blob: 7bd589214f4c6c3e8b808317f29c3c2ed93a1640 [file] [log] [blame] [edit]
//===- ParallelLoopTiling.cpp - Tiles scf.parallel ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements loop tiling on parallel loops.
//
//===----------------------------------------------------------------------===//
#include "PassDetail.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/SCF/Passes.h"
#include "mlir/Dialect/SCF/SCF.h"
#include "mlir/Dialect/SCF/Transforms.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
using namespace mlir;
using namespace mlir::scf;
/// Tile a parallel loop of the form
/// scf.parallel (%i0, %i1) = (%arg0, %arg1) to (%arg2, %arg3)
/// step (%arg4, %arg5)
///
/// into
/// scf.parallel (%i0, %i1) = (%arg0, %arg1) to (%arg2, %arg3)
/// step (%arg4*tileSize[0],
/// %arg5*tileSize[1])
/// scf.parallel (%j0, %j1) = (0, 0) to (min(%arg4*tileSize[0], %arg2-%i0)
/// min(%arg5*tileSize[1], %arg3-%i1))
/// step (%arg4, %arg5)
///
/// where the uses of %i0 and %i1 in the loop body are replaced by
/// %i0 + j0 and %i1 + %j1.
//
/// The old loop is replaced with the new one.
void mlir::scf::tileParallelLoop(ParallelOp op, ArrayRef<int64_t> tileSizes) {
OpBuilder b(op);
auto zero = b.create<ConstantIndexOp>(op.getLoc(), 0);
SmallVector<Value, 2> tileSizeConstants;
tileSizeConstants.reserve(op.upperBound().size());
for (size_t i = 0, end = op.upperBound().size(); i != end; ++i) {
if (i < tileSizes.size())
tileSizeConstants.push_back(
b.create<ConstantIndexOp>(op.getLoc(), tileSizes[i]));
else
// Just pick 1 for the remaining dimensions.
tileSizeConstants.push_back(b.create<ConstantIndexOp>(op.getLoc(), 1));
}
// Create the outer loop with adjusted steps.
SmallVector<Value, 2> newSteps;
newSteps.reserve(op.step().size());
for (auto step : llvm::zip(op.step(), tileSizeConstants)) {
newSteps.push_back(
b.create<MulIOp>(op.getLoc(), std::get<0>(step), std::get<1>(step)));
}
auto outerLoop = b.create<ParallelOp>(op.getLoc(), op.lowerBound(),
op.upperBound(), newSteps);
b.setInsertionPointToStart(outerLoop.getBody());
// Compute min(size, dim - offset) to avoid out-of-bounds accesses.
// FIXME: Instead of using min, we want to replicate the tail. This would give
// the inner loop constant bounds for easy vectorization.
auto minMap = AffineMap::get(
/*dimCount=*/3, /*symbolCount=*/0,
{getAffineDimExpr(/*position=*/0, b.getContext()),
getAffineDimExpr(/*position=*/1, b.getContext()) -
getAffineDimExpr(/*position=*/2, b.getContext())},
b.getContext());
// Create the inner loop with adjusted bounds.
SmallVector<Value, 2> newBounds;
newBounds.reserve(op.upperBound().size());
for (auto dim : llvm::zip(outerLoop.lowerBound(), outerLoop.upperBound(),
outerLoop.step(), outerLoop.getInductionVars(),
op.step(), tileSizeConstants)) {
Value lowerBound, upperBound, newStep, iv, step, tileSizeConstant;
std::tie(lowerBound, upperBound, newStep, iv, step, tileSizeConstant) = dim;
// Collect the statically known loop bounds
auto lowerBoundConstant =
dyn_cast_or_null<ConstantIndexOp>(lowerBound.getDefiningOp());
auto upperBoundConstant =
dyn_cast_or_null<ConstantIndexOp>(upperBound.getDefiningOp());
auto stepConstant = dyn_cast_or_null<ConstantIndexOp>(step.getDefiningOp());
auto tileSize =
cast<ConstantIndexOp>(tileSizeConstant.getDefiningOp()).getValue();
// If the loop bounds and the loop step are constant and if the number of
// loop iterations is an integer multiple of the tile size, we use a static
// bound for the inner loop.
if (lowerBoundConstant && upperBoundConstant && stepConstant) {
auto numIterations = llvm::divideCeil(upperBoundConstant.getValue() -
lowerBoundConstant.getValue(),
stepConstant.getValue());
if (numIterations % tileSize == 0) {
newBounds.push_back(newStep);
continue;
}
}
// Otherwise, we dynamically compute the bound for
// each iteration of the outer loop.
newBounds.push_back(
b.create<AffineMinOp>(op.getLoc(), b.getIndexType(), minMap,
ValueRange{newStep, upperBound, iv}));
}
auto innerLoop = b.create<ParallelOp>(
op.getLoc(), SmallVector<Value, 2>(newBounds.size(), zero), newBounds,
op.step());
// Steal the body of the old parallel loop and erase it.
innerLoop.region().takeBody(op.region());
// Insert computation for new index vectors and replace uses.
b.setInsertionPointToStart(innerLoop.getBody());
for (auto ivs :
llvm::zip(innerLoop.getInductionVars(), outerLoop.getInductionVars())) {
Value inner_index = std::get<0>(ivs);
AddIOp newIndex =
b.create<AddIOp>(op.getLoc(), std::get<0>(ivs), std::get<1>(ivs));
inner_index.replaceAllUsesExcept(
newIndex, SmallPtrSet<Operation *, 1>{newIndex.getOperation()});
}
op.erase();
}
/// Get a list of most nested parallel loops.
static bool getInnermostPloops(Operation *rootOp,
SmallVectorImpl<ParallelOp> &result) {
assert(rootOp != nullptr && "Root operation must not be a nullptr.");
bool rootEnclosesPloops = false;
for (Region &region : rootOp->getRegions()) {
for (Block &block : region.getBlocks()) {
for (Operation &op : block) {
bool enclosesPloops = getInnermostPloops(&op, result);
rootEnclosesPloops |= enclosesPloops;
if (auto ploop = dyn_cast<ParallelOp>(op)) {
rootEnclosesPloops = true;
// Collect ploop if it is an innermost one.
if (!enclosesPloops)
result.push_back(ploop);
}
}
}
}
return rootEnclosesPloops;
}
namespace {
struct ParallelLoopTiling
: public SCFParallelLoopTilingBase<ParallelLoopTiling> {
ParallelLoopTiling() = default;
explicit ParallelLoopTiling(ArrayRef<int64_t> tileSizes) {
this->tileSizes = tileSizes;
}
void runOnFunction() override {
SmallVector<ParallelOp, 2> innermostPloops;
getInnermostPloops(getFunction().getOperation(), innermostPloops);
for (ParallelOp ploop : innermostPloops) {
// FIXME: Add reduction support.
if (ploop.getNumReductions() == 0)
tileParallelLoop(ploop, tileSizes);
}
}
};
} // namespace
std::unique_ptr<Pass>
mlir::createParallelLoopTilingPass(ArrayRef<int64_t> tileSizes) {
return std::make_unique<ParallelLoopTiling>(tileSizes);
}