blob: ea67db3787987b969ecc92d862f9113e9cab7d56 [file] [log] [blame] [edit]
//===- Deserializer.cpp - MLIR SPIR-V Deserialization ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the SPIR-V binary to MLIR SPIR-V module deserialization.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/SPIRV/Serialization.h"
#include "mlir/Dialect/SPIRV/SPIRVAttributes.h"
#include "mlir/Dialect/SPIRV/SPIRVBinaryUtils.h"
#include "mlir/Dialect/SPIRV/SPIRVModule.h"
#include "mlir/Dialect/SPIRV/SPIRVOps.h"
#include "mlir/Dialect/SPIRV/SPIRVTypes.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Location.h"
#include "mlir/Support/LogicalResult.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/bit.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace mlir;
#define DEBUG_TYPE "spirv-deserialization"
/// Decodes a string literal in `words` starting at `wordIndex`. Update the
/// latter to point to the position in words after the string literal.
static inline StringRef decodeStringLiteral(ArrayRef<uint32_t> words,
unsigned &wordIndex) {
StringRef str(reinterpret_cast<const char *>(words.data() + wordIndex));
wordIndex += str.size() / 4 + 1;
return str;
}
/// Extracts the opcode from the given first word of a SPIR-V instruction.
static inline spirv::Opcode extractOpcode(uint32_t word) {
return static_cast<spirv::Opcode>(word & 0xffff);
}
/// Returns true if the given `block` is a function entry block.
static inline bool isFnEntryBlock(Block *block) {
return block->isEntryBlock() &&
isa_and_nonnull<spirv::FuncOp>(block->getParentOp());
}
namespace {
/// A struct for containing a header block's merge and continue targets.
///
/// This struct is used to track original structured control flow info from
/// SPIR-V blob. This info will be used to create spv.selection/spv.loop
/// later.
struct BlockMergeInfo {
Block *mergeBlock;
Block *continueBlock; // nullptr for spv.selection
Location loc;
uint32_t control;
BlockMergeInfo(Location location, uint32_t control)
: mergeBlock(nullptr), continueBlock(nullptr), loc(location),
control(control) {}
BlockMergeInfo(Location location, uint32_t control, Block *m,
Block *c = nullptr)
: mergeBlock(m), continueBlock(c), loc(location), control(control) {}
};
/// A struct for containing OpLine instruction information.
struct DebugLine {
uint32_t fileID;
uint32_t line;
uint32_t col;
DebugLine(uint32_t fileIDNum, uint32_t lineNum, uint32_t colNum)
: fileID(fileIDNum), line(lineNum), col(colNum) {}
};
/// Map from a selection/loop's header block to its merge (and continue) target.
using BlockMergeInfoMap = DenseMap<Block *, BlockMergeInfo>;
/// A "deferred struct type" is a struct type with one or more member types not
/// known when the Deserializer first encounters the struct. This happens, for
/// example, with recursive structs where a pointer to the struct type is
/// forward declared through OpTypeForwardPointer in the SPIR-V module before
/// the struct declaration; the actual pointer to struct type should be defined
/// later through an OpTypePointer. For example, the following C struct:
///
/// struct A {
/// A* next;
/// };
///
/// would be represented in the SPIR-V module as:
///
/// OpName %A "A"
/// OpTypeForwardPointer %APtr Generic
/// %A = OpTypeStruct %APtr
/// %APtr = OpTypePointer Generic %A
///
/// This means that the spirv::StructType cannot be fully constructed directly
/// when the Deserializer encounters it. Instead we create a
/// DeferredStructTypeInfo that contains all the information we know about the
/// spirv::StructType. Once all forward references for the struct are resolved,
/// the struct's body is set with all member info.
struct DeferredStructTypeInfo {
spirv::StructType deferredStructType;
// A list of all unresolved member types for the struct. First element of each
// item is operand ID, second element is member index in the struct.
SmallVector<std::pair<uint32_t, unsigned>, 0> unresolvedMemberTypes;
// The list of member types. For unresolved members, this list contains
// place-holder empty types that will be updated later.
SmallVector<Type, 4> memberTypes;
SmallVector<spirv::StructType::OffsetInfo, 0> offsetInfo;
SmallVector<spirv::StructType::MemberDecorationInfo, 0> memberDecorationsInfo;
};
/// A SPIR-V module serializer.
///
/// A SPIR-V binary module is a single linear stream of instructions; each
/// instruction is composed of 32-bit words. The first word of an instruction
/// records the total number of words of that instruction using the 16
/// higher-order bits. So this deserializer uses that to get instruction
/// boundary and parse instructions and build a SPIR-V ModuleOp gradually.
///
// TODO: clean up created ops on errors
class Deserializer {
public:
/// Creates a deserializer for the given SPIR-V `binary` module.
/// The SPIR-V ModuleOp will be created into `context.
explicit Deserializer(ArrayRef<uint32_t> binary, MLIRContext *context);
/// Deserializes the remembered SPIR-V binary module.
LogicalResult deserialize();
/// Collects the final SPIR-V ModuleOp.
spirv::OwningSPIRVModuleRef collect();
private:
//===--------------------------------------------------------------------===//
// Module structure
//===--------------------------------------------------------------------===//
/// Initializes the `module` ModuleOp in this deserializer instance.
spirv::OwningSPIRVModuleRef createModuleOp();
/// Processes SPIR-V module header in `binary`.
LogicalResult processHeader();
/// Processes the SPIR-V OpCapability with `operands` and updates bookkeeping
/// in the deserializer.
LogicalResult processCapability(ArrayRef<uint32_t> operands);
/// Processes the SPIR-V OpExtension with `operands` and updates bookkeeping
/// in the deserializer.
LogicalResult processExtension(ArrayRef<uint32_t> words);
/// Processes the SPIR-V OpExtInstImport with `operands` and updates
/// bookkeeping in the deserializer.
LogicalResult processExtInstImport(ArrayRef<uint32_t> words);
/// Attaches (version, capabilities, extensions) triple to `module` as an
/// attribute.
void attachVCETriple();
/// Processes the SPIR-V OpMemoryModel with `operands` and updates `module`.
LogicalResult processMemoryModel(ArrayRef<uint32_t> operands);
/// Process SPIR-V OpName with `operands`.
LogicalResult processName(ArrayRef<uint32_t> operands);
/// Processes an OpDecorate instruction.
LogicalResult processDecoration(ArrayRef<uint32_t> words);
// Processes an OpMemberDecorate instruction.
LogicalResult processMemberDecoration(ArrayRef<uint32_t> words);
/// Processes an OpMemberName instruction.
LogicalResult processMemberName(ArrayRef<uint32_t> words);
/// Gets the function op associated with a result <id> of OpFunction.
spirv::FuncOp getFunction(uint32_t id) { return funcMap.lookup(id); }
/// Processes the SPIR-V function at the current `offset` into `binary`.
/// The operands to the OpFunction instruction is passed in as ``operands`.
/// This method processes each instruction inside the function and dispatches
/// them to their handler method accordingly.
LogicalResult processFunction(ArrayRef<uint32_t> operands);
/// Processes OpFunctionEnd and finalizes function. This wires up block
/// argument created from OpPhi instructions and also structurizes control
/// flow.
LogicalResult processFunctionEnd(ArrayRef<uint32_t> operands);
/// Gets the constant's attribute and type associated with the given <id>.
Optional<std::pair<Attribute, Type>> getConstant(uint32_t id);
/// Gets the constant's integer attribute with the given <id>. Returns a null
/// IntegerAttr if the given is not registered or does not correspond to an
/// integer constant.
IntegerAttr getConstantInt(uint32_t id);
/// Returns a symbol to be used for the function name with the given
/// result <id>. This tries to use the function's OpName if
/// exists; otherwise creates one based on the <id>.
std::string getFunctionSymbol(uint32_t id);
/// Returns a symbol to be used for the specialization constant with the given
/// result <id>. This tries to use the specialization constant's OpName if
/// exists; otherwise creates one based on the <id>.
std::string getSpecConstantSymbol(uint32_t id);
/// Gets the specialization constant with the given result <id>.
spirv::SpecConstantOp getSpecConstant(uint32_t id) {
return specConstMap.lookup(id);
}
/// Gets the composite specialization constant with the given result <id>.
spirv::SpecConstantCompositeOp getSpecConstantComposite(uint32_t id) {
return specConstCompositeMap.lookup(id);
}
/// Creates a spirv::SpecConstantOp.
spirv::SpecConstantOp createSpecConstant(Location loc, uint32_t resultID,
Attribute defaultValue);
/// Processes the OpVariable instructions at current `offset` into `binary`.
/// It is expected that this method is used for variables that are to be
/// defined at module scope and will be deserialized into a spv.globalVariable
/// instruction.
LogicalResult processGlobalVariable(ArrayRef<uint32_t> operands);
/// Gets the global variable associated with a result <id> of OpVariable.
spirv::GlobalVariableOp getGlobalVariable(uint32_t id) {
return globalVariableMap.lookup(id);
}
//===--------------------------------------------------------------------===//
// Type
//===--------------------------------------------------------------------===//
/// Gets type for a given result <id>.
Type getType(uint32_t id) { return typeMap.lookup(id); }
/// Get the type associated with the result <id> of an OpUndef.
Type getUndefType(uint32_t id) { return undefMap.lookup(id); }
/// Returns true if the given `type` is for SPIR-V void type.
bool isVoidType(Type type) const { return type.isa<NoneType>(); }
/// Processes a SPIR-V type instruction with given `opcode` and `operands` and
/// registers the type into `module`.
LogicalResult processType(spirv::Opcode opcode, ArrayRef<uint32_t> operands);
LogicalResult processOpTypePointer(ArrayRef<uint32_t> operands);
LogicalResult processArrayType(ArrayRef<uint32_t> operands);
LogicalResult processCooperativeMatrixType(ArrayRef<uint32_t> operands);
LogicalResult processFunctionType(ArrayRef<uint32_t> operands);
LogicalResult processRuntimeArrayType(ArrayRef<uint32_t> operands);
LogicalResult processStructType(ArrayRef<uint32_t> operands);
LogicalResult processMatrixType(ArrayRef<uint32_t> operands);
//===--------------------------------------------------------------------===//
// Constant
//===--------------------------------------------------------------------===//
/// Processes a SPIR-V Op{|Spec}Constant instruction with the given
/// `operands`. `isSpec` indicates whether this is a specialization constant.
LogicalResult processConstant(ArrayRef<uint32_t> operands, bool isSpec);
/// Processes a SPIR-V Op{|Spec}Constant{True|False} instruction with the
/// given `operands`. `isSpec` indicates whether this is a specialization
/// constant.
LogicalResult processConstantBool(bool isTrue, ArrayRef<uint32_t> operands,
bool isSpec);
/// Processes a SPIR-V OpConstantComposite instruction with the given
/// `operands`.
LogicalResult processConstantComposite(ArrayRef<uint32_t> operands);
LogicalResult processSpecConstantComposite(ArrayRef<uint32_t> operands);
/// Processes a SPIR-V OpConstantNull instruction with the given `operands`.
LogicalResult processConstantNull(ArrayRef<uint32_t> operands);
//===--------------------------------------------------------------------===//
// Debug
//===--------------------------------------------------------------------===//
/// Discontinues any source-level location information that might be active
/// from a previous OpLine instruction.
LogicalResult clearDebugLine();
/// Creates a FileLineColLoc with the OpLine location information.
Location createFileLineColLoc(OpBuilder opBuilder);
/// Processes a SPIR-V OpLine instruction with the given `operands`.
LogicalResult processDebugLine(ArrayRef<uint32_t> operands);
/// Processes a SPIR-V OpString instruction with the given `operands`.
LogicalResult processDebugString(ArrayRef<uint32_t> operands);
//===--------------------------------------------------------------------===//
// Control flow
//===--------------------------------------------------------------------===//
/// Returns the block for the given label <id>.
Block *getBlock(uint32_t id) const { return blockMap.lookup(id); }
// In SPIR-V, structured control flow is explicitly declared using merge
// instructions (OpSelectionMerge and OpLoopMerge). In the SPIR-V dialect,
// we use spv.selection and spv.loop to group structured control flow.
// The deserializer need to turn structured control flow marked with merge
// instructions into using spv.selection/spv.loop ops.
//
// Because structured control flow can nest and the basic block order have
// flexibility, we cannot isolate a structured selection/loop without
// deserializing all the blocks. So we use the following approach:
//
// 1. Deserialize all basic blocks in a function and create MLIR blocks for
// them into the function's region. In the meanwhile, keep a map between
// selection/loop header blocks to their corresponding merge (and continue)
// target blocks.
// 2. For each selection/loop header block, recursively get all basic blocks
// reachable (except the merge block) and put them in a newly created
// spv.selection/spv.loop's region. Structured control flow guarantees
// that we enter and exit in structured ways and the construct is nestable.
// 3. Put the new spv.selection/spv.loop op at the beginning of the old merge
// block and redirect all branches to the old header block to the old
// merge block (which contains the spv.selection/spv.loop op now).
/// For OpPhi instructions, we use block arguments to represent them. OpPhi
/// encodes a list of (value, predecessor) pairs. At the time of handling the
/// block containing an OpPhi instruction, the predecessor block might not be
/// processed yet, also the value sent by it. So we need to defer handling
/// the block argument from the predecessors. We use the following approach:
///
/// 1. For each OpPhi instruction, add a block argument to the current block
/// in construction. Record the block argument in `valueMap` so its uses
/// can be resolved. For the list of (value, predecessor) pairs, update
/// `blockPhiInfo` for bookkeeping.
/// 2. After processing all blocks, loop over `blockPhiInfo` to fix up each
/// block recorded there to create the proper block arguments on their
/// terminators.
/// A data structure for containing a SPIR-V block's phi info. It will be
/// represented as block argument in SPIR-V dialect.
using BlockPhiInfo =
SmallVector<uint32_t, 2>; // The result <id> of the values sent
/// Gets or creates the block corresponding to the given label <id>. The newly
/// created block will always be placed at the end of the current function.
Block *getOrCreateBlock(uint32_t id);
LogicalResult processBranch(ArrayRef<uint32_t> operands);
LogicalResult processBranchConditional(ArrayRef<uint32_t> operands);
/// Processes a SPIR-V OpLabel instruction with the given `operands`.
LogicalResult processLabel(ArrayRef<uint32_t> operands);
/// Processes a SPIR-V OpSelectionMerge instruction with the given `operands`.
LogicalResult processSelectionMerge(ArrayRef<uint32_t> operands);
/// Processes a SPIR-V OpLoopMerge instruction with the given `operands`.
LogicalResult processLoopMerge(ArrayRef<uint32_t> operands);
/// Processes a SPIR-V OpPhi instruction with the given `operands`.
LogicalResult processPhi(ArrayRef<uint32_t> operands);
/// Creates block arguments on predecessors previously recorded when handling
/// OpPhi instructions.
LogicalResult wireUpBlockArgument();
/// Extracts blocks belonging to a structured selection/loop into a
/// spv.selection/spv.loop op. This method iterates until all blocks
/// declared as selection/loop headers are handled.
LogicalResult structurizeControlFlow();
//===--------------------------------------------------------------------===//
// Instruction
//===--------------------------------------------------------------------===//
/// Get the Value associated with a result <id>.
///
/// This method materializes normal constants and inserts "casting" ops
/// (`spv.mlir.addressof` and `spv.mlir.referenceof`) to turn an symbol into a
/// SSA value for handling uses of module scope constants/variables in
/// functions.
Value getValue(uint32_t id);
/// Slices the first instruction out of `binary` and returns its opcode and
/// operands via `opcode` and `operands` respectively. Returns failure if
/// there is no more remaining instructions (`expectedOpcode` will be used to
/// compose the error message) or the next instruction is malformed.
LogicalResult
sliceInstruction(spirv::Opcode &opcode, ArrayRef<uint32_t> &operands,
Optional<spirv::Opcode> expectedOpcode = llvm::None);
/// Processes a SPIR-V instruction with the given `opcode` and `operands`.
/// This method is the main entrance for handling SPIR-V instruction; it
/// checks the instruction opcode and dispatches to the corresponding handler.
/// Processing of Some instructions (like OpEntryPoint and OpExecutionMode)
/// might need to be deferred, since they contain forward references to <id>s
/// in the deserialized binary, but module in SPIR-V dialect expects these to
/// be ssa-uses.
LogicalResult processInstruction(spirv::Opcode opcode,
ArrayRef<uint32_t> operands,
bool deferInstructions = true);
/// Processes a OpUndef instruction. Adds a spv.Undef operation at the current
/// insertion point.
LogicalResult processUndef(ArrayRef<uint32_t> operands);
LogicalResult processTypeForwardPointer(ArrayRef<uint32_t> operands);
/// Method to dispatch to the specialized deserialization function for an
/// operation in SPIR-V dialect that is a mirror of an instruction in the
/// SPIR-V spec. This is auto-generated from ODS. Dispatch is handled for
/// all operations in SPIR-V dialect that have hasOpcode == 1.
LogicalResult dispatchToAutogenDeserialization(spirv::Opcode opcode,
ArrayRef<uint32_t> words);
/// Processes a SPIR-V OpExtInst with given `operands`. This slices the
/// entries of `operands` that specify the extended instruction set <id> and
/// the instruction opcode. The op deserializer is then invoked using the
/// other entries.
LogicalResult processExtInst(ArrayRef<uint32_t> operands);
/// Dispatches the deserialization of extended instruction set operation based
/// on the extended instruction set name, and instruction opcode. This is
/// autogenerated from ODS.
LogicalResult
dispatchToExtensionSetAutogenDeserialization(StringRef extensionSetName,
uint32_t instructionID,
ArrayRef<uint32_t> words);
/// Method to deserialize an operation in the SPIR-V dialect that is a mirror
/// of an instruction in the SPIR-V spec. This is auto generated if hasOpcode
/// == 1 and autogenSerialization == 1 in ODS.
template <typename OpTy>
LogicalResult processOp(ArrayRef<uint32_t> words) {
return emitError(unknownLoc, "unsupported deserialization for ")
<< OpTy::getOperationName() << " op";
}
private:
/// The SPIR-V binary module.
ArrayRef<uint32_t> binary;
/// Contains the data of the OpLine instruction which precedes the current
/// processing instruction.
llvm::Optional<DebugLine> debugLine;
/// The current word offset into the binary module.
unsigned curOffset = 0;
/// MLIRContext to create SPIR-V ModuleOp into.
MLIRContext *context;
// TODO: create Location subclass for binary blob
Location unknownLoc;
/// The SPIR-V ModuleOp.
spirv::OwningSPIRVModuleRef module;
/// The current function under construction.
Optional<spirv::FuncOp> curFunction;
/// The current block under construction.
Block *curBlock = nullptr;
OpBuilder opBuilder;
spirv::Version version;
/// The list of capabilities used by the module.
llvm::SmallSetVector<spirv::Capability, 4> capabilities;
/// The list of extensions used by the module.
llvm::SmallSetVector<spirv::Extension, 2> extensions;
// Result <id> to type mapping.
DenseMap<uint32_t, Type> typeMap;
// Result <id> to constant attribute and type mapping.
///
/// In the SPIR-V binary format, all constants are placed in the module and
/// shared by instructions at module level and in subsequent functions. But in
/// the SPIR-V dialect, we materialize the constant to where it's used in the
/// function. So when seeing a constant instruction in the binary format, we
/// don't immediately emit a constant op into the module, we keep its value
/// (and type) here. Later when it's used, we materialize the constant.
DenseMap<uint32_t, std::pair<Attribute, Type>> constantMap;
// Result <id> to spec constant mapping.
DenseMap<uint32_t, spirv::SpecConstantOp> specConstMap;
// Result <id> to composite spec constant mapping.
DenseMap<uint32_t, spirv::SpecConstantCompositeOp> specConstCompositeMap;
// Result <id> to variable mapping.
DenseMap<uint32_t, spirv::GlobalVariableOp> globalVariableMap;
// Result <id> to function mapping.
DenseMap<uint32_t, spirv::FuncOp> funcMap;
// Result <id> to block mapping.
DenseMap<uint32_t, Block *> blockMap;
// Header block to its merge (and continue) target mapping.
BlockMergeInfoMap blockMergeInfo;
// Block to its phi (block argument) mapping.
DenseMap<Block *, BlockPhiInfo> blockPhiInfo;
// Result <id> to value mapping.
DenseMap<uint32_t, Value> valueMap;
// Mapping from result <id> to undef value of a type.
DenseMap<uint32_t, Type> undefMap;
// Result <id> to name mapping.
DenseMap<uint32_t, StringRef> nameMap;
// Result <id> to debug info mapping.
DenseMap<uint32_t, StringRef> debugInfoMap;
// Result <id> to decorations mapping.
DenseMap<uint32_t, MutableDictionaryAttr> decorations;
// Result <id> to type decorations.
DenseMap<uint32_t, uint32_t> typeDecorations;
// Result <id> to member decorations.
// decorated-struct-type-<id> ->
// (struct-member-index -> (decoration -> decoration-operands))
DenseMap<uint32_t,
DenseMap<uint32_t, DenseMap<spirv::Decoration, ArrayRef<uint32_t>>>>
memberDecorationMap;
// Result <id> to member name.
// struct-type-<id> -> (struct-member-index -> name)
DenseMap<uint32_t, DenseMap<uint32_t, StringRef>> memberNameMap;
// Result <id> to extended instruction set name.
DenseMap<uint32_t, StringRef> extendedInstSets;
// List of instructions that are processed in a deferred fashion (after an
// initial processing of the entire binary). Some operations like
// OpEntryPoint, and OpExecutionMode use forward references to function
// <id>s. In SPIR-V dialect the corresponding operations (spv.EntryPoint and
// spv.ExecutionMode) need these references resolved. So these instructions
// are deserialized and stored for processing once the entire binary is
// processed.
SmallVector<std::pair<spirv::Opcode, ArrayRef<uint32_t>>, 4>
deferredInstructions;
/// A list of IDs for all types forward-declared through OpTypeForwardPointer
/// instructions.
llvm::SetVector<uint32_t> typeForwardPointerIDs;
/// A list of all structs which have unresolved member types.
SmallVector<DeferredStructTypeInfo, 0> deferredStructTypesInfos;
};
} // namespace
Deserializer::Deserializer(ArrayRef<uint32_t> binary, MLIRContext *context)
: binary(binary), context(context), unknownLoc(UnknownLoc::get(context)),
module(createModuleOp()), opBuilder(module->body()) {}
LogicalResult Deserializer::deserialize() {
LLVM_DEBUG(llvm::dbgs() << "+++ starting deserialization +++\n");
if (failed(processHeader()))
return failure();
spirv::Opcode opcode = spirv::Opcode::OpNop;
ArrayRef<uint32_t> operands;
auto binarySize = binary.size();
while (curOffset < binarySize) {
// Slice the next instruction out and populate `opcode` and `operands`.
// Internally this also updates `curOffset`.
if (failed(sliceInstruction(opcode, operands)))
return failure();
if (failed(processInstruction(opcode, operands)))
return failure();
}
assert(curOffset == binarySize &&
"deserializer should never index beyond the binary end");
for (auto &deferred : deferredInstructions) {
if (failed(processInstruction(deferred.first, deferred.second, false))) {
return failure();
}
}
attachVCETriple();
LLVM_DEBUG(llvm::dbgs() << "+++ completed deserialization +++\n");
return success();
}
spirv::OwningSPIRVModuleRef Deserializer::collect() {
return std::move(module);
}
//===----------------------------------------------------------------------===//
// Module structure
//===----------------------------------------------------------------------===//
spirv::OwningSPIRVModuleRef Deserializer::createModuleOp() {
OpBuilder builder(context);
OperationState state(unknownLoc, spirv::ModuleOp::getOperationName());
spirv::ModuleOp::build(builder, state);
return cast<spirv::ModuleOp>(Operation::create(state));
}
LogicalResult Deserializer::processHeader() {
if (binary.size() < spirv::kHeaderWordCount)
return emitError(unknownLoc,
"SPIR-V binary module must have a 5-word header");
if (binary[0] != spirv::kMagicNumber)
return emitError(unknownLoc, "incorrect magic number");
// Version number bytes: 0 | major number | minor number | 0
uint32_t majorVersion = (binary[1] << 8) >> 24;
uint32_t minorVersion = (binary[1] << 16) >> 24;
if (majorVersion == 1) {
switch (minorVersion) {
#define MIN_VERSION_CASE(v) \
case v: \
version = spirv::Version::V_1_##v; \
break
MIN_VERSION_CASE(0);
MIN_VERSION_CASE(1);
MIN_VERSION_CASE(2);
MIN_VERSION_CASE(3);
MIN_VERSION_CASE(4);
MIN_VERSION_CASE(5);
#undef MIN_VERSION_CASE
default:
return emitError(unknownLoc, "unsupported SPIR-V minor version: ")
<< minorVersion;
}
} else {
return emitError(unknownLoc, "unsupported SPIR-V major version: ")
<< majorVersion;
}
// TODO: generator number, bound, schema
curOffset = spirv::kHeaderWordCount;
return success();
}
LogicalResult Deserializer::processCapability(ArrayRef<uint32_t> operands) {
if (operands.size() != 1)
return emitError(unknownLoc, "OpMemoryModel must have one parameter");
auto cap = spirv::symbolizeCapability(operands[0]);
if (!cap)
return emitError(unknownLoc, "unknown capability: ") << operands[0];
capabilities.insert(*cap);
return success();
}
LogicalResult Deserializer::processExtension(ArrayRef<uint32_t> words) {
if (words.empty()) {
return emitError(
unknownLoc,
"OpExtension must have a literal string for the extension name");
}
unsigned wordIndex = 0;
StringRef extName = decodeStringLiteral(words, wordIndex);
if (wordIndex != words.size())
return emitError(unknownLoc,
"unexpected trailing words in OpExtension instruction");
auto ext = spirv::symbolizeExtension(extName);
if (!ext)
return emitError(unknownLoc, "unknown extension: ") << extName;
extensions.insert(*ext);
return success();
}
LogicalResult Deserializer::processExtInstImport(ArrayRef<uint32_t> words) {
if (words.size() < 2) {
return emitError(unknownLoc,
"OpExtInstImport must have a result <id> and a literal "
"string for the extended instruction set name");
}
unsigned wordIndex = 1;
extendedInstSets[words[0]] = decodeStringLiteral(words, wordIndex);
if (wordIndex != words.size()) {
return emitError(unknownLoc,
"unexpected trailing words in OpExtInstImport");
}
return success();
}
void Deserializer::attachVCETriple() {
module->setAttr(spirv::ModuleOp::getVCETripleAttrName(),
spirv::VerCapExtAttr::get(version, capabilities.getArrayRef(),
extensions.getArrayRef(), context));
}
LogicalResult Deserializer::processMemoryModel(ArrayRef<uint32_t> operands) {
if (operands.size() != 2)
return emitError(unknownLoc, "OpMemoryModel must have two operands");
module->setAttr(
"addressing_model",
opBuilder.getI32IntegerAttr(llvm::bit_cast<int32_t>(operands.front())));
module->setAttr(
"memory_model",
opBuilder.getI32IntegerAttr(llvm::bit_cast<int32_t>(operands.back())));
return success();
}
LogicalResult Deserializer::processDecoration(ArrayRef<uint32_t> words) {
// TODO: This function should also be auto-generated. For now, since only a
// few decorations are processed/handled in a meaningful manner, going with a
// manual implementation.
if (words.size() < 2) {
return emitError(
unknownLoc, "OpDecorate must have at least result <id> and Decoration");
}
auto decorationName =
stringifyDecoration(static_cast<spirv::Decoration>(words[1]));
if (decorationName.empty()) {
return emitError(unknownLoc, "invalid Decoration code : ") << words[1];
}
auto attrName = llvm::convertToSnakeFromCamelCase(decorationName);
auto symbol = opBuilder.getIdentifier(attrName);
switch (static_cast<spirv::Decoration>(words[1])) {
case spirv::Decoration::DescriptorSet:
case spirv::Decoration::Binding:
if (words.size() != 3) {
return emitError(unknownLoc, "OpDecorate with ")
<< decorationName << " needs a single integer literal";
}
decorations[words[0]].set(
symbol, opBuilder.getI32IntegerAttr(static_cast<int32_t>(words[2])));
break;
case spirv::Decoration::BuiltIn:
if (words.size() != 3) {
return emitError(unknownLoc, "OpDecorate with ")
<< decorationName << " needs a single integer literal";
}
decorations[words[0]].set(
symbol, opBuilder.getStringAttr(
stringifyBuiltIn(static_cast<spirv::BuiltIn>(words[2]))));
break;
case spirv::Decoration::ArrayStride:
if (words.size() != 3) {
return emitError(unknownLoc, "OpDecorate with ")
<< decorationName << " needs a single integer literal";
}
typeDecorations[words[0]] = words[2];
break;
case spirv::Decoration::Aliased:
case spirv::Decoration::Block:
case spirv::Decoration::BufferBlock:
case spirv::Decoration::Flat:
case spirv::Decoration::NonReadable:
case spirv::Decoration::NonWritable:
case spirv::Decoration::NoPerspective:
case spirv::Decoration::Restrict:
if (words.size() != 2) {
return emitError(unknownLoc, "OpDecoration with ")
<< decorationName << "needs a single target <id>";
}
// Block decoration does not affect spv.struct type, but is still stored for
// verification.
// TODO: Update StructType to contain this information since
// it is needed for many validation rules.
decorations[words[0]].set(symbol, opBuilder.getUnitAttr());
break;
case spirv::Decoration::Location:
case spirv::Decoration::SpecId:
if (words.size() != 3) {
return emitError(unknownLoc, "OpDecoration with ")
<< decorationName << "needs a single integer literal";
}
decorations[words[0]].set(
symbol, opBuilder.getI32IntegerAttr(static_cast<int32_t>(words[2])));
break;
default:
return emitError(unknownLoc, "unhandled Decoration : '") << decorationName;
}
return success();
}
LogicalResult Deserializer::processMemberDecoration(ArrayRef<uint32_t> words) {
// The binary layout of OpMemberDecorate is different comparing to OpDecorate
if (words.size() < 3) {
return emitError(unknownLoc,
"OpMemberDecorate must have at least 3 operands");
}
auto decoration = static_cast<spirv::Decoration>(words[2]);
if (decoration == spirv::Decoration::Offset && words.size() != 4) {
return emitError(unknownLoc,
" missing offset specification in OpMemberDecorate with "
"Offset decoration");
}
ArrayRef<uint32_t> decorationOperands;
if (words.size() > 3) {
decorationOperands = words.slice(3);
}
memberDecorationMap[words[0]][words[1]][decoration] = decorationOperands;
return success();
}
LogicalResult Deserializer::processMemberName(ArrayRef<uint32_t> words) {
if (words.size() < 3) {
return emitError(unknownLoc, "OpMemberName must have at least 3 operands");
}
unsigned wordIndex = 2;
auto name = decodeStringLiteral(words, wordIndex);
if (wordIndex != words.size()) {
return emitError(unknownLoc,
"unexpected trailing words in OpMemberName instruction");
}
memberNameMap[words[0]][words[1]] = name;
return success();
}
LogicalResult Deserializer::processFunction(ArrayRef<uint32_t> operands) {
if (curFunction) {
return emitError(unknownLoc, "found function inside function");
}
// Get the result type
if (operands.size() != 4) {
return emitError(unknownLoc, "OpFunction must have 4 parameters");
}
Type resultType = getType(operands[0]);
if (!resultType) {
return emitError(unknownLoc, "undefined result type from <id> ")
<< operands[0];
}
if (funcMap.count(operands[1])) {
return emitError(unknownLoc, "duplicate function definition/declaration");
}
auto fnControl = spirv::symbolizeFunctionControl(operands[2]);
if (!fnControl) {
return emitError(unknownLoc, "unknown Function Control: ") << operands[2];
}
Type fnType = getType(operands[3]);
if (!fnType || !fnType.isa<FunctionType>()) {
return emitError(unknownLoc, "unknown function type from <id> ")
<< operands[3];
}
auto functionType = fnType.cast<FunctionType>();
if ((isVoidType(resultType) && functionType.getNumResults() != 0) ||
(functionType.getNumResults() == 1 &&
functionType.getResult(0) != resultType)) {
return emitError(unknownLoc, "mismatch in function type ")
<< functionType << " and return type " << resultType << " specified";
}
std::string fnName = getFunctionSymbol(operands[1]);
auto funcOp = opBuilder.create<spirv::FuncOp>(
unknownLoc, fnName, functionType, fnControl.getValue());
curFunction = funcMap[operands[1]] = funcOp;
LLVM_DEBUG(llvm::dbgs() << "-- start function " << fnName << " (type = "
<< fnType << ", id = " << operands[1] << ") --\n");
auto *entryBlock = funcOp.addEntryBlock();
LLVM_DEBUG(llvm::dbgs() << "[block] created entry block " << entryBlock
<< "\n");
// Parse the op argument instructions
if (functionType.getNumInputs()) {
for (size_t i = 0, e = functionType.getNumInputs(); i != e; ++i) {
auto argType = functionType.getInput(i);
spirv::Opcode opcode = spirv::Opcode::OpNop;
ArrayRef<uint32_t> operands;
if (failed(sliceInstruction(opcode, operands,
spirv::Opcode::OpFunctionParameter))) {
return failure();
}
if (opcode != spirv::Opcode::OpFunctionParameter) {
return emitError(
unknownLoc,
"missing OpFunctionParameter instruction for argument ")
<< i;
}
if (operands.size() != 2) {
return emitError(
unknownLoc,
"expected result type and result <id> for OpFunctionParameter");
}
auto argDefinedType = getType(operands[0]);
if (!argDefinedType || argDefinedType != argType) {
return emitError(unknownLoc,
"mismatch in argument type between function type "
"definition ")
<< functionType << " and argument type definition "
<< argDefinedType << " at argument " << i;
}
if (getValue(operands[1])) {
return emitError(unknownLoc, "duplicate definition of result <id> '")
<< operands[1];
}
auto argValue = funcOp.getArgument(i);
valueMap[operands[1]] = argValue;
}
}
// RAII guard to reset the insertion point to the module's region after
// deserializing the body of this function.
OpBuilder::InsertionGuard moduleInsertionGuard(opBuilder);
spirv::Opcode opcode = spirv::Opcode::OpNop;
ArrayRef<uint32_t> instOperands;
// Special handling for the entry block. We need to make sure it starts with
// an OpLabel instruction. The entry block takes the same parameters as the
// function. All other blocks do not take any parameter. We have already
// created the entry block, here we need to register it to the correct label
// <id>.
if (failed(sliceInstruction(opcode, instOperands,
spirv::Opcode::OpFunctionEnd))) {
return failure();
}
if (opcode == spirv::Opcode::OpFunctionEnd) {
LLVM_DEBUG(llvm::dbgs()
<< "-- completed function '" << fnName << "' (type = " << fnType
<< ", id = " << operands[1] << ") --\n");
return processFunctionEnd(instOperands);
}
if (opcode != spirv::Opcode::OpLabel) {
return emitError(unknownLoc, "a basic block must start with OpLabel");
}
if (instOperands.size() != 1) {
return emitError(unknownLoc, "OpLabel should only have result <id>");
}
blockMap[instOperands[0]] = entryBlock;
if (failed(processLabel(instOperands))) {
return failure();
}
// Then process all the other instructions in the function until we hit
// OpFunctionEnd.
while (succeeded(sliceInstruction(opcode, instOperands,
spirv::Opcode::OpFunctionEnd)) &&
opcode != spirv::Opcode::OpFunctionEnd) {
if (failed(processInstruction(opcode, instOperands))) {
return failure();
}
}
if (opcode != spirv::Opcode::OpFunctionEnd) {
return failure();
}
LLVM_DEBUG(llvm::dbgs() << "-- completed function '" << fnName << "' (type = "
<< fnType << ", id = " << operands[1] << ") --\n");
return processFunctionEnd(instOperands);
}
LogicalResult Deserializer::processFunctionEnd(ArrayRef<uint32_t> operands) {
// Process OpFunctionEnd.
if (!operands.empty()) {
return emitError(unknownLoc, "unexpected operands for OpFunctionEnd");
}
// Wire up block arguments from OpPhi instructions.
// Put all structured control flow in spv.selection/spv.loop ops.
if (failed(wireUpBlockArgument()) || failed(structurizeControlFlow())) {
return failure();
}
curBlock = nullptr;
curFunction = llvm::None;
return success();
}
Optional<std::pair<Attribute, Type>> Deserializer::getConstant(uint32_t id) {
auto constIt = constantMap.find(id);
if (constIt == constantMap.end())
return llvm::None;
return constIt->getSecond();
}
std::string Deserializer::getFunctionSymbol(uint32_t id) {
auto funcName = nameMap.lookup(id).str();
if (funcName.empty()) {
funcName = "spirv_fn_" + std::to_string(id);
}
return funcName;
}
std::string Deserializer::getSpecConstantSymbol(uint32_t id) {
auto constName = nameMap.lookup(id).str();
if (constName.empty()) {
constName = "spirv_spec_const_" + std::to_string(id);
}
return constName;
}
spirv::SpecConstantOp Deserializer::createSpecConstant(Location loc,
uint32_t resultID,
Attribute defaultValue) {
auto symName = opBuilder.getStringAttr(getSpecConstantSymbol(resultID));
auto op = opBuilder.create<spirv::SpecConstantOp>(unknownLoc, symName,
defaultValue);
if (decorations.count(resultID)) {
for (auto attr : decorations[resultID].getAttrs())
op.setAttr(attr.first, attr.second);
}
specConstMap[resultID] = op;
return op;
}
LogicalResult Deserializer::processGlobalVariable(ArrayRef<uint32_t> operands) {
unsigned wordIndex = 0;
if (operands.size() < 3) {
return emitError(
unknownLoc,
"OpVariable needs at least 3 operands, type, <id> and storage class");
}
// Result Type.
auto type = getType(operands[wordIndex]);
if (!type) {
return emitError(unknownLoc, "unknown result type <id> : ")
<< operands[wordIndex];
}
auto ptrType = type.dyn_cast<spirv::PointerType>();
if (!ptrType) {
return emitError(unknownLoc,
"expected a result type <id> to be a spv.ptr, found : ")
<< type;
}
wordIndex++;
// Result <id>.
auto variableID = operands[wordIndex];
auto variableName = nameMap.lookup(variableID).str();
if (variableName.empty()) {
variableName = "spirv_var_" + std::to_string(variableID);
}
wordIndex++;
// Storage class.
auto storageClass = static_cast<spirv::StorageClass>(operands[wordIndex]);
if (ptrType.getStorageClass() != storageClass) {
return emitError(unknownLoc, "mismatch in storage class of pointer type ")
<< type << " and that specified in OpVariable instruction : "
<< stringifyStorageClass(storageClass);
}
wordIndex++;
// Initializer.
FlatSymbolRefAttr initializer = nullptr;
if (wordIndex < operands.size()) {
auto initializerOp = getGlobalVariable(operands[wordIndex]);
if (!initializerOp) {
return emitError(unknownLoc, "unknown <id> ")
<< operands[wordIndex] << "used as initializer";
}
wordIndex++;
initializer = opBuilder.getSymbolRefAttr(initializerOp.getOperation());
}
if (wordIndex != operands.size()) {
return emitError(unknownLoc,
"found more operands than expected when deserializing "
"OpVariable instruction, only ")
<< wordIndex << " of " << operands.size() << " processed";
}
auto loc = createFileLineColLoc(opBuilder);
auto varOp = opBuilder.create<spirv::GlobalVariableOp>(
loc, TypeAttr::get(type), opBuilder.getStringAttr(variableName),
initializer);
// Decorations.
if (decorations.count(variableID)) {
for (auto attr : decorations[variableID].getAttrs()) {
varOp.setAttr(attr.first, attr.second);
}
}
globalVariableMap[variableID] = varOp;
return success();
}
IntegerAttr Deserializer::getConstantInt(uint32_t id) {
auto constInfo = getConstant(id);
if (!constInfo) {
return nullptr;
}
return constInfo->first.dyn_cast<IntegerAttr>();
}
LogicalResult Deserializer::processName(ArrayRef<uint32_t> operands) {
if (operands.size() < 2) {
return emitError(unknownLoc, "OpName needs at least 2 operands");
}
if (!nameMap.lookup(operands[0]).empty()) {
return emitError(unknownLoc, "duplicate name found for result <id> ")
<< operands[0];
}
unsigned wordIndex = 1;
StringRef name = decodeStringLiteral(operands, wordIndex);
if (wordIndex != operands.size()) {
return emitError(unknownLoc,
"unexpected trailing words in OpName instruction");
}
nameMap[operands[0]] = name;
return success();
}
//===----------------------------------------------------------------------===//
// Type
//===----------------------------------------------------------------------===//
LogicalResult Deserializer::processType(spirv::Opcode opcode,
ArrayRef<uint32_t> operands) {
if (operands.empty()) {
return emitError(unknownLoc, "type instruction with opcode ")
<< spirv::stringifyOpcode(opcode) << " needs at least one <id>";
}
/// TODO: Types might be forward declared in some instructions and need to be
/// handled appropriately.
if (typeMap.count(operands[0])) {
return emitError(unknownLoc, "duplicate definition for result <id> ")
<< operands[0];
}
switch (opcode) {
case spirv::Opcode::OpTypeVoid:
if (operands.size() != 1)
return emitError(unknownLoc, "OpTypeVoid must have no parameters");
typeMap[operands[0]] = opBuilder.getNoneType();
break;
case spirv::Opcode::OpTypeBool:
if (operands.size() != 1)
return emitError(unknownLoc, "OpTypeBool must have no parameters");
typeMap[operands[0]] = opBuilder.getI1Type();
break;
case spirv::Opcode::OpTypeInt: {
if (operands.size() != 3)
return emitError(
unknownLoc, "OpTypeInt must have bitwidth and signedness parameters");
// SPIR-V OpTypeInt "Signedness specifies whether there are signed semantics
// to preserve or validate.
// 0 indicates unsigned, or no signedness semantics
// 1 indicates signed semantics."
//
// So we cannot differentiate signless and unsigned integers; always use
// signless semantics for such cases.
auto sign = operands[2] == 1 ? IntegerType::SignednessSemantics::Signed
: IntegerType::SignednessSemantics::Signless;
typeMap[operands[0]] = IntegerType::get(operands[1], sign, context);
} break;
case spirv::Opcode::OpTypeFloat: {
if (operands.size() != 2)
return emitError(unknownLoc, "OpTypeFloat must have bitwidth parameter");
Type floatTy;
switch (operands[1]) {
case 16:
floatTy = opBuilder.getF16Type();
break;
case 32:
floatTy = opBuilder.getF32Type();
break;
case 64:
floatTy = opBuilder.getF64Type();
break;
default:
return emitError(unknownLoc, "unsupported OpTypeFloat bitwidth: ")
<< operands[1];
}
typeMap[operands[0]] = floatTy;
} break;
case spirv::Opcode::OpTypeVector: {
if (operands.size() != 3) {
return emitError(
unknownLoc,
"OpTypeVector must have element type and count parameters");
}
Type elementTy = getType(operands[1]);
if (!elementTy) {
return emitError(unknownLoc, "OpTypeVector references undefined <id> ")
<< operands[1];
}
typeMap[operands[0]] = VectorType::get({operands[2]}, elementTy);
} break;
case spirv::Opcode::OpTypePointer: {
return processOpTypePointer(operands);
} break;
case spirv::Opcode::OpTypeArray:
return processArrayType(operands);
case spirv::Opcode::OpTypeCooperativeMatrixNV:
return processCooperativeMatrixType(operands);
case spirv::Opcode::OpTypeFunction:
return processFunctionType(operands);
case spirv::Opcode::OpTypeRuntimeArray:
return processRuntimeArrayType(operands);
case spirv::Opcode::OpTypeStruct:
return processStructType(operands);
case spirv::Opcode::OpTypeMatrix:
return processMatrixType(operands);
default:
return emitError(unknownLoc, "unhandled type instruction");
}
return success();
}
LogicalResult Deserializer::processOpTypePointer(ArrayRef<uint32_t> operands) {
if (operands.size() != 3)
return emitError(unknownLoc, "OpTypePointer must have two parameters");
auto pointeeType = getType(operands[2]);
if (!pointeeType)
return emitError(unknownLoc, "unknown OpTypePointer pointee type <id> ")
<< operands[2];
uint32_t typePointerID = operands[0];
auto storageClass = static_cast<spirv::StorageClass>(operands[1]);
typeMap[typePointerID] = spirv::PointerType::get(pointeeType, storageClass);
for (auto *deferredStructIt = std::begin(deferredStructTypesInfos);
deferredStructIt != std::end(deferredStructTypesInfos);) {
for (auto *unresolvedMemberIt =
std::begin(deferredStructIt->unresolvedMemberTypes);
unresolvedMemberIt !=
std::end(deferredStructIt->unresolvedMemberTypes);) {
if (unresolvedMemberIt->first == typePointerID) {
// The newly constructed pointer type can resolve one of the
// deferred struct type members; update the memberTypes list and
// clean the unresolvedMemberTypes list accordingly.
deferredStructIt->memberTypes[unresolvedMemberIt->second] =
typeMap[typePointerID];
unresolvedMemberIt =
deferredStructIt->unresolvedMemberTypes.erase(unresolvedMemberIt);
} else {
++unresolvedMemberIt;
}
}
if (deferredStructIt->unresolvedMemberTypes.empty()) {
// All deferred struct type members are now resolved, set the struct body.
auto structType = deferredStructIt->deferredStructType;
assert(structType && "expected a spirv::StructType");
assert(structType.isIdentified() && "expected an indentified struct");
if (failed(structType.trySetBody(
deferredStructIt->memberTypes, deferredStructIt->offsetInfo,
deferredStructIt->memberDecorationsInfo)))
return failure();
deferredStructIt = deferredStructTypesInfos.erase(deferredStructIt);
} else {
++deferredStructIt;
}
}
return success();
}
LogicalResult Deserializer::processArrayType(ArrayRef<uint32_t> operands) {
if (operands.size() != 3) {
return emitError(unknownLoc,
"OpTypeArray must have element type and count parameters");
}
Type elementTy = getType(operands[1]);
if (!elementTy) {
return emitError(unknownLoc, "OpTypeArray references undefined <id> ")
<< operands[1];
}
unsigned count = 0;
// TODO: The count can also come frome a specialization constant.
auto countInfo = getConstant(operands[2]);
if (!countInfo) {
return emitError(unknownLoc, "OpTypeArray count <id> ")
<< operands[2] << "can only come from normal constant right now";
}
if (auto intVal = countInfo->first.dyn_cast<IntegerAttr>()) {
count = intVal.getValue().getZExtValue();
} else {
return emitError(unknownLoc, "OpTypeArray count must come from a "
"scalar integer constant instruction");
}
typeMap[operands[0]] = spirv::ArrayType::get(
elementTy, count, typeDecorations.lookup(operands[0]));
return success();
}
LogicalResult Deserializer::processFunctionType(ArrayRef<uint32_t> operands) {
assert(!operands.empty() && "No operands for processing function type");
if (operands.size() == 1) {
return emitError(unknownLoc, "missing return type for OpTypeFunction");
}
auto returnType = getType(operands[1]);
if (!returnType) {
return emitError(unknownLoc, "unknown return type in OpTypeFunction");
}
SmallVector<Type, 1> argTypes;
for (size_t i = 2, e = operands.size(); i < e; ++i) {
auto ty = getType(operands[i]);
if (!ty) {
return emitError(unknownLoc, "unknown argument type in OpTypeFunction");
}
argTypes.push_back(ty);
}
ArrayRef<Type> returnTypes;
if (!isVoidType(returnType)) {
returnTypes = llvm::makeArrayRef(returnType);
}
typeMap[operands[0]] = FunctionType::get(argTypes, returnTypes, context);
return success();
}
LogicalResult
Deserializer::processCooperativeMatrixType(ArrayRef<uint32_t> operands) {
if (operands.size() != 5) {
return emitError(unknownLoc, "OpTypeCooperativeMatrix must have element "
"type and row x column parameters");
}
Type elementTy = getType(operands[1]);
if (!elementTy) {
return emitError(unknownLoc,
"OpTypeCooperativeMatrix references undefined <id> ")
<< operands[1];
}
auto scope = spirv::symbolizeScope(getConstantInt(operands[2]).getInt());
if (!scope) {
return emitError(unknownLoc,
"OpTypeCooperativeMatrix references undefined scope <id> ")
<< operands[2];
}
unsigned rows = getConstantInt(operands[3]).getInt();
unsigned columns = getConstantInt(operands[4]).getInt();
typeMap[operands[0]] = spirv::CooperativeMatrixNVType::get(
elementTy, scope.getValue(), rows, columns);
return success();
}
LogicalResult
Deserializer::processRuntimeArrayType(ArrayRef<uint32_t> operands) {
if (operands.size() != 2) {
return emitError(unknownLoc, "OpTypeRuntimeArray must have two operands");
}
Type memberType = getType(operands[1]);
if (!memberType) {
return emitError(unknownLoc,
"OpTypeRuntimeArray references undefined <id> ")
<< operands[1];
}
typeMap[operands[0]] = spirv::RuntimeArrayType::get(
memberType, typeDecorations.lookup(operands[0]));
return success();
}
LogicalResult Deserializer::processStructType(ArrayRef<uint32_t> operands) {
// TODO: Find a way to handle identified structs when debug info is stripped.
if (operands.empty()) {
return emitError(unknownLoc, "OpTypeStruct must have at least result <id>");
}
if (operands.size() == 1) {
// Handle empty struct.
typeMap[operands[0]] =
spirv::StructType::getEmpty(context, nameMap.lookup(operands[0]).str());
return success();
}
// First element is operand ID, second element is member index in the struct.
SmallVector<std::pair<uint32_t, unsigned>, 0> unresolvedMemberTypes;
SmallVector<Type, 4> memberTypes;
for (auto op : llvm::drop_begin(operands, 1)) {
Type memberType = getType(op);
bool typeForwardPtr = (typeForwardPointerIDs.count(op) != 0);
if (!memberType && !typeForwardPtr)
return emitError(unknownLoc, "OpTypeStruct references undefined <id> ")
<< op;
if (!memberType)
unresolvedMemberTypes.emplace_back(op, memberTypes.size());
memberTypes.push_back(memberType);
}
SmallVector<spirv::StructType::OffsetInfo, 0> offsetInfo;
SmallVector<spirv::StructType::MemberDecorationInfo, 0> memberDecorationsInfo;
if (memberDecorationMap.count(operands[0])) {
auto &allMemberDecorations = memberDecorationMap[operands[0]];
for (auto memberIndex : llvm::seq<uint32_t>(0, memberTypes.size())) {
if (allMemberDecorations.count(memberIndex)) {
for (auto &memberDecoration : allMemberDecorations[memberIndex]) {
// Check for offset.
if (memberDecoration.first == spirv::Decoration::Offset) {
// If offset info is empty, resize to the number of members;
if (offsetInfo.empty()) {
offsetInfo.resize(memberTypes.size());
}
offsetInfo[memberIndex] = memberDecoration.second[0];
} else {
if (!memberDecoration.second.empty()) {
memberDecorationsInfo.emplace_back(memberIndex, /*hasValue=*/1,
memberDecoration.first,
memberDecoration.second[0]);
} else {
memberDecorationsInfo.emplace_back(memberIndex, /*hasValue=*/0,
memberDecoration.first, 0);
}
}
}
}
}
}
uint32_t structID = operands[0];
std::string structIdentifier = nameMap.lookup(structID).str();
if (structIdentifier.empty()) {
assert(unresolvedMemberTypes.empty() &&
"didn't expect unresolved member types");
typeMap[structID] =
spirv::StructType::get(memberTypes, offsetInfo, memberDecorationsInfo);
} else {
auto structTy = spirv::StructType::getIdentified(context, structIdentifier);
typeMap[structID] = structTy;
if (!unresolvedMemberTypes.empty())
deferredStructTypesInfos.push_back({structTy, unresolvedMemberTypes,
memberTypes, offsetInfo,
memberDecorationsInfo});
else if (failed(structTy.trySetBody(memberTypes, offsetInfo,
memberDecorationsInfo)))
return failure();
}
// TODO: Update StructType to have member name as attribute as
// well.
return success();
}
LogicalResult Deserializer::processMatrixType(ArrayRef<uint32_t> operands) {
if (operands.size() != 3) {
// Three operands are needed: result_id, column_type, and column_count
return emitError(unknownLoc, "OpTypeMatrix must have 3 operands"
" (result_id, column_type, and column_count)");
}
// Matrix columns must be of vector type
Type elementTy = getType(operands[1]);
if (!elementTy) {
return emitError(unknownLoc,
"OpTypeMatrix references undefined column type.")
<< operands[1];
}
uint32_t colsCount = operands[2];
typeMap[operands[0]] = spirv::MatrixType::get(elementTy, colsCount);
return success();
}
//===----------------------------------------------------------------------===//
// Constant
//===----------------------------------------------------------------------===//
LogicalResult Deserializer::processConstant(ArrayRef<uint32_t> operands,
bool isSpec) {
StringRef opname = isSpec ? "OpSpecConstant" : "OpConstant";
if (operands.size() < 2) {
return emitError(unknownLoc)
<< opname << " must have type <id> and result <id>";
}
if (operands.size() < 3) {
return emitError(unknownLoc)
<< opname << " must have at least 1 more parameter";
}
Type resultType = getType(operands[0]);
if (!resultType) {
return emitError(unknownLoc, "undefined result type from <id> ")
<< operands[0];
}
auto checkOperandSizeForBitwidth = [&](unsigned bitwidth) -> LogicalResult {
if (bitwidth == 64) {
if (operands.size() == 4) {
return success();
}
return emitError(unknownLoc)
<< opname << " should have 2 parameters for 64-bit values";
}
if (bitwidth <= 32) {
if (operands.size() == 3) {
return success();
}
return emitError(unknownLoc)
<< opname
<< " should have 1 parameter for values with no more than 32 bits";
}
return emitError(unknownLoc, "unsupported OpConstant bitwidth: ")
<< bitwidth;
};
auto resultID = operands[1];
if (auto intType = resultType.dyn_cast<IntegerType>()) {
auto bitwidth = intType.getWidth();
if (failed(checkOperandSizeForBitwidth(bitwidth))) {
return failure();
}
APInt value;
if (bitwidth == 64) {
// 64-bit integers are represented with two SPIR-V words. According to
// SPIR-V spec: "When the type’s bit width is larger than one word, the
// literal’s low-order words appear first."
struct DoubleWord {
uint32_t word1;
uint32_t word2;
} words = {operands[2], operands[3]};
value = APInt(64, llvm::bit_cast<uint64_t>(words), /*isSigned=*/true);
} else if (bitwidth <= 32) {
value = APInt(bitwidth, operands[2], /*isSigned=*/true);
}
auto attr = opBuilder.getIntegerAttr(intType, value);
if (isSpec) {
createSpecConstant(unknownLoc, resultID, attr);
} else {
// For normal constants, we just record the attribute (and its type) for
// later materialization at use sites.
constantMap.try_emplace(resultID, attr, intType);
}
return success();
}
if (auto floatType = resultType.dyn_cast<FloatType>()) {
auto bitwidth = floatType.getWidth();
if (failed(checkOperandSizeForBitwidth(bitwidth))) {
return failure();
}
APFloat value(0.f);
if (floatType.isF64()) {
// Double values are represented with two SPIR-V words. According to
// SPIR-V spec: "When the type’s bit width is larger than one word, the
// literal’s low-order words appear first."
struct DoubleWord {
uint32_t word1;
uint32_t word2;
} words = {operands[2], operands[3]};
value = APFloat(llvm::bit_cast<double>(words));
} else if (floatType.isF32()) {
value = APFloat(llvm::bit_cast<float>(operands[2]));
} else if (floatType.isF16()) {
APInt data(16, operands[2]);
value = APFloat(APFloat::IEEEhalf(), data);
}
auto attr = opBuilder.getFloatAttr(floatType, value);
if (isSpec) {
createSpecConstant(unknownLoc, resultID, attr);
} else {
// For normal constants, we just record the attribute (and its type) for
// later materialization at use sites.
constantMap.try_emplace(resultID, attr, floatType);
}
return success();
}
return emitError(unknownLoc, "OpConstant can only generate values of "
"scalar integer or floating-point type");
}
LogicalResult Deserializer::processConstantBool(bool isTrue,
ArrayRef<uint32_t> operands,
bool isSpec) {
if (operands.size() != 2) {
return emitError(unknownLoc, "Op")
<< (isSpec ? "Spec" : "") << "Constant"
<< (isTrue ? "True" : "False")
<< " must have type <id> and result <id>";
}
auto attr = opBuilder.getBoolAttr(isTrue);
auto resultID = operands[1];
if (isSpec) {
createSpecConstant(unknownLoc, resultID, attr);
} else {
// For normal constants, we just record the attribute (and its type) for
// later materialization at use sites.
constantMap.try_emplace(resultID, attr, opBuilder.getI1Type());
}
return success();
}
LogicalResult
Deserializer::processConstantComposite(ArrayRef<uint32_t> operands) {
if (operands.size() < 2) {
return emitError(unknownLoc,
"OpConstantComposite must have type <id> and result <id>");
}
if (operands.size() < 3) {
return emitError(unknownLoc,
"OpConstantComposite must have at least 1 parameter");
}
Type resultType = getType(operands[0]);
if (!resultType) {
return emitError(unknownLoc, "undefined result type from <id> ")
<< operands[0];
}
SmallVector<Attribute, 4> elements;
elements.reserve(operands.size() - 2);
for (unsigned i = 2, e = operands.size(); i < e; ++i) {
auto elementInfo = getConstant(operands[i]);
if (!elementInfo) {
return emitError(unknownLoc, "OpConstantComposite component <id> ")
<< operands[i] << " must come from a normal constant";
}
elements.push_back(elementInfo->first);
}
auto resultID = operands[1];
if (auto vectorType = resultType.dyn_cast<VectorType>()) {
auto attr = DenseElementsAttr::get(vectorType, elements);
// For normal constants, we just record the attribute (and its type) for
// later materialization at use sites.
constantMap.try_emplace(resultID, attr, resultType);
} else if (auto arrayType = resultType.dyn_cast<spirv::ArrayType>()) {
auto attr = opBuilder.getArrayAttr(elements);
constantMap.try_emplace(resultID, attr, resultType);
} else {
return emitError(unknownLoc, "unsupported OpConstantComposite type: ")
<< resultType;
}
return success();
}
LogicalResult
Deserializer::processSpecConstantComposite(ArrayRef<uint32_t> operands) {
if (operands.size() < 2) {
return emitError(unknownLoc,
"OpConstantComposite must have type <id> and result <id>");
}
if (operands.size() < 3) {
return emitError(unknownLoc,
"OpConstantComposite must have at least 1 parameter");
}
Type resultType = getType(operands[0]);
if (!resultType) {
return emitError(unknownLoc, "undefined result type from <id> ")
<< operands[0];
}
auto resultID = operands[1];
auto symName = opBuilder.getStringAttr(getSpecConstantSymbol(resultID));
SmallVector<Attribute, 4> elements;
elements.reserve(operands.size() - 2);
for (unsigned i = 2, e = operands.size(); i < e; ++i) {
auto elementInfo = getSpecConstant(operands[i]);
elements.push_back(opBuilder.getSymbolRefAttr(elementInfo));
}
auto op = opBuilder.create<spirv::SpecConstantCompositeOp>(
unknownLoc, TypeAttr::get(resultType), symName,
opBuilder.getArrayAttr(elements));
specConstCompositeMap[resultID] = op;
return success();
}
LogicalResult Deserializer::processConstantNull(ArrayRef<uint32_t> operands) {
if (operands.size() != 2) {
return emitError(unknownLoc,
"OpConstantNull must have type <id> and result <id>");
}
Type resultType = getType(operands[0]);
if (!resultType) {
return emitError(unknownLoc, "undefined result type from <id> ")
<< operands[0];
}
auto resultID = operands[1];
if (resultType.isIntOrFloat() || resultType.isa<VectorType>()) {
auto attr = opBuilder.getZeroAttr(resultType);
// For normal constants, we just record the attribute (and its type) for
// later materialization at use sites.
constantMap.try_emplace(resultID, attr, resultType);
return success();
}
return emitError(unknownLoc, "unsupported OpConstantNull type: ")
<< resultType;
}
//===----------------------------------------------------------------------===//
// Control flow
//===----------------------------------------------------------------------===//
Block *Deserializer::getOrCreateBlock(uint32_t id) {
if (auto *block = getBlock(id)) {
LLVM_DEBUG(llvm::dbgs() << "[block] got exiting block for id = " << id
<< " @ " << block << "\n");
return block;
}
// We don't know where this block will be placed finally (in a spv.selection
// or spv.loop or function). Create it into the function for now and sort
// out the proper place later.
auto *block = curFunction->addBlock();
LLVM_DEBUG(llvm::dbgs() << "[block] created block for id = " << id << " @ "
<< block << "\n");
return blockMap[id] = block;
}
LogicalResult Deserializer::processBranch(ArrayRef<uint32_t> operands) {
if (!curBlock) {
return emitError(unknownLoc, "OpBranch must appear inside a block");
}
if (operands.size() != 1) {
return emitError(unknownLoc, "OpBranch must take exactly one target label");
}
auto *target = getOrCreateBlock(operands[0]);
auto loc = createFileLineColLoc(opBuilder);
// The preceding instruction for the OpBranch instruction could be an
// OpLoopMerge or an OpSelectionMerge instruction, in this case they will have
// the same OpLine information.
opBuilder.create<spirv::BranchOp>(loc, target);
clearDebugLine();
return success();
}
LogicalResult
Deserializer::processBranchConditional(ArrayRef<uint32_t> operands) {
if (!curBlock) {
return emitError(unknownLoc,
"OpBranchConditional must appear inside a block");
}
if (operands.size() != 3 && operands.size() != 5) {
return emitError(unknownLoc,
"OpBranchConditional must have condition, true label, "
"false label, and optionally two branch weights");
}
auto condition = getValue(operands[0]);
auto *trueBlock = getOrCreateBlock(operands[1]);
auto *falseBlock = getOrCreateBlock(operands[2]);
Optional<std::pair<uint32_t, uint32_t>> weights;
if (operands.size() == 5) {
weights = std::make_pair(operands[3], operands[4]);
}
// The preceding instruction for the OpBranchConditional instruction could be
// an OpSelectionMerge instruction, in this case they will have the same
// OpLine information.
auto loc = createFileLineColLoc(opBuilder);
opBuilder.create<spirv::BranchConditionalOp>(
loc, condition, trueBlock,
/*trueArguments=*/ArrayRef<Value>(), falseBlock,
/*falseArguments=*/ArrayRef<Value>(), weights);
clearDebugLine();
return success();
}
LogicalResult Deserializer::processLabel(ArrayRef<uint32_t> operands) {
if (!curFunction) {
return emitError(unknownLoc, "OpLabel must appear inside a function");
}
if (operands.size() != 1) {
return emitError(unknownLoc, "OpLabel should only have result <id>");
}
auto labelID = operands[0];
// We may have forward declared this block.
auto *block = getOrCreateBlock(labelID);
LLVM_DEBUG(llvm::dbgs() << "[block] populating block " << block << "\n");
// If we have seen this block, make sure it was just a forward declaration.
assert(block->empty() && "re-deserialize the same block!");
opBuilder.setInsertionPointToStart(block);
blockMap[labelID] = curBlock = block;
return success();
}
LogicalResult Deserializer::processSelectionMerge(ArrayRef<uint32_t> operands) {
if (!curBlock) {
return emitError(unknownLoc, "OpSelectionMerge must appear in a block");
}
if (operands.size() < 2) {
return emitError(
unknownLoc,
"OpSelectionMerge must specify merge target and selection control");
}
auto *mergeBlock = getOrCreateBlock(operands[0]);
auto loc = createFileLineColLoc(opBuilder);
auto selectionControl = operands[1];
if (!blockMergeInfo.try_emplace(curBlock, loc, selectionControl, mergeBlock)
.second) {
return emitError(
unknownLoc,
"a block cannot have more than one OpSelectionMerge instruction");
}
return success();
}
LogicalResult Deserializer::processLoopMerge(ArrayRef<uint32_t> operands) {
if (!curBlock) {
return emitError(unknownLoc, "OpLoopMerge must appear in a block");
}
if (operands.size() < 3) {
return emitError(unknownLoc, "OpLoopMerge must specify merge target, "
"continue target and loop control");
}
auto *mergeBlock = getOrCreateBlock(operands[0]);
auto *continueBlock = getOrCreateBlock(operands[1]);
auto loc = createFileLineColLoc(opBuilder);
uint32_t loopControl = operands[2];
if (!blockMergeInfo
.try_emplace(curBlock, loc, loopControl, mergeBlock, continueBlock)
.second) {
return emitError(
unknownLoc,
"a block cannot have more than one OpLoopMerge instruction");
}
return success();
}
LogicalResult Deserializer::processPhi(ArrayRef<uint32_t> operands) {
if (!curBlock) {
return emitError(unknownLoc, "OpPhi must appear in a block");
}
if (operands.size() < 4) {
return emitError(unknownLoc, "OpPhi must specify result type, result <id>, "
"and variable-parent pairs");
}
// Create a block argument for this OpPhi instruction.
Type blockArgType = getType(operands[0]);
BlockArgument blockArg = curBlock->addArgument(blockArgType);
valueMap[operands[1]] = blockArg;
LLVM_DEBUG(llvm::dbgs() << "[phi] created block argument " << blockArg
<< " id = " << operands[1] << " of type "
<< blockArgType << '\n');
// For each (value, predecessor) pair, insert the value to the predecessor's
// blockPhiInfo entry so later we can fix the block argument there.
for (unsigned i = 2, e = operands.size(); i < e; i += 2) {
uint32_t value = operands[i];
Block *predecessor = getOrCreateBlock(operands[i + 1]);
blockPhiInfo[predecessor].push_back(value);
LLVM_DEBUG(llvm::dbgs() << "[phi] predecessor @ " << predecessor
<< " with arg id = " << value << '\n');
}
return success();
}
namespace {
/// A class for putting all blocks in a structured selection/loop in a
/// spv.selection/spv.loop op.
class ControlFlowStructurizer {
public:
/// Structurizes the loop at the given `headerBlock`.
///
/// This method will create an spv.loop op in the `mergeBlock` and move all
/// blocks in the structured loop into the spv.loop's region. All branches to
/// the `headerBlock` will be redirected to the `mergeBlock`.
/// This method will also update `mergeInfo` by remapping all blocks inside to
/// the newly cloned ones inside structured control flow op's regions.
static LogicalResult structurize(Location loc, uint32_t control,
BlockMergeInfoMap &mergeInfo,
Block *headerBlock, Block *mergeBlock,
Block *continueBlock) {
return ControlFlowStructurizer(loc, control, mergeInfo, headerBlock,
mergeBlock, continueBlock)
.structurizeImpl();
}
private:
ControlFlowStructurizer(Location loc, uint32_t control,
BlockMergeInfoMap &mergeInfo, Block *header,
Block *merge, Block *cont)
: location(loc), control(control), blockMergeInfo(mergeInfo),
headerBlock(header), mergeBlock(merge), continueBlock(cont) {}
/// Creates a new spv.selection op at the beginning of the `mergeBlock`.
spirv::SelectionOp createSelectionOp(uint32_t selectionControl);
/// Creates a new spv.loop op at the beginning of the `mergeBlock`.
spirv::LoopOp createLoopOp(uint32_t loopControl);
/// Collects all blocks reachable from `headerBlock` except `mergeBlock`.
void collectBlocksInConstruct();
LogicalResult structurizeImpl();
Location location;
uint32_t control;
BlockMergeInfoMap &blockMergeInfo;
Block *headerBlock;
Block *mergeBlock;
Block *continueBlock; // nullptr for spv.selection
llvm::SetVector<Block *> constructBlocks;
};
} // namespace
spirv::SelectionOp
ControlFlowStructurizer::createSelectionOp(uint32_t selectionControl) {
// Create a builder and set the insertion point to the beginning of the
// merge block so that the newly created SelectionOp will be inserted there.
OpBuilder builder(&mergeBlock->front());
auto control = builder.getI32IntegerAttr(selectionControl);
auto selectionOp = builder.create<spirv::SelectionOp>(location, control);
selectionOp.addMergeBlock();
return selectionOp;
}
spirv::LoopOp ControlFlowStructurizer::createLoopOp(uint32_t loopControl) {
// Create a builder and set the insertion point to the beginning of the
// merge block so that the newly created LoopOp will be inserted there.
OpBuilder builder(&mergeBlock->front());
auto control = builder.getI32IntegerAttr(loopControl);
auto loopOp = builder.create<spirv::LoopOp>(location, control);
loopOp.addEntryAndMergeBlock();
return loopOp;
}
void ControlFlowStructurizer::collectBlocksInConstruct() {
assert(constructBlocks.empty() && "expected empty constructBlocks");
// Put the header block in the work list first.
constructBlocks.insert(headerBlock);
// For each item in the work list, add its successors excluding the merge
// block.
for (unsigned i = 0; i < constructBlocks.size(); ++i) {
for (auto *successor : constructBlocks[i]->getSuccessors())
if (successor != mergeBlock)
constructBlocks.insert(successor);
}
}
LogicalResult ControlFlowStructurizer::structurizeImpl() {
Operation *op = nullptr;
bool isLoop = continueBlock != nullptr;
if (isLoop) {
if (auto loopOp = createLoopOp(control))
op = loopOp.getOperation();
} else {
if (auto selectionOp = createSelectionOp(control))
op = selectionOp.getOperation();
}
if (!op)
return failure();
Region &body = op->getRegion(0);
BlockAndValueMapping mapper;
// All references to the old merge block should be directed to the
// selection/loop merge block in the SelectionOp/LoopOp's region.
mapper.map(mergeBlock, &body.back());
collectBlocksInConstruct();
// We've identified all blocks belonging to the selection/loop's region. Now
// need to "move" them into the selection/loop. Instead of really moving the
// blocks, in the following we copy them and remap all values and branches.
// This is because:
// * Inserting a block into a region requires the block not in any region
// before. But selections/loops can nest so we can create selection/loop ops
// in a nested manner, which means some blocks may already be in a
// selection/loop region when to be moved again.
// * It's much trickier to fix up the branches into and out of the loop's
// region: we need to treat not-moved blocks and moved blocks differently:
// Not-moved blocks jumping to the loop header block need to jump to the
// merge point containing the new loop op but not the loop continue block's
// back edge. Moved blocks jumping out of the loop need to jump to the
// merge block inside the loop region but not other not-moved blocks.
// We cannot use replaceAllUsesWith clearly and it's harder to follow the
// logic.
// Create a corresponding block in the SelectionOp/LoopOp's region for each
// block in this loop construct.
OpBuilder builder(body);
for (auto *block : constructBlocks) {
// Create a block and insert it before the selection/loop merge block in the
// SelectionOp/LoopOp's region.
auto *newBlock = builder.createBlock(&body.back());
mapper.map(block, newBlock);
LLVM_DEBUG(llvm::dbgs() << "[cf] cloned block " << newBlock
<< " from block " << block << "\n");
if (!isFnEntryBlock(block)) {
for (BlockArgument blockArg : block->getArguments()) {
auto newArg = newBlock->addArgument(blockArg.getType());
mapper.map(blockArg, newArg);
LLVM_DEBUG(llvm::dbgs() << "[cf] remapped block argument " << blockArg
<< " to " << newArg << '\n');
}
} else {
LLVM_DEBUG(llvm::dbgs()
<< "[cf] block " << block << " is a function entry block\n");
}
for (auto &op : *block)
newBlock->push_back(op.clone(mapper));
}
// Go through all ops and remap the operands.
auto remapOperands = [&](Operation *op) {
for (auto &operand : op->getOpOperands())
if (Value mappedOp = mapper.lookupOrNull(operand.get()))
operand.set(mappedOp);
for (auto &succOp : op->getBlockOperands())
if (Block *mappedOp = mapper.lookupOrNull(succOp.get()))
succOp.set(mappedOp);
};
for (auto &block : body) {
block.walk(remapOperands);
}
// We have created the SelectionOp/LoopOp and "moved" all blocks belonging to
// the selection/loop construct into its region. Next we need to fix the
// connections between this new SelectionOp/LoopOp with existing blocks.
// All existing incoming branches should go to the merge block, where the
// SelectionOp/LoopOp resides right now.
headerBlock->replaceAllUsesWith(mergeBlock);
if (isLoop) {
// The loop selection/loop header block may have block arguments. Since now
// we place the selection/loop op inside the old merge block, we need to
// make sure the old merge block has the same block argument list.
assert(mergeBlock->args_empty() && "OpPhi in loop merge block unsupported");
for (BlockArgument blockArg : headerBlock->getArguments()) {
mergeBlock->addArgument(blockArg.getType());
}
// If the loop header block has block arguments, make sure the spv.branch op
// matches.
SmallVector<Value, 4> blockArgs;
if (!headerBlock->args_empty())
blockArgs = {mergeBlock->args_begin(), mergeBlock->args_end()};
// The loop entry block should have a unconditional branch jumping to the
// loop header block.
builder.setInsertionPointToEnd(&body.front());
builder.create<spirv::BranchOp>(location, mapper.lookupOrNull(headerBlock),
ArrayRef<Value>(blockArgs));
}
// All the blocks cloned into the SelectionOp/LoopOp's region can now be
// cleaned up.
LLVM_DEBUG(llvm::dbgs() << "[cf] cleaning up blocks after clone\n");
// First we need to drop all operands' references inside all blocks. This is
// needed because we can have blocks referencing SSA values from one another.
for (auto *block : constructBlocks)
block->dropAllReferences();
// Then erase all old blocks.
for (auto *block : constructBlocks) {
// We've cloned all blocks belonging to this construct into the structured
// control flow op's region. Among these blocks, some may compose another
// selection/loop. If so, they will be recorded within blockMergeInfo.
// We need to update the pointers there to the newly remapped ones so we can
// continue structurizing them later.
// TODO: The asserts in the following assumes input SPIR-V blob
// forms correctly nested selection/loop constructs. We should relax this
// and support error cases better.
auto it = blockMergeInfo.find(block);
if (it != blockMergeInfo.end()) {
Block *newHeader = mapper.lookupOrNull(block);
assert(newHeader && "nested loop header block should be remapped!");
Block *newContinue = it->second.continueBlock;
if (newContinue) {
newContinue = mapper.lookupOrNull(newContinue);
assert(newContinue && "nested loop continue block should be remapped!");
}
Block *newMerge = it->second.mergeBlock;
if (Block *mappedTo = mapper.lookupOrNull(newMerge))
newMerge = mappedTo;
// Keep original location for nested selection/loop ops.
Location loc = it->second.loc;
// The iterator should be erased before adding a new entry into
// blockMergeInfo to avoid iterator invalidation.
blockMergeInfo.erase(it);
blockMergeInfo.try_emplace(newHeader, loc, it->second.control, newMerge,
newContinue);
}
// The structured selection/loop's entry block does not have arguments.
// If the function's header block is also part of the structured control
// flow, we cannot just simply erase it because it may contain arguments
// matching the function signature and used by the cloned blocks.
if (isFnEntryBlock(block)) {
LLVM_DEBUG(llvm::dbgs() << "[cf] changing entry block " << block
<< " to only contain a spv.Branch op\n");
// Still keep the function entry block for the potential block arguments,
// but replace all ops inside with a branch to the merge block.
block->clear();
builder.setInsertionPointToEnd(block);
builder.create<spirv::BranchOp>(location, mergeBlock);
} else {
LLVM_DEBUG(llvm::dbgs() << "[cf] erasing block " << block << "\n");
block->erase();
}
}
LLVM_DEBUG(
llvm::dbgs() << "[cf] after structurizing construct with header block "
<< headerBlock << ":\n"
<< *op << '\n');
return success();
}
LogicalResult Deserializer::wireUpBlockArgument() {
LLVM_DEBUG(llvm::dbgs() << "[phi] start wiring up block arguments\n");
OpBuilder::InsertionGuard guard(opBuilder);
for (const auto &info : blockPhiInfo) {
Block *block = info.first;
const BlockPhiInfo &phiInfo = info.second;
LLVM_DEBUG(llvm::dbgs() << "[phi] block " << block << "\n");
LLVM_DEBUG(llvm::dbgs() << "[phi] before creating block argument:\n");
LLVM_DEBUG(block->getParentOp()->print(llvm::dbgs()));
LLVM_DEBUG(llvm::dbgs() << '\n');
// Set insertion point to before this block's terminator early because we
// may materialize ops via getValue() call.
auto *op = block->getTerminator();
opBuilder.setInsertionPoint(op);
SmallVector<Value, 4> blockArgs;
blockArgs.reserve(phiInfo.size());
for (uint32_t valueId : phiInfo) {
if (Value value = getValue(valueId)) {
blockArgs.push_back(value);
LLVM_DEBUG(llvm::dbgs() << "[phi] block argument " << value
<< " id = " << valueId << '\n');
} else {
return emitError(unknownLoc, "OpPhi references undefined value!");
}
}
if (auto branchOp = dyn_cast<spirv::BranchOp>(op)) {
// Replace the previous branch op with a new one with block arguments.
opBuilder.create<spirv::BranchOp>(branchOp.getLoc(), branchOp.getTarget(),
blockArgs);
branchOp.erase();
} else {
return emitError(unknownLoc, "unimplemented terminator for Phi creation");
}
LLVM_DEBUG(llvm::dbgs() << "[phi] after creating block argument:\n");
LLVM_DEBUG(block->getParentOp()->print(llvm::dbgs()));
LLVM_DEBUG(llvm::dbgs() << '\n');
}
blockPhiInfo.clear();
LLVM_DEBUG(llvm::dbgs() << "[phi] completed wiring up block arguments\n");
return success();
}
LogicalResult Deserializer::structurizeControlFlow() {
LLVM_DEBUG(llvm::dbgs() << "[cf] start structurizing control flow\n");
while (!blockMergeInfo.empty()) {
Block *headerBlock = blockMergeInfo.begin()->first;
BlockMergeInfo mergeInfo = blockMergeInfo.begin()->second;
LLVM_DEBUG(llvm::dbgs() << "[cf] header block " << headerBlock << ":\n");
LLVM_DEBUG(headerBlock->print(llvm::dbgs()));
auto *mergeBlock = mergeInfo.mergeBlock;
assert(mergeBlock && "merge block cannot be nullptr");
if (!mergeBlock->args_empty())
return emitError(unknownLoc, "OpPhi in loop merge block unimplemented");
LLVM_DEBUG(llvm::dbgs() << "[cf] merge block " << mergeBlock << ":\n");
LLVM_DEBUG(mergeBlock->print(llvm::dbgs()));
auto *continueBlock = mergeInfo.continueBlock;
if (continueBlock) {
LLVM_DEBUG(llvm::dbgs()
<< "[cf] continue block " << continueBlock << ":\n");
LLVM_DEBUG(continueBlock->print(llvm::dbgs()));
}
// Erase this case before calling into structurizer, who will update
// blockMergeInfo.
blockMergeInfo.erase(blockMergeInfo.begin());
if (failed(ControlFlowStructurizer::structurize(
mergeInfo.loc, mergeInfo.control, blockMergeInfo, headerBlock,
mergeBlock, continueBlock)))
return failure();
}
LLVM_DEBUG(llvm::dbgs() << "[cf] completed structurizing control flow\n");
return success();
}
//===----------------------------------------------------------------------===//
// Debug
//===----------------------------------------------------------------------===//
Location Deserializer::createFileLineColLoc(OpBuilder opBuilder) {
if (!debugLine)
return unknownLoc;
auto fileName = debugInfoMap.lookup(debugLine->fileID).str();
if (fileName.empty())
fileName = "<unknown>";
return opBuilder.getFileLineColLoc(opBuilder.getIdentifier(fileName),
debugLine->line, debugLine->col);
}
LogicalResult Deserializer::processDebugLine(ArrayRef<uint32_t> operands) {
// According to SPIR-V spec:
// "This location information applies to the instructions physically
// following this instruction, up to the first occurrence of any of the
// following: the next end of block, the next OpLine instruction, or the next
// OpNoLine instruction."
if (operands.size() != 3)
return emitError(unknownLoc, "OpLine must have 3 operands");
debugLine = DebugLine(operands[0], operands[1], operands[2]);
return success();
}
LogicalResult Deserializer::clearDebugLine() {
debugLine = llvm::None;
return success();
}
LogicalResult Deserializer::processDebugString(ArrayRef<uint32_t> operands) {
if (operands.size() < 2)
return emitError(unknownLoc, "OpString needs at least 2 operands");
if (!debugInfoMap.lookup(operands[0]).empty())
return emitError(unknownLoc,
"duplicate debug string found for result <id> ")
<< operands[0];
unsigned wordIndex = 1;
StringRef debugString = decodeStringLiteral(operands, wordIndex);
if (wordIndex != operands.size())
return emitError(unknownLoc,
"unexpected trailing words in OpString instruction");
debugInfoMap[operands[0]] = debugString;
return success();
}
//===----------------------------------------------------------------------===//
// Instruction
//===----------------------------------------------------------------------===//
Value Deserializer::getValue(uint32_t id) {
if (auto constInfo = getConstant(id)) {
// Materialize a `spv.constant` op at every use site.
return opBuilder.create<spirv::ConstantOp>(unknownLoc, constInfo->second,
constInfo->first);
}
if (auto varOp = getGlobalVariable(id)) {
auto addressOfOp = opBuilder.create<spirv::AddressOfOp>(
unknownLoc, varOp.type(),
opBuilder.getSymbolRefAttr(varOp.getOperation()));
return addressOfOp.pointer();
}
if (auto constOp = getSpecConstant(id)) {
auto referenceOfOp = opBuilder.create<spirv::ReferenceOfOp>(
unknownLoc, constOp.default_value().getType(),
opBuilder.getSymbolRefAttr(constOp.getOperation()));
return referenceOfOp.reference();
}
if (auto constCompositeOp = getSpecConstantComposite(id)) {
auto referenceOfOp = opBuilder.create<spirv::ReferenceOfOp>(
unknownLoc, constCompositeOp.type(),
opBuilder.getSymbolRefAttr(constCompositeOp.getOperation()));
return referenceOfOp.reference();
}
if (auto undef = getUndefType(id)) {
return opBuilder.create<spirv::UndefOp>(unknownLoc, undef);
}
return valueMap.lookup(id);
}
LogicalResult
Deserializer::sliceInstruction(spirv::Opcode &opcode,
ArrayRef<uint32_t> &operands,
Optional<spirv::Opcode> expectedOpcode) {
auto binarySize = binary.size();
if (curOffset >= binarySize) {
return emitError(unknownLoc, "expected ")
<< (expectedOpcode ? spirv::stringifyOpcode(*expectedOpcode)
: "more")
<< " instruction";
}
// For each instruction, get its word count from the first word to slice it
// from the stream properly, and then dispatch to the instruction handler.
uint32_t wordCount = binary[curOffset] >> 16;
if (wordCount == 0)
return emitError(unknownLoc, "word count cannot be zero");
uint32_t nextOffset = curOffset + wordCount;
if (nextOffset > binarySize)
return emitError(unknownLoc, "insufficient words for the last instruction");
opcode = extractOpcode(binary[curOffset]);
operands = binary.slice(curOffset + 1, wordCount - 1);
curOffset = nextOffset;
return success();
}
LogicalResult Deserializer::processInstruction(spirv::Opcode opcode,
ArrayRef<uint32_t> operands,
bool deferInstructions) {
LLVM_DEBUG(llvm::dbgs() << "[inst] processing instruction "
<< spirv::stringifyOpcode(opcode) << "\n");
// First dispatch all the instructions whose opcode does not correspond to
// those that have a direct mirror in the SPIR-V dialect
switch (opcode) {
case spirv::Opcode::OpCapability:
return processCapability(operands);
case spirv::Opcode::OpExtension:
return processExtension(operands);
case spirv::Opcode::OpExtInst:
return processExtInst(operands);
case spirv::Opcode::OpExtInstImport:
return processExtInstImport(operands);
case spirv::Opcode::OpMemberName:
return processMemberName(operands);
case spirv::Opcode::OpMemoryModel:
return processMemoryModel(operands);
case spirv::Opcode::OpEntryPoint:
case spirv::Opcode::OpExecutionMode:
if (deferInstructions) {
deferredInstructions.emplace_back(opcode, operands);
return success();
}
break;
case spirv::Opcode::OpVariable:
if (isa<spirv::ModuleOp>(opBuilder.getBlock()->getParentOp())) {
return processGlobalVariable(operands);
}
break;
case spirv::Opcode::OpLine:
return processDebugLine(operands);
case spirv::Opcode::OpNoLine:
return clearDebugLine();
case spirv::Opcode::OpName:
return processName(operands);
case spirv::Opcode::OpString:
return processDebugString(operands);
case spirv::Opcode::OpModuleProcessed:
case spirv::Opcode::OpSource:
case spirv::Opcode::OpSourceContinued:
case spirv::Opcode::OpSourceExtension:
// TODO: This is debug information embedded in the binary which should be
// translated into the spv.module.
return success();
case spirv::Opcode::OpTypeVoid:
case spirv::Opcode::OpTypeBool:
case spirv::Opcode::OpTypeInt:
case spirv::Opcode::OpTypeFloat:
case spirv::Opcode::OpTypeVector:
case spirv::Opcode::OpTypeMatrix:
case spirv::Opcode::OpTypeArray:
case spirv::Opcode::OpTypeFunction:
case spirv::Opcode::OpTypeRuntimeArray:
case spirv::Opcode::OpTypeStruct:
case spirv::Opcode::OpTypePointer:
case spirv::Opcode::OpTypeCooperativeMatrixNV:
return processType(opcode, operands);
case spirv::Opcode::OpConstant:
return processConstant(operands, /*isSpec=*/false);
case spirv::Opcode::OpSpecConstant:
return processConstant(operands, /*isSpec=*/true);
case spirv::Opcode::OpConstantComposite:
return processConstantComposite(operands);
case spirv::Opcode::OpSpecConstantComposite:
return processSpecConstantComposite(operands);
case spirv::Opcode::OpConstantTrue:
return processConstantBool(/*isTrue=*/true, operands, /*isSpec=*/false);
case spirv::Opcode::OpSpecConstantTrue:
return processConstantBool(/*isTrue=*/true, operands, /*isSpec=*/true);
case spirv::Opcode::OpConstantFalse:
return processConstantBool(/*isTrue=*/false, operands, /*isSpec=*/false);
case spirv::Opcode::OpSpecConstantFalse:
return processConstantBool(/*isTrue=*/false, operands, /*isSpec=*/true);
case spirv::Opcode::OpConstantNull:
return processConstantNull(operands);
case spirv::Opcode::OpDecorate:
return processDecoration(operands);
case spirv::Opcode::OpMemberDecorate:
return processMemberDecoration(operands);
case spirv::Opcode::OpFunction:
return processFunction(operands);
case spirv::Opcode::OpLabel:
return processLabel(operands);
case spirv::Opcode::OpBranch:
return processBranch(operands);
case spirv::Opcode::OpBranchConditional:
return processBranchConditional(operands);
case spirv::Opcode::OpSelectionMerge:
return processSelectionMerge(operands);
case spirv::Opcode::OpLoopMerge:
return processLoopMerge(operands);
case spirv::Opcode::OpPhi:
return processPhi(operands);
case spirv::Opcode::OpUndef:
return processUndef(operands);
case spirv::Opcode::OpTypeForwardPointer:
return processTypeForwardPointer(operands);
default:
break;
}
return dispatchToAutogenDeserialization(opcode, operands);
}
LogicalResult Deserializer::processUndef(ArrayRef<uint32_t> operands) {
if (operands.size() != 2) {
return emitError(unknownLoc, "OpUndef instruction must have two operands");
}
auto type = getType(operands[0]);
if (!type) {
return emitError(unknownLoc, "unknown type <id> with OpUndef instruction");
}
undefMap[operands[1]] = type;
return success();
}
LogicalResult
Deserializer::processTypeForwardPointer(ArrayRef<uint32_t> operands) {
if (operands.size() != 2)
return emitError(unknownLoc,
"OpTypeForwardPointer instruction must have two operands");
typeForwardPointerIDs.insert(operands[0]);
// TODO: Use the 2nd operand (Storage Class) to validate the OpTypePointer
// instruction that defines the actual type.
return success();
}
LogicalResult Deserializer::processExtInst(ArrayRef<uint32_t> operands) {
if (operands.size() < 4) {
return emitError(unknownLoc,
"OpExtInst must have at least 4 operands, result type "
"<id>, result <id>, set <id> and instruction opcode");
}
if (!extendedInstSets.count(operands[2])) {
return emitError(unknownLoc, "undefined set <id> in OpExtInst");
}
SmallVector<uint32_t, 4> slicedOperands;
slicedOperands.append(operands.begin(), std::next(operands.begin(), 2));
slicedOperands.append(std::next(operands.begin(), 4), operands.end());
return dispatchToExtensionSetAutogenDeserialization(
extendedInstSets[operands[2]], operands[3], slicedOperands);
}
namespace {
template <>
LogicalResult
Deserializer::processOp<spirv::EntryPointOp>(ArrayRef<uint32_t> words) {
unsigned wordIndex = 0;
if (wordIndex >= words.size()) {
return emitError(unknownLoc,
"missing Execution Model specification in OpEntryPoint");
}
auto execModel = opBuilder.getI32IntegerAttr(words[wordIndex++]);
if (wordIndex >= words.size()) {
return emitError(unknownLoc, "missing <id> in OpEntryPoint");
}
// Get the function <id>
auto fnID = words[wordIndex++];
// Get the function name
auto fnName = decodeStringLiteral(words, wordIndex);
// Verify that the function <id> matches the fnName
auto parsedFunc = getFunction(fnID);
if (!parsedFunc) {
return emitError(unknownLoc, "no function matching <id> ") << fnID;
}
if (parsedFunc.getName() != fnName) {
return emitError(unknownLoc, "function name mismatch between OpEntryPoint "
"and OpFunction with <id> ")
<< fnID << ": " << fnName << " vs. " << parsedFunc.getName();
}
SmallVector<Attribute, 4> interface;
while (wordIndex < words.size()) {
auto arg = getGlobalVariable(words[wordIndex]);
if (!arg) {
return emitError(unknownLoc, "undefined result <id> ")
<< words[wordIndex] << " while decoding OpEntryPoint";
}
interface.push_back(opBuilder.getSymbolRefAttr(arg.getOperation()));
wordIndex++;
}
opBuilder.create<spirv::EntryPointOp>(unknownLoc, execModel,
opBuilder.getSymbolRefAttr(fnName),
opBuilder.getArrayAttr(interface));
return success();
}
template <>
LogicalResult
Deserializer::processOp<spirv::ExecutionModeOp>(ArrayRef<uint32_t> words) {
unsigned wordIndex = 0;
if (wordIndex >= words.size()) {
return emitError(unknownLoc,
"missing function result <id> in OpExecutionMode");
}
// Get the function <id> to get the name of the function
auto fnID = words[wordIndex++];
auto fn = getFunction(fnID);
if (!fn) {
return emitError(unknownLoc, "no function matching <id> ") << fnID;
}
// Get the Execution mode
if (wordIndex >= words.size()) {
return emitError(unknownLoc, "missing Execution Mode in OpExecutionMode");
}
auto execMode = opBuilder.getI32IntegerAttr(words[wordIndex++]);
// Get the values
SmallVector<Attribute, 4> attrListElems;
while (wordIndex < words.size()) {
attrListElems.push_back(opBuilder.getI32IntegerAttr(words[wordIndex++]));
}
auto values = opBuilder.getArrayAttr(attrListElems);
opBuilder.create<spirv::ExecutionModeOp>(
unknownLoc, opBuilder.getSymbolRefAttr(fn.getName()), execMode, values);
return success();
}
template <>
LogicalResult
Deserializer::processOp<spirv::ControlBarrierOp>(ArrayRef<uint32_t> operands) {
if (operands.size() != 3) {
return emitError(
unknownLoc,
"OpControlBarrier must have execution scope <id>, memory scope <id> "
"and memory semantics <id>");
}
SmallVector<IntegerAttr, 3> argAttrs;
for (auto operand : operands) {
auto argAttr = getConstantInt(operand);
if (!argAttr) {
return emitError(unknownLoc,
"expected 32-bit integer constant from <id> ")
<< operand << " for OpControlBarrier";
}
argAttrs.push_back(argAttr);
}
opBuilder.create<spirv::ControlBarrierOp>(unknownLoc, argAttrs[0],
argAttrs[1], argAttrs[2]);
return success();
}
template <>
LogicalResult
Deserializer::processOp<spirv::FunctionCallOp>(ArrayRef<uint32_t> operands) {
if (operands.size() < 3) {
return emitError(unknownLoc,
"OpFunctionCall must have at least 3 operands");
}
Type resultType = getType(operands[0]);
if (!resultType) {
return emitError(unknownLoc, "undefined result type from <id> ")
<< operands[0];
}
// Use null type to mean no result type.
if (isVoidType(resultType))
resultType = nullptr;
auto resultID = operands[1];
auto functionID = operands[2];
auto functionName = getFunctionSymbol(functionID);
SmallVector<Value, 4> arguments;
for (auto operand : llvm::drop_begin(operands, 3)) {
auto value = getValue(operand);
if (!value) {
return emitError(unknownLoc, "unknown <id> ")
<< operand << " used by OpFunctionCall";
}
arguments.push_back(value);
}
auto opFunctionCall = opBuilder.create<spirv::FunctionCallOp>(
unknownLoc, resultType, opBuilder.getSymbolRefAttr(functionName),
arguments);
if (resultType)
valueMap[resultID] = opFunctionCall.getResult(0);
return success();
}
template <>
LogicalResult
Deserializer::processOp<spirv::MemoryBarrierOp>(ArrayRef<uint32_t> operands) {
if (operands.size() != 2) {
return emitError(unknownLoc, "OpMemoryBarrier must have memory scope <id> "
"and memory semantics <id>");
}
SmallVector<IntegerAttr, 2> argAttrs;
for (auto operand : operands) {
auto argAttr = getConstantInt(operand);
if (!argAttr) {
return emitError(unknownLoc,
"expected 32-bit integer constant from <id> ")
<< operand << " for OpMemoryBarrier";
}
argAttrs.push_back(argAttr);
}
opBuilder.create<spirv::MemoryBarrierOp>(unknownLoc, argAttrs[0],
argAttrs[1]);
return success();
}
template <>
LogicalResult
Deserializer::processOp<spirv::CopyMemoryOp>(ArrayRef<uint32_t> words) {
SmallVector<Type, 1> resultTypes;
size_t wordIndex = 0;
SmallVector<Value, 4> operands;
SmallVector<NamedAttribute, 4> attributes;
if (wordIndex < words.size()) {
auto arg = getValue(words[wordIndex]);
if (!arg) {
return emitError(unknownLoc, "unknown result <id> : ")
<< words[wordIndex];
}
operands.push_back(arg);
wordIndex++;
}
if (wordIndex < words.size()) {
auto arg = getValue(words[wordIndex]);
if (!arg) {
return emitError(unknownLoc, "unknown result <id> : ")
<< words[wordIndex];
}
operands.push_back(arg);
wordIndex++;
}
bool isAlignedAttr = false;
if (wordIndex < words.size()) {
auto attrValue = words[wordIndex++];
attributes.push_back(opBuilder.getNamedAttr(
"memory_access", opBuilder.getI32IntegerAttr(attrValue)));
isAlignedAttr = (attrValue == 2);
}
if (isAlignedAttr && wordIndex < words.size()) {
attributes.push_back(opBuilder.getNamedAttr(
"alignment", opBuilder.getI32IntegerAttr(words[wordIndex++])));
}
if (wordIndex < words.size()) {
attributes.push_back(opBuilder.getNamedAttr(
"source_memory_access",
opBuilder.getI32IntegerAttr(words[wordIndex++])));
}
if (wordIndex < words.size()) {
attributes.push_back(opBuilder.getNamedAttr(
"source_alignment", opBuilder.getI32IntegerAttr(words[wordIndex++])));
}
if (wordIndex != words.size()) {
return emitError(unknownLoc,
"found more operands than expected when deserializing "
"spirv::CopyMemoryOp, only ")
<< wordIndex << " of " << words.size() << " processed";
}
Location loc = createFileLineColLoc(opBuilder);
opBuilder.create<spirv::CopyMemoryOp>(loc, resultTypes, operands, attributes);
return success();
}
// Pull in auto-generated Deserializer::dispatchToAutogenDeserialization() and
// various Deserializer::processOp<...>() specializations.
#define GET_DESERIALIZATION_FNS
#include "mlir/Dialect/SPIRV/SPIRVSerialization.inc"
} // namespace
spirv::OwningSPIRVModuleRef spirv::deserialize(ArrayRef<uint32_t> binary,
MLIRContext *context) {
Deserializer deserializer(binary, context);
if (failed(deserializer.deserialize()))
return nullptr;
return deserializer.collect();
}