blob: 36b3393118c3adc85dde5c606afee1f6bed57655 [file] [log] [blame] [edit]
//===- Async.cpp - MLIR Async Operations ----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Async/IR/Async.h"
#include "mlir/IR/DialectImplementation.h"
#include "llvm/ADT/TypeSwitch.h"
using namespace mlir;
using namespace mlir::async;
void AsyncDialect::initialize() {
addOperations<
#define GET_OP_LIST
#include "mlir/Dialect/Async/IR/AsyncOps.cpp.inc"
>();
addTypes<TokenType>();
addTypes<ValueType>();
addTypes<GroupType>();
}
/// Parse a type registered to this dialect.
Type AsyncDialect::parseType(DialectAsmParser &parser) const {
StringRef keyword;
if (parser.parseKeyword(&keyword))
return Type();
if (keyword == "token")
return TokenType::get(getContext());
if (keyword == "value") {
Type ty;
if (parser.parseLess() || parser.parseType(ty) || parser.parseGreater()) {
parser.emitError(parser.getNameLoc(), "failed to parse async value type");
return Type();
}
return ValueType::get(ty);
}
parser.emitError(parser.getNameLoc(), "unknown async type: ") << keyword;
return Type();
}
/// Print a type registered to this dialect.
void AsyncDialect::printType(Type type, DialectAsmPrinter &os) const {
TypeSwitch<Type>(type)
.Case<TokenType>([&](TokenType) { os << "token"; })
.Case<ValueType>([&](ValueType valueTy) {
os << "value<";
os.printType(valueTy.getValueType());
os << '>';
})
.Case<GroupType>([&](GroupType) { os << "group"; })
.Default([](Type) { llvm_unreachable("unexpected 'async' type kind"); });
}
//===----------------------------------------------------------------------===//
/// ValueType
//===----------------------------------------------------------------------===//
namespace mlir {
namespace async {
namespace detail {
// Storage for `async.value<T>` type, the only member is the wrapped type.
struct ValueTypeStorage : public TypeStorage {
ValueTypeStorage(Type valueType) : valueType(valueType) {}
/// The hash key used for uniquing.
using KeyTy = Type;
bool operator==(const KeyTy &key) const { return key == valueType; }
/// Construction.
static ValueTypeStorage *construct(TypeStorageAllocator &allocator,
Type valueType) {
return new (allocator.allocate<ValueTypeStorage>())
ValueTypeStorage(valueType);
}
Type valueType;
};
} // namespace detail
} // namespace async
} // namespace mlir
ValueType ValueType::get(Type valueType) {
return Base::get(valueType.getContext(), valueType);
}
Type ValueType::getValueType() { return getImpl()->valueType; }
//===----------------------------------------------------------------------===//
// YieldOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(YieldOp op) {
// Get the underlying value types from async values returned from the
// parent `async.execute` operation.
auto executeOp = op->getParentOfType<ExecuteOp>();
auto types = llvm::map_range(executeOp.results(), [](const OpResult &result) {
return result.getType().cast<ValueType>().getValueType();
});
if (op.getOperandTypes() != types)
return op.emitOpError("operand types do not match the types returned from "
"the parent ExecuteOp");
return success();
}
//===----------------------------------------------------------------------===//
/// ExecuteOp
//===----------------------------------------------------------------------===//
constexpr char kOperandSegmentSizesAttr[] = "operand_segment_sizes";
void ExecuteOp::getNumRegionInvocations(
ArrayRef<Attribute> operands, SmallVectorImpl<int64_t> &countPerRegion) {
(void)operands;
assert(countPerRegion.empty());
countPerRegion.push_back(1);
}
void ExecuteOp::getSuccessorRegions(Optional<unsigned> index,
ArrayRef<Attribute> operands,
SmallVectorImpl<RegionSuccessor> &regions) {
// The `body` region branch back to the parent operation.
if (index.hasValue()) {
assert(*index == 0);
regions.push_back(RegionSuccessor(getResults()));
return;
}
// Otherwise the successor is the body region.
regions.push_back(RegionSuccessor(&body()));
}
void ExecuteOp::build(OpBuilder &builder, OperationState &result,
TypeRange resultTypes, ValueRange dependencies,
ValueRange operands, BodyBuilderFn bodyBuilder) {
result.addOperands(dependencies);
result.addOperands(operands);
// Add derived `operand_segment_sizes` attribute based on parsed operands.
int32_t numDependencies = dependencies.size();
int32_t numOperands = operands.size();
auto operandSegmentSizes = DenseIntElementsAttr::get(
VectorType::get({2}, IntegerType::get(32, result.getContext())),
{numDependencies, numOperands});
result.addAttribute(kOperandSegmentSizesAttr, operandSegmentSizes);
// First result is always a token, and then `resultTypes` wrapped into
// `async.value`.
result.addTypes({TokenType::get(result.getContext())});
for (Type type : resultTypes)
result.addTypes(ValueType::get(type));
// Add a body region with block arguments as unwrapped async value operands.
Region *bodyRegion = result.addRegion();
bodyRegion->push_back(new Block);
Block &bodyBlock = bodyRegion->front();
for (Value operand : operands) {
auto valueType = operand.getType().dyn_cast<ValueType>();
bodyBlock.addArgument(valueType ? valueType.getValueType()
: operand.getType());
}
// Create the default terminator if the builder is not provided and if the
// expected result is empty. Otherwise, leave this to the caller
// because we don't know which values to return from the execute op.
if (resultTypes.empty() && !bodyBuilder) {
OpBuilder::InsertionGuard guard(builder);
builder.setInsertionPointToStart(&bodyBlock);
builder.create<async::YieldOp>(result.location, ValueRange());
} else if (bodyBuilder) {
OpBuilder::InsertionGuard guard(builder);
builder.setInsertionPointToStart(&bodyBlock);
bodyBuilder(builder, result.location, bodyBlock.getArguments());
}
}
static void print(OpAsmPrinter &p, ExecuteOp op) {
p << op.getOperationName();
// [%tokens,...]
if (!op.dependencies().empty())
p << " [" << op.dependencies() << "]";
// (%value as %unwrapped: !async.value<!arg.type>, ...)
if (!op.operands().empty()) {
p << " (";
llvm::interleaveComma(op.operands(), p, [&, n = 0](Value operand) mutable {
p << operand << " as " << op.body().front().getArgument(n++) << ": "
<< operand.getType();
});
p << ")";
}
// -> (!async.value<!return.type>, ...)
p.printOptionalArrowTypeList(op.getResultTypes().drop_front(1));
p.printOptionalAttrDictWithKeyword(op.getAttrs(), {kOperandSegmentSizesAttr});
p.printRegion(op.body(), /*printEntryBlockArgs=*/false);
}
static ParseResult parseExecuteOp(OpAsmParser &parser, OperationState &result) {
MLIRContext *ctx = result.getContext();
// Sizes of parsed variadic operands, will be updated below after parsing.
int32_t numDependencies = 0;
int32_t numOperands = 0;
auto tokenTy = TokenType::get(ctx);
// Parse dependency tokens.
if (succeeded(parser.parseOptionalLSquare())) {
SmallVector<OpAsmParser::OperandType, 4> tokenArgs;
if (parser.parseOperandList(tokenArgs) ||
parser.resolveOperands(tokenArgs, tokenTy, result.operands) ||
parser.parseRSquare())
return failure();
numDependencies = tokenArgs.size();
}
// Parse async value operands (%value as %unwrapped : !async.value<!type>).
SmallVector<OpAsmParser::OperandType, 4> valueArgs;
SmallVector<OpAsmParser::OperandType, 4> unwrappedArgs;
SmallVector<Type, 4> valueTypes;
SmallVector<Type, 4> unwrappedTypes;
if (succeeded(parser.parseOptionalLParen())) {
auto argsLoc = parser.getCurrentLocation();
// Parse a single instance of `%value as %unwrapped : !async.value<!type>`.
auto parseAsyncValueArg = [&]() -> ParseResult {
if (parser.parseOperand(valueArgs.emplace_back()) ||
parser.parseKeyword("as") ||
parser.parseOperand(unwrappedArgs.emplace_back()) ||
parser.parseColonType(valueTypes.emplace_back()))
return failure();
auto valueTy = valueTypes.back().dyn_cast<ValueType>();
unwrappedTypes.emplace_back(valueTy ? valueTy.getValueType() : Type());
return success();
};
// If the next token is `)` skip async value arguments parsing.
if (failed(parser.parseOptionalRParen())) {
do {
if (parseAsyncValueArg())
return failure();
} while (succeeded(parser.parseOptionalComma()));
if (parser.parseRParen() ||
parser.resolveOperands(valueArgs, valueTypes, argsLoc,
result.operands))
return failure();
}
numOperands = valueArgs.size();
}
// Add derived `operand_segment_sizes` attribute based on parsed operands.
auto operandSegmentSizes = DenseIntElementsAttr::get(
VectorType::get({2}, parser.getBuilder().getI32Type()),
{numDependencies, numOperands});
result.addAttribute(kOperandSegmentSizesAttr, operandSegmentSizes);
// Parse the types of results returned from the async execute op.
SmallVector<Type, 4> resultTypes;
if (parser.parseOptionalArrowTypeList(resultTypes))
return failure();
// Async execute first result is always a completion token.
parser.addTypeToList(tokenTy, result.types);
parser.addTypesToList(resultTypes, result.types);
// Parse operation attributes.
NamedAttrList attrs;
if (parser.parseOptionalAttrDictWithKeyword(attrs))
return failure();
result.addAttributes(attrs);
// Parse asynchronous region.
Region *body = result.addRegion();
if (parser.parseRegion(*body, /*arguments=*/{unwrappedArgs},
/*argTypes=*/{unwrappedTypes},
/*enableNameShadowing=*/false))
return failure();
return success();
}
static LogicalResult verify(ExecuteOp op) {
// Unwrap async.execute value operands types.
auto unwrappedTypes = llvm::map_range(op.operands(), [](Value operand) {
return operand.getType().cast<ValueType>().getValueType();
});
// Verify that unwrapped argument types matches the body region arguments.
if (op.body().getArgumentTypes() != unwrappedTypes)
return op.emitOpError("async body region argument types do not match the "
"execute operation arguments types");
return success();
}
//===----------------------------------------------------------------------===//
/// AwaitOp
//===----------------------------------------------------------------------===//
void AwaitOp::build(OpBuilder &builder, OperationState &result, Value operand,
ArrayRef<NamedAttribute> attrs) {
result.addOperands({operand});
result.attributes.append(attrs.begin(), attrs.end());
// Add unwrapped async.value type to the returned values types.
if (auto valueType = operand.getType().dyn_cast<ValueType>())
result.addTypes(valueType.getValueType());
}
static ParseResult parseAwaitResultType(OpAsmParser &parser, Type &operandType,
Type &resultType) {
if (parser.parseType(operandType))
return failure();
// Add unwrapped async.value type to the returned values types.
if (auto valueType = operandType.dyn_cast<ValueType>())
resultType = valueType.getValueType();
return success();
}
static void printAwaitResultType(OpAsmPrinter &p, Operation *op,
Type operandType, Type resultType) {
p << operandType;
}
static LogicalResult verify(AwaitOp op) {
Type argType = op.operand().getType();
// Awaiting on a token does not have any results.
if (argType.isa<TokenType>() && !op.getResultTypes().empty())
return op.emitOpError("awaiting on a token must have empty result");
// Awaiting on a value unwraps the async value type.
if (auto value = argType.dyn_cast<ValueType>()) {
if (*op.getResultType() != value.getValueType())
return op.emitOpError()
<< "result type " << *op.getResultType()
<< " does not match async value type " << value.getValueType();
}
return success();
}
#define GET_OP_CLASSES
#include "mlir/Dialect/Async/IR/AsyncOps.cpp.inc"