| //===- InputFiles.cpp -----------------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains functions to parse Mach-O object files. In this comment, |
| // we describe the Mach-O file structure and how we parse it. |
| // |
| // Mach-O is not very different from ELF or COFF. The notion of symbols, |
| // sections and relocations exists in Mach-O as it does in ELF and COFF. |
| // |
| // Perhaps the notion that is new to those who know ELF/COFF is "subsections". |
| // In ELF/COFF, sections are an atomic unit of data copied from input files to |
| // output files. When we merge or garbage-collect sections, we treat each |
| // section as an atomic unit. In Mach-O, that's not the case. Sections can |
| // consist of multiple subsections, and subsections are a unit of merging and |
| // garbage-collecting. Therefore, Mach-O's subsections are more similar to |
| // ELF/COFF's sections than Mach-O's sections are. |
| // |
| // A section can have multiple symbols. A symbol that does not have the |
| // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by |
| // definition, a symbol is always present at the beginning of each subsection. A |
| // symbol with N_ALT_ENTRY attribute does not start a new subsection and can |
| // point to a middle of a subsection. |
| // |
| // The notion of subsections also affects how relocations are represented in |
| // Mach-O. All references within a section need to be explicitly represented as |
| // relocations if they refer to different subsections, because we obviously need |
| // to fix up addresses if subsections are laid out in an output file differently |
| // than they were in object files. To represent that, Mach-O relocations can |
| // refer to an unnamed location via its address. Scattered relocations (those |
| // with the R_SCATTERED bit set) always refer to unnamed locations. |
| // Non-scattered relocations refer to an unnamed location if r_extern is not set |
| // and r_symbolnum is zero. |
| // |
| // Without the above differences, I think you can use your knowledge about ELF |
| // and COFF for Mach-O. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "InputFiles.h" |
| #include "Config.h" |
| #include "Driver.h" |
| #include "Dwarf.h" |
| #include "ExportTrie.h" |
| #include "InputSection.h" |
| #include "MachOStructs.h" |
| #include "ObjC.h" |
| #include "OutputSection.h" |
| #include "OutputSegment.h" |
| #include "SymbolTable.h" |
| #include "Symbols.h" |
| #include "Target.h" |
| |
| #include "lld/Common/DWARF.h" |
| #include "lld/Common/ErrorHandler.h" |
| #include "lld/Common/Memory.h" |
| #include "lld/Common/Reproduce.h" |
| #include "llvm/ADT/iterator.h" |
| #include "llvm/BinaryFormat/MachO.h" |
| #include "llvm/LTO/LTO.h" |
| #include "llvm/Support/Endian.h" |
| #include "llvm/Support/MemoryBuffer.h" |
| #include "llvm/Support/Path.h" |
| #include "llvm/Support/TarWriter.h" |
| |
| using namespace llvm; |
| using namespace llvm::MachO; |
| using namespace llvm::support::endian; |
| using namespace llvm::sys; |
| using namespace lld; |
| using namespace lld::macho; |
| |
| // Returns "<internal>", "foo.a(bar.o)", or "baz.o". |
| std::string lld::toString(const InputFile *f) { |
| if (!f) |
| return "<internal>"; |
| if (f->archiveName.empty()) |
| return std::string(f->getName()); |
| return (path::filename(f->archiveName) + "(" + path::filename(f->getName()) + |
| ")") |
| .str(); |
| } |
| |
| std::vector<InputFile *> macho::inputFiles; |
| std::unique_ptr<TarWriter> macho::tar; |
| int InputFile::idCount = 0; |
| |
| // Open a given file path and return it as a memory-mapped file. |
| Optional<MemoryBufferRef> macho::readFile(StringRef path) { |
| // Open a file. |
| auto mbOrErr = MemoryBuffer::getFile(path); |
| if (auto ec = mbOrErr.getError()) { |
| error("cannot open " + path + ": " + ec.message()); |
| return None; |
| } |
| |
| std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; |
| MemoryBufferRef mbref = mb->getMemBufferRef(); |
| make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership |
| |
| // If this is a regular non-fat file, return it. |
| const char *buf = mbref.getBufferStart(); |
| auto *hdr = reinterpret_cast<const MachO::fat_header *>(buf); |
| if (read32be(&hdr->magic) != MachO::FAT_MAGIC) { |
| if (tar) |
| tar->append(relativeToRoot(path), mbref.getBuffer()); |
| return mbref; |
| } |
| |
| // Object files and archive files may be fat files, which contains |
| // multiple real files for different CPU ISAs. Here, we search for a |
| // file that matches with the current link target and returns it as |
| // a MemoryBufferRef. |
| auto *arch = reinterpret_cast<const MachO::fat_arch *>(buf + sizeof(*hdr)); |
| |
| for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) { |
| if (reinterpret_cast<const char *>(arch + i + 1) > |
| buf + mbref.getBufferSize()) { |
| error(path + ": fat_arch struct extends beyond end of file"); |
| return None; |
| } |
| |
| if (read32be(&arch[i].cputype) != target->cpuType || |
| read32be(&arch[i].cpusubtype) != target->cpuSubtype) |
| continue; |
| |
| uint32_t offset = read32be(&arch[i].offset); |
| uint32_t size = read32be(&arch[i].size); |
| if (offset + size > mbref.getBufferSize()) |
| error(path + ": slice extends beyond end of file"); |
| if (tar) |
| tar->append(relativeToRoot(path), mbref.getBuffer()); |
| return MemoryBufferRef(StringRef(buf + offset, size), path.copy(bAlloc)); |
| } |
| |
| error("unable to find matching architecture in " + path); |
| return None; |
| } |
| |
| const load_command *macho::findCommand(const mach_header_64 *hdr, |
| uint32_t type) { |
| const uint8_t *p = |
| reinterpret_cast<const uint8_t *>(hdr) + sizeof(mach_header_64); |
| |
| for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { |
| auto *cmd = reinterpret_cast<const load_command *>(p); |
| if (cmd->cmd == type) |
| return cmd; |
| p += cmd->cmdsize; |
| } |
| return nullptr; |
| } |
| |
| void ObjFile::parseSections(ArrayRef<section_64> sections) { |
| subsections.reserve(sections.size()); |
| auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); |
| |
| for (const section_64 &sec : sections) { |
| InputSection *isec = make<InputSection>(); |
| isec->file = this; |
| isec->name = |
| StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname))); |
| isec->segname = |
| StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname))); |
| isec->data = {isZeroFill(sec.flags) ? nullptr : buf + sec.offset, |
| static_cast<size_t>(sec.size)}; |
| if (sec.align >= 32) |
| error("alignment " + std::to_string(sec.align) + " of section " + |
| isec->name + " is too large"); |
| else |
| isec->align = 1 << sec.align; |
| isec->flags = sec.flags; |
| subsections.push_back({{0, isec}}); |
| } |
| } |
| |
| // Find the subsection corresponding to the greatest section offset that is <= |
| // that of the given offset. |
| // |
| // offset: an offset relative to the start of the original InputSection (before |
| // any subsection splitting has occurred). It will be updated to represent the |
| // same location as an offset relative to the start of the containing |
| // subsection. |
| static InputSection *findContainingSubsection(SubsectionMap &map, |
| uint32_t *offset) { |
| auto it = std::prev(map.upper_bound(*offset)); |
| *offset -= it->first; |
| return it->second; |
| } |
| |
| void ObjFile::parseRelocations(const section_64 &sec, |
| SubsectionMap &subsecMap) { |
| auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); |
| ArrayRef<any_relocation_info> anyRelInfos( |
| reinterpret_cast<const any_relocation_info *>(buf + sec.reloff), |
| sec.nreloc); |
| |
| for (const any_relocation_info &anyRelInfo : anyRelInfos) { |
| if (anyRelInfo.r_word0 & R_SCATTERED) |
| fatal("TODO: Scattered relocations not supported"); |
| |
| auto relInfo = reinterpret_cast<const relocation_info &>(anyRelInfo); |
| |
| Reloc r; |
| r.type = relInfo.r_type; |
| r.pcrel = relInfo.r_pcrel; |
| r.length = relInfo.r_length; |
| uint64_t rawAddend = target->getImplicitAddend(mb, sec, relInfo); |
| |
| if (relInfo.r_extern) { |
| r.referent = symbols[relInfo.r_symbolnum]; |
| r.addend = rawAddend; |
| } else { |
| if (relInfo.r_symbolnum == 0 || relInfo.r_symbolnum > subsections.size()) |
| fatal("invalid section index in relocation for offset " + |
| std::to_string(r.offset) + " in section " + sec.sectname + |
| " of " + getName()); |
| |
| SubsectionMap &referentSubsecMap = subsections[relInfo.r_symbolnum - 1]; |
| const section_64 &referentSec = sectionHeaders[relInfo.r_symbolnum - 1]; |
| uint32_t referentOffset; |
| if (relInfo.r_pcrel) { |
| // The implicit addend for pcrel section relocations is the pcrel offset |
| // in terms of the addresses in the input file. Here we adjust it so |
| // that it describes the offset from the start of the referent section. |
| // TODO: The offset of 4 is probably not right for ARM64, nor for |
| // relocations with r_length != 2. |
| referentOffset = |
| sec.addr + relInfo.r_address + 4 + rawAddend - referentSec.addr; |
| } else { |
| // The addend for a non-pcrel relocation is its absolute address. |
| referentOffset = rawAddend - referentSec.addr; |
| } |
| r.referent = findContainingSubsection(referentSubsecMap, &referentOffset); |
| r.addend = referentOffset; |
| } |
| |
| r.offset = relInfo.r_address; |
| InputSection *subsec = findContainingSubsection(subsecMap, &r.offset); |
| subsec->relocs.push_back(r); |
| } |
| } |
| |
| static macho::Symbol *createDefined(const structs::nlist_64 &sym, |
| StringRef name, InputSection *isec, |
| uint32_t value) { |
| if (sym.n_type & N_EXT) |
| // Global defined symbol |
| return symtab->addDefined(name, isec, value, sym.n_desc & N_WEAK_DEF); |
| // Local defined symbol |
| return make<Defined>(name, isec, value, sym.n_desc & N_WEAK_DEF, |
| /*isExternal=*/false); |
| } |
| |
| // Absolute symbols are defined symbols that do not have an associated |
| // InputSection. They cannot be weak. |
| static macho::Symbol *createAbsolute(const structs::nlist_64 &sym, |
| StringRef name) { |
| if (sym.n_type & N_EXT) |
| return symtab->addDefined(name, nullptr, sym.n_value, /*isWeakDef=*/false); |
| return make<Defined>(name, nullptr, sym.n_value, /*isWeakDef=*/false, |
| /*isExternal=*/false); |
| } |
| |
| macho::Symbol *ObjFile::parseNonSectionSymbol(const structs::nlist_64 &sym, |
| StringRef name) { |
| uint8_t type = sym.n_type & N_TYPE; |
| switch (type) { |
| case N_UNDF: |
| return sym.n_value == 0 |
| ? symtab->addUndefined(name) |
| : symtab->addCommon(name, this, sym.n_value, |
| 1 << GET_COMM_ALIGN(sym.n_desc)); |
| case N_ABS: |
| return createAbsolute(sym, name); |
| case N_PBUD: |
| case N_INDR: |
| error("TODO: support symbols of type " + std::to_string(type)); |
| return nullptr; |
| case N_SECT: |
| llvm_unreachable( |
| "N_SECT symbols should not be passed to parseNonSectionSymbol"); |
| default: |
| llvm_unreachable("invalid symbol type"); |
| } |
| } |
| |
| void ObjFile::parseSymbols(ArrayRef<structs::nlist_64> nList, |
| const char *strtab, bool subsectionsViaSymbols) { |
| // resize(), not reserve(), because we are going to create N_ALT_ENTRY symbols |
| // out-of-sequence. |
| symbols.resize(nList.size()); |
| std::vector<size_t> altEntrySymIdxs; |
| |
| for (size_t i = 0, n = nList.size(); i < n; ++i) { |
| const structs::nlist_64 &sym = nList[i]; |
| StringRef name = strtab + sym.n_strx; |
| |
| if ((sym.n_type & N_TYPE) != N_SECT) { |
| symbols[i] = parseNonSectionSymbol(sym, name); |
| continue; |
| } |
| |
| const section_64 &sec = sectionHeaders[sym.n_sect - 1]; |
| SubsectionMap &subsecMap = subsections[sym.n_sect - 1]; |
| uint64_t offset = sym.n_value - sec.addr; |
| |
| // If the input file does not use subsections-via-symbols, all symbols can |
| // use the same subsection. Otherwise, we must split the sections along |
| // symbol boundaries. |
| if (!subsectionsViaSymbols) { |
| symbols[i] = createDefined(sym, name, subsecMap[0], offset); |
| continue; |
| } |
| |
| // nList entries aren't necessarily arranged in address order. Therefore, |
| // we can't create alt-entry symbols at this point because a later symbol |
| // may split its section, which may affect which subsection the alt-entry |
| // symbol is assigned to. So we need to handle them in a second pass below. |
| if (sym.n_desc & N_ALT_ENTRY) { |
| altEntrySymIdxs.push_back(i); |
| continue; |
| } |
| |
| // Find the subsection corresponding to the greatest section offset that is |
| // <= that of the current symbol. The subsection that we find either needs |
| // to be used directly or split in two. |
| uint32_t firstSize = offset; |
| InputSection *firstIsec = findContainingSubsection(subsecMap, &firstSize); |
| |
| if (firstSize == 0) { |
| // Alias of an existing symbol, or the first symbol in the section. These |
| // are handled by reusing the existing section. |
| symbols[i] = createDefined(sym, name, firstIsec, 0); |
| continue; |
| } |
| |
| // We saw a symbol definition at a new offset. Split the section into two |
| // subsections. The new symbol uses the second subsection. |
| auto *secondIsec = make<InputSection>(*firstIsec); |
| secondIsec->data = firstIsec->data.slice(firstSize); |
| firstIsec->data = firstIsec->data.slice(0, firstSize); |
| // TODO: ld64 appears to preserve the original alignment as well as each |
| // subsection's offset from the last aligned address. We should consider |
| // emulating that behavior. |
| secondIsec->align = MinAlign(firstIsec->align, offset); |
| |
| subsecMap[offset] = secondIsec; |
| // By construction, the symbol will be at offset zero in the new section. |
| symbols[i] = createDefined(sym, name, secondIsec, 0); |
| } |
| |
| for (size_t idx : altEntrySymIdxs) { |
| const structs::nlist_64 &sym = nList[idx]; |
| StringRef name = strtab + sym.n_strx; |
| SubsectionMap &subsecMap = subsections[sym.n_sect - 1]; |
| uint32_t off = sym.n_value - sectionHeaders[sym.n_sect - 1].addr; |
| InputSection *subsec = findContainingSubsection(subsecMap, &off); |
| symbols[idx] = createDefined(sym, name, subsec, off); |
| } |
| } |
| |
| OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName, |
| StringRef sectName) |
| : InputFile(OpaqueKind, mb) { |
| InputSection *isec = make<InputSection>(); |
| isec->file = this; |
| isec->name = sectName.take_front(16); |
| isec->segname = segName.take_front(16); |
| const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); |
| isec->data = {buf, mb.getBufferSize()}; |
| subsections.push_back({{0, isec}}); |
| } |
| |
| ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName) |
| : InputFile(ObjKind, mb), modTime(modTime) { |
| this->archiveName = std::string(archiveName); |
| |
| auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); |
| auto *hdr = reinterpret_cast<const mach_header_64 *>(mb.getBufferStart()); |
| |
| if (const load_command *cmd = findCommand(hdr, LC_LINKER_OPTION)) { |
| auto *c = reinterpret_cast<const linker_option_command *>(cmd); |
| StringRef data{reinterpret_cast<const char *>(c + 1), |
| c->cmdsize - sizeof(linker_option_command)}; |
| parseLCLinkerOption(this, c->count, data); |
| } |
| |
| if (const load_command *cmd = findCommand(hdr, LC_SEGMENT_64)) { |
| auto *c = reinterpret_cast<const segment_command_64 *>(cmd); |
| sectionHeaders = ArrayRef<section_64>{ |
| reinterpret_cast<const section_64 *>(c + 1), c->nsects}; |
| parseSections(sectionHeaders); |
| } |
| |
| // TODO: Error on missing LC_SYMTAB? |
| if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) { |
| auto *c = reinterpret_cast<const symtab_command *>(cmd); |
| ArrayRef<structs::nlist_64> nList( |
| reinterpret_cast<const structs::nlist_64 *>(buf + c->symoff), c->nsyms); |
| const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; |
| bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS; |
| parseSymbols(nList, strtab, subsectionsViaSymbols); |
| } |
| |
| // The relocations may refer to the symbols, so we parse them after we have |
| // parsed all the symbols. |
| for (size_t i = 0, n = subsections.size(); i < n; ++i) |
| parseRelocations(sectionHeaders[i], subsections[i]); |
| |
| parseDebugInfo(); |
| } |
| |
| void ObjFile::parseDebugInfo() { |
| std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this); |
| if (!dObj) |
| return; |
| |
| auto *ctx = make<DWARFContext>( |
| std::move(dObj), "", |
| [&](Error err) { |
| warn(toString(this) + ": " + toString(std::move(err))); |
| }, |
| [&](Error warning) { |
| warn(toString(this) + ": " + toString(std::move(warning))); |
| }); |
| |
| // TODO: Since object files can contain a lot of DWARF info, we should verify |
| // that we are parsing just the info we need |
| const DWARFContext::compile_unit_range &units = ctx->compile_units(); |
| auto it = units.begin(); |
| compileUnit = it->get(); |
| assert(std::next(it) == units.end()); |
| } |
| |
| // The path can point to either a dylib or a .tbd file. |
| static Optional<DylibFile *> loadDylib(StringRef path, DylibFile *umbrella) { |
| Optional<MemoryBufferRef> mbref = readFile(path); |
| if (!mbref) { |
| error("could not read dylib file at " + path); |
| return {}; |
| } |
| |
| file_magic magic = identify_magic(mbref->getBuffer()); |
| if (magic == file_magic::tapi_file) |
| return makeDylibFromTAPI(*mbref, umbrella); |
| assert(magic == file_magic::macho_dynamically_linked_shared_lib); |
| return make<DylibFile>(*mbref, umbrella); |
| } |
| |
| // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with |
| // the first document storing child pointers to the rest of them. When we are |
| // processing a given TBD file, we store that top-level document here. When |
| // processing re-exports, we search its children for potentially matching |
| // documents in the same TBD file. Note that the children themselves don't |
| // point to further documents, i.e. this is a two-level tree. |
| // |
| // ld64 allows a TAPI re-export to reference documents nested within other TBD |
| // files, but that seems like a strange design, so this is an intentional |
| // deviation. |
| const InterfaceFile *currentTopLevelTapi = nullptr; |
| |
| // Re-exports can either refer to on-disk files, or to documents within .tbd |
| // files. |
| static Optional<DylibFile *> loadReexport(StringRef path, DylibFile *umbrella) { |
| if (path::is_absolute(path, path::Style::posix)) |
| for (StringRef root : config->systemLibraryRoots) |
| if (Optional<std::string> dylibPath = |
| resolveDylibPath((root + path).str())) |
| return loadDylib(*dylibPath, umbrella); |
| |
| // TODO: Expand @loader_path, @executable_path etc |
| |
| if (currentTopLevelTapi) { |
| for (InterfaceFile &child : |
| make_pointee_range(currentTopLevelTapi->documents())) { |
| if (path == child.getInstallName()) |
| return make<DylibFile>(child, umbrella); |
| assert(child.documents().empty()); |
| } |
| } |
| |
| if (Optional<std::string> dylibPath = resolveDylibPath(path)) |
| return loadDylib(*dylibPath, umbrella); |
| |
| error("unable to locate re-export with install name " + path); |
| return {}; |
| } |
| |
| DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella) |
| : InputFile(DylibKind, mb) { |
| if (umbrella == nullptr) |
| umbrella = this; |
| |
| auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); |
| auto *hdr = reinterpret_cast<const mach_header_64 *>(mb.getBufferStart()); |
| |
| // Initialize dylibName. |
| if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) { |
| auto *c = reinterpret_cast<const dylib_command *>(cmd); |
| dylibName = reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name); |
| } else { |
| error("dylib " + toString(this) + " missing LC_ID_DYLIB load command"); |
| return; |
| } |
| |
| // Initialize symbols. |
| // TODO: if a re-exported dylib is public (lives in /usr/lib or |
| // /System/Library/Frameworks), we should bind to its symbols directly |
| // instead of the re-exporting umbrella library. |
| if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) { |
| auto *c = reinterpret_cast<const dyld_info_command *>(cmd); |
| parseTrie(buf + c->export_off, c->export_size, |
| [&](const Twine &name, uint64_t flags) { |
| bool isWeakDef = flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION; |
| bool isTlv = flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL; |
| symbols.push_back(symtab->addDylib(saver.save(name), umbrella, |
| isWeakDef, isTlv)); |
| }); |
| } else { |
| error("LC_DYLD_INFO_ONLY not found in " + toString(this)); |
| return; |
| } |
| |
| if (hdr->flags & MH_NO_REEXPORTED_DYLIBS) |
| return; |
| |
| const uint8_t *p = |
| reinterpret_cast<const uint8_t *>(hdr) + sizeof(mach_header_64); |
| for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { |
| auto *cmd = reinterpret_cast<const load_command *>(p); |
| p += cmd->cmdsize; |
| if (cmd->cmd != LC_REEXPORT_DYLIB) |
| continue; |
| |
| auto *c = reinterpret_cast<const dylib_command *>(cmd); |
| StringRef reexportPath = |
| reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); |
| if (Optional<DylibFile *> reexport = loadReexport(reexportPath, umbrella)) |
| reexported.push_back(*reexport); |
| } |
| } |
| |
| DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella) |
| : InputFile(DylibKind, interface) { |
| if (umbrella == nullptr) |
| umbrella = this; |
| |
| dylibName = saver.save(interface.getInstallName()); |
| auto addSymbol = [&](const Twine &name) -> void { |
| symbols.push_back(symtab->addDylib(saver.save(name), umbrella, |
| /*isWeakDef=*/false, |
| /*isTlv=*/false)); |
| }; |
| // TODO(compnerd) filter out symbols based on the target platform |
| // TODO: handle weak defs, thread locals |
| for (const auto symbol : interface.symbols()) { |
| if (!symbol->getArchitectures().has(config->arch)) |
| continue; |
| |
| switch (symbol->getKind()) { |
| case SymbolKind::GlobalSymbol: |
| addSymbol(symbol->getName()); |
| break; |
| case SymbolKind::ObjectiveCClass: |
| // XXX ld64 only creates these symbols when -ObjC is passed in. We may |
| // want to emulate that. |
| addSymbol(objc::klass + symbol->getName()); |
| addSymbol(objc::metaclass + symbol->getName()); |
| break; |
| case SymbolKind::ObjectiveCClassEHType: |
| addSymbol(objc::ehtype + symbol->getName()); |
| break; |
| case SymbolKind::ObjectiveCInstanceVariable: |
| addSymbol(objc::ivar + symbol->getName()); |
| break; |
| } |
| } |
| |
| bool isTopLevelTapi = false; |
| if (currentTopLevelTapi == nullptr) { |
| currentTopLevelTapi = &interface; |
| isTopLevelTapi = true; |
| } |
| |
| for (InterfaceFileRef intfRef : interface.reexportedLibraries()) |
| if (Optional<DylibFile *> reexport = |
| loadReexport(intfRef.getInstallName(), umbrella)) |
| reexported.push_back(*reexport); |
| |
| if (isTopLevelTapi) |
| currentTopLevelTapi = nullptr; |
| } |
| |
| ArchiveFile::ArchiveFile(std::unique_ptr<llvm::object::Archive> &&f) |
| : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) { |
| for (const object::Archive::Symbol &sym : file->symbols()) |
| symtab->addLazy(sym.getName(), this, sym); |
| } |
| |
| void ArchiveFile::fetch(const object::Archive::Symbol &sym) { |
| object::Archive::Child c = |
| CHECK(sym.getMember(), toString(this) + |
| ": could not get the member for symbol " + |
| toMachOString(sym)); |
| |
| if (!seen.insert(c.getChildOffset()).second) |
| return; |
| |
| MemoryBufferRef mb = |
| CHECK(c.getMemoryBufferRef(), |
| toString(this) + |
| ": could not get the buffer for the member defining symbol " + |
| toMachOString(sym)); |
| |
| if (tar && c.getParent()->isThin()) |
| tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer()); |
| |
| uint32_t modTime = toTimeT( |
| CHECK(c.getLastModified(), toString(this) + |
| ": could not get the modification time " |
| "for the member defining symbol " + |
| toMachOString(sym))); |
| |
| // `sym` is owned by a LazySym, which will be replace<>() by make<ObjFile> |
| // and become invalid after that call. Copy it to the stack so we can refer |
| // to it later. |
| const object::Archive::Symbol sym_copy = sym; |
| |
| InputFile *file; |
| switch (identify_magic(mb.getBuffer())) { |
| case file_magic::macho_object: |
| file = make<ObjFile>(mb, modTime, getName()); |
| break; |
| case file_magic::bitcode: |
| file = make<BitcodeFile>(mb); |
| break; |
| default: |
| StringRef bufname = |
| CHECK(c.getName(), toString(this) + ": could not get buffer name"); |
| error(toString(this) + ": archive member " + bufname + |
| " has unhandled file type"); |
| return; |
| } |
| inputFiles.push_back(file); |
| |
| // ld64 doesn't demangle sym here even with -demangle. Match that, so |
| // intentionally no call to toMachOString() here. |
| printArchiveMemberLoad(sym_copy.getName(), file); |
| } |
| |
| BitcodeFile::BitcodeFile(MemoryBufferRef mbref) |
| : InputFile(BitcodeKind, mbref) { |
| obj = check(lto::InputFile::create(mbref)); |
| } |