| //===- ParallelLoopTiling.cpp - Tiles scf.parallel ---------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements loop tiling on parallel loops. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "PassDetail.h" |
| #include "mlir/Dialect/Affine/IR/AffineOps.h" |
| #include "mlir/Dialect/SCF/Passes.h" |
| #include "mlir/Dialect/SCF/SCF.h" |
| #include "mlir/Dialect/SCF/Transforms.h" |
| #include "mlir/Dialect/StandardOps/IR/Ops.h" |
| |
| using namespace mlir; |
| using namespace mlir::scf; |
| |
| /// Tile a parallel loop of the form |
| /// scf.parallel (%i0, %i1) = (%arg0, %arg1) to (%arg2, %arg3) |
| /// step (%arg4, %arg5) |
| /// |
| /// into |
| /// scf.parallel (%i0, %i1) = (%arg0, %arg1) to (%arg2, %arg3) |
| /// step (%arg4*tileSize[0], |
| /// %arg5*tileSize[1]) |
| /// scf.parallel (%j0, %j1) = (0, 0) to (min(%arg4*tileSize[0], %arg2-%i0) |
| /// min(%arg5*tileSize[1], %arg3-%i1)) |
| /// step (%arg4, %arg5) |
| /// |
| /// where the uses of %i0 and %i1 in the loop body are replaced by |
| /// %i0 + j0 and %i1 + %j1. |
| // |
| /// The old loop is replaced with the new one. |
| void mlir::scf::tileParallelLoop(ParallelOp op, ArrayRef<int64_t> tileSizes) { |
| OpBuilder b(op); |
| auto zero = b.create<ConstantIndexOp>(op.getLoc(), 0); |
| SmallVector<Value, 2> tileSizeConstants; |
| tileSizeConstants.reserve(op.upperBound().size()); |
| for (size_t i = 0, end = op.upperBound().size(); i != end; ++i) { |
| if (i < tileSizes.size()) |
| tileSizeConstants.push_back( |
| b.create<ConstantIndexOp>(op.getLoc(), tileSizes[i])); |
| else |
| // Just pick 1 for the remaining dimensions. |
| tileSizeConstants.push_back(b.create<ConstantIndexOp>(op.getLoc(), 1)); |
| } |
| |
| // Create the outer loop with adjusted steps. |
| SmallVector<Value, 2> newSteps; |
| newSteps.reserve(op.step().size()); |
| for (auto step : llvm::zip(op.step(), tileSizeConstants)) { |
| newSteps.push_back( |
| b.create<MulIOp>(op.getLoc(), std::get<0>(step), std::get<1>(step))); |
| } |
| auto outerLoop = b.create<ParallelOp>(op.getLoc(), op.lowerBound(), |
| op.upperBound(), newSteps); |
| b.setInsertionPointToStart(outerLoop.getBody()); |
| |
| // Compute min(size, dim - offset) to avoid out-of-bounds accesses. |
| // FIXME: Instead of using min, we want to replicate the tail. This would give |
| // the inner loop constant bounds for easy vectorization. |
| auto minMap = AffineMap::get( |
| /*dimCount=*/3, /*symbolCount=*/0, |
| {getAffineDimExpr(/*position=*/0, b.getContext()), |
| getAffineDimExpr(/*position=*/1, b.getContext()) - |
| getAffineDimExpr(/*position=*/2, b.getContext())}, |
| b.getContext()); |
| |
| // Create the inner loop with adjusted bounds. |
| SmallVector<Value, 2> newBounds; |
| newBounds.reserve(op.upperBound().size()); |
| for (auto dim : llvm::zip(outerLoop.lowerBound(), outerLoop.upperBound(), |
| outerLoop.step(), outerLoop.getInductionVars(), |
| op.step(), tileSizeConstants)) { |
| Value lowerBound, upperBound, newStep, iv, step, tileSizeConstant; |
| std::tie(lowerBound, upperBound, newStep, iv, step, tileSizeConstant) = dim; |
| // Collect the statically known loop bounds |
| auto lowerBoundConstant = |
| dyn_cast_or_null<ConstantIndexOp>(lowerBound.getDefiningOp()); |
| auto upperBoundConstant = |
| dyn_cast_or_null<ConstantIndexOp>(upperBound.getDefiningOp()); |
| auto stepConstant = dyn_cast_or_null<ConstantIndexOp>(step.getDefiningOp()); |
| auto tileSize = |
| cast<ConstantIndexOp>(tileSizeConstant.getDefiningOp()).getValue(); |
| // If the loop bounds and the loop step are constant and if the number of |
| // loop iterations is an integer multiple of the tile size, we use a static |
| // bound for the inner loop. |
| if (lowerBoundConstant && upperBoundConstant && stepConstant) { |
| auto numIterations = llvm::divideCeil(upperBoundConstant.getValue() - |
| lowerBoundConstant.getValue(), |
| stepConstant.getValue()); |
| if (numIterations % tileSize == 0) { |
| newBounds.push_back(newStep); |
| continue; |
| } |
| } |
| // Otherwise, we dynamically compute the bound for |
| // each iteration of the outer loop. |
| newBounds.push_back( |
| b.create<AffineMinOp>(op.getLoc(), b.getIndexType(), minMap, |
| ValueRange{newStep, upperBound, iv})); |
| } |
| auto innerLoop = b.create<ParallelOp>( |
| op.getLoc(), SmallVector<Value, 2>(newBounds.size(), zero), newBounds, |
| op.step()); |
| |
| // Steal the body of the old parallel loop and erase it. |
| innerLoop.region().takeBody(op.region()); |
| |
| // Insert computation for new index vectors and replace uses. |
| b.setInsertionPointToStart(innerLoop.getBody()); |
| for (auto ivs : |
| llvm::zip(innerLoop.getInductionVars(), outerLoop.getInductionVars())) { |
| Value inner_index = std::get<0>(ivs); |
| AddIOp newIndex = |
| b.create<AddIOp>(op.getLoc(), std::get<0>(ivs), std::get<1>(ivs)); |
| inner_index.replaceAllUsesExcept( |
| newIndex, SmallPtrSet<Operation *, 1>{newIndex.getOperation()}); |
| } |
| |
| op.erase(); |
| } |
| |
| /// Get a list of most nested parallel loops. |
| static bool getInnermostPloops(Operation *rootOp, |
| SmallVectorImpl<ParallelOp> &result) { |
| assert(rootOp != nullptr && "Root operation must not be a nullptr."); |
| bool rootEnclosesPloops = false; |
| for (Region ®ion : rootOp->getRegions()) { |
| for (Block &block : region.getBlocks()) { |
| for (Operation &op : block) { |
| bool enclosesPloops = getInnermostPloops(&op, result); |
| rootEnclosesPloops |= enclosesPloops; |
| if (auto ploop = dyn_cast<ParallelOp>(op)) { |
| rootEnclosesPloops = true; |
| |
| // Collect ploop if it is an innermost one. |
| if (!enclosesPloops) |
| result.push_back(ploop); |
| } |
| } |
| } |
| } |
| return rootEnclosesPloops; |
| } |
| |
| namespace { |
| struct ParallelLoopTiling |
| : public SCFParallelLoopTilingBase<ParallelLoopTiling> { |
| ParallelLoopTiling() = default; |
| explicit ParallelLoopTiling(ArrayRef<int64_t> tileSizes) { |
| this->tileSizes = tileSizes; |
| } |
| |
| void runOnFunction() override { |
| SmallVector<ParallelOp, 2> innermostPloops; |
| getInnermostPloops(getFunction().getOperation(), innermostPloops); |
| for (ParallelOp ploop : innermostPloops) { |
| // FIXME: Add reduction support. |
| if (ploop.getNumReductions() == 0) |
| tileParallelLoop(ploop, tileSizes); |
| } |
| } |
| }; |
| } // namespace |
| |
| std::unique_ptr<Pass> |
| mlir::createParallelLoopTilingPass(ArrayRef<int64_t> tileSizes) { |
| return std::make_unique<ParallelLoopTiling>(tileSizes); |
| } |