| //===- VectorToLLVM.cpp - Conversion from Vector to the LLVM dialect ------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Conversion/VectorToLLVM/ConvertVectorToLLVM.h" |
| |
| #include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVM.h" |
| #include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVMPass.h" |
| #include "mlir/Dialect/LLVMIR/LLVMDialect.h" |
| #include "mlir/Dialect/StandardOps/IR/Ops.h" |
| #include "mlir/Dialect/Vector/VectorOps.h" |
| #include "mlir/IR/BuiltinTypes.h" |
| #include "mlir/Target/LLVMIR/TypeTranslation.h" |
| #include "mlir/Transforms/DialectConversion.h" |
| |
| using namespace mlir; |
| using namespace mlir::vector; |
| |
| // Helper to reduce vector type by one rank at front. |
| static VectorType reducedVectorTypeFront(VectorType tp) { |
| assert((tp.getRank() > 1) && "unlowerable vector type"); |
| return VectorType::get(tp.getShape().drop_front(), tp.getElementType()); |
| } |
| |
| // Helper to reduce vector type by *all* but one rank at back. |
| static VectorType reducedVectorTypeBack(VectorType tp) { |
| assert((tp.getRank() > 1) && "unlowerable vector type"); |
| return VectorType::get(tp.getShape().take_back(), tp.getElementType()); |
| } |
| |
| // Helper that picks the proper sequence for inserting. |
| static Value insertOne(ConversionPatternRewriter &rewriter, |
| LLVMTypeConverter &typeConverter, Location loc, |
| Value val1, Value val2, Type llvmType, int64_t rank, |
| int64_t pos) { |
| if (rank == 1) { |
| auto idxType = rewriter.getIndexType(); |
| auto constant = rewriter.create<LLVM::ConstantOp>( |
| loc, typeConverter.convertType(idxType), |
| rewriter.getIntegerAttr(idxType, pos)); |
| return rewriter.create<LLVM::InsertElementOp>(loc, llvmType, val1, val2, |
| constant); |
| } |
| return rewriter.create<LLVM::InsertValueOp>(loc, llvmType, val1, val2, |
| rewriter.getI64ArrayAttr(pos)); |
| } |
| |
| // Helper that picks the proper sequence for inserting. |
| static Value insertOne(PatternRewriter &rewriter, Location loc, Value from, |
| Value into, int64_t offset) { |
| auto vectorType = into.getType().cast<VectorType>(); |
| if (vectorType.getRank() > 1) |
| return rewriter.create<InsertOp>(loc, from, into, offset); |
| return rewriter.create<vector::InsertElementOp>( |
| loc, vectorType, from, into, |
| rewriter.create<ConstantIndexOp>(loc, offset)); |
| } |
| |
| // Helper that picks the proper sequence for extracting. |
| static Value extractOne(ConversionPatternRewriter &rewriter, |
| LLVMTypeConverter &typeConverter, Location loc, |
| Value val, Type llvmType, int64_t rank, int64_t pos) { |
| if (rank == 1) { |
| auto idxType = rewriter.getIndexType(); |
| auto constant = rewriter.create<LLVM::ConstantOp>( |
| loc, typeConverter.convertType(idxType), |
| rewriter.getIntegerAttr(idxType, pos)); |
| return rewriter.create<LLVM::ExtractElementOp>(loc, llvmType, val, |
| constant); |
| } |
| return rewriter.create<LLVM::ExtractValueOp>(loc, llvmType, val, |
| rewriter.getI64ArrayAttr(pos)); |
| } |
| |
| // Helper that picks the proper sequence for extracting. |
| static Value extractOne(PatternRewriter &rewriter, Location loc, Value vector, |
| int64_t offset) { |
| auto vectorType = vector.getType().cast<VectorType>(); |
| if (vectorType.getRank() > 1) |
| return rewriter.create<ExtractOp>(loc, vector, offset); |
| return rewriter.create<vector::ExtractElementOp>( |
| loc, vectorType.getElementType(), vector, |
| rewriter.create<ConstantIndexOp>(loc, offset)); |
| } |
| |
| // Helper that returns a subset of `arrayAttr` as a vector of int64_t. |
| // TODO: Better support for attribute subtype forwarding + slicing. |
| static SmallVector<int64_t, 4> getI64SubArray(ArrayAttr arrayAttr, |
| unsigned dropFront = 0, |
| unsigned dropBack = 0) { |
| assert(arrayAttr.size() > dropFront + dropBack && "Out of bounds"); |
| auto range = arrayAttr.getAsRange<IntegerAttr>(); |
| SmallVector<int64_t, 4> res; |
| res.reserve(arrayAttr.size() - dropFront - dropBack); |
| for (auto it = range.begin() + dropFront, eit = range.end() - dropBack; |
| it != eit; ++it) |
| res.push_back((*it).getValue().getSExtValue()); |
| return res; |
| } |
| |
| // Helper that returns a vector comparison that constructs a mask: |
| // mask = [0,1,..,n-1] + [o,o,..,o] < [b,b,..,b] |
| // |
| // NOTE: The LLVM::GetActiveLaneMaskOp intrinsic would provide an alternative, |
| // much more compact, IR for this operation, but LLVM eventually |
| // generates more elaborate instructions for this intrinsic since it |
| // is very conservative on the boundary conditions. |
| static Value buildVectorComparison(ConversionPatternRewriter &rewriter, |
| Operation *op, bool enableIndexOptimizations, |
| int64_t dim, Value b, Value *off = nullptr) { |
| auto loc = op->getLoc(); |
| // If we can assume all indices fit in 32-bit, we perform the vector |
| // comparison in 32-bit to get a higher degree of SIMD parallelism. |
| // Otherwise we perform the vector comparison using 64-bit indices. |
| Value indices; |
| Type idxType; |
| if (enableIndexOptimizations) { |
| indices = rewriter.create<ConstantOp>( |
| loc, rewriter.getI32VectorAttr( |
| llvm::to_vector<4>(llvm::seq<int32_t>(0, dim)))); |
| idxType = rewriter.getI32Type(); |
| } else { |
| indices = rewriter.create<ConstantOp>( |
| loc, rewriter.getI64VectorAttr( |
| llvm::to_vector<4>(llvm::seq<int64_t>(0, dim)))); |
| idxType = rewriter.getI64Type(); |
| } |
| // Add in an offset if requested. |
| if (off) { |
| Value o = rewriter.create<IndexCastOp>(loc, idxType, *off); |
| Value ov = rewriter.create<SplatOp>(loc, indices.getType(), o); |
| indices = rewriter.create<AddIOp>(loc, ov, indices); |
| } |
| // Construct the vector comparison. |
| Value bound = rewriter.create<IndexCastOp>(loc, idxType, b); |
| Value bounds = rewriter.create<SplatOp>(loc, indices.getType(), bound); |
| return rewriter.create<CmpIOp>(loc, CmpIPredicate::slt, indices, bounds); |
| } |
| |
| // Helper that returns data layout alignment of an operation with memref. |
| template <typename T> |
| LogicalResult getMemRefAlignment(LLVMTypeConverter &typeConverter, T op, |
| unsigned &align) { |
| Type elementTy = |
| typeConverter.convertType(op.getMemRefType().getElementType()); |
| if (!elementTy) |
| return failure(); |
| |
| // TODO: this should use the MLIR data layout when it becomes available and |
| // stop depending on translation. |
| llvm::LLVMContext llvmContext; |
| align = LLVM::TypeToLLVMIRTranslator(llvmContext) |
| .getPreferredAlignment(elementTy.cast<LLVM::LLVMType>(), |
| typeConverter.getDataLayout()); |
| return success(); |
| } |
| |
| // Helper that returns the base address of a memref. |
| static LogicalResult getBase(ConversionPatternRewriter &rewriter, Location loc, |
| Value memref, MemRefType memRefType, Value &base) { |
| // Inspect stride and offset structure. |
| // |
| // TODO: flat memory only for now, generalize |
| // |
| int64_t offset; |
| SmallVector<int64_t, 4> strides; |
| auto successStrides = getStridesAndOffset(memRefType, strides, offset); |
| if (failed(successStrides) || strides.size() != 1 || strides[0] != 1 || |
| offset != 0 || memRefType.getMemorySpace() != 0) |
| return failure(); |
| base = MemRefDescriptor(memref).alignedPtr(rewriter, loc); |
| return success(); |
| } |
| |
| // Helper that returns a pointer given a memref base. |
| static LogicalResult getBasePtr(ConversionPatternRewriter &rewriter, |
| Location loc, Value memref, |
| MemRefType memRefType, Value &ptr) { |
| Value base; |
| if (failed(getBase(rewriter, loc, memref, memRefType, base))) |
| return failure(); |
| auto pType = MemRefDescriptor(memref).getElementPtrType(); |
| ptr = rewriter.create<LLVM::GEPOp>(loc, pType, base); |
| return success(); |
| } |
| |
| // Helper that returns a bit-casted pointer given a memref base. |
| static LogicalResult getBasePtr(ConversionPatternRewriter &rewriter, |
| Location loc, Value memref, |
| MemRefType memRefType, Type type, Value &ptr) { |
| Value base; |
| if (failed(getBase(rewriter, loc, memref, memRefType, base))) |
| return failure(); |
| auto pType = type.template cast<LLVM::LLVMType>().getPointerTo(); |
| base = rewriter.create<LLVM::BitcastOp>(loc, pType, base); |
| ptr = rewriter.create<LLVM::GEPOp>(loc, pType, base); |
| return success(); |
| } |
| |
| // Helper that returns vector of pointers given a memref base and an index |
| // vector. |
| static LogicalResult getIndexedPtrs(ConversionPatternRewriter &rewriter, |
| Location loc, Value memref, Value indices, |
| MemRefType memRefType, VectorType vType, |
| Type iType, Value &ptrs) { |
| Value base; |
| if (failed(getBase(rewriter, loc, memref, memRefType, base))) |
| return failure(); |
| auto pType = MemRefDescriptor(memref).getElementPtrType(); |
| auto ptrsType = LLVM::LLVMType::getVectorTy(pType, vType.getDimSize(0)); |
| ptrs = rewriter.create<LLVM::GEPOp>(loc, ptrsType, base, indices); |
| return success(); |
| } |
| |
| static LogicalResult |
| replaceTransferOpWithLoadOrStore(ConversionPatternRewriter &rewriter, |
| LLVMTypeConverter &typeConverter, Location loc, |
| TransferReadOp xferOp, |
| ArrayRef<Value> operands, Value dataPtr) { |
| unsigned align; |
| if (failed(getMemRefAlignment(typeConverter, xferOp, align))) |
| return failure(); |
| rewriter.replaceOpWithNewOp<LLVM::LoadOp>(xferOp, dataPtr, align); |
| return success(); |
| } |
| |
| static LogicalResult |
| replaceTransferOpWithMasked(ConversionPatternRewriter &rewriter, |
| LLVMTypeConverter &typeConverter, Location loc, |
| TransferReadOp xferOp, ArrayRef<Value> operands, |
| Value dataPtr, Value mask) { |
| auto toLLVMTy = [&](Type t) { return typeConverter.convertType(t); }; |
| VectorType fillType = xferOp.getVectorType(); |
| Value fill = rewriter.create<SplatOp>(loc, fillType, xferOp.padding()); |
| fill = rewriter.create<LLVM::DialectCastOp>(loc, toLLVMTy(fillType), fill); |
| |
| Type vecTy = typeConverter.convertType(xferOp.getVectorType()); |
| if (!vecTy) |
| return failure(); |
| |
| unsigned align; |
| if (failed(getMemRefAlignment(typeConverter, xferOp, align))) |
| return failure(); |
| |
| rewriter.replaceOpWithNewOp<LLVM::MaskedLoadOp>( |
| xferOp, vecTy, dataPtr, mask, ValueRange{fill}, |
| rewriter.getI32IntegerAttr(align)); |
| return success(); |
| } |
| |
| static LogicalResult |
| replaceTransferOpWithLoadOrStore(ConversionPatternRewriter &rewriter, |
| LLVMTypeConverter &typeConverter, Location loc, |
| TransferWriteOp xferOp, |
| ArrayRef<Value> operands, Value dataPtr) { |
| unsigned align; |
| if (failed(getMemRefAlignment(typeConverter, xferOp, align))) |
| return failure(); |
| auto adaptor = TransferWriteOpAdaptor(operands); |
| rewriter.replaceOpWithNewOp<LLVM::StoreOp>(xferOp, adaptor.vector(), dataPtr, |
| align); |
| return success(); |
| } |
| |
| static LogicalResult |
| replaceTransferOpWithMasked(ConversionPatternRewriter &rewriter, |
| LLVMTypeConverter &typeConverter, Location loc, |
| TransferWriteOp xferOp, ArrayRef<Value> operands, |
| Value dataPtr, Value mask) { |
| unsigned align; |
| if (failed(getMemRefAlignment(typeConverter, xferOp, align))) |
| return failure(); |
| |
| auto adaptor = TransferWriteOpAdaptor(operands); |
| rewriter.replaceOpWithNewOp<LLVM::MaskedStoreOp>( |
| xferOp, adaptor.vector(), dataPtr, mask, |
| rewriter.getI32IntegerAttr(align)); |
| return success(); |
| } |
| |
| static TransferReadOpAdaptor getTransferOpAdapter(TransferReadOp xferOp, |
| ArrayRef<Value> operands) { |
| return TransferReadOpAdaptor(operands); |
| } |
| |
| static TransferWriteOpAdaptor getTransferOpAdapter(TransferWriteOp xferOp, |
| ArrayRef<Value> operands) { |
| return TransferWriteOpAdaptor(operands); |
| } |
| |
| namespace { |
| |
| /// Conversion pattern for a vector.matrix_multiply. |
| /// This is lowered directly to the proper llvm.intr.matrix.multiply. |
| class VectorMatmulOpConversion : public ConvertToLLVMPattern { |
| public: |
| explicit VectorMatmulOpConversion(MLIRContext *context, |
| LLVMTypeConverter &typeConverter) |
| : ConvertToLLVMPattern(vector::MatmulOp::getOperationName(), context, |
| typeConverter) {} |
| |
| LogicalResult |
| matchAndRewrite(Operation *op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| auto matmulOp = cast<vector::MatmulOp>(op); |
| auto adaptor = vector::MatmulOpAdaptor(operands); |
| rewriter.replaceOpWithNewOp<LLVM::MatrixMultiplyOp>( |
| op, typeConverter->convertType(matmulOp.res().getType()), adaptor.lhs(), |
| adaptor.rhs(), matmulOp.lhs_rows(), matmulOp.lhs_columns(), |
| matmulOp.rhs_columns()); |
| return success(); |
| } |
| }; |
| |
| /// Conversion pattern for a vector.flat_transpose. |
| /// This is lowered directly to the proper llvm.intr.matrix.transpose. |
| class VectorFlatTransposeOpConversion : public ConvertToLLVMPattern { |
| public: |
| explicit VectorFlatTransposeOpConversion(MLIRContext *context, |
| LLVMTypeConverter &typeConverter) |
| : ConvertToLLVMPattern(vector::FlatTransposeOp::getOperationName(), |
| context, typeConverter) {} |
| |
| LogicalResult |
| matchAndRewrite(Operation *op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| auto transOp = cast<vector::FlatTransposeOp>(op); |
| auto adaptor = vector::FlatTransposeOpAdaptor(operands); |
| rewriter.replaceOpWithNewOp<LLVM::MatrixTransposeOp>( |
| transOp, typeConverter->convertType(transOp.res().getType()), |
| adaptor.matrix(), transOp.rows(), transOp.columns()); |
| return success(); |
| } |
| }; |
| |
| /// Conversion pattern for a vector.maskedload. |
| class VectorMaskedLoadOpConversion : public ConvertToLLVMPattern { |
| public: |
| explicit VectorMaskedLoadOpConversion(MLIRContext *context, |
| LLVMTypeConverter &typeConverter) |
| : ConvertToLLVMPattern(vector::MaskedLoadOp::getOperationName(), context, |
| typeConverter) {} |
| |
| LogicalResult |
| matchAndRewrite(Operation *op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| auto loc = op->getLoc(); |
| auto load = cast<vector::MaskedLoadOp>(op); |
| auto adaptor = vector::MaskedLoadOpAdaptor(operands); |
| |
| // Resolve alignment. |
| unsigned align; |
| if (failed(getMemRefAlignment(*getTypeConverter(), load, align))) |
| return failure(); |
| |
| auto vtype = typeConverter->convertType(load.getResultVectorType()); |
| Value ptr; |
| if (failed(getBasePtr(rewriter, loc, adaptor.base(), load.getMemRefType(), |
| vtype, ptr))) |
| return failure(); |
| |
| rewriter.replaceOpWithNewOp<LLVM::MaskedLoadOp>( |
| load, vtype, ptr, adaptor.mask(), adaptor.pass_thru(), |
| rewriter.getI32IntegerAttr(align)); |
| return success(); |
| } |
| }; |
| |
| /// Conversion pattern for a vector.maskedstore. |
| class VectorMaskedStoreOpConversion : public ConvertToLLVMPattern { |
| public: |
| explicit VectorMaskedStoreOpConversion(MLIRContext *context, |
| LLVMTypeConverter &typeConverter) |
| : ConvertToLLVMPattern(vector::MaskedStoreOp::getOperationName(), context, |
| typeConverter) {} |
| |
| LogicalResult |
| matchAndRewrite(Operation *op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| auto loc = op->getLoc(); |
| auto store = cast<vector::MaskedStoreOp>(op); |
| auto adaptor = vector::MaskedStoreOpAdaptor(operands); |
| |
| // Resolve alignment. |
| unsigned align; |
| if (failed(getMemRefAlignment(*getTypeConverter(), store, align))) |
| return failure(); |
| |
| auto vtype = typeConverter->convertType(store.getValueVectorType()); |
| Value ptr; |
| if (failed(getBasePtr(rewriter, loc, adaptor.base(), store.getMemRefType(), |
| vtype, ptr))) |
| return failure(); |
| |
| rewriter.replaceOpWithNewOp<LLVM::MaskedStoreOp>( |
| store, adaptor.value(), ptr, adaptor.mask(), |
| rewriter.getI32IntegerAttr(align)); |
| return success(); |
| } |
| }; |
| |
| /// Conversion pattern for a vector.gather. |
| class VectorGatherOpConversion : public ConvertToLLVMPattern { |
| public: |
| explicit VectorGatherOpConversion(MLIRContext *context, |
| LLVMTypeConverter &typeConverter) |
| : ConvertToLLVMPattern(vector::GatherOp::getOperationName(), context, |
| typeConverter) {} |
| |
| LogicalResult |
| matchAndRewrite(Operation *op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| auto loc = op->getLoc(); |
| auto gather = cast<vector::GatherOp>(op); |
| auto adaptor = vector::GatherOpAdaptor(operands); |
| |
| // Resolve alignment. |
| unsigned align; |
| if (failed(getMemRefAlignment(*getTypeConverter(), gather, align))) |
| return failure(); |
| |
| // Get index ptrs. |
| VectorType vType = gather.getResultVectorType(); |
| Type iType = gather.getIndicesVectorType().getElementType(); |
| Value ptrs; |
| if (failed(getIndexedPtrs(rewriter, loc, adaptor.base(), adaptor.indices(), |
| gather.getMemRefType(), vType, iType, ptrs))) |
| return failure(); |
| |
| // Replace with the gather intrinsic. |
| rewriter.replaceOpWithNewOp<LLVM::masked_gather>( |
| gather, typeConverter->convertType(vType), ptrs, adaptor.mask(), |
| adaptor.pass_thru(), rewriter.getI32IntegerAttr(align)); |
| return success(); |
| } |
| }; |
| |
| /// Conversion pattern for a vector.scatter. |
| class VectorScatterOpConversion : public ConvertToLLVMPattern { |
| public: |
| explicit VectorScatterOpConversion(MLIRContext *context, |
| LLVMTypeConverter &typeConverter) |
| : ConvertToLLVMPattern(vector::ScatterOp::getOperationName(), context, |
| typeConverter) {} |
| |
| LogicalResult |
| matchAndRewrite(Operation *op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| auto loc = op->getLoc(); |
| auto scatter = cast<vector::ScatterOp>(op); |
| auto adaptor = vector::ScatterOpAdaptor(operands); |
| |
| // Resolve alignment. |
| unsigned align; |
| if (failed(getMemRefAlignment(*getTypeConverter(), scatter, align))) |
| return failure(); |
| |
| // Get index ptrs. |
| VectorType vType = scatter.getValueVectorType(); |
| Type iType = scatter.getIndicesVectorType().getElementType(); |
| Value ptrs; |
| if (failed(getIndexedPtrs(rewriter, loc, adaptor.base(), adaptor.indices(), |
| scatter.getMemRefType(), vType, iType, ptrs))) |
| return failure(); |
| |
| // Replace with the scatter intrinsic. |
| rewriter.replaceOpWithNewOp<LLVM::masked_scatter>( |
| scatter, adaptor.value(), ptrs, adaptor.mask(), |
| rewriter.getI32IntegerAttr(align)); |
| return success(); |
| } |
| }; |
| |
| /// Conversion pattern for a vector.expandload. |
| class VectorExpandLoadOpConversion : public ConvertToLLVMPattern { |
| public: |
| explicit VectorExpandLoadOpConversion(MLIRContext *context, |
| LLVMTypeConverter &typeConverter) |
| : ConvertToLLVMPattern(vector::ExpandLoadOp::getOperationName(), context, |
| typeConverter) {} |
| |
| LogicalResult |
| matchAndRewrite(Operation *op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| auto loc = op->getLoc(); |
| auto expand = cast<vector::ExpandLoadOp>(op); |
| auto adaptor = vector::ExpandLoadOpAdaptor(operands); |
| |
| Value ptr; |
| if (failed(getBasePtr(rewriter, loc, adaptor.base(), expand.getMemRefType(), |
| ptr))) |
| return failure(); |
| |
| auto vType = expand.getResultVectorType(); |
| rewriter.replaceOpWithNewOp<LLVM::masked_expandload>( |
| op, typeConverter->convertType(vType), ptr, adaptor.mask(), |
| adaptor.pass_thru()); |
| return success(); |
| } |
| }; |
| |
| /// Conversion pattern for a vector.compressstore. |
| class VectorCompressStoreOpConversion : public ConvertToLLVMPattern { |
| public: |
| explicit VectorCompressStoreOpConversion(MLIRContext *context, |
| LLVMTypeConverter &typeConverter) |
| : ConvertToLLVMPattern(vector::CompressStoreOp::getOperationName(), |
| context, typeConverter) {} |
| |
| LogicalResult |
| matchAndRewrite(Operation *op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| auto loc = op->getLoc(); |
| auto compress = cast<vector::CompressStoreOp>(op); |
| auto adaptor = vector::CompressStoreOpAdaptor(operands); |
| |
| Value ptr; |
| if (failed(getBasePtr(rewriter, loc, adaptor.base(), |
| compress.getMemRefType(), ptr))) |
| return failure(); |
| |
| rewriter.replaceOpWithNewOp<LLVM::masked_compressstore>( |
| op, adaptor.value(), ptr, adaptor.mask()); |
| return success(); |
| } |
| }; |
| |
| /// Conversion pattern for all vector reductions. |
| class VectorReductionOpConversion : public ConvertToLLVMPattern { |
| public: |
| explicit VectorReductionOpConversion(MLIRContext *context, |
| LLVMTypeConverter &typeConverter, |
| bool reassociateFPRed) |
| : ConvertToLLVMPattern(vector::ReductionOp::getOperationName(), context, |
| typeConverter), |
| reassociateFPReductions(reassociateFPRed) {} |
| |
| LogicalResult |
| matchAndRewrite(Operation *op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| auto reductionOp = cast<vector::ReductionOp>(op); |
| auto kind = reductionOp.kind(); |
| Type eltType = reductionOp.dest().getType(); |
| Type llvmType = typeConverter->convertType(eltType); |
| if (eltType.isIntOrIndex()) { |
| // Integer reductions: add/mul/min/max/and/or/xor. |
| if (kind == "add") |
| rewriter.replaceOpWithNewOp<LLVM::vector_reduce_add>( |
| op, llvmType, operands[0]); |
| else if (kind == "mul") |
| rewriter.replaceOpWithNewOp<LLVM::vector_reduce_mul>( |
| op, llvmType, operands[0]); |
| else if (kind == "min" && |
| (eltType.isIndex() || eltType.isUnsignedInteger())) |
| rewriter.replaceOpWithNewOp<LLVM::vector_reduce_umin>( |
| op, llvmType, operands[0]); |
| else if (kind == "min") |
| rewriter.replaceOpWithNewOp<LLVM::vector_reduce_smin>( |
| op, llvmType, operands[0]); |
| else if (kind == "max" && |
| (eltType.isIndex() || eltType.isUnsignedInteger())) |
| rewriter.replaceOpWithNewOp<LLVM::vector_reduce_umax>( |
| op, llvmType, operands[0]); |
| else if (kind == "max") |
| rewriter.replaceOpWithNewOp<LLVM::vector_reduce_smax>( |
| op, llvmType, operands[0]); |
| else if (kind == "and") |
| rewriter.replaceOpWithNewOp<LLVM::vector_reduce_and>( |
| op, llvmType, operands[0]); |
| else if (kind == "or") |
| rewriter.replaceOpWithNewOp<LLVM::vector_reduce_or>( |
| op, llvmType, operands[0]); |
| else if (kind == "xor") |
| rewriter.replaceOpWithNewOp<LLVM::vector_reduce_xor>( |
| op, llvmType, operands[0]); |
| else |
| return failure(); |
| return success(); |
| } |
| |
| if (!eltType.isa<FloatType>()) |
| return failure(); |
| |
| // Floating-point reductions: add/mul/min/max |
| if (kind == "add") { |
| // Optional accumulator (or zero). |
| Value acc = operands.size() > 1 ? operands[1] |
| : rewriter.create<LLVM::ConstantOp>( |
| op->getLoc(), llvmType, |
| rewriter.getZeroAttr(eltType)); |
| rewriter.replaceOpWithNewOp<LLVM::vector_reduce_fadd>( |
| op, llvmType, acc, operands[0], |
| rewriter.getBoolAttr(reassociateFPReductions)); |
| } else if (kind == "mul") { |
| // Optional accumulator (or one). |
| Value acc = operands.size() > 1 |
| ? operands[1] |
| : rewriter.create<LLVM::ConstantOp>( |
| op->getLoc(), llvmType, |
| rewriter.getFloatAttr(eltType, 1.0)); |
| rewriter.replaceOpWithNewOp<LLVM::vector_reduce_fmul>( |
| op, llvmType, acc, operands[0], |
| rewriter.getBoolAttr(reassociateFPReductions)); |
| } else if (kind == "min") |
| rewriter.replaceOpWithNewOp<LLVM::vector_reduce_fmin>(op, llvmType, |
| operands[0]); |
| else if (kind == "max") |
| rewriter.replaceOpWithNewOp<LLVM::vector_reduce_fmax>(op, llvmType, |
| operands[0]); |
| else |
| return failure(); |
| return success(); |
| } |
| |
| private: |
| const bool reassociateFPReductions; |
| }; |
| |
| /// Conversion pattern for a vector.create_mask (1-D only). |
| class VectorCreateMaskOpConversion : public ConvertToLLVMPattern { |
| public: |
| explicit VectorCreateMaskOpConversion(MLIRContext *context, |
| LLVMTypeConverter &typeConverter, |
| bool enableIndexOpt) |
| : ConvertToLLVMPattern(vector::CreateMaskOp::getOperationName(), context, |
| typeConverter), |
| enableIndexOptimizations(enableIndexOpt) {} |
| |
| LogicalResult |
| matchAndRewrite(Operation *op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| auto dstType = op->getResult(0).getType().cast<VectorType>(); |
| int64_t rank = dstType.getRank(); |
| if (rank == 1) { |
| rewriter.replaceOp( |
| op, buildVectorComparison(rewriter, op, enableIndexOptimizations, |
| dstType.getDimSize(0), operands[0])); |
| return success(); |
| } |
| return failure(); |
| } |
| |
| private: |
| const bool enableIndexOptimizations; |
| }; |
| |
| class VectorShuffleOpConversion : public ConvertToLLVMPattern { |
| public: |
| explicit VectorShuffleOpConversion(MLIRContext *context, |
| LLVMTypeConverter &typeConverter) |
| : ConvertToLLVMPattern(vector::ShuffleOp::getOperationName(), context, |
| typeConverter) {} |
| |
| LogicalResult |
| matchAndRewrite(Operation *op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| auto loc = op->getLoc(); |
| auto adaptor = vector::ShuffleOpAdaptor(operands); |
| auto shuffleOp = cast<vector::ShuffleOp>(op); |
| auto v1Type = shuffleOp.getV1VectorType(); |
| auto v2Type = shuffleOp.getV2VectorType(); |
| auto vectorType = shuffleOp.getVectorType(); |
| Type llvmType = typeConverter->convertType(vectorType); |
| auto maskArrayAttr = shuffleOp.mask(); |
| |
| // Bail if result type cannot be lowered. |
| if (!llvmType) |
| return failure(); |
| |
| // Get rank and dimension sizes. |
| int64_t rank = vectorType.getRank(); |
| assert(v1Type.getRank() == rank); |
| assert(v2Type.getRank() == rank); |
| int64_t v1Dim = v1Type.getDimSize(0); |
| |
| // For rank 1, where both operands have *exactly* the same vector type, |
| // there is direct shuffle support in LLVM. Use it! |
| if (rank == 1 && v1Type == v2Type) { |
| Value shuffle = rewriter.create<LLVM::ShuffleVectorOp>( |
| loc, adaptor.v1(), adaptor.v2(), maskArrayAttr); |
| rewriter.replaceOp(op, shuffle); |
| return success(); |
| } |
| |
| // For all other cases, insert the individual values individually. |
| Value insert = rewriter.create<LLVM::UndefOp>(loc, llvmType); |
| int64_t insPos = 0; |
| for (auto en : llvm::enumerate(maskArrayAttr)) { |
| int64_t extPos = en.value().cast<IntegerAttr>().getInt(); |
| Value value = adaptor.v1(); |
| if (extPos >= v1Dim) { |
| extPos -= v1Dim; |
| value = adaptor.v2(); |
| } |
| Value extract = extractOne(rewriter, *getTypeConverter(), loc, value, |
| llvmType, rank, extPos); |
| insert = insertOne(rewriter, *getTypeConverter(), loc, insert, extract, |
| llvmType, rank, insPos++); |
| } |
| rewriter.replaceOp(op, insert); |
| return success(); |
| } |
| }; |
| |
| class VectorExtractElementOpConversion : public ConvertToLLVMPattern { |
| public: |
| explicit VectorExtractElementOpConversion(MLIRContext *context, |
| LLVMTypeConverter &typeConverter) |
| : ConvertToLLVMPattern(vector::ExtractElementOp::getOperationName(), |
| context, typeConverter) {} |
| |
| LogicalResult |
| matchAndRewrite(Operation *op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| auto adaptor = vector::ExtractElementOpAdaptor(operands); |
| auto extractEltOp = cast<vector::ExtractElementOp>(op); |
| auto vectorType = extractEltOp.getVectorType(); |
| auto llvmType = typeConverter->convertType(vectorType.getElementType()); |
| |
| // Bail if result type cannot be lowered. |
| if (!llvmType) |
| return failure(); |
| |
| rewriter.replaceOpWithNewOp<LLVM::ExtractElementOp>( |
| op, llvmType, adaptor.vector(), adaptor.position()); |
| return success(); |
| } |
| }; |
| |
| class VectorExtractOpConversion : public ConvertToLLVMPattern { |
| public: |
| explicit VectorExtractOpConversion(MLIRContext *context, |
| LLVMTypeConverter &typeConverter) |
| : ConvertToLLVMPattern(vector::ExtractOp::getOperationName(), context, |
| typeConverter) {} |
| |
| LogicalResult |
| matchAndRewrite(Operation *op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| auto loc = op->getLoc(); |
| auto adaptor = vector::ExtractOpAdaptor(operands); |
| auto extractOp = cast<vector::ExtractOp>(op); |
| auto vectorType = extractOp.getVectorType(); |
| auto resultType = extractOp.getResult().getType(); |
| auto llvmResultType = typeConverter->convertType(resultType); |
| auto positionArrayAttr = extractOp.position(); |
| |
| // Bail if result type cannot be lowered. |
| if (!llvmResultType) |
| return failure(); |
| |
| // One-shot extraction of vector from array (only requires extractvalue). |
| if (resultType.isa<VectorType>()) { |
| Value extracted = rewriter.create<LLVM::ExtractValueOp>( |
| loc, llvmResultType, adaptor.vector(), positionArrayAttr); |
| rewriter.replaceOp(op, extracted); |
| return success(); |
| } |
| |
| // Potential extraction of 1-D vector from array. |
| auto *context = op->getContext(); |
| Value extracted = adaptor.vector(); |
| auto positionAttrs = positionArrayAttr.getValue(); |
| if (positionAttrs.size() > 1) { |
| auto oneDVectorType = reducedVectorTypeBack(vectorType); |
| auto nMinusOnePositionAttrs = |
| ArrayAttr::get(positionAttrs.drop_back(), context); |
| extracted = rewriter.create<LLVM::ExtractValueOp>( |
| loc, typeConverter->convertType(oneDVectorType), extracted, |
| nMinusOnePositionAttrs); |
| } |
| |
| // Remaining extraction of element from 1-D LLVM vector |
| auto position = positionAttrs.back().cast<IntegerAttr>(); |
| auto i64Type = LLVM::LLVMType::getInt64Ty(rewriter.getContext()); |
| auto constant = rewriter.create<LLVM::ConstantOp>(loc, i64Type, position); |
| extracted = |
| rewriter.create<LLVM::ExtractElementOp>(loc, extracted, constant); |
| rewriter.replaceOp(op, extracted); |
| |
| return success(); |
| } |
| }; |
| |
| /// Conversion pattern that turns a vector.fma on a 1-D vector |
| /// into an llvm.intr.fmuladd. This is a trivial 1-1 conversion. |
| /// This does not match vectors of n >= 2 rank. |
| /// |
| /// Example: |
| /// ``` |
| /// vector.fma %a, %a, %a : vector<8xf32> |
| /// ``` |
| /// is converted to: |
| /// ``` |
| /// llvm.intr.fmuladd %va, %va, %va: |
| /// (!llvm<"<8 x float>">, !llvm<"<8 x float>">, !llvm<"<8 x float>">) |
| /// -> !llvm<"<8 x float>"> |
| /// ``` |
| class VectorFMAOp1DConversion : public ConvertToLLVMPattern { |
| public: |
| explicit VectorFMAOp1DConversion(MLIRContext *context, |
| LLVMTypeConverter &typeConverter) |
| : ConvertToLLVMPattern(vector::FMAOp::getOperationName(), context, |
| typeConverter) {} |
| |
| LogicalResult |
| matchAndRewrite(Operation *op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| auto adaptor = vector::FMAOpAdaptor(operands); |
| vector::FMAOp fmaOp = cast<vector::FMAOp>(op); |
| VectorType vType = fmaOp.getVectorType(); |
| if (vType.getRank() != 1) |
| return failure(); |
| rewriter.replaceOpWithNewOp<LLVM::FMulAddOp>(op, adaptor.lhs(), |
| adaptor.rhs(), adaptor.acc()); |
| return success(); |
| } |
| }; |
| |
| class VectorInsertElementOpConversion : public ConvertToLLVMPattern { |
| public: |
| explicit VectorInsertElementOpConversion(MLIRContext *context, |
| LLVMTypeConverter &typeConverter) |
| : ConvertToLLVMPattern(vector::InsertElementOp::getOperationName(), |
| context, typeConverter) {} |
| |
| LogicalResult |
| matchAndRewrite(Operation *op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| auto adaptor = vector::InsertElementOpAdaptor(operands); |
| auto insertEltOp = cast<vector::InsertElementOp>(op); |
| auto vectorType = insertEltOp.getDestVectorType(); |
| auto llvmType = typeConverter->convertType(vectorType); |
| |
| // Bail if result type cannot be lowered. |
| if (!llvmType) |
| return failure(); |
| |
| rewriter.replaceOpWithNewOp<LLVM::InsertElementOp>( |
| op, llvmType, adaptor.dest(), adaptor.source(), adaptor.position()); |
| return success(); |
| } |
| }; |
| |
| class VectorInsertOpConversion : public ConvertToLLVMPattern { |
| public: |
| explicit VectorInsertOpConversion(MLIRContext *context, |
| LLVMTypeConverter &typeConverter) |
| : ConvertToLLVMPattern(vector::InsertOp::getOperationName(), context, |
| typeConverter) {} |
| |
| LogicalResult |
| matchAndRewrite(Operation *op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| auto loc = op->getLoc(); |
| auto adaptor = vector::InsertOpAdaptor(operands); |
| auto insertOp = cast<vector::InsertOp>(op); |
| auto sourceType = insertOp.getSourceType(); |
| auto destVectorType = insertOp.getDestVectorType(); |
| auto llvmResultType = typeConverter->convertType(destVectorType); |
| auto positionArrayAttr = insertOp.position(); |
| |
| // Bail if result type cannot be lowered. |
| if (!llvmResultType) |
| return failure(); |
| |
| // One-shot insertion of a vector into an array (only requires insertvalue). |
| if (sourceType.isa<VectorType>()) { |
| Value inserted = rewriter.create<LLVM::InsertValueOp>( |
| loc, llvmResultType, adaptor.dest(), adaptor.source(), |
| positionArrayAttr); |
| rewriter.replaceOp(op, inserted); |
| return success(); |
| } |
| |
| // Potential extraction of 1-D vector from array. |
| auto *context = op->getContext(); |
| Value extracted = adaptor.dest(); |
| auto positionAttrs = positionArrayAttr.getValue(); |
| auto position = positionAttrs.back().cast<IntegerAttr>(); |
| auto oneDVectorType = destVectorType; |
| if (positionAttrs.size() > 1) { |
| oneDVectorType = reducedVectorTypeBack(destVectorType); |
| auto nMinusOnePositionAttrs = |
| ArrayAttr::get(positionAttrs.drop_back(), context); |
| extracted = rewriter.create<LLVM::ExtractValueOp>( |
| loc, typeConverter->convertType(oneDVectorType), extracted, |
| nMinusOnePositionAttrs); |
| } |
| |
| // Insertion of an element into a 1-D LLVM vector. |
| auto i64Type = LLVM::LLVMType::getInt64Ty(rewriter.getContext()); |
| auto constant = rewriter.create<LLVM::ConstantOp>(loc, i64Type, position); |
| Value inserted = rewriter.create<LLVM::InsertElementOp>( |
| loc, typeConverter->convertType(oneDVectorType), extracted, |
| adaptor.source(), constant); |
| |
| // Potential insertion of resulting 1-D vector into array. |
| if (positionAttrs.size() > 1) { |
| auto nMinusOnePositionAttrs = |
| ArrayAttr::get(positionAttrs.drop_back(), context); |
| inserted = rewriter.create<LLVM::InsertValueOp>(loc, llvmResultType, |
| adaptor.dest(), inserted, |
| nMinusOnePositionAttrs); |
| } |
| |
| rewriter.replaceOp(op, inserted); |
| return success(); |
| } |
| }; |
| |
| /// Rank reducing rewrite for n-D FMA into (n-1)-D FMA where n > 1. |
| /// |
| /// Example: |
| /// ``` |
| /// %d = vector.fma %a, %b, %c : vector<2x4xf32> |
| /// ``` |
| /// is rewritten into: |
| /// ``` |
| /// %r = splat %f0: vector<2x4xf32> |
| /// %va = vector.extractvalue %a[0] : vector<2x4xf32> |
| /// %vb = vector.extractvalue %b[0] : vector<2x4xf32> |
| /// %vc = vector.extractvalue %c[0] : vector<2x4xf32> |
| /// %vd = vector.fma %va, %vb, %vc : vector<4xf32> |
| /// %r2 = vector.insertvalue %vd, %r[0] : vector<4xf32> into vector<2x4xf32> |
| /// %va2 = vector.extractvalue %a2[1] : vector<2x4xf32> |
| /// %vb2 = vector.extractvalue %b2[1] : vector<2x4xf32> |
| /// %vc2 = vector.extractvalue %c2[1] : vector<2x4xf32> |
| /// %vd2 = vector.fma %va2, %vb2, %vc2 : vector<4xf32> |
| /// %r3 = vector.insertvalue %vd2, %r2[1] : vector<4xf32> into vector<2x4xf32> |
| /// // %r3 holds the final value. |
| /// ``` |
| class VectorFMAOpNDRewritePattern : public OpRewritePattern<FMAOp> { |
| public: |
| using OpRewritePattern<FMAOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(FMAOp op, |
| PatternRewriter &rewriter) const override { |
| auto vType = op.getVectorType(); |
| if (vType.getRank() < 2) |
| return failure(); |
| |
| auto loc = op.getLoc(); |
| auto elemType = vType.getElementType(); |
| Value zero = rewriter.create<ConstantOp>(loc, elemType, |
| rewriter.getZeroAttr(elemType)); |
| Value desc = rewriter.create<SplatOp>(loc, vType, zero); |
| for (int64_t i = 0, e = vType.getShape().front(); i != e; ++i) { |
| Value extrLHS = rewriter.create<ExtractOp>(loc, op.lhs(), i); |
| Value extrRHS = rewriter.create<ExtractOp>(loc, op.rhs(), i); |
| Value extrACC = rewriter.create<ExtractOp>(loc, op.acc(), i); |
| Value fma = rewriter.create<FMAOp>(loc, extrLHS, extrRHS, extrACC); |
| desc = rewriter.create<InsertOp>(loc, fma, desc, i); |
| } |
| rewriter.replaceOp(op, desc); |
| return success(); |
| } |
| }; |
| |
| // When ranks are different, InsertStridedSlice needs to extract a properly |
| // ranked vector from the destination vector into which to insert. This pattern |
| // only takes care of this part and forwards the rest of the conversion to |
| // another pattern that converts InsertStridedSlice for operands of the same |
| // rank. |
| // |
| // RewritePattern for InsertStridedSliceOp where source and destination vectors |
| // have different ranks. In this case: |
| // 1. the proper subvector is extracted from the destination vector |
| // 2. a new InsertStridedSlice op is created to insert the source in the |
| // destination subvector |
| // 3. the destination subvector is inserted back in the proper place |
| // 4. the op is replaced by the result of step 3. |
| // The new InsertStridedSlice from step 2. will be picked up by a |
| // `VectorInsertStridedSliceOpSameRankRewritePattern`. |
| class VectorInsertStridedSliceOpDifferentRankRewritePattern |
| : public OpRewritePattern<InsertStridedSliceOp> { |
| public: |
| using OpRewritePattern<InsertStridedSliceOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(InsertStridedSliceOp op, |
| PatternRewriter &rewriter) const override { |
| auto srcType = op.getSourceVectorType(); |
| auto dstType = op.getDestVectorType(); |
| |
| if (op.offsets().getValue().empty()) |
| return failure(); |
| |
| auto loc = op.getLoc(); |
| int64_t rankDiff = dstType.getRank() - srcType.getRank(); |
| assert(rankDiff >= 0); |
| if (rankDiff == 0) |
| return failure(); |
| |
| int64_t rankRest = dstType.getRank() - rankDiff; |
| // Extract / insert the subvector of matching rank and InsertStridedSlice |
| // on it. |
| Value extracted = |
| rewriter.create<ExtractOp>(loc, op.dest(), |
| getI64SubArray(op.offsets(), /*dropFront=*/0, |
| /*dropBack=*/rankRest)); |
| // A different pattern will kick in for InsertStridedSlice with matching |
| // ranks. |
| auto stridedSliceInnerOp = rewriter.create<InsertStridedSliceOp>( |
| loc, op.source(), extracted, |
| getI64SubArray(op.offsets(), /*dropFront=*/rankDiff), |
| getI64SubArray(op.strides(), /*dropFront=*/0)); |
| rewriter.replaceOpWithNewOp<InsertOp>( |
| op, stridedSliceInnerOp.getResult(), op.dest(), |
| getI64SubArray(op.offsets(), /*dropFront=*/0, |
| /*dropBack=*/rankRest)); |
| return success(); |
| } |
| }; |
| |
| // RewritePattern for InsertStridedSliceOp where source and destination vectors |
| // have the same rank. In this case, we reduce |
| // 1. the proper subvector is extracted from the destination vector |
| // 2. a new InsertStridedSlice op is created to insert the source in the |
| // destination subvector |
| // 3. the destination subvector is inserted back in the proper place |
| // 4. the op is replaced by the result of step 3. |
| // The new InsertStridedSlice from step 2. will be picked up by a |
| // `VectorInsertStridedSliceOpSameRankRewritePattern`. |
| class VectorInsertStridedSliceOpSameRankRewritePattern |
| : public OpRewritePattern<InsertStridedSliceOp> { |
| public: |
| VectorInsertStridedSliceOpSameRankRewritePattern(MLIRContext *ctx) |
| : OpRewritePattern<InsertStridedSliceOp>(ctx) { |
| // This pattern creates recursive InsertStridedSliceOp, but the recursion is |
| // bounded as the rank is strictly decreasing. |
| setHasBoundedRewriteRecursion(); |
| } |
| |
| LogicalResult matchAndRewrite(InsertStridedSliceOp op, |
| PatternRewriter &rewriter) const override { |
| auto srcType = op.getSourceVectorType(); |
| auto dstType = op.getDestVectorType(); |
| |
| if (op.offsets().getValue().empty()) |
| return failure(); |
| |
| int64_t rankDiff = dstType.getRank() - srcType.getRank(); |
| assert(rankDiff >= 0); |
| if (rankDiff != 0) |
| return failure(); |
| |
| if (srcType == dstType) { |
| rewriter.replaceOp(op, op.source()); |
| return success(); |
| } |
| |
| int64_t offset = |
| op.offsets().getValue().front().cast<IntegerAttr>().getInt(); |
| int64_t size = srcType.getShape().front(); |
| int64_t stride = |
| op.strides().getValue().front().cast<IntegerAttr>().getInt(); |
| |
| auto loc = op.getLoc(); |
| Value res = op.dest(); |
| // For each slice of the source vector along the most major dimension. |
| for (int64_t off = offset, e = offset + size * stride, idx = 0; off < e; |
| off += stride, ++idx) { |
| // 1. extract the proper subvector (or element) from source |
| Value extractedSource = extractOne(rewriter, loc, op.source(), idx); |
| if (extractedSource.getType().isa<VectorType>()) { |
| // 2. If we have a vector, extract the proper subvector from destination |
| // Otherwise we are at the element level and no need to recurse. |
| Value extractedDest = extractOne(rewriter, loc, op.dest(), off); |
| // 3. Reduce the problem to lowering a new InsertStridedSlice op with |
| // smaller rank. |
| extractedSource = rewriter.create<InsertStridedSliceOp>( |
| loc, extractedSource, extractedDest, |
| getI64SubArray(op.offsets(), /* dropFront=*/1), |
| getI64SubArray(op.strides(), /* dropFront=*/1)); |
| } |
| // 4. Insert the extractedSource into the res vector. |
| res = insertOne(rewriter, loc, extractedSource, res, off); |
| } |
| |
| rewriter.replaceOp(op, res); |
| return success(); |
| } |
| }; |
| |
| /// Returns the strides if the memory underlying `memRefType` has a contiguous |
| /// static layout. |
| static llvm::Optional<SmallVector<int64_t, 4>> |
| computeContiguousStrides(MemRefType memRefType) { |
| int64_t offset; |
| SmallVector<int64_t, 4> strides; |
| if (failed(getStridesAndOffset(memRefType, strides, offset))) |
| return None; |
| if (!strides.empty() && strides.back() != 1) |
| return None; |
| // If no layout or identity layout, this is contiguous by definition. |
| if (memRefType.getAffineMaps().empty() || |
| memRefType.getAffineMaps().front().isIdentity()) |
| return strides; |
| |
| // Otherwise, we must determine contiguity form shapes. This can only ever |
| // work in static cases because MemRefType is underspecified to represent |
| // contiguous dynamic shapes in other ways than with just empty/identity |
| // layout. |
| auto sizes = memRefType.getShape(); |
| for (int index = 0, e = strides.size() - 2; index < e; ++index) { |
| if (ShapedType::isDynamic(sizes[index + 1]) || |
| ShapedType::isDynamicStrideOrOffset(strides[index]) || |
| ShapedType::isDynamicStrideOrOffset(strides[index + 1])) |
| return None; |
| if (strides[index] != strides[index + 1] * sizes[index + 1]) |
| return None; |
| } |
| return strides; |
| } |
| |
| class VectorTypeCastOpConversion : public ConvertToLLVMPattern { |
| public: |
| explicit VectorTypeCastOpConversion(MLIRContext *context, |
| LLVMTypeConverter &typeConverter) |
| : ConvertToLLVMPattern(vector::TypeCastOp::getOperationName(), context, |
| typeConverter) {} |
| |
| LogicalResult |
| matchAndRewrite(Operation *op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| auto loc = op->getLoc(); |
| vector::TypeCastOp castOp = cast<vector::TypeCastOp>(op); |
| MemRefType sourceMemRefType = |
| castOp.getOperand().getType().cast<MemRefType>(); |
| MemRefType targetMemRefType = |
| castOp.getResult().getType().cast<MemRefType>(); |
| |
| // Only static shape casts supported atm. |
| if (!sourceMemRefType.hasStaticShape() || |
| !targetMemRefType.hasStaticShape()) |
| return failure(); |
| |
| auto llvmSourceDescriptorTy = |
| operands[0].getType().dyn_cast<LLVM::LLVMType>(); |
| if (!llvmSourceDescriptorTy || !llvmSourceDescriptorTy.isStructTy()) |
| return failure(); |
| MemRefDescriptor sourceMemRef(operands[0]); |
| |
| auto llvmTargetDescriptorTy = typeConverter->convertType(targetMemRefType) |
| .dyn_cast_or_null<LLVM::LLVMType>(); |
| if (!llvmTargetDescriptorTy || !llvmTargetDescriptorTy.isStructTy()) |
| return failure(); |
| |
| // Only contiguous source buffers supported atm. |
| auto sourceStrides = computeContiguousStrides(sourceMemRefType); |
| if (!sourceStrides) |
| return failure(); |
| auto targetStrides = computeContiguousStrides(targetMemRefType); |
| if (!targetStrides) |
| return failure(); |
| // Only support static strides for now, regardless of contiguity. |
| if (llvm::any_of(*targetStrides, [](int64_t stride) { |
| return ShapedType::isDynamicStrideOrOffset(stride); |
| })) |
| return failure(); |
| |
| auto int64Ty = LLVM::LLVMType::getInt64Ty(rewriter.getContext()); |
| |
| // Create descriptor. |
| auto desc = MemRefDescriptor::undef(rewriter, loc, llvmTargetDescriptorTy); |
| Type llvmTargetElementTy = desc.getElementPtrType(); |
| // Set allocated ptr. |
| Value allocated = sourceMemRef.allocatedPtr(rewriter, loc); |
| allocated = |
| rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, allocated); |
| desc.setAllocatedPtr(rewriter, loc, allocated); |
| // Set aligned ptr. |
| Value ptr = sourceMemRef.alignedPtr(rewriter, loc); |
| ptr = rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, ptr); |
| desc.setAlignedPtr(rewriter, loc, ptr); |
| // Fill offset 0. |
| auto attr = rewriter.getIntegerAttr(rewriter.getIndexType(), 0); |
| auto zero = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, attr); |
| desc.setOffset(rewriter, loc, zero); |
| |
| // Fill size and stride descriptors in memref. |
| for (auto indexedSize : llvm::enumerate(targetMemRefType.getShape())) { |
| int64_t index = indexedSize.index(); |
| auto sizeAttr = |
| rewriter.getIntegerAttr(rewriter.getIndexType(), indexedSize.value()); |
| auto size = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, sizeAttr); |
| desc.setSize(rewriter, loc, index, size); |
| auto strideAttr = rewriter.getIntegerAttr(rewriter.getIndexType(), |
| (*targetStrides)[index]); |
| auto stride = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, strideAttr); |
| desc.setStride(rewriter, loc, index, stride); |
| } |
| |
| rewriter.replaceOp(op, {desc}); |
| return success(); |
| } |
| }; |
| |
| /// Conversion pattern that converts a 1-D vector transfer read/write op in a |
| /// sequence of: |
| /// 1. Get the source/dst address as an LLVM vector pointer. |
| /// 2. Create a vector with linear indices [ 0 .. vector_length - 1 ]. |
| /// 3. Create an offsetVector = [ offset + 0 .. offset + vector_length - 1 ]. |
| /// 4. Create a mask where offsetVector is compared against memref upper bound. |
| /// 5. Rewrite op as a masked read or write. |
| template <typename ConcreteOp> |
| class VectorTransferConversion : public ConvertToLLVMPattern { |
| public: |
| explicit VectorTransferConversion(MLIRContext *context, |
| LLVMTypeConverter &typeConv, |
| bool enableIndexOpt) |
| : ConvertToLLVMPattern(ConcreteOp::getOperationName(), context, typeConv), |
| enableIndexOptimizations(enableIndexOpt) {} |
| |
| LogicalResult |
| matchAndRewrite(Operation *op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| auto xferOp = cast<ConcreteOp>(op); |
| auto adaptor = getTransferOpAdapter(xferOp, operands); |
| |
| if (xferOp.getVectorType().getRank() > 1 || |
| llvm::size(xferOp.indices()) == 0) |
| return failure(); |
| if (xferOp.permutation_map() != |
| AffineMap::getMinorIdentityMap(xferOp.permutation_map().getNumInputs(), |
| xferOp.getVectorType().getRank(), |
| op->getContext())) |
| return failure(); |
| // Only contiguous source tensors supported atm. |
| auto strides = computeContiguousStrides(xferOp.getMemRefType()); |
| if (!strides) |
| return failure(); |
| |
| auto toLLVMTy = [&](Type t) { return typeConverter->convertType(t); }; |
| |
| Location loc = op->getLoc(); |
| MemRefType memRefType = xferOp.getMemRefType(); |
| |
| if (auto memrefVectorElementType = |
| memRefType.getElementType().dyn_cast<VectorType>()) { |
| // Memref has vector element type. |
| if (memrefVectorElementType.getElementType() != |
| xferOp.getVectorType().getElementType()) |
| return failure(); |
| #ifndef NDEBUG |
| // Check that memref vector type is a suffix of 'vectorType. |
| unsigned memrefVecEltRank = memrefVectorElementType.getRank(); |
| unsigned resultVecRank = xferOp.getVectorType().getRank(); |
| assert(memrefVecEltRank <= resultVecRank); |
| // TODO: Move this to isSuffix in Vector/Utils.h. |
| unsigned rankOffset = resultVecRank - memrefVecEltRank; |
| auto memrefVecEltShape = memrefVectorElementType.getShape(); |
| auto resultVecShape = xferOp.getVectorType().getShape(); |
| for (unsigned i = 0; i < memrefVecEltRank; ++i) |
| assert(memrefVecEltShape[i] != resultVecShape[rankOffset + i] && |
| "memref vector element shape should match suffix of vector " |
| "result shape."); |
| #endif // ifndef NDEBUG |
| } |
| |
| // 1. Get the source/dst address as an LLVM vector pointer. |
| // The vector pointer would always be on address space 0, therefore |
| // addrspacecast shall be used when source/dst memrefs are not on |
| // address space 0. |
| // TODO: support alignment when possible. |
| Value dataPtr = getStridedElementPtr(loc, memRefType, adaptor.memref(), |
| adaptor.indices(), rewriter); |
| auto vecTy = |
| toLLVMTy(xferOp.getVectorType()).template cast<LLVM::LLVMType>(); |
| Value vectorDataPtr; |
| if (memRefType.getMemorySpace() == 0) |
| vectorDataPtr = |
| rewriter.create<LLVM::BitcastOp>(loc, vecTy.getPointerTo(), dataPtr); |
| else |
| vectorDataPtr = rewriter.create<LLVM::AddrSpaceCastOp>( |
| loc, vecTy.getPointerTo(), dataPtr); |
| |
| if (!xferOp.isMaskedDim(0)) |
| return replaceTransferOpWithLoadOrStore( |
| rewriter, *getTypeConverter(), loc, xferOp, operands, vectorDataPtr); |
| |
| // 2. Create a vector with linear indices [ 0 .. vector_length - 1 ]. |
| // 3. Create offsetVector = [ offset + 0 .. offset + vector_length - 1 ]. |
| // 4. Let dim the memref dimension, compute the vector comparison mask: |
| // [ offset + 0 .. offset + vector_length - 1 ] < [ dim .. dim ] |
| // |
| // TODO: when the leaf transfer rank is k > 1, we need the last `k` |
| // dimensions here. |
| unsigned vecWidth = vecTy.getVectorNumElements(); |
| unsigned lastIndex = llvm::size(xferOp.indices()) - 1; |
| Value off = xferOp.indices()[lastIndex]; |
| Value dim = rewriter.create<DimOp>(loc, xferOp.memref(), lastIndex); |
| Value mask = buildVectorComparison(rewriter, op, enableIndexOptimizations, |
| vecWidth, dim, &off); |
| |
| // 5. Rewrite as a masked read / write. |
| return replaceTransferOpWithMasked(rewriter, *getTypeConverter(), loc, |
| xferOp, operands, vectorDataPtr, mask); |
| } |
| |
| private: |
| const bool enableIndexOptimizations; |
| }; |
| |
| class VectorPrintOpConversion : public ConvertToLLVMPattern { |
| public: |
| explicit VectorPrintOpConversion(MLIRContext *context, |
| LLVMTypeConverter &typeConverter) |
| : ConvertToLLVMPattern(vector::PrintOp::getOperationName(), context, |
| typeConverter) {} |
| |
| // Proof-of-concept lowering implementation that relies on a small |
| // runtime support library, which only needs to provide a few |
| // printing methods (single value for all data types, opening/closing |
| // bracket, comma, newline). The lowering fully unrolls a vector |
| // in terms of these elementary printing operations. The advantage |
| // of this approach is that the library can remain unaware of all |
| // low-level implementation details of vectors while still supporting |
| // output of any shaped and dimensioned vector. Due to full unrolling, |
| // this approach is less suited for very large vectors though. |
| // |
| // TODO: rely solely on libc in future? something else? |
| // |
| LogicalResult |
| matchAndRewrite(Operation *op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| auto printOp = cast<vector::PrintOp>(op); |
| auto adaptor = vector::PrintOpAdaptor(operands); |
| Type printType = printOp.getPrintType(); |
| |
| if (typeConverter->convertType(printType) == nullptr) |
| return failure(); |
| |
| // Make sure element type has runtime support. |
| PrintConversion conversion = PrintConversion::None; |
| VectorType vectorType = printType.dyn_cast<VectorType>(); |
| Type eltType = vectorType ? vectorType.getElementType() : printType; |
| Operation *printer; |
| if (eltType.isF32()) { |
| printer = getPrintFloat(op); |
| } else if (eltType.isF64()) { |
| printer = getPrintDouble(op); |
| } else if (eltType.isIndex()) { |
| printer = getPrintU64(op); |
| } else if (auto intTy = eltType.dyn_cast<IntegerType>()) { |
| // Integers need a zero or sign extension on the operand |
| // (depending on the source type) as well as a signed or |
| // unsigned print method. Up to 64-bit is supported. |
| unsigned width = intTy.getWidth(); |
| if (intTy.isUnsigned()) { |
| if (width <= 64) { |
| if (width < 64) |
| conversion = PrintConversion::ZeroExt64; |
| printer = getPrintU64(op); |
| } else { |
| return failure(); |
| } |
| } else { |
| assert(intTy.isSignless() || intTy.isSigned()); |
| if (width <= 64) { |
| // Note that we *always* zero extend booleans (1-bit integers), |
| // so that true/false is printed as 1/0 rather than -1/0. |
| if (width == 1) |
| conversion = PrintConversion::ZeroExt64; |
| else if (width < 64) |
| conversion = PrintConversion::SignExt64; |
| printer = getPrintI64(op); |
| } else { |
| return failure(); |
| } |
| } |
| } else { |
| return failure(); |
| } |
| |
| // Unroll vector into elementary print calls. |
| int64_t rank = vectorType ? vectorType.getRank() : 0; |
| emitRanks(rewriter, op, adaptor.source(), vectorType, printer, rank, |
| conversion); |
| emitCall(rewriter, op->getLoc(), getPrintNewline(op)); |
| rewriter.eraseOp(op); |
| return success(); |
| } |
| |
| private: |
| enum class PrintConversion { |
| // clang-format off |
| None, |
| ZeroExt64, |
| SignExt64 |
| // clang-format on |
| }; |
| |
| void emitRanks(ConversionPatternRewriter &rewriter, Operation *op, |
| Value value, VectorType vectorType, Operation *printer, |
| int64_t rank, PrintConversion conversion) const { |
| Location loc = op->getLoc(); |
| if (rank == 0) { |
| switch (conversion) { |
| case PrintConversion::ZeroExt64: |
| value = rewriter.create<ZeroExtendIOp>( |
| loc, value, LLVM::LLVMType::getInt64Ty(rewriter.getContext())); |
| break; |
| case PrintConversion::SignExt64: |
| value = rewriter.create<SignExtendIOp>( |
| loc, value, LLVM::LLVMType::getInt64Ty(rewriter.getContext())); |
| break; |
| case PrintConversion::None: |
| break; |
| } |
| emitCall(rewriter, loc, printer, value); |
| return; |
| } |
| |
| emitCall(rewriter, loc, getPrintOpen(op)); |
| Operation *printComma = getPrintComma(op); |
| int64_t dim = vectorType.getDimSize(0); |
| for (int64_t d = 0; d < dim; ++d) { |
| auto reducedType = |
| rank > 1 ? reducedVectorTypeFront(vectorType) : nullptr; |
| auto llvmType = typeConverter->convertType( |
| rank > 1 ? reducedType : vectorType.getElementType()); |
| Value nestedVal = extractOne(rewriter, *getTypeConverter(), loc, value, |
| llvmType, rank, d); |
| emitRanks(rewriter, op, nestedVal, reducedType, printer, rank - 1, |
| conversion); |
| if (d != dim - 1) |
| emitCall(rewriter, loc, printComma); |
| } |
| emitCall(rewriter, loc, getPrintClose(op)); |
| } |
| |
| // Helper to emit a call. |
| static void emitCall(ConversionPatternRewriter &rewriter, Location loc, |
| Operation *ref, ValueRange params = ValueRange()) { |
| rewriter.create<LLVM::CallOp>(loc, TypeRange(), |
| rewriter.getSymbolRefAttr(ref), params); |
| } |
| |
| // Helper for printer method declaration (first hit) and lookup. |
| static Operation *getPrint(Operation *op, StringRef name, |
| ArrayRef<LLVM::LLVMType> params) { |
| auto module = op->getParentOfType<ModuleOp>(); |
| auto func = module.lookupSymbol<LLVM::LLVMFuncOp>(name); |
| if (func) |
| return func; |
| OpBuilder moduleBuilder(module.getBodyRegion()); |
| return moduleBuilder.create<LLVM::LLVMFuncOp>( |
| op->getLoc(), name, |
| LLVM::LLVMType::getFunctionTy( |
| LLVM::LLVMType::getVoidTy(op->getContext()), params, |
| /*isVarArg=*/false)); |
| } |
| |
| // Helpers for method names. |
| Operation *getPrintI64(Operation *op) const { |
| return getPrint(op, "printI64", |
| LLVM::LLVMType::getInt64Ty(op->getContext())); |
| } |
| Operation *getPrintU64(Operation *op) const { |
| return getPrint(op, "printU64", |
| LLVM::LLVMType::getInt64Ty(op->getContext())); |
| } |
| Operation *getPrintFloat(Operation *op) const { |
| return getPrint(op, "printF32", |
| LLVM::LLVMType::getFloatTy(op->getContext())); |
| } |
| Operation *getPrintDouble(Operation *op) const { |
| return getPrint(op, "printF64", |
| LLVM::LLVMType::getDoubleTy(op->getContext())); |
| } |
| Operation *getPrintOpen(Operation *op) const { |
| return getPrint(op, "printOpen", {}); |
| } |
| Operation *getPrintClose(Operation *op) const { |
| return getPrint(op, "printClose", {}); |
| } |
| Operation *getPrintComma(Operation *op) const { |
| return getPrint(op, "printComma", {}); |
| } |
| Operation *getPrintNewline(Operation *op) const { |
| return getPrint(op, "printNewline", {}); |
| } |
| }; |
| |
| /// Progressive lowering of ExtractStridedSliceOp to either: |
| /// 1. express single offset extract as a direct shuffle. |
| /// 2. extract + lower rank strided_slice + insert for the n-D case. |
| class VectorExtractStridedSliceOpConversion |
| : public OpRewritePattern<ExtractStridedSliceOp> { |
| public: |
| VectorExtractStridedSliceOpConversion(MLIRContext *ctx) |
| : OpRewritePattern<ExtractStridedSliceOp>(ctx) { |
| // This pattern creates recursive ExtractStridedSliceOp, but the recursion |
| // is bounded as the rank is strictly decreasing. |
| setHasBoundedRewriteRecursion(); |
| } |
| |
| LogicalResult matchAndRewrite(ExtractStridedSliceOp op, |
| PatternRewriter &rewriter) const override { |
| auto dstType = op.getResult().getType().cast<VectorType>(); |
| |
| assert(!op.offsets().getValue().empty() && "Unexpected empty offsets"); |
| |
| int64_t offset = |
| op.offsets().getValue().front().cast<IntegerAttr>().getInt(); |
| int64_t size = op.sizes().getValue().front().cast<IntegerAttr>().getInt(); |
| int64_t stride = |
| op.strides().getValue().front().cast<IntegerAttr>().getInt(); |
| |
| auto loc = op.getLoc(); |
| auto elemType = dstType.getElementType(); |
| assert(elemType.isSignlessIntOrIndexOrFloat()); |
| |
| // Single offset can be more efficiently shuffled. |
| if (op.offsets().getValue().size() == 1) { |
| SmallVector<int64_t, 4> offsets; |
| offsets.reserve(size); |
| for (int64_t off = offset, e = offset + size * stride; off < e; |
| off += stride) |
| offsets.push_back(off); |
| rewriter.replaceOpWithNewOp<ShuffleOp>(op, dstType, op.vector(), |
| op.vector(), |
| rewriter.getI64ArrayAttr(offsets)); |
| return success(); |
| } |
| |
| // Extract/insert on a lower ranked extract strided slice op. |
| Value zero = rewriter.create<ConstantOp>(loc, elemType, |
| rewriter.getZeroAttr(elemType)); |
| Value res = rewriter.create<SplatOp>(loc, dstType, zero); |
| for (int64_t off = offset, e = offset + size * stride, idx = 0; off < e; |
| off += stride, ++idx) { |
| Value one = extractOne(rewriter, loc, op.vector(), off); |
| Value extracted = rewriter.create<ExtractStridedSliceOp>( |
| loc, one, getI64SubArray(op.offsets(), /* dropFront=*/1), |
| getI64SubArray(op.sizes(), /* dropFront=*/1), |
| getI64SubArray(op.strides(), /* dropFront=*/1)); |
| res = insertOne(rewriter, loc, extracted, res, idx); |
| } |
| rewriter.replaceOp(op, res); |
| return success(); |
| } |
| }; |
| |
| } // namespace |
| |
| /// Populate the given list with patterns that convert from Vector to LLVM. |
| void mlir::populateVectorToLLVMConversionPatterns( |
| LLVMTypeConverter &converter, OwningRewritePatternList &patterns, |
| bool reassociateFPReductions, bool enableIndexOptimizations) { |
| MLIRContext *ctx = converter.getDialect()->getContext(); |
| // clang-format off |
| patterns.insert<VectorFMAOpNDRewritePattern, |
| VectorInsertStridedSliceOpDifferentRankRewritePattern, |
| VectorInsertStridedSliceOpSameRankRewritePattern, |
| VectorExtractStridedSliceOpConversion>(ctx); |
| patterns.insert<VectorReductionOpConversion>( |
| ctx, converter, reassociateFPReductions); |
| patterns.insert<VectorCreateMaskOpConversion, |
| VectorTransferConversion<TransferReadOp>, |
| VectorTransferConversion<TransferWriteOp>>( |
| ctx, converter, enableIndexOptimizations); |
| patterns |
| .insert<VectorShuffleOpConversion, |
| VectorExtractElementOpConversion, |
| VectorExtractOpConversion, |
| VectorFMAOp1DConversion, |
| VectorInsertElementOpConversion, |
| VectorInsertOpConversion, |
| VectorPrintOpConversion, |
| VectorTypeCastOpConversion, |
| VectorMaskedLoadOpConversion, |
| VectorMaskedStoreOpConversion, |
| VectorGatherOpConversion, |
| VectorScatterOpConversion, |
| VectorExpandLoadOpConversion, |
| VectorCompressStoreOpConversion>(ctx, converter); |
| // clang-format on |
| } |
| |
| void mlir::populateVectorToLLVMMatrixConversionPatterns( |
| LLVMTypeConverter &converter, OwningRewritePatternList &patterns) { |
| MLIRContext *ctx = converter.getDialect()->getContext(); |
| patterns.insert<VectorMatmulOpConversion>(ctx, converter); |
| patterns.insert<VectorFlatTransposeOpConversion>(ctx, converter); |
| } |