL.getArgAsIdent(0)->Ident; |
| StringRef Format = II->getName(); |
| |
| if (normalizeName(Format)) { |
| // If we've modified the string name, we need a new identifier for it. |
| II = &S.Context.Idents.get(Format); |
| } |
| |
| // Check for supported formats. |
| FormatAttrKind Kind = getFormatAttrKind(Format); |
| |
| if (Kind == IgnoredFormat) |
| return; |
| |
| if (Kind == InvalidFormat) { |
| S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) |
| << AL << II->getName(); |
| return; |
| } |
| |
| // checks for the 2nd argument |
| Expr *IdxExpr = AL.getArgAsExpr(1); |
| uint32_t Idx; |
| if (!checkUInt32Argument(S, AL, IdxExpr, Idx, 2)) |
| return; |
| |
| if (Idx < 1 || Idx > NumArgs) { |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds) |
| << AL << 2 << IdxExpr->getSourceRange(); |
| return; |
| } |
| |
| // FIXME: Do we need to bounds check? |
| unsigned ArgIdx = Idx - 1; |
| |
| if (HasImplicitThisParam) { |
| if (ArgIdx == 0) { |
| S.Diag(AL.getLoc(), |
| diag::err_format_attribute_implicit_this_format_string) |
| << IdxExpr->getSourceRange(); |
| return; |
| } |
| ArgIdx--; |
| } |
| |
| // make sure the format string is really a string |
| QualType Ty = getFunctionOrMethodParamType(D, ArgIdx); |
| |
| if (Kind == CFStringFormat) { |
| if (!isCFStringType(Ty, S.Context)) { |
| S.Diag(AL.getLoc(), diag::err_format_attribute_not) |
| << "a CFString" << IdxExpr->getSourceRange() |
| << getFunctionOrMethodParamRange(D, ArgIdx); |
| return; |
| } |
| } else if (Kind == NSStringFormat) { |
| // FIXME: do we need to check if the type is NSString*? What are the |
| // semantics? |
| if (!isNSStringType(Ty, S.Context)) { |
| S.Diag(AL.getLoc(), diag::err_format_attribute_not) |
| << "an NSString" << IdxExpr->getSourceRange() |
| << getFunctionOrMethodParamRange(D, ArgIdx); |
| return; |
| } |
| } else if (!Ty->isPointerType() || |
| !Ty->castAs<PointerType>()->getPointeeType()->isCharType()) { |
| S.Diag(AL.getLoc(), diag::err_format_attribute_not) |
| << "a string type" << IdxExpr->getSourceRange() |
| << getFunctionOrMethodParamRange(D, ArgIdx); |
| return; |
| } |
| |
| // check the 3rd argument |
| Expr *FirstArgExpr = AL.getArgAsExpr(2); |
| uint32_t FirstArg; |
| if (!checkUInt32Argument(S, AL, FirstArgExpr, FirstArg, 3)) |
| return; |
| |
| // check if the function is variadic if the 3rd argument non-zero |
| if (FirstArg != 0) { |
| if (isFunctionOrMethodVariadic(D)) { |
| ++NumArgs; // +1 for ... |
| } else { |
| S.Diag(D->getLocation(), diag::err_format_attribute_requires_variadic); |
| return; |
| } |
| } |
| |
| // strftime requires FirstArg to be 0 because it doesn't read from any |
| // variable the input is just the current time + the format string. |
| if (Kind == StrftimeFormat) { |
| if (FirstArg != 0) { |
| S.Diag(AL.getLoc(), diag::err_format_strftime_third_parameter) |
| << FirstArgExpr->getSourceRange(); |
| return; |
| } |
| // if 0 it disables parameter checking (to use with e.g. va_list) |
| } else if (FirstArg != 0 && FirstArg != NumArgs) { |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds) |
| << AL << 3 << FirstArgExpr->getSourceRange(); |
| return; |
| } |
| |
| FormatAttr *NewAttr = S.mergeFormatAttr(D, AL, II, Idx, FirstArg); |
| if (NewAttr) |
| D->addAttr(NewAttr); |
| } |
| |
| /// Handle __attribute__((callback(CalleeIdx, PayloadIdx0, ...))) attributes. |
| static void handleCallbackAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| // The index that identifies the callback callee is mandatory. |
| if (AL.getNumArgs() == 0) { |
| S.Diag(AL.getLoc(), diag::err_callback_attribute_no_callee) |
| << AL.getRange(); |
| return; |
| } |
| |
| bool HasImplicitThisParam = isInstanceMethod(D); |
| int32_t NumArgs = getFunctionOrMethodNumParams(D); |
| |
| FunctionDecl *FD = D->getAsFunction(); |
| assert(FD && "Expected a function declaration!"); |
| |
| llvm::StringMap<int> NameIdxMapping; |
| NameIdxMapping["__"] = -1; |
| |
| NameIdxMapping["this"] = 0; |
| |
| int Idx = 1; |
| for (const ParmVarDecl *PVD : FD->parameters()) |
| NameIdxMapping[PVD->getName()] = Idx++; |
| |
| auto UnknownName = NameIdxMapping.end(); |
| |
| SmallVector<int, 8> EncodingIndices; |
| for (unsigned I = 0, E = AL.getNumArgs(); I < E; ++I) { |
| SourceRange SR; |
| int32_t ArgIdx; |
| |
| if (AL.isArgIdent(I)) { |
| IdentifierLoc *IdLoc = AL.getArgAsIdent(I); |
| auto It = NameIdxMapping.find(IdLoc->Ident->getName()); |
| if (It == UnknownName) { |
| S.Diag(AL.getLoc(), diag::err_callback_attribute_argument_unknown) |
| << IdLoc->Ident << IdLoc->Loc; |
| return; |
| } |
| |
| SR = SourceRange(IdLoc->Loc); |
| ArgIdx = It->second; |
| } else if (AL.isArgExpr(I)) { |
| Expr *IdxExpr = AL.getArgAsExpr(I); |
| |
| // If the expression is not parseable as an int32_t we have a problem. |
| if (!checkUInt32Argument(S, AL, IdxExpr, (uint32_t &)ArgIdx, I + 1, |
| false)) { |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds) |
| << AL << (I + 1) << IdxExpr->getSourceRange(); |
| return; |
| } |
| |
| // Check oob, excluding the special values, 0 and -1. |
| if (ArgIdx < -1 || ArgIdx > NumArgs) { |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds) |
| << AL << (I + 1) << IdxExpr->getSourceRange(); |
| return; |
| } |
| |
| SR = IdxExpr->getSourceRange(); |
| } else { |
| llvm_unreachable("Unexpected ParsedAttr argument type!"); |
| } |
| |
| if (ArgIdx == 0 && !HasImplicitThisParam) { |
| S.Diag(AL.getLoc(), diag::err_callback_implicit_this_not_available) |
| << (I + 1) << SR; |
| return; |
| } |
| |
| // Adjust for the case we do not have an implicit "this" parameter. In this |
| // case we decrease all positive values by 1 to get LLVM argument indices. |
| if (!HasImplicitThisParam && ArgIdx > 0) |
| ArgIdx -= 1; |
| |
| EncodingIndices.push_back(ArgIdx); |
| } |
| |
| int CalleeIdx = EncodingIndices.front(); |
| // Check if the callee index is proper, thus not "this" and not "unknown". |
| // This means the "CalleeIdx" has to be non-negative if "HasImplicitThisParam" |
| // is false and positive if "HasImplicitThisParam" is true. |
| if (CalleeIdx < (int)HasImplicitThisParam) { |
| S.Diag(AL.getLoc(), diag::err_callback_attribute_invalid_callee) |
| << AL.getRange(); |
| return; |
| } |
| |
| // Get the callee type, note the index adjustment as the AST doesn't contain |
| // the this type (which the callee cannot reference anyway!). |
| const Type *CalleeType = |
| getFunctionOrMethodParamType(D, CalleeIdx - HasImplicitThisParam) |
| .getTypePtr(); |
| if (!CalleeType || !CalleeType->isFunctionPointerType()) { |
| S.Diag(AL.getLoc(), diag::err_callback_callee_no_function_type) |
| << AL.getRange(); |
| return; |
| } |
| |
| const Type *CalleeFnType = |
| CalleeType->getPointeeType()->getUnqualifiedDesugaredType(); |
| |
| // TODO: Check the type of the callee arguments. |
| |
| const auto *CalleeFnProtoType = dyn_cast<FunctionProtoType>(CalleeFnType); |
| if (!CalleeFnProtoType) { |
| S.Diag(AL.getLoc(), diag::err_callback_callee_no_function_type) |
| << AL.getRange(); |
| return; |
| } |
| |
| if (CalleeFnProtoType->getNumParams() > EncodingIndices.size() - 1) { |
| S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) |
| << AL << (unsigned)(EncodingIndices.size() - 1); |
| return; |
| } |
| |
| if (CalleeFnProtoType->getNumParams() < EncodingIndices.size() - 1) { |
| S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) |
| << AL << (unsigned)(EncodingIndices.size() - 1); |
| return; |
| } |
| |
| if (CalleeFnProtoType->isVariadic()) { |
| S.Diag(AL.getLoc(), diag::err_callback_callee_is_variadic) << AL.getRange(); |
| return; |
| } |
| |
| // Do not allow multiple callback attributes. |
| if (D->hasAttr<CallbackAttr>()) { |
| S.Diag(AL.getLoc(), diag::err_callback_attribute_multiple) << AL.getRange(); |
| return; |
| } |
| |
| D->addAttr(::new (S.Context) CallbackAttr( |
| S.Context, AL, EncodingIndices.data(), EncodingIndices.size())); |
| } |
| |
| static void handleTransparentUnionAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| // Try to find the underlying union declaration. |
| RecordDecl *RD = nullptr; |
| const auto *TD = dyn_cast<TypedefNameDecl>(D); |
| if (TD && TD->getUnderlyingType()->isUnionType()) |
| RD = TD->getUnderlyingType()->getAsUnionType()->getDecl(); |
| else |
| RD = dyn_cast<RecordDecl>(D); |
| |
| if (!RD || !RD->isUnion()) { |
| S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) << AL |
| << ExpectedUnion; |
| return; |
| } |
| |
| if (!RD->isCompleteDefinition()) { |
| if (!RD->isBeingDefined()) |
| S.Diag(AL.getLoc(), |
| diag::warn_transparent_union_attribute_not_definition); |
| return; |
| } |
| |
| RecordDecl::field_iterator Field = RD->field_begin(), |
| FieldEnd = RD->field_end(); |
| if (Field == FieldEnd) { |
| S.Diag(AL.getLoc(), diag::warn_transparent_union_attribute_zero_fields); |
| return; |
| } |
| |
| FieldDecl *FirstField = *Field; |
| QualType FirstType = FirstField->getType(); |
| if (FirstType->hasFloatingRepresentation() || FirstType->isVectorType()) { |
| S.Diag(FirstField->getLocation(), |
| diag::warn_transparent_union_attribute_floating) |
| << FirstType->isVectorType() << FirstType; |
| return; |
| } |
| |
| if (FirstType->isIncompleteType()) |
| return; |
| uint64_t FirstSize = S.Context.getTypeSize(FirstType); |
| uint64_t FirstAlign = S.Context.getTypeAlign(FirstType); |
| for (; Field != FieldEnd; ++Field) { |
| QualType FieldType = Field->getType(); |
| if (FieldType->isIncompleteType()) |
| return; |
| // FIXME: this isn't fully correct; we also need to test whether the |
| // members of the union would all have the same calling convention as the |
| // first member of the union. Checking just the size and alignment isn't |
| // sufficient (consider structs passed on the stack instead of in registers |
| // as an example). |
| if (S.Context.getTypeSize(FieldType) != FirstSize || |
| S.Context.getTypeAlign(FieldType) > FirstAlign) { |
| // Warn if we drop the attribute. |
| bool isSize = S.Context.getTypeSize(FieldType) != FirstSize; |
| unsigned FieldBits = isSize ? S.Context.getTypeSize(FieldType) |
| : S.Context.getTypeAlign(FieldType); |
| S.Diag(Field->getLocation(), |
| diag::warn_transparent_union_attribute_field_size_align) |
| << isSize << *Field << FieldBits; |
| unsigned FirstBits = isSize ? FirstSize : FirstAlign; |
| S.Diag(FirstField->getLocation(), |
| diag::note_transparent_union_first_field_size_align) |
| << isSize << FirstBits; |
| return; |
| } |
| } |
| |
| RD->addAttr(::new (S.Context) TransparentUnionAttr(S.Context, AL)); |
| } |
| |
| void Sema::AddAnnotationAttr(Decl *D, const AttributeCommonInfo &CI, |
| StringRef Str, MutableArrayRef<Expr *> Args) { |
| auto *Attr = AnnotateAttr::Create(Context, Str, Args.data(), Args.size(), CI); |
| llvm::SmallVector<PartialDiagnosticAt, 8> Notes; |
| for (unsigned Idx = 0; Idx < Attr->args_size(); Idx++) { |
| Expr *&E = Attr->args_begin()[Idx]; |
| assert(E && "error are handled before"); |
| if (E->isValueDependent() || E->isTypeDependent()) |
| continue; |
| |
| if (E->getType()->isArrayType()) |
| E = ImpCastExprToType(E, Context.getPointerType(E->getType()), |
| clang::CK_ArrayToPointerDecay) |
| .get(); |
| if (E->getType()->isFunctionType()) |
| E = ImplicitCastExpr::Create(Context, |
| Context.getPointerType(E->getType()), |
| clang::CK_FunctionToPointerDecay, E, nullptr, |
| VK_RValue, FPOptionsOverride()); |
| if (E->isLValue()) |
| E = ImplicitCastExpr::Create(Context, E->getType().getNonReferenceType(), |
| clang::CK_LValueToRValue, E, nullptr, |
| VK_RValue, FPOptionsOverride()); |
| |
| Expr::EvalResult Eval; |
| Notes.clear(); |
| Eval.Diag = &Notes; |
| |
| bool Result = |
| E->EvaluateAsConstantExpr(Eval, Context); |
| |
| /// Result means the expression can be folded to a constant. |
| /// Note.empty() means the expression is a valid constant expression in the |
| /// current language mode. |
| if (!Result || !Notes.empty()) { |
| Diag(E->getBeginLoc(), diag::err_attribute_argument_n_type) |
| << CI << (Idx + 1) << AANT_ArgumentConstantExpr; |
| for (auto &Note : Notes) |
| Diag(Note.first, Note.second); |
| return; |
| } |
| assert(Eval.Val.hasValue()); |
| E = ConstantExpr::Create(Context, E, Eval.Val); |
| } |
| D->addAttr(Attr); |
| } |
| |
| static void handleAnnotateAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| // Make sure that there is a string literal as the annotation's first |
| // argument. |
| StringRef Str; |
| if (!S.checkStringLiteralArgumentAttr(AL, 0, Str)) |
| return; |
| |
| llvm::SmallVector<Expr *, 4> Args; |
| Args.reserve(AL.getNumArgs() - 1); |
| for (unsigned Idx = 1; Idx < AL.getNumArgs(); Idx++) { |
| assert(!AL.isArgIdent(Idx)); |
| Args.push_back(AL.getArgAsExpr(Idx)); |
| } |
| |
| S.AddAnnotationAttr(D, AL, Str, Args); |
| } |
| |
| static void handleAlignValueAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| S.AddAlignValueAttr(D, AL, AL.getArgAsExpr(0)); |
| } |
| |
| void Sema::AddAlignValueAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E) { |
| AlignValueAttr TmpAttr(Context, CI, E); |
| SourceLocation AttrLoc = CI.getLoc(); |
| |
| QualType T; |
| if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) |
| T = TD->getUnderlyingType(); |
| else if (const auto *VD = dyn_cast<ValueDecl>(D)) |
| T = VD->getType(); |
| else |
| llvm_unreachable("Unknown decl type for align_value"); |
| |
| if (!T->isDependentType() && !T->isAnyPointerType() && |
| !T->isReferenceType() && !T->isMemberPointerType()) { |
| Diag(AttrLoc, diag::warn_attribute_pointer_or_reference_only) |
| << &TmpAttr << T << D->getSourceRange(); |
| return; |
| } |
| |
| if (!E->isValueDependent()) { |
| llvm::APSInt Alignment; |
| ExprResult ICE = VerifyIntegerConstantExpression( |
| E, &Alignment, diag::err_align_value_attribute_argument_not_int); |
| if (ICE.isInvalid()) |
| return; |
| |
| if (!Alignment.isPowerOf2()) { |
| Diag(AttrLoc, diag::err_alignment_not_power_of_two) |
| << E->getSourceRange(); |
| return; |
| } |
| |
| D->addAttr(::new (Context) AlignValueAttr(Context, CI, ICE.get())); |
| return; |
| } |
| |
| // Save dependent expressions in the AST to be instantiated. |
| D->addAttr(::new (Context) AlignValueAttr(Context, CI, E)); |
| } |
| |
| static void handleAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| // check the attribute arguments. |
| if (AL.getNumArgs() > 1) { |
| S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1; |
| return; |
| } |
| |
| if (AL.getNumArgs() == 0) { |
| D->addAttr(::new (S.Context) AlignedAttr(S.Context, AL, true, nullptr)); |
| return; |
| } |
| |
| Expr *E = AL.getArgAsExpr(0); |
| if (AL.isPackExpansion() && !E->containsUnexpandedParameterPack()) { |
| S.Diag(AL.getEllipsisLoc(), |
| diag::err_pack_expansion_without_parameter_packs); |
| return; |
| } |
| |
| if (!AL.isPackExpansion() && S.DiagnoseUnexpandedParameterPack(E)) |
| return; |
| |
| S.AddAlignedAttr(D, AL, E, AL.isPackExpansion()); |
| } |
| |
| void Sema::AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E, |
| bool IsPackExpansion) { |
| AlignedAttr TmpAttr(Context, CI, true, E); |
| SourceLocation AttrLoc = CI.getLoc(); |
| |
| // C++11 alignas(...) and C11 _Alignas(...) have additional requirements. |
| if (TmpAttr.isAlignas()) { |
| // C++11 [dcl.align]p1: |
| // An alignment-specifier may be applied to a variable or to a class |
| // data member, but it shall not be applied to a bit-field, a function |
| // parameter, the formal parameter of a catch clause, or a variable |
| // declared with the register storage class specifier. An |
| // alignment-specifier may also be applied to the declaration of a class |
| // or enumeration type. |
| // C11 6.7.5/2: |
| // An alignment attribute shall not be specified in a declaration of |
| // a typedef, or a bit-field, or a function, or a parameter, or an |
| // object declared with the register storage-class specifier. |
| int DiagKind = -1; |
| if (isa<ParmVarDecl>(D)) { |
| DiagKind = 0; |
| } else if (const auto *VD = dyn_cast<VarDecl>(D)) { |
| if (VD->getStorageClass() == SC_Register) |
| DiagKind = 1; |
| if (VD->isExceptionVariable()) |
| DiagKind = 2; |
| } else if (const auto *FD = dyn_cast<FieldDecl>(D)) { |
| if (FD->isBitField()) |
| DiagKind = 3; |
| } else if (!isa<TagDecl>(D)) { |
| Diag(AttrLoc, diag::err_attribute_wrong_decl_type) << &TmpAttr |
| << (TmpAttr.isC11() ? ExpectedVariableOrField |
| : ExpectedVariableFieldOrTag); |
| return; |
| } |
| if (DiagKind != -1) { |
| Diag(AttrLoc, diag::err_alignas_attribute_wrong_decl_type) |
| << &TmpAttr << DiagKind; |
| return; |
| } |
| } |
| |
| if (E->isValueDependent()) { |
| // We can't support a dependent alignment on a non-dependent type, |
| // because we have no way to model that a type is "alignment-dependent" |
| // but not dependent in any other way. |
| if (const auto *TND = dyn_cast<TypedefNameDecl>(D)) { |
| if (!TND->getUnderlyingType()->isDependentType()) { |
| Diag(AttrLoc, diag::err_alignment_dependent_typedef_name) |
| << E->getSourceRange(); |
| return; |
| } |
| } |
| |
| // Save dependent expressions in the AST to be instantiated. |
| AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, true, E); |
| AA->setPackExpansion(IsPackExpansion); |
| D->addAttr(AA); |
| return; |
| } |
| |
| // FIXME: Cache the number on the AL object? |
| llvm::APSInt Alignment; |
| ExprResult ICE = VerifyIntegerConstantExpression( |
| E, &Alignment, diag::err_aligned_attribute_argument_not_int); |
| if (ICE.isInvalid()) |
| return; |
| |
| uint64_t AlignVal = Alignment.getZExtValue(); |
| |
| // C++11 [dcl.align]p2: |
| // -- if the constant expression evaluates to zero, the alignment |
| // specifier shall have no effect |
| // C11 6.7.5p6: |
| // An alignment specification of zero has no effect. |
| if (!(TmpAttr.isAlignas() && !Alignment)) { |
| if (!llvm::isPowerOf2_64(AlignVal)) { |
| Diag(AttrLoc, diag::err_alignment_not_power_of_two) |
| << E->getSourceRange(); |
| return; |
| } |
| } |
| |
| unsigned MaximumAlignment = Sema::MaximumAlignment; |
| if (Context.getTargetInfo().getTriple().isOSBinFormatCOFF()) |
| MaximumAlignment = std::min(MaximumAlignment, 8192u); |
| if (AlignVal > MaximumAlignment) { |
| Diag(AttrLoc, diag::err_attribute_aligned_too_great) |
| << MaximumAlignment << E->getSourceRange(); |
| return; |
| } |
| |
| if (Context.getTargetInfo().isTLSSupported()) { |
| unsigned MaxTLSAlign = |
| Context.toCharUnitsFromBits(Context.getTargetInfo().getMaxTLSAlign()) |
| .getQuantity(); |
| const auto *VD = dyn_cast<VarDecl>(D); |
| if (MaxTLSAlign && AlignVal > MaxTLSAlign && VD && |
| VD->getTLSKind() != VarDecl::TLS_None) { |
| Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum) |
| << (unsigned)AlignVal << VD << MaxTLSAlign; |
| return; |
| } |
| } |
| |
| AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, true, ICE.get()); |
| AA->setPackExpansion(IsPackExpansion); |
| D->addAttr(AA); |
| } |
| |
| void Sema::AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, |
| TypeSourceInfo *TS, bool IsPackExpansion) { |
| // FIXME: Cache the number on the AL object if non-dependent? |
| // FIXME: Perform checking of type validity |
| AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, false, TS); |
| AA->setPackExpansion(IsPackExpansion); |
| D->addAttr(AA); |
| } |
| |
| void Sema::CheckAlignasUnderalignment(Decl *D) { |
| assert(D->hasAttrs() && "no attributes on decl"); |
| |
| QualType UnderlyingTy, DiagTy; |
| if (const auto *VD = dyn_cast<ValueDecl>(D)) { |
| UnderlyingTy = DiagTy = VD->getType(); |
| } else { |
| UnderlyingTy = DiagTy = Context.getTagDeclType(cast<TagDecl>(D)); |
| if (const auto *ED = dyn_cast<EnumDecl>(D)) |
| UnderlyingTy = ED->getIntegerType(); |
| } |
| if (DiagTy->isDependentType() || DiagTy->isIncompleteType()) |
| return; |
| |
| // C++11 [dcl.align]p5, C11 6.7.5/4: |
| // The combined effect of all alignment attributes in a declaration shall |
| // not specify an alignment that is less strict than the alignment that |
| // would otherwise be required for the entity being declared. |
| AlignedAttr *AlignasAttr = nullptr; |
| AlignedAttr *LastAlignedAttr = nullptr; |
| unsigned Align = 0; |
| for (auto *I : D->specific_attrs<AlignedAttr>()) { |
| if (I->isAlignmentDependent()) |
| return; |
| if (I->isAlignas()) |
| AlignasAttr = I; |
| Align = std::max(Align, I->getAlignment(Context)); |
| LastAlignedAttr = I; |
| } |
| |
| if (Align && DiagTy->isSizelessType()) { |
| Diag(LastAlignedAttr->getLocation(), diag::err_attribute_sizeless_type) |
| << LastAlignedAttr << DiagTy; |
| } else if (AlignasAttr && Align) { |
| CharUnits RequestedAlign = Context.toCharUnitsFromBits(Align); |
| CharUnits NaturalAlign = Context.getTypeAlignInChars(UnderlyingTy); |
| if (NaturalAlign > RequestedAlign) |
| Diag(AlignasAttr->getLocation(), diag::err_alignas_underaligned) |
| << DiagTy << (unsigned)NaturalAlign.getQuantity(); |
| } |
| } |
| |
| bool Sema::checkMSInheritanceAttrOnDefinition( |
| CXXRecordDecl *RD, SourceRange Range, bool BestCase, |
| MSInheritanceModel ExplicitModel) { |
| assert(RD->hasDefinition() && "RD has no definition!"); |
| |
| // We may not have seen base specifiers or any virtual methods yet. We will |
| // have to wait until the record is defined to catch any mismatches. |
| if (!RD->getDefinition()->isCompleteDefinition()) |
| return false; |
| |
| // The unspecified model never matches what a definition could need. |
| if (ExplicitModel == MSInheritanceModel::Unspecified) |
| return false; |
| |
| if (BestCase) { |
| if (RD->calculateInheritanceModel() == ExplicitModel) |
| return false; |
| } else { |
| if (RD->calculateInheritanceModel() <= ExplicitModel) |
| return false; |
| } |
| |
| Diag(Range.getBegin(), diag::err_mismatched_ms_inheritance) |
| << 0 /*definition*/; |
| Diag(RD->getDefinition()->getLocation(), diag::note_defined_here) << RD; |
| return true; |
| } |
| |
| /// parseModeAttrArg - Parses attribute mode string and returns parsed type |
| /// attribute. |
| static void parseModeAttrArg(Sema &S, StringRef Str, unsigned &DestWidth, |
| bool &IntegerMode, bool &ComplexMode, |
| bool &ExplicitIEEE) { |
| IntegerMode = true; |
| ComplexMode = false; |
| switch (Str.size()) { |
| case 2: |
| switch (Str[0]) { |
| case 'Q': |
| DestWidth = 8; |
| break; |
| case 'H': |
| DestWidth = 16; |
| break; |
| case 'S': |
| DestWidth = 32; |
| break; |
| case 'D': |
| DestWidth = 64; |
| break; |
| case 'X': |
| DestWidth = 96; |
| break; |
| case 'K': // KFmode - IEEE quad precision (__float128) |
| ExplicitIEEE = true; |
| DestWidth = Str[1] == 'I' ? 0 : 128; |
| break; |
| case 'T': |
| ExplicitIEEE = false; |
| DestWidth = 128; |
| break; |
| } |
| if (Str[1] == 'F') { |
| IntegerMode = false; |
| } else if (Str[1] == 'C') { |
| IntegerMode = false; |
| ComplexMode = true; |
| } else if (Str[1] != 'I') { |
| DestWidth = 0; |
| } |
| break; |
| case 4: |
| // FIXME: glibc uses 'word' to define register_t; this is narrower than a |
| // pointer on PIC16 and other embedded platforms. |
| if (Str == "word") |
| DestWidth = S.Context.getTargetInfo().getRegisterWidth(); |
| else if (Str == "byte") |
| DestWidth = S.Context.getTargetInfo().getCharWidth(); |
| break; |
| case 7: |
| if (Str == "pointer") |
| DestWidth = S.Context.getTargetInfo().getPointerWidth(0); |
| break; |
| case 11: |
| if (Str == "unwind_word") |
| DestWidth = S.Context.getTargetInfo().getUnwindWordWidth(); |
| break; |
| } |
| } |
| |
| /// handleModeAttr - This attribute modifies the width of a decl with primitive |
| /// type. |
| /// |
| /// Despite what would be logical, the mode attribute is a decl attribute, not a |
| /// type attribute: 'int ** __attribute((mode(HI))) *G;' tries to make 'G' be |
| /// HImode, not an intermediate pointer. |
| static void handleModeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| // This attribute isn't documented, but glibc uses it. It changes |
| // the width of an int or unsigned int to the specified size. |
| if (!AL.isArgIdent(0)) { |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_type) |
| << AL << AANT_ArgumentIdentifier; |
| return; |
| } |
| |
| IdentifierInfo *Name = AL.getArgAsIdent(0)->Ident; |
| |
| S.AddModeAttr(D, AL, Name); |
| } |
| |
| void Sema::AddModeAttr(Decl *D, const AttributeCommonInfo &CI, |
| IdentifierInfo *Name, bool InInstantiation) { |
| StringRef Str = Name->getName(); |
| normalizeName(Str); |
| SourceLocation AttrLoc = CI.getLoc(); |
| |
| unsigned DestWidth = 0; |
| bool IntegerMode = true; |
| bool ComplexMode = false; |
| bool ExplicitIEEE = false; |
| llvm::APInt VectorSize(64, 0); |
| if (Str.size() >= 4 && Str[0] == 'V') { |
| // Minimal length of vector mode is 4: 'V' + NUMBER(>=1) + TYPE(>=2). |
| size_t StrSize = Str.size(); |
| size_t VectorStringLength = 0; |
| while ((VectorStringLength + 1) < StrSize && |
| isdigit(Str[VectorStringLength + 1])) |
| ++VectorStringLength; |
| if (VectorStringLength && |
| !Str.substr(1, VectorStringLength).getAsInteger(10, VectorSize) && |
| VectorSize.isPowerOf2()) { |
| parseModeAttrArg(*this, Str.substr(VectorStringLength + 1), DestWidth, |
| IntegerMode, ComplexMode, ExplicitIEEE); |
| // Avoid duplicate warning from template instantiation. |
| if (!InInstantiation) |
| Diag(AttrLoc, diag::warn_vector_mode_deprecated); |
| } else { |
| VectorSize = 0; |
| } |
| } |
| |
| if (!VectorSize) |
| parseModeAttrArg(*this, Str, DestWidth, IntegerMode, ComplexMode, |
| ExplicitIEEE); |
| |
| // FIXME: Sync this with InitializePredefinedMacros; we need to match int8_t |
| // and friends, at least with glibc. |
| // FIXME: Make sure floating-point mappings are accurate |
| // FIXME: Support XF and TF types |
| if (!DestWidth) { |
| Diag(AttrLoc, diag::err_machine_mode) << 0 /*Unknown*/ << Name; |
| return; |
| } |
| |
| QualType OldTy; |
| if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) |
| OldTy = TD->getUnderlyingType(); |
| else if (const auto *ED = dyn_cast<EnumDecl>(D)) { |
| // Something like 'typedef enum { X } __attribute__((mode(XX))) T;'. |
| // Try to get type from enum declaration, default to int. |
| OldTy = ED->getIntegerType(); |
| if (OldTy.isNull()) |
| OldTy = Context.IntTy; |
| } else |
| OldTy = cast<ValueDecl>(D)->getType(); |
| |
| if (OldTy->isDependentType()) { |
| D->addAttr(::new (Context) ModeAttr(Context, CI, Name)); |
| return; |
| } |
| |
| // Base type can also be a vector type (see PR17453). |
| // Distinguish between base type and base element type. |
| QualType OldElemTy = OldTy; |
| if (const auto *VT = OldTy->getAs<VectorType>()) |
| OldElemTy = VT->getElementType(); |
| |
| // GCC allows 'mode' attribute on enumeration types (even incomplete), except |
| // for vector modes. So, 'enum X __attribute__((mode(QI)));' forms a complete |
| // type, 'enum { A } __attribute__((mode(V4SI)))' is rejected. |
| if ((isa<EnumDecl>(D) || OldElemTy->getAs<EnumType>()) && |
| VectorSize.getBoolValue()) { |
| Diag(AttrLoc, diag::err_enum_mode_vector_type) << Name << CI.getRange(); |
| return; |
| } |
| bool IntegralOrAnyEnumType = (OldElemTy->isIntegralOrEnumerationType() && |
| !OldElemTy->isExtIntType()) || |
| OldElemTy->getAs<EnumType>(); |
| |
| if (!OldElemTy->getAs<BuiltinType>() && !OldElemTy->isComplexType() && |
| !IntegralOrAnyEnumType) |
| Diag(AttrLoc, diag::err_mode_not_primitive); |
| else if (IntegerMode) { |
| if (!IntegralOrAnyEnumType) |
| Diag(AttrLoc, diag::err_mode_wrong_type); |
| } else if (ComplexMode) { |
| if (!OldElemTy->isComplexType()) |
| Diag(AttrLoc, diag::err_mode_wrong_type); |
| } else { |
| if (!OldElemTy->isFloatingType()) |
| Diag(AttrLoc, diag::err_mode_wrong_type); |
| } |
| |
| QualType NewElemTy; |
| |
| if (IntegerMode) |
| NewElemTy = Context.getIntTypeForBitwidth(DestWidth, |
| OldElemTy->isSignedIntegerType()); |
| else |
| NewElemTy = Context.getRealTypeForBitwidth(DestWidth, ExplicitIEEE); |
| |
| if (NewElemTy.isNull()) { |
| Diag(AttrLoc, diag::err_machine_mode) << 1 /*Unsupported*/ << Name; |
| return; |
| } |
| |
| if (ComplexMode) { |
| NewElemTy = Context.getComplexType(NewElemTy); |
| } |
| |
| QualType NewTy = NewElemTy; |
| if (VectorSize.getBoolValue()) { |
| NewTy = Context.getVectorType(NewTy, VectorSize.getZExtValue(), |
| VectorType::GenericVector); |
| } else if (const auto *OldVT = OldTy->getAs<VectorType>()) { |
| // Complex machine mode does not support base vector types. |
| if (ComplexMode) { |
| Diag(AttrLoc, diag::err_complex_mode_vector_type); |
| return; |
| } |
| unsigned NumElements = Context.getTypeSize(OldElemTy) * |
| OldVT->getNumElements() / |
| Context.getTypeSize(NewElemTy); |
| NewTy = |
| Context.getVectorType(NewElemTy, NumElements, OldVT->getVectorKind()); |
| } |
| |
| if (NewTy.isNull()) { |
| Diag(AttrLoc, diag::err_mode_wrong_type); |
| return; |
| } |
| |
| // Install the new type. |
| if (auto *TD = dyn_cast<TypedefNameDecl>(D)) |
| TD->setModedTypeSourceInfo(TD->getTypeSourceInfo(), NewTy); |
| else if (auto *ED = dyn_cast<EnumDecl>(D)) |
| ED->setIntegerType(NewTy); |
| else |
| cast<ValueDecl>(D)->setType(NewTy); |
| |
| D->addAttr(::new (Context) ModeAttr(Context, CI, Name)); |
| } |
| |
| static void handleNoDebugAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| D->addAttr(::new (S.Context) NoDebugAttr(S.Context, AL)); |
| } |
| |
| AlwaysInlineAttr *Sema::mergeAlwaysInlineAttr(Decl *D, |
| const AttributeCommonInfo &CI, |
| const IdentifierInfo *Ident) { |
| if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) { |
| Diag(CI.getLoc(), diag::warn_attribute_ignored) << Ident; |
| Diag(Optnone->getLocation(), diag::note_conflicting_attribute); |
| return nullptr; |
| } |
| |
| if (D->hasAttr<AlwaysInlineAttr>()) |
| return nullptr; |
| |
| return ::new (Context) AlwaysInlineAttr(Context, CI); |
| } |
| |
| CommonAttr *Sema::mergeCommonAttr(Decl *D, const ParsedAttr &AL) { |
| if (checkAttrMutualExclusion<InternalLinkageAttr>(*this, D, AL)) |
| return nullptr; |
| |
| return ::new (Context) CommonAttr(Context, AL); |
| } |
| |
| CommonAttr *Sema::mergeCommonAttr(Decl *D, const CommonAttr &AL) { |
| if (checkAttrMutualExclusion<InternalLinkageAttr>(*this, D, AL)) |
| return nullptr; |
| |
| return ::new (Context) CommonAttr(Context, AL); |
| } |
| |
| InternalLinkageAttr *Sema::mergeInternalLinkageAttr(Decl *D, |
| const ParsedAttr &AL) { |
| if (const auto *VD = dyn_cast<VarDecl>(D)) { |
| // Attribute applies to Var but not any subclass of it (like ParmVar, |
| // ImplicitParm or VarTemplateSpecialization). |
| if (VD->getKind() != Decl::Var) { |
| Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) |
| << AL << (getLangOpts().CPlusPlus ? ExpectedFunctionVariableOrClass |
| : ExpectedVariableOrFunction); |
| return nullptr; |
| } |
| // Attribute does not apply to non-static local variables. |
| if (VD->hasLocalStorage()) { |
| Diag(VD->getLocation(), diag::warn_internal_linkage_local_storage); |
| return nullptr; |
| } |
| } |
| |
| if (checkAttrMutualExclusion<CommonAttr>(*this, D, AL)) |
| return nullptr; |
| |
| return ::new (Context) InternalLinkageAttr(Context, AL); |
| } |
| InternalLinkageAttr * |
| Sema::mergeInternalLinkageAttr(Decl *D, const InternalLinkageAttr &AL) { |
| if (const auto *VD = dyn_cast<VarDecl>(D)) { |
| // Attribute applies to Var but not any subclass of it (like ParmVar, |
| // ImplicitParm or VarTemplateSpecialization). |
| if (VD->getKind() != Decl::Var) { |
| Diag(AL.getLocation(), diag::warn_attribute_wrong_decl_type) |
| << &AL << (getLangOpts().CPlusPlus ? ExpectedFunctionVariableOrClass |
| : ExpectedVariableOrFunction); |
| return nullptr; |
| } |
| // Attribute does not apply to non-static local variables. |
| if (VD->hasLocalStorage()) { |
| Diag(VD->getLocation(), diag::warn_internal_linkage_local_storage); |
| return nullptr; |
| } |
| } |
| |
| if (checkAttrMutualExclusion<CommonAttr>(*this, D, AL)) |
| return nullptr; |
| |
| return ::new (Context) InternalLinkageAttr(Context, AL); |
| } |
| |
| MinSizeAttr *Sema::mergeMinSizeAttr(Decl *D, const AttributeCommonInfo &CI) { |
| if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) { |
| Diag(CI.getLoc(), diag::warn_attribute_ignored) << "'minsize'"; |
| Diag(Optnone->getLocation(), diag::note_conflicting_attribute); |
| return nullptr; |
| } |
| |
| if (D->hasAttr<MinSizeAttr>()) |
| return nullptr; |
| |
| return ::new (Context) MinSizeAttr(Context, CI); |
| } |
| |
| NoSpeculativeLoadHardeningAttr *Sema::mergeNoSpeculativeLoadHardeningAttr( |
| Decl *D, const NoSpeculativeLoadHardeningAttr &AL) { |
| if (checkAttrMutualExclusion<SpeculativeLoadHardeningAttr>(*this, D, AL)) |
| return nullptr; |
| |
| return ::new (Context) NoSpeculativeLoadHardeningAttr(Context, AL); |
| } |
| |
| SwiftNameAttr *Sema::mergeSwiftNameAttr(Decl *D, const SwiftNameAttr &SNA, |
| StringRef Name) { |
| if (const auto *PrevSNA = D->getAttr<SwiftNameAttr>()) { |
| if (PrevSNA->getName() != Name && !PrevSNA->isImplicit()) { |
| Diag(PrevSNA->getLocation(), diag::err_attributes_are_not_compatible) |
| << PrevSNA << &SNA; |
| Diag(SNA.getLoc(), diag::note_conflicting_attribute); |
| } |
| |
| D->dropAttr<SwiftNameAttr>(); |
| } |
| return ::new (Context) SwiftNameAttr(Context, SNA, Name); |
| } |
| |
| OptimizeNoneAttr *Sema::mergeOptimizeNoneAttr(Decl *D, |
| const AttributeCommonInfo &CI) { |
| if (AlwaysInlineAttr *Inline = D->getAttr<AlwaysInlineAttr>()) { |
| Diag(Inline->getLocation(), diag::warn_attribute_ignored) << Inline; |
| Diag(CI.getLoc(), diag::note_conflicting_attribute); |
| D->dropAttr<AlwaysInlineAttr>(); |
| } |
| if (MinSizeAttr *MinSize = D->getAttr<MinSizeAttr>()) { |
| Diag(MinSize->getLocation(), diag::warn_attribute_ignored) << MinSize; |
| Diag(CI.getLoc(), diag::note_conflicting_attribute); |
| D->dropAttr<MinSizeAttr>(); |
| } |
| |
| if (D->hasAttr<OptimizeNoneAttr>()) |
| return nullptr; |
| |
| return ::new (Context) OptimizeNoneAttr(Context, CI); |
| } |
| |
| SpeculativeLoadHardeningAttr *Sema::mergeSpeculativeLoadHardeningAttr( |
| Decl *D, const SpeculativeLoadHardeningAttr &AL) { |
| if (checkAttrMutualExclusion<NoSpeculativeLoadHardeningAttr>(*this, D, AL)) |
| return nullptr; |
| |
| return ::new (Context) SpeculativeLoadHardeningAttr(Context, AL); |
| } |
| |
| static void handleAlwaysInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (checkAttrMutualExclusion<NotTailCalledAttr>(S, D, AL)) |
| return; |
| |
| if (AlwaysInlineAttr *Inline = |
| S.mergeAlwaysInlineAttr(D, AL, AL.getAttrName())) |
| D->addAttr(Inline); |
| } |
| |
| static void handleMinSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (MinSizeAttr *MinSize = S.mergeMinSizeAttr(D, AL)) |
| D->addAttr(MinSize); |
| } |
| |
| static void handleOptimizeNoneAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (OptimizeNoneAttr *Optnone = S.mergeOptimizeNoneAttr(D, AL)) |
| D->addAttr(Optnone); |
| } |
| |
| static void handleConstantAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (checkAttrMutualExclusion<CUDASharedAttr>(S, D, AL)) |
| return; |
| const auto *VD = cast<VarDecl>(D); |
| if (VD->hasLocalStorage()) { |
| S.Diag(AL.getLoc(), diag::err_cuda_nonstatic_constdev); |
| return; |
| } |
| D->addAttr(::new (S.Context) CUDAConstantAttr(S.Context, AL)); |
| } |
| |
| static void handleSharedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (checkAttrMutualExclusion<CUDAConstantAttr>(S, D, AL)) |
| return; |
| const auto *VD = cast<VarDecl>(D); |
| // extern __shared__ is only allowed on arrays with no length (e.g. |
| // "int x[]"). |
| if (!S.getLangOpts().GPURelocatableDeviceCode && VD->hasExternalStorage() && |
| !isa<IncompleteArrayType>(VD->getType())) { |
| S.Diag(AL.getLoc(), diag::err_cuda_extern_shared) << VD; |
| return; |
| } |
| if (S.getLangOpts().CUDA && VD->hasLocalStorage() && |
| S.CUDADiagIfHostCode(AL.getLoc(), diag::err_cuda_host_shared) |
| << S.CurrentCUDATarget()) |
| return; |
| D->addAttr(::new (S.Context) CUDASharedAttr(S.Context, AL)); |
| } |
| |
| static void handleGlobalAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (checkAttrMutualExclusion<CUDADeviceAttr>(S, D, AL) || |
| checkAttrMutualExclusion<CUDAHostAttr>(S, D, AL)) { |
| return; |
| } |
| const auto *FD = cast<FunctionDecl>(D); |
| if (!FD->getReturnType()->isVoidType() && |
| !FD->getReturnType()->getAs<AutoType>() && |
| !FD->getReturnType()->isInstantiationDependentType()) { |
| SourceRange RTRange = FD->getReturnTypeSourceRange(); |
| S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return) |
| << FD->getType() |
| << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void") |
| : FixItHint()); |
| return; |
| } |
| if (const auto *Method = dyn_cast<CXXMethodDecl>(FD)) { |
| if (Method->isInstance()) { |
| S.Diag(Method->getBeginLoc(), diag::err_kern_is_nonstatic_method) |
| << Method; |
| return; |
| } |
| S.Diag(Method->getBeginLoc(), diag::warn_kern_is_method) << Method; |
| } |
| // Only warn for "inline" when compiling for host, to cut down on noise. |
| if (FD->isInlineSpecified() && !S.getLangOpts().CUDAIsDevice) |
| S.Diag(FD->getBeginLoc(), diag::warn_kern_is_inline) << FD; |
| |
| D->addAttr(::new (S.Context) CUDAGlobalAttr(S.Context, AL)); |
| // In host compilation the kernel is emitted as a stub function, which is |
| // a helper function for launching the kernel. The instructions in the helper |
| // function has nothing to do with the source code of the kernel. Do not emit |
| // debug info for the stub function to avoid confusing the debugger. |
| if (S.LangOpts.HIP && !S.LangOpts.CUDAIsDevice) |
| D->addAttr(NoDebugAttr::CreateImplicit(S.Context)); |
| } |
| |
| static void handleDeviceAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (checkAttrMutualExclusion<CUDAGlobalAttr>(S, D, AL)) { |
| return; |
| } |
| |
| if (const auto *VD = dyn_cast<VarDecl>(D)) { |
| if (VD->hasLocalStorage()) { |
| S.Diag(AL.getLoc(), diag::err_cuda_nonstatic_constdev); |
| return; |
| } |
| } |
| D->addAttr(::new (S.Context) CUDADeviceAttr(S.Context, AL)); |
| } |
| |
| static void handleGNUInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| const auto *Fn = cast<FunctionDecl>(D); |
| if (!Fn->isInlineSpecified()) { |
| S.Diag(AL.getLoc(), diag::warn_gnu_inline_attribute_requires_inline); |
| return; |
| } |
| |
| if (S.LangOpts.CPlusPlus && Fn->getStorageClass() != SC_Extern) |
| S.Diag(AL.getLoc(), diag::warn_gnu_inline_cplusplus_without_extern); |
| |
| D->addAttr(::new (S.Context) GNUInlineAttr(S.Context, AL)); |
| } |
| |
| static void handleCallConvAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (hasDeclarator(D)) return; |
| |
| // Diagnostic is emitted elsewhere: here we store the (valid) AL |
| // in the Decl node for syntactic reasoning, e.g., pretty-printing. |
| CallingConv CC; |
| if (S.CheckCallingConvAttr(AL, CC, /*FD*/nullptr)) |
| return; |
| |
| if (!isa<ObjCMethodDecl>(D)) { |
| S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) |
| << AL << ExpectedFunctionOrMethod; |
| return; |
| } |
| |
| switch (AL.getKind()) { |
| case ParsedAttr::AT_FastCall: |
| D->addAttr(::new (S.Context) FastCallAttr(S.Context, AL)); |
| return; |
| case ParsedAttr::AT_StdCall: |
| D->addAttr(::new (S.Context) StdCallAttr(S.Context, AL)); |
| return; |
| case ParsedAttr::AT_ThisCall: |
| D->addAttr(::new (S.Context) ThisCallAttr(S.Context, AL)); |
| return; |
| case ParsedAttr::AT_CDecl: |
| D->addAttr(::new (S.Context) CDeclAttr(S.Context, AL)); |
| return; |
| case ParsedAttr::AT_Pascal: |
| D->addAttr(::new (S.Context) PascalAttr(S.Context, AL)); |
| return; |
| case ParsedAttr::AT_SwiftCall: |
| D->addAttr(::new (S.Context) SwiftCallAttr(S.Context, AL)); |
| return; |
| case ParsedAttr::AT_VectorCall: |
| D->addAttr(::new (S.Context) VectorCallAttr(S.Context, AL)); |
| return; |
| case ParsedAttr::AT_MSABI: |
| D->addAttr(::new (S.Context) MSABIAttr(S.Context, AL)); |
| return; |
| case ParsedAttr::AT_SysVABI: |
| D->addAttr(::new (S.Context) SysVABIAttr(S.Context, AL)); |
| return; |
| case ParsedAttr::AT_RegCall: |
| D->addAttr(::new (S.Context) RegCallAttr(S.Context, AL)); |
| return; |
| case ParsedAttr::AT_Pcs: { |
| PcsAttr::PCSType PCS; |
| switch (CC) { |
| case CC_AAPCS: |
| PCS = PcsAttr::AAPCS; |
| break; |
| case CC_AAPCS_VFP: |
| PCS = PcsAttr::AAPCS_VFP; |
| break; |
| default: |
| llvm_unreachable("unexpected calling convention in pcs attribute"); |
| } |
| |
| D->addAttr(::new (S.Context) PcsAttr(S.Context, AL, PCS)); |
| return; |
| } |
| case ParsedAttr::AT_AArch64VectorPcs: |
| D->addAttr(::new (S.Context) AArch64VectorPcsAttr(S.Context, AL)); |
| return; |
| case ParsedAttr::AT_IntelOclBicc: |
| D->addAttr(::new (S.Context) IntelOclBiccAttr(S.Context, AL)); |
| return; |
| case ParsedAttr::AT_PreserveMost: |
| D->addAttr(::new (S.Context) PreserveMostAttr(S.Context, AL)); |
| return; |
| case ParsedAttr::AT_PreserveAll: |
| D->addAttr(::new (S.Context) PreserveAllAttr(S.Context, AL)); |
| return; |
| default: |
| llvm_unreachable("unexpected attribute kind"); |
| } |
| } |
| |
| static void handleSuppressAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (!checkAttributeAtLeastNumArgs(S, AL, 1)) |
| return; |
| |
| std::vector<StringRef> DiagnosticIdentifiers; |
| for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) { |
| StringRef RuleName; |
| |
| if (!S.checkStringLiteralArgumentAttr(AL, I, RuleName, nullptr)) |
| return; |
| |
| // FIXME: Warn if the rule name is unknown. This is tricky because only |
| // clang-tidy knows about available rules. |
| DiagnosticIdentifiers.push_back(RuleName); |
| } |
| D->addAttr(::new (S.Context) |
| SuppressAttr(S.Context, AL, DiagnosticIdentifiers.data(), |
| DiagnosticIdentifiers.size())); |
| } |
| |
| static void handleLifetimeCategoryAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| TypeSourceInfo *DerefTypeLoc = nullptr; |
| QualType ParmType; |
| if (AL.hasParsedType()) { |
| ParmType = S.GetTypeFromParser(AL.getTypeArg(), &DerefTypeLoc); |
| |
| unsigned SelectIdx = ~0U; |
| if (ParmType->isReferenceType()) |
| SelectIdx = 0; |
| else if (ParmType->isArrayType()) |
| SelectIdx = 1; |
| |
| if (SelectIdx != ~0U) { |
| S.Diag(AL.getLoc(), diag::err_attribute_invalid_argument) |
| << SelectIdx << AL; |
| return; |
| } |
| } |
| |
| // To check if earlier decl attributes do not conflict the newly parsed ones |
| // we always add (and check) the attribute to the cannonical decl. |
| D = D->getCanonicalDecl(); |
| if (AL.getKind() == ParsedAttr::AT_Owner) { |
| if (checkAttrMutualExclusion<PointerAttr>(S, D, AL)) |
| return; |
| if (const auto *OAttr = D->getAttr<OwnerAttr>()) { |
| const Type *ExistingDerefType = OAttr->getDerefTypeLoc() |
| ? OAttr->getDerefType().getTypePtr() |
| : nullptr; |
| if (ExistingDerefType != ParmType.getTypePtrOrNull()) { |
| S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) |
| << AL << OAttr; |
| S.Diag(OAttr->getLocation(), diag::note_conflicting_attribute); |
| } |
| return; |
| } |
| for (Decl *Redecl : D->redecls()) { |
| Redecl->addAttr(::new (S.Context) OwnerAttr(S.Context, AL, DerefTypeLoc)); |
| } |
| } else { |
| if (checkAttrMutualExclusion<OwnerAttr>(S, D, AL)) |
| return; |
| if (const auto *PAttr = D->getAttr<PointerAttr>()) { |
| const Type *ExistingDerefType = PAttr->getDerefTypeLoc() |
| ? PAttr->getDerefType().getTypePtr() |
| : nullptr; |
| if (ExistingDerefType != ParmType.getTypePtrOrNull()) { |
| S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) |
| << AL << PAttr; |
| S.Diag(PAttr->getLocation(), diag::note_conflicting_attribute); |
| } |
| return; |
| } |
| for (Decl *Redecl : D->redecls()) { |
| Redecl->addAttr(::new (S.Context) |
| PointerAttr(S.Context, AL, DerefTypeLoc)); |
| } |
| } |
| } |
| |
| bool Sema::CheckCallingConvAttr(const ParsedAttr &Attrs, CallingConv &CC, |
| const FunctionDecl *FD) { |
| if (Attrs.isInvalid()) |
| return true; |
| |
| if (Attrs.hasProcessingCache()) { |
| CC = (CallingConv) Attrs.getProcessingCache(); |
| return false; |
| } |
| |
| unsigned ReqArgs = Attrs.getKind() == ParsedAttr::AT_Pcs ? 1 : 0; |
| if (!checkAttributeNumArgs(*this, Attrs, ReqArgs)) { |
| Attrs.setInvalid(); |
| return true; |
| } |
| |
| // TODO: diagnose uses of these conventions on the wrong target. |
| switch (Attrs.getKind()) { |
| case ParsedAttr::AT_CDecl: |
| CC = CC_C; |
| break; |
| case ParsedAttr::AT_FastCall: |
| CC = CC_X86FastCall; |
| break; |
| case ParsedAttr::AT_StdCall: |
| CC = CC_X86StdCall; |
| break; |
| case ParsedAttr::AT_ThisCall: |
| CC = CC_X86ThisCall; |
| break; |
| case ParsedAttr::AT_Pascal: |
| CC = CC_X86Pascal; |
| break; |
| case ParsedAttr::AT_SwiftCall: |
| CC = CC_Swift; |
| break; |
| case ParsedAttr::AT_VectorCall: |
| CC = CC_X86VectorCall; |
| break; |
| case ParsedAttr::AT_AArch64VectorPcs: |
| CC = CC_AArch64VectorCall; |
| break; |
| case ParsedAttr::AT_RegCall: |
| CC = CC_X86RegCall; |
| break; |
| case ParsedAttr::AT_MSABI: |
| CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_C : |
| CC_Win64; |
| break; |
| case ParsedAttr::AT_SysVABI: |
| CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_X86_64SysV : |
| CC_C; |
| break; |
| case ParsedAttr::AT_Pcs: { |
| StringRef StrRef; |
| if (!checkStringLiteralArgumentAttr(Attrs, 0, StrRef)) { |
| Attrs.setInvalid(); |
| return true; |
| } |
| if (StrRef == "aapcs") { |
| CC = CC_AAPCS; |
| break; |
| } else if (StrRef == "aapcs-vfp") { |
| CC = CC_AAPCS_VFP; |
| break; |
| } |
| |
| Attrs.setInvalid(); |
| Diag(Attrs.getLoc(), diag::err_invalid_pcs); |
| return true; |
| } |
| case ParsedAttr::AT_IntelOclBicc: |
| CC = CC_IntelOclBicc; |
| break; |
| case ParsedAttr::AT_PreserveMost: |
| CC = CC_PreserveMost; |
| break; |
| case ParsedAttr::AT_PreserveAll: |
| CC = CC_PreserveAll; |
| break; |
| default: llvm_unreachable("unexpected attribute kind"); |
| } |
| |
| TargetInfo::CallingConvCheckResult A = TargetInfo::CCCR_OK; |
| const TargetInfo &TI = Context.getTargetInfo(); |
| // CUDA functions may have host and/or device attributes which indicate |
| // their targeted execution environment, therefore the calling convention |
| // of functions in CUDA should be checked against the target deduced based |
| // on their host/device attributes. |
| if (LangOpts.CUDA) { |
| auto *Aux = Context.getAuxTargetInfo(); |
| auto CudaTarget = IdentifyCUDATarget(FD); |
| bool CheckHost = false, CheckDevice = false; |
| switch (CudaTarget) { |
| case CFT_HostDevice: |
| CheckHost = true; |
| CheckDevice = true; |
| break; |
| case CFT_Host: |
| CheckHost = true; |
| break; |
| case CFT_Device: |
| case CFT_Global: |
| CheckDevice = true; |
| break; |
| case CFT_InvalidTarget: |
| llvm_unreachable("unexpected cuda target"); |
| } |
| auto *HostTI = LangOpts.CUDAIsDevice ? Aux : &TI; |
| auto *DeviceTI = LangOpts.CUDAIsDevice ? &TI : Aux; |
| if (CheckHost && HostTI) |
| A = HostTI->checkCallingConvention(CC); |
| if (A == TargetInfo::CCCR_OK && CheckDevice && DeviceTI) |
| A = DeviceTI->checkCallingConvention(CC); |
| } else { |
| A = TI.checkCallingConvention(CC); |
| } |
| |
| switch (A) { |
| case TargetInfo::CCCR_OK: |
| break; |
| |
| case TargetInfo::CCCR_Ignore: |
| // Treat an ignored convention as if it was an explicit C calling convention |
| // attribute. For example, __stdcall on Win x64 functions as __cdecl, so |
| // that command line flags that change the default convention to |
| // __vectorcall don't affect declarations marked __stdcall. |
| CC = CC_C; |
| break; |
| |
| case TargetInfo::CCCR_Error: |
| Diag(Attrs.getLoc(), diag::error_cconv_unsupported) |
| << Attrs << (int)CallingConventionIgnoredReason::ForThisTarget; |
| break; |
| |
| case TargetInfo::CCCR_Warning: { |
| Diag(Attrs.getLoc(), diag::warn_cconv_unsupported) |
| << Attrs << (int)CallingConventionIgnoredReason::ForThisTarget; |
| |
| // This convention is not valid for the target. Use the default function or |
| // method calling convention. |
| bool IsCXXMethod = false, IsVariadic = false; |
| if (FD) { |
| IsCXXMethod = FD->isCXXInstanceMember(); |
| IsVariadic = FD->isVariadic(); |
| } |
| CC = Context.getDefaultCallingConvention(IsVariadic, IsCXXMethod); |
| break; |
| } |
| } |
| |
| Attrs.setProcessingCache((unsigned) CC); |
| return false; |
| } |
| |
| /// Pointer-like types in the default address space. |
| static bool isValidSwiftContextType(QualType Ty) { |
| if (!Ty->hasPointerRepresentation()) |
| return Ty->isDependentType(); |
| return Ty->getPointeeType().getAddressSpace() == LangAS::Default; |
| } |
| |
| /// Pointers and references in the default address space. |
| static bool isValidSwiftIndirectResultType(QualType Ty) { |
| if (const auto *PtrType = Ty->getAs<PointerType>()) { |
| Ty = PtrType->getPointeeType(); |
| } else if (const auto *RefType = Ty->getAs<ReferenceType>()) { |
| Ty = RefType->getPointeeType(); |
| } else { |
| return Ty->isDependentType(); |
| } |
| return Ty.getAddressSpace() == LangAS::Default; |
| } |
| |
| /// Pointers and references to pointers in the default address space. |
| static bool isValidSwiftErrorResultType(QualType Ty) { |
| if (const auto *PtrType = Ty->getAs<PointerType>()) { |
| Ty = PtrType->getPointeeType(); |
| } else if (const auto *RefType = Ty->getAs<ReferenceType>()) { |
| Ty = RefType->getPointeeType(); |
| } else { |
| return Ty->isDependentType(); |
| } |
| if (!Ty.getQualifiers().empty()) |
| return false; |
| return isValidSwiftContextType(Ty); |
| } |
| |
| void Sema::AddParameterABIAttr(Decl *D, const AttributeCommonInfo &CI, |
| ParameterABI abi) { |
| |
| QualType type = cast<ParmVarDecl>(D)->getType(); |
| |
| if (auto existingAttr = D->getAttr<ParameterABIAttr>()) { |
| if (existingAttr->getABI() != abi) { |
| Diag(CI.getLoc(), diag::err_attributes_are_not_compatible) |
| << getParameterABISpelling(abi) << existingAttr; |
| Diag(existingAttr->getLocation(), diag::note_conflicting_attribute); |
| return; |
| } |
| } |
| |
| switch (abi) { |
| case ParameterABI::Ordinary: |
| llvm_unreachable("explicit attribute for ordinary parameter ABI?"); |
| |
| case ParameterABI::SwiftContext: |
| if (!isValidSwiftContextType(type)) { |
| Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type) |
| << getParameterABISpelling(abi) << /*pointer to pointer */ 0 << type; |
| } |
| D->addAttr(::new (Context) SwiftContextAttr(Context, CI)); |
| return; |
| |
| case ParameterABI::SwiftErrorResult: |
| if (!isValidSwiftErrorResultType(type)) { |
| Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type) |
| << getParameterABISpelling(abi) << /*pointer to pointer */ 1 << type; |
| } |
| D->addAttr(::new (Context) SwiftErrorResultAttr(Context, CI)); |
| return; |
| |
| case ParameterABI::SwiftIndirectResult: |
| if (!isValidSwiftIndirectResultType(type)) { |
| Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type) |
| << getParameterABISpelling(abi) << /*pointer*/ 0 << type; |
| } |
| D->addAttr(::new (Context) SwiftIndirectResultAttr(Context, CI)); |
| return; |
| } |
| llvm_unreachable("bad parameter ABI attribute"); |
| } |
| |
| /// Checks a regparm attribute, returning true if it is ill-formed and |
| /// otherwise setting numParams to the appropriate value. |
| bool Sema::CheckRegparmAttr(const ParsedAttr &AL, unsigned &numParams) { |
| if (AL.isInvalid()) |
| return true; |
| |
| if (!checkAttributeNumArgs(*this, AL, 1)) { |
| AL.setInvalid(); |
| return true; |
| } |
| |
| uint32_t NP; |
| Expr *NumParamsExpr = AL.getArgAsExpr(0); |
| if (!checkUInt32Argument(*this, AL, NumParamsExpr, NP)) { |
| AL.setInvalid(); |
| return true; |
| } |
| |
| if (Context.getTargetInfo().getRegParmMax() == 0) { |
| Diag(AL.getLoc(), diag::err_attribute_regparm_wrong_platform) |
| << NumParamsExpr->getSourceRange(); |
| AL.setInvalid(); |
| return true; |
| } |
| |
| numParams = NP; |
| if (numParams > Context.getTargetInfo().getRegParmMax()) { |
| Diag(AL.getLoc(), diag::err_attribute_regparm_invalid_number) |
| << Context.getTargetInfo().getRegParmMax() << NumParamsExpr->getSourceRange(); |
| AL.setInvalid(); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| // Checks whether an argument of launch_bounds attribute is |
| // acceptable, performs implicit conversion to Rvalue, and returns |
| // non-nullptr Expr result on success. Otherwise, it returns nullptr |
| // and may output an error. |
| static Expr *makeLaunchBoundsArgExpr(Sema &S, Expr *E, |
| const CUDALaunchBoundsAttr &AL, |
| const unsigned Idx) { |
| if (S.DiagnoseUnexpandedParameterPack(E)) |
| return nullptr; |
| |
| // Accept template arguments for now as they depend on something else. |
| // We'll get to check them when they eventually get instantiated. |
| if (E->isValueDependent()) |
| return E; |
| |
| Optional<llvm::APSInt> I = llvm::APSInt(64); |
| if (!(I = E->getIntegerConstantExpr(S.Context))) { |
| S.Diag(E->getExprLoc(), diag::err_attribute_argument_n_type) |
| << &AL << Idx << AANT_ArgumentIntegerConstant << E->getSourceRange(); |
| return nullptr; |
| } |
| // Make sure we can fit it in 32 bits. |
| if (!I->isIntN(32)) { |
| S.Diag(E->getExprLoc(), diag::err_ice_too_large) |
| << I->toString(10, false) << 32 << /* Unsigned */ 1; |
| return nullptr; |
| } |
| if (*I < 0) |
| S.Diag(E->getExprLoc(), diag::warn_attribute_argument_n_negative) |
| << &AL << Idx << E->getSourceRange(); |
| |
| // We may need to perform implicit conversion of the argument. |
| InitializedEntity Entity = InitializedEntity::InitializeParameter( |
| S.Context, S.Context.getConstType(S.Context.IntTy), /*consume*/ false); |
| ExprResult ValArg = S.PerformCopyInitialization(Entity, SourceLocation(), E); |
| assert(!ValArg.isInvalid() && |
| "Unexpected PerformCopyInitialization() failure."); |
| |
| return ValArg.getAs<Expr>(); |
| } |
| |
| void Sema::AddLaunchBoundsAttr(Decl *D, const AttributeCommonInfo &CI, |
| Expr *MaxThreads, Expr *MinBlocks) { |
| CUDALaunchBoundsAttr TmpAttr(Context, CI, MaxThreads, MinBlocks); |
| MaxThreads = makeLaunchBoundsArgExpr(*this, MaxThreads, TmpAttr, 0); |
| if (MaxThreads == nullptr) |
| return; |
| |
| if (MinBlocks) { |
| MinBlocks = makeLaunchBoundsArgExpr(*this, MinBlocks, TmpAttr, 1); |
| if (MinBlocks == nullptr) |
| return; |
| } |
| |
| D->addAttr(::new (Context) |
| CUDALaunchBoundsAttr(Context, CI, MaxThreads, MinBlocks)); |
| } |
| |
| static void handleLaunchBoundsAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (!checkAttributeAtLeastNumArgs(S, AL, 1) || |
| !checkAttributeAtMostNumArgs(S, AL, 2)) |
| return; |
| |
| S.AddLaunchBoundsAttr(D, AL, AL.getArgAsExpr(0), |
| AL.getNumArgs() > 1 ? AL.getArgAsExpr(1) : nullptr); |
| } |
| |
| static void handleArgumentWithTypeTagAttr(Sema &S, Decl *D, |
| const ParsedAttr &AL) { |
| if (!AL.isArgIdent(0)) { |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) |
| << AL << /* arg num = */ 1 << AANT_ArgumentIdentifier; |
| return; |
| } |
| |
| ParamIdx ArgumentIdx; |
| if (!checkFunctionOrMethodParameterIndex(S, D, AL, 2, AL.getArgAsExpr(1), |
| ArgumentIdx)) |
| return; |
| |
| ParamIdx TypeTagIdx; |
| if (!checkFunctionOrMethodParameterIndex(S, D, AL, 3, AL.getArgAsExpr(2), |
| TypeTagIdx)) |
| return; |
| |
| bool IsPointer = AL.getAttrName()->getName() == "pointer_with_type_tag"; |
| if (IsPointer) { |
| // Ensure that buffer has a pointer type. |
| unsigned ArgumentIdxAST = ArgumentIdx.getASTIndex(); |
| if (ArgumentIdxAST >= getFunctionOrMethodNumParams(D) || |
| !getFunctionOrMethodParamType(D, ArgumentIdxAST)->isPointerType()) |
| S.Diag(AL.getLoc(), diag::err_attribute_pointers_only) << AL << 0; |
| } |
| |
| D->addAttr(::new (S.Context) ArgumentWithTypeTagAttr( |
| S.Context, AL, AL.getArgAsIdent(0)->Ident, ArgumentIdx, TypeTagIdx, |
| IsPointer)); |
| } |
| |
| static void handleTypeTagForDatatypeAttr(Sema &S, Decl *D, |
| const ParsedAttr &AL) { |
| if (!AL.isArgIdent(0)) { |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) |
| << AL << 1 << AANT_ArgumentIdentifier; |
| return; |
| } |
| |
| if (!checkAttributeNumArgs(S, AL, 1)) |
| return; |
| |
| if (!isa<VarDecl>(D)) { |
| S.Diag(AL.getLoc(), diag::err_attribute_wrong_decl_type) |
| << AL << ExpectedVariable; |
| return; |
| } |
| |
| IdentifierInfo *PointerKind = AL.getArgAsIdent(0)->Ident; |
| TypeSourceInfo *MatchingCTypeLoc = nullptr; |
| S.GetTypeFromParser(AL.getMatchingCType(), &MatchingCTypeLoc); |
| assert(MatchingCTypeLoc && "no type source info for attribute argument"); |
| |
| D->addAttr(::new (S.Context) TypeTagForDatatypeAttr( |
| S.Context, AL, PointerKind, MatchingCTypeLoc, AL.getLayoutCompatible(), |
| AL.getMustBeNull())); |
| } |
| |
| static void handleXRayLogArgsAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| ParamIdx ArgCount; |
| |
| if (!checkFunctionOrMethodParameterIndex(S, D, AL, 1, AL.getArgAsExpr(0), |
| ArgCount, |
| true /* CanIndexImplicitThis */)) |
| return; |
| |
| // ArgCount isn't a parameter index [0;n), it's a count [1;n] |
| D->addAttr(::new (S.Context) |
| XRayLogArgsAttr(S.Context, AL, ArgCount.getSourceIndex())); |
| } |
| |
| static void handlePatchableFunctionEntryAttr(Sema &S, Decl *D, |
| const ParsedAttr &AL) { |
| uint32_t Count = 0, Offset = 0; |
| if (!checkUInt32Argument(S, AL, AL.getArgAsExpr(0), Count, 0, true)) |
| return; |
| if (AL.getNumArgs() == 2) { |
| Expr *Arg = AL.getArgAsExpr(1); |
| if (!checkUInt32Argument(S, AL, Arg, Offset, 1, true)) |
| return; |
| if (Count < Offset) { |
| S.Diag(getAttrLoc(AL), diag::err_attribute_argument_out_of_range) |
| << &AL << 0 << Count << Arg->getBeginLoc(); |
| return; |
| } |
| } |
| D->addAttr(::new (S.Context) |
| PatchableFunctionEntryAttr(S.Context, AL, Count, Offset)); |
| } |
| |
| namespace { |
| struct IntrinToName { |
| uint32_t Id; |
| int32_t FullName; |
| int32_t ShortName; |
| }; |
| } // unnamed namespace |
| |
| static bool ArmBuiltinAliasValid(unsigned BuiltinID, StringRef AliasName, |
| ArrayRef<IntrinToName> Map, |
| const char *IntrinNames) { |
| if (AliasName.startswith("__arm_")) |
| AliasName = AliasName.substr(6); |
| const IntrinToName *It = std::lower_bound( |
| Map.begin(), Map.end(), BuiltinID, |
| [](const IntrinToName &L, unsigned Id) { return L.Id < Id; }); |
| if (It == Map.end() || It->Id != BuiltinID) |
| return false; |
| StringRef FullName(&IntrinNames[It->FullName]); |
| if (AliasName == FullName) |
| return true; |
| if (It->ShortName == -1) |
| return false; |
| StringRef ShortName(&IntrinNames[It->ShortName]); |
| return AliasName == ShortName; |
| } |
| |
| static bool ArmMveAliasValid(unsigned BuiltinID, StringRef AliasName) { |
| #include "clang/Basic/arm_mve_builtin_aliases.inc" |
| // The included file defines: |
| // - ArrayRef<IntrinToName> Map |
| // - const char IntrinNames[] |
| return ArmBuiltinAliasValid(BuiltinID, AliasName, Map, IntrinNames); |
| } |
| |
| static bool ArmCdeAliasValid(unsigned BuiltinID, StringRef AliasName) { |
| #include "clang/Basic/arm_cde_builtin_aliases.inc" |
| return ArmBuiltinAliasValid(BuiltinID, AliasName, Map, IntrinNames); |
| } |
| |
| static bool ArmSveAliasValid(unsigned BuiltinID, StringRef AliasName) { |
| switch (BuiltinID) { |
| default: |
| return false; |
| #define GET_SVE_BUILTINS |
| #define BUILTIN(name, types, attr) case SVE::BI##name: |
| #include "clang/Basic/arm_sve_builtins.inc" |
| return true; |
| } |
| } |
| |
| static void handleArmBuiltinAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (!AL.isArgIdent(0)) { |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) |
| << AL << 1 << AANT_ArgumentIdentifier; |
| return; |
| } |
| |
| IdentifierInfo *Ident = AL.getArgAsIdent(0)->Ident; |
| unsigned BuiltinID = Ident->getBuiltinID(); |
| StringRef AliasName = cast<FunctionDecl>(D)->getIdentifier()->getName(); |
| |
| bool IsAArch64 = S.Context.getTargetInfo().getTriple().isAArch64(); |
| if ((IsAArch64 && !ArmSveAliasValid(BuiltinID, AliasName)) || |
| (!IsAArch64 && !ArmMveAliasValid(BuiltinID, AliasName) && |
| !ArmCdeAliasValid(BuiltinID, AliasName))) { |
| S.Diag(AL.getLoc(), diag::err_attribute_arm_builtin_alias); |
| return; |
| } |
| |
| D->addAttr(::new (S.Context) ArmBuiltinAliasAttr(S.Context, AL, Ident)); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Checker-specific attribute handlers. |
| //===----------------------------------------------------------------------===// |
| static bool isValidSubjectOfNSReturnsRetainedAttribute(QualType QT) { |
| return QT->isDependentType() || QT->isObjCRetainableType(); |
| } |
| |
| static bool isValidSubjectOfNSAttribute(QualType QT) { |
| return QT->isDependentType() || QT->isObjCObjectPointerType() || |
| QT->isObjCNSObjectType(); |
| } |
| |
| static bool isValidSubjectOfCFAttribute(QualType QT) { |
| return QT->isDependentType() || QT->isPointerType() || |
| isValidSubjectOfNSAttribute(QT); |
| } |
| |
| static bool isValidSubjectOfOSAttribute(QualType QT) { |
| if (QT->isDependentType()) |
| return true; |
| QualType PT = QT->getPointeeType(); |
| return !PT.isNull() && PT->getAsCXXRecordDecl() != nullptr; |
| } |
| |
| void Sema::AddXConsumedAttr(Decl *D, const AttributeCommonInfo &CI, |
| RetainOwnershipKind K, |
| bool IsTemplateInstantiation) { |
| ValueDecl *VD = cast<ValueDecl>(D); |
| switch (K) { |
| case RetainOwnershipKind::OS: |
| handleSimpleAttributeOrDiagnose<OSConsumedAttr>( |
| *this, VD, CI, isValidSubjectOfOSAttribute(VD->getType()), |
| diag::warn_ns_attribute_wrong_parameter_type, |
| /*ExtraArgs=*/CI.getRange(), "os_consumed", /*pointers*/ 1); |
| return; |
| case RetainOwnershipKind::NS: |
| handleSimpleAttributeOrDiagnose<NSConsumedAttr>( |
| *this, VD, CI, isValidSubjectOfNSAttribute(VD->getType()), |
| |
| // These attributes are normally just advisory, but in ARC, ns_consumed |
| // is significant. Allow non-dependent code to contain inappropriate |
| // attributes even in ARC, but require template instantiations to be |
| // set up correctly. |
| ((IsTemplateInstantiation && getLangOpts().ObjCAutoRefCount) |
| ? diag::err_ns_attribute_wrong_parameter_type |
| : diag::warn_ns_attribute_wrong_parameter_type), |
| /*ExtraArgs=*/CI.getRange(), "ns_consumed", /*objc pointers*/ 0); |
| return; |
| case RetainOwnershipKind::CF: |
| handleSimpleAttributeOrDiagnose<CFConsumedAttr>( |
| *this, VD, CI, isValidSubjectOfCFAttribute(VD->getType()), |
| diag::warn_ns_attribute_wrong_parameter_type, |
| /*ExtraArgs=*/CI.getRange(), "cf_consumed", /*pointers*/ 1); |
| return; |
| } |
| } |
| |
| static Sema::RetainOwnershipKind |
| parsedAttrToRetainOwnershipKind(const ParsedAttr &AL) { |
| switch (AL.getKind()) { |
| case ParsedAttr::AT_CFConsumed: |
| case ParsedAttr::AT_CFReturnsRetained: |
| case ParsedAttr::AT_CFReturnsNotRetained: |
| return Sema::RetainOwnershipKind::CF; |
| case ParsedAttr::AT_OSConsumesThis: |
| case ParsedAttr::AT_OSConsumed: |
| case ParsedAttr::AT_OSReturnsRetained: |
| case ParsedAttr::AT_OSReturnsNotRetained: |
| case ParsedAttr::AT_OSReturnsRetainedOnZero: |
| case ParsedAttr::AT_OSReturnsRetainedOnNonZero: |
| return Sema::RetainOwnershipKind::OS; |
| case ParsedAttr::AT_NSConsumesSelf: |
| case ParsedAttr::AT_NSConsumed: |
| case ParsedAttr::AT_NSReturnsRetained: |
| case ParsedAttr::AT_NSReturnsNotRetained: |
| case ParsedAttr::AT_NSReturnsAutoreleased: |
| return Sema::RetainOwnershipKind::NS; |
| default: |
| llvm_unreachable("Wrong argument supplied"); |
| } |
| } |
| |
| bool Sema::checkNSReturnsRetainedReturnType(SourceLocation Loc, QualType QT) { |
| if (isValidSubjectOfNSReturnsRetainedAttribute(QT)) |
| return false; |
| |
| Diag(Loc, diag::warn_ns_attribute_wrong_return_type) |
| << "'ns_returns_retained'" << 0 << 0; |
| return true; |
| } |
| |
| /// \return whether the parameter is a pointer to OSObject pointer. |
| static bool isValidOSObjectOutParameter(const Decl *D) { |
| const auto *PVD = dyn_cast<ParmVarDecl>(D); |
| if (!PVD) |
| return false; |
| QualType QT = PVD->getType(); |
| QualType PT = QT->getPointeeType(); |
| return !PT.isNull() && isValidSubjectOfOSAttribute(PT); |
| } |
| |
| static void handleXReturnsXRetainedAttr(Sema &S, Decl *D, |
| const ParsedAttr &AL) { |
| QualType ReturnType; |
| Sema::RetainOwnershipKind K = parsedAttrToRetainOwnershipKind(AL); |
| |
| if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) { |
| ReturnType = MD->getReturnType(); |
| } else if (S.getLangOpts().ObjCAutoRefCount && hasDeclarator(D) && |
| (AL.getKind() == ParsedAttr::AT_NSReturnsRetained)) { |
| return; // ignore: was handled as a type attribute |
| } else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(D)) { |
| ReturnType = PD->getType(); |
| } else if (const auto *FD = dyn_cast<FunctionDecl>(D)) { |
| ReturnType = FD->getReturnType(); |
| } else if (const auto *Param = dyn_cast<ParmVarDecl>(D)) { |
| // Attributes on parameters are used for out-parameters, |
| // passed as pointers-to-pointers. |
| unsigned DiagID = K == Sema::RetainOwnershipKind::CF |
| ? /*pointer-to-CF-pointer*/2 |
| : /*pointer-to-OSObject-pointer*/3; |
| ReturnType = Param->getType()->getPointeeType(); |
| if (ReturnType.isNull()) { |
| S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_parameter_type) |
| << AL << DiagID << AL.getRange(); |
| return; |
| } |
| } else if (AL.isUsedAsTypeAttr()) { |
| return; |
| } else { |
| AttributeDeclKind ExpectedDeclKind; |
| switch (AL.getKind()) { |
| default: llvm_unreachable("invalid ownership attribute"); |
| case ParsedAttr::AT_NSReturnsRetained: |
| case ParsedAttr::AT_NSReturnsAutoreleased: |
| case ParsedAttr::AT_NSReturnsNotRetained: |
| ExpectedDeclKind = ExpectedFunctionOrMethod; |
| break; |
| |
| case ParsedAttr::AT_OSReturnsRetained: |
| case ParsedAttr::AT_OSReturnsNotRetained: |
| case ParsedAttr::AT_CFReturnsRetained: |
| case ParsedAttr::AT_CFReturnsNotRetained: |
| ExpectedDeclKind = ExpectedFunctionMethodOrParameter; |
| break; |
| } |
| S.Diag(D->getBeginLoc(), diag::warn_attribute_wrong_decl_type) |
| << AL.getRange() << AL << ExpectedDeclKind; |
| return; |
| } |
| |
| bool TypeOK; |
| bool Cf; |
| unsigned ParmDiagID = 2; // Pointer-to-CF-pointer |
| switch (AL.getKind()) { |
| default: llvm_unreachable("invalid ownership attribute"); |
| case ParsedAttr::AT_NSReturnsRetained: |
| TypeOK = isValidSubjectOfNSReturnsRetainedAttribute(ReturnType); |
| Cf = false; |
| break; |
| |
| case ParsedAttr::AT_NSReturnsAutoreleased: |
| case ParsedAttr::AT_NSReturnsNotRetained: |
| TypeOK = isValidSubjectOfNSAttribute(ReturnType); |
| Cf = false; |
| break; |
| |
| case ParsedAttr::AT_CFReturnsRetained: |
| case ParsedAttr::AT_CFReturnsNotRetained: |
| TypeOK = isValidSubjectOfCFAttribute(ReturnType); |
| Cf = true; |
| break; |
| |
| case ParsedAttr::AT_OSReturnsRetained: |
| case ParsedAttr::AT_OSReturnsNotRetained: |
| TypeOK = isValidSubjectOfOSAttribute(ReturnType); |
| Cf = true; |
| ParmDiagID = 3; // Pointer-to-OSObject-pointer |
| break; |
| } |
| |
| if (!TypeOK) { |
| if (AL.isUsedAsTypeAttr()) |
| return; |
| |
| if (isa<ParmVarDecl>(D)) { |
| S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_parameter_type) |
| << AL << ParmDiagID << AL.getRange(); |
| } else { |
| // Needs to be kept in sync with warn_ns_attribute_wrong_return_type. |
| enum : unsigned { |
| Function, |
| Method, |
| Property |
| } SubjectKind = Function; |
| if (isa<ObjCMethodDecl>(D)) |
| SubjectKind = Method; |
| else if (isa<ObjCPropertyDecl>(D)) |
| SubjectKind = Property; |
| S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_return_type) |
| << AL << SubjectKind << Cf << AL.getRange(); |
| } |
| return; |
| } |
| |
| switch (AL.getKind()) { |
| default: |
| llvm_unreachable("invalid ownership attribute"); |
| case ParsedAttr::AT_NSReturnsAutoreleased: |
| handleSimpleAttribute<NSReturnsAutoreleasedAttr>(S, D, AL); |
| return; |
| case ParsedAttr::AT_CFReturnsNotRetained: |
| handleSimpleAttribute<CFReturnsNotRetainedAttr>(S, D, AL); |
| return; |
| case ParsedAttr::AT_NSReturnsNotRetained: |
| handleSimpleAttribute<NSReturnsNotRetainedAttr>(S, D, AL); |
| return; |
| case ParsedAttr::AT_CFReturnsRetained: |
| handleSimpleAttribute<CFReturnsRetainedAttr>(S, D, AL); |
| return; |
| case ParsedAttr::AT_NSReturnsRetained: |
| handleSimpleAttribute<NSReturnsRetainedAttr>(S, D, AL); |
| return; |
| case ParsedAttr::AT_OSReturnsRetained: |
| handleSimpleAttribute<OSReturnsRetainedAttr>(S, D, AL); |
| return; |
| case ParsedAttr::AT_OSReturnsNotRetained: |
| handleSimpleAttribute<OSReturnsNotRetainedAttr>(S, D, AL); |
| return; |
| }; |
| } |
| |
| static void handleObjCReturnsInnerPointerAttr(Sema &S, Decl *D, |
| const ParsedAttr &Attrs) { |
| const int EP_ObjCMethod = 1; |
| const int EP_ObjCProperty = 2; |
| |
| SourceLocation loc = Attrs.getLoc(); |
| QualType resultType; |
| if (isa<ObjCMethodDecl>(D)) |
| resultType = cast<ObjCMethodDecl>(D)->getReturnType(); |
| else |
| resultType = cast<ObjCPropertyDecl>(D)->getType(); |
| |
| if (!resultType->isReferenceType() && |
| (!resultType->isPointerType() || resultType->isObjCRetainableType())) { |
| S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_return_type) |
| << SourceRange(loc) << Attrs |
| << (isa<ObjCMethodDecl>(D) ? EP_ObjCMethod : EP_ObjCProperty) |
| << /*non-retainable pointer*/ 2; |
| |
| // Drop the attribute. |
| return; |
| } |
| |
| D->addAttr(::new (S.Context) ObjCReturnsInnerPointerAttr(S.Context, Attrs)); |
| } |
| |
| static void handleObjCRequiresSuperAttr(Sema &S, Decl *D, |
| const ParsedAttr &Attrs) { |
| const auto *Method = cast<ObjCMethodDecl>(D); |
| |
| const DeclContext *DC = Method->getDeclContext(); |
| if (const auto *PDecl = dyn_cast_or_null<ObjCProtocolDecl>(DC)) { |
| S.Diag(D->getBeginLoc(), diag::warn_objc_requires_super_protocol) << Attrs |
| << 0; |
| S.Diag(PDecl->getLocation(), diag::note_protocol_decl); |
| return; |
| } |
| if (Method->getMethodFamily() == OMF_dealloc) { |
| S.Diag(D->getBeginLoc(), diag::warn_objc_requires_super_protocol) << Attrs |
| << 1; |
| return; |
| } |
| |
| D->addAttr(::new (S.Context) ObjCRequiresSuperAttr(S.Context, Attrs)); |
| } |
| |
| static void handleNSErrorDomain(Sema &S, Decl *D, const ParsedAttr &AL) { |
| auto *E = AL.getArgAsExpr(0); |
| auto Loc = E ? E->getBeginLoc() : AL.getLoc(); |
| |
| auto *DRE = dyn_cast<DeclRefExpr>(AL.getArgAsExpr(0)); |
| if (!DRE) { |
| S.Diag(Loc, diag::err_nserrordomain_invalid_decl) << 0; |
| return; |
| } |
| |
| auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); |
| if (!VD) { |
| S.Diag(Loc, diag::err_nserrordomain_invalid_decl) << 1 << DRE->getDecl(); |
| return; |
| } |
| |
| if (!isNSStringType(VD->getType(), S.Context) && |
| !isCFStringType(VD->getType(), S.Context)) { |
| S.Diag(Loc, diag::err_nserrordomain_wrong_type) << VD; |
| return; |
| } |
| |
| D->addAttr(::new (S.Context) NSErrorDomainAttr(S.Context, AL, VD)); |
| } |
| |
| static void handleObjCBridgeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| IdentifierLoc *Parm = AL.isArgIdent(0) ? AL.getArgAsIdent(0) : nullptr; |
| |
| if (!Parm) { |
| S.Diag(D->getBeginLoc(), diag::err_objc_attr_not_id) << AL << 0; |
| return; |
| } |
| |
| // Typedefs only allow objc_bridge(id) and have some additional checking. |
| if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) { |
| if (!Parm->Ident->isStr("id")) { |
| S.Diag(AL.getLoc(), diag::err_objc_attr_typedef_not_id) << AL; |
| return; |
| } |
| |
| // Only allow 'cv void *'. |
| QualType T = TD->getUnderlyingType(); |
| if (!T->isVoidPointerType()) { |
| S.Diag(AL.getLoc(), diag::err_objc_attr_typedef_not_void_pointer); |
| return; |
| } |
| } |
| |
| D->addAttr(::new (S.Context) ObjCBridgeAttr(S.Context, AL, Parm->Ident)); |
| } |
| |
| static void handleObjCBridgeMutableAttr(Sema &S, Decl *D, |
| const ParsedAttr &AL) { |
| IdentifierLoc *Parm = AL.isArgIdent(0) ? AL.getArgAsIdent(0) : nullptr; |
| |
| if (!Parm) { |
| S.Diag(D->getBeginLoc(), diag::err_objc_attr_not_id) << AL << 0; |
| return; |
| } |
| |
| D->addAttr(::new (S.Context) |
| ObjCBridgeMutableAttr(S.Context, AL, Parm->Ident)); |
| } |
| |
| static void handleObjCBridgeRelatedAttr(Sema &S, Decl *D, |
| const ParsedAttr &AL) { |
| IdentifierInfo *RelatedClass = |
| AL.isArgIdent(0) ? AL.getArgAsIdent(0)->Ident : nullptr; |
| if (!RelatedClass) { |
| S.Diag(D->getBeginLoc(), diag::err_objc_attr_not_id) << AL << 0; |
| return; |
| } |
| IdentifierInfo *ClassMethod = |
| AL.getArgAsIdent(1) ? AL.getArgAsIdent(1)->Ident : nullptr; |
| IdentifierInfo *InstanceMethod = |
| AL.getArgAsIdent(2) ? AL.getArgAsIdent(2)->Ident : nullptr; |
| D->addAttr(::new (S.Context) ObjCBridgeRelatedAttr( |
| S.Context, AL, RelatedClass, ClassMethod, InstanceMethod)); |
| } |
| |
| static void handleObjCDesignatedInitializer(Sema &S, Decl *D, |
| const ParsedAttr &AL) { |
| DeclContext *Ctx = D->getDeclContext(); |
| |
| // This attribute can only be applied to methods in interfaces or class |
| // extensions. |
| if (!isa<ObjCInterfaceDecl>(Ctx) && |
| !(isa<ObjCCategoryDecl>(Ctx) && |
| cast<ObjCCategoryDecl>(Ctx)->IsClassExtension())) { |
| S.Diag(D->getLocation(), diag::err_designated_init_attr_non_init); |
| return; |
| } |
| |
| ObjCInterfaceDecl *IFace; |
| if (auto *CatDecl = dyn_cast<ObjCCategoryDecl>(Ctx)) |
| IFace = CatDecl->getClassInterface(); |
| else |
| IFace = cast<ObjCInterfaceDecl>(Ctx); |
| |
| if (!IFace) |
| return; |
| |
| IFace->setHasDesignatedInitializers(); |
| D->addAttr(::new (S.Context) ObjCDesignatedInitializerAttr(S.Context, AL)); |
| } |
| |
| static void handleObjCRuntimeName(Sema &S, Decl *D, const ParsedAttr &AL) { |
| StringRef MetaDataName; |
| if (!S.checkStringLiteralArgumentAttr(AL, 0, MetaDataName)) |
| return; |
| D->addAttr(::new (S.Context) |
| ObjCRuntimeNameAttr(S.Context, AL, MetaDataName)); |
| } |
| |
| // When a user wants to use objc_boxable with a union or struct |
| // but they don't have access to the declaration (legacy/third-party code) |
| // then they can 'enable' this feature with a typedef: |
| // typedef struct __attribute((objc_boxable)) legacy_struct legacy_struct; |
| static void handleObjCBoxable(Sema &S, Decl *D, const ParsedAttr &AL) { |
| bool notify = false; |
| |
| auto *RD = dyn_cast<RecordDecl>(D); |
| if (RD && RD->getDefinition()) { |
| RD = RD->getDefinition(); |
| notify = true; |
| } |
| |
| if (RD) { |
| ObjCBoxableAttr *BoxableAttr = |
| ::new (S.Context) ObjCBoxableAttr(S.Context, AL); |
| RD->addAttr(BoxableAttr); |
| if (notify) { |
| // we need to notify ASTReader/ASTWriter about |
| // modification of existing declaration |
| if (ASTMutationListener *L = S.getASTMutationListener()) |
| L->AddedAttributeToRecord(BoxableAttr, RD); |
| } |
| } |
| } |
| |
| static void handleObjCOwnershipAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (hasDeclarator(D)) return; |
| |
| S.Diag(D->getBeginLoc(), diag::err_attribute_wrong_decl_type) |
| << AL.getRange() << AL << ExpectedVariable; |
| } |
| |
| static void handleObjCPreciseLifetimeAttr(Sema &S, Decl *D, |
| const ParsedAttr &AL) { |
| const auto *VD = cast<ValueDecl>(D); |
| QualType QT = VD->getType(); |
| |
| if (!QT->isDependentType() && |
| !QT->isObjCLifetimeType()) { |
| S.Diag(AL.getLoc(), diag::err_objc_precise_lifetime_bad_type) |
| << QT; |
| return; |
| } |
| |
| Qualifiers::ObjCLifetime Lifetime = QT.getObjCLifetime(); |
| |
| // If we have no lifetime yet, check the lifetime we're presumably |
| // going to infer. |
| if (Lifetime == Qualifiers::OCL_None && !QT->isDependentType()) |
| Lifetime = QT->getObjCARCImplicitLifetime(); |
| |
| switch (Lifetime) { |
| case Qualifiers::OCL_None: |
| assert(QT->isDependentType() && |
| "didn't infer lifetime for non-dependent type?"); |
| break; |
| |
| case Qualifiers::OCL_Weak: // meaningful |
| case Qualifiers::OCL_Strong: // meaningful |
| break; |
| |
| case Qualifiers::OCL_ExplicitNone: |
| case Qualifiers::OCL_Autoreleasing: |
| S.Diag(AL.getLoc(), diag::warn_objc_precise_lifetime_meaningless) |
| << (Lifetime == Qualifiers::OCL_Autoreleasing); |
| break; |
| } |
| |
| D->addAttr(::new (S.Context) ObjCPreciseLifetimeAttr(S.Context, AL)); |
| } |
| |
| static void handleSwiftAttrAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| // Make sure that there is a string literal as the annotation's single |
| // argument. |
| StringRef Str; |
| if (!S.checkStringLiteralArgumentAttr(AL, 0, Str)) |
| return; |
| |
| D->addAttr(::new (S.Context) SwiftAttrAttr(S.Context, AL, Str)); |
| } |
| |
| static void handleSwiftBridge(Sema &S, Decl *D, const ParsedAttr &AL) { |
| // Make sure that there is a string literal as the annotation's single |
| // argument. |
| StringRef BT; |
| if (!S.checkStringLiteralArgumentAttr(AL, 0, BT)) |
| return; |
| |
| // Don't duplicate annotations that are already set. |
| if (D->hasAttr<SwiftBridgeAttr>()) { |
| S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL; |
| return; |
| } |
| |
| D->addAttr(::new (S.Context) SwiftBridgeAttr(S.Context, AL, BT)); |
| } |
| |
| static bool isErrorParameter(Sema &S, QualType QT) { |
| const auto *PT = QT->getAs<PointerType>(); |
| if (!PT) |
| return false; |
| |
| QualType Pointee = PT->getPointeeType(); |
| |
| // Check for NSError**. |
| if (const auto *OPT = Pointee->getAs<ObjCObjectPointerType>()) |
| if (const auto *ID = OPT->getInterfaceDecl()) |
| if (ID->getIdentifier() == S.getNSErrorIdent()) |
| return true; |
| |
| // Check for CFError**. |
| if (const auto *PT = Pointee->getAs<PointerType>()) |
| if (const auto *RT = PT->getPointeeType()->getAs<RecordType>()) |
| if (S.isCFError(RT->getDecl())) |
| return true; |
| |
| return false; |
| } |
| |
| static void handleSwiftError(Sema &S, Decl *D, const ParsedAttr &AL) { |
| auto hasErrorParameter = [](Sema &S, Decl *D, const ParsedAttr &AL) -> bool { |
| for (unsigned I = 0, E = getFunctionOrMethodNumParams(D); I != E; ++I) { |
| if (isErrorParameter(S, getFunctionOrMethodParamType(D, I))) |
| return true; |
| } |
| |
| S.Diag(AL.getLoc(), diag::err_attr_swift_error_no_error_parameter) |
| << AL << isa<ObjCMethodDecl>(D); |
| return false; |
| }; |
| |
| auto hasPointerResult = [](Sema &S, Decl *D, const ParsedAttr &AL) -> bool { |
| // - C, ObjC, and block pointers are definitely okay. |
| // - References are definitely not okay. |
| // - nullptr_t is weird, but acceptable. |
| QualType RT = getFunctionOrMethodResultType(D); |
| if (RT->hasPointerRepresentation() && !RT->isReferenceType()) |
| return true; |
| |
| S.Diag(AL.getLoc(), diag::err_attr_swift_error_return_type) |
| << AL << AL.getArgAsIdent(0)->Ident->getName() << isa<ObjCMethodDecl>(D) |
| << /*pointer*/ 1; |
| return false; |
| }; |
| |
| auto hasIntegerResult = [](Sema &S, Decl *D, const ParsedAttr &AL) -> bool { |
| QualType RT = getFunctionOrMethodResultType(D); |
| if (RT->isIntegralType(S.Context)) |
| return true; |
| |
| S.Diag(AL.getLoc(), diag::err_attr_swift_error_return_type) |
| << AL << AL.getArgAsIdent(0)->Ident->getName() << isa<ObjCMethodDecl>(D) |
| << /*integral*/ 0; |
| return false; |
| }; |
| |
| if (D->isInvalidDecl()) |
| return; |
| |
| IdentifierLoc *Loc = AL.getArgAsIdent(0); |
| SwiftErrorAttr::ConventionKind Convention; |
| if (!SwiftErrorAttr::ConvertStrToConventionKind(Loc->Ident->getName(), |
| Convention)) { |
| S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) |
| << AL << Loc->Ident; |
| return; |
| } |
| |
| switch (Convention) { |
| case SwiftErrorAttr::None: |
| // No additional validation required. |
| break; |
| |
| case SwiftErrorAttr::NonNullError: |
| if (!hasErrorParameter(S, D, AL)) |
| return; |
| break; |
| |
| case SwiftErrorAttr::NullResult: |
| if (!hasErrorParameter(S, D, AL) || !hasPointerResult(S, D, AL)) |
| return; |
| break; |
| |
| case SwiftErrorAttr::NonZeroResult: |
| case SwiftErrorAttr::ZeroResult: |
| if (!hasErrorParameter(S, D, AL) || !hasIntegerResult(S, D, AL)) |
| return; |
| break; |
| } |
| |
| D->addAttr(::new (S.Context) SwiftErrorAttr(S.Context, AL, Convention)); |
| } |
| |
| // For a function, this will validate a compound Swift name, e.g. |
| // <code>init(foo:bar:baz:)</code> or <code>controllerForName(_:)</code>, and |
| // the function will output the number of parameter names, and whether this is a |
| // single-arg initializer. |
| // |
| // For a type, enum constant, property, or variable declaration, this will |
| // validate either a simple identifier, or a qualified |
| // <code>context.identifier</code> name. |
| static bool |
| validateSwiftFunctionName(Sema &S, const ParsedAttr &AL, SourceLocation Loc, |
| StringRef Name, unsigned &SwiftParamCount, |
| bool &IsSingleParamInit) { |
| SwiftParamCount = 0; |
| IsSingleParamInit = false; |
| |
| // Check whether this will be mapped to a getter or setter of a property. |
| bool IsGetter = false, IsSetter = false; |
| if (Name.startswith("getter:")) { |
| IsGetter = true; |
| Name = Name.substr(7); |
| } else if (Name.startswith("setter:")) { |
| IsSetter = true; |
| Name = Name.substr(7); |
| } |
| |
| if (Name.back() != ')') { |
| S.Diag(Loc, diag::warn_attr_swift_name_function) << AL; |
| return false; |
| } |
| |
| bool IsMember = false; |
| StringRef ContextName, BaseName, Parameters; |
| |
| std::tie(BaseName, Parameters) = Name.split('('); |
| |
| // Split at the first '.', if it exists, which separates the context name |
| // from the base name. |
| std::tie(ContextName, BaseName) = BaseName.split('.'); |
| if (BaseName.empty()) { |
| BaseName = ContextName; |
| ContextName = StringRef(); |
| } else if (ContextName.empty() || !isValidIdentifier(ContextName)) { |
| S.Diag(Loc, diag::warn_attr_swift_name_invalid_identifier) |
| << AL << /*context*/ 1; |
| return false; |
| } else { |
| IsMember = true; |
| } |
| |
| if (!isValidIdentifier(BaseName) || BaseName == "_") { |
| S.Diag(Loc, diag::warn_attr_swift_name_invalid_identifier) |
| << AL << /*basename*/ 0; |
| return false; |
| } |
| |
| bool IsSubscript = BaseName == "subscript"; |
| // A subscript accessor must be a getter or setter. |
| if (IsSubscript && !IsGetter && !IsSetter) { |
| S.Diag(Loc, diag::warn_attr_swift_name_subscript_invalid_parameter) |
| << AL << /* getter or setter */ 0; |
| return false; |
| } |
| |
| if (Parameters.empty()) { |
| S.Diag(Loc, diag::warn_attr_swift_name_missing_parameters) << AL; |
| return false; |
| } |
| |
| assert(Parameters.back() == ')' && "expected ')'"); |
| Parameters = Parameters.drop_back(); // ')' |
| |
| if (Parameters.empty()) { |
| // Setters and subscripts must have at least one parameter. |
| if (IsSubscript) { |
| S.Diag(Loc, diag::warn_attr_swift_name_subscript_invalid_parameter) |
| << AL << /* have at least one parameter */1; |
| return false; |
| } |
| |
| if (IsSetter) { |
| S.Diag(Loc, diag::warn_attr_swift_name_setter_parameters) << AL; |
| return false; |
| } |
| |
| return true; |
| } |
| |
| if (Parameters.back() != ':') { |
| S.Diag(Loc, diag::warn_attr_swift_name_function) << AL; |
| return false; |
| } |
| |
| StringRef CurrentParam; |
| llvm::Optional<unsigned> SelfLocation; |
| unsigned NewValueCount = 0; |
| llvm::Optional<unsigned> NewValueLocation; |
| do { |
| std::tie(CurrentParam, Parameters) = Parameters.split(':'); |
| |
| if (!isValidIdentifier(CurrentParam)) { |
| S.Diag(Loc, diag::warn_attr_swift_name_invalid_identifier) |
| << AL << /*parameter*/2; |
| return false; |
| } |
| |
| if (IsMember && CurrentParam == "self") { |
| // "self" indicates the "self" argument for a member. |
| |
| // More than one "self"? |
| if (SelfLocation) { |
| S.Diag(Loc, diag::warn_attr_swift_name_multiple_selfs) << AL; |
| return false; |
| } |
| |
| // The "self" location is the current parameter. |
| SelfLocation = SwiftParamCount; |
| } else if (CurrentParam == "newValue") { |
| // "newValue" indicates the "newValue" argument for a setter. |
| |
| // There should only be one 'newValue', but it's only significant for |
| // subscript accessors, so don't error right away. |
| ++NewValueCount; |
| |
| NewValueLocation = SwiftParamCount; |
| } |
| |
| ++SwiftParamCount; |
| } while (!Parameters.empty()); |
| |
| // Only instance subscripts are currently supported. |
| if (IsSubscript && !SelfLocation) { |
| S.Diag(Loc, diag::warn_attr_swift_name_subscript_invalid_parameter) |
| << AL << /*have a 'self:' parameter*/2; |
| return false; |
| } |
| |
| IsSingleParamInit = |
| SwiftParamCount == 1 && BaseName == "init" && CurrentParam != "_"; |
| |
| // Check the number of parameters for a getter/setter. |
| if (IsGetter || IsSetter) { |
| // Setters have one parameter for the new value. |
| unsigned NumExpectedParams = IsGetter ? 0 : 1; |
| unsigned ParamDiag = |
| IsGetter ? diag::warn_attr_swift_name_getter_parameters |
| : diag::warn_attr_swift_name_setter_parameters; |
| |
| // Instance methods have one parameter for "self". |
| if (SelfLocation) |
| ++NumExpectedParams; |
| |
| // Subscripts may have additional parameters beyond the expected params for |
| // the index. |
| if (IsSubscript) { |
| if (SwiftParamCount < NumExpectedParams) { |
| S.Diag(Loc, ParamDiag) << AL; |
| return false; |
| } |
| |
| // A subscript setter must explicitly label its newValue parameter to |
| // distinguish it from index parameters. |
| if (IsSetter) { |
| if (!NewValueLocation) { |
| S.Diag(Loc, diag::warn_attr_swift_name_subscript_setter_no_newValue) |
| << AL; |
| return false; |
| } |
| if (NewValueCount > 1) { |
| S.Diag(Loc, diag::warn_attr_swift_name_subscript_setter_multiple_newValues) |
| << AL; |
| return false; |
| } |
| } else { |
| // Subscript getters should have no 'newValue:' parameter. |
| if (NewValueLocation) { |
| S.Diag(Loc, diag::warn_attr_swift_name_subscript_getter_newValue) |
| << AL; |
| return false; |
| } |
| } |
| } else { |
| // Property accessors must have exactly the number of expected params. |
| if (SwiftParamCount != NumExpectedParams) { |
| S.Diag(Loc, ParamDiag) << AL; |
| return false; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| bool Sema::DiagnoseSwiftName(Decl *D, StringRef Name, SourceLocation Loc, |
| const ParsedAttr &AL, bool IsAsync) { |
| if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) { |
| ArrayRef<ParmVarDecl*> Params; |
| unsigned ParamCount; |
| |
| if (const auto *Method = dyn_cast<ObjCMethodDecl>(D)) { |
| ParamCount = Method->getSelector().getNumArgs(); |
| Params = Method->parameters().slice(0, ParamCount); |
| } else { |
| const auto *F = cast<FunctionDecl>(D); |
| |
| ParamCount = F->getNumParams(); |
| Params = F->parameters(); |
| |
| if (!F->hasWrittenPrototype()) { |
| Diag(Loc, diag::warn_attribute_wrong_decl_type) << AL |
| << ExpectedFunctionWithProtoType; |
| return false; |
| } |
| } |
| |
| // The async name drops the last callback parameter. |
| if (IsAsync) { |
| if (ParamCount == 0) { |
| Diag(Loc, diag::warn_attr_swift_name_decl_missing_params) |
| << AL << isa<ObjCMethodDecl>(D); |
| return false; |
| } |
| ParamCount -= 1; |
| } |
| |
| unsigned SwiftParamCount; |
| bool IsSingleParamInit; |
| if (!validateSwiftFunctionName(*this, AL, Loc, Name, |
| SwiftParamCount, IsSingleParamInit)) |
| return false; |
| |
| bool ParamCountValid; |
| if (SwiftParamCount == ParamCount) { |
| ParamCountValid = true; |
| } else if (SwiftParamCount > ParamCount) { |
| ParamCountValid = IsSingleParamInit && ParamCount == 0; |
| } else { |
| // We have fewer Swift parameters than Objective-C parameters, but that |
| // might be because we've transformed some of them. Check for potential |
| // "out" parameters and err on the side of not warning. |
| unsigned MaybeOutParamCount = |
| std::count_if(Params.begin(), Params.end(), |
| [](const ParmVarDecl *Param) -> bool { |
| QualType ParamTy = Param->getType(); |
| if (ParamTy->isReferenceType() || ParamTy->isPointerType()) |
| return !ParamTy->getPointeeType().isConstQualified(); |
| return false; |
| }); |
| |
| ParamCountValid = SwiftParamCount + MaybeOutParamCount >= ParamCount; |
| } |
| |
| if (!ParamCountValid) { |
| Diag(Loc, diag::warn_attr_swift_name_num_params) |
| << (SwiftParamCount > ParamCount) << AL << ParamCount |
| << SwiftParamCount; |
| return false; |
| } |
| } else if ((isa<EnumConstantDecl>(D) || isa<ObjCProtocolDecl>(D) || |
| isa<ObjCInterfaceDecl>(D) || isa<ObjCPropertyDecl>(D) || |
| isa<VarDecl>(D) || isa<TypedefNameDecl>(D) || isa<TagDecl>(D) || |
| isa<IndirectFieldDecl>(D) || isa<FieldDecl>(D)) && |
| !IsAsync) { |
| StringRef ContextName, BaseName; |
| |
| std::tie(ContextName, BaseName) = Name.split('.'); |
| if (BaseName.empty()) { |
| BaseName = ContextName; |
| ContextName = StringRef(); |
| } else if (!isValidIdentifier(ContextName)) { |
| Diag(Loc, diag::warn_attr_swift_name_invalid_identifier) << AL |
| << /*context*/1; |
| return false; |
| } |
| |
| if (!isValidIdentifier(BaseName)) { |
| Diag(Loc, diag::warn_attr_swift_name_invalid_identifier) << AL |
| << /*basename*/0; |
| return false; |
| } |
| } else { |
| Diag(Loc, diag::warn_attr_swift_name_decl_kind) << AL; |
| return false; |
| } |
| return true; |
| } |
| |
| static void handleSwiftName(Sema &S, Decl *D, const ParsedAttr &AL) { |
| StringRef Name; |
| SourceLocation Loc; |
| if (!S.checkStringLiteralArgumentAttr(AL, 0, Name, &Loc)) |
| return; |
| |
| if (!S.DiagnoseSwiftName(D, Name, Loc, AL, /*IsAsync=*/false)) |
| return; |
| |
| D->addAttr(::new (S.Context) SwiftNameAttr(S.Context, AL, Name)); |
| } |
| |
| static void handleSwiftAsyncName(Sema &S, Decl *D, const ParsedAttr &AL) { |
| StringRef Name; |
| SourceLocation Loc; |
| if (!S.checkStringLiteralArgumentAttr(AL, 0, Name, &Loc)) |
| return; |
| |
| if (!S.DiagnoseSwiftName(D, Name, Loc, AL, /*IsAsync=*/true)) |
| return; |
| |
| D->addAttr(::new (S.Context) SwiftAsyncNameAttr(S.Context, AL, Name)); |
| } |
| |
| static void handleSwiftNewType(Sema &S, Decl *D, const ParsedAttr &AL) { |
| // Make sure that there is an identifier as the annotation's single argument. |
| if (!checkAttributeNumArgs(S, AL, 1)) |
| return; |
| |
| if (!AL.isArgIdent(0)) { |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_type) |
| << AL << AANT_ArgumentIdentifier; |
| return; |
| } |
| |
| SwiftNewTypeAttr::NewtypeKind Kind; |
| IdentifierInfo *II = AL.getArgAsIdent(0)->Ident; |
| if (!SwiftNewTypeAttr::ConvertStrToNewtypeKind(II->getName(), Kind)) { |
| S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II; |
| return; |
| } |
| |
| if (!isa<TypedefNameDecl>(D)) { |
| S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type_str) |
| << AL << "typedefs"; |
| return; |
| } |
| |
| D->addAttr(::new (S.Context) SwiftNewTypeAttr(S.Context, AL, Kind)); |
| } |
| |
| static void handleSwiftAsyncAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (!AL.isArgIdent(0)) { |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) |
| << AL << 1 << AANT_ArgumentIdentifier; |
| return; |
| } |
| |
| SwiftAsyncAttr::Kind Kind; |
| IdentifierInfo *II = AL.getArgAsIdent(0)->Ident; |
| if (!SwiftAsyncAttr::ConvertStrToKind(II->getName(), Kind)) { |
| S.Diag(AL.getLoc(), diag::err_swift_async_no_access) << AL << II; |
| return; |
| } |
| |
| ParamIdx Idx; |
| if (Kind == SwiftAsyncAttr::None) { |
| // If this is 'none', then there shouldn't be any additional arguments. |
| if (!checkAttributeNumArgs(S, AL, 1)) |
| return; |
| } else { |
| // Non-none swift_async requires a completion handler index argument. |
| if (!checkAttributeNumArgs(S, AL, 2)) |
| return; |
| |
| Expr *HandlerIdx = AL.getArgAsExpr(1); |
| if (!checkFunctionOrMethodParameterIndex(S, D, AL, 2, HandlerIdx, Idx)) |
| return; |
| |
| const ParmVarDecl *CompletionBlock = |
| getFunctionOrMethodParam(D, Idx.getASTIndex()); |
| QualType CompletionBlockType = CompletionBlock->getType(); |
| if (!CompletionBlockType->isBlockPointerType()) { |
| S.Diag(CompletionBlock->getLocation(), |
| diag::err_swift_async_bad_block_type) |
| << CompletionBlock->getType(); |
| return; |
| } |
| QualType BlockTy = |
| CompletionBlockType->getAs<BlockPointerType>()->getPointeeType(); |
| if (!BlockTy->getAs<FunctionType>()->getReturnType()->isVoidType()) { |
| S.Diag(CompletionBlock->getLocation(), |
| diag::err_swift_async_bad_block_type) |
| << CompletionBlock->getType(); |
| return; |
| } |
| } |
| |
| D->addAttr(::new (S.Context) SwiftAsyncAttr(S.Context, AL, Kind, Idx)); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Microsoft specific attribute handlers. |
| //===----------------------------------------------------------------------===// |
| |
| UuidAttr *Sema::mergeUuidAttr(Decl *D, const AttributeCommonInfo &CI, |
| StringRef UuidAsWritten, MSGuidDecl *GuidDecl) { |
| if (const auto *UA = D->getAttr<UuidAttr>()) { |
| if (declaresSameEntity(UA->getGuidDecl(), GuidDecl)) |
| return nullptr; |
| if (!UA->getGuid().empty()) { |
| Diag(UA->getLocation(), diag::err_mismatched_uuid); |
| Diag(CI.getLoc(), diag::note_previous_uuid); |
| D->dropAttr<UuidAttr>(); |
| } |
| } |
| |
| return ::new (Context) UuidAttr(Context, CI, UuidAsWritten, GuidDecl); |
| } |
| |
| static void handleUuidAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (!S.LangOpts.CPlusPlus) { |
| S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang) |
| << AL << AttributeLangSupport::C; |
| return; |
| } |
| |
| StringRef OrigStrRef; |
| SourceLocation LiteralLoc; |
| if (!S.checkStringLiteralArgumentAttr(AL, 0, OrigStrRef, &LiteralLoc)) |
| return; |
| |
| // GUID format is "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX" or |
| // "{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}", normalize to the former. |
| StringRef StrRef = OrigStrRef; |
| if (StrRef.size() == 38 && StrRef.front() == '{' && StrRef.back() == '}') |
| StrRef = StrRef.drop_front().drop_back(); |
| |
| // Validate GUID length. |
| if (StrRef.size() != 36) { |
| S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid); |
| return; |
| } |
| |
| for (unsigned i = 0; i < 36; ++i) { |
| if (i == 8 || i == 13 || i == 18 || i == 23) { |
| if (StrRef[i] != '-') { |
| S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid); |
| return; |
| } |
| } else if (!isHexDigit(StrRef[i])) { |
| S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid); |
| return; |
| } |
| } |
| |
| // Convert to our parsed format and canonicalize. |
| MSGuidDecl::Parts Parsed; |
| StrRef.substr(0, 8).getAsInteger(16, Parsed.Part1); |
| StrRef.substr(9, 4).getAsInteger(16, Parsed.Part2); |
| StrRef.substr(14, 4).getAsInteger(16, Parsed.Part3); |
| for (unsigned i = 0; i != 8; ++i) |
| StrRef.substr(19 + 2 * i + (i >= 2 ? 1 : 0), 2) |
| .getAsInteger(16, Parsed.Part4And5[i]); |
| MSGuidDecl *Guid = S.Context.getMSGuidDecl(Parsed); |
| |
| // FIXME: It'd be nice to also emit a fixit removing uuid(...) (and, if it's |
| // the only thing in the [] list, the [] too), and add an insertion of |
| // __declspec(uuid(...)). But sadly, neither the SourceLocs of the commas |
| // separating attributes nor of the [ and the ] are in the AST. |
| // Cf "SourceLocations of attribute list delimiters - [[ ... , ... ]] etc" |
| // on cfe-dev. |
| if (AL.isMicrosoftAttribute()) // Check for [uuid(...)] spelling. |
| S.Diag(AL.getLoc(), diag::warn_atl_uuid_deprecated); |
| |
| UuidAttr *UA = S.mergeUuidAttr(D, AL, OrigStrRef, Guid); |
| if (UA) |
| D->addAttr(UA); |
| } |
| |
| static void handleMSInheritanceAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (!S.LangOpts.CPlusPlus) { |
| S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang) |
| << AL << AttributeLangSupport::C; |
| return; |
| } |
| MSInheritanceAttr *IA = S.mergeMSInheritanceAttr( |
| D, AL, /*BestCase=*/true, (MSInheritanceModel)AL.getSemanticSpelling()); |
| if (IA) { |
| D->addAttr(IA); |
| S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D)); |
| } |
| } |
| |
| static void handleDeclspecThreadAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| const auto *VD = cast<VarDecl>(D); |
| if (!S.Context.getTargetInfo().isTLSSupported()) { |
| S.Diag(AL.getLoc(), diag::err_thread_unsupported); |
| return; |
| } |
| if (VD->getTSCSpec() != TSCS_unspecified) { |
| S.Diag(AL.getLoc(), diag::err_declspec_thread_on_thread_variable); |
| return; |
| } |
| if (VD->hasLocalStorage()) { |
| S.Diag(AL.getLoc(), diag::err_thread_non_global) << "__declspec(thread)"; |
| return; |
| } |
| D->addAttr(::new (S.Context) ThreadAttr(S.Context, AL)); |
| } |
| |
| static void handleAbiTagAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| SmallVector<StringRef, 4> Tags; |
| for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) { |
| StringRef Tag; |
| if (!S.checkStringLiteralArgumentAttr(AL, I, Tag)) |
| return; |
| Tags.push_back(Tag); |
| } |
| |
| if (const auto *NS = dyn_cast<NamespaceDecl>(D)) { |
| if (!NS->isInline()) { |
| S.Diag(AL.getLoc(), diag::warn_attr_abi_tag_namespace) << 0; |
| return; |
| } |
| if (NS->isAnonymousNamespace()) { |
| S.Diag(AL.getLoc(), diag::warn_attr_abi_tag_namespace) << 1; |
| return; |
| } |
| if (AL.getNumArgs() == 0) |
| Tags.push_back(NS->getName()); |
| } else if (!checkAttributeAtLeastNumArgs(S, AL, 1)) |
| return; |
| |
| // Store tags sorted and without duplicates. |
| llvm::sort(Tags); |
| Tags.erase(std::unique(Tags.begin(), Tags.end()), Tags.end()); |
| |
| D->addAttr(::new (S.Context) |
| AbiTagAttr(S.Context, AL, Tags.data(), Tags.size())); |
| } |
| |
| static void handleARMInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| // Check the attribute arguments. |
| if (AL.getNumArgs() > 1) { |
| S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1; |
| return; |
| } |
| |
| StringRef Str; |
| SourceLocation ArgLoc; |
| |
| if (AL.getNumArgs() == 0) |
| Str = ""; |
| else if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc)) |
| return; |
| |
| ARMInterruptAttr::InterruptType Kind; |
| if (!ARMInterruptAttr::ConvertStrToInterruptType(Str, Kind)) { |
| S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << Str |
| << ArgLoc; |
| return; |
| } |
| |
| D->addAttr(::new (S.Context) ARMInterruptAttr(S.Context, AL, Kind)); |
| } |
| |
| static void handleMSP430InterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| // MSP430 'interrupt' attribute is applied to |
| // a function with no parameters and void return type. |
| if (!isFunctionOrMethod(D)) { |
| S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type) |
| << "'interrupt'" << ExpectedFunctionOrMethod; |
| return; |
| } |
| |
| if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) { |
| S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid) |
| << /*MSP430*/ 1 << 0; |
| return; |
| } |
| |
| if (!getFunctionOrMethodResultType(D)->isVoidType()) { |
| S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid) |
| << /*MSP430*/ 1 << 1; |
| return; |
| } |
| |
| // The attribute takes one integer argument. |
| if (!checkAttributeNumArgs(S, AL, 1)) |
| return; |
| |
| if (!AL.isArgExpr(0)) { |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_type) |
| << AL << AANT_ArgumentIntegerConstant; |
| return; |
| } |
| |
| Expr *NumParamsExpr = static_cast<Expr *>(AL.getArgAsExpr(0)); |
| Optional<llvm::APSInt> NumParams = llvm::APSInt(32); |
| if (!(NumParams = NumParamsExpr->getIntegerConstantExpr(S.Context))) { |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_type) |
| << AL << AANT_ArgumentIntegerConstant |
| << NumParamsExpr->getSourceRange(); |
| return; |
| } |
| // The argument should be in range 0..63. |
| unsigned Num = NumParams->getLimitedValue(255); |
| if (Num > 63) { |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds) |
| << AL << (int)NumParams->getSExtValue() |
| << NumParamsExpr->getSourceRange(); |
| return; |
| } |
| |
| D->addAttr(::new (S.Context) MSP430InterruptAttr(S.Context, AL, Num)); |
| D->addAttr(UsedAttr::CreateImplicit(S.Context)); |
| } |
| |
| static void handleMipsInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| // Only one optional argument permitted. |
| if (AL.getNumArgs() > 1) { |
| S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1; |
| return; |
| } |
| |
| StringRef Str; |
| SourceLocation ArgLoc; |
| |
| if (AL.getNumArgs() == 0) |
| Str = ""; |
| else if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc)) |
| return; |
| |
| // Semantic checks for a function with the 'interrupt' attribute for MIPS: |
| // a) Must be a function. |
| // b) Must have no parameters. |
| // c) Must have the 'void' return type. |
| // d) Cannot have the 'mips16' attribute, as that instruction set |
| // lacks the 'eret' instruction. |
| // e) The attribute itself must either have no argument or one of the |
| // valid interrupt types, see [MipsInterruptDocs]. |
| |
| if (!isFunctionOrMethod(D)) { |
| S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type) |
| << "'interrupt'" << ExpectedFunctionOrMethod; |
| return; |
| } |
| |
| if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) { |
| S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid) |
| << /*MIPS*/ 0 << 0; |
| return; |
| } |
| |
| if (!getFunctionOrMethodResultType(D)->isVoidType()) { |
| S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid) |
| << /*MIPS*/ 0 << 1; |
| return; |
| } |
| |
| if (checkAttrMutualExclusion<Mips16Attr>(S, D, AL)) |
| return; |
| |
| MipsInterruptAttr::InterruptType Kind; |
| if (!MipsInterruptAttr::ConvertStrToInterruptType(Str, Kind)) { |
| S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) |
| << AL << "'" + std::string(Str) + "'"; |
| return; |
| } |
| |
| D->addAttr(::new (S.Context) MipsInterruptAttr(S.Context, AL, Kind)); |
| } |
| |
| static void handleAnyX86InterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| // Semantic checks for a function with the 'interrupt' attribute. |
| // a) Must be a function. |
| // b) Must have the 'void' return type. |
| // c) Must take 1 or 2 arguments. |
| // d) The 1st argument must be a pointer. |
| // e) The 2nd argument (if any) must be an unsigned integer. |
| if (!isFunctionOrMethod(D) || !hasFunctionProto(D) || isInstanceMethod(D) || |
| CXXMethodDecl::isStaticOverloadedOperator( |
| cast<NamedDecl>(D)->getDeclName().getCXXOverloadedOperator())) { |
| S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) |
| << AL << ExpectedFunctionWithProtoType; |
| return; |
| } |
| // Interrupt handler must have void return type. |
| if (!getFunctionOrMethodResultType(D)->isVoidType()) { |
| S.Diag(getFunctionOrMethodResultSourceRange(D).getBegin(), |
| diag::err_anyx86_interrupt_attribute) |
| << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86 |
| ? 0 |
| : 1) |
| << 0; |
| return; |
| } |
| // Interrupt handler must have 1 or 2 parameters. |
| unsigned NumParams = getFunctionOrMethodNumParams(D); |
| if (NumParams < 1 || NumParams > 2) { |
| S.Diag(D->getBeginLoc(), diag::err_anyx86_interrupt_attribute) |
| << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86 |
| ? 0 |
| : 1) |
| << 1; |
| return; |
| } |
| // The first argument must be a pointer. |
| if (!getFunctionOrMethodParamType(D, 0)->isPointerType()) { |
| S.Diag(getFunctionOrMethodParamRange(D, 0).getBegin(), |
| diag::err_anyx86_interrupt_attribute) |
| << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86 |
| ? 0 |
| : 1) |
| << 2; |
| return; |
| } |
| // The second argument, if present, must be an unsigned integer. |
| unsigned TypeSize = |
| S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86_64 |
| ? 64 |
| : 32; |
| if (NumParams == 2 && |
| (!getFunctionOrMethodParamType(D, 1)->isUnsignedIntegerType() || |
| S.Context.getTypeSize(getFunctionOrMethodParamType(D, 1)) != TypeSize)) { |
| S.Diag(getFunctionOrMethodParamRange(D, 1).getBegin(), |
| diag::err_anyx86_interrupt_attribute) |
| << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86 |
| ? 0 |
| : 1) |
| << 3 << S.Context.getIntTypeForBitwidth(TypeSize, /*Signed=*/false); |
| return; |
| } |
| D->addAttr(::new (S.Context) AnyX86InterruptAttr(S.Context, AL)); |
| D->addAttr(UsedAttr::CreateImplicit(S.Context)); |
| } |
| |
| static void handleAVRInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (!isFunctionOrMethod(D)) { |
| S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type) |
| << "'interrupt'" << ExpectedFunction; |
| return; |
| } |
| |
| if (!checkAttributeNumArgs(S, AL, 0)) |
| return; |
| |
| handleSimpleAttribute<AVRInterruptAttr>(S, D, AL); |
| } |
| |
| static void handleAVRSignalAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (!isFunctionOrMethod(D)) { |
| S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type) |
| << "'signal'" << ExpectedFunction; |
| return; |
| } |
| |
| if (!checkAttributeNumArgs(S, AL, 0)) |
| return; |
| |
| handleSimpleAttribute<AVRSignalAttr>(S, D, AL); |
| } |
| |
| static void handleBPFPreserveAIRecord(Sema &S, RecordDecl *RD) { |
| // Add preserve_access_index attribute to all fields and inner records. |
| for (auto D : RD->decls()) { |
| if (D->hasAttr<BPFPreserveAccessIndexAttr>()) |
| continue; |
| |
| D->addAttr(BPFPreserveAccessIndexAttr::CreateImplicit(S.Context)); |
| if (auto *Rec = dyn_cast<RecordDecl>(D)) |
| handleBPFPreserveAIRecord(S, Rec); |
| } |
| } |
| |
| static void handleBPFPreserveAccessIndexAttr(Sema &S, Decl *D, |
| const ParsedAttr &AL) { |
| auto *Rec = cast<RecordDecl>(D); |
| handleBPFPreserveAIRecord(S, Rec); |
| Rec->addAttr(::new (S.Context) BPFPreserveAccessIndexAttr(S.Context, AL)); |
| } |
| |
| static void handleWebAssemblyExportNameAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (!isFunctionOrMethod(D)) { |
| S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type) |
| << "'export_name'" << ExpectedFunction; |
| return; |
| } |
| |
| auto *FD = cast<FunctionDecl>(D); |
| if (FD->isThisDeclarationADefinition()) { |
| S.Diag(D->getLocation(), diag::err_alias_is_definition) << FD << 0; |
| return; |
| } |
| |
| StringRef Str; |
| SourceLocation ArgLoc; |
| if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc)) |
| return; |
| |
| D->addAttr(::new (S.Context) WebAssemblyExportNameAttr(S.Context, AL, Str)); |
| D->addAttr(UsedAttr::CreateImplicit(S.Context)); |
| } |
| |
| WebAssemblyImportModuleAttr * |
| Sema::mergeImportModuleAttr(Decl *D, const WebAssemblyImportModuleAttr &AL) { |
| auto *FD = cast<FunctionDecl>(D); |
| |
| if (const auto *ExistingAttr = FD->getAttr<WebAssemblyImportModuleAttr>()) { |
| if (ExistingAttr->getImportModule() == AL.getImportModule()) |
| return nullptr; |
| Diag(ExistingAttr->getLocation(), diag::warn_mismatched_import) << 0 |
| << ExistingAttr->getImportModule() << AL.getImportModule(); |
| Diag(AL.getLoc(), diag::note_previous_attribute); |
| return nullptr; |
| } |
| if (FD->hasBody()) { |
| Diag(AL.getLoc(), diag::warn_import_on_definition) << 0; |
| return nullptr; |
| } |
| return ::new (Context) WebAssemblyImportModuleAttr(Context, AL, |
| AL.getImportModule()); |
| } |
| |
| WebAssemblyImportNameAttr * |
| Sema::mergeImportNameAttr(Decl *D, const WebAssemblyImportNameAttr &AL) { |
| auto *FD = cast<FunctionDecl>(D); |
| |
| if (const auto *ExistingAttr = FD->getAttr<WebAssemblyImportNameAttr>()) { |
| if (ExistingAttr->getImportName() == AL.getImportName()) |
| return nullptr; |
| Diag(ExistingAttr->getLocation(), diag::warn_mismatched_import) << 1 |
| << ExistingAttr->getImportName() << AL.getImportName(); |
| Diag(AL.getLoc(), diag::note_previous_attribute); |
| return nullptr; |
| } |
| if (FD->hasBody()) { |
| Diag(AL.getLoc(), diag::warn_import_on_definition) << 1; |
| return nullptr; |
| } |
| return ::new (Context) WebAssemblyImportNameAttr(Context, AL, |
| AL.getImportName()); |
| } |
| |
| static void |
| handleWebAssemblyImportModuleAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| auto *FD = cast<FunctionDecl>(D); |
| |
| StringRef Str; |
| SourceLocation ArgLoc; |
| if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc)) |
| return; |
| if (FD->hasBody()) { |
| S.Diag(AL.getLoc(), diag::warn_import_on_definition) << 0; |
| return; |
| } |
| |
| FD->addAttr(::new (S.Context) |
| WebAssemblyImportModuleAttr(S.Context, AL, Str)); |
| } |
| |
| static void |
| handleWebAssemblyImportNameAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| auto *FD = cast<FunctionDecl>(D); |
| |
| StringRef Str; |
| SourceLocation ArgLoc; |
| if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc)) |
| return; |
| if (FD->hasBody()) { |
| S.Diag(AL.getLoc(), diag::warn_import_on_definition) << 1; |
| return; |
| } |
| |
| FD->addAttr(::new (S.Context) WebAssemblyImportNameAttr(S.Context, AL, Str)); |
| } |
| |
| static void handleRISCVInterruptAttr(Sema &S, Decl *D, |
| const ParsedAttr &AL) { |
| // Warn about repeated attributes. |
| if (const auto *A = D->getAttr<RISCVInterruptAttr>()) { |
| S.Diag(AL.getRange().getBegin(), |
| diag::warn_riscv_repeated_interrupt_attribute); |
| S.Diag(A->getLocation(), diag::note_riscv_repeated_interrupt_attribute); |
| return; |
| } |
| |
| // Check the attribute argument. Argument is optional. |
| if (!checkAttributeAtMostNumArgs(S, AL, 1)) |
| return; |
| |
| StringRef Str; |
| SourceLocation ArgLoc; |
| |
| // 'machine'is the default interrupt mode. |
| if (AL.getNumArgs() == 0) |
| Str = "machine"; |
| else if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc)) |
| return; |
| |
| // Semantic checks for a function with the 'interrupt' attribute: |
| // - Must be a function. |
| // - Must have no parameters. |
| // - Must have the 'void' return type. |
| // - The attribute itself must either have no argument or one of the |
| // valid interrupt types, see [RISCVInterruptDocs]. |
| |
| if (D->getFunctionType() == nullptr) { |
| S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type) |
| << "'interrupt'" << ExpectedFunction; |
| return; |
| } |
| |
| if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) { |
| S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid) |
| << /*RISC-V*/ 2 << 0; |
| return; |
| } |
| |
| if (!getFunctionOrMethodResultType(D)->isVoidType()) { |
| S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid) |
| << /*RISC-V*/ 2 << 1; |
| return; |
| } |
| |
| RISCVInterruptAttr::InterruptType Kind; |
| if (!RISCVInterruptAttr::ConvertStrToInterruptType(Str, Kind)) { |
| S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << Str |
| << ArgLoc; |
| return; |
| } |
| |
| D->addAttr(::new (S.Context) RISCVInterruptAttr(S.Context, AL, Kind)); |
| } |
| |
| static void handleInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| // Dispatch the interrupt attribute based on the current target. |
| switch (S.Context.getTargetInfo().getTriple().getArch()) { |
| case llvm::Triple::msp430: |
| handleMSP430InterruptAttr(S, D, AL); |
| break; |
| case llvm::Triple::mipsel: |
| case llvm::Triple::mips: |
| handleMipsInterruptAttr(S, D, AL); |
| break; |
| case llvm::Triple::x86: |
| case llvm::Triple::x86_64: |
| handleAnyX86InterruptAttr(S, D, AL); |
| break; |
| case llvm::Triple::avr: |
| handleAVRInterruptAttr(S, D, AL); |
| break; |
| case llvm::Triple::riscv32: |
| case llvm::Triple::riscv64: |
| handleRISCVInterruptAttr(S, D, AL); |
| break; |
| default: |
| handleARMInterruptAttr(S, D, AL); |
| break; |
| } |
| } |
| |
| static bool |
| checkAMDGPUFlatWorkGroupSizeArguments(Sema &S, Expr *MinExpr, Expr *MaxExpr, |
| const AMDGPUFlatWorkGroupSizeAttr &Attr) { |
| // Accept template arguments for now as they depend on something else. |
| // We'll get to check them when they eventually get instantiated. |
| if (MinExpr->isValueDependent() || MaxExpr->isValueDependent()) |
| return false; |
| |
| uint32_t Min = 0; |
| if (!checkUInt32Argument(S, Attr, MinExpr, Min, 0)) |
| return true; |
| |
| uint32_t Max = 0; |
| if (!checkUInt32Argument(S, Attr, MaxExpr, Max, 1)) |
| return true; |
| |
| if (Min == 0 && Max != 0) { |
| S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid) |
| << &Attr << 0; |
| return true; |
| } |
| if (Min > Max) { |
| S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid) |
| << &Attr << 1; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| void Sema::addAMDGPUFlatWorkGroupSizeAttr(Decl *D, |
| const AttributeCommonInfo &CI, |
| Expr *MinExpr, Expr *MaxExpr) { |
| AMDGPUFlatWorkGroupSizeAttr TmpAttr(Context, CI, MinExpr, MaxExpr); |
| |
| if (checkAMDGPUFlatWorkGroupSizeArguments(*this, MinExpr, MaxExpr, TmpAttr)) |
| return; |
| |
| D->addAttr(::new (Context) |
| AMDGPUFlatWorkGroupSizeAttr(Context, CI, MinExpr, MaxExpr)); |
| } |
| |
| static void handleAMDGPUFlatWorkGroupSizeAttr(Sema &S, Decl *D, |
| const ParsedAttr &AL) { |
| Expr *MinExpr = AL.getArgAsExpr(0); |
| Expr *MaxExpr = AL.getArgAsExpr(1); |
| |
| S.addAMDGPUFlatWorkGroupSizeAttr(D, AL, MinExpr, MaxExpr); |
| } |
| |
| static bool checkAMDGPUWavesPerEUArguments(Sema &S, Expr *MinExpr, |
| Expr *MaxExpr, |
| const AMDGPUWavesPerEUAttr &Attr) { |
| if (S.DiagnoseUnexpandedParameterPack(MinExpr) || |
| (MaxExpr && S.DiagnoseUnexpandedParameterPack(MaxExpr))) |
| return true; |
| |
| // Accept template arguments for now as they depend on something else. |
| // We'll get to check them when they eventually get instantiated. |
| if (MinExpr->isValueDependent() || (MaxExpr && MaxExpr->isValueDependent())) |
| return false; |
| |
| uint32_t Min = 0; |
| if (!checkUInt32Argument(S, Attr, MinExpr, Min, 0)) |
| return true; |
| |
| uint32_t Max = 0; |
| if (MaxExpr && !checkUInt32Argument(S, Attr, MaxExpr, Max, 1)) |
| return true; |
| |
| if (Min == 0 && Max != 0) { |
| S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid) |
| << &Attr << 0; |
| return true; |
| } |
| if (Max != 0 && Min > Max) { |
| S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid) |
| << &Attr << 1; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| void Sema::addAMDGPUWavesPerEUAttr(Decl *D, const AttributeCommonInfo &CI, |
| Expr *MinExpr, Expr *MaxExpr) { |
| AMDGPUWavesPerEUAttr TmpAttr(Context, CI, MinExpr, MaxExpr); |
| |
| if (checkAMDGPUWavesPerEUArguments(*this, MinExpr, MaxExpr, TmpAttr)) |
| return; |
| |
| D->addAttr(::new (Context) |
| AMDGPUWavesPerEUAttr(Context, CI, MinExpr, MaxExpr)); |
| } |
| |
| static void handleAMDGPUWavesPerEUAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (!checkAttributeAtLeastNumArgs(S, AL, 1) || |
| !checkAttributeAtMostNumArgs(S, AL, 2)) |
| return; |
| |
| Expr *MinExpr = AL.getArgAsExpr(0); |
| Expr *MaxExpr = (AL.getNumArgs() > 1) ? AL.getArgAsExpr(1) : nullptr; |
| |
| S.addAMDGPUWavesPerEUAttr(D, AL, MinExpr, MaxExpr); |
| } |
| |
| static void handleAMDGPUNumSGPRAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| uint32_t NumSGPR = 0; |
| Expr *NumSGPRExpr = AL.getArgAsExpr(0); |
| if (!checkUInt32Argument(S, AL, NumSGPRExpr, NumSGPR)) |
| return; |
| |
| D->addAttr(::new (S.Context) AMDGPUNumSGPRAttr(S.Context, AL, NumSGPR)); |
| } |
| |
| static void handleAMDGPUNumVGPRAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| uint32_t NumVGPR = 0; |
| Expr *NumVGPRExpr = AL.getArgAsExpr(0); |
| if (!checkUInt32Argument(S, AL, NumVGPRExpr, NumVGPR)) |
| return; |
| |
| D->addAttr(::new (S.Context) AMDGPUNumVGPRAttr(S.Context, AL, NumVGPR)); |
| } |
| |
| static void handleX86ForceAlignArgPointerAttr(Sema &S, Decl *D, |
| const ParsedAttr &AL) { |
| // If we try to apply it to a function pointer, don't warn, but don't |
| // do anything, either. It doesn't matter anyway, because there's nothing |
| // special about calling a force_align_arg_pointer function. |
| const auto *VD = dyn_cast<ValueDecl>(D); |
| if (VD && VD->getType()->isFunctionPointerType()) |
| return; |
| // Also don't warn on function pointer typedefs. |
| const auto *TD = dyn_cast<TypedefNameDecl>(D); |
| if (TD && (TD->getUnderlyingType()->isFunctionPointerType() || |
| TD->getUnderlyingType()->isFunctionType())) |
| return; |
| // Attribute can only be applied to function types. |
| if (!isa<FunctionDecl>(D)) { |
| S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) |
| << AL << ExpectedFunction; |
| return; |
| } |
| |
| D->addAttr(::new (S.Context) X86ForceAlignArgPointerAttr(S.Context, AL)); |
| } |
| |
| static void handleLayoutVersion(Sema &S, Decl *D, const ParsedAttr &AL) { |
| uint32_t Version; |
| Expr *VersionExpr = static_cast<Expr *>(AL.getArgAsExpr(0)); |
| if (!checkUInt32Argument(S, AL, AL.getArgAsExpr(0), Version)) |
| return; |
| |
| // TODO: Investigate what happens with the next major version of MSVC. |
| if (Version != LangOptions::MSVC2015 / 100) { |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds) |
| << AL << Version << VersionExpr->getSourceRange(); |
| return; |
| } |
| |
| // The attribute expects a "major" version number like 19, but new versions of |
| // MSVC have moved to updating the "minor", or less significant numbers, so we |
| // have to multiply by 100 now. |
| Version *= 100; |
| |
| D->addAttr(::new (S.Context) LayoutVersionAttr(S.Context, AL, Version)); |
| } |
| |
| DLLImportAttr *Sema::mergeDLLImportAttr(Decl *D, |
| const AttributeCommonInfo &CI) { |
| if (D->hasAttr<DLLExportAttr>()) { |
| Diag(CI.getLoc(), diag::warn_attribute_ignored) << "'dllimport'"; |
| return nullptr; |
| } |
| |
| if (D->hasAttr<DLLImportAttr>()) |
| return nullptr; |
| |
| return ::new (Context) DLLImportAttr(Context, CI); |
| } |
| |
| DLLExportAttr *Sema::mergeDLLExportAttr(Decl *D, |
| const AttributeCommonInfo &CI) { |
| if (DLLImportAttr *Import = D->getAttr<DLLImportAttr>()) { |
| Diag(Import->getLocation(), diag::warn_attribute_ignored) << Import; |
| D->dropAttr<DLLImportAttr>(); |
| } |
| |
| if (D->hasAttr<DLLExportAttr>()) |
| return nullptr; |
| |
| return ::new (Context) DLLExportAttr(Context, CI); |
| } |
| |
| static void handleDLLAttr(Sema &S, Decl *D, const ParsedAttr &A) { |
| if (isa<ClassTemplatePartialSpecializationDecl>(D) && |
| (S.Context.getTargetInfo().shouldDLLImportComdatSymbols())) { |
| S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored) << A; |
| return; |
| } |
| |
| if (const auto *FD = dyn_cast<FunctionDecl>(D)) { |
| if (FD->isInlined() && A.getKind() == ParsedAttr::AT_DLLImport && |
| !(S.Context.getTargetInfo().shouldDLLImportComdatSymbols())) { |
| // MinGW doesn't allow dllimport on inline functions. |
| S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored_on_inline) |
| << A; |
| return; |
| } |
| } |
| |
| if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) { |
| if ((S.Context.getTargetInfo().shouldDLLImportComdatSymbols()) && |
| MD->getParent()->isLambda()) { |
| S.Diag(A.getRange().getBegin(), diag::err_attribute_dll_lambda) << A; |
| return; |
| } |
| } |
| |
| Attr *NewAttr = A.getKind() == ParsedAttr::AT_DLLExport |
| ? (Attr *)S.mergeDLLExportAttr(D, A) |
| : (Attr *)S.mergeDLLImportAttr(D, A); |
| if (NewAttr) |
| D->addAttr(NewAttr); |
| } |
| |
| MSInheritanceAttr * |
| Sema::mergeMSInheritanceAttr(Decl *D, const AttributeCommonInfo &CI, |
| bool BestCase, |
| MSInheritanceModel Model) { |
| if (MSInheritanceAttr *IA = D->getAttr<MSInheritanceAttr>()) { |
| if (IA->getInheritanceModel() == Model) |
| return nullptr; |
| Diag(IA->getLocation(), diag::err_mismatched_ms_inheritance) |
| << 1 /*previous declaration*/; |
| Diag(CI.getLoc(), diag::note_previous_ms_inheritance); |
| D->dropAttr<MSInheritanceAttr>(); |
| } |
| |
| auto *RD = cast<CXXRecordDecl>(D); |
| if (RD->hasDefinition()) { |
| if (checkMSInheritanceAttrOnDefinition(RD, CI.getRange(), BestCase, |
| Model)) { |
| return nullptr; |
| } |
| } else { |
| if (isa<ClassTemplatePartialSpecializationDecl>(RD)) { |
| Diag(CI.getLoc(), diag::warn_ignored_ms_inheritance) |
| << 1 /*partial specialization*/; |
| return nullptr; |
| } |
| if (RD->getDescribedClassTemplate()) { |
| Diag(CI.getLoc(), diag::warn_ignored_ms_inheritance) |
| << 0 /*primary template*/; |
| return nullptr; |
| } |
| } |
| |
| return ::new (Context) MSInheritanceAttr(Context, CI, BestCase); |
| } |
| |
| static void handleCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| // The capability attributes take a single string parameter for the name of |
| // the capability they represent. The lockable attribute does not take any |
| // parameters. However, semantically, both attributes represent the same |
| // concept, and so they use the same semantic attribute. Eventually, the |
| // lockable attribute will be removed. |
| // |
| // For backward compatibility, any capability which has no specified string |
| // literal will be considered a "mutex." |
| StringRef N("mutex"); |
| SourceLocation LiteralLoc; |
| if (AL.getKind() == ParsedAttr::AT_Capability && |
| !S.checkStringLiteralArgumentAttr(AL, 0, N, &LiteralLoc)) |
| return; |
| |
| D->addAttr(::new (S.Context) CapabilityAttr(S.Context, AL, N)); |
| } |
| |
| static void handleAssertCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| SmallVector<Expr*, 1> Args; |
| if (!checkLockFunAttrCommon(S, D, AL, Args)) |
| return; |
| |
| D->addAttr(::new (S.Context) |
| AssertCapabilityAttr(S.Context, AL, Args.data(), Args.size())); |
| } |
| |
| static void handleAcquireCapabilityAttr(Sema &S, Decl *D, |
| const ParsedAttr &AL) { |
| SmallVector<Expr*, 1> Args; |
| if (!checkLockFunAttrCommon(S, D, AL, Args)) |
| return; |
| |
| D->addAttr(::new (S.Context) AcquireCapabilityAttr(S.Context, AL, Args.data(), |
| Args.size())); |
| } |
| |
| static void handleTryAcquireCapabilityAttr(Sema &S, Decl *D, |
| const ParsedAttr &AL) { |
| SmallVector<Expr*, 2> Args; |
| if (!checkTryLockFunAttrCommon(S, D, AL, Args)) |
| return; |
| |
| D->addAttr(::new (S.Context) TryAcquireCapabilityAttr( |
| S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size())); |
| } |
| |
| static void handleReleaseCapabilityAttr(Sema &S, Decl *D, |
| const ParsedAttr &AL) { |
| // Check that all arguments are lockable objects. |
| SmallVector<Expr *, 1> Args; |
| checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 0, true); |
| |
| D->addAttr(::new (S.Context) ReleaseCapabilityAttr(S.Context, AL, Args.data(), |
| Args.size())); |
| } |
| |
| static void handleRequiresCapabilityAttr(Sema &S, Decl *D, |
| const ParsedAttr &AL) { |
| if (!checkAttributeAtLeastNumArgs(S, AL, 1)) |
| return; |
| |
| // check that all arguments are lockable objects |
| SmallVector<Expr*, 1> Args; |
| checkAttrArgsAreCapabilityObjs(S, D, AL, Args); |
| if (Args.empty()) |
| return; |
| |
| RequiresCapabilityAttr *RCA = ::new (S.Context) |
| RequiresCapabilityAttr(S.Context, AL, Args.data(), Args.size()); |
| |
| D->addAttr(RCA); |
| } |
| |
| static void handleDeprecatedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (const auto *NSD = dyn_cast<NamespaceDecl>(D)) { |
| if (NSD->isAnonymousNamespace()) { |
| S.Diag(AL.getLoc(), diag::warn_deprecated_anonymous_namespace); |
| // Do not want to attach the attribute to the namespace because that will |
| // cause confusing diagnostic reports for uses of declarations within the |
| // namespace. |
| return; |
| } |
| } |
| |
| // Handle the cases where the attribute has a text message. |
| StringRef Str, Replacement; |
| if (AL.isArgExpr(0) && AL.getArgAsExpr(0) && |
| !S.checkStringLiteralArgumentAttr(AL, 0, Str)) |
| return; |
| |
| // Only support a single optional message for Declspec and CXX11. |
| if (AL.isDeclspecAttribute() || AL.isCXX11Attribute()) |
| checkAttributeAtMostNumArgs(S, AL, 1); |
| else if (AL.isArgExpr(1) && AL.getArgAsExpr(1) && |
| !S.checkStringLiteralArgumentAttr(AL, 1, Replacement)) |
| return; |
| |
| if (!S.getLangOpts().CPlusPlus14 && AL.isCXX11Attribute() && !AL.isGNUScope()) |
| S.Diag(AL.getLoc(), diag::ext_cxx14_attr) << AL; |
| |
| D->addAttr(::new (S.Context) DeprecatedAttr(S.Context, AL, Str, Replacement)); |
| } |
| |
| static bool isGlobalVar(const Decl *D) { |
| if (const auto *S = dyn_cast<VarDecl>(D)) |
| return S->hasGlobalStorage(); |
| return false; |
| } |
| |
| static void handleNoSanitizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (!checkAttributeAtLeastNumArgs(S, AL, 1)) |
| return; |
| |
| std::vector<StringRef> Sanitizers; |
| |
| for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) { |
| StringRef SanitizerName; |
| SourceLocation LiteralLoc; |
| |
| if (!S.checkStringLiteralArgumentAttr(AL, I, SanitizerName, &LiteralLoc)) |
| return; |
| |
| if (parseSanitizerValue(SanitizerName, /*AllowGroups=*/true) == |
| SanitizerMask()) |
| S.Diag(LiteralLoc, diag::warn_unknown_sanitizer_ignored) << SanitizerName; |
| else if (isGlobalVar(D) && SanitizerName != "address") |
| S.Diag(D->getLocation(), diag::err_attribute_wrong_decl_type) |
| << AL << ExpectedFunctionOrMethod; |
| Sanitizers.push_back(SanitizerName); |
| } |
| |
| D->addAttr(::new (S.Context) NoSanitizeAttr(S.Context, AL, Sanitizers.data(), |
| Sanitizers.size())); |
| } |
| |
| static void handleNoSanitizeSpecificAttr(Sema &S, Decl *D, |
| const ParsedAttr &AL) { |
| StringRef AttrName = AL.getAttrName()->getName(); |
| normalizeName(AttrName); |
| StringRef SanitizerName = llvm::StringSwitch<StringRef>(AttrName) |
| .Case("no_address_safety_analysis", "address") |
| .Case("no_sanitize_address", "address") |
| .Case("no_sanitize_thread", "thread") |
| .Case("no_sanitize_memory", "memory"); |
| if (isGlobalVar(D) && SanitizerName != "address") |
| S.Diag(D->getLocation(), diag::err_attribute_wrong_decl_type) |
| << AL << ExpectedFunction; |
| |
| // FIXME: Rather than create a NoSanitizeSpecificAttr, this creates a |
| // NoSanitizeAttr object; but we need to calculate the correct spelling list |
| // index rather than incorrectly assume the index for NoSanitizeSpecificAttr |
| // has the same spellings as the index for NoSanitizeAttr. We don't have a |
| // general way to "translate" between the two, so this hack attempts to work |
| // around the issue with hard-coded indicies. This is critical for calling |
| // getSpelling() or prettyPrint() on the resulting semantic attribute object |
| // without failing assertions. |
| unsigned TranslatedSpellingIndex = 0; |
| if (AL.isC2xAttribute() || AL.isCXX11Attribute()) |
| TranslatedSpellingIndex = 1; |
| |
| AttributeCommonInfo Info = AL; |
| Info.setAttributeSpellingListIndex(TranslatedSpellingIndex); |
| D->addAttr(::new (S.Context) |
| NoSanitizeAttr(S.Context, Info, &SanitizerName, 1)); |
| } |
| |
| static void handleInternalLinkageAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (InternalLinkageAttr *Internal = S.mergeInternalLinkageAttr(D, AL)) |
| D->addAttr(Internal); |
| } |
| |
| static void handleOpenCLNoSVMAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (S.LangOpts.OpenCLVersion != 200) |
| S.Diag(AL.getLoc(), diag::err_attribute_requires_opencl_version) |
| << AL << "2.0" << 0; |
| else |
| S.Diag(AL.getLoc(), diag::warn_opencl_attr_deprecated_ignored) << AL |
| << "2.0"; |
| } |
| |
| /// Handles semantic checking for features that are common to all attributes, |
| /// such as checking whether a parameter was properly specified, or the correct |
| /// number of arguments were passed, etc. |
| static bool handleCommonAttributeFeatures(Sema &S, Decl *D, |
| const ParsedAttr &AL) { |
| // Several attributes carry different semantics than the parsing requires, so |
| // those are opted out of the common argument checks. |
| // |
| // We also bail on unknown and ignored attributes because those are handled |
| // as part of the target-specific handling logic. |
| if (AL.getKind() == ParsedAttr::UnknownAttribute) |
| return false; |
| // Check whether the attribute requires specific language extensions to be |
| // enabled. |
| if (!AL.diagnoseLangOpts(S)) |
| return true; |
| // Check whether the attribute appertains to the given subject. |
| if (!AL.diagnoseAppertainsTo(S, D)) |
| return true; |
| if (AL.hasCustomParsing()) |
| return false; |
| |
| if (AL.getMinArgs() == AL.getMaxArgs()) { |
| // If there are no optional arguments, then checking for the argument count |
| // is trivial. |
| if (!checkAttributeNumArgs(S, AL, AL.getMinArgs())) |
| return true; |
| } else { |
| // There are optional arguments, so checking is slightly more involved. |
| if (AL.getMinArgs() && |
| !checkAttributeAtLeastNumArgs(S, AL, AL.getMinArgs())) |
| return true; |
| else if (!AL.hasVariadicArg() && AL.getMaxArgs() && |
| !checkAttributeAtMostNumArgs(S, AL, AL.getMaxArgs())) |
| return true; |
| } |
| |
| if (S.CheckAttrTarget(AL)) |
| return true; |
| |
| return false; |
| } |
| |
| static void handleOpenCLAccessAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (D->isInvalidDecl()) |
| return; |
| |
| // Check if there is only one access qualifier. |
| if (D->hasAttr<OpenCLAccessAttr>()) { |
| if (D->getAttr<OpenCLAccessAttr>()->getSemanticSpelling() == |
| AL.getSemanticSpelling()) { |
| S.Diag(AL.getLoc(), diag::warn_duplicate_declspec) |
| << AL.getAttrName()->getName() << AL.getRange(); |
| } else { |
| S.Diag(AL.getLoc(), diag::err_opencl_multiple_access_qualifiers) |
| << D->getSourceRange(); |
| D->setInvalidDecl(true); |
| return; |
| } |
| } |
| |
| // OpenCL v2.0 s6.6 - read_write can be used for image types to specify that an |
| // image object can be read and written. |
| // OpenCL v2.0 s6.13.6 - A kernel cannot read from and write to the same pipe |
| // object. Using the read_write (or __read_write) qualifier with the pipe |
| // qualifier is a compilation error. |
| if (const auto *PDecl = dyn_cast<ParmVarDecl>(D)) { |
| const Type *DeclTy = PDecl->getType().getCanonicalType().getTypePtr(); |
| if (AL.getAttrName()->getName().find("read_write") != StringRef::npos) { |
| if ((!S.getLangOpts().OpenCLCPlusPlus && |
| S.getLangOpts().OpenCLVersion < 200) || |
| DeclTy->isPipeType()) { |
| S.Diag(AL.getLoc(), diag::err_opencl_invalid_read_write) |
| << AL << PDecl->getType() << DeclTy->isImageType(); |
| D->setInvalidDecl(true); |
| return; |
| } |
| } |
| } |
| |
| D->addAttr(::new (S.Context) OpenCLAccessAttr(S.Context, AL)); |
| } |
| |
| static void handleSYCLKernelAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| // The 'sycl_kernel' attribute applies only to function templates. |
| const auto *FD = cast<FunctionDecl>(D); |
| const FunctionTemplateDecl *FT = FD->getDescribedFunctionTemplate(); |
| assert(FT && "Function template is expected"); |
| |
| // Function template must have at least two template parameters. |
| const TemplateParameterList *TL = FT->getTemplateParameters(); |
| if (TL->size() < 2) { |
| S.Diag(FT->getLocation(), diag::warn_sycl_kernel_num_of_template_params); |
| return; |
| } |
| |
| // Template parameters must be typenames. |
| for (unsigned I = 0; I < 2; ++I) { |
| const NamedDecl *TParam = TL->getParam(I); |
| if (isa<NonTypeTemplateParmDecl>(TParam)) { |
| S.Diag(FT->getLocation(), |
| diag::warn_sycl_kernel_invalid_template_param_type); |
| return; |
| } |
| } |
| |
| // Function must have at least one argument. |
| if (getFunctionOrMethodNumParams(D) != 1) { |
| S.Diag(FT->getLocation(), diag::warn_sycl_kernel_num_of_function_params); |
| return; |
| } |
| |
| // Function must return void. |
| QualType RetTy = getFunctionOrMethodResultType(D); |
| if (!RetTy->isVoidType()) { |
| S.Diag(FT->getLocation(), diag::warn_sycl_kernel_return_type); |
| return; |
| } |
| |
| handleSimpleAttribute<SYCLKernelAttr>(S, D, AL); |
| } |
| |
| static void handleDestroyAttr(Sema &S, Decl *D, const ParsedAttr &A) { |
| if (!cast<VarDecl>(D)->hasGlobalStorage()) { |
| S.Diag(D->getLocation(), diag::err_destroy_attr_on_non_static_var) |
| << (A.getKind() == ParsedAttr::AT_AlwaysDestroy); |
| return; |
| } |
| |
| if (A.getKind() == ParsedAttr::AT_AlwaysDestroy) |
| handleSimpleAttributeWithExclusions<AlwaysDestroyAttr, NoDestroyAttr>(S, D, A); |
| else |
| handleSimpleAttributeWithExclusions<NoDestroyAttr, AlwaysDestroyAttr>(S, D, A); |
| } |
| |
| static void handleUninitializedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| assert(cast<VarDecl>(D)->getStorageDuration() == SD_Automatic && |
| "uninitialized is only valid on automatic duration variables"); |
| D->addAttr(::new (S.Context) UninitializedAttr(S.Context, AL)); |
| } |
| |
| static bool tryMakeVariablePseudoStrong(Sema &S, VarDecl *VD, |
| bool DiagnoseFailure) { |
| QualType Ty = VD->getType(); |
| if (!Ty->isObjCRetainableType()) { |
| if (DiagnoseFailure) { |
| S.Diag(VD->getBeginLoc(), diag::warn_ignored_objc_externally_retained) |
| << 0; |
| } |
| return false; |
| } |
| |
| Qualifiers::ObjCLifetime LifetimeQual = Ty.getQualifiers().getObjCLifetime(); |
| |
| // Sema::inferObjCARCLifetime must run after processing decl attributes |
| // (because __block lowers to an attribute), so if the lifetime hasn't been |
| // explicitly specified, infer it locally now. |
| if (LifetimeQual == Qualifiers::OCL_None) |
| LifetimeQual = Ty->getObjCARCImplicitLifetime(); |
| |
| // The attributes only really makes sense for __strong variables; ignore any |
| // attempts to annotate a parameter with any other lifetime qualifier. |
| if (LifetimeQual != Qualifiers::OCL_Strong) { |
| if (DiagnoseFailure) { |
| S.Diag(VD->getBeginLoc(), diag::warn_ignored_objc_externally_retained) |
| << 1; |
| } |
| return false; |
| } |
| |
| // Tampering with the type of a VarDecl here is a bit of a hack, but we need |
| // to ensure that the variable is 'const' so that we can error on |
| // modification, which can otherwise over-release. |
| VD->setType(Ty.withConst()); |
| VD->setARCPseudoStrong(true); |
| return true; |
| } |
| |
| static void handleObjCExternallyRetainedAttr(Sema &S, Decl *D, |
| const ParsedAttr &AL) { |
| if (auto *VD = dyn_cast<VarDecl>(D)) { |
| assert(!isa<ParmVarDecl>(VD) && "should be diagnosed automatically"); |
| if (!VD->hasLocalStorage()) { |
| S.Diag(D->getBeginLoc(), diag::warn_ignored_objc_externally_retained) |
| << 0; |
| return; |
| } |
| |
| if (!tryMakeVariablePseudoStrong(S, VD, /*DiagnoseFailure=*/true)) |
| return; |
| |
| handleSimpleAttribute<ObjCExternallyRetainedAttr>(S, D, AL); |
| return; |
| } |
| |
| // If D is a function-like declaration (method, block, or function), then we |
| // make every parameter psuedo-strong. |
| unsigned NumParams = |
| hasFunctionProto(D) ? getFunctionOrMethodNumParams(D) : 0; |
| for (unsigned I = 0; I != NumParams; ++I) { |
| auto *PVD = const_cast<ParmVarDecl *>(getFunctionOrMethodParam(D, I)); |
| QualType Ty = PVD->getType(); |
| |
| // If a user wrote a parameter with __strong explicitly, then assume they |
| // want "real" strong semantics for that parameter. This works because if |
| // the parameter was written with __strong, then the strong qualifier will |
| // be non-local. |
| if (Ty.getLocalUnqualifiedType().getQualifiers().getObjCLifetime() == |
| Qualifiers::OCL_Strong) |
| continue; |
| |
| tryMakeVariablePseudoStrong(S, PVD, /*DiagnoseFailure=*/false); |
| } |
| handleSimpleAttribute<ObjCExternallyRetainedAttr>(S, D, AL); |
| } |
| |
| static void handleMIGServerRoutineAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| // Check that the return type is a `typedef int kern_return_t` or a typedef |
| // around it, because otherwise MIG convention checks make no sense. |
| // BlockDecl doesn't store a return type, so it's annoying to check, |
| // so let's skip it for now. |
| if (!isa<BlockDecl>(D)) { |
| QualType T = getFunctionOrMethodResultType(D); |
| bool IsKernReturnT = false; |
| while (const auto *TT = T->getAs<TypedefType>()) { |
| IsKernReturnT = (TT->getDecl()->getName() == "kern_return_t"); |
| T = TT->desugar(); |
| } |
| if (!IsKernReturnT || T.getCanonicalType() != S.getASTContext().IntTy) { |
| S.Diag(D->getBeginLoc(), |
| diag::warn_mig_server_routine_does_not_return_kern_return_t); |
| return; |
| } |
| } |
| |
| handleSimpleAttribute<MIGServerRoutineAttr>(S, D, AL); |
| } |
| |
| static void handleMSAllocatorAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| // Warn if the return type is not a pointer or reference type. |
| if (auto *FD = dyn_cast<FunctionDecl>(D)) { |
| QualType RetTy = FD->getReturnType(); |
| if (!RetTy->isPointerType() && !RetTy->isReferenceType()) { |
| S.Diag(AL.getLoc(), diag::warn_declspec_allocator_nonpointer) |
| << AL.getRange() << RetTy; |
| return; |
| } |
| } |
| |
| handleSimpleAttribute<MSAllocatorAttr>(S, D, AL); |
| } |
| |
| static void handleAcquireHandleAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (AL.isUsedAsTypeAttr()) |
| return; |
| // Warn if the parameter is definitely not an output parameter. |
| if (const auto *PVD = dyn_cast<ParmVarDecl>(D)) { |
| if (PVD->getType()->isIntegerType()) { |
| S.Diag(AL.getLoc(), diag::err_attribute_output_parameter) |
| << AL.getRange(); |
| return; |
| } |
| } |
| StringRef Argument; |
| if (!S.checkStringLiteralArgumentAttr(AL, 0, Argument)) |
| return; |
| D->addAttr(AcquireHandleAttr::Create(S.Context, Argument, AL)); |
| } |
| |
| template<typename Attr> |
| static void handleHandleAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| StringRef Argument; |
| if (!S.checkStringLiteralArgumentAttr(AL, 0, Argument)) |
| return; |
| D->addAttr(Attr::Create(S.Context, Argument, AL)); |
| } |
| |
| static void handleCFGuardAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| // The guard attribute takes a single identifier argument. |
| |
| if (!AL.isArgIdent(0)) { |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_type) |
| << AL << AANT_ArgumentIdentifier; |
| return; |
| } |
| |
| CFGuardAttr::GuardArg Arg; |
| IdentifierInfo *II = AL.getArgAsIdent(0)->Ident; |
| if (!CFGuardAttr::ConvertStrToGuardArg(II->getName(), Arg)) { |
| S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II; |
| return; |
| } |
| |
| D->addAttr(::new (S.Context) CFGuardAttr(S.Context, AL, Arg)); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Top Level Sema Entry Points |
| //===----------------------------------------------------------------------===// |
| |
| /// ProcessDeclAttribute - Apply the specific attribute to the specified decl if |
| /// the attribute applies to decls. If the attribute is a type attribute, just |
| /// silently ignore it if a GNU attribute. |
| static void ProcessDeclAttribute(Sema &S, Scope *scope, Decl *D, |
| const ParsedAttr &AL, |
| bool IncludeCXX11Attributes) { |
| if (AL.isInvalid() || AL.getKind() == ParsedAttr::IgnoredAttribute) |
| return; |
| |
| // Ignore C++11 attributes on declarator chunks: they appertain to the type |
| // instead. |
| if (AL.isCXX11Attribute() && !IncludeCXX11Attributes) |
| return; |
| |
| // Unknown attributes are automatically warned on. Target-specific attributes |
| // which do not apply to the current target architecture are treated as |
| // though they were unknown attributes. |
| if (AL.getKind() == ParsedAttr::UnknownAttribute || |
| !AL.existsInTarget(S.Context.getTargetInfo())) { |
| S.Diag(AL.getLoc(), |
| AL.isDeclspecAttribute() |
| ? (unsigned)diag::warn_unhandled_ms_attribute_ignored |
| : (unsigned)diag::warn_unknown_attribute_ignored) |
| << AL << AL.getRange(); |
| return; |
| } |
| |
| if (handleCommonAttributeFeatures(S, D, AL)) |
| return; |
| |
| switch (AL.getKind()) { |
| default: |
| if (AL.getInfo().handleDeclAttribute(S, D, AL) != ParsedAttrInfo::NotHandled) |
| break; |
| if (!AL.isStmtAttr()) { |
| // Type attributes are handled elsewhere; silently move on. |
| assert(AL.isTypeAttr() && "Non-type attribute not handled"); |
| break; |
| } |
| S.Diag(AL.getLoc(), diag::err_stmt_attribute_invalid_on_decl) |
| << AL << D->getLocation(); |
| break; |
| case ParsedAttr::AT_Interrupt: |
| handleInterruptAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_X86ForceAlignArgPointer: |
| handleX86ForceAlignArgPointerAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_DLLExport: |
| case ParsedAttr::AT_DLLImport: |
| handleDLLAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_Mips16: |
| handleSimpleAttributeWithExclusions<Mips16Attr, MicroMipsAttr, |
| MipsInterruptAttr>(S, D, AL); |
| break; |
| case ParsedAttr::AT_MicroMips: |
| handleSimpleAttributeWithExclusions<MicroMipsAttr, Mips16Attr>(S, D, AL); |
| break; |
| case ParsedAttr::AT_MipsLongCall: |
| handleSimpleAttributeWithExclusions<MipsLongCallAttr, MipsShortCallAttr>( |
| S, D, AL); |
| break; |
| case ParsedAttr::AT_MipsShortCall: |
| handleSimpleAttributeWithExclusions<MipsShortCallAttr, MipsLongCallAttr>( |
| S, D, AL); |
| break; |
| case ParsedAttr::AT_AMDGPUFlatWorkGroupSize: |
| handleAMDGPUFlatWorkGroupSizeAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_AMDGPUWavesPerEU: |
| handleAMDGPUWavesPerEUAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_AMDGPUNumSGPR: |
| handleAMDGPUNumSGPRAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_AMDGPUNumVGPR: |
| handleAMDGPUNumVGPRAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_AVRSignal: |
| handleAVRSignalAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_BPFPreserveAccessIndex: |
| handleBPFPreserveAccessIndexAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_WebAssemblyExportName: |
| handleWebAssemblyExportNameAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_WebAssemblyImportModule: |
| handleWebAssemblyImportModuleAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_WebAssemblyImportName: |
| handleWebAssemblyImportNameAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_IBOutlet: |
| handleIBOutlet(S, D, AL); |
| break; |
| case ParsedAttr::AT_IBOutletCollection: |
| handleIBOutletCollection(S, D, AL); |
| break; |
| case ParsedAttr::AT_IFunc: |
| handleIFuncAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_Alias: |
| handleAliasAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_Aligned: |
| handleAlignedAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_AlignValue: |
| handleAlignValueAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_AllocSize: |
| handleAllocSizeAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_AlwaysInline: |
| handleAlwaysInlineAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_AnalyzerNoReturn: |
| handleAnalyzerNoReturnAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_TLSModel: |
| handleTLSModelAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_Annotate: |
| handleAnnotateAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_Availability: |
| handleAvailabilityAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_CarriesDependency: |
| handleDependencyAttr(S, scope, D, AL); |
| break; |
| case ParsedAttr::AT_CPUDispatch: |
| case ParsedAttr::AT_CPUSpecific: |
| handleCPUSpecificAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_Common: |
| handleCommonAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_CUDAConstant: |
| handleConstantAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_PassObjectSize: |
| handlePassObjectSizeAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_Constructor: |
| handleConstructorAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_Deprecated: |
| handleDeprecatedAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_Destructor: |
| handleDestructorAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_EnableIf: |
| handleEnableIfAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_DiagnoseIf: |
| handleDiagnoseIfAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_NoBuiltin: |
| handleNoBuiltinAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_ExtVectorType: |
| handleExtVectorTypeAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_ExternalSourceSymbol: |
| handleExternalSourceSymbolAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_MinSize: |
| handleMinSizeAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_OptimizeNone: |
| handleOptimizeNoneAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_EnumExtensibility: |
| handleEnumExtensibilityAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_SYCLKernel: |
| handleSYCLKernelAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_Format: |
| handleFormatAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_FormatArg: |
| handleFormatArgAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_Callback: |
| handleCallbackAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_CUDAGlobal: |
| handleGlobalAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_CUDADevice: |
| handleDeviceAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_CUDAHost: |
| handleSimpleAttributeWithExclusions<CUDAHostAttr, CUDAGlobalAttr>(S, D, AL); |
| break; |
| case ParsedAttr::AT_CUDADeviceBuiltinSurfaceType: |
| handleSimpleAttributeWithExclusions<CUDADeviceBuiltinSurfaceTypeAttr, |
| CUDADeviceBuiltinTextureTypeAttr>(S, D, |
| AL); |
| break; |
| case ParsedAttr::AT_CUDADeviceBuiltinTextureType: |
| handleSimpleAttributeWithExclusions<CUDADeviceBuiltinTextureTypeAttr, |
| CUDADeviceBuiltinSurfaceTypeAttr>(S, D, |
| AL); |
| break; |
| case ParsedAttr::AT_GNUInline: |
| handleGNUInlineAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_CUDALaunchBounds: |
| handleLaunchBoundsAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_Restrict: |
| handleRestrictAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_Mode: |
| handleModeAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_NonNull: |
| if (auto *PVD = dyn_cast<ParmVarDecl>(D)) |
| handleNonNullAttrParameter(S, PVD, AL); |
| else |
| handleNonNullAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_ReturnsNonNull: |
| handleReturnsNonNullAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_NoEscape: |
| handleNoEscapeAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_AssumeAligned: |
| handleAssumeAlignedAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_AllocAlign: |
| handleAllocAlignAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_Ownership: |
| handleOwnershipAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_Cold: |
| handleSimpleAttributeWithExclusions<ColdAttr, HotAttr>(S, D, AL); |
| break; |
| case ParsedAttr::AT_Hot: |
| handleSimpleAttributeWithExclusions<HotAttr, ColdAttr>(S, D, AL); |
| break; |
| case ParsedAttr::AT_Naked: |
| handleNakedAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_NoReturn: |
| handleNoReturnAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_AnyX86NoCfCheck: |
| handleNoCfCheckAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_NoThrow: |
| if (!AL.isUsedAsTypeAttr()) |
| handleSimpleAttribute<NoThrowAttr>(S, D, AL); |
| break; |
| case ParsedAttr::AT_CUDAShared: |
| handleSharedAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_VecReturn: |
| handleVecReturnAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_ObjCOwnership: |
| handleObjCOwnershipAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_ObjCPreciseLifetime: |
| handleObjCPreciseLifetimeAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_ObjCReturnsInnerPointer: |
| handleObjCReturnsInnerPointerAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_ObjCRequiresSuper: |
| handleObjCRequiresSuperAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_ObjCBridge: |
| handleObjCBridgeAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_ObjCBridgeMutable: |
| handleObjCBridgeMutableAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_ObjCBridgeRelated: |
| handleObjCBridgeRelatedAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_ObjCDesignatedInitializer: |
| handleObjCDesignatedInitializer(S, D, AL); |
| break; |
| case ParsedAttr::AT_ObjCRuntimeName: |
| handleObjCRuntimeName(S, D, AL); |
| break; |
| case ParsedAttr::AT_ObjCBoxable: |
| handleObjCBoxable(S, D, AL); |
| break; |
| case ParsedAttr::AT_NSErrorDomain: |
| handleNSErrorDomain(S, D, AL); |
| break; |
| case ParsedAttr::AT_CFAuditedTransfer: |
| handleSimpleAttributeWithExclusions<CFAuditedTransferAttr, |
| CFUnknownTransferAttr>(S, D, AL); |
| break; |
| case ParsedAttr::AT_CFUnknownTransfer: |
| handleSimpleAttributeWithExclusions<CFUnknownTransferAttr, |
| CFAuditedTransferAttr>(S, D, AL); |
| break; |
| case ParsedAttr::AT_CFConsumed: |
| case ParsedAttr::AT_NSConsumed: |
| case ParsedAttr::AT_OSConsumed: |
| S.AddXConsumedAttr(D, AL, parsedAttrToRetainOwnershipKind(AL), |
| /*IsTemplateInstantiation=*/false); |
| break; |
| case ParsedAttr::AT_OSReturnsRetainedOnZero: |
| handleSimpleAttributeOrDiagnose<OSReturnsRetainedOnZeroAttr>( |
| S, D, AL, isValidOSObjectOutParameter(D), |
| diag::warn_ns_attribute_wrong_parameter_type, |
| /*Extra Args=*/AL, /*pointer-to-OSObject-pointer*/ 3, AL.getRange()); |
| break; |
| case ParsedAttr::AT_OSReturnsRetainedOnNonZero: |
| handleSimpleAttributeOrDiagnose<OSReturnsRetainedOnNonZeroAttr>( |
| S, D, AL, isValidOSObjectOutParameter(D), |
| diag::warn_ns_attribute_wrong_parameter_type, |
| /*Extra Args=*/AL, /*pointer-to-OSObject-poointer*/ 3, AL.getRange()); |
| break; |
| case ParsedAttr::AT_NSReturnsAutoreleased: |
| case ParsedAttr::AT_NSReturnsNotRetained: |
| case ParsedAttr::AT_NSReturnsRetained: |
| case ParsedAttr::AT_CFReturnsNotRetained: |
| case ParsedAttr::AT_CFReturnsRetained: |
| case ParsedAttr::AT_OSReturnsNotRetained: |
| case ParsedAttr::AT_OSReturnsRetained: |
| handleXReturnsXRetainedAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_WorkGroupSizeHint: |
| handleWorkGroupSize<WorkGroupSizeHintAttr>(S, D, AL); |
| break; |
| case ParsedAttr::AT_ReqdWorkGroupSize: |
| handleWorkGroupSize<ReqdWorkGroupSizeAttr>(S, D, AL); |
| break; |
| case ParsedAttr::AT_OpenCLIntelReqdSubGroupSize: |
| handleSubGroupSize(S, D, AL); |
| break; |
| case ParsedAttr::AT_VecTypeHint: |
| handleVecTypeHint(S, D, AL); |
| break; |
| case ParsedAttr::AT_InitPriority: |
| if (S.Context.getTargetInfo().getTriple().isOSAIX()) |
| llvm::report_fatal_error( |
| "'init_priority' attribute is not yet supported on AIX"); |
| else |
| handleInitPriorityAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_Packed: |
| handlePackedAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_Section: |
| handleSectionAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_SpeculativeLoadHardening: |
| handleSimpleAttributeWithExclusions<SpeculativeLoadHardeningAttr, |
| NoSpeculativeLoadHardeningAttr>(S, D, |
| AL); |
| break; |
| case ParsedAttr::AT_NoSpeculativeLoadHardening: |
| handleSimpleAttributeWithExclusions<NoSpeculativeLoadHardeningAttr, |
| SpeculativeLoadHardeningAttr>(S, D, AL); |
| break; |
| case ParsedAttr::AT_CodeSeg: |
| handleCodeSegAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_Target: |
| handleTargetAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_MinVectorWidth: |
| handleMinVectorWidthAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_Unavailable: |
| handleAttrWithMessage<UnavailableAttr>(S, D, AL); |
| break; |
| case ParsedAttr::AT_ObjCDirect: |
| handleObjCDirectAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_ObjCNonRuntimeProtocol: |
| handleObjCNonRuntimeProtocolAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_ObjCDirectMembers: |
| handleObjCDirectMembersAttr(S, D, AL); |
| handleSimpleAttribute<ObjCDirectMembersAttr>(S, D, AL); |
| break; |
| case ParsedAttr::AT_ObjCExplicitProtocolImpl: |
| handleObjCSuppresProtocolAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_Unused: |
| handleUnusedAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_NotTailCalled: |
| handleSimpleAttributeWithExclusions<NotTailCalledAttr, AlwaysInlineAttr>( |
| S, D, AL); |
| break; |
| case ParsedAttr::AT_DisableTailCalls: |
| handleSimpleAttributeWithExclusions<DisableTailCallsAttr, NakedAttr>(S, D, |
| AL); |
| break; |
| case ParsedAttr::AT_Visibility: |
| handleVisibilityAttr(S, D, AL, false); |
| break; |
| case ParsedAttr::AT_TypeVisibility: |
| handleVisibilityAttr(S, D, AL, true); |
| break; |
| case ParsedAttr::AT_WarnUnusedResult: |
| handleWarnUnusedResult(S, D, AL); |
| break; |
| case ParsedAttr::AT_WeakRef: |
| handleWeakRefAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_WeakImport: |
| handleWeakImportAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_TransparentUnion: |
| handleTransparentUnionAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_ObjCMethodFamily: |
| handleObjCMethodFamilyAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_ObjCNSObject: |
| handleObjCNSObject(S, D, AL); |
| break; |
| case ParsedAttr::AT_ObjCIndependentClass: |
| handleObjCIndependentClass(S, D, AL); |
| break; |
| case ParsedAttr::AT_Blocks: |
| handleBlocksAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_Sentinel: |
| handleSentinelAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_Cleanup: |
| handleCleanupAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_NoDebug: |
| handleNoDebugAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_CmseNSEntry: |
| handleCmseNSEntryAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_StdCall: |
| case ParsedAttr::AT_CDecl: |
| case ParsedAttr::AT_FastCall: |
| case ParsedAttr::AT_ThisCall: |
| case ParsedAttr::AT_Pascal: |
| case ParsedAttr::AT_RegCall: |
| case ParsedAttr::AT_SwiftCall: |
| case ParsedAttr::AT_VectorCall: |
| case ParsedAttr::AT_MSABI: |
| case ParsedAttr::AT_SysVABI: |
| case ParsedAttr::AT_Pcs: |
| case ParsedAttr::AT_IntelOclBicc: |
| case ParsedAttr::AT_PreserveMost: |
| case ParsedAttr::AT_PreserveAll: |
| case ParsedAttr::AT_AArch64VectorPcs: |
| handleCallConvAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_Suppress: |
| handleSuppressAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_Owner: |
| case ParsedAttr::AT_Pointer: |
| handleLifetimeCategoryAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_OpenCLAccess: |
| handleOpenCLAccessAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_OpenCLNoSVM: |
| handleOpenCLNoSVMAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_SwiftContext: |
| S.AddParameterABIAttr(D, AL, ParameterABI::SwiftContext); |
| break; |
| case ParsedAttr::AT_SwiftErrorResult: |
| S.AddParameterABIAttr(D, AL, ParameterABI::SwiftErrorResult); |
| break; |
| case ParsedAttr::AT_SwiftIndirectResult: |
| S.AddParameterABIAttr(D, AL, ParameterABI::SwiftIndirectResult); |
| break; |
| case ParsedAttr::AT_InternalLinkage: |
| handleInternalLinkageAttr(S, D, AL); |
| break; |
| |
| // Microsoft attributes: |
| case ParsedAttr::AT_LayoutVersion: |
| handleLayoutVersion(S, D, AL); |
| break; |
| case ParsedAttr::AT_Uuid: |
| handleUuidAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_MSInheritance: |
| handleMSInheritanceAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_Thread: |
| handleDeclspecThreadAttr(S, D, AL); |
| break; |
| |
| case ParsedAttr::AT_AbiTag: |
| handleAbiTagAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_CFGuard: |
| handleCFGuardAttr(S, D, AL); |
| break; |
| |
| // Thread safety attributes: |
| case ParsedAttr::AT_AssertExclusiveLock: |
| handleAssertExclusiveLockAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_AssertSharedLock: |
| handleAssertSharedLockAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_PtGuardedVar: |
| handlePtGuardedVarAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_NoSanitize: |
| handleNoSanitizeAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_NoSanitizeSpecific: |
| handleNoSanitizeSpecificAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_GuardedBy: |
| handleGuardedByAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_PtGuardedBy: |
| handlePtGuardedByAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_ExclusiveTrylockFunction: |
| handleExclusiveTrylockFunctionAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_LockReturned: |
| handleLockReturnedAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_LocksExcluded: |
| handleLocksExcludedAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_SharedTrylockFunction: |
| handleSharedTrylockFunctionAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_AcquiredBefore: |
| handleAcquiredBeforeAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_AcquiredAfter: |
| handleAcquiredAfterAttr(S, D, AL); |
| break; |
| |
| // Capability analysis attributes. |
| case ParsedAttr::AT_Capability: |
| case ParsedAttr::AT_Lockable: |
| handleCapabilityAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_RequiresCapability: |
| handleRequiresCapabilityAttr(S, D, AL); |
| break; |
| |
| case ParsedAttr::AT_AssertCapability: |
| handleAssertCapabilityAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_AcquireCapability: |
| handleAcquireCapabilityAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_ReleaseCapability: |
| handleReleaseCapabilityAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_TryAcquireCapability: |
| handleTryAcquireCapabilityAttr(S, D, AL); |
| break; |
| |
| // Consumed analysis attributes. |
| case ParsedAttr::AT_Consumable: |
| handleConsumableAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_CallableWhen: |
| handleCallableWhenAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_ParamTypestate: |
| handleParamTypestateAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_ReturnTypestate: |
| handleReturnTypestateAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_SetTypestate: |
| handleSetTypestateAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_TestTypestate: |
| handleTestTypestateAttr(S, D, AL); |
| break; |
| |
| // Type safety attributes. |
| case ParsedAttr::AT_ArgumentWithTypeTag: |
| handleArgumentWithTypeTagAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_TypeTagForDatatype: |
| handleTypeTagForDatatypeAttr(S, D, AL); |
| break; |
| |
| // Swift attributes. |
| case ParsedAttr::AT_SwiftAsyncName: |
| handleSwiftAsyncName(S, D, AL); |
| break; |
| case ParsedAttr::AT_SwiftAttr: |
| handleSwiftAttrAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_SwiftBridge: |
| handleSwiftBridge(S, D, AL); |
| break; |
| case ParsedAttr::AT_SwiftBridgedTypedef: |
| handleSimpleAttribute<SwiftBridgedTypedefAttr>(S, D, AL); |
| break; |
| case ParsedAttr::AT_SwiftError: |
| handleSwiftError(S, D, AL); |
| break; |
| case ParsedAttr::AT_SwiftName: |
| handleSwiftName(S, D, AL); |
| break; |
| case ParsedAttr::AT_SwiftNewType: |
| handleSwiftNewType(S, D, AL); |
| break; |
| case ParsedAttr::AT_SwiftObjCMembers: |
| handleSimpleAttribute<SwiftObjCMembersAttr>(S, D, AL); |
| break; |
| case ParsedAttr::AT_SwiftPrivate: |
| handleSimpleAttribute<SwiftPrivateAttr>(S, D, AL); |
| break; |
| case ParsedAttr::AT_SwiftAsync: |
| handleSwiftAsyncAttr(S, D, AL); |
| break; |
| |
| // XRay attributes. |
| case ParsedAttr::AT_XRayLogArgs: |
| handleXRayLogArgsAttr(S, D, AL); |
| break; |
| |
| case ParsedAttr::AT_PatchableFunctionEntry: |
| handlePatchableFunctionEntryAttr(S, D, AL); |
| break; |
| |
| case ParsedAttr::AT_AlwaysDestroy: |
| case ParsedAttr::AT_NoDestroy: |
| handleDestroyAttr(S, D, AL); |
| break; |
| |
| case ParsedAttr::AT_Uninitialized: |
| handleUninitializedAttr(S, D, AL); |
| break; |
| |
| case ParsedAttr::AT_LoaderUninitialized: |
| handleSimpleAttribute<LoaderUninitializedAttr>(S, D, AL); |
| break; |
| |
| case ParsedAttr::AT_ObjCExternallyRetained: |
| handleObjCExternallyRetainedAttr(S, D, AL); |
| break; |
| |
| case ParsedAttr::AT_MIGServerRoutine: |
| handleMIGServerRoutineAttr(S, D, AL); |
| break; |
| |
| case ParsedAttr::AT_MSAllocator: |
| handleMSAllocatorAttr(S, D, AL); |
| break; |
| |
| case ParsedAttr::AT_ArmBuiltinAlias: |
| handleArmBuiltinAliasAttr(S, D, AL); |
| break; |
| |
| case ParsedAttr::AT_AcquireHandle: |
| handleAcquireHandleAttr(S, D, AL); |
| break; |
| |
| case ParsedAttr::AT_ReleaseHandle: |
| handleHandleAttr<ReleaseHandleAttr>(S, D, AL); |
| break; |
| |
| case ParsedAttr::AT_UseHandle: |
| handleHandleAttr<UseHandleAttr>(S, D, AL); |
| break; |
| } |
| } |
| |
| /// ProcessDeclAttributeList - Apply all the decl attributes in the specified |
| /// attribute list to the specified decl, ignoring any type attributes. |
| void Sema::ProcessDeclAttributeList(Scope *S, Decl *D, |
| const ParsedAttributesView &AttrList, |
| bool IncludeCXX11Attributes) { |
| if (AttrList.empty()) |
| return; |
| |
| for (const ParsedAttr &AL : AttrList) |
| ProcessDeclAttribute(*this, S, D, AL, IncludeCXX11Attributes); |
| |
| // FIXME: We should be able to handle these cases in TableGen. |
| // GCC accepts |
| // static int a9 __attribute__((weakref)); |
| // but that looks really pointless. We reject it. |
| if (D->hasAttr<WeakRefAttr>() && !D->hasAttr<AliasAttr>()) { |
| Diag(AttrList.begin()->getLoc(), diag::err_attribute_weakref_without_alias) |
| << cast<NamedDecl>(D); |
| D->dropAttr<WeakRefAttr>(); |
| return; |
| } |
| |
| // FIXME: We should be able to handle this in TableGen as well. It would be |
| // good to have a way to specify "these attributes must appear as a group", |
| // for these. Additionally, it would be good to have a way to specify "these |
| // attribute must never appear as a group" for attributes like cold and hot. |
| if (!D->hasAttr<OpenCLKernelAttr>()) { |
| // These attributes cannot be applied to a non-kernel function. |
| if (const auto *A = D->getAttr<ReqdWorkGroupSizeAttr>()) { |
| // FIXME: This emits a different error message than |
| // diag::err_attribute_wrong_decl_type + ExpectedKernelFunction. |
| Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A; |
| D->setInvalidDecl(); |
| } else if (const auto *A = D->getAttr<WorkGroupSizeHintAttr>()) { |
| Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A; |
| D->setInvalidDecl(); |
| } else if (const auto *A = D->getAttr<VecTypeHintAttr>()) { |
| Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A; |
| D->setInvalidDecl(); |
| } else if (const auto *A = D->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { |
| Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A; |
| D->setInvalidDecl(); |
| } else if (!D->hasAttr<CUDAGlobalAttr>()) { |
| if (const auto *A = D->getAttr<AMDGPUFlatWorkGroupSizeAttr>()) { |
| Diag(D->getLocation(), diag::err_attribute_wrong_decl_type) |
| << A << ExpectedKernelFunction; |
| D->setInvalidDecl(); |
| } else if (const auto *A = D->getAttr<AMDGPUWavesPerEUAttr>()) { |
| Diag(D->getLocation(), diag::err_attribute_wrong_decl_type) |
| << A << ExpectedKernelFunction; |
| D->setInvalidDecl(); |
| } else if (const auto *A = D->getAttr<AMDGPUNumSGPRAttr>()) { |
| Diag(D->getLocation(), diag::err_attribute_wrong_decl_type) |
| << A << ExpectedKernelFunction; |
| D->setInvalidDecl(); |
| } else if (const auto *A = D->getAttr<AMDGPUNumVGPRAttr>()) { |
| Diag(D->getLocation(), diag::err_attribute_wrong_decl_type) |
| << A << ExpectedKernelFunction; |
| D->setInvalidDecl(); |
| } |
| } |
| } |
| |
| // Do this check after processing D's attributes because the attribute |
| // objc_method_family can change whether the given method is in the init |
| // family, and it can be applied after objc_designated_initializer. This is a |
| // bit of a hack, but we need it to be compatible with versions of clang that |
| // processed the attribute list in the wrong order. |
| if (D->hasAttr<ObjCDesignatedInitializerAttr>() && |
| cast<ObjCMethodDecl>(D)->getMethodFamily() != OMF_init) { |
| Diag(D->getLocation(), diag::err_designated_init_attr_non_init); |
| D->dropAttr<ObjCDesignatedInitializerAttr>(); |
| } |
| } |
| |
| // Helper for delayed processing TransparentUnion or BPFPreserveAccessIndexAttr |
| // attribute. |
| void Sema::ProcessDeclAttributeDelayed(Decl *D, |
| const ParsedAttributesView &AttrList) { |
| for (const ParsedAttr &AL : AttrList) |
| if (AL.getKind() == ParsedAttr::AT_TransparentUnion) { |
| handleTransparentUnionAttr(*this, D, AL); |
| break; |
| } |
| |
| // For BPFPreserveAccessIndexAttr, we want to populate the attributes |
| // to fields and inner records as well. |
| if (D && D->hasAttr<BPFPreserveAccessIndexAttr>()) |
| handleBPFPreserveAIRecord(*this, cast<RecordDecl>(D)); |
| } |
| |
| // Annotation attributes are the only attributes allowed after an access |
| // specifier. |
| bool Sema::ProcessAccessDeclAttributeList( |
| AccessSpecDecl *ASDecl, const ParsedAttributesView &AttrList) { |
| for (const ParsedAttr &AL : AttrList) { |
| if (AL.getKind() == ParsedAttr::AT_Annotate) { |
| ProcessDeclAttribute(*this, nullptr, ASDecl, AL, AL.isCXX11Attribute()); |
| } else { |
| Diag(AL.getLoc(), diag::err_only_annotate_after_access_spec); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /// checkUnusedDeclAttributes - Check a list of attributes to see if it |
| /// contains any decl attributes that we should warn about. |
| static void checkUnusedDeclAttributes(Sema &S, const ParsedAttributesView &A) { |
| for (const ParsedAttr &AL : A) { |
| // Only warn if the attribute is an unignored, non-type attribute. |
| if (AL.isUsedAsTypeAttr() || AL.isInvalid()) |
| continue; |
| if (AL.getKind() == ParsedAttr::IgnoredAttribute) |
| continue; |
| |
| if (AL.getKind() == ParsedAttr::UnknownAttribute) { |
| S.Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored) |
| << AL << AL.getRange(); |
| } else { |
| S.Diag(AL.getLoc(), diag::warn_attribute_not_on_decl) << AL |
| << AL.getRange(); |
| } |
| } |
| } |
| |
| /// checkUnusedDeclAttributes - Given a declarator which is not being |
| /// used to build a declaration, complain about any decl attributes |
| /// which might be lying around on it. |
| void Sema::checkUnusedDeclAttributes(Declarator &D) { |
| ::checkUnusedDeclAttributes(*this, D.getDeclSpec().getAttributes()); |
| ::checkUnusedDeclAttributes(*this, D.getAttributes()); |
| for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) |
| ::checkUnusedDeclAttributes(*this, D.getTypeObject(i).getAttrs()); |
| } |
| |
| /// DeclClonePragmaWeak - clone existing decl (maybe definition), |
| /// \#pragma weak needs a non-definition decl and source may not have one. |
| NamedDecl * Sema::DeclClonePragmaWeak(NamedDecl *ND, IdentifierInfo *II, |
| SourceLocation Loc) { |
| assert(isa<FunctionDecl>(ND) || isa<VarDecl>(ND)); |
| NamedDecl *NewD = nullptr; |
| if (auto *FD = dyn_cast<FunctionDecl>(ND)) { |
| FunctionDecl *NewFD; |
| // FIXME: Missing call to CheckFunctionDeclaration(). |
| // FIXME: Mangling? |
| // FIXME: Is the qualifier info correct? |
| // FIXME: Is the DeclContext correct? |
| NewFD = FunctionDecl::Create( |
| FD->getASTContext(), FD->getDeclContext(), Loc, Loc, |
| DeclarationName(II), FD->getType(), FD->getTypeSourceInfo(), SC_None, |
| false /*isInlineSpecified*/, FD->hasPrototype(), |
| ConstexprSpecKind::Unspecified, FD->getTrailingRequiresClause()); |
| NewD = NewFD; |
| |
| if (FD->getQualifier()) |
| NewFD->setQualifierInfo(FD->getQualifierLoc()); |
| |
| // Fake up parameter variables; they are declared as if this were |
| // a typedef. |
| QualType FDTy = FD->getType(); |
| if (const auto *FT = FDTy->getAs<FunctionProtoType>()) { |
| SmallVector<ParmVarDecl*, 16> Params; |
| for (const auto &AI : FT->param_types()) { |
| ParmVarDecl *Param = BuildParmVarDeclForTypedef(NewFD, Loc, AI); |
| Param->setScopeInfo(0, Params.size()); |
| Params.push_back(Param); |
| } |
| NewFD->setParams(Params); |
| } |
| } else if (auto *VD = dyn_cast<VarDecl>(ND)) { |
| NewD = VarDecl::Create(VD->getASTContext(), VD->getDeclContext(), |
| VD->getInnerLocStart(), VD->getLocation(), II, |
| VD->getType(), VD->getTypeSourceInfo(), |
| VD->getStorageClass()); |
| if (VD->getQualifier()) |
| cast<VarDecl>(NewD)->setQualifierInfo(VD->getQualifierLoc()); |
| } |
| return NewD; |
| } |
| |
| /// DeclApplyPragmaWeak - A declaration (maybe definition) needs \#pragma weak |
| /// applied to it, possibly with an alias. |
| void Sema::DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, WeakInfo &W) { |
| if (W.getUsed()) return; // only do this once |
| W.setUsed(true); |
| if (W.getAlias()) { // clone decl, impersonate __attribute(weak,alias(...)) |
| IdentifierInfo *NDId = ND->getIdentifier(); |
| NamedDecl *NewD = DeclClonePragmaWeak(ND, W.getAlias(), W.getLocation()); |
| NewD->addAttr( |
| AliasAttr::CreateImplicit(Context, NDId->getName(), W.getLocation())); |
| NewD->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation(), |
| AttributeCommonInfo::AS_Pragma)); |
| WeakTopLevelDecl.push_back(NewD); |
| // FIXME: "hideous" code from Sema::LazilyCreateBuiltin |
| // to insert Decl at TU scope, sorry. |
| DeclContext *SavedContext = CurContext; |
| CurContext = Context.getTranslationUnitDecl(); |
| NewD->setDeclContext(CurContext); |
| NewD->setLexicalDeclContext(CurContext); |
| PushOnScopeChains(NewD, S); |
| CurContext = SavedContext; |
| } else { // just add weak to existing |
| ND->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation(), |
| AttributeCommonInfo::AS_Pragma)); |
| } |
| } |
| |
| void Sema::ProcessPragmaWeak(Scope *S, Decl *D) { |
| // It's valid to "forward-declare" #pragma weak, in which case we |
| // have to do this. |
| LoadExternalWeakUndeclaredIdentifiers(); |
| if (!WeakUndeclaredIdentifiers.empty()) { |
| NamedDecl *ND = nullptr; |
| if (auto *VD = dyn_cast<VarDecl>(D)) |
| if (VD->isExternC()) |
| ND = VD; |
| if (auto *FD = dyn_cast<FunctionDecl>(D)) |
| if (FD->isExternC()) |
| ND = FD; |
| if (ND) { |
| if (IdentifierInfo *Id = ND->getIdentifier()) { |
| auto I = WeakUndeclaredIdentifiers.find(Id); |
| if (I != WeakUndeclaredIdentifiers.end()) { |
| WeakInfo W = I->second; |
| DeclApplyPragmaWeak(S, ND, W); |
| WeakUndeclaredIdentifiers[Id] = W; |
| } |
| } |
| } |
| } |
| } |
| |
| /// ProcessDeclAttributes - Given a declarator (PD) with attributes indicated in |
| /// it, apply them to D. This is a bit tricky because PD can have attributes |
| /// specified in many different places, and we need to find and apply them all. |
| void Sema::ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD) { |
| // Apply decl attributes from the DeclSpec if present. |
| if (!PD.getDeclSpec().getAttributes().empty()) |
| ProcessDeclAttributeList(S, D, PD.getDeclSpec().getAttributes()); |
| |
| // Walk the declarator structure, applying decl attributes that were in a type |
| // position to the decl itself. This handles cases like: |
| // int *__attr__(x)** D; |
| // when X is a decl attribute. |
| for (unsigned i = 0, e = PD.getNumTypeObjects(); i != e; ++i) |
| ProcessDeclAttributeList(S, D, PD.getTypeObject(i).getAttrs(), |
| /*IncludeCXX11Attributes=*/false); |
| |
| // Finally, apply any attributes on the decl itself. |
| ProcessDeclAttributeList(S, D, PD.getAttributes()); |
| |
| // Apply additional attributes specified by '#pragma clang attribute'. |
| AddPragmaAttributes(S, D); |
| } |
| |
| /// Is the given declaration allowed to use a forbidden type? |
| /// If so, it'll still be annotated with an attribute that makes it |
| /// illegal to actually use. |
| static bool isForbiddenTypeAllowed(Sema &S, Decl *D, |
| const DelayedDiagnostic &diag, |
| UnavailableAttr::ImplicitReason &reason) { |
| // Private ivars are always okay. Unfortunately, people don't |
| // always properly make their ivars private, even in system headers. |
| // Plus we need to make fields okay, too. |
| if (!isa<FieldDecl>(D) && !isa<ObjCPropertyDecl>(D) && |
| !isa<FunctionDecl>(D)) |
| return false; |
| |
| // Silently accept unsupported uses of __weak in both user and system |
| // declarations when it's been disabled, for ease of integration with |
| // -fno-objc-arc files. We do have to take some care against attempts |
| // to define such things; for now, we've only done that for ivars |
| // and properties. |
| if ((isa<ObjCIvarDecl>(D) || isa<ObjCPropertyDecl>(D))) { |
| if (diag.getForbiddenTypeDiagnostic() == diag::err_arc_weak_disabled || |
| diag.getForbiddenTypeDiagnostic() == diag::err_arc_weak_no_runtime) { |
| reason = UnavailableAttr::IR_ForbiddenWeak; |
| return true; |
| } |
| } |
| |
| // Allow all sorts of things in system headers. |
| if (S.Context.getSourceManager().isInSystemHeader(D->getLocation())) { |
| // Currently, all the failures dealt with this way are due to ARC |
| // restrictions. |
| reason = UnavailableAttr::IR_ARCForbiddenType; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// Handle a delayed forbidden-type diagnostic. |
| static void handleDelayedForbiddenType(Sema &S, DelayedDiagnostic &DD, |
| Decl *D) { |
| auto Reason = UnavailableAttr::IR_None; |
| if (D && isForbiddenTypeAllowed(S, D, DD, Reason)) { |
| assert(Reason && "didn't set reason?"); |
| D->addAttr(UnavailableAttr::CreateImplicit(S.Context, "", Reason, DD.Loc)); |
| return; |
| } |
| if (S.getLangOpts().ObjCAutoRefCount) |
| if (const auto *FD = dyn_cast<FunctionDecl>(D)) { |
| // FIXME: we may want to suppress diagnostics for all |
| // kind of forbidden type messages on unavailable functions. |
| if (FD->hasAttr<UnavailableAttr>() && |
| DD.getForbiddenTypeDiagnostic() == |
| diag::err_arc_array_param_no_ownership) { |
| DD.Triggered = true; |
| return; |
| } |
| } |
| |
| S.Diag(DD.Loc, DD.getForbiddenTypeDiagnostic()) |
| << DD.getForbiddenTypeOperand() << DD.getForbiddenTypeArgument(); |
| DD.Triggered = true; |
| } |
| |
| |
| void Sema::PopParsingDeclaration(ParsingDeclState state, Decl *decl) { |
| assert(DelayedDiagnostics.getCurrentPool()); |
| DelayedDiagnosticPool &poppedPool = *DelayedDiagnostics.getCurrentPool(); |
| DelayedDiagnostics.popWithoutEmitting(state); |
| |
| // When delaying diagnostics to run in the context of a parsed |
| // declaration, we only want to actually emit anything if parsing |
| // succeeds. |
| if (!decl) return; |
| |
| // We emit all the active diagnostics in this pool or any of its |
| // parents. In general, we'll get one pool for the decl spec |
| // and a child pool for each declarator; in a decl group like: |
| // deprecated_typedef foo, *bar, baz(); |
| // only the declarator pops will be passed decls. This is correct; |
| // we really do need to consider delayed diagnostics from the decl spec |
| // for each of the different declarations. |
| const DelayedDiagnosticPool *pool = &poppedPool; |
| do { |
| bool AnyAccessFailures = false; |
| for (DelayedDiagnosticPool::pool_iterator |
| i = pool->pool_begin(), e = pool->pool_end(); i != e; ++i) { |
| // This const_cast is a bit lame. Really, Triggered should be mutable. |
| DelayedDiagnostic &diag = const_cast<DelayedDiagnostic&>(*i); |
| if (diag.Triggered) |
| continue; |
| |
| switch (diag.Kind) { |
| case DelayedDiagnostic::Availability: |
| // Don't bother giving deprecation/unavailable diagnostics if |
| // the decl is invalid. |
| if (!decl->isInvalidDecl()) |
| handleDelayedAvailabilityCheck(diag, decl); |
| break; |
| |
| case DelayedDiagnostic::Access: |
| // Only produce one access control diagnostic for a structured binding |
| // declaration: we don't need to tell the user that all the fields are |
| // inaccessible one at a time. |
| if (AnyAccessFailures && isa<DecompositionDecl>(decl)) |
| continue; |
| HandleDelayedAccessCheck(diag, decl); |
| if (diag.Triggered) |
| AnyAccessFailures = true; |
| break; |
| |
| case DelayedDiagnostic::ForbiddenType: |
| handleDelayedForbiddenType(*this, diag, decl); |
| break; |
| } |
| } |
| } while ((pool = pool->getParent())); |
| } |
| |
| /// Given a set of delayed diagnostics, re-emit them as if they had |
| /// been delayed in the current context instead of in the given pool. |
| /// Essentially, this just moves them to the current pool. |
| void Sema::redelayDiagnostics(DelayedDiagnosticPool &pool) { |
| DelayedDiagnosticPool *curPool = DelayedDiagnostics.getCurrentPool(); |
| assert(curPool && "re-emitting in undelayed context not supported"); |
| curPool->steal(pool); |
| } |